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SUMMARY 

Background: Polycystic ovary syndrome (PCOS) is a disorder characterized by insulin 

resistance and hyperandrogenism, which leads to an increased risk of type 2 diabetes in 

later life. Androgens and insulin signalling affect brain function but little is known 

about brain structure and function in younger adults with PCOS. 

Aims and Methods: To establish whether young women with PCOS display altered 

white matter microstructure and cognitive function. Eighteen individuals with PCOS 

(age, 31 ± 6 y; body mass index [BMI] 30 ± 6 kg/m2) and 18 control subjects (age, 31 ± 

7 y; BMI, 29 ± 6 kg/m2), matched for age, IQ, and BMI, underwent anthropometric and 

metabolic evaluation, diffusion tensor MRI, a technique especially sensitive to brain 

white matter structure, and cognitive assessment. Cognitive scores and white matter 

diffusion metrics were compared between groups. White matter microstructure was 

evaluated across the whole white matter skeleton using tract-based spatial statistics. 

Associations with metabolic indices were also evaluated. 

 

Results: PCOS was associated with a widespread reduction in axial diffusivity 

(diffusion along the main axis of white matter fibres) and increased tissue volume 

fraction (the proportion of volume filled by white or grey matter rather than 

cerebrospinal fluid) in the corpus callosum. Cognitive performance was reduced 

compared with controls (first principal component, t = 2.9, P = .007), reflecting subtle 

decrements across a broad range of cognitive tests, despite similar education and 

premorbid intelligence. In PCOS, there was a reversal of the relationship seen in 

controls between brain microstructure and both androgens and insulin resistance. 
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Conclusion: White matter microstructure is altered, and cognitive performance is 

compromised, in young adults with PCOS. These alterations in brain structure and 

function are independent of age, education and BMI. If reversible, these changes 

represent a potential target for treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

Acknowledgements 

Firstly, I would like to thank my supervisors Dr Aled Rees and Dr Mike O’Sullivan for 

their guidance and support provided throughout this study. 

I would also like to thank the people who assisted in this project;  

1. Dr Kate Craig and team for allowing access to the Clinical Research Facility. 

2. Dr Helen Blundell for the capture and interpretation of the abdominal CT scans. 

3. John Evans and Peter Hobden who carried out the Magnetic resonance imaging 

at Cardiff University Brain Research and Imaging Centre. 

4. Dr Claudia-Metzler Baddeley for providing me training in carrying out the 

cognitive function tests and assisting me with analysing the MRI data in relation 

to Diffusion tensor imaging. 

5. Dr Rok Berlot for performing Tract based spatial statistics and analysing the 

results. 

Without the patients and volunteers who willingly gave up their time to participate in 

this study, this research would not have been possible and I am very grateful to them 

all. 

This thesis is dedicated to my two lovely darling children Lathika and Aaditya who 

were born during the period that I undertook this research project and made it a very 

challenging yet rewarding period of my career. 

 

 

 



ix 

 

PUBLICATIONS AND PRESENTATIONS 

Publication Arising from this Research 

 

Rees DA, Udiawar M, Berlot R, Jones DK, O’Sullivan MJ. White Matter 

Microstructure and Cognitive Function in Young Women with Polycystic Ovary 

Syndrome. Journal of Clinical Endocrinology and Metabolism, 2016. 101(1): 314-23. 

 

Presentations to Learned Societies 

Udiawar M, Berlot R, Rees DA, O’Sullivan MJ. Reduced cognitive performance and 

altered white matter microstructure in young insulin-resistant women with Polycystic 

Ovary Syndrome. (Oral) British Endocrine Society, Liverpool March 2014. 

Udiawar M, Berlot R, Rees DA, O’Sullivan MJ. Reduced cognitive performance and 

altered white matter microstructure in young insulin-resistant women with Polycystic 

Ovary Syndrome. (Oral) Welsh Endocrine and Diabetes Society Meeting, May 2013. 

 

 

 

 

 

 

 

 

 

 



x 

 

ABBREVIATIONS 

17β  17 β-hydroxysteroid dehydrogenase 

ADC  Apparent Diffusion Coefficient 

AE-PCOS Androgen Excess and PCOS Society 

ARIC  Atherosclerosis Risk in Communities 

ASRM  American Society of Reproductive Medicine 

ASSET Array Spatial Sensitivity Encoding Technique 

AUC  Area Under Curve 

AD  Axial Diffusivity 

BDI  Beck’s Depression Inventory 

BMI  Body Mass Index 

CU  Cardiff University 

CUBRIC Cardiff University Brain Research Imaging Centre 

DENND1A DENN/MADD domain containing 1A 

DICOM Digital Imaging and Communications in Medicine 

DST  Digit Symbol Substitution Test 

DTI  Diffusion tensor Imaging 

DWI  Diffusion Weighted Imaging 

EPI  Echo Planar Imaging 

ESHRE European Society for Human Reproduction 

FA  Fractional Anisotropy 

FCSRT Free and Cued Selective Reminding Test 

FLAIR  Fluid Attenuated Inversion Recovery Scans 

FMRIB Functional MRI of the Brain 

FPI  Fasting Plasma Insulin 



xi 

 

FSH  Follicle Stimulating Hormone 

FSL  FMRIB Software Library 

FTO  Fat mass and Obesity associated 

GDM  Gestational Diabetes Mellitus 

GLUT-4 Glucose Transporter 4 

GnRH  Gonadotrophin-Releasing Hormone 

GWAS  Genome Wide Association Study 

IGT   Impaired Glucose Tolerance 

IL-6  Interleukin 6 

IR  Insulin Resistance 

IRS  Insulin Receptor Substrate 

LH  Luteinising Hormone 

LHCGR Luteinising Hormone/Chorio-gonadotrophin Receptor 

MAPK  Mitogen Activated Protein Kinase 

MD  Mean Diffusivity 

miRNA micro RNA 

MMSE  Mini-Mental State Exam 

NAFLD Non Alcoholic Fatty Liver Disease 

NART-R National Adult Reading Test Revised 

NASH  Non Alcoholic Steatohepatitis 

NIH  National Institutes of Health 

NIFTI  Neuroimaging Informatics Technology Initiative 

OGTT  Oral Glucose Tolerance Test 

OSA  Obstructive Sleep apnoea 

PHC  Parahippocampal Cingulum 



xii 

 

PIQ  Performance Intelligence Quotient 

PVE  Partial Volume Effects 

QUICKI Quantitative Insulin sensitivity Check Index 

RD  Radial Diffusivity 

ROCF  Rey-Osterrieth Complex Figure Test 

ROI  Region of Interest 

SDB  Sleep Disordered Breathing 

SHBG  Sex Hormone Binding Globulin 

TBSS  Tract Based Spatial Statistics 

TFCE  Threshold-Free Cluster Enhancement 

THADA Thyroid adenoma-associated protein 

UF  Uncinate Fasciculus 

UHW  University Hospital of Wales 

VIQ  Verbal Intelligence Quotient 

VLDL  Very Low Density Lipoprotein 

WAIS  Wechsler Adult Intelligence Scale 

WASI  Wechsler Abbreviated Scale of Intelligence 

 

 

 

 

 

 

 

 



xiii 

 

LIST OF FIGURES 

Figure No.     Title                                             Page No. 

  

1.1  Causative risk factors linked to development of cognitive    2 

Impairment 

1.2  Pathophysiology of Polycystic Ovary Syndrome    11 

1.3            Isotropic and anisotropic diffusion                     28                                       

1.4  Axial tractographic image demonstrating white matter tracts  28 

  in the brain 

1.5  Schematic representation of fibre tracts     30 

1.6  Diffusion Ellipsoid characterised by eigenvectors    30 

1.7  Schematic diagram showing a basic algorithm for tract    33 

reconstruction  

1.8  Image generated from whole brain diffusion tensor tractography  35 

2.1  Cross sectional CT scan image      44 

2.2  Digit symbol substitution Test      46 

2.3  Schematic diagram showing region of interest operations   54 

2.4  Tractography using region of interest (ROI waypoints) for the   58 

  fornix (A), uncinate fasciculus (B) and the parahippocampal 

  cingulum (C) 

2.5  Voxel-wise non linear registration to prealign all subject’s FA  60 

2.6  Mean FA image with no smoothing      62 

2.7  Examples of fibre bundles; a thick sheet as it’s skeleton (A) and  62 

a ‘tube’ as it’s skeleton (B) 



xiv 

 

2.8  A. Original mean FA image with final skeleton and ROI used for  63 

  sub-image 

  B. Skeletonisation using FA centre of gravity to find tract    63 

  Perpendiculars 

2.9  A. Example of white matter skeleton which is shown in green  63 

  B. Projection of data on to white matter skeleton    63 

4.1  Example of reconstruction of the fornix registered on native space  78 

  of one participant 

4.2  Example of reconstruction of the uncinated fasciculus registered  78 

on native space of one participant  

4.3  Example of reconstruction of the parahippocampal cingulum   79 

  Registered on native space of one participant 

4.4  A. Mean white matter skeleton voxels showing significant lower  82  

value of AD and higher value of tissue volume fraction in PCOS 

compared with healthy volunteers 

  B. Group differences based on TBSS      82 

4.5  Contrasting associations between white matter microstructure and  84 

  insulin resistance in PCOS and healthy volunteers 

4.6  Correlation of testosterone level with microstructural measures in  85 

  PCOS 

 

 

 

 



xv 

 

LIST OF TABLES 

 

Table No. Title                      Page No 

 

1.1  Diagnosis of Polycystic Ovary Syndrome     9 

 

3.1  PCOS (subphenotypes as per Rotterdam criteria)   69 

 

3.2  General characteristics of the study population   69 

 

3.3  Biochemical characteristics of the study population   70 

 

3.4  Outcome of screening tests for diabetes and dysglycaemia  71 

  In PCOS 

3.5  Performance on individual cognitive function tests   73 

4.1  Group differences in fractional anisotropy (FA), mean  80  

  Diffusivity (MD) and axial diffusivity (AD) 

  

APPENDIX 1 Principal Component Analysis (Cognitive Function Tests)   95 

 

 

 

 

 



16 

 



1 

 

CHAPTER 1 COGNITIVE IMPAIRMENT 

1.1 Introduction 

Dementia affects around 7% of the general population over 65 years, and 30% of  

people over 80 years. The prevalence of dementia is expected to double over the next 

30 years, making disorders of cognition a priority for healthcare and social-care 

services. The two most common forms of dementia are Alzheimer’s disease (AD) and 

vascular dementia, accounting for over 75% of all dementia cases. Although they have 

been regarded as two separate entities for decades, it is now well known that both these 

conditions show mixed pathology suggesting a continuum in underlying pathologies 

ranging from pure vascular dementia to pure Alzheimer’s disease.  

There is growing interest in strategies to modify the environment in midlife to increase 

the probability of maintaining cognitive health in late life. Several potentially 

modifiable risk factors have been studied in relation to cognitive impairment and 

dementia in late life.  

1.2 Cardiometabolic Risk Factors 

1.2.1 Hypercholesterolaemia 

Several studies have showed an association between raised cholesterol levels and 

dementia [1, 2], AD [3] and vascular dementia [4, 5]. Whitmer et al. conducted a 

retrospective cohort study of 9000 participants who underwent health evaluations over 

a period of 9 years with ages between 40 to 44. Approximately 700 participants had 

dementia (8%) with high cholesterol being associated with a 20% to 40% increase in 

risk of dementia (HR 1.42 95% CI 1.22 to 1.66 for high cholesterol) [6].  
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   Fig 1.1 Causative risk factors linked to the development of cognitive impairment.  
   Modifiable risk factors can be addressed from as early as in utero to early middle  
   age to prevent the onset of cognitive decline. 

 
The Atherosclerosis Risk in Communities (ARIC) study was a prospective study 

looking at 11,000 participants aged between 46 to 70 [1]. The risk of dementia with 

hypercholesterolaemia  was modest (HR 1.7 in age < 55, 0.9 > 70) compared to other 

traditional risk factors such as diabetes (HR 3.4 in < 55, 2.0 in >or=70) and smoking 

(4.8 in < 55, 0.5 in >or=70). Some studies such as the Framingham study have failed to 

show a similar association [7]. Some have even shown a lower risk of dementia with 

high cholesterol levels [8]. These discrepancies may be related to study methodology, 

the definition of dementia used and the groups of subjects studied including the timing 

of the diagnosis of hypercholesterolaemia (midlife versus late life). Some longitudinal 
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studies have shown that the relationship may be bidirectional with high midlife serum 

total cholesterol (TC) associated with a high risk for subsequent dementia, and 

decreasing serum TC after mid life representing a risk marker for late-life cognitive 

impairment [2]. 

1.2.2 Diabetes Mellitus 

Diabetes is associated with an increased risk of cognitive decline and dementia [9-11]. 

The presence of diabetes confers a 20% to 40% increase in risk of dementia (HR 1.46, 

95% CI 1.19 to 1.79)[6]. A systematic review of 14 studies found that diabetes is 

associated with a 50 to 100 percent increase in risk of AD and of dementia overall, and 

a 100 to 150 percent increased risk of vascular dementia [12]. Diabetes is more 

commonly associated with cerebrovascular disease [13, 14] but one study has shown an 

association with hippocampal atrophy which is more commonly associated with 

Alzheimer’s disease [15]. Higher glucose levels have also been associated with risk of 

cognitive impairment and dementia in nondiabetic individuals, implicating a possible 

role of insulin resistance as the causative aetiology [16, 17]. A cross sectional study 

showed that chronically higher blood glucose levels were associated with worsening 

scores in delayed recall, learning ability and memory consolidation [17]. The Targeting 

INflammation Using SALsalate in CardioVascular Disease (TINSAL-CVD) trial 

showed significant decrements in cognitive function test scores for every 1% increase 

in Hba1C in a mixed cohort of male individuals on a background of metabolic 

syndrome and coronary artery disease with normoglycaemia, impaired fasting glucose 

and type 2 diabetes [18]. 
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1.2.3 Obesity and Body Mass Index (BMI) 

Over the past decade, obesity has been increasingly recognised as a potential risk factor 

for cognitive decline particularly in older individuals. In cross-sectional studies, 

elevated body mass index as well as the metabolic syndrome, have been associated with 

deficits in memory, executive function, processing speed, semantic fluency, and overall 

cognitive function [19, 20]. Most of these studies found that mid-life obesity increases 

the risk of dementia later in life.  In a 27-year follow up study of 10,276 participants , 

obesity was associated with an increased risk of dementia , HR=1.74 (95% CI 1.34-

2.26), as was being overweight , HR=1.35 (95% CI 1.14-1.60) [21]. This relationship 

was maintained even after controlling for hyperlipidaemia and diabetes. Increased BMI 

has also been linked to lower baseline cognitive function and increased five year 

cognitive decline in a population based study of 2223 healthy non-demented individuals 

aged 32 to 62 years after adjustment for age , sex, educational level blood pressure , 

diabetes and other psychosocial covariables [22].  Data from longitudinal studies have 

shown that an elevated BMI is an independent risk factor for accelerated brain atrophy 

and increased risk of cognitive decline [23, 24]. More recent studies suggest that the 

hormonal changes associated with obesity may mediate changes in cognitive function, 

of which insulin resistance is considered particularly relevant because of the link 

between metabolic syndrome and cognitive dysfunction [25, 26]. Cognitive domains 

affected include executive function [19], verbal fluency [27] and working memory [28]. 

Bove et al.[29] studied the effects of obesity on cognitive function in 49 young healthy 

lean and overweight women aged 20 – 45 years and found a significant negative 

association between visceral adiposity and performance in the domain of verbal 

learning and memory, after controlling for age and education. Additionally the degree 
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of insulin resistance was negatively associated with executive function domain. No 

association was noted between hormonal factors and cognitive function. These findings 

suggest a possible association between obesity and cognitive function in healthy young 

women of reproductive age group. The mechanism of cognitive dysfunction in young 

adults is not clear but important mediators such as insulin resistance may play a role 

through modulation of hippocampal synaptic plasticity [30], neuroinflammation and 

subsequent protein deposition [31] and may have gender specific effects due to 

interactions with gonadal steroids [32]. 

1.2.4 Hypertension 

High blood pressure raises the risks of vascular dementia and cognitive dysfunction in 

older adults, by acting on the cerebral vasculature and directly on the brain itself. The 

relationship between hypertension and dementia risk is not entirely clear but  

epidemiologic and treatment studies support this hypothesis [1, 6]. Data from the 

Framingham Heart Study indicates that attention and memory measures are inversely 

related to blood pressure levels and duration of hypertension[33]. The Honolulu Asia 

Aging Study found that every 10 mm Hg increase in systolic blood pressure was 

associated with a 9% increased risk for poor cognitive function [34].  Although most 

studies have studied middle aged or elderly subjects there is evidence to suggest that 

young adults may also be susceptible to the deleterious effects of hypertension on 

cognition. In a 20-year longitudinal study of 529 adults comprising two age groups (18 

to 46 and 47 to 83 years), higher levels of baseline systolic, diastolic, and mean blood 

pressure in both younger and older age groups were significantly associated with 

decline in one neuropsychological measure of cognitive ability, the visualisation/fluid 

abilities composite score [35]. 
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The pathophysiologic mechanisms linking hypertension and cognitive dysfunction may 

be direct or indirect. Long standing hypertension may indirectly increase the risk of 

atherosclerosis, stroke, or cerebral infarction, which in turn may cause cognitive decline 

[36]. Hypertension may have a direct effect on brain volume: a small study by 

Strassburger et al. reported that patients with hypertension (age 56 to 84) had smaller 

volumes of thalamic nuclei, larger volumes of cerebrospinal fluid in the cerebellum and 

temporal lobes and performed worse on language and memory tests. This suggests that 

the occipital and temporal regions  appear more vulnerable to brain atrophy due to the 

interactive effects of age and hypertension [37]. Progressive changes in cerebral blood 

flow in hypertensive individuals were observed compared to controls by Positron 

emission tomography (PET) scans and this correlated with the duration of hypertension 

[38]. Blood pressure lowering treatments have been associated with improved cognitive 

outcomes measured by MMSE [39-41] . 

1.2.5 Smoking 

Data regarding the impact of smoking on the risk of dementia are conflicting. 

Population-based evidence of an effect of smoking on cognitive function has been 

inconclusive, with most longitudinal studies reporting weak or no associations [42]. 

Several prospective studies have suggested that smoking in middle aged and elderly 

people is associated with an increased risk of dementia [1, 6, 43]. A meta-analysis of 19 

studies with at least 12 months of follow-up concluded that elderly smokers have 

increased risk of AD, vascular dementia and any dementia, with relative risks of 1.27 

(95% CI 1.02-1.60) to 1.79 (95% CI 1.43-2.23) [44]. Current smoking was also 

associated with greater yearly declines in Mini-Mental State examination scores. 
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Possible mechanisms include cerebral hypoxia resulting in free radical injury and 

microvascular disease [45]. 

 

1.3 Polycystic Ovary Syndrome 

1.3.1 Introduction  

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders 

seen in premenopausal women, and is  characterised by hyperandrogenism and chronic 

anovulation. The high prevalence of obesity and insulin resistance in these patients 

predisposes them to an increased risk of type 2 diabetes mellitus. An unfavourable  

metabolic profile persists after menopausal transition as a result of increased androgen 

levels and decreased oestrogen levels with further exacerbation of insulin resistance, 

chronic inflammation and adiposity. The estimated prevalence is between 5-10% in 

women of reproductive age although it may be as high as 15-20% depending on the 

diagnostic criteria used.  

1.3.2 Historical Overview and Diagnosis  

The first documented account of PCOS dates back to the period of Hippocrates (460-

377 BC) who noted “But those women whose menstruation is less than three days or is 

meagre, are robust, with a healthy complexion and a masculine appearance; yet they are 

not concerned about bearing children nor do they become pregnant ”[46]. However  

applying a diagnosis retrospectively must be undertaken with caution.  

The modern description of PCOS can be traced back to 1935 when Stein and Leventhal 

reported a case series of seven women aged between 20 and 33 years with infertility, 

amenorrhoea and bilateral polycystic ovaries at laporotomy. Four of the women were 
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noted to have hirsutism, one woman had acne and three were obese. This is thought to 

be the first definitive description of the syndrome, which thus bore the name ‘Stein-

Leventhal syndrome’ until the middle of the twentieth century when it became known 

as PCOS. Since it’s original definition in 1935, the definition of PCOS has undergone 

several revisions. At the National Institutes of Health (NIH) consensus conference held 

in 1990, PCOS was defined as chronic anovulation with clinical and/or biochemical 

hyperandrogenism, with exclusion of other mimicking aetiologies, such as thyroid or 

adrenal dysfunction [47]. In 2003, the Rotterdam European Society for Human 

Reproduction/American Society of Reproductive Medicine (ESHRE/ASRM)-sponsored 

PCOS consensus workshop group proposed that the diagnosis include two of the 

following three criteria: oligo- and/or anovulation, clinical and/or biochemical 

hyperandrogenism, and polycystic ovaries on ultrasound; other aetiologies must be 

excluded.(Please see Table 2.1) The Rotterdam criteria extended the diagnosis of PCOS 

to women with oligo-ovulation and polycystic ovaries (non hyperandrogenic) as well as 

to women with hyperandrogenism and polycystic ovaries (ovulatory) neither of which 

would have met the narrower NIH criteria for PCOS. These broader criterion have also 

led to the argument that the expanded Rotterdam definition can result in an 

overdiagnosis or misdiagnosis of PCOS, and the different phenotypes may not have 

similar risks of long term metabolic complications. The diagnostic criteria were 

updated in 2006 by the Androgen Excess and PCOS society (AE-PCOS). Outlined in 

Table 1.1 are the main consensus groups and the definitions of PCOS that were agreed 

upon. The Rotterdam criteria include a broader spectrum of PCOS than the NIH and 

AE-PCOS society criteria, as hyperandrogenism does not need to be present for the 

diagnosis. In December 2013, the Endocrine Society endorsed the Rotterdam criteria 

for the diagnosis of PCOS in pre-menopausal women [48].  
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Table 1.1 Diagnosis of Polycystic Ovary Syndrome 
 
Consensus Group   Year   Criteria 
 

 
National Institute of Health (NIH) 1990   Chronic anovulation and 
  
Bethesda, USA [47]      Clinical and/or biochemical signs of 

 hyperandrogenism and 
 

 Exclusion of other aetiologies* 
 

 
 
European Society for Human  2003   Oligo- and/or anovulation and/or    
Reproduction and Embryology and 
the American Society for     Clinical and/or biochemical signs of  
Reproductive Medicine      hyperandrogenism and/or 
 
Rotterdam [49]       Polycystic Ovaries and 

  
 Exclusion of other aetiologies* 

 
        (2 or more of the first three criteria  

 must be present and  the exclusion 
 of other  aetiologies) 
 

 
 
The Androgen Excess and PCOS 2006  Hyperandrogenism (clinical and /or 
Society (AE-PCOS)[50]     biochemical) and 
     

Ovarian dysfunction (oligo-anovulation 
       and/or polycystic ovaries) and  

 
Exclusion of other aetiologies* and ** 
 

 
 
*Congenital Adrenal Hyperplasia, Androgen secreting neoplasms, Cushing’s syndrome, 
Thyroid dysfunction, Hyperprolactinaemia, Idiopathic Hirsutism and **Syndromes of severe 
insulin resistance 
 
 
1.3.3  Limitations of Research 
 
PCOS is a syndrome and not a disease entity. Its aetiology is complex, heterogeneous, 

and poorly understood. There are three definitions for PCOS currently in use that 

variably rely on androgen excess, chronic anovulation, and PCO to make the diagnosis. 
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Different phenotypes exist depending on the diagnostic criteria used and this may result 

in different risk and comorbidity profiles. The Endocrine Society guidelines state that 

biochemical hyperandrogenism refers to an elevated serum androgen level and includes 

an elevated total, bioavailable or free serum testosterone level [48]. The guideline 

acknowledges that there is no absolute level which is diagnostic of PCOS due to 

variability in testosterone levels and the poor standardisation of assays [51].The 

ultrasound criteria is also a subject of debate with differences across study groups as to 

the number of follicles (presence of 12 or more follicles 2-9mm in diameter and /or an 

increased ovarian volume >10ml, without a cyst or dominant follicle) in either 

ovary)[52]. This has implications in interpreting published research as the diagnostic 

criteria used may vary from one study to another. 

 

1.3.4 Pathogenesis 

Despite the high prevalence and significant morbidity resulting from both reproductive 

and hyperandrogenic features and the associated cardiovascular risk, the aetiology of 

PCOS remains incompletely understood. As PCOS is a heterogeneous disorder, the 

underlying pathophysiology of this condition is yet to be determined with the aetiology 

likely to be multifactorial. Several theories have been explained to determine the 

pathogenesis of PCOS focussing on the following observed physiological 

abnormalities: hypersecretion of Luteinising hormone (LH), increasing ovarian 

androgen production and insulin resistance. Other hypotheses include prenatal 

androgen exposure, low birth weight and premature pubarche. 
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Fig 1.2 Pathophysiology of Polycystic Ovary Syndrome 

1.3.4.1 Abnormalities in hypothalamic pituitary function 

Increasing LH relative to follicle-stimulating hormone (FSH) was the first laboratory 

abnormality identified in classic PCOS. This has been attributed to an increased 

gonadotrophin-releasing hormone (GnRH) pulse frequency from the hypothalamus 

which increases production of LH relative to FSH [53, 54]. Elevated LH is thought to 

play a role in the pathogenesis of PCOS by increasing androgen production and 

secretion by ovarian theca cells [55, 56]. Patients with PCOS have an increased LH 

pulse frequency and amplitude [57]. Some lines of evidence argue against this 

hypothesis. About half of patients with PCOS, principally obese patients, do not have 

elevated LH levels or abnormal gonadotrophin responses to GnRH agonist testing [55, 

57]. Furthermore, about half of PCOS subjects with a documented ovarian source of 
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hyperandrogenism were demonstrated to have normal LH levels and LH responses to a 

GnRH agonist test, suggesting that the ovarian dysfunction is independent of LH 

excess. 

 

1.3.4.2 Androgen production by the ovaries 

Hyperandrogenism is a central feature of most phenotypes of PCOS. In PCOS 

androgens (androstenedione and testosterone) are predominantly secreted by the ovaries 

and to a lesser degree the adrenals [58]. This pattern differs from that in pre-

menopausal women where the androgen secretion are equally contributed to by the 

ovaries and the adrenals. Insulin resistance does not exclusively contribute to the 

development of PCOS [59]. In the ovary, theca cells synthesise androgens and the 

granulosa cells synthesise oestrogens. The theca cells are stimulated by LH to produce 

androstenedione mediated by cytochrome P-450c17. Androstenedione is then converted 

to testosterone by 17 β-hydroxysteroid dehydrogenase (17β) or aromatised by 

cytochrome P-450arom to form oestrone. Oestrone is then converted to oestradiol also 

within the granulosa cell. FSH regulates the aromatase activity of the granulosa cells. In 

normal women androstenedione is preferentially converted to oestradiol. 

In PCOS, LH levels are elevated so the theca cells secrete increased quantities of 

androstenedione. In addition, thecal cells from women with PCOS are more sensitive to 

LH stimulation of androgen production [60]. Androstenedione secreted into the 

circulation by the ovary and adrenal can be converted to the potent androgen, 

testosterone, by most peripheral tissues. 

 
1.3.4.3 Insulin secretion and action 
 
PCOS  is  a  condition  in  which  tissue-selective  resistance  to  the  glucose-metabolic 
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 effects of insulin seems to be paradoxically associated with preserved ovarian 

sensitivity to insulin, suggesting a role for hyperinsulinemia in ovarian dysfunction [61-

64]. It is well known that hyperandrogenism correlates with hyperinsulinism in PCOS. 

This was first described by Burghen et al. who observed that patients with PCOS 

showed an exaggerated insulin response to an oral glucose tolerance test [65]. Several 

studies support this theory of compensatory hyperinsulinaemia, 50 to 70% of women 

with PCOS demonstrate clinically measurable insulin resistance in vivo independent of 

the degree of obesity. Theca cell secretion of androgens is stimulated by insulin and 

inhibits hepatic sex hormone binding globulin which results in an increase in free 

androgens [66-68]. Insulin may act as a cogonadotrophin to modulate ovarian 

steroidogenesis and the theca cells show hyper-responsiveness to the stimulatory effects 

of insulin on androgen secretion [69]. 

Although the aetiology of increased insulin resistance remains unclear, a post-binding 

defect in receptor signalling likely due to increased receptor and insulin receptor 

substrate-1 serine phosphorylation selectively affects metabolic but not mitogenic 

pathways in classic insulin target tissues and in the ovary [63]. Constitutive activation 

of serine kinases in the MAPK-ERK pathway may contribute to resistance to insulin's 

metabolic actions in skeletal muscle. Studies in adipose tissue have noted that, while 

insulin binding and the IRS/PI3-K/AKT insulin signalling pathway overall appears to 

be normal in PCOS, GLUT4 expression is significantly lower in PCOS patients and in 

control women with insulin resistance, although no defect in insulin receptor serine 

phosphorylation was observed [70]. Furthermore adipose tissue in  PCOS appears to 

have a differentially expressed miRNA profile with upregulation of miR-93 expression 

: the resultant dysregulation may play a role in the insulin resistance in PCOS [70]. 
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1.3.4.4 Prenatal Androgen Exposure 

Experimental evidence supports the hypothesis that the phenotypic expression of PCOS 

is strongly influenced by the intrauterine environment. This is based on animal models 

in which prenatal exposure to androgen excess leads to biochemical and clinical 

features of PCOS after birth [71]. Abbott and colleagues conducted experiments on 

rhesus monkeys demonstrating how prenatal administration of testosterone propionate 

recreated the PCOS phenotype in adulthood including hyperandrogenaemia, increased 

secretion of androgens in response to recombinant human chorionic gonadotrophin, 

oligo-ovulation and polyfollicular ovaries. These abnormalities were accompanied by 

accumulation of visceral fat, insulin resistance and impaired insulin secretion, 

especially in animals exposed to androgens early during gestation [72]. However these 

findings are yet to be confirmed in humans. A longitudinal study of 244 unselected girls 

recruited prenatally, failed to demonstrate an association between diagnosis of PCOS at 

age 15 and maternal hyperandrogenism throughout pregnancy or foetal 

hyperandrogenism at birth [73]. The diagnosis of PCOS in adolescents is challenging 

and a longer follow up and larger study group may have yielded different results. It is 

also possible that sampling of androgens during pregnancy missed a window of foetal 

or maternal androgen excess [74]. 

 

1.3.4.5 Low birth weight and premature pubarche 

It is hypothesised that foetal undernutrition selects for the thrifty genotype (genes 

important in energy conservation)[75]. It might appear that the activation of such genes 

would be beneficial at times of famine but can lead to obesity and diabetes in times of 

plenty. Girls with low birth weight and premature pubarche, experience menarche 

before 12years of age and develop hyperinsulinaemic androgen excess [76]. The 



15 

 

treatment of these group of individuals with metformin pre and during puberty has been  

shown to prevent the development of features of PCOS [77]. 

 

1.3.4.6 Genetic Factors 

PCOS is a genetically heterogeneous syndrome in which the genetic contributions 

remain incompletely described. The problems associated with genetic studies in PCOS 

relate to it’s heterogeneity, difficulty with retrospective diagnosis in post-menopausal 

women, associated subfertility, an incompletely understood aetiology and gene effect 

size. 

There is often a clustering of PCOS within families [78, 79] and studies indicate that an 

autosomal dominant mode of inheritance occurs for some families with this disease. 

Twin studies have shown a heritability of 75% for PCOS with a correlation of 0.71 

between monozygotic twins and 0.38 between dizygotic twins [80]. Many published 

genetics studies in PCOS have been underpowered, and the results of published 

candidate gene studies have been disappointing. 

An initial GWAS in China found association of PCOS (Rotterdam criteria) with the 

following three loci: 2p16.3 (luteinising hormone/choroidogonadotrophin receptor; 

LHCGR), 2p21 (thyroid adenoma associated protein; THADA) and 9q33.3 

(DENN/MADD domain containing 1A; DENND1A). Two of these loci, THADA and 

DENND1A have been confirmed as risk loci in a European PCOS cohort (NIH criteria) 

but there was insufficient power to confirm LHCGR as a risk locus [81]. A further 

GWAS has identified THADA as a novel Type 2 diabetes (T2DM) gene associated 

with pancreatic beta cell dysfunction [82]; this might explain in part the increased risk 

of T2DM observed in PCOS. 
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An important link between PCOS and obesity was demonstrated genetically for the first 

time by data from a case-control study in the United Kingdom that involved 463 

patients with PCOS and more than 1300 female controls [83]. This study showed an 

association between the FTO gene and obesity which was confirmed by meta-analysis 

of European and Chinese data [84, 85]. 

 

1.3.5     Prevalence 

PCOS is recognised as one of the most common endocrine and metabolic disorders in 

pre-menopausal women. Its prevalence depends in part on the diagnostic criteria used 

to define the disorder [86]. In the general population to date the prevalence of PCOS 

has been determined primarily using the NIH 1990 criteria. As per the NIH criteria the 

prevalence rates of PCOS have varied between 6 to 10% across the globe [86-90].  

However, an Oxford study conducted at the same time found prevalence rates of 

between 8% (using NIH criteria) and 26% (using polycystic ovaries on ultrasound and 

an additional feature of PCOS as diagnostic criteria) [88]. A number of conditions may 

be associated with an increased prevalence of PCOS such as oligo-ovulatory infertility 

[91], obesity and/or insulin resistance [92, 93], the presence of Type1 [94], Type 2 [95] 

or gestational diabetes mellitus [96], a history of premature adrenarche [97] and first 

degree relatives with PCOS [79, 98]. 

 

1.3.6 Clinical Features 

PCOS is an important cause of menstrual irregularity and androgen excess in women. 

As it is a syndrome with multiple potential aetiologies clinical presentations can be 

variable with key features of oligo or anovulation and hyperandrogenism.  Other 
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features are polycystic ovaries on pelvic ultrasonography, infertility due to 

oligoovulation, obesity, and insulin resistance. 

 

1.3.6.1   Reproductive 

PCOS is estimated to be the most common cause of ovulatory dysfunction, accounting 

for 70–90% of ovulatory disorders [99] . Prolonged periods of anovulation are likely 

associated with increased infertility [100]. Women with PCOS are also more likely to 

develop gestational diabetes in pregnancy and have a higher risk of pregnancy 

complications than controls [101]. Other factors associated with PCOS, such as obesity, 

have also been associated with subfertility and delayed conception [102]. 

 

1.3.6.2 Dermatological 

Hirsutism, acne and androgenic alopecia are the common features of hyperandrogenism 

in PCOS. Hirsutism is present in between 65 to 75% of subjects with PCOS [103], the 

prevalence of acne and male pattern balding varies between 14 to 25% [104]. 

Androgenic alopecia has been associated with metabolic syndrome [105] and insulin 

resistance [106, 107]. 

 

1.3.6.3 Metabolic 

Women with PCOS are commonly overweight or obese. Although the exact prevalence 

is not known, most investigators find that at least one-half of women with polycystic 

ovary syndrome  are obese [108]. Insulin resistance is common in PCOS with 

prevalence rates reported from 44 to 70% [63] and has been shown to be independent of 

obesity. In addition, the prevalence of the metabolic syndrome in women with PCOS 

appears to be increased [109, 110].  Most studies of women with PCOS have 
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demonstrated low high-density lipoprotein (HDL) cholesterol and high triglyceride 

concentrations, consistent with their insulin resistance [111], as well as an increase in 

low-density lipoprotein (LDL) cholesterol [112, 113]. Women with PCOS are more 

likely to have an increase in small dense LDL particles (associated with increased risk 

of cardiovascular disease) when compared to BMI matched women and insulin 

resistance without PCOS [114, 115]. There is increased risk of impaired glucose 

tolerance (IGT) and Type 2 Diabetes [61, 116, 117], especially in women with a first 

degree relative with type 2 diabetes with a reported 2.6 fold increase in prevalence 

[116]. In one study the annual conversion rate from normal glucose tolerance to 

impaired glucose tolerance was 17%. Obstructive sleep apnoea (OSA) has been found 

to be five- to thirty-times higher in women with PCOS compared to BMI-matched 

controls [118]. The prevalence of non alcoholic fatty liver disease (NAFLD), including 

non alcoholic steatohepatitis (NASH) may be increased in women with PCOS by 2% to 

70% depending on the diagnostic criteria used for PCOS, NAFLD and the presence of 

obesity [119-122].  

 

1.3.7 Morbidity associated with PCOS 

1.3.7.1 Cardiovascular Disease 

Obesity, hypertension, dyslipidaemia and T2DM are all risk factors for cardiovascular 

disease (CVD). It may appear that despite the high prevalence of risk factors for CVD 

in women with PCOS, there are limited longitudinal studies to definitively confirm an 

increased risk of CVD morbidity or mortality, and those undertaken are too small or 

have insufficient follow-up to detect differences in event rates [123]. Nevertheless, 

epidemiological data consistently point to increased cardiovascular risk in women with  

PCOS. The nurses’ health study, a prospective cohort study of 82,439 nurses with 14 
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years of follow-up, found a significantly increased risk of non-fatal or fatal coronary 

heart disease in women who had reported very irregular menstrual cycles (age-adjusted 

relative risk 1.67, 95% CI 1.35-2.06) which remained after adjustment for BMI and 

other confounding factors (multivariate risk ratio 1.53, 95% CI 1.24-1.90) [124]. 

Although there was no confirmed diagnosis of PCOS in these women, the commonest 

cause for irregular menstrual cycles is PCOS. In addition, a case-control study based on 

data in the Women’s Health Study database found that women who developed 

cardiovascular events had lower SHBG and higher calculated free androgen index 

[125]. Furthermore an evaluation of postmenopausal women for suspected ischaemia 

showed that clinical features of PCOS were associated with more angiographic 

coronary artery disease and worsening cardiovascular event-free survival [126]. A large 

community-based database review showed that women with PCOS did not have an 

increased risk of large vessel disease but there was an increased risk of T2DM 

compared to age and BMI-matched controls [127]. Therefore it appears that there are 

conflicting evidence with respect to cardiovascular risk. 

Studies exploring surrogate markers of cardiovascular disease studies have shown 

increased carotid artery intima-media thickness (an independent predictor of stroke and 

myocardial infarction) in women with PCOS compared with age-matched control 

women [128]. Coronary artery calcification, is more common in women with PCOS 

than in controls, even after adjusting for the effects of age and BMI [129, 130]. 

Echocardiographic changes in PCOS showed anatomic and functional differences such 

as increased left atrial size, increased left ventricular mass index, lower left ventricular 

ejection fraction [131] and diastolic dysfunction [132]. The left ventricular mass index 

was related to the degree of insulin resistance [131]. In addition some studies 

demonstrate impaired endothelial function in women with PCOS with features of 
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reduced brachial artery reactivity in response to hyperaemia [133, 134] and reduced 

vascular compliance. This has been demonstrated in women with PCOS at an early age 

(early 20’s) and largely independent of obesity, insulin resistance, total testosterone or 

total cholesterol [135]. A cross sectional study conducted by our group previously 

showed an association of increased central arterial stiffness and diastolic dysfunction 

with insulin resistance and central obesity but this was not associated with any increase 

in young women with PCOS per se [136]. Treatment with insulin sensitising drugs or 

weight loss has been associated with improvement in endothelial function although the 

results have been variable between study groups on account of the diagnostic criteria 

used and the heterogeneity of the study population [137-139]. 

 

1.3.7.2 Type 2 Diabetes Mellitus 

As mentioned above, there is an increased risk of developing T2DM in PCOS. Both 

adolescent and adult women with PCOS are at increased risk of developing Impaired 

Glucose Tolerance (IGT) as well as type 2 diabetes. A diagnosis of PCOS confers a 1.5 

to 2 fold increased risk of developing Type 2 diabetes [127]. The prevalence of IGT 

and type 2 diabetes in PCOS women varies up to 35 % and 10%, respectively 

depending on the criteria used for the diagnosis and the age, ethnicity and BMI of the 

population [108, 116, 140-142] . The rate of conversion from IGT to DM2 in 2 

Australian studies  ranged from 2.9% per year to 8.7% per year [143, 144]. Women 

with PCOS are also at a higher risk of developing gestational diabetes (GDM) 

independent of weight. However obesity can exacerbate the onset of GDM in PCOS 

[140, 143]. The International Diabetes Federation recognises PCOS as a non modifiable 

risk factor for the development of type 2 diabetes [145]. 
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As discussed earlier insulin resistance and beta cell dysfunction contribute to glucose 

intolerance which can progress to diabetes. Glucose intolerance develops when there is 

a defect in the secretion of insulin or on account of the pancreatic cells being unable to 

compensate for insulin resistance. The occurrence of hyperinsulinaemia and insulin 

resistance is found more frequently in women with PCOS compared with age and 

weight matched controls [146, 147]. Anovulatory women have a greater degree of 

insulin resistance than those with menstrual regularity [148, 149]. Insulin resistance has 

also been correlated with androgen levels in women with PCOS [150]. Insulin 

resistance is a precursor for type 2 diabetes and cardiovascular disease and hence these 

conditions occur more frequently in PCOS. Glucose intolerance is seen at an earlier age 

in the third to fourth decade of life [116, 140]. It has been observed that women with 

PCOS have increased mortality from complications of diabetes [151]. 

 

1.3.7.3  Non Alcoholic Fatty Liver Disease (NAFLD) and Non Alcoholic 

Steatohepatitis (NASH) 

NAFLD is characterised by excessive fat accumulation in the liver (steatosis), whereas 

NASH defines a subgroup of NAFLD in which steatosis coexists with liver cell injury 

and inflammation (after exclusion of other causes of liver disease (viral, autoimmune, 

genetic, alcohol consumption, etc). NAFLD is now recognised as the leading cause of 

cryptogenic cirrhosis and encompasses a spectrum of diseases ranging from simple 

steatosis to nonalcoholic steatohepatitis (NASH) to cirrhosis [152, 153]. Insulin 

resistance is detected in up to 80% of cases of NAFLD and there is a near universal 

association between NAFLD and IR irrespective of obesity [154]. The first connection 

between NAFLD and PCOS was reported in 2005 and subsequent retrospective studies 

have confirmed this association [155]. The prevalence of NAFLD within the PCOS 
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population is now estimated to be anywhere between 15% and 55% depending on the 

diagnostic index used for PCOS and NAFLD (increased serum alanine 

aminotransferase or ultrasound) [120, 121, 156]. Risk factors pertinent to PCOS include 

increasing age, ethnicity, and metabolic dysfunction (obesity, hypertension, 

dyslipidaemia, diabetes). A systematic review determined that IR is present in 50%-

80% of women with both PCOS and NAFLD [157] and multiple studies have shown 

that PCOS women with hepatic steatosis have elevated levels of IR compared to PCOS 

women without steatosis [122, 156, 158]. It is not clear how androgens influence 

disease progression in NAFLD but one theory suggests suppression of LDLR gene 

transcription resulting in the downregulation of low density lipoprotein (LDL) receptor 

in women with PCOS which prolongs the half-life of very low-density lipoprotein 

(VLDL) and LDL and thus induce lipid accumulation in the liver [154]. Thus, women 

with PCOS and metabolic risk factors and/or IR may be screened using serum markers 

of liver dysfunction. If serum markers are elevated, noninvasive quantification of 

fibrosis by ultrasound and liver biopsy may be considered [159]. 

 

1.3.7.4 Obesity 

Many women with PCOS are overweight or obese (between 38% to 88%) [160, 161]. 

Increased abdominal obesity is associated with hyperandrogenaemia and increased 

metabolic risk [162]. 

The prevalence of obesity varies greatly across the world, yet the prevalence of PCOS 

remains relatively similar in studies in countries with different background rates of 

obesity (30% – 70%) [108, 163]. A modest but non-significant trend has been reported 

in the prevalence of PCOS with increasing obesity [93]. This may result due to the 
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combined effect of a genetic predisposition to obesity in the context of an obesogenic 

environment as a result of reduced exercise and poor diet. 

Abdominal obesity may cause relative hyperandrogenaemia, characterised by reduced 

SHBG (Sex Hormone Binding Globulin) and increased bioavailable androgens to target 

tissues [164]. This may be associated with an  increased rate of testosterone production 

and a non-SHBG-bound androgen production rate of dehydroepiandrosterone and 

androstenedione [165]. This might explain the increased frequency of menstrual 

abnormalities and chronic anovulation in adult overweight and obese women with 

PCOS compares to normal weight women [164]. In addition obese women with PCOS 

also exhibit diminished responsiveness to ovulation inducing drugs such as clomiphene 

citrate, gonadotrophins or pulsatile GnRH [100, 166]. 

Although weight gain in both normal women and those with PCOS is associated with 

increasing insulin resistance, most women with PCOS (between 50% and 90%, 

depending on the diagnostic criteria used) have insulin resistance to a significantly 

greater extent than in age and BMI-matched control women, with subjects  with higher 

BMIs showing a higher degree of insulin resistance [148, 167].  

The presence of obesity in PCOS increases the risk of metabolic syndrome, Impaired 

glucose tolerance / diabetes mellitus, dyslipidaemia and insulin resistance [116, 140, 

148, 164]. 

 

1.3.7.5   Depression 

An increased prevalence of depression has been consistently observed in women with 

PCOS in small community based and case control studies. Most of these studies are 

limited by sample size and in some cases lack of control subjects. In women with 

PCOS compared with non-BMI-matched controls, self-rated questionnaires 
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demonstrate an increased rate of depressive symptoms [168, 169]. In studies with direct 

psychiatric interviews, there was a higher lifetime incidence of a major depression 

episode and recurrent depression (OR, 3.8; 95% CI, 1.5– 8.7; P= .001) and a history of 

suicide attempts that was seven times higher in PCOS cases compared to controls 

[170]. A U.S. study reported a 50% rate of depression in women with PCOS (n =32). 

However, there were no control subjects included in the study. Using the Centre for 

Epidemiological Studies Depression Rating Scale, the investigators found higher scores 

among women with insulin resistance and in women with elevated body mass index 

(BMI). This is supported by another study by Holinrake et al.which showed that 

women with PCOS were at an increased risk for depressive disorders (new cases) 

compared with controls (21% vs. 3%; odds ratio 5.11 [95% confidence interval (CI) 

1.26–20.69]; P=.03). This was noted to be independent of obesity or infertility: subjects 

with PCOS and depression had a higher BMI and insulin resistance (P<0.02) [171]. The 

relationship between androgens and mood in women is controversial. Although a few 

small studies suggest a correlation between depressive symptoms and serum androgens 

[168, 172] other studies have failed to demonstrate this association [173]. 

 

1.3.7.6  Sleep Disordered Breathing (SDB) / Obstructive Sleep Apnoea (OSA) 

Women with PCOS develop OSA at rates that equal or exceed those in men. The high 

prevalence of OSA is thought to be a function of hyperandrogenism as well as obesity 

(common in PCOS), although these factors alone do not fully account for the finding 

[118, 174]. Insulin resistance may be a stronger risk factor than obesity or testosterone 

for sleep disordered breathing [118]. Women with PCOS were 30 times more likely to 

have SDB independent of obesity, the use of oral contraceptives seems to protect from 

SDB. [118]. Oestrogen suppresses IL-6 secretion, which is elevated in sleep apnoea, 
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potentiates the transcription of the corticotrophin-releasing hormone (CRH) gene, and 

stimulates the noradrenergic system in the brain by inhibiting norepinephrine clearance 

[175, 176]. 

 

1.3.7.7 Cognitive Function 

There is no clear evidence to suggest an adverse effect of PCOS on cognitive function. 

There are very few studies which have investigated this, these studies have been limited 

by the lack of adequately matched controls as well as sample size. In a study by 

Barnard et al. who compared neuropsychological functioning in an internet-based study 

in 135 women with PCOS and 322 controls, women with PCOS demonstrated impaired 

performance in terms of speed and accuracy, on reaction time and word recognition 

tasks [177]. Some studies have investigated the effects of manipulation of testosterone 

on cognition in women with PCOS [178]. A decrease in free testosterone levels did not 

affect performance on tests of visuospatial ability, verbal memory, manual dexterity, or 

perceptual speed. However there was an improvement in measures of verbal fluency 

compared to their pre-treatment scores. One study evaluated working memory function 

with the use of functional magnetic resonance imaging before and after anti-androgenic 

treatment in women with PCOS [179]. This study showed an improvement in measures 

of executive function with anti-androgen therapy with normalisation of activation of 

brain centres associated with a working memory task.   
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1.4 MAGNETIC RESONANCE IMAGING 

 

1.4.1 Introduction 

Magnetic Resonance Imaging (MRI) is a commonly used non invasive radiological 

imaging technique that produces three dimensional detailed anatomical images without 

the use of damaging radiation. It is often used for disease detection, diagnosis, and 

treatment monitoring. The use of MRI scanners are dependent on use of strong 

magnetic fields, radio waves and field gradients to form images of the body. Due to the 

absence of ionising radiation in MRI as opposed to computerised tomography (CT), this 

has become one of the most commonly used imaging technique for the evaluation and 

diagnosis of  medical conditions, staging and follow up  of disease.  

 

1.4.2 Principles of MRI 

 

MRI is based on the principles of nuclear magnetic resonance of certain atomic nuclei. 

Protons as in a hydrogen nucleus are present in water molecules and hence in all body 

tissues. When a human body is placed in a strong magnetic field hydrogen nuclei 

behave as magnetic dipoles and partially align themselves in the direction of the 

magnetic field. Through manipulations of static and dynamic magnetic fields and use of 

radio-frequency pulses signals can be received and localised from protons anywhere in 

the body. These signals are then converted into digital images which characterise the 

signal from each ‘voxel’ (volume element) of the image.  

 

1.4.3 Diffusion Tensor Imaging 

 

The broad spectrum of magnetic resonance contrast mechanisms makes MRI one of the 

most powerful and flexible imaging tools for diagnosis in the central nervous system. 
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The advent of echo planar imaging (EPI)[180] significantly shortened magnetic 

resonance imaging times. EPI allows acquisition of images in 20-100 msec. This time 

resolution virtually eliminates motion related artefacts. Echo planar images, with 

resolution and contrast similar to those of conventional MR images, can be obtained by 

using multishot acquisitions in only a few seconds. The most prevalent clinical 

application of EPI is imaging of the brain (Diffusion and functional MRI). 

Diffusion MRI is a magnetic resonance imaging method which allows the mapping of 

the diffusion process of molecules, mainly water, in biological tissues in vivo and non-

invasively. Molecular diffusion in tissues is not free, but reflects interactions with many 

obstacles, such as macromolecules, fibres, and membranes. Water molecule diffusion 

patterns can therefore reveal microscopic details about normal tissue architecture and 

the way that it is altered in disease. For most fluids and solid homogeneous materials 

like gels diffusion is the same in all directions. This diffusion pattern is described as 

isotropic (Fig 1.3A) where molecular motion is random and can be characterised by a 

single diffusion coefficient (diffusion coefficient is equal in whatever direction it is 

measured in). However in biological tissues diffusion is often anisotropic and therefore 

multiple coefficients are required to characterise it. This property is known as 

anisotropy (Fig 1.3B); it may be used to define the direction of the axons in a 

particular voxel.  
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                   A      B 

Fig 1.3 Drawings showing diffusion of water molecules    
A) Isotropic diffusion showing random diffusion of water molecules in liquids  
B) Anisotropic diffusion as seen in strongly aligned white matter fibres where random motion is 

constrained by physical barriers such as cell membranes 
 

Using conventional MRI, grey matter of the brain can be easily identified. However 

with conventional proton magnetic resonance imaging techniques, the white matter of 

the brain appears homogeneous without any suggestion of the complex arrangements of 

fibre tracts. Hence the demonstration of anisotropic diffusion in the brain by magnetic 

resonance has demonstrated a means of non-invasive exploration of the structural white 

matter in vivo [181-183].  

                                          

Fig 1.4 Axial tractographic image (2 dimensional image) created demonstrates white matter tracts in the 
brain in the left to right (red), anterior to posterior (green) and superior to inferior (blue) directions. 
 
This orientation of fibre bundles can be visualised on 2 dimensional images by 

assigning a colour to each of the 3 axes, left to right (red) anteroposterior (green) and 

superior to inferior (blue) (Fig 1.4) [184, 185]. These colour maps are very useful for 
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surveying the organisation of white matter in the brain and for identifying major white 

matter tracts on 2 dimensional sections [185, 186]. 

In tissues, such as brain grey matter, where the measured apparent diffusivity is largely 

independent of the orientation of the tissue (i.e. isotropic), it is usually sufficient to 

characterize the diffusion characteristics with a single (scalar) apparent diffusion 

coefficient (ADC). White  matter  is highly  anisotropic  owing to  parallel  orientation  

of its nerve fibre tracts and diffusion is restricted perpendicular to the long axis of the 

nerve fibres [187]. As the measured diffusivity is known to depend upon the orientation 

of the tissue, no single ADC can characterise the orientation-dependent water mobility 

in these tissues. The next most complex model of diffusion that can describe 

anisotropic diffusion is to replace the scalar diffusion coefficient with a symmetric 

effective or apparent diffusion tensor of water, D which is a mathematical tool for 

representing diffusion in 3D and describes the mobility of the molecules in each 

direction and the correlation between these directions [188]. The diffusion tensor model 

consists of a 3 × 3 matrix derived from diffusivity measurements in atleast six collinear 

directions [189, 190]. The tensor matrix is diagonally symmetric. 

 

             Dxx  Dxy  Dxz 

 
D   =     Dyx  Dyy   Dyz 
 
             Dzx  Dzy  Dzz 

The three diagonal elements (Dxx, Dyy, Dzz) represent diffusion coefficients measured 

along each of the principal (x, y and z) laboratory axes. The six off-diagonal terms 

(Dxy, Dyz, etc) reflect the correlation of random motions between each pair of 

principal directions. 
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Fig 1.5 Fibre tracts have an arbitrary orientation with respect to scanner geometry (x, y, z axes) and 
impose directional dependence (anisotropy) on diffusion measurements. 
  

A diffusion tensor representing these three principal axes of diffusion can be visualised   

as an ellipsoid whose diameter in any direction  estimates the diffusion of water 

molecules in that direction in each voxel in the brain (fig 1.6). The ellipsoid itself has a 

long axis and two more small axes that describe its width and depth. All three of these 

are perpendicular to each other and cross at the centre point of the ellipsoid. The axes in 

this setting are called eigenvectors and the magnitude of their diffusion eigenvalues. 

 

Fig 1.6  Diffusion Ellipsoid The three-dimensional diffusivity is modelled as an ellipsoid whose 
orientation is characterized by three eigenvectors (ϵ1, ϵ2, ϵ3) and whose shape is characterized three 
eigenvalues (λ1, λ2, λ3). The eigenvectors represent the major, medium, and minor principle axes of the 
ellipsoid, and the eigenvalues represent the diffusivities in these three directions, respectively. 

The eigenvector corresponding to the largest eigenvalue, termed the principal 

eigenvector, corresponds to the main direction of diffusion of water molecules in that 
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voxel. By convention eigenvalues are labelled in descending order of magnitude (ƛ1 ≥ 

ƛ2 ≥ ƛ3). Another important measure is the tensor orientation described by the major 

eigenvector direction. With reference to figure 1.6, when the principal eigenvalue is 

much larger than the second and third eigenvalues, anisotropy measures will be high, 

indicating a preferred direction of diffusion. This corresponds to a cigar or prolate 

shape of a diffusion ellipsoid. The preferred direction of diffusion is indicated by the 

long axis of the ellipsoid or by the primary eigenvector of the tensor. This pattern of 

diffusion within a voxel is found in parts of the brain with densely packed parallel 

fibres. 

1.4.4 Diffusion Metrics 

The display, meaningful measurement, and interpretation of 3D image data with a 3×3 

diffusion matrix at each voxel is a challenging task. In order to simplify data the image 

information is distilled into simpler scalar maps. The two most common measures are 

the trace and anisotropy of the diffusion tensor. The trace of the tensor (Tr), or sum of 

the diagonal elements of D, is a measure of the magnitude of diffusion and is 

rotationally invariant. 

Trace of the tensor (Tr) = ƛ1 + ƛ2 + ƛ3 

The mean diffusivity (MD) is used in many published studies and is simply the trace 

divided by three which is equivalent to the average of the eigenvalues. 

Mean Diffusivity (MD) = ƛ1 + ƛ2 + ƛ3 

      3 

Another important measure of the directionality of diffusion commonly employed in 

diffusion MRI studies is the fractional anisotropy (FA) described originally by Basser 
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and Pierpaoli [191]. It is a scalar value that describes the degree of anisotropy of a 

diffusion process. FA values vary between a value of 0 indicating isotropic diffusion 

(cerebrospinal fluid and grey matter) to a maximum value of 1 indicating perfectly 

linear diffusion along the principal eigenvector (highest in major white matter tracts).                   

It is independent of local fibre orientation and is therefore a relatively objective and 

easy measure to compare across subjects. It can also be computed in each individual 

voxel. FA is high in white matter, especially in major tracts in which axons are packed 

in a coherent, parallel fashion. It is also increased by the presence of axonal membranes 

or myelin sheaths that hinder diffusion. Disruption of this coherent organisation or loss 

of axons or myelin generally leads to a decrease in FA and increase in MD. A decline 

in FA is often used as an index of decreasing white matter health.  

The measure of diffusion along the principal axis ƛ1 is called the axial diffusivity (AD) 

and is assumed to reflect the orientation of fibres in a white matter tract (measure of 

axonal integrity).  

Radial diffusivity (RD) is a measure of diffusion perpendicular to the principal axis 

(This is the average of the diffusivities in the two minor axes ƛ2 and ƛ3).  

Radial Diffusivity (RD) = ƛ2 + ƛ3 

                                     2 

RD is an assessment of the degree of restriction due to membranes [192].  

As mentioned earlier FA measures between a value of 0 indicating isotropic diffusion 

(cerebrospinal fluid and grey matter) to a maximum value of 1 indicating perfectly 

linear diffusion along the principal eigenvector (highest in major white matter tracts).                   



33 

 

The use of diffusion tensor imaging (DTI) has significantly improved the imaging and 

interpretation of diffusion of water molecules in tissues with direct in vivo examination 

of aspects of tissue microstructure. The principles of diffusion anisotropy are adopted to 

provide excellent details of white matter microstructure and the construction of white 

matter tracts. (Tractography) [193].  

1.4.5 White Matter Tractography      

With the use of diffusion tensor fibre tracking the diffusion tensor of each voxel can be 

utilised to follow an axonal tract in 3D from voxel to voxel through the human brain. 

This follows coherent spatial patterns in the major eigenvectors of the diffusion tensor 

field [194, 195]. This principle is often combined with functional or anatomic 

information to delineate specific white matter pathways [194]. White matter patterns 

are estimated by starting at a specified location (also called the ‘seed’ point), estimating 

the direction of propagation (major eigenvector), and moving a small distance in that 

direction (called tract integration). The tract direction is then re-evaluated and a further 

step is taken until the tract is terminated. 

                                         

Fig 1.7 Schematic diagram showing a basic algorithm for tract reconstruction  
Degree of diffusion anisotropy is indicated by gray scale (white is highest). On basis of defined 
thresholds, tracking (long curved arrows) is along voxels with similar measures of anisotropy and 
direction of principal eigenvector. Asterisks indicate starting point of tracking. 
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This principle is illustrated above in Fig 1.7 where average fibre orientation is 

estimated from diffusion anisotropy at each pixel (ellipsoids in neighbouring voxels 

line up), and a line is propagated from a pixel of interest (pixels with asterisks) 

following the fibre orientation until it reaches a brain region of low anisotropy which is 

depicted by the dark pixels. 

There is good evidence that tracking results of prominent white matter tracts correlate 

well with classical definitions based on post mortem studies [196, 197]. On the other 

hand the technique can produce false positives and false negative results due to noise, 

partial volume effects, and complex fibre architectures within a pixel [198, 199]. This 

can be improved upon by applying anatomical constraints by employing multiple 

regions of interest (ROI) [197, 200].  This technique requires a priori knowledge about 

the trajectory and can be used only for well-characterised white matter tracts. Although 

this improves the validity of the technique it is unlikely to be fully accurate. 

Development of robust protocols by devising specific region of interest drawing 

schemes based on the anatomical features of individual tracts and using regions that are 

sufficiently large has improved reproducibility to a significant degree. This has 

developed as a valuable tool to test hypotheses whether specific white matter tracts are 

involved in a disease of interest. 

Although tractography corresponds well to classic neuroanatomy, problems of 

validation remain as to the degree to which results differ from those of anatomic 

methods such as dissection [201]. Nevertheless this divergence would not diminish its 

utility as this form of 3D tractography can depict human neuroanatomy non-invasively, 

at the same time can detect changes to anatomy and microstructural integrity of specific 

white matter pathways. Microstructural abnormalities in several white matter tracts is 
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increasingly being recognised as a mechanism of cognitive deterioration in aging and 

metabolic studies [202-204].  

  

Fig 1.8 Whole brain Tractography – Axial view (Left) and sagittal view (Right) Image generated 
from whole brain diffusion tensor tractography using EXPLORE-DTI software. Direction of white 
matter  fibres  are  illustrated : Anterior  to  Posterior (green),  Left  to  Right (red)  and  Superior to 
Inferior (blue) 
 

1.4.6 Tract Based Spatial Statistics (TBSS) 

Tract-based spatial statistics (TBSS) is an automated observer-independent approach 

for assessing groupwise microstructural differences in the major white matter pathways 

of the brain [205]. It enables voxel-wise and group-wise comparision of diffusion 

parameters across all major white matter tracts common to subjects without the need for 

a prespecified region of interest. 

As mentioned earlier there are several limitations to white matter tractography. This 

method is subjective and restricts the areas of investigation to those that are either 

easily identifiable or thought to be of greatest clinical significance and therefore may 

miss unexpected areas of injury. ROI-based analyses can be time consuming and often 

rely on investigator accuracy. These limitations make comparison of multiple brain 

regions across larger groups more difficult. In contrast, an important advantage of 
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TBSS is that it is free of a priori bias about the likely location of structural alteration in 

the brain. TBSS is a widely accepted approach for statistical analysis of diffusion data. 

This  process  is  done  through  linear  and  non-linear  alignment , thus  improving 

interpretability of analysis of multi-subject DTI data investigation of the brain as a 

whole and not specific white matter tracts. As TBSS is fully automated it is simple to 

apply and investigates the whole brain. TBSS is achieved first by taking the average of 

all the FA values of major white matter tracts as FA skeleton and then by projecting all 

the images of subjects to this FA skeleton. This will be explained in detail in Chapter 2. 

1.4.7 Thesis Aims 

PCOS is a common endocrine disorder of young women characterised by abnormalities 

in both reproductive and metabolic health. This is associated with an increased risk of 

metabolic risk factors such as type 2 diabetes, obesity and dyslipidaemia. There is 

evidence to suggest that these risk states may have an influence on brain structure and 

function. Both type 1 and type 2 diabetes are associated with altered microstructural 

measures derived from diffusion tensor MRI [202] [206]. Several studies have now 

shown associations between BMI and white matter microstructure [203, 207]. 

Alterations in white matter microstructure has been found to correlate with cognitive 

performance in type 2 diabetes [202]. It is unclear which of these factors are critical in 

influencing brain structure and function as these metabolic features occur in clustered 

syndromes rather than as isolated abnormalities. This is also true of previous cognitive 

studies in PCOS that might have confounded by BMI [208].  

We hypothesise that young insulin resistant women with PCOS are at risk of early 

subtle deficits in cognition and microstructural alteration in the brain.  
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The aim of this study is to establish whether young women with PCOS display altered 

white matter microstructure and cognitive function by using advanced MRI and a series 

of validated measures of cognition. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



38 

 

CHAPTER 2:  METHODS 
 
2.1  Outline of Study 
 
2.1.1  Study Approval 
 
The study was approved by the Research and Development department at the 

University Hospital of Wales (UHW) (Ref 08/RPM/4276) and the South East Wales 

Research Ethics Committee (Ref 08/WSE04/53) following international guidelines on 

Human subjects research protection (Declaration of Helsinki). The study was sponsored 

by Cardiff University (CU) (Ref SPON CU 523 - 08). 

 

2.1.2  Recruitment 
 
Patients aged between 18 and 45 years of age were recruited from local endocrinology, 

dermatology and  gynaecology  clinics.  They were provided with an information sheet 

giving details about the study. The initial contact was followed up with a telephone call 

to determine interest and confirm eligibility. Healthy volunteers aged between 18 and 

45 years, were recruited from UHW and CU using intranet postings. All interested, 

eligible women were telephoned a week later to determine if they wished to participate 

or not. 

 
2.1.3  Inclusion and Exclusion Criteria of Study Participants 
 
 
Patients with a diagnosis of PCOS were recruited from the endocrine clinic at UHW. 

Diagnosis was according to the Rotterdam criteria [49]. Congenital adrenal hyperplasia,  

Cushing’s syndrome, androgen-secreting tumours, hyperprolactinaemia and thyroid 

dysfunction were excluded by biochemical testing. Women were excluded from 

participation if they were pregnant, breastfeeding or if they had a history of diabetes, 
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hypertension or hyperlipidaemia. Potential participants who were taking anti-

hypertensive agents, lipid-lowering agents, glucose lowering  agents,  weight  reducing   

agents or glucocorticoids and  who had used anti-androgens within 6 months were also 

excluded. Neurological exclusion criteria included previous or current major 

psychiatric illness, clinical cerebrovascular disease, previous severe head injury, current 

substance and alcohol abuse. 

 
Healthy volunteers were recruited as controls with 1 to1 matching for age and BMI. For 

each individual patient, a control was identified matched for age (within 2 years) and 

BMI (within 2kg/m²). Controls needed to have regular menstrual cycles (menses every 

27-32 days). Control subjects with signs of hirsutism or with a personal history of 

diabetes or hypertension, or a family history of PCOS were excluded. Their health 

status was determined by history, physical examination and hormonal evaluation 

(testosterone, androstenedione, thyroid function, prolactin and 17-hydroxyprogesterone. 

All women were investigated during the follicular phase of their menstrual cycle. 

 

2.1.4 Consent 
 
 
All participants gave written informed consent prior to entering the study. 
 
 
2.1.5 Protocol 
 
Participants attended the Clinical Research Facility (CRF), UHW at 8 am following an 

overnight fast. All subjects had a pregnancy test (urine β-HCG) to confirm that they 

were not pregnant before a clinical assessment, venepuncture and oral glucose tolerance 

test were undertaken. The information acquired was recorded on case report forms. 
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2.2 Clinical Assessment 
 
2.2.1 History and Examination 
 
Details of past medical history, medication taken currently, contraceptive use, smoking  
 
history,  family  history and  menstrual  history  were  recorded.  A routine   physical  
 
examination was performed. 
 
 
2.2.2 Blood Pressure Measurement 
 
After ten minutes of rest in a seated position, three blood pressure recordings were taken  

from  the  right  brachial  artery using  a validated semi-automated  oscillometric  

device (Omron 7051T; Omron Corporation, Tokyo, Japan). An average of three 

readings taken over a 10-minute period was recorded. 

 

2.3 Biochemical and Metabolic Measurements 
 
 
2.3.1 Sample Collection and Storage 
 
 
With the subject at rest, an intravenous cannula or butterfly needle was inserted into a 

suitable vein in the antecubital fossa or forearm and secured. Blood was collected 

directly via a vacutainer or via a syringe and then decanted into blood bottles. The 

cannula or butterfly needle was then flushed with 5 ml of normal saline. The subject 

then received a drink containing 113 ml of Polycal® (concentrated carbohydrate) with 

187 ml of water.  This provides an equivalent carbohydrate load to a standard 75g dose 

of anhydrous glucose. Samples were taken at 30, 60, 90 and 120 minutes and marked 

with the subject number and time. The first 5 ml of blood at each collection were 

discarded and the cannula was flushed with 5 ml of normal saline after the sampling 

was completed. The cannula or butterfly needle was removed after the 120 minutes 
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sample was taken. Samples were centrifuged at 4000 rpm for 8 minutes and stored at -

30°C prior to analysis. 

 
2.3.2 Assays 
 
Serum total cholesterol, high density lipoprotein cholesterol (HDL) and triglycerides 

were assayed using an Aeroset automated analyser (Abbott Diagnostics, 

Berkshire,UK); LDL cholesterol (LDL) was calculated using Friedewald’s formula. 

Insulin was measured using an immunometric assay specific for human insulin 

(Invitron,Monmouth, UK) and glucose was measured using the Aeroset chemistry 

system (Abbott Diagnostics, Berkshire, UK). High sensitivity C-reactive protein 

(hsCRP) was assayed by nephelometry (BN™ II system, Dade Behring, Milton 

Keynes, UK) and total testosterone was measured by liquid chromatography-tandem 

mass spectrometry (Quattro™ Premier XE triple quadruple tandem mass spectrometer, 

Waters Ltd, Watford, UK). Androstenedione was measured by immunoassay [Siemens 

Healthcare]. The interassay coefficients of variation were all less than 9%. 

 
2.3.3 Estimations of Insulin Sensitivity and Insulin Resistance 
 
The hyperinsulinaemic-euglycaemic clamp is the gold standard method to measure 

insulin sensitivity [209]. The main advantage of this method is that whole body glucose 

disposal is measured directly at a defined level of hyperinsulinaemia. However, the 

method is labour intensive, time consuming and expensive and for these reasons was 

not used. 

Two well described alternative methods have been established to overcome the 

limitations of the hyperinsulinaemic-euglycaemic clamp. These are the homeostatic 

model assessment (HOMA) [210] and the quantitative insulin sensitivity check index 

(QUICKI) [211]. HOMA-IR is a paradigm model derived from a mathematical 
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assessment of the interaction between β-cell function and IR and is calculated using the 

formula: 

HOMA-IR = (FPI x FPG)/22.5 
 
where FPI = fasting plasma insulin (mU/l) and FPG = fasting plasma glucose (mmol/l). 

QUICKI uses a log transform of the insulin-glucose product and therefore correlates to 

HOMA-IR. These methods require a single fasting insulin and fasting glucose 

measurement and are therefore ideal for studies involving large numbers of subjects. 

HOMA-IR was used in this study for these reasons and because it correlates highly 

(Rs=0.88, P<0.0001) with the hyperinsulinaemic-euglycaemic clamp [210]. The above 

methods do not measure insulin sensitivity in a dynamic state.  An OGTT assessment of 

glucose tolerance and insulin secretion in response to a glucose challenge was therefore 

also undertaken. Insulin measurements at 0, 30, 60, 90 and 120 minutes after a 75 gram 

glucose challenge allow calculation of area under curve (AUC) for insulin and glucose. 

The AUC insulin will be greater in an insulin resistant subject than a normal subject, as 

more insulin will be secreted in response to the glucose load. This is clinically 

important and has been associated with cardiovascular mortality [212]. Post-challenge 

insulin levels have also been shown to improve the performance of visceral fat 

adiposity in identifying subjects with metabolic disease [213]. 

 
2.4 Body Composition Measurements 
 
 
2.4.1 Anthropometric Measurements 
 
 
Height was measured to the nearest 0.1 centimetre (cm) using a stadiometer and 

recorded in metres (m). Measurements were taken with the subject’s footwear removed. 

Their head, back, buttocks and heels were placed against the wall and they were asked 
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to look straight ahead. The headboard was then moved until firmly pushing on the 

vertex. Weight was measured to the nearest 0.5 kilogram using digital weighing scales 

(Omron Monitor BF500, Omron Corporation, Japan). Subjects wore light clothing and 

had footwear removed. Body Mass Index (BMI) was calculated as weight (kg) divided 

by height (m) squared. Waist circumference was measured at minimal respiration to the 

nearest 0.5 cm by positioning a tape parallel to the floor and immediately above the 

superior iliac crests. Hip circumference was measured to the nearest 0.5 cm by 

positioning a tape parallel to the floor and at the greatest protrusion of the buttocks. 

 
 
2.4.2 Computed Tomography 
 
 
Computed tomography was carried out by Dr. Helen Blundell in the Nuclear Physics 

department at the University hospital of Wales. With the subject in the supine position, 

one cross-sectional scan was obtained by CT (Hawkeye, GE Medical Systems) using 

standard acquisition parameters (140kV,2.5mA, 10mm slice width, 13.6 s rotation time, 

2562 pixel matrix) at the level of the fourth and fifth lumbar spines. The image was 

imported into MATLAB (MathsWorks) and was analysed by Dr Blundell. The image 

was segmented into areas of non-adipose tissue and adipose tissue using a fixed range 

of CT numbers (-120 to -80 to represent fat) derived from a previously published study 

[214]. The visceral adipose tissue area and total adipose tissue areas were calculated by 

segmenting an intra-peritoneal region and the whole image respectively as shown in 

Figure 2.1. Subcutaneous adipose tissue area was calculated by subtracting the visceral 

fat area from the total fat area. 

 
 
 



44 

 

 
Fig 2.1 A single cross sectional CT scan image obtained at level of fourth and fifth lumbar spine with 
visceral adipose tissue area and total adipose tissue area calculated by segmentation of intra-peritoneal 
region which is illustrated enclosed within the yellow line. 
 
2.5 Cognitive Testing 

A set of cognitive tests was devised based on previous literature on cognitive 

dysfunction in metabolic disorders [23, 215]. Test domains assessed were episodic 

memory, attentional and executive function. All the cognitive tests were conducted at 

Cardiff University Brain Research Imaging Centre (CUBRIC). Participants were 

subjected to the initial screening process for imaging and following successful 

completion performed a battery of tests lasting between one and a half to two hours for 

each subject. The initial process of cognitive testing for the first three participants was 

carried out by Dr Claudia-Mettzler Baddeley, consultant neuropsychologist based at the 

School of Psychology, Cardiff University. Subsequent cognitive testing was carried out 

by myself initially under supervision of Dr Baddeley for the next three participants. I 

carried out independent cognitive assessments for the rest of the study. 

 
 

                                              Figure 2.1 Cross sectional CT scan image 

 
                                                 Intraperitoneal region enclosed within yellow line 
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2.5.1 Assessment of Premorbid IQ 

This was estimated with the National Adult Reading Test (NART , British Edition 

1982). It is a widely adopted method for estimating premorbid intelligence both for 

clinical and research purposes. The test requires subjects to read out loud a set of 50 

words, the pronunciations of which are irregular so have to be learnt and cannot be 

inferred from the spellings [216]. The responses are individually scored as correct or 

incorrect, according to their pronunciation. This score can then be used to derive a 

premorbid IQ estimate. This test is a measure of early learning and peak attainment. 

 
2.5.2   Assessment of Intelligence and Executive function 
 
2.5.2.1 Digit Span Task 
 
The Digit Span Task exercises short term and verbal working memory.  A series of 

digits (e.g., '8, 2, 4') were read out to the participants at one digit per second and were 

told to immediately repeat them back in the same order .If they did this successfully, 

they were given a longer list (e.g., '9, 2, 4, 1'). Participants got 2 attempts at each span. 

The test begins with two to three numbers, increasing until the participant fails both 

trials at a given length. Recognizable patterns (for example 2, 4, 6, 8) were avoided. At 

the end of a sequence, the person being tested is asked to recall the items in order. The 

average digit span for normal adults without error is seven plus or minus two. The 

length of the longest list a person can remember is that person's digit span. While the 

participant is asked to call out  the digits in the given order in the forward digit-span 

task, in the backward digit-span task the procedure is largely the same, except that 

subjects being tested are asked to recall the digits in backward order (e.g., if presented 

with the following string of numbers "3 7 9 1 5" the subject would be asked to recall 

the digits in reverse order; in this case, the correct response would be "5 1 9 7 3"). This 
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is a test of working memory as the participant has to hold and manipulate the digits 

‘online’ [217]. 

 
2.5.2.2 Digit Symbol Substitution Test (DST) 
  
 
Digit symbol substitutuion test is a neuropsychological test which measures response 

speed and focussed attention and is a sensitive indicator of brain damage, dementia age 

and depression. It consists of (e.g. nine) digit-symbol pairs followed by a list of 

digits. Under each digit the subject should write down the corresponding symbol as fast 

as possible. The number of correct symbols within the allowed time (120 sec) is 

measured. (Fig 2.2) 

 

 
 
Figure 2.2 Digit symbol substitution Test  
Nine digit symbol pairs followed by list of digits. The number of correct symbols obtained to each 
corresponding number in 120 seconds is measured. 
 
 
2.5.2.3 Verbal Trails Test 
 
Attention switching was examined with a version of the Verbal Trails Test that required 

alternation between letters and digits [218].  Subjects were asked to perform four tasks 

starting with a presentation of 50 digits in numerical sequence printed on a sheet of 
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paper. The amount of time required to verbally count numbers starting from 12 to 61 

was measured. The second task was similar to the first task but consisted of a list of 50 

letters with the subjects having to verbally start from the letter G through a sequence of 

50 letters up to the letter D. The third and fourth task consisted of retrieval and 

recitation of letters and numbers in alternation (digit-letter switching such as “28 D 29 

E 30 F31 G32 H up to 25 characters and letter-digit switching for example “R 13 S 14 

T 15 U 16 V17” up to a total of 25 characters. The time taken for each of the above 

tasks was measured. The amount of time in seconds measured as the sum of the time 

taken for task one and two subtracted from the sum of the time taken for task three and 

four was called the Verbal trails “switching cost”. Similarly the Verbal trails “errors” 

was calculated as the sum of the total errors measured in the four tasks. 

 
2.5.2.4 Verbal Fluency Test 
 
The Verbal  Fluency  Test  [219] consists of  two  tasks : category  fluency (sometimes 

called semantic fluency)  and  letter  fluency (sometimes called phonemic fluency). As 

per the standard versions of the tasks, participants were given 1 min to produce as many 

unique words as possible within a semantic category (category fluency) or starting with 

a given letter (letter fluency). The categories selected were Animals and Boy’s names 

and letters selected were F, A and S. The participant's score in each task is the number 

of unique correct words. 

 
2.5.2.5 Stroop Colour Word Test 
 
The suppression of response incongruent information was measured with the Stroop 

test. [220] The Stroop effect is a demonstration of interference in the reaction time of a 

task. When the name of a colour (e.g., "blue", "green", or "red") is printed in a colour 

not denoted by the name (e.g.,the word "red" printed in blue ink instead of red ink), 
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naming the colour of the word takes longer and is more prone to errors than when the 

colour of the ink matches the name of the colour. This test is considered to 

measure selective attention, cognitive flexibility and processing speed, and it is used as 

a tool in the evaluation of executive functions. 

 
2.5.2.6 Free and Cued Selective Reminding Test 
 
 
The 16-item version of controlled learning is called the Free and Cued Selective 

reminding Test (FCSRT) [221]. It has been used in several other longitudinal aging 

studies in North America and Europe to identify preclinical and early dementia. The 

test begins with a study phase in which subjects were asked to examine a card 

containing sixteen words (objects) for an item that goes with a unique category cue. 

The card was then taken away from the subject after one minute and immediate recall 

of the sixteen words was tested. The study phase was followed by the test phase that 

consisted of three recall trials, each preceded by 20 seconds of subjects counting 

backward to prevent recall from short-term memory. Each recall trial consisted of two 

parts. First, each subject had up to two minutes to freely recall as many items as 

possible. Next, aurally presented category cues were provided for items not retrieved by 

free recall. If subjects failed to retrieve the item with the category cue, they were 

reminded by presenting the cue and the item together. The sum of free and cued recall 

is total recall. The total score obtained from the three recall trials was a maximum of 48 

with a maximum score of 16 points per trial. 
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2.5.2.7 The Rey–Osterrieth Complex Figure Test (ROCF)  
 
 
The ROCF test is a neuropsychological assessment in which examinees are asked to 

reproduce a complicated line drawing, first by copying it freehand (recognition), and 

then drawing from memory (recall) [222]. It permits the evaluation of different 

functions, such as visuospatial abilities, memory, attention, planning, and  working 

memory (executive functions). 

The ROCF test consists of the following steps: 

Copy: In the Copy condition, the subject is given a piece of paper and a pencil, and the 

stimulus figure is placed in front of them. They reproduce the figure to the best of their 

ability. The test is not timed, but the length of time needed to copy the figure is 

observed. Once the copy is complete, the stimulus figure and the examinee's copy are 

removed from view. 

Immediate recall: After a short delay (2 minutes), the subject is asked to reproduce the 

figure from memory. 

Delayed recall: After a period of 20 minutes, the subject is asked once again to 

reproduce the figure from memory. In this study the delayed recall component of the 

test was not administered. 

 
2.5.2.8 Wechsler Abbreviated Scale of Intelligence – Second Edition (WASI-II) 
 
 
WASI-II provides a brief, reliable measure of cognitive ability for use in clinical, 

educational, and research settings. This form has four subsets (vocabulary, similarities, 

Block design and matrix reasoning), two composite scores (verbal and performance) 

and a full scale IQ. These tests have shown to be correlated strongly with general 
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intellectual functioning. Specifically, the subtests of vocabulary and similarities   are 

used to estimate verbal IQ (VIQ) which provides a measure of verbal comprehension 

and working memory, whereas block design and matrix reasoning are used to estimate 

performance IQ (PIQ) which provides a measure of perceptual organisation and 

processing speed. Performance on each subtest is converted to an age adjusted 

standardized score, from which VIQ and PIQ scores can be generated. The subtests 

were administered to all subjects according to standardised procedures specified in the 

WASI manual. Only raw scores for individual subsets were obtained. 

 
2.5.2.9 Beck’s Depression Inventory (BDI) 
 

The BDI (BDI-II) is a 21 question multiple choice self-report inventory for measuring 

the severity of depression. The most current version of the questionnaire is composed 

of items relating to depression symptoms such as hopelessness and irritability, 

cognitions such as guilt or feelings of being punished, as well as physical symptoms 

such as fatigue, weight loss and lack of libido. When the test is scored, a value of 0 to 3 

is assigned for each answer and then the total score is compared to a key to determine 

the depression's severity. Scores ≥17 indicate severe depression that needs to be treated. 

As depression is a common feature in patients with PCOS with incidence of up to 40% 

in some research studies [171, 223]  this test was administered so that any contribution 

of depression to cognitive performance could be controlled for.  

 
2.6  MRI data acquisition 

2.6.1 Materials 

MRI was done by Dr John Evans and Mr Peter Hobden, neuroscientists based at CUBRIC. 

MRI Scanner: General Electric HDx 3.0 T system. 
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a) Gradients: Twin-speed gradient system with gradient strength = 40 mT/m and 

maximum slew rate = 150 T/m/s. 

b) Radio Frequency (RF) Coils: Whole-body birdcage coil used for RF transmit; 

eight-channel head coil (made by MRI Devices Corp.) used for RF receive. 

c) Scanner Software Capability: Software to provide diffusion tensor imaging 

capability. 

d) Peripherals: Adequate padding for the head (wedge cushions, etc.); hearing 

protection (ear plugs); a peripheral pulse-oximeter; a squeeze-bulb (for the 

participant to communicate to the operator) 

2.6.2 Methods 

The participant is warned that the diffusion tensor imaging part of the protocol is 

‘louder than the other scans’ and that they ‘can expect the bed to vibrate quite a lot’. 

The participant is warned that ‘there will be irregularly timed knocking noises – and 

these will appear to move about as the scan progresses. 

1. Scanning: The integrated laser alignment system is used to landmark on the nasion, 

and the participant slid into the magnet, taking particular care not to trap the squeeze-

bulb/pulse-oximeter leads during the process. As an optional extra, the participant is 

provided with the option of watching a subtitled movie of their choice in the scanner 

via a rear projection onto a periscope mounted on the head coil. 

The sequence is a twice-refocused spin-echo EPI sequence [224] with a parallel 

imaging (ASSET) factor of 2. Sixty axially oriented slices are prescribed to cover the 

entire head. The field of view is 230 mm, with an acquisition matrix of 96 × 96 and a 

slice thickness of 2.4 mm. A total of 66 images were acquired at each of 60 slice 
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locations. Six images are acquired with no diffusion- weighting gradients applied, and 

60 diffusion-weighted images are acquired at a b-value of 1,200 s/mm2 .The diffusion-

weighted images were acquired with encoding gradients applied along 60 non-collinear  

directions. The echo time is 87 milliseconds, and the sequence is triggered to the 

cardiac cycle via a pulse-oximeter placed on the participant’s forefinger.  Each image is 

initially stored in DICOM format. We then convert the separate DICOM images into a 

4D data set (with ‘time’ or ‘diffusion-weighted measurement’ as the fourth dimension) 

in the NIFTI imaging   format. 

Fluid attenuated inversion recovery scans (FLAIR) were also obtained. The            

FLAIR  pulse sequence is an inversion recovery technique that nulls fluids and is 

commonly used in brain scans to suppress cerebrospinal fluid (CSF) effects on the 

image so as to detect subtle changes at the periphery of the hemispheres and in the 

periventricular region close to CSF[225]. Acquisition time was 19 minutes. The 

acquired images were corrected for distortions introduced by the diffusion-weighting 

gradients and for between-slice motion with appropriate reorienting of the encoding 

vectors [226] before a model was fitted to the data to estimate the diffusion orientation 

in each voxel. Images were visually inspected for the presence of white matter 

hyperintensities. On this basis, two subjects were excluded from further analysis. 

Once the 4 D (Diffusion weighted image) is obtained it is important to correct it for 

subject motion and eddy current induced distortions. Although the twice-refocussed 

spin-echo sequence will ameliorate much of the eddy currents, residual distortions are 

corrected by using a global affine registration software package which was done using 

the Explore-DTI software package [227]. Further distortions that commonly occur are 

partial volume effects (PVE) which can confound the results of diffusion MRI studies 
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because of tissue loss or atrophy. This depends on the degree of brain atrophy which 

affects the amount of CSF partial voluming as decreasing volume of white matter 

structures has been shown to increase the relative contribution of PVE contaminated 

voxels due to an increase in surface  area to volume ratio. This occurs in areas where 

white matter abuts the CSF spaces. This problem was addressed by Free water 

elimination method [228, 229] .This was done by modelling the effect of cerebrospinal 

fluid contamination on intra-voxel diffusion data directly by adopting a two 

compartment model and fitting two tensors to diffusion data, one anisotropic and one 

isotropic with diffusion characteristics of free water. The advantages of this technique 

is that it can be employed in data acquired by single b-value acquisition protocols. A 

by-product of this method is that it provides a voxel-wise map of tissue volume  

fraction(f), which might provide complementary information on tract structure 

attributable to atrophy at a microstructural scale [230]. 

The final stage in a standard Diffusion Tensor MRI pipeline is to derive parameters of 

interest from the diffusion tensor. Maps of the following microstructural measures were 

then created: Mean diffusivity, Axial Diffusivity and Fractional anisotropy and the 

principal diffusion orientation which can be used to create directionally encoded colour 

maps[185] or for fibre tracking analyses [195, 196, 231]. 

2.6.3 White matter Tractography and Tract specific measures 

White matter tractography was carried out by on the assumption that previous positive  

studies in obesity, ageing ,insulin resistance and diabetes have shown changes in white 

matter microstructure and similar changes might be reflected in our cohort of patients 

with PCOS. Based on previous studies 3 major white matter tracts connecting frontal, 

temporal and parietal regions namely the Fornix, Uncinate Fasciculus and the 
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Parahippocampal Cingulum were selected [202, 232-234]. I did the white matter 

tractography initially under the guidance of Dr Claudia Mettzler-Baddeley and Dr 

Michael O’Sullivan who trained me through the process of obtaining accurate and 

reproducible white matter tractography using the EXPLORE-DTI software and 

supervised me through the first six MRI images. I was blinded to the dataset containing 

the MRI images before I started the tractography. 

    

Fig 2.3 A schematic diagram of 2 types of Region of Interest (ROI) operations. When the first ROI 
(seedpoint) is drawn, all tracts that penetrate the ROI are retrieved (A). If the second ROI is applied as an 
“AND” operation, the fibres that penetrate both ROIs are retained (B). If a “NOT” operation is used, a 
subset of the fibres penetrating the NOT ROI is removed (C).  
 
Fibre tracking was performed using a multi-ROI approach. This was used to reconstruct 

tracts of interest which exploits existing anatomical knowledge of tract trajectories. 

Tracking was performed from all pixels inside the brain and results penetrating the 

manually defined ROIs were assigned to the specific tracts associated with the ROIs. 

When multiple ROIs were used for a tract of interest, two types of operations were 
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employed namely ‘AND’ and ‘NOT’, the use of which would depend on the 

characteristic trajectory of each path.(Fig 2.3) 

Fornix: The fornix is an integral white matter bundle which projects into the medial 

diencepahalon and is part of the limbic system. It has been demonstrated as the link 

between the hippocampus, mammilary bodies, and the anterior thalamic nuclei [235, 

236]. Recent Diffusion weighted imaging studies have found that changes in fornix 

microstructure in young people correlate selectively with recollective memory [237]. 

These studies closely support clinical studies of fornix pathology [238, 239] although 

the specificity of this association remains unclear.  

Uncinate Fasciculus (UF): is a bidirectional pathway that links the anterior temporal 

lobe with the orbital and medial prefrontal cortex. It provides an afferent sensory route 

for prefrontal cognitive functions and is known to be associated with auditory-verbal 

memory and declarative memory [240, 241]. Variations in UF microstructure have been 

linked to aspects of memory in older adults [241]. 

Parahippocampal cingulum : include white matter fibres which link the hippocampal 

formation with the cingulate cortex and recent evidence suggests that it may be critical 

for strategic memory procceses related to successful encoding/retrieval and meta 

memory.[242] 

Tractography based on the diffusion tensor model has been shown to generate 

anatomically plausible and reproducible reconstructions of tracts within regions of 

coherently oriented fibres [196, 197]. Tractography was performed using Explore-DTI 

software package. The deterministic tracking algorithm estimated the principal 

diffusion orientation at each seed point and propagated in 0.5 mm steps along this 

direction. The fibre orientation(s) was/were then estimated at the new location and the 
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tracking moved a further 0.5 mm along the direction that subtended the smallest angle 

to the current trajectory. In this way, a pathway was traced through the data until either 

FA fell below an arbitrary threshold (in this case 0.15) or the direction of the pathway 

changed through an angle of 60°.  

Whole-brain tractography was performed using every voxel as a seed point. Three-

dimensional reconstructions of the three tracts (Fig. 2.4) were then extracted from 

whole-brain tractograms by applying multiple waypoint regions of interest (ROIs) 

masks. Representative ROIs for the three tracts are shown in Figure 4.3. All ROIs were 

manually drawn in native space on colour-coded fibre orientation maps for each 

individual dataset by myself using landmark techniques that have previously been 

shown to be highly reproducible. These are detailed for each tract below. The mean FA 

and MD were then calculated for all reconstructed pathways in Explore-DTI by 

averaging the values sampled at each 0.5 mm step along the pathways providing tract-

specific means of FA and MD for the left and the right UF, left and right PHC, and the 

fornix. The precise neuropathological correlates of FA and MD are not known but these 

measures were adopted as they are most widely used and FA has been shown to have 

neurophysiological relevance. 

Fornix - A seed point ROI (Fig. 2.4A, blue) was placed medially on a coronal slice 

around the fornix bundle at the level of the entry point of the anterior pillars into the 

body of the fornix, approximately below the sagittal midline of the corpus callosum. An 

AND ROI (Fig. 2.4A, green) was defined on an axial slice capturing the crus fornici in 

both hemispheres at the level of the inferior border of the splenium of the corpus 

callosum. NOT ROIs (Fig. 2.4A, red) were drawn on coronal slices rostral to the 

anterior fornix pillars and caudal to the crus fornici as well as on axial slices through 
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the corpus callosum and the upper pons to exclude streamlines from the corpus 

callosum and the corticospinal tract. After visual inspection, obvious anatomically 

implausible outlier streams, if present, were removed using additional NOT ROIs. 

Uncinate fasciculus - A seed point ROI was drawn on a coronal slice around the region 

where the UF enters the frontal lobe immediately rostral to the genu of the corpus 

callosum (Fig. 2.4B). An AND ROI was placed on an axial slice capturing the UF 

bundle at the point where the bundle bends into the inferior temporal lobe region. This 

bend was visually identified on the midline sagittal plane with the axial slice being 

placed at a level immediately dorsal to the upper pons. A NOT ROI was drawn across 

the coronal slice level with the front of the pons to remove tracts of the internal frontal-

occipital fasciculus. The tract was then visually inspected and any obvious outlier 

streamlines that were not consistent with the known UF anatomy were removed using 

additional NOT ROIs. This procedure was performed for both hemispheres. 

Parahippocampal cingulum: A seed point ROI was placed on an axial slice level with 

the pons–midbrain junction around the cingulum fibre bundle that runs caudal and 

lateral to the pons (Fig 2.4C). A NOT ROI was drawn across the midline sagittal plane 

to remove inter-hemispheric projections. After visual inspection, further NOT ROIs 

were placed, when necessary, to remove projections to the occipital lobe and any outlier 

tracts that were not consistent with the known anatomy of the PHC. This procedure was 

performed separately for the left and the right PHC. 
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Fig 2.4 Tractography using region of interest (ROI waypoints) Reconstruction based on a 
standardized atlas of white matter tracts. 
  
Fornix (A) - A seed point ROI (blue) drawn medially on a coronal slice around the fornix bundle at the 
level of the entry point of the anterior pillars into the body of the fornix and an AND ROI (green) defined 
on an axial slice capturing the crus fornici in both hemispheres at the level of the inferior border of the 
splenium of the corpus callosum. 
 
Uncinate fasciculus (B) - A seed point ROI (blue) drawn on a coronal slice around the region where the 
UF enters the frontal lobe immediately rostral to the genu of the corpus callosum and an AND ROI 
(green) placed on an axial slice capturing the UF bundle at the point where the bundle bends into the 
inferior temporal lobe region. 
 
Parahippocampal cingulum (C) - A seed point ROI (blue) placed on an axial slice level with the pons–
midbrain junction around the cingulum fibre bundle that runs caudal and lateral to the pons. 

 

2.6.4 Tract –based spatial statistics (TBSS) 

This method is executed by the software FSL (FMRIB software Library). TBSS was 

performed by Dr Rok Berlot, a neuroscientist based at Kings College London. Data 

analysis and the results were provided by Dr Berlot. 

The summary of TBSS is presented as follows.  
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• Identify a common registration target and align all subjects’ FA images to this target 

place.  

• After identifying the most typical subject as the target, a mean FA skeleton image 

from all aligned images by applying ‘thinning’ (non-maximum-suppression 

perpendicular to the local tract structure). Threshold this to remove areas of low FA 

values and areas with high inter-subject variability.  

• Project each subjects’ FA data onto the skeleton by filling the skeleton with FA values 

from the nearest relevant track centre. This is done by searching along all voxels in the 

local ‘tract perpendicular direction’, and the voxel with the highest FA is identified as 

the centre of the tract. 

• Carry out voxel-wise statistics across subjects on the skeleton-space FA data.  

The detail of each step is described in the section below. 

Voxel-wise  statistical  analysis of diffusion data was carried out using TBSS  (Tract-

Based spatial Statistics), part of FSL (FMRIB Software Library 

http://www.fmrib.ox.ac.uk/fsl/ Version 5.0)[205]. The recommended FMRIB58_FA 

standard-space image was used as the registration target. Each subject’s aligned FA data 

were then projected to the mean FA skeleton. Voxel projections defined in this way 

were applied to project voxel values of MD, AD, RD and f to the white matter skeleton 

for each subject. Resulting data were used to generate voxel-wise statistical 

analyses. The details of this analysis was carried out as below. 

Preprocessing  

The first step in TBSS is preprocessing the FA image. It includes removing eddy 

current which is created by gradient coils of MRI and head motion during scanning. 

Head motion creates rigid body image motion while eddy current forms first order 
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linear image transformation .[243] Eddy current is removed by using built-in software 

eddy current correction in FSL. After preprocessing, diffusion tensors can be calculated 

with extraction of tensor eigenvalues measurement of FA. Finally, the BET brain 

extraction tool is used to exclude nondiffusion brain voxels from further 

consideration.[244]  

Non-linear alignment  

The next step for aligning multiple FA images to each other is using nonlinear 

alignment.(Fig 2.5) Here, the main anatomical features of the images will not change 

and keeping the general tract structure intact is important to prepare for the next stage 

(projection of data on tract skeleton). Non-linear registration was completed by 

registering FA images to FMRIB58_FA standard-space image, an averaged FA map 

included with the software package.[245] 

 

Fig 2.5 Tract Based Spatial Statistics Voxel-wise non-linear registration to prealign all subject’s FA 
images which is done by registering all subjects FA images to a  standard FMRIB58_FA standard space 
image (high-resolution averaged of 58 well-aligned good quality FA images from healthy male and 
female subjects aged between 20-50). 

 

Identifying the target for alignment 

Registration of a target is more successful if the target is a real FA image rather than an 

average FA image as a single subject will be sharper than an averaged image, giving 



61 

 

better information to drive the alignment. A single subject’s FA image is identified to 

act as the target for all nonlinear registrations. This is done by registering every subject 

to every other subject, summarising each warp field by its mean displacement, and 

choosing the ‘most representative’ individual. 

Creating mean FA image and skeleton:  

After identifying the most typical subject as the target, all subjects’ FA images are 

aligned to this. This target image is then aligned into MNI152 (Montreal Neurosciences 

Institute) standard space. MNI152 is a standard template derived by the averaging of 

152 diffusion tensor images of the brain obtained from 152 different people. An 

‘average’ brain is seen when visualising the MN152 image. Registration of all study 

subjects’ scan to this space enables easier statistical analysis of imaging data.  Every 

image is transformed into 1x1x1mm MNI152 space by combining the nonlinear 

transform to the target FA image with the affine transform from that target to MNI152 

space.  All subsequent processing is carried out using this space and resolution. Affine 

and nonlinear registrations were combined in order to avoid resampling the images 

twice. The mean FA image is created by averaging the transformed images. This image 

is smooth due to averaging of FA images across subjects and resolution up sampling. It 

is then used to create the skeleton image which represents all the ‘common’ tracts of the 

aligned images. 
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Fig 2.6. Tract based spatial statistics (TBSS) Mean fractional anisotropy (FA) image with no 
smoothing. Mean FA is fed into tract skeleton generation which aims to represent all tracts which are 
common to all subjects. This is highlighted in the figure above in white in the sagittal (left), coronal 
(middle) and axial (right) views. 

 

 
        A                    B 

Fig 2.7. Examples of fibre bundles; a thick sheet with a thin surface as its skeleton (A) and a ‘tube’, 
with a line as its skeleton (B). Tract skeleton will represent each white matter tract as a single line or 
surface running down the centre of the tract. Contiguous sets of tracts appear as curved sheets as shown 
in figure A (eg the corpus callosum) or, less frequently, curved ‘‘tubes’’ (e.g., the cingulum bundle) as 
shown in figure B. 

 

The next step involves making the skeleton image from the mean FA image. The first 

step is to estimate local surface perpendicular direction (at all voxels in the image) and  

search for all voxels in this direction (tract perpendicular direction), the one with the 

highest FA value is identified as the centre of the tract. If the voxel of interest is far 

from tract centre, the FA value will be higher in the neighbouring voxels on one side of 

the voxel than on the other side and the direction in which it is highest shows toward 

the centre of the tracts. This can be explained in Figure 2.8 below. 
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Fig 2.8. A. Original mean FA image with final skeleton and region of interest (ROI) used for sub-image. 
B. Skeletonisation, using local FA centre-of-gravity to find tract perpendiculars (search for the voxel 
with highest FA which is projected on to the skeleton. This results in a FA skeleton which is thresholded 
in order to remove areas with large inter subject variations . 

 

The constructed skeleton FA value is thresholded in order to remove areas with large 

inter subject variations. 

                                        
            A             B 

 

Fig 2.9. A) Example of white matter skeleton which is shown in green. This defines the set of   voxels  
used in all subsequent processing. All FA image (containing all subjects' aligned FA data) and, for each 
"timepoint" (i.e., subject ID), is projected onto the mean FA skeleton. This results in a 4D image file 
containing the (projected) skeletonised FA data. 

 
Fig 2.9 B) Voxel-wise statistics on skeletonised FA data (Comparision of data across groups) 
The final step involves projection of data using voxel-wise statistical analysis (measures of diffusion 
such as axial diffusivity (AD), mean diffusivity (MD), radial diffusivity (RD), f (tissue volume fraction) 
onto the skeleton which delineates for eg which FA skeleton voxels are significantly different between 
two groups of subjects 
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Projecting individual subjects FA onto skeleton 

After the skeleton tract is ready, we now ‘project’ each subject FA image onto the mean 

FA skeleton. This projection from the tract centre to the mean skeleton is accurate  

providing a sort of “fix” for such misalignments in actual tracts. For each voxel in the 

skeleton tract, a maximum FA value in a perpendicular direction is searched from a 

subject’s FA image. The perpendicular directions of the skeleton are already prepared 

from the previous skeleton formation. This assignment is valid only in perpendicular 

direction as the change in FA value is greatly pronounced in this direction than the 

parallel direction. There are two limitations for the searching of maximum FA value to 

the skeleton tract. The first limitation is that search is limited to voxels closer to the 

starting section of the skeleton than that of the farther section of the skeleton. Space 

between two separate sections of skeleton are divided into two and each skeleton 

section can search voxels from its space. This is achieved by using distance map which 

shows the distance of each voxel from the nearest skeleton voxel. This constraint also 

ensures each voxel in the image is mapped only to a single point in the skeleton.  

Statistics and thresholding 

At this stage the data are ready to be fed into voxel-wise cross subject statistical 

analysis. Since each FA image of the subjects is aligned into a common space using 

constrained nonlinear registration, common tract skeleton has been formed, and each 

subject FA has been projected into the skeleton via perpendicular search for local tract 

centre. In order to find group differences between two groups, an unpaired t-test is 

used.  
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2.7 Statistical Analysis 

In  the  absence  of a priori  information  about  the  most  sensitive  cognitive  tests  in 

PCOS, I chose to generate a composite score from Principal Components Analysis 

(Appendix 1 Page 95). The principal component was derived from a combination of the 

following tests: Digit Span, Free and Cued Selective reminding test, Rey Osterrieth 

Complex figure test, Verbal Trails, Digit Symbol Substitution and the letter and 

semantic fluency test. General cognition score which accounted for 35% of the variance 

across all test scores, was used as a summary score and compared across the two groups 

using an unpaired t-test. A threshold of significance of 0.05 was used for this single 

comparison. Subsequent comparisons for individual test scores were performed as a 

means of exploring the pattern of any significant difference between groups: 

uncorrected p-values are presented but not interpreted in terms of significance for 

individual test scores. 

For TBSS, two-sample unpaired t-tests for reduced and increased DTI measures in 

PCOS patients compared to controls were performed. Additionally, microstructural 

measures were correlated with the value of the general cognition score and hormonal 

levels in each group separately. Statistical inference was based on permutation: five 

thousand permutations were performed using randomise software [246]. Resulting  

statistical  maps  were  thresholded for p <0.05, correcting  for  multiple comparisons 

using threshold-free cluster enhancement (TFCE) [247].  

 

2.8 Power Calculations 

In the absence of any prior data in subjects with PCOS, sample size calculations were 

based on data from a previous study which examined the influence of BMI on corpus 
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callosum microstructure [207]. A BMI difference of 10kg/m2 corresponded to a 

difference in FA of 0.05 (SD of FA measures 0.04). I  calculated that a  sample of 18 

participants per group would provide at least  95%  power  to  detect  a  between-group  

difference  in FA of 0.05 at the 5% significance level. 
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CHAPTER 3  RESULTS   

3.1 Introduction 

There is increasing appreciation of the importance of mid life risk states and it’s 

association with late life cognitive decline. Risk states in middle age include 

behavioural factors such as smoking [44, 248], aspects of cardiovascular function such 

as hypertension [33, 249-251], cardiac structure and metabolic traits. Metabolic factors 

shown to confer risk in cohort studies include diabetes [202, 252-254] and prediabetes 

[255, 256]. Adiposity generally indexed by body mass index (BMI), has also been 

associated with subsequent dementia [19, 29, 257]. A negative association between 

visceral adiposity and performance in the domain of verbal learning and memory has 

been observed in recent studies in healthy young women aged between 20 – 45 years of 

age [29] . Insulin resistance is the main pathological condition underlying vascular 

disorders, such as diabetes, obesity and cardiovascular disease and has been implicated 

as a major risk factor for cognitive decline in recent studies [258-260] . We 

hypothesised that women with PCOS and hyperandrogenism along with insulin 

resistance would demonstrate worsening cognitive function in the context of working 

and episodic memory compared to healthy volunteers.  

3.2  Aims 

The aims of this Chapter are to: 

1. Compare the demographic, anthropometric and metabolic characteristics between 

PCOS subjects and healthy volunteers. 

2. Compare cognitive function between subjects with PCOS and healthy volunteers. 
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3.2.1 Study recruitment 
 
From the departmental database and outpatient endocrine clinics at the University 

Hospital of Wales, 18 women with a diagnosis of PCOS were identified. From local 

advertisement, 22 women expressed an interest in being a healthy volunteer. Healthy 

volunteers (n=18, all Caucasian) were recruited as controls with 1 to 1 matching for age 

and BMI. For each individual patient, a control was identified matched for age (within 

2 years) and BMI (within 2 kg/m2). Controls needed to have regular menstrual cycles 

(menses every 27–32 d). Control subjects with signs of hirsutism or with a personal 

history of diabetes or hypertension, or a family history of PCOS were excluded. 

 
3.2.2 Demographic Data  
 
The number of subjects in each group, their age, BMI, smoking status, ethnicity and 

medications taken are presented below. 

Eighteen women with PCOS (n = 18, 16 Caucasian and 2 Afro – Caribbean) and 

eighteen healthy volunteers (n = 18) participated in the study. The mean age and 

standard deviation of the PCOS and HV groups were 31 ± 6 years and 31 ± 7 years 

respectively, which was evenly matched (p=0.9). Results are displayed in Table 3.2. 

There were two current smokers in each group. Two subjects in each group were taking 

a combined oral contraceptive pill. No subjects were on antidepressants. 

Participants in the PCOS group included all subphenotypes as described by the 

Rotterdam criteria and are shown below in Table 3.1.  
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Table 3.1  PCOS (subphenotypes as per Rotterdam Criteria) 
PCOS (subphenotype) No (%) 
PCO Complete  8  (44)` 
Normo-androgenic  5  (28) 
Non Polycystic Ovary   1  (6) 
Ovulatory  4  (22) 

 
PCO complete : Presence of oligo/anovulation (O) + polycystic ovaries (P) + hyperandrogenism (H)  
Normo-androgenic : Presence of oligo/anovulation (O) + polycystic ovaries (P) 
Non Polycystic ovary : Presence of oligo/anovulation (O) + hyperandrogenism (H) 
Ovulatory : hyperandrogensim (H) + Polycystic ovary (P) 
 
Table 3.2 General characteristics of the study population 
 
 

 PCOS (n=18) 
Mean ± SD 

 
 

 Controls (n=18) 
Mean ± SD 

 p-value 
 

 
 
 

 

 
Age 

  
31 ±6 

 
 

  
31 ±7 

  
0.9 

Estimated 
Premorbid 
Intelligence 

 
 
 

122 ± 4 
  

 
 

 121 ± 8   0.35    

 
Weight (kg) 

  
78 ±21 

   
76 ±15 

  
0.68 

  

 
BMI (kg/m²) 

  
30 ±6 

   
29 ±6 

  
0.61 

  

 
Systolic BP 
(mmHg) 

  
119±8 

   
120±11 

  
0.96 

  

 
Diastolic BP 
(mmHg) 

 
 

 
66 ±8 

   
69±10 

  
0.36 

  

 
Waist (cm) 

  
91 ±15 

   
86 ±13 

  
0.31 

  

 
Hip (cm) 

  
111 ±16 

   
106 ±12 

  
0.24 

  

 
Visceral fat area 
(cm²) 

 
 

 
31 ±23 

   
26 ±14 

  
0.46 

  

 
Subcutaneous fat 
area (cm²) 

 
 

 
287 ±119 

   
298 ±114 

  
0.78 

  

 
Total fat area (cm²) 

  
318 ±133 

   
324 ±124 

  
0.89 

  

 
BMI: body mass index; Estimation of premorbid intelligence was based on the National Adult Reading 
-Revised. 
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3.3 Biochemical Characteristics of the Study Population 
 
There was a significant increase in the testosterone, androstenedione and Insulin AUC 

in subjects with PCOS compared to controls. Biochemical parameters are shown in 

Table 3.3. 

3.3.1 Glucose Tolerance Status 
 
5 subjects in the PCOS group and 2 controls  had  prediabetes  as  per  the  World 

Health Organisation (WHO) criteria which is described in Table 3.4. 

Table 3.3 Biochemical characteristics of the study population 
    PCOS (n=18) 

    Mean ± SD 
      HV(n=18) 
      Mean ± SD 
 

       p-value 

 
Testosterone 
(nmol/l) 
 

 
 

 
1.6±0.6 

  
0.9 ±0.6 

  
0.01 

Androstenedione 
(nmol/l) 
 

 
 

13.4 ± 7.3  6.8± 2.5  0.001 

hsCRP (mg/l) 
 

 1.2 (0.2 -21.8)  0.9 (0.1 -16.7)  0.73 

Total cholesterol 
(mmol/l) 
 

 
 

4.6 ±1.3  4.8 ±1.1  0.67 

Triglycerides 
(mmol/l) 

 
 

1.2 ±1.4  1.0 ±0.5  0.52 

LDL cholesterol 
(mmol/l) 
 

 
 

2.4 ±1.4  2.5 ±1.3  0.79 

HDL cholesterol 
(mmol/l) 
 
Insulin AUC (pmol 
min/litre) 
 
HOMA-IR 
 
Glucose AUC (mmol 
min/l 

 
 
     

1.2 ±0.5 
 
 
93151 ± 42694 
 
 
2.6164  ± 0.95 
 
764 ± 217 

 1.3 ±0.6 
 
 
61933 ± 29614 
 
 
2.005  ± 1.43 
 
692 ± 133 

 0.65 
 
 
0.04 
 

0.32 

0.24 

 
hsCRP: high sensitivity c-reactive protein; LDL: low density lipoprotein; HDL: high density lipoprotein; Insulin 
AUC:Insulin area under curve (during oral glucose tolerance test); HOMA-IR: Homeostatic model assessment 
for insulin resistance.  Serum Testosterone , Androstenedione and Insulin  area under curve (Insulin AUC)  are 
significantly  raised in the PCOS group compared to controls
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Table 3.4 Outcome of screening tests for diabetes and dysglycaemia in PCOS and healthy volunteers 

Subject No 
 

Status 
 

Diagnosis HbA1c 
mmol/mol 

FPG 
mmol/l 

2 hour glucose 
mmol/mol 

BMI  
kg/m2 

Age 
years 

1 PCOS IGT 40 4.6 8.0 32.5 37 
2 PCOS IGT 30 4.9 8.4 29 31 
3 PCOS IGT 43 4.3 9.1 36.5 33 
4 PCOS IGT 37 5.8 8.3 44 24 
5 PCOS IGT 33 4.7 7.8 30.1 33 
6 HV IGT 36 5.2 8.4 33 36 
7 HV IGT 38 5.4 8.6 32 34 
 
PCOS: Polycystic Ovary Syndrome; HV:Healthy Volunteer; FPG: fasting plasma glucose; BMI: body mass index; IGT: impaired glucose tolerance 

 
 
Diabetes: WHO/ADA HbA1c ≥ 48 mmol/mol or FPG ≥7.0mmol/l or 2 hour glucose OGTT ≥11.1mmol/l 

Impaired glucose tolerance: WHO/ADA FPG <7.0mmol/l and 2 hour glucose OGTT ≥ 7.8mmol/l 

Impaired fasting glycaemia: WHO FPG ≥ 6.1 mmol/l and <7.0 mmol/l, ADA FPG ≥5.6 mmol/l and < 7.0 mmol/l 

High risk of diabetes: WHO HbA1c 42-47mmol/mol, ADA 39mmol/mol-47mmol/mol 

Results displayed in red are abnormal as per WHO criteria 

Results displayed in blue are abnormal according to ADA criteria; this is also the cut off for an oral glucose tolerance test according to NICE 
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3.4  Cognitive Function Tests 
 
There are very few studies which have looked at the effects of PCOS on cognitive 

function and have focussed predominantly on the effects of androgens and estrogen. 

Futhermore these studies have been limited by the lack of adequately matched controls 

[177] or sample size [208]. Cognitive function was assessed in our study cohort as 

previously explained where they performed a battery of neuropsychological tests and 

the results were compared across the PCOS group and controls.  

3.4.1 Results 

No individual in either group had evidence of depression based on Beck depression 

inventory score (scores all < 15). The groups were well matched for premorbid 

intelligence as assessed by the National Adult Reading Test. Both groups showed 

similar high levels of general intelligence with scores of 122.4 in the PCOS group and 

120.5 in controls (p=0.35).  

Cognitive performance was degraded in patients with PCOS compared to controls. For 

the summary score, the between group difference was significant: t = 2.88, P =.007. 

(Appendix 2 Page 97) Subjects with PCOS performed less well compared to controls in 

tests of short term and verbal working memory as measured by the Digit Span Task. 

Current IQ was lower in the PCOS cohort as well which was evaluated using the 

Wechsler Abbreviated Scale of Intelligence (WASI) although it must be emphasised 

that only raw scores were calculated for this measure of intelligence. Controls showed a 

better level of functioning across the domains of episodic memory, attention and 

executive function. Table 3.5 summarises performance on underlying individual 

cognitive measures. 

Metabolic status and cognition in PCOS  
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No correlation was observed between cognitive performance and testosterone or Insulin 

AUC in subjects with PCOS (testosterone : r = -0.12, P = 0.64; insulin AUC : r = 0.01, 

P = 0.98). 

Table 3.5 Performance on individual cognitive tests 
 
Cognitive Function Tests 

 
Population(n=36, 
mean ± SD) 

   
PCOS(n=18, 
mean±SD) 
 

 
 
 
 

 
Controls(n=18 
mean±SD) 

 
 
 

 
p-value 

         

Intelligence and Executive 
Function 

       

National Adult Reading Test 121.4 ± 6.1  122.4 ± 3.6  120.5 ± 7.9  0.35 

Digit span forward 12.8 ± 2.2  12 ± 1.9  13.6 ± 2.2  0.02 

Digit span backward 8.2 ± 2.5   7.4 ± 2.5  9.1 ± 2.3  0.04 

Digit Symbol 86.5 ± 14.5   83 ± 15.8  90.1 ± 12.5  0.14 

Verbal Trails (switching cost) 39.5 ± 17.4   44.5 ± 21.2  33.4 ± 9.8  0.03 

Verbal Trails (errors) 0.8 ± 1.3   1.1 ± 1.5  .55 ± 1.1  0.23 

Letter Fluency 38.6 ± 10.8  38.1 ± 11  39.1 ± 11  0.79 

Category Fluency 41.8 ± 7.2  39.6 ± 7.5  44 ± 6.3  0.06 

Stroop Colour Word Test 
(duration) 

112.3 ± 22.2  118.3 ± 22.7  106.4 ± 20.5  0.11 

WASI (vocabulary) 66.9 ± 8   64 ± 9.2  69.88 ± 5.5  0.02 

WASI (block design) 52.6 ± 12   49.1 ± 13.7  56.2 ± 8.9  0.07 

WASI (similarities) 41.5 ± 4.4   39.5 ± 4.8  43.61 ± 2.8  0.04 

WASI (matrix reasoning) 27.5 ± 5.1  27.1 ± 6.6  27.8 ± 3.2  0.7 

Episodic memory          

FCSRT Immediate recall 14.6 ± 2.3  13.7 ± 1.9  15.4 ± 2.4  0.03 

FCSRT Free  recall 38.4 ± 8.8  35.7 ± 8.9  41.1 ± 8.1  0.06 

FCSRT Total recall 43.2 ± 7  41.7 ± 7.7  44.7 ± 6.1  0.20 

FCSRT Delayed free recall 14 ± 2  13.2 ± 2.4  14.9 ± 1.2  0.01 

FCSRT Delayed total recall 15.9 ± 0.3  15.8 ± 0.4  15.9 ± 0.2  0.65 

Rey-Osterrieth Complex 
figure  

28.6 ± 5.9   26.7 ± 6.9  30.6 ± 4  0.05 

NART: National Adult Reading test, a score of premorbid intelligence, General Population mean ± S.D: 
107.4 ± 17.1 [261] higher score indicates better performance 
Verbal Trails (switching cost and errors)/ Stroop Test: higher readings indicate poor performance   
Digit span forward / Digit span backward: no normative data: higher score indicates better performance 
Digit Symbol Test:Population mean ± S.D: 80.26 ± 14.76 [262]: higher score indicates better performance 
Letter Fluency  mean ± S.D: 43.1 ± 12.2 : higher score indicates better performance.  
WASI: Wechsler Abbreviated Scale Of Intelligence, all scores indicated are raw scores for vocabulary, block 
design,similarities and matrix reasoning, no normative data for raw scores recorded. 
 Rey-Osterrieth Complex Figure Test: Immediate Recall General Population mean ± S.D: 20.75 ± 5.75:       
 higher score indicates better performance [263] 

        FCSRT: Free and Cued Selective Reminding test: higher score indicates better performance. No normative   
        data available in the 18-45 year age group for the english version of this test [264]. 
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           3.5  Discussion 
 

The subphenotypes identified under the PCOS group showed a predominance of the 

PCO complete group who comprised 44% of the PCOS cohort. The two groups were 

well matched with reference to age and body mass index. No significant differences in 

anthropometric indices were observed between the 2 groups.  

The prevalence of newly established impaired glucose tolerance was higher in the 

PCOS group (27%) compared to the healthy volunteers (11%). This is not surprising as 

women with PCOS are at increased risk of developing glucose intolerance and diabetes 

[127, 265]. The prevalence rates of diabetes and impaired glucose tolerance in PCOS 

are between 2 to 10% [116, 141, 266] and 10 to 35% respectively [42-44]. In this study 

5(27%) subjects in the PCOS group had  IGT.  

Subjects with PCOS showed a significantly higher levels of testosterone and 

androstenedione compared to controls. This was anticipated since hyperandrogenism is 

common in women with PCOS, although the presence of biochemical 

hyperandrogenism is not absolutely necessary to establish a diagnosis of PCOS 

according to the Rotterdam criteria. 

Markers of insulin resistance (Insulin AUC) were significantly higher in the PCOS 

group. This is consistent with other studies. Previous authors have also shown increased 

basal and glucose- stimulated insulin levels in women with PCOS compared to weight-

matched controls [65],  and IR is present in PCOS independently of obesity [148] . 

However although the HOMA-IR was raised in the PCOS group this did not reach 

statistical significance. This is a major limitation of HOMA as many young PCOS 

women display stimulated but not fasting metabolic abnormalities [267]. In fact, 

HOMA in young PCOS patients may miss as much as 50% of IR as compared to 

OGTT with insulin-AUC calculations[268]. Hence measuring insulin AUC may be a 
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better measure than other tests to assess insulin resistance in non-obese PCOS patients 

[267]. 

Subjects  with PCOS  showed  subtle  decrements  across a broad range of cognitive 

tests as shown by principal component analysis despite similar education and 

premorbid intelligence. This was  an interesting finding as this could  not be attributed 

to BMI and age. However looking at the individual test scores there does not appear to 

be a  clear selective pattern of impairment, it is more a general degradation across 

several domains.  The Beck depression inventory was also applied which did not find 

any evidence of depression with all scores less than 15. This contrasts with studies in 

PCOS which showed an increased prevalence of depression [168, 169, 171]. This may 

be related to the small cohort of patients used in this study who did not show any signs 

of depression the presence of  which may have impacted on cognitive function test 

scores as seen in previous studies [269, 270]. Subjects in  both groups had a similar 

level of general intelligence. Barnard et al carried out an internet based computerised 

study which compared neuropsychological functioning in women with PCOS. They 

hypothesised that women with PCOS would display enhanced cognitive performance 

on sexually dimorphic tasks. However no difference in performance was observed  on  

mental  rotation  and spatial location tasks. Despite  presumed  hyper-oestrogenism  

women  with  PCOS  demonstrated  impaired  performance in terms of speed and 

accuracy on reaction time and word recognition tasks. The subjects in this study were 

stratified according to the use of anti-androgen medication and level of depression. This 

study did not evaluate the biochemical and anthropometric data of the subjects involved 

and failed to account for the cognitive impairments on the basis of raised testosterone 

levels [177]. Furthermore another study by Schattmann et al. [208] tried to study the 

possible influence of testosterone on cognitive function in women with PCOS. This 
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study compared 29 women with PCOS with raised testosterone levels with 22 age and 

education matched women with normal testosterone levels. Women with PCOS 

exhibited significantly worse performance on tests of verbal fluency, verbal memory, 

manual dexterity and visuo-spatial working memory. Another study by the same group 

investigated cognitive functioning (visuospatial abilities, verbal abilities, and perceptual 

speed) in women with PCOS after manipulation of testosterone. Hormonal treatment to 

suppress the level of free Testosterone with cyproterone acetate plus oestrogen did not 

result in changes in most of the cognitive functions, except for verbal fluency, which 

appeared to improve. It must be remembered that the earlier studies were limited by 

poor case-control matching A recent study by Barry et al. found evidence of better 

visuo-spatial task performance in women with PCOS compared with subfertile controls, 

but this difference was no longer significant when age and BMI were controlled for in 

the analysis [271]. Another study evaluating effects of PCOS on cognitive function 

showed poor performance in the PCOS group on tests of spatial ability and manual 

dexterity with both reproductive and metabolic features such as menstrual cyle length, 

number of follicles , triglycerides, Free Androgen Index (FAI), androstenedione and 

HbA1c emerging as independent predictors [272]. There was no information on 

anthropometric or biochemical indices provided in this study. 

A study by Soleman et al. evaluated working memory in women with PCOS with the 

help of functional MRI [179]. This was a case control study with working memory 

being evaluated before and after treatment of subjects with PCOS with anti-androgen 

therapy. The incidence of anxiety and depression was found to be significantly higher 

in the PCOS group before hormonal manipulation but no differences were seen after 

treatament.  General level of premorbid intelligence as measured by the NART test 

showed no differences between the 2 groups which was similar to the findings in my 
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study. The groups were evenly matched for age and BMI. Differences in biochemical 

parameters were observed in the 2 groups with significant differences between the 2  

goups relating to testosterone, oestradiol ,LH levels and Free Androgen Index (FAI). 

Measures of insulin resistance were not evaluated as in our study which was 

significantly raised in the PCOS group. There was no difference found in reaction time 

in executing a working memory task before and after treatment with anti-androgens 

although women with PCOS made fewer errors while completing the task after 

hormonal manipulation. This may suggest that women with PCOS may need  

recruitment of additional neural resources during a working memory task suggesting 

less efficient executive functioning. 

The advantages of this study was that the subjects in each group were closely matched 

for age and BMI which are major confounding factors. Subtle decrements in cognitive 

function were observed in the PCOS group but I did not find any correlation between 

cognitive performance and testosterone or insulin AUC in PCOS. Although there is 

some evidence to suggest that manipulation of  testosterone  may improve cognitive 

outcomes these are far from conclusive.  I did not look into the effects of specific 

subphenotypes of PCOS and the effects on cognition. There are indications that 

menstrual pattern dependent oestradiol levels relate to working memory although this 

was not investigated in our study cohort [273, 274]. 
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CHAPTER 4 . WHITE MATTER TRACTOGRAPHY AND TRACT BASED  
 SPATIAL STATISTICS 
 
4.1 Introduction 
 
Some early evidence suggests that metabolic risk states may have an influence on brain  

structure . Diffusion tensor MRI is a non invasive technique that is  sensitive to  subtle  

alterations in white  matter  pathology  in the brain. It provides an unprecedented  

insight into the organisation of white fibres and tracts. Furthermore it provides 

quantitative indices of white matter fibres and tracts. Damage to white matter matter 

fibres such as demyelination and axonal changes may lead to changes in the diffusion 

of water molecules and therefore to a change in DTI parameters. Both Type 1 and Type 

2 Diabetes are associated with altered microstructural measures derived from  diffusion 

tensor MRI[206, 215, 275]. Several studies have now shown associations between BMI 

and white matter microstructure [203, 207, 276]. Furthermore in Type 2 diabetes 

,alterations in tract microstructure have been found to correlate with cognitive function. 

As PCOS is characterised by metabolic risk factors such as obesity and insulin 

resistance I chose to investigate brain structure in women in early adulthood with a 

diagnosis of PCOS. 

 
4.2 Aims 
 
The aims of this chapter are to present 
 
1. The results of the diffusion parameters of reconstructed individual white matter 

tracts in the study group with a view to exploring any changes in white matter 

microstructure in the prespecified tracts of interest. 

2. An analysis of diffusion MRI images to look for changes in white matter 

microstructure with the application of TBSS to compare between PCOS and 

controls. 
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4.3 WHITE MATTER TRACTOGRAPHY 
Introduction 
 
Tractography based on diffusion MRI was performed using ExploreDTI [226] software 

package. 4 white matter tracts were reconstructed as they are known to link components 

of memory networks.These tracts link frontotemporal regions and have an important 

role in episodic memory. Diffusion parameters that were used to quantify 

microstructural white matter abnormalities: Fractional anisotropy (FA), Mean 

Diffusivity (MD) and Axial Diffusivity (AD) were obtained for each tract. 

1.Fornix (Fig 4.1) 

2.Right and Left Parahippocampal cingulum (Fig 4.2) 

3.Uncinate fasciculus (Fig 4.3) 

FORNIX 

 
Fig 4.1 Example of reconstruction of the Fornix registered on native space of one 
participant obtained using EXPLORE-DTI software 
 

 
Fig 4.2 Example of reconstruction of the Uncinate Fasciculus registered on native 
space of one participant using EXPLORE-DTI software 
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PARAHIPPOCAMPAL CINGULUM 

 
Fig 4.3 Example of reconstruction of the Parahippocampal cingulum registered  
on native space of one participant using EXPLORE-DTI software 
 
 
Table 4.1 Group differences in fractional anisotropy (FA), mean diffusivity (MD) 
and axial diffusivity (AD) 
 

    Controls  PCOS              p value  
------------------------------------------------------------------------------------------------------------------------------- 
Fornix       
FA    0.37 ± 0.03  0.36 ± 0.03  0.264 
MD    1.22 ± 0.03  1.25 ± 0.04  0.561 
AD    1.76 ± 0.10  1.78 ± 0.12  0.752 
 
Uncinate Fasciculus (UF) 
FA    0.43 ± 0.01  0.43 ± 0.02  0.795  
MD     0.83 ± 0.12  0.82 ± 0.17  0.773 
AD    1.26 ± 0.16  1.25 ± 0.10  0.509 
 
Parahippocampal Cingulum (PHC) 
FA Left   0.38 ± 0.04  0.38 ± 0.06  0.593 
MD Left   0.80 ± 0.12  0.78 ± 0.18  0.118 
AD Left   1.15 ± 0.13  1.14 ± 0.19  0.301 
FA Right   0.39 ± 0.05  0.40 ± 0.04  0.140  
MD Right   0.80 ± 0.06  0.78 ± 0.09  0.190 
AD Right   1.17 ± 0.11  1.15 ± 0.16  0.124 
 
______________________________________________________________________ 
FA : dimensionless; MD : 10-3mm2/s ; AD : 10-3mm2/s  

Comparative data showing no differences in measures of diffusion (FA, MD and AD) across PCOS and 
controls obtained through specific white matter tractography of Fornix, Uncinate Fasciculus and 
Parahippocampal Cingulum 
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The above tabulated data (Table 4.1) presents the measures of diffusion in the three 

white matter tracts in the PCOS group and healthy volunteers. No significant 

differences were observed between the two groups. 

 

4.4 Tract Based Spatial Statistics (TBSS) 
 
No changes were observed in specifically reconstructed white matter tracts in Diffusion 

weighted tractography. This is a limitation of white matter tractography as a presumed 

region of interest is studied based on previous data which looked at the involvement of 

silmilar tracts connecting frontotemporal regions in conditions such as obesity and 

diabetes. 

After attaining diffusion measurements in each voxel in the brain, the images were all 

mapped to a single template  in order to compare measurements across the PCOS and 

control groups. This allows measures to be compared voxel by voxel (also described as 

‘voxel-based analysis’) with the problem of comparisions across  many voxels being 

addressed one of a number of statistical approaches that are widely accepted in 

neuroimaging research. The advantage of this approach is that it is free of a priori bias 

about the likely location of structural alteration in the brain. In this study I applied 

Tract-based spatial statistics which is a widely accepted approach for statistical analysis 

of diffusion data .  

For TBSS, two-sampled unpaired t-tests for reduced and increased diffusion measures 

in PCOS patients compared to controls were performed. Additionally microstructural 

measures were correlated with the value of the first Principal Component and hormonal 

levels in each group separately.  

This section aims to present the results and highlight the group differences based on 

TBSS with respect to: 
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1. Differences in white matter microstructure between PCOS and controls. 
 

2. Correlation between insulin resistance measured by insulin area under the curve  

(insulin AUC) and white matter microstructure. 

3. Correlation between androgens (testosterone) and white matter microstructure. 
 

4. Correlation between metabolic status , white matter microstructure and cognition      

        in PCOS.  

 
4.4.1 Results 
 
4.4.1.1 Diffusion metrics and white matter microstructure 

Analysis of diffusion MRI images revealed differences in white matter microstructure 

between PCOS and control groups. Areas of decreased AD in PCOS were found 

throughout the mean white matter skeleton. This is illustrated in Figure 4.4 in blue. In 

addition, tissue volume fraction was increased in the anterior part of main body of the  

corpus callosum and parts of anterior white matter which is illustrated in red in Figure 

4.4 . No significant differences in voxel-wise values of FA, MD or RD were found 

between the PCOS group and controls. 

 



83 

 

 
 

Fig 4.4A.Tract Based Spatial Statistics using voxelwise statistical analyses comparing axial diffusivity 
(AD) and tissue volume fraction(f) across PCOS and control groups. Mean AD and f in PCOS group are 
depicted in blue and red respectively. 

Mean white matter skeleton voxels showing significantly lower value of AD (blue) throughout the white 
matter skeleton and higher value tissue volume fraction in the PCOS group (red) compared with healthy 
volunteers. Results are shown in different cross-sections in coronal (top), axial (middle) and sagittal view 
(bottom). Letters x, y and z represent the location of the cross-sections according to standard coordinates. 
Displayed results are corrected for family-wise error and thresholded for P < 0.05. The white matter skeleton is 
shown in green and is generated from projection of mean fractional anisotropy (FA) data obtained from all 
subjects. Individual voxel values of each participants’ AD, mean diffusivity (MD), radial diffusivity (RD) and f 
are projected to the white matter skeleton with resulting data used to generate voxelwise statistical analyses 
across the PCOS and control groups. No differences were noted in FA, MD or RD. 
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Figure 4.4 B  Group differences based on Tract based Spatial statistics in Axial diffusivity (AD) and tissue 
volume fraction( f) 
Mean values of AD (depicted on the left side in blue) and tissue volume fraction f (red) across parts of the 
skeleton showing a significant group difference for each participant. AD in PCOS is significantly decreased 
compared to controls whereas the converse picture is seen with f which is raised in PCOS compared to controls. 

 

4.4.1.2 Insulin resistance and white matter microstructure 

No significant differences were observed between the PCOS and control groups in 

voxel-wise correlations between insulin AUC and AD. However there was a significant 

group by insulin AUC interaction. This is shown in Figure 4.5 A. This suggests that the 

relationship between insulin resistance and white matter microstructure differed in 

PCOS and control groups. 

To explore this further, mean values of AD were extracted from this region and plotted 

against insulin AUC. This is illustrated in figure 4.5 B. Increasing insulin resistance 

was associated with reduction of AD in controls (Pearson’s r = -0.75) but with 

increasing AD in those with PCOS (Pearson’s r = 0.73), a reversal of the relationship 

found in controls. The reduction in AD found, on average, in patients with PCOS 

compared with controls was evident in those with relatively normal insulin 
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AUC<100000pmol/min/l) but AD was increased in a subset of PCOS subjects with 

marked insulin resistance. 

 
 
Figure 4.5  Contrasting associations between white matter microstructure and insulin resistance in 
PCOS and healthy volunteers.  
 
A, White matter skeleton voxels exhibiting a significant group by insulin AUC interaction are shown in 
red (P < .05 corrected for familywise error). Results are shown in different cross-sections in coronal 
(left), axial (middle) and sagittal view (right). 
 
B, Graphical description of Mean Axial Diffusivity (AD) values extracted from the region of significant 
interaction for each participant and plotted against insulin Area under Curve (Insulin AUC). Although 
AD was reduced in the PCOS group as a whole the direction of association is positive in PCOS and 
negative in controls. 
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4.4.1.3 Androgens and white matter microstructure 

Serum testosterone correlated positively with both AD and FA in the PCOS group 

(Figure 4.6). No association was observed in control participants. The direction of 

effect was consistent with that found between insulin AUC and diffusion metrics, ie, 

increasing values of AD were associated with both increases in testosterone and insulin 

AUC (Figure 4.6) in patients with PCOS. 

4.4.1.4 Metabolic status and white matter microstructure 

No correlation was observed between cognitive performance and testosterone or insulin 

AUC in PCOS (testosterone: r = 0.12, P = .64; insulin AUC: r = 0.01, P =.98). No 

significant correlations were observed between microstructural measures and cognition. 

Similarly, no significant associations with cognitive performance were found in the 

control group. 

 

Figure 4.6. Correlation of testosterone level with microstructural measures in PCOS.  
 
Top panel A) White matter skeleton voxels exhibiting a positive correlation with fractional anisotropy (FA) 
shown in red. 
Bottom panel B) White matter skeleton voxels exhibiting a positive correlation with axial diffusivity (AD) 
shown in red. Displayed results are corrected for family-wise error and thresholded for P < .05. Results are 
shown in different cross-sections in coronal (left), axial (middle) and sagittal view (right). This illustrates a 
similar pattern of interaction as with Insulin AUC with increasing values of AD being associated with increase 
in testosterone level. 
 



87 

 

 
4.5 Discussion  

This was the first study to look at the effects of PCOS on white matter microstructure. 

The current study did not demonstrate microstructural abnormalities in the major white 

matter tracts of interest in subjects with PCOS. These specific tracts were reconstructed 

with the hypothesis that changes in white matter microstructure may be observed in the 

PCOS group as it is a heterogeneous disorder which encompasses risk factors of obesity 

and insulin resistance which have been associated with white matter abnormalities 

associated with cognitive dysfunction. Although these tracts can be affected in 

disorders of metabolic dysfunction such as diabetes[202] and obesity[277], as seen in 

previous studies, these may have not been elicited as the study was carried out in a 

relatively young cohort of patients between the ages of 18 and 45 when these changes 

are not likely to be apparent. Moreover the Rotterdam criteria was used for diagnosis 

which may have picked up subtle cases of PCOS which would contrast with the more 

severe phenotypes that would be diagnosed by other criteria such as NIH [278]. As I 

did not find any changes in white matter microstructure in the pre-specified regions of 

interest I proceeded to apply TBSS which is free of a priori bias about the likely 

location of structural alteration in the brain and is a widely accepted approach for 

statistical analysis of diffusion data. 

Although there were no significant differences in voxel-wise values of FA, MD or RD 

between the groups, PCOS was associated with a reduction in axial diffusivity in a 

large portion of the white matter skeleton and tissue volume fraction was increased in 

the anterior corpus callosum.  Similar findings have been reported in studies on sexual 

dimorphism. Kumar et al.[279] attempted to describe age-related axonal and myelin 

changes in various sites in the brain and sex-related differences in those areas in healthy 
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adults using DTI measures such as axial and radial diffusivity. There was widespread 

reduction of axial and radial diffusivity in the bilateral amygdala, anterior and mid 

thalamus, hypothalamus and superior pons, right inferior cerebellar peduncle and  

putamen in males. Axial diffusivity was significantly decreased in the mid corpus 

callosum compared to females. Another study combined DTI and diffusion 

tractography with myelin -water fraction (MWF) imaging to investigate sex differences 

in microstructural measures in the corpus callosum [280]. This study illustrated 

increased myelin density in males for the rostral body and the posterior mid-body of the 

corpus callosum. No significant sex differences existed for axial or radial diffusivity. 

The changes in myelin density are possibly concordant with my findings of increased f 

in the anterior part of the corpus callosum reflecting atrophy at a microstructural scale 

even though these studies address structural characteristics that are not necessarily 

closely correlated. This might suggest that an influence of androgens on brain structure 

produces alterations in PCOS that parallel the characteristics of the male brain. 

A positive association was seen between serum testosterone levels and axial diffusivity 

and fractional anisotropy. This was contrary to the evidence that white matter axial 

diffusivity is reduced in PCOS. Raised testosterone levels and insulin resistance in the 

PCOS group were associated with increasing axial diffusivity and this was despite a 

mean reduction in the PCOS group as a whole. These findings may be explained by a 

reversal of the normal relationship between microstructure and metabolic status in 

patients with PCOS, reflected in a significant group by insulin AUC interaction.  These 

findings raise the possibility that the brain responds differently to the effect of 

androgens in PCOS and perhaps appear to correlate with the findings of another study 

by Soleman et al which used functional MRI to evaluate working memory function. 

Group differences in brain activity were seen in the superior, inferior parietal lobe and 
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the superior temporal lobe in PCOS versus controls with no difference in performance 

during a working memory task. Although hormonal levels were not significantly 

correlated with brain activation it is still likely that androgen levels play a role in the 

differences between the two groups. It was thought that there are already differences in 

brain function and structure in women with PCOS independent of current hormonal 

levels. Although no specific data exists to support this in human studies animal studies  

by Abbott et al.[281] reported that excessive androgen exposure prenatally may result 

in remarkable phenotypical similarities to women with PCOS, suggesting a foetal 

origin for this syndrome which may also have effects on organisation of the brain.  

These data clearly suggest that changes in white matter microstructure occur relatively 

early in our cohort of PCOS aged between 18 and 45 years of age and this was reflected 

by the decrease in axial diffusivity and an increase in tissue volume fraction in the 

anterior corpus callosum. Although no correlation was seen between cognitive function 

and white matter microstructure, risk factors such as insulin resistance and 

hyperandrogenaemia may play a role in these changes. This was an observational case 

control study and a therapeutic trial of intervention in the form of anti-androgenic 

therapy or insulin sensitising agents would help in assessing the role of these risk 

factors further.  
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CHAPTER 5 

Discussion 

Polycystic ovary syndrome (PCOS) was associated with both subtle decrements of 

cognitive function and alterations in microstructure of brain white matter. These 

differences were not attributable to BMI, which was closely matched between groups as 

was general intelligence. PCOS is one of the most common metabolic syndromes, 

affecting up to 10% of women of reproductive age [163]. Many body systems are 

affected in PCOS resulting in several health complications including menstrual 

dysfunction, infertility, hirsutism, acne, obesity, and metabolic syndrome. The public 

health importance of PCOS is amplified by the association with the risk of developing  

type 2 diabetes mellitus and possibly cardiovascular disease [127]. 

Traditional approaches to treatment of PCOS has focussed on the management of 

infertility and reducing cardiovascular risk. The results of my study suggest that the 

potential consequences of PCOS are wider, and the possibility that PCOS represents a 

midlife risk state for cognitive decline in old age should be explored. The case control 

design effectively isolated two features of PCOS – insulin resistance and 

hyperandrogenaemia – as possible causes of the alterations in white matter structure 

and cognition that were observed. Attention to these specific factors would help to 

define such a risk state and potential treatments more precisely. 

The current findings suggest a subtle but widespread erosion of cognitive performance. 

In an internet-based computerised study, Barnard et al hypothesised that women with 

PCOS would display enhanced cognitive performance on sexually dimorphic tasks 

[177]. However, no difference was found in performance of mental rotation or spatial 
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location tasks. Contrary to expectation, women with PCOS showed impaired 

performance on reaction time and word recognition tasks. Schattmann and Sherwin 

similarly found no differences on tests of mental rotation, spatial visualisation, or 

spatial perception in PCOS [208] . However, subjects with PCOS performed less well 

on tests of verbal fluency, verbal memory, manual dexterity, and visuospatial working 

memory. Previous studies have often been limited by poor case-control matching. For 

example, Barry et al found evidence of better visuospatial task performance in women 

with PCOS compared with subfertile controls, but this difference was no longer 

significant when age and BMI were controlled for in the analysis [271].  

In parallel with metabolic and cognitive differences, microstructural alterations in 

cerebral white matter were observed in the PCOS group. AD was reduced in a large 

portion of the white matter skeleton in PCOS and tissue volume fraction was increased 

in the anterior corpus callosum. Intriguingly, similar findings have been reported in 

studies on sexual dimorphism. For example, Kumar et al [279] found widespread 

reductions of axial and RD values in the male brain. The corpus callosum is generally 

larger in males. Further, a study with myelin-water fraction imaging has illustrated 

increased myelin density in males in the rostral body and posterior midbody of the 

corpus callosum [280], possibly concordant with our findings of increased f in the 

anterior part of the corpus callosum even though these studies address structural 

characteristics that are not necessarily closely correlated. One interpretation of the 

findings in the present study, therefore, is that an influence of androgens on brain 

structure produces alterations in PCOS that parallel the characteristics of the male 

brain. 
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The finding of a positive association between androgens and AD within the PCOS 

group was a surprise, given evidence that white matter AD is reduced in PCOS. 

Hyperandrogenemia and insulin resistance in the PCOS group were associated with 

increasing AD, despite a mean reduction in the PCOS group as a whole. The likely 

explanation was a reversal of the normal relationship between microstructure and 

metabolic status in patients with PCOS, reflected in a significant group by insulin AUC 

interaction. These findings raise the possibility that the brain responds differently to the 

effect of androgens in PCOS.  

A more recent study by Soleman et al.[179] on the effects of PCOS on cognition sought 

to explore working memory before and after anti androgenic treatment using functional 

MRI.  Women with PCOS differed in brain activation in the inferior and superior 

parietal lobe and in the superior temporal lobe than control women but not in 

performance (number of errors and reaction time) during a working memory task. 

Similar significant differences in biochemical parameters (testosterone/ free androgen 

index and androstenedione) were noted in the PCOS group although this did not 

correlate with brain activity in the regions of interest. Following anti-androgenic 

treatment, the between-group differences in brain activation were no longer apparent. 

Although this study did not look at indices of insulin resistance, it was considered likely 

that the differences between the two groups were possibly related to the level of 

androgens. It may be possible that there are already differences in brain functions and 

structure in women with PCOS independent of current hormonal levels [281]. 

Alternatively, there may be significant heterogeneity among individuals that is 

currently not captured by the coarse diagnostic categories in current use. For example, 

there may be distinct subtypes of PCOS with and without insulin resistance that differ 

in a variety of ways that are not yet fully understood; similarly, the presence of 
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increased insulin resistance in some BMI-matched controls suggests heterogeneity in 

the healthy population. 

Previous studies have reported differences in diffusion metrics in both type 2 diabetes 

[202] and obesity. Type 2 diabetes is associated with increases in AD in a number of 

specific tracts. Studies in obesity are less consistent, with at least 1 study reporting 

effects that vary by anatomical location in the brain and include both increases and 

decreases of AD in different regions [203, 282, 283]. These reports illustrate that there 

is no simple relationship between diffusion measures and better or worse white matter 

“integrity”[284]. The histological basis of alterations in disease states remains unclear 

and further work is required to aid the interpretation of direction as well as the 

magnitude of effects.  

Previous epidemiological studies suggest a complex relationship between BMI and 

dementia risk. Both high and low body mass states have been associated with future 

dementia risk, with evidence that the relationship might differ in mid and later life 

[285]. One recent report highlighted this complexity by showing a relationship between 

low body weight in midlife and dementia [286], contradicting previously held views 

about midlife obesity [285, 287] . The average age of individuals at entry to this recent 

retrospective study was 55; even less is known about the risk implications of BMI in 

the twenties and thirties, the age range relevant to the current study. 

 

Study Limitations 

There were some limitations to the experimental approach. Firstly, PCOS subjects were 

selected by the Rotterdam criteria, which embrace a less severe metabolic phenotype 

than other definitions of the syndrome. However, if anything this might be expected to 

underestimate the extent of white matter alteration in PCOS subjects with more severe 
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hyperandrogenism and insulin resistance. The Rotterdam criteria also encompass a 

heterogeneous group, hence future studies should compare distinct PCOS phenotypes, 

including lean subjects alone, in order to establish whether cognitive function and white 

matter microstructure are altered in all PCOS patients or only in some. Secondly, I did 

not capture information on physical activity levels in my study; future studies should 

look to record this in view of the possible relationship between sedentary behaviour and 

cognitive decline. Thirdly although cognitive function tests showed subtle differences 

in cognitive function across different domains, no clear correlation was found between 

cognition and white matter structure of relevant regions or connections. This related 

partly to power. Another factor was the unexpected interaction between group and 

metabolic factors in their influence on white matter structure. The National Adult 

Reading test although used as a widely accepted research tool in the assessment of 

premorbid intelligence may not be an entirely reliable tool in a cohort of patients not 

known to show any evidence of cognitive impairment as seen in this study.  

White matter tractography has several limitations. Although it is the only means of non 

invasive imaging of white matter tracts the issues identified relate to accurate 

identification of anatomical landmarks which can vary between different operators 

although customised tract based algorithms using region of interest approaches have 

been published [201, 288] which has helped to make this a reliable and reproducible 

imaging technique. The limitations of the diffusion tensor in areas of complex white 

matter architecture, where fibre tracts intersect, branch, or are otherwise partial volume 

averaged within a voxel, affect the ability of DTI fibre tractography to fully delineate 

an axonal pathway and may also lead to the generation of spurious tracks. 

Functional MRI is an emerging and useful tool in addition to diffusion tensor imaging 

to investigate and explore areas of activation and whether the differences in cognitive 
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function are significant. It would be interesting to see the effects of hormonal 

manipulation in the form of anti-androgen therapy and insulin sensitising agents on 

measures of diffusion and on functional MRI.    

 

Conclusion 

A key question that follows from these observations is whether alterations in brain 

structure and function can be reversed, reducing the risk of future cognitive decline. 

Interestingly, one study in PCOS suggested improvement in a single cognitive measure 

(verbal fluency), after combined treatment with an antiandrogen plus oestrogen [178]. 

Based on the current results, both insulin resistance and hyperandrogenism are potential 

targets, and advanced MRI has a potential role as a biomarker of treatment effect. 
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APPENDIX 1 
Total Variance Explained 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 4.978 35.555 35.555 4.978 35.555 35.555 

2 1.740 12.429 47.984 1.740 12.429 47.984 

3 1.526 10.899 58.883 1.526 10.899 58.883 

4 1.299 9.277 68.160 1.299 9.277 68.160 

5 .959 6.852 75.012    

6 .803 5.736 80.749    

7 .637 4.550 85.298    

8 .605 4.321 89.619    

9 .463 3.309 92.929    

10 .408 2.911 95.840    

11 .257 1.835 97.675    

12 .164 1.169 98.844    

13 .128 .912 99.756    

14 .034 .244 100.000    

Extraction Method (SPSS): Principal Component Analysis (PCA). First Principal Component accounts for 

35% of the variance across all cognitive test scores and was used as the summary score (General Cognition 

score) 

 
General Cognition Score (First Principal Component) was based on all of the cognitive 

tests that are appropriate (excluding tests of premorbid IQ, IQ (WASI) and Stroop  

which is known to be tricky in terms of covariance and PCA. The tests included in  

Principal component Analysis was derived from a combination of the following tests:  

Digit Span, Free and Cued Selective Reminding Test, Roy Osterrieth Complex Figure  

Test, Verbal Trails, Digit Symbol Substitution and the letter and semantic fluency test. 
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APPENDIX 2 

Group difference between PCOS and control in terms of summary score obtained  

through Principal Component analysis 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

                                                            Independent Samples Test 

 

 

REGR factor 
score 1 for 
analysis 

 F Sig (2-
tailed 

   t Mean Difference 

Equal variance 
assumed 

5.218 0.007    2.878 

 

0.8727 

Equal variances not 
assumed 

0.008    2.878 0.8727 
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