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Abstract

Reaching movements are comprised of the coordinated action across multiple joints. The

human skeleton is redundant for this task because different joint configurations can lead to

the same endpoint in space. How do people learn to use combinations of joints that maxi-

mize success in goal-directed motor tasks? To answer this question, we used a 3-degree-

of-freedommanipulandum to measure shoulder, elbow and wrist joint movements during

reaching in a plane. We tested whether a shift in the relative contribution of the wrist and

elbow joints to a reaching movement could be learned by an implicit reinforcement regime.

Unknown to the participants, we decreased the task success for certain joint configurations

(wrist flexion or extension, respectively) by adding random variability to the endpoint feed-

back. In return, the opposite wrist postures were rewarded in the two experimental groups

(flexion and extension group). We found that the joint configuration slowly shifted towards

movements that provided more control over the endpoint and hence higher task success.

While the overall learning was significant, only the group that was guided to extend the wrist

joint more during the movement showed substantial learning. Importantly, all changes in

movement pattern occurred independent of conscious awareness of the experimental

manipulation. These findings suggest that the motor system is generally sensitive to its out-

put variability and can optimize joint-space solutions that minimize task-relevant output vari-

ability. We discuss biomechanical biases (e.g. joint’s range of movement) that could impose

hurdles to the learning process.
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Introduction

Learning a new motor skill often requires the coordinated action across several joints. The bio-

mechanics of the human body equip us with abundant degrees of freedom, meaning that

many different movements in joint space achieve the same task goal. How the brain picks one

of the options for executing a motor action remains an important question in motor neurosci-

ence [1]. When performing a backhand stroke in tennis, for example, different combinations

of joint movement in the trunk, shoulder, elbow and wrist yield a successful hit. However,

there will be some joint configurations that allow for more control over the racket, and there-

with reduce the variability of the returning ball trajectory and increase the success of achieving

the desired action [2]. The many years of training required to become a motor expert are, to

some degree, spent on acquiring the optimal movement solutions in joint space. What are the

learning mechanisms that underlie this process?

To investigate this learning process, we used a situation with one redundant degree of free-

dom. Participants made planar reaching movements with the combined motion of the shoul-

der, elbow and wrist joints. Therefore, many different joint configurations led to the same

movement end point (Fig 1A and 1B). In joint space, these equivalent solutions form a

1-dimensional manifold (left black line in Fig 1C), whose non-linear shape is determined by

the geometry of the arm. Because variation along this manifold is task-irrelevant (i.e., does

not change the endpoint) it does not need to be corrected for [3]. Therefore, this subspace is

also called the uncontrolled manifold (UCM) [4–6] or solution manifold [7]. Typically, it is

observed that variability along this manifold is larger than the variability orthogonal to the

manifold [5,6].

Error-based learning enables the motor system to correct for deviations away from the

reaching target in the task-relevant dimension, i.e. it corrects towards the solution manifold.

This learning mechanism utilizes the endpoint deviation to directly update the next movement

[8–10]. During this process, the motor system needs to convert visual errors perceived in

three-dimensional world coordinates into a movement correction performed in joint space

and thus requires knowledge of the geometry of the motor plant. The mechanism has therefore

been characterized as model-based learning [11]. It is likely driven by sensory prediction errors

and depends heavily on the integrity of the cerebellum [8,9,12]. Error-based learning therefore

quickly reduces the average error by bringing the joint space solution onto the solution mani-

fold [4,13].

The movement strategies along the solution manifold show no systematic error or bias.

However, among these possibilities may be solutions that are less effortful [14–16], dynami-

cally more stable [17], or more error-tolerant leading to reduced output variability [4]. In such

situations, error-based learning fails to inform the motor system which of the many solutions

along the solution manifold to pick. Thus, the motor system requires other learning mecha-

nisms to identify preferable solutions. One candidate is model-free reinforcement learning.

This mechanism has been studied in various domains of neuroscience including decision mak-

ing [18,19], perceptual learning [20,21], and more recently in motor control [7,22,23]. In its

simplest form, reinforcement learning requires only a signal that informs whether a movement

was correct or not [24]. More sophisticated forms of reinforcement signals may also provide

graded feedback about how successful the movement was [25]. Importantly, however, rein-

forcement signals do not provide directional information as to how to change the motor

command [11]. Thus, the learning mechanism needs to rely on active exploration along the

solution manifold to determine the movements that yield increases in success [23,26].

A recent study investigated reinforcement learning in a series of experiments using a redun-

dant two-dimensional reaching task [23]. The main finding was that explicit binary feedback
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about task success or failure led to very fast learning when participants were aware of the

dimension along which they had to change their behavior [see also 28]. Learning was in gen-

eral absent when participants were not explicitly aware of this direction. The authors found

only significant learning when reward probability was manipulated by adding noise to the cur-

sor feedback, which gave participants the impression of higher variability and lower controlla-

bility for certain movements.

In most natural tasks, redundancy is a consequence of the human arm configuration.

When we try to improve motor skills, we are often not aware of the exact dimension in joint-

space that can help reduce variability—unless we have a coach that provides proximal feed-

back, such as “perform the swing out of the wrist”. To capture the challenge of a natural

Fig 1. Task geometry. (A, B) Schematic illustration of the setup. (A) Top view on a participant in the redundant task environment with an
exemplary end position demonstrating a flexed wrist joint configuration (θwrist = 160˚). (B) Exemplary end position demonstrating an
extended wrist joint configuration (θwrist = 210˚). (C) Start and target positions defined a solution manifold in joint space (black lines). For any
joint configuration along this line the effector endpoint, i.e. the fingertip, remained at the same position. The black dot on the start line
represents the enforced start configuration (θwrist = 175˚) and the two connection lines represent two possible joint trajectories to the flexed
(bottom) and extended (top) end configurations from panels A and B. (D) Illustration of the mean absolute visual reaching error in cm
(distance between visual target and cursor feedback) as a function of wrist and elbow angles for a fixed shoulder angle. The visual reaching
error was here simulated for each wrist angle by drawing visual noise 100.000 times from a standard distribution with zero mean and SD as a
function of wrist angle (see Eq 2). The black dot indicates the average elbow and wrist angle of the participant during the baseline block for
trials that were on target. In the extension group, increased wrist flexion is penalized by added error; in the flexion group, wrist extension is
penalized. The thin black lines illustrate the actual reaching error without the visual noise (absolute distance between visual target and actual
hand position). Note that the solution manifold bends beneath the depicted plane for wrist and elbow angles further away from the baseline
angles giving the error zones an ellipsoid instead of striped appearance.

https://doi.org/10.1371/journal.pone.0180803.g001
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reinforcement learning problem, we therefore designed a task in which participants had to

reach to targets on a plane through a coordination of shoulder, elbow and wrist movements

(Fig 1A and 1B). In contrast to most previous reinforcement studies [25,27,28] we did not pro-

vide explicit instructions about the critical learning dimension to participants. The main nov-

elty in the current design was that we only implicitly reinforced a specific joint configuration

(more flexion or extension in the wrist joint relative to baseline behavior). This advancement

was possible by using a novel robotic manipulandum capable of measuring and controlling

the three main joints of the arm (shoulder, elbow and wrist) [29], which ensured the same

starting position and joint configuration for the beginning of each trial. To encourage specific

movement solutions, we added noise to the visual endpoint feedback, similarly to the implicit

feedback condition used by Manley et al. [23]. Participants could only avoid this injected vari-

ability if they adopted a new arm configuration, depending on the experimental group either

more flexion or extension in the wrist joint. Hence, this design exploited the natural redun-

dancy of the arm in joint space for reaching a specified position in endpoint space and thus

mimics the challenge of finding a favorable joint-space movement for a new motor skill with-

out explicit knowledge of the dimension along which variability changed. We also investigated

whether the amount of this learning mechanism correlated with the behavioral variability at

baseline, thereby testing the hypothesis that increased exploration is related to more reinforce-

ment learning [26].

Materials andmethods

Participants

Forty-two right-handed participants [30] without any history of neurological or psychiatric

diseases were recruited from an internal experiment database. We tested two experimental

groups (flexion group, n = 13; extension group, n = 13) and two control groups (low-noise con-
trol group, n = 9; high-noise control group, n = 7). Participants’ age ranged between 18 and 36

years and 75% of participants were male, without significant differences between groups. All

participants provided written informed consent prior to testing and were paid as compensa-

tion for their time expense. They were naïve to the purpose of the experiment and debriefed

after the experimental sessions. The research ethics committee of University College London

approved all experimental and consenting procedures. Data of one participant from the exten-
sion group was excluded before analysis because the participant changed the body position in

the setup and thereby gained direct vision of the workspace (see Apparatus and Stimuli).

Apparatus and stimuli

Participants were seated comfortably in front of a virtual environment setup, leaning slightly

forward with their chest and forehead supported by a chest- and forehead rest, respectively.

The experimental chair was fixed in a comfortable position, avoiding changes of participant’s

position and especially rotation movements around the body’s yaw axis. Customized chest

belts fixed participants’ trunk orientation and shoulder position throughout the experimental

session. Participants made 15cm straight reaching movements in a horizontal plane at shoul-

der level (Fig 1) while their right hand was attached to a robotic manipulandum [29]. The

robotic manipulandum allowed for free planar movement. The participant’s arm was sup-

ported by a lightweight hand and forearm rest, and the robot was equipped with an actuated

joint that allowed flexion and extension of the wrist joint. The length of the robotic wrist from

the rotation axis of the wrist joint to the tip of the finger was 16 cm. Participants could achieve

movements of the endpoint in the planar workspace through wrist, elbow and shoulder move-

ments, which provided 1 degree of redundancy in control. Direct vision of wrist and elbow

Reinforcement learning in joint coordinates
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was prevented by a mirror mounted horizontally above the manipulandum. The mirror pro-

vided the view on the visual scene from a top-mounted LCDmonitor (update rate 60 Hz). The

apparatus was adjusted such that the visual and haptic scene were congruent.

Calibration and kinematics

The 3-degree-of-freedom (3-DoF) robotic manipulandum used in this study provided position

data of the wrist joint and the absolute orientation of the wrist handle in robot space. We were

interested in quantifying changes in angles between limb segments, i.e. the relative joint angles

θ shoulder, θ elbow, and θ wrist (cf. Fig 1A and 1B). Together with the position of the shoulder

joint (pos shoulder), these three relative joint angles determine the position of the finger tip (i.e.

endpos) for a planar 3-DoF arm:

endpos ¼
�cosðyshoulderÞ

sinðyshoulderÞ

" #
� L1þ

cosðyshoulder þ yelbowÞ

�sinðyshoulder þ yelbowÞ

" #
� L2

þ
�cosðyshoulder þ yelbow þ ywristÞ

sinðyshoulder þ yelbow þ ywristÞ

" #
� L3þ posshoulder

ð1Þ

In Eq 1, L3 denotes the length of the wrist handle, and L1 and L2 denote the length of the

upper and lower arm, respectively. L3 was predetermined with 16cm from the setup. pos shoul-

der, L1 and L2 were estimated for each participant with a calibration procedure at the begin-

ning of the session. To establish the stability of our calibration and testing procedure, we

assessed the within-session retest reliability of the estimated measures by testing an additional

group of participants (evaluation group, n = 14, 10 males, 21–29 years). The retest reliability

between the first and second set of calibration was consistently high across all four measure-

ments (r Shoulder-X = 0.83; p< 0.001; r Shoulder-Y = 0.75; p< 0.001; r L1 = 0.82, p = 0.001; r L2 =
0.92; p< 0.001).

Trial procedure

A trial started with the presentation of the start box (unfilled white square, 1.0cm size, at body

midline, Fig 1A and 1B). To achieve a constant configuration of the arm at the start of a trial,

we provided veridical feedback about the wrist joint position (filled white hexagon, 0.5 cm

diameter) and the finger endpoint position (cursor, unfilled white circle, 0.5 cm diameter)

connected by a white line (16 cm length).

Participants had to move the cursor into the start box and align their wrist to a fixed pink

template line connected to the start box, which indicated the required wrist angle (175 ± 2˚,

i.e. slightly flexed). The starting position and wrist angle were identical for participants

across all experimental and control groups. After holding this position for 800ms, a target

box (unfilled white square, 1 cm size) located 15 cm diagonal to the right of the start box (Fig

1A and 1B) appeared, indicating the start of the trial. Simultaneously, the start box and the cur-

sor disappeared to eliminate visual feedback about the cursor position until the end of the trial.

Participants were instructed to move their unseen fingertip into the target box quickly and

accurately performing whole arm movements. Importantly, participants were not explicitly

instructed that some solutions would be associated with a higher chance to score points than

others. The trial ended when the tangential endpoint velocity remained below 3.5 cm/s for

200ms. With trial end, the cursor was re-introduced shortly to provide visual feedback, includ-

ing added noise if applicable. Subsequently, the cursor disappeared again to mask the potential

offset between given and veridical feedback and the robotic arm guided the participants back

Reinforcement learning in joint coordinates
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to the start position where veridical feedback reappeared to allow alignment of the wrist within

the starting box.

A trial was reported back to the participant as valid and increased the score when reaching

time was shorter than 700ms and maximum cursor velocity ranged between 45 and 100 cm/s

(the criteria used in data analysis were more liberal; see section Data Analysis). Only valid trials
with visual end point (i.e. the actual fingertip plus the noise) accuracy of at least 1 cm were

rewarded with a visual target “explosion” and a point, with the cumulative point-score pre-

sented continuously on the screen. Additionally, invalid, valid and point scoring trials were

indicated by a color scheme applied to the cursor at the end of each trial. To keep participants

motivated, we displayed an artificial high-score list at the end of each experimental block, in

which participants were randomly ranked on the top three places amongst virtual competitors.

Experimental conditions

The purpose of the experiment was to test whether participants would learn to reach into arm

configurations that avoided large endpoint variability. We characterized the position along the

solution manifold using the wrist angle, which uniquely determined the whole arm configura-

tion, assuming the fingertip is at the target (Fig 1C). To reinforce end postures with more

extension or flexion of the wrist relative to a baseline posture, we added stochastic noise to the

cursor at the endpoint when movements were performed into joint configurations that exhib-

ited a behavior opposite to the rewarded one. This means, when wrist extension was reinforced

(cf. position B in Fig 1C), wrist flexion was penalized by adding noise to the shown endpoint

position. The noise was normally distributed with the standard deviation depending linearly

on the difference between reinforced and actual wrist angle (for details see Eq 2). Thus, move-

ments finishing in joint configurations opposing the goal configuration yielded on average a

larger absolute visual error than movements in the direction of the goal configuration (Fig

1D), therefore decreasing the chance of a successful trial. As a consequence, we expected par-

ticipants to prefer solutions with low or no added endpoint variability, i.e. with low or without

injected noise. Since no visual feedback about the hand was provided during the movement

and during the return to the start location, participants did in general not notice the manipula-

tion of their visual endpoint feedback.

First, a baseline block (B0) of 70 trials was recorded to determine the average wrist angle of

each participant when landing on the target. This value served as reference for the midpoint of

the noise gradient during the subsequent learning blocks (B1-B8). To prevent an abrupt onset

of visual noise in the learning blocks, which could make participants suspicious of the truthful-

ness of the visual feedback, we added noise with a constant standard deviation (SD) of 1cm

already during baseline. During the experimental blocks (B1-B8) participants were exposed to

a noise gradient, based on which they could decrease the SD by increased flexion or extension

in their wrist angle at the end of the movement (Fig 1D). If the relative wrist angle at target

position was the same as the reference value during the baseline block, the noise added to the

visual feedback was drawn from a normal distribution with 2cm SD. From -5˚ to +5˚ around

the reference angle, the SD increased or decreased linearly (see Eq 2). Beyond the ±5˚ bound-
ary, the SD would not increase or decrease further.

SD ¼ 2cmþ ðkÞ 2cm=5� � ðcurrent relative wrist angle � reference angle from B0Þ ð2Þ

In Eq 2, k is either -1 if the behavioral change was in the expected direction, +1 otherwise.

More specifically, participants in the flexion group could decrease the SD of noise to 0cm by

flexing the wrist joint 5˚ or more than baseline and were penalized with noise with up to 4cm

SD for wrist extension. This yielded mean absolute injected noise in end point space for the
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two experimental groups as depicted in Fig 1D. Correspondingly, participants in the extension
group were penalized for flexing the wrist joint, but could decrease the SD to 0cm by extending

their wrist 5˚ or more than baseline. To test whether the mere presence of noise (without a gra-

dient) influenced participant’s exploration and hence also learning behavior, we tested two

control groups. The low-noise control group always received veridical feedback without added

noise, whereas the high-noise control group experienced added noise with a constant SD of

2cm, i.e. the added noise was independent of the wrist angle in both control groups.

Session procedure

A session started with several training blocks to accustom participants with the setup and task,

and to produce stable baseline task performance. First, they received veridical visual feedback

about the cursor position during the movement until at least 75% of trials were valid. Subse-

quently, participants received one training block without visual feedback of the cursor position

during the movement with the same noise on the visual endpoint feedback as in the baseline

block (constant SD of 1cm). Afterwards, participants were informed that the experiment

began. The first experimental block constituted the baseline (B0) for determining the reference

wrist angle, followed by 8 learning blocks (B1-B8). Points scored during all 9 experimental

blocks counted towards a bonus paid at the end of the experiment. After the experiment, par-

ticipants were systematically interviewed and debriefed to determine whether they had become

aware of the critical task dimension to control reaching accuracy. We first let participants

report freely any strategy that they may have used during the task to maximize their score.

Next, we told participants that there was a hidden dimension that had influenced task success

and asked them to guess which dimension that was. Finally, we revealed that the relative wrist

angle was the critical dimension and tested for implicit knowledge with a two-alternative

forced choice (2AFC) question asking whether they thought they were in the extension or flex-

ion group. Participants who mentioned or indicated the critical dimension correctly during

first or second question were classified as aware.

Data analysis

The relative joint angles for wrist, elbow and shoulder were calculated based on the arm

model, the position of the robotic wrist joint, and the orientation of the wrist handle in the

workspace using custom-written MATLAB routines (The MathWorks, Natick, MA, USA).

The testing performance criteria were overly strict to encourage rapid reaching movements

and would have led to an exclusion of ~7% of trials in both experimental groups. However,

many of these trials were still relevant for the data analysis. Therefore, invalid trials were iden-

tified by using less strict criteria than during the testing. Movement-time (MT) threshold was

relaxed to 800ms and maximum endpoint velocity to a range between 35 and 100 cm/s. These

criteria led to an exclusion of 2.7% of all trials. Start and end time points of movements were

defined as the velocity exceeding or falling below 2.5 cm/s for at least 40ms. To quantify learn-

ing effects, we calculated the mean change in the relative wrist angle with respect to baseline

for each block (ΔWrist). To quantify changes in injected noise, we calculated the mean abso-

lute injected noise, i.e. the distance between the shown cursor position and the tracked cursor

position in endpoint space for each block. To quantify reward rates, we calculated the percent-

age (%age) of successful trials that were rewarded during the experiment for each block. All

values reported are mean values across participants and the respective standard errors of the

mean (SEM) unless stated otherwise. T-tests were conducted two-tailed unless described oth-

erwise. P values< 0.05 were accepted as significant.
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To test for the hypothesis that exploration relates to motor learning, we used the standard

deviation (SD) of the wrist angle during the baseline block as a proxy for exploration in the

task-relevant dimension for each participant [26] and correlated it with their respective Δ
Wrist from the last block (B8) as a proxy for learning. On group level, outliers were detected

with the Grubb’s test for outliers after normality had been established (Lilliefors test). Identi-

fied outliers were removed from the correlation analysis (one participant of the flexion group
and one participant of the extension group). The analysis of exploration suggested that explora-

tion related to learning in only one group. Thus, to test for differences between correlations

for the flexion group and extension group a Fisher r-to-z transformation was applied.

Results

Joint space trajectories

All participants made smooth controlled movements involving the wrist, elbow and shoulder

joints. Visualizing the joint angles (Fig 2A) revealed that the movement was mostly

accomplished by a combination of elbow extension (34.71 ± 1.23˚) and shoulder flexion

(-14.34 ± 1.18˚), which is in line with earlier findings [31]. Interestingly, the wrist joint dis-

played a biphasic movement profile with an initial extension that peaked at 115 ± 15ms with

1.79 ± 0.41˚, followed by a flexion (-9.29 ± 1.79˚). Thus, the preferred movement strategy

yielded a significantly flexed wrist joint at target compared to start position (t24 = 5.179;

p< 0.001). As a consequence of the biphasic wrist movement, its velocity deviated from the

bell shaped velocity profile observed in the elbow and shoulder joints and displayed a biphasic

profile (Fig 2B) with an early extension peak (16.92 ± 3.69˚/s) at 65 ± 5ms, followed by a flex-

ion peak (-38.3 ± 6.43˚/s) at 250 ±16ms. The elbow (122.21 ± 7.32˚/s at 225 ± 9ms) and shoul-

der (-53.64 ± 4.3˚/s at 240 ± 8ms) joints reached their peak velocities between the two peaks of

the wrist joint. The tangential velocity of the finger-tip (Fig 2C), i.e. the controlled end-effec-

tor, peaked just before the elbow at 215 ± 7ms with 28.22 ± 1.32 cm/s.

To test for pre-existing behavioral differences between experimental groups, we compared

movement kinematics during the baseline block (B0). First, we confirmed that both groups

started trials at the desired wrist angle (flexion group: 174.75 ± 0.07˚; t12 = 1.016; p = 0.330;

extension group: 174.99 ± 0.12˚; t11 = -0.015; p = 0.988). There was no evidence for a difference

between groups (t23 = -1.789 p = .087). Second, we found no differences in wrist angle at

target position (165.17 ± 2.24˚ vs. 166.01 ± 3.00˚; t23 = -0.225; p = 0.824), confirming that

both groups flexed the wrist joint at target compared to start position. Finally, reaction time

(376.9 ± 36.3ms vs. 359.0 ± 36.2ms; t23 = 0.349; p = 0.731) and movement time (432.1 ± 15.4ms

vs. 476.1 ± 26.4ms; t23 = -1.467; p = 0.156) were comparable between experimental groups.

Thus, it is unlikely that pre-existing group differences in movement kinematics might explain

any differences found in the learning blocks. However, it should be noted that the preferred

naïve (baseline) reaching strategy of both groups was a relative wrist flexion.

The motor system can implicitly learn a new joint-space trajectory

The main question of the experiment was whether participants could learn a new joint-space

trajectory in the solution manifold to reduce variability and to optimize reward, without being

aware of the experimental manipulation. Therefore, we excluded 5 participants (2 from the

flexion group, 3 from the extension group) who reported the manipulated task dimension dur-

ing the post-experiment interview (see Methods) and were thus classified as aware participants.
The remaining group of 20 participants gave no indication of explicit awareness. This was sup-

ported by the group result of the final 2AFC question that was answered correctly only by 10

subjects, which constitutes chance level based on a binominal test (p = 1). This ratio suggests
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Fig 2. Basic movement kinematics. (A)Changes in the angle of shoulder, elbow and wrist joints during the
baseline block, averaged across experimental groups. Angles are express relative to start configuration. (B)
Angular velocities of shoulder, elbow and wrist joints. (C) Tangential velocity of the endpoint during baseline
block. All data are averaged across experimental groups. Trajectories were aligned to the onset of movement
(time = 0ms). Shaded areas denote the SEM across participants.

https://doi.org/10.1371/journal.pone.0180803.g002
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that this group had no explicit knowledge about the task critical dimension. Therefore, we per-

formed the subsequent analyses based on this subsample of 9 participants for the extension

and 11 participants for the flexion group.

To test whether the motor system learned a new wrist configuration in the manipulated

direction along the manifold, i.e. more flexion or extension in the wrist compared to baseline,

we analyzed ΔWrist with a 2 (group) x 8 (experimental blocks B1-B8) mixed ANOVA

(Fig 3A). We found no evidence for a main effect of time (F7, 126 = 0.744; p = 0.635) or group

(F1, 18 = 1.896, p = 0.185). However, there was a significant interaction between group and

time (F7, 126 = 3.9, p< 0.001). Post-hoc analyses revealed significant group differences for the

last two blocks in the expected direction (B7: t18 = 2.333, p = 0.015; B8: t18 = 2.259; p = 0.019;

Fig 3. Learning of experimental groups. (A) Change in wrist movement over the time course of learning split by experimental group. The
horizontal lines at ± 5˚ indicate the learning goals for each group. Error bars denote SEM across participants. T-tests for comparison each
group mean vs. 0 are indicated in group color, between group comparisons in black: * p� .05; ** p� .01. (B) Joint space trajectories for an
exemplary learning participant of the extension group. The lines illustrate the mean trajectories for blocks B0, B2, B3, B4, B7 and B9. The
initial and desired target configurations are indicated on the target solution manifold. (C) Actual visual noise added over the time course of
learning split by experimental group. Error bars denote SEM across participants. (D) Percentage of rewarded trials over the time course of
learning split by experimental group. Error bars denote SEM across participants.

https://doi.org/10.1371/journal.pone.0180803.g003
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one-tailed). Furthermore, the effects seemed to be driven by subjects of the extension group,
who exhibited a significant change in wrist behavior in the expected direction towards the end

of the experiment (t-tests vs. 0; B7: t8 = 3.561; p = .004; B8: t8 = 3.159, p = 0.007; one-tailed),

which is illustrated in Fig 3B for an exemplary participant. Interestingly, participants of both

groups initially tended to extend their wrists with the onset of the noise gradient (t-test vs. 0;

B1: t19 = 1.648, p = 0.058; one-tailed).

Exploring the data from another perspective, we also analyzed changes in the average

visual noise that we injected (Fig 3C) with a 2 (group) x 8 (experimental blocks B1-B8) mixed

ANOVA. Of interest, we found evidence for a main effect of time (F7, 126 = 5.872; p< 0.001)

but no effects for group (F1, 18 = 2.637; p = 0.122) or group and time interaction (F7, 126 =
0.223; p = 0.98). Indeed, post-hoc tests revealed that the motor system successfully reduced

the injected variability by about 1 cm from B1 to B8 in both the flexion group (t10 = 2.403;

p = 0.019; one-tailed) and the extension group (t8 = 2.344; p = 0.024; one-tailed). Lastly, we also

analyzed participant’s average reward rates (Fig 3D) with a 2 (group) x 8 (experimental blocks

B1-B8) mixed ANOVA. As expected, we found an effect of time (F7, 126 = 7.352; p< 0.001).

Further, we found no evidence for a main effect of group (F1, 18 = 1.727; p = 0.205) or a group

and time interaction (F7, 126 = 0.567; p = 0.782). Post-hoc tests revealed that the percentage (%

age) of rewarded trials increased from B1 to B8 in both the flexion group (t10 = 1.998; p = 0.037;

one-tailed) and the extension group (t8 = 3.526; p = 0.004; one-tailed). Hence, even though a

change in the behavioral variable of main interest, the wrist angle, was only found for the

extension group, we demonstrated with the additional analyses that both groups re-gained

more control over the cursor during training (Fig 3C), which resulted in higher reward rates

for later blocks (Fig 3D).

There was no evidence for differences in learning towards the expected direction between

unaware participants who had guessed the critical dimension correctly and those who had not

(-0.17 ± 2.10˚; t18 = -0.051, p = 0.960). To summarize, these results provide evidence that the

motor system can adopt a new motor solution in joint space within a redundant task setting.

The new movement strategy reduced the injected variability. Hence, the motor system learned

this new arm configuration along the solution manifold without conscious awareness or

explicit search process. However, in our context, we found evidence for this learning process

only in the wrist extension, but not the wrist flexion group.

No evidence for systematic change without reinforcement

One putative explanation for the asymmetry in learning between the extension and flexion

groups is that participants may naturally increase the extension in their wrist over the course

of the experiment, e.g. to reduce the amount of work that has to be contributed by the elbow.

This hypothesis is in line with the trend for wrist extension that we observed across groups in

the first learning block. Indeed, given the relatively short distance (15cm) between the start

and the target position and the length of the wrist handle (16cm), participants could have sub-

stantially reduced the movement of the forearm by extending the wrist. In contrast, reaching

movements that involve more wrist flexion lead to higher biomechanical costs [14,32,33] and

likely larger signal-dependent noise [34] because they involve more elbow extension and thus

a larger movement of the forearm. Therefore, wrist extension could hypothetically lead to an

overall more efficient movement.

Thus, it is possible that a natural drift towards extension superimposed on the potentially

symmetric learning curve for the two groups, making the learning appear asymmetric. To

test for this hypothesis, we collected data from a low-noise control group in which partici-

pants were provided with veridical cursor feedback at the end of each trial, i.e. wrist joint
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configurations were not reinforced. This group, however, did not show any evidence for a

systematic change of wrist angle at the end of the experiment (Fig 4, black line; B8: t8 =
-0.650, p = 0.534).

Finally, it is also possible that the hypothesized drift only occurred in the presence of

increased uncertainty in the environment, i.e. was induced by the noise added onto the

visual endpoint feedback during the experimental learning blocks. This situation may for

instance have induced exploration and hence may have allowed participants to discover the

preferable movement strategy using wrist extension. To test for this hypothesis, we con-

ducted the high-noise control experiment. In this condition, noise with a constant 2cm SD

was added to the visual feedback of the cursor position, resulting in a similar manipulation

throughout the experiment as for the experimental groups during early blocks (B1-B3)

(injected noise high-noise control group: 2.53 ± 0.04cm; extension group: 2.06 ± 0.36cm;

flexion group: 2.78 ± 0.36cm). However, also in this control group, wrist joint configura-

tions were not reinforced. During debriefing, 2 of 7 participants from this control group

indicated that the cursor feedback was manipulated and were thus excluded from the

analysis.

Although the data suggest that participants extended initially (B1: 2.32 ± 0.82˚, t4 = 2.823,

p = 0.048), this strategy did not persevere. In contrast to our hypothesis, we found no evidence

for a drift towards wrist extension such that by the end of the experiment movements did not

differ significantly from baseline (B8: t4 = -0.859, p = 0.439). Altogether, we found no evidence

for an underlying drift or optimization process towards wrist extension, independent of

whether participants received veridical or noisy feedback. This alternative explanation for the

asymmetric learning is therefore unlikely.

Fig 4. Behavior of control groups.Mean change in relative wrist angle over time with signed values (flexion
negative, extension positive) for the low-noise control group and high-noise control group. Error bars denote
SEM across participants. Horizontal lines indicate the learning goals for the two experimental groups depicted
in Fig 3.

https://doi.org/10.1371/journal.pone.0180803.g004
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Learning benefit of exploration is context dependent

Movement variability along task irrelevant dimensions has traditionally been regarded as

motor noise and thus a movement feature that the motor system should decrease during a

learning process. However, recent studies have suggested that exploration is a key element for

successful learning in a redundant task setting [23,26]. In particular, Wu et al. [26] demon-

strated that the variability in motor output during baseline along a task dimension that was

first irrelevant but became relevant in the training phase, discriminated “good” from “bad”

learners. Along this line, we hypothesized for our experiment that higher variability during

baseline was associated with more learning in the expected direction along the solution mani-

fold. We used the SD of ΔWrist within the baseline block as a measure of variability that has

been used as a proxy of exploration along the solution manifold [23,26].

First, we asked whether the exploratory behavior of the pooled experimental participants

during baseline correlated with the learning achieved at the last block (B8). For this specific

analysis, we assigned positive values to changes in the expected direction for each group. In

contrast to our expectations, no significant correlation was found (dashed black line in Fig 5;

r = 0.205, p = 0.387).

When we split the analysis for the groups, we found a significant correlation between

exploration and final wrist extension for the extension group (dark grey line in Fig 5; r = 0.78,

p = 0.023), which supports the hypothesis of variability-driven learning success. However, we

found no relationship for the flexion group (light grey line in Fig 5; r = -0.29, p = 0.42). If at all,

higher exploration rather seemed related to slightly less learning success. This group difference

between correlations was significant (z = 2.295; p = 0.022), suggesting that early exploration

related to learning success only in the extension group. The control groups did not show

Fig 5. Variability and learning.Correlation betweenmotor variability as a measure of exploratory behavior
at baseline (B0) and change in wrist behavior at the end of the experiment (B8). Positive values were
assigned to changes in the expected direction for each group. The grey lines visualize the regressions of the
individual groups and the dashed black line the regression of the pooled data.

https://doi.org/10.1371/journal.pone.0180803.g005
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any discernible relationship between baseline variability and later wrist extension (r = -0.37,

p = 0.217) that could explain the observed tendency to flex the wrist.

Taken together, there was no evidence for a general positive relationship between baseline

exploration and learning in the expected direction. We found this relationship only for the

group that significantly changed their movement behavior in the desired direction, i.e. the

extension group. This finding did not replicate in the three other groups that did not exhibit

any change in movement strategy on the group level. We thus conclude that, with our experi-

mental paradigm, the relationship between baseline exploration and learning outcome

depended on the direction of the noise gradient, and that exploration did not lead to increased

learning success per se.

Discussion

To our knowledge, this study is the first to successfully induce implicit reinforcement learning

in joint space of the arm. We investigated planar reaching movements in a redundant task set-

ting that involved the coordination of shoulder, elbow and wrist joints [3]. The learning goal

was to change the arm configuration at the endpoint towards larger wrist flexion or extension.

The implicit teaching signal was the amount of added variability to the visual feedback of the

end-effector position, or in other words, the controllability of the visual cursor. In most previ-

ous reinforcement learning studies, participants were made aware of the critical task dimen-

sion in the beginning of the experiment. In these studies, the manipulation of task success

alone yielded learning [27,28,35]. In contrast, a recent study by Manley et al. [23] indicated

that task success alone was not a sufficient teaching signal when participants were unaware of

the critical dimension. However, the authors revealed that added extrinsic noise could serve as

a successful teaching signal even in the absence of explicit awareness.

The present study replicated and extended the findings of Manley et al. [23]. While the pre-

vious study reduced task dimensionality by making the reaching direction task-irrelevant, we

exploited here the natural redundancy of the arm in joint space for reaching a specified posi-

tion in endpoint space. Thus, our new task comes closer to the real challenge of finding a

favorable joint-space movement for a new motor skill. Moreover, in contrast to the previous

study [23], the imposed noise gradient was determined by participants’ baseline behavior and

remained constant across the whole experiment. Participants thus engaged in a redundant

goal directed task for which only a subset of solutions led to optimal performance. However, as

in the previous study, we found that added external noise can lead to slow reinforcement learn-

ing along the solution manifold. Taken together, our results therefore extend the previous

findings to an ethologically more natural form of higher dimensional learning.

Surprisingly, we found a significant asymmetry in learning between the two groups. More

specifically, only the extension group learned its intended new arm configuration. However,

even though the flexion group did not show a net change of behavior into the desired direction

compared to baseline (i.e. ΔWrist), it reduced the injected noise by a similar amount as the

extension group. Hence, both groups regained control over the cursor by a similar degree com-

pared to the gradient onset. While we do not have a conclusive explanation for the observed

asymmetry with respect to ΔWrist, our additional results can rule out several potential rea-

sons. First, participants might have naturally extended their wrist over the course of the

experiment, as they learned to reduce the biomechanical costs in the other joints. Such an

underlying drift superimposed on a symmetric learning effect could yield the observed pat-

terns of results. However, a control group that received veridical cursor feedback at the end of

each trial showed no systematic change of movement behavior. Secondly, the drift towards

wrist extension might have occurred in response to increased task uncertainty. The injected
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variability could have induced exploration and thus facilitated that participants exploit wrist

extension as the preferable movement strategy. However, a second control group, in which

we increased the variability of the feedback also did not show a drift towards extension

movements. These findings render an underlying optimization process or a natural drift an

unlikely reason why only the extension, but not the flexion group had learned along the solution
manifold.

The noise gradient was applied around the average solution chosen by the participants dur-

ing the baseline phase. At the target, the wrist was on average at 165˚ (Fig 2A), i.e. 15˚ flexed

relative to a neutral position of 180˚. As the functional work range for daily activities ranges

from 60˚ extension to 54˚ flexion [36] further flexion was biomechanically clearly possible and

familiar to participants. Therefore, there were no hard biomechanical constraints in the way of

optimization. Our results therefore suggest a natural bias in exploration, possibly induced by

an asymmetric biomechanical cost function around the preferred baseline solution—with rap-

idly increasing costs for flexion. Interestingly, with the onset of added noise the high-noise con-
trol group (Fig 4), as well the extension and flexion groups (Fig 3A) showed an early tendency

towards wrist extension. It is thus possible that the noise perturbation led to an initial wrist

extension, as this direction of exploration was less costly than flexion. In our experimental con-

text, only the extension group benefitted from initial wrist extension (i.e. could decrease the

additional noise) and it was more likely to persevere with this strategy. While this admittedly

post-hoc explanation remains to be tested in future experiments, our findings could suggest

that biomechanical costs play an important role in shaping exploration and subsequent learn-

ing. Thus, it is possible that there are many such biomechanical biases that prevent the learner

from finding the solution that minimizes task-relevant variability.

The main challenge for the motor system during implicit reinforcement learning is to iden-

tify the control variables it needs to change for maximizing reward. This task is also known as

structural credit assignment problem in reinforcement learning [24,25]. It is inherent to any

redundant task in which a low dimensional (teaching) signal in task space needs to be assigned

to a higher dimensional execution space. When learning a new sport like tennis, for example,

reward signals encode the success or failure of the entire motor program rather than of a single

effector or movement component. It has been suggested that the motor system addresses this

challenge by actively exploring different solutions along the manifold [7]. We thus investigated

exploration as a possible driving force of learning. In contrast to a previous study [26], we did

not find a correlation between baseline exploration and overall learning. However, a more

detailed analysis of the experimental groups revealed such relationship for the extension group
only. Thus, baseline variability explained inter-individual differences in learning only for the

group that demonstrated robust learning across participants. Overall, the data supports the

idea that the relationship between baseline variability and learning is dependent on the direc-

tion of the noise gradient. Indeed, another recent study suggests that task specific factors that

affect variability determine learning rates (instead of variability per se) [37]. Lastly, we note

that feedback about the endpoint error and reward were always presented together in our task

and their respective contribution to learning rates can therefore not be disentangled. However,

a similar study conducted by Manley et al. [23] contained conditions that allowed for manipu-

lating task success and endpoint error in isolation. Their finding was that task success alone is

not a sufficient, but necessary manipulation to induce learning if participants are unaware of

the task critical dimension. Along this line, we suggest that the most likely driver of learning in

joint space was the visual presentation of the endpoint error in the current study as well, but

we cannot rule out that the binary feedback presentation also contributed to learning rates.

The phenomenon of learning new joint configurations along the solution manifold is also

relevant to the process of stroke recovery. In general, improvements in post-stroke motor
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function can be achieved through the genuine recovery or through functional compensation

[38–40]. After uni-lateral stroke, the control of distal joints such as the wrist is often impaired

[41,42], and many stroke patients learn to compensate with proximal joints (e.g. the shoulder

or trunk) for the impairment of distal joints (e.g. the wrist) [43]. Indeed, a recent simulation

study found that unexpected joint coupling, rather than endpoint noise or muscle fatigue, con-

tributes to impaired reaching performance after hemiparetic stroke [44]. Previous work sug-

gests that this compensation may be driven by two learning mechanisms: Error-based learning

will simply bring the movement endpoint back onto the solution manifold, and may therefore

choose any solution in joint space that achieves this goal. The slower reinforcement learning

will try to minimize the associated movement cost along the task relevant dimension [14,32].

Since the neural loss after stroke likely increases the movement cost for the affected joints (i.e.

the wrist), the reward contingencies are such that they promote non-use of the affected limb,

further preventing true recovery [45]. To promote genuine recovery of the affected body part,

physical therapy needs to change the reward contingencies to promote movements of the

affected joints [46]. Robot-mediated motor rehabilitation holds promising potential to pro-

mote neuroplasticity [47]. The use of a redundant robotic device allows to quantify functional

compensation [48] and thus to exploit suitable learning mechanisms that promote post-stroke

function. Our study demonstrates a training regimen that might yield success in this domain.

Compared to error-based learning, implicit reinforcement learning is a relatively slow pro-

cess [11,23]. Also, in the current study, the amount that unaware participants learned was rela-

tively low and took hundreds of trials to be achieved. While our current study did not assess

retention of the motor memory, it has been shown that reinforcement learning leads to good

retention of newly learned coordination patterns [35,49,50].

To summarize, this study showed that participants can learn new reaching strategies along

the solution manifold to minimize variability without explicit knowledge of the critical task

dimension. However, this process appears to be influenced and biased by biomechanical fac-

tors, which sometimes can prevent learning.
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