

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/103169/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Hiscox, Jennifer and Boddy, Lynne 2017. Armed and dangerous - chemical warfare in wood decay communities. Fungal Biology Reviews 31, pp. 169-184.

Publishers page: http://dx.doi.org/10.1016/j.fbr.2017.07.001

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Opinion Article

Armed and dangerous – Chemical warfare in wood decay communities

Jennifer HISCOX*, Lynne BODDY

Cardiff School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK

ARTICLE INFO

Article history: Received 23 April 2017 Received in revised form 9 July 2017 Accepted 10 July 2017

Keywords: Assembly history Community development Fungi Priority effects Succession Wood decay

ABSTRACT

Fungal community structure and development in decaying woody resources are largely dependent on interspecific antagonistic interactions that determine the distribution of territory – and hence the nutrients within – between different individuals occupying that resource. Interactions are mediated by antagonistic mechanisms, which determine the combative outcome: either deadlock, where neither mycelium loses any territory, or replacement, where one mycelium displaces the other. These mechanisms function aggressively and/or defensively, and include changes in primary metabolism and growth, as well as secondary metabolite production and stress mitigation responses. This chemical warfare may occur as a constitutive defence through modification of the territory occupied by an individual, and the deposition of antimicrobial compounds within. Following detection of a competitor, the metabolite and enzymic profile of a mycelium alters both qualitatively and quantitatively, and different mechanisms may be stimulated when confronted with different competitors. Biotic and abiotic factors, even small alterations, can affect the deployment of these antagonistic mechanisms, altering the general hierarchy of combative ability between species and making it impossible to predict outcomes with certainty. Here we explore recent advances in our understanding of combative interactions between wood decayers, and explain why future research priorities involving the application of emerging biochemical and molecular technologies must focus on interactions in more ecologically realistic and meaningful scenarios.

© 2017 The Authors. Published by Elsevier Ltd on behalf of British Mycological Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Understanding the dynamics of decomposer community development is essential for modelling carbon cycling and other ecosystem functions, and the resilience of these processes to environmental change (e.g. McGuire and Treseder 2010). Fungal competition in decaying woody resources is effectively competition for territory and the nutrients within, and encompasses both interference and exploitation competition; fungi exhibit the former by inhibiting other organisms and limiting their access to resources, and the latter by sequestering nutrients within the territory they occupy, hence preventing other organisms from using them (Boddy and Hiscox 2016). In general, fungal competition can be divided

http://dx.doi.org/10.1016/j.fbr.2017.07.001

^{*} Corresponding author. School of Biosciences, Cardiff University, Sir Martin Evans Building, Cardiff CF10 3AX, UK. E-mail address: evansja7@cf.ac.uk (J. Hiscox).

^{1749-4613/© 2017} The Authors. Published by Elsevier Ltd on behalf of British Mycological Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

into primary resource capture, where a fungus colonises previously unoccupied territory, and secondary resource capture, where a fungus captures territory from fungi that have already colonised a resource (Boddy 2000). Success in primary resource capture is determined by efficient dispersal mechanisms, rapid growth rate, and the ability to use easily accessible nutrients (R-selected characteristics; Boddy 2000). Success in secondary resource capture depends on aggressive and/or defensive antagonistic mechanisms (C-selected), or at very late stages of decomposition, the ability to tolerate abiotic/biotic stress and disturbance (S-selected and Rselected; Boddy 2000).

The ultimate outcome of combative interactions can either be deadlock, where neither fungus loses any territory, or replacement, where one fungus displaces the other. Between these extremes lies a spectrum of outcomes, including partial replacement of one fungus by another, or mutual replacement, where both fungi capture territory from each other (Boddy 2000). These combative interactions can be mediated at a distance, following contact at the level of individual hyphae (e.g. hyphal interference and mycoparasitism, see Boddy and Hiscox 2016), or following contact at the mycelial level. The establishment of physical contact between two competing mycelia, often called 'gross mycelial contact', results in the induction of antagonistic mechanisms in one or both competitors. Competing mycelia undergo changes in morphology, secondary metabolite production, pigment deposition, accumulation of reactive oxygen species, and alterations in enzyme activity (see Section 2). These changes may function aggressively and/or defensively against a competitor, and different mechanisms may be stimulated when confronted with different competitors (Eyre et al. 2010). The majority of this review will concentrate on mycelial interactions, as they are the most frequently observed interaction type within wood decay communities.

2. Antagonistic mechanisms

Constitutive defence and antagonism at a distance

Constitutive defences function to impede the invasion of colonised territory by a competitor mycelium. Certain species modify the territory they occupy to make it less hospitable for invaders, for example lowering water potential or pH (Boddy et al. 1985; Tudor et al. 2013). Some fungi produce pseudosclerotial plates, thin shells of melanised tissue completely surrounding the territory they occupy, which maintain the conditions within, and can also act as a physical barrier against invasion (Rayner and Boddy 1988; Fig. 1A). Further, fungi produce, and perhaps accumulate, inhibitory secondary metabolites, which can slow or halt the extension of competitors (Heilmann-Clausen and Boddy 2005; Fig. 1B and C). These secondary metabolites span a variety of chemical classes; different species tend to produce a characteristic metabolite profile, although this is partly dependent on their growth conditions (Lemfack et al. 2013; Fig. 1D and E). Inhibitory effects of both diffusible and volatile organic compounds (DOCs and VOCs, respectively) have been demonstrated for fungi growing in wood blocks, across soil, and in artificial agar

media (Heilmann-Clausen and Boddy 2005; El Ariebi *et al.* 2016). DOCs have local antagonistic potential (e.g. in scenarios where they can accumulate or diffuse through substrata), whereas VOCs can act over greater distances and in heterogeneous environments. Whilst these chemical defences may help protect against invasion by most competitors, adaptive relationships occur where certain species are attracted to the metabolite profile emitted by a competitor, with certain VOC/DOC profiles stimulating competitor growth (Evans *et al.* 2008). Similarly, territory modification may provide an advantage for invading fungi with analogous preferences.

Morphological changes

Changes in mycelial morphology are most dramatic in areas in direct contact with the competitor: the interaction zone. Hyphae may aggregate to form barrages which physically block invasion by competitors, or to form invasive replacement fronts or cords (linear aggregations of hyphae) to penetrate competitor defences (Fig. 2A-C). Morphological structures may differ between regions of the same interaction front, indicating that antagonistic mechanisms are deployed in response to local stimuli (Rayner et al. 1994). Morphological changes during interactions are associated with changes in gene expression compared to non-interacting mycelia (Table 1). For example, cytokinesis-related proteins and 1,3-beta glucan synthase were upregulated in Trametes versicolor during antagonism with Stereum gausapatum, indicating increases in cell division and cell wall formation or alteration (Eyre et al. 2010). This was concomitant with a downregulation of chitin synthase expression in S. gausapatum; the decrease in growth of this fungus may be associated with its eventual replacement by T. versicolor (Eyre et al. 2010).

Melanin deposition is often associated with morphological changes at interacting hyphal fronts, and may be wall-bound or extracellular, often visible as pigmentation (Rayner et al. 1994). Melanins are formed by the oxidative linkage of aromatic metabolites into complex heteropolymers which alter hyphal hydrophobicity, and confer structural strength by strengthening cell-to-cell adhesion (Bell and Wheeler 1986). Similarly, hydrophobin proteins, which are involved in forming attachments in aggregating cells and have been linked to the formation of aerial hyphae and cell wall assembly, increase in expression in both competitors during interactions between Phlebiopsis gigantea and Heterobasidion parviporum (Adomas et al. 2006). Hydrophobins may also have a role in sealing off hyphae damaged by antagonistic processes, preventing loss of cytoplasm from surrounding compartments. A similar role has been suggested for the protein HEX-1 (hexagonal protein 1) which is upregulated in Schizophyllum commune during interactions with Trichoderma viride (Ujor et al. 2012). HEX-1 is a major component of the Woronin body, which functions to plug septa (the junctions between different hyphal compartments) and seal off damaged hyphae (Collinge and Markham 1987).

Changes in metabolism

The processes involved in antagonism are energetically expensive. Increases in respiration and nutrient acquisition

Fig. 1 – A: Cross section of a decaying beech trunk showing the mosaic structure of the decay community within. Dark lines are pseudosclerotial plates (PSPs) demarcating the territory of different individuals. B: Transverse section of a beech wood block colonised with Coniophora puteana (left, darkly pigmented) and Trametes versicolor (right, lightly pigmented). T. versicolor will eventually replace *C. puteana*. C: Decaying beech disk colonised by two main competitors, one highly pigmented and the other non-pigmented. D: Resinicium bicolor growing across soil, under exposure to the VOCs produced by bare soil. E: R. bicolor growing under exposure to VOCs from self-pairings of R. bicolor. Images D and E adapted from El Ariebi et al. (2016).

may occur to fund these processes; for example, production of invasive mycelial cords by a competitor is associated with increases in respiration (Hiscox et al. 2015a). Increased expression of genes encoding key components of the glycolytic pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoglucomutase, were detected in P. gigantea during combat with H. parivporum, and also in T. versicolor during interactions with Bjerkandera adusta (Table 1; Adomas et al. 2006; Eyre et al. 2010). Increased production of cellulases, phosphatase and chitinases, both at interaction zones and throughout competing mycelia, implies upregulation of nutrient acquisition to support increased energetic demands (Table 2 and references within). The concurrent reduction in biomass accumulation during interactions between Pycnoporus coccineus and Coniophora puteana supports the theory that this increased nutrient acquisition functions to fund antagonistic mechanisms rather than mycelial growth (Arfi et al. 2013).

The mycelium of a displaced competitor is utilised by the victor; metabolism and respiration increased in regions where one mycelium had captured the territory of another, concomitant with increases in activity and expression of genes whose products likely function to recycle the mycelium of the displaced competitor (Lindahl and Finlay 2006; Ujor et al. 2012; Arfi et al. 2013; Hiscox et al. 2015a; Karlsson et al. 2016).

Changes in activity of proteases likely function to hydrolyse competitor cell walls and contents, and increased expression of an array of genes encoding aspartyl proteases, serine-like proteases, and endochitinases have been detected during antagonistic interactions (Ujor et al. 2012; Arfi et al. 2013). Further, genes whose products are involved in carbohydrate and nitrogen metabolism were significantly upregulated in mycelia of *T. versicolor* during interactions where it replaced *S. gausapatum* or deadlocked with *Bjerkandera adusta* (i.e. where it captured or maintained territory), but not during interactions where *T. versicolor* was itself replaced by Hypholoma fasciculare (Eyre et al. 2010).

Several metabolites related to stress mitigation are upregulated during antagonism, including cyclophilins, protein chaperones and heat shock proteins, which are known to function in stress tolerance by maintaining protein stability and enhancing folding (Adomas *et al.* 2006; Eyre *et al.* 2010; Ujor *et al.* 2012). The disaccharide trehalose also functions as a protein- and membrane-stabiliser, and accumulates in stressed mycelia (Ocon *et al.* 2007). Reductions in trehalose phosphorylase content of *S. commune* during interactions with *T. viride* suggests preservation of trehalose by decreasing its catabolism by this enzyme (Ujor *et al.* 2012). Sugar alcohols increase during interactions, possibly with a similar function in stress tolerance (Table 3).

Fig. 2 – A: Three-way interaction between Hypholoma fasciculare (left), Trametes versicolor (middle), and Stereum hirsutum (right) on 2 % malt agar. A barrage was formed at the interaction zone between T. versicolor and S. hirsutum, and cords of H. fasciculare are beginning to encroach over T. versicolor. B: Interaction between T. versicolor (bottom) and H. fasciculare (top) in beech wood blocks. Cords of H. fasciculare are overgrowing the block colonised by T. versicolor. Interestingly, at this stage of the interaction, no replacement of T. versicolor had occurred, although it would later be completely replaced by H. fasciculare. C: Interaction between cord systems of P. velutina (left) and H. fasciculare (right) with a beech wood block colonised by T. versicolor (middle), across soil. Cords of P. velutina have overgrown the T. versicolor block, and are beginning to attack the H. fasciculare block, resulting in the eventual replacement of both competitors. D: S. hirsutum (left) interacting with H. fasciculare on 2 % malt agar which has been supplemented with a dye that forms a purple colour when oxidised by laccase; H. fasciculare produced laccase at the colony margins but S. hirsutum did not. E: Accumulation of ROS (superoxide) during interaction between Kretschmaria deusta (left) and T. versicolor on 2 % malt agar; ROS levels are highest in interaction structures. F: Peroxidase activity is highest at the edge indicated by brown dye of the invading front during interaction between T. versicolor (left) and Eutypa spinosa (right). Staining techniques used in D–F were taken from Silar (2005).

Secondary metabolite production

Profiles of VOCs and DOCs alter both quantitatively and qualitatively during antagonism (Table 3 and references within). Compounds that were constitutively produced may be up- or downregulated, and additional compounds are often made. For example, production of dimethylbenzoic acid by S. gausapatum increased when confronted with T. versicolor, and the terpenoid a-myrcene was detected, which was not present in the VOC profile of either competitor during solo growth (Evans et al. 2008). Interaction specific VOCs are frequently terpenoids, predominantly sesquiterpenes (El Ariebi et al. 2016), which have bioactive properties, such as antifungal activity (Abraham 2010). Secondary metabolites may be actively toxic to one or both competitors, possibly through disruption of metabolic processes, a trait referred to as 'metabolic interference'. The fungi producing these metabolites may either have resistance to their own toxins, or sacrifice their own mycelium

in the region of production. The reduction in biomass accumulation during interactions between *P. coccineus* and *C. puteana* may partly result from self-inhibition of *P. coccineus* by its own antifungal toxins (Imtiaj and Lee 2007; Arfi et al. 2013).

Enzyme activity and ROS

In addition to alteration of activities of enzymes involved in nutrient acquisition (see Sub-section Changes in metabolism), interacting fungi often produce extracellular enzymes to attack competitor mycelium directly, e.g. cell wallhydrolysing chitinases and glucanases (Lindahl and Finlay 2006). Enzymes involved in generation of reactive oxygen species (ROS), such as NADPH oxidases, laccase (phenoloxidase) and peroxidases, are sometimes upregulated (Eyre *et al.* 2010; Fig. 2D and F). ROS accumulate at interaction zones (Fig. 2E) and may have a toxic function by causing oxidative damage to competitor mycelia (Tornberg and Olsson 2002;

lechanism	Name/class	Up/down regulated	Focal species	Competitor	Substrate	Eventual outcome	Re
etoxification	Cystathione gamma-lyase	Down	Physisporinus sanguinolentus	Heterobasidion annosum	Hagem agar + cellophane	Inhibition of H. annosum	1
	Cytochrome c oxidase subunit 1	Down	Trametes versicolor	Stereum gausapatum	Malt agar	R by T. versicolor	2
	Cytochrome P450	Down	Pycnoporus coccineus	Coniophora puteana; Botrytis cinerea	Malt-yeast extract broth (MYEB)	R by P. coccineus	3
	Cytochrome P450	Down	T. versicolor	S. gausapatum	Malt agar	R by T. versicolor	2
	Serine/threonine protein kinases	Down	P. coccineus	C. puteana; B. cinerea	MYEB	R by P. coccineus	3
	Killer toxin resistant gene	Up	P. sanguinolentus	H. annosum	Hagem agar + cellophane	Inhibition of H. annosum	1
	Glutathione-S-transferase	Up	P. coccineus	B. cinerea	MYEB	R by P. coccineus	3
	Dihydrolipoamide acetyltransferase	Up	P. coccineus	B. cinerea	MYEB	R by P. coccineus	3
	Zinc-binding oxidoreductase	Up	P. coccineus	B. cinerea	MYEB	R by P. coccineus	3
	Predicted short-chain-type dehydrogenase	Up	P. coccineus	B. cinerea	MYEB	R by P. coccineus	3
	Kynurenine 3-monooxygenase	Up	P. coccineus	B. cinerea	MYEB	R by P. coccineus	3
	Aldo/keto reductase	Up	P. coccineus	B. cinerea	MYEB	R by P. coccineus	3
	Predicted short-chain-type dehydrogenase	Up	P. coccineus	B. cinerea	MYEB	R by P. coccineus	3
	Zinc-binding oxidoreductase	Up	P. coccineus	B. cinerea	MYEB	R by P. coccineus	3
	Glycosyl transferase	Up	Schizophyllum commune	Trichoderma viride	PDA	R by T. viride	4
	Short-chain dehydrogenase/reductase	Up	T. viride	S. commune	PDA	R by T. versicolor	4
	Oxidoreductase	Up	T. versicolor	S. gausapatum	Malt agar	R by T. versicolor	2
	Superoxide dismutase	Up	Trichoderma aggressivum	Agaricus bisporus	Malt broth + compost extract	R by T. aggressivum	5
Nutrient acquisition and growth	Fimbrin	Down	P. sanguinolentus	H. annosum	Hagem agar + cellophane	Inhibition of H. annosum	1
	Chitin synthase	Down	P. coccineus	B. cinerea	MYEB	R by P. coccineus	3
	1,3-Beta-glucan synthase	Up & Down	T. versicolor	S. gausapatum	Malt agar	R by T. versicolor	2
	Cytokinesis-related protein	Up	T. versicolor	S. gausapatum	Malt agar	R by T. versicolor	2
	Guanylate kinase	Up	T. aggressivum	A. bisporus	Malt broth + compost extract	R by T. aggressivum	
	Actin depolymerase	Up	T. aggressivum	A. bisporus	Malt broth + compost extract	R by T. aggressivum	
rimary netabolism	Mitochondrial inner membrane protein	Down	P. sanguinolentus	H. annosum	Hagem agar + cellophane	Inhibition of H. annosum	
	Mitochondrial protein	Down	P. gigantea	H. parviporum	Hagem agar	R by P. gigantea	6
	ATP-binding cassette	Down	P. gigantea	H. parviporum	Hagem agar	R by P. gigantea	
	Triosephosphate isomerase	Down	S. commune	T. viride	PDA	R by T. viride	
	Trehalose phosphorylase	Down	S. commune	T. viride	PDA	R by T. viride	
	Sugar transporter	Down	T. versicolor	S. gausapatum	Malt agar	R by T. versicolor	
	ABC transporter	Down	T. versicolor	S. gausapatum	Malt agar	R by T. versicolor	
	Succinyl-CoA synthetase	Up	H. parviporum	P. gigantea	Hagem agar	R by P. gigantea	
	Mitochondrial protein	Up	H. parviporum	P. gigantea	Hagem agar	R by P. gigantea	
	GAPDH	Up	P. gigantea	H. parviporum	Hagem agar	R by P. gigantea	

173

Mechanism	Name/class	Up/down regulated	Focal species	Competitor	Substrate	Eventual outcome	Re
	GAPDH	Up	T. viride	S. commune	PDA	R by T. viride	4
	Glutamine synthetase	Up	P. gigantea	H. parviporum	Hagem agar	R by P. gigantea	6
	Endopolygalacturonase	Up	P. gigantea	H. parviporum	Hagem agar	R by P. gigantea	6
	Ca2 ⁺ -dependent phospholipid-binding protein	Up	P. coccineus	B. cinerea	MYEB	R by P. coccineus	3
	GTPase effector	Up	P. coccineus	B. cinerea	MYEB	R by P. coccineus	3
	Two-component phosphorelay intermediate	Up	P. coccineus	B. cinerea	MYEB	R by P. coccineus	3
	Glycoside hydrolase family 13 protein	Up & Down	T. versicolor	S. gausapatum	Malt agar	R by T. versicolor	2
Protein metabolism	Peptide N-myristoyl transferase	Down	P. gigantea	H. parviporum	Hagem agar	R by P. gigantea	6
	Amino acid transporters	Down	P. coccineus	B. cinerea	MYEB	R by P. coccineus	3
	Alpha-ketoglutarate dependent xanthine dioxygenase	Down	T. versicolor	S. commune	Malt agar	R by T. versicolor	2
	Ubiquitin	Up	H. parviporum	P. gigantea	Hagem agar	R by P. gigantea	6
	Cyclophilin	Up	P. gigantea	H. parviporum	Hagem agar	R by P. gigantea	6
	Probably E3 ubiquitin protein ligase	Up	S. commune	T. viride	PDA	R by T. viride	4
	Aspartyl protease	Up	T. viride	S. commune	PDA	R by T. viride	4
	Ubiquitin activating enzyme	Up	T. versicolor	S. gausapatum	Malt agar	R by T. versicolor	2
Secondary metabolite production	Phenylalanine ammonia lyase	Up	S. commune	T. viride	PDA	R by T. viride	4
Stress mediation	Hydrophobins 2 & 3	Down	P. gigantea	H. parviporum	Hagem agar	R by P. gigantea	e
	Hydrophobin 1	Up	P. gigantea	H. parviporum	Hagem agar	R by P. gigantea	6
	Heat shock protein 90	Down	P. gigantea	H. parviporum	Hagem agar	R by P. gigantea	6
	REcA homolog rah1	Up	H. annosum	P. sanguinolentus	Hagem agar + cellophane	Inhibition of H. annosum	1
	HEX1	Up	S. commune	T. viride	PDA	R by T. viride	4
	Cyclophilin A-1	Up	S. commune	T. viride	PDA	R by T. viride	4
	Spermine synthetase	Down	T. aggressivum	A. bisporus	Malt broth + compost extract	R by T. aggressivum	5
	Maintenance of telomere capping protein 2	Down	T. aggressivum	A. bisporus	Malt broth + compost extract	R by T. aggressivum	5
Franscription/translation	Mago nashi like protein	Down	P. sanguinolentus	H. annosum	Hagem agar + cellophane	Inhibition of H. annosum	1
	RNA helicase	Down	P. coccineus	B. cinerea	MYEB	R by P. coccineus	3
	Transcriptional regulator	Down	T. viride	S. commune	PDA	R by T. viride	4
	Transcriptional repressor	Up	H. annosum	P. sanguinolentus	Hagem agar + cellophane	Inhibition of H. annosum	1
	40S ribosomal protein	Up	T. versicolor	S. gausapatum	Malt agar	R by T. versicolor	2
	60S ribosomal protein	Up	P. gigantea	H. parviporum	Hagem agar	R by P. gigantea	e
	60S acidic ribosomal protein	Up	T. aggressivum	A. bisporus	Malt broth + compost extract	R by T. aggressivum	5
	60S ribosomal protein L20A	Up	T. versicolor	S. gausapatum	Malt agar	R by T. versicolor	2
	ExoRNase	Up	S. commune	T. viride	PDA	R by T. viride	4
	Transcriptional regulator	Up	S. commune	T. viride	PDA	R by T. viride	4
	RNA polymerase	Up	S. commune	T. viride	PDA	R by T. viride	4
	elF-5A	Up	S. commune	T. viride	PDA	R by T. viride	

Elongation factor II	Up	T. viride	S. commune	PDA	R by T. viride	4
DNA binding protein SART-1	Up	T. versicolor	S. gausapatum	Malt agar	R by T. versicolor	2
Pre-mRNA splicing factor 38B	Up	T. versicolor	S. gausapatum	Malt agar	R by T. versicolor	2
Bifunctional preprotein translocase	Up	S. commune	T. viride	PDA	R by T. viride	4
Glycine-rich RNA binding protein	Up &	T. versicolor	S. gausapatum	Malt agar	R by T. versicolor	2
	Down					
1 , Iakovlev et al. (2004) [†] , 2 , Eyre et al. (2010) [†] , 3 , Arfi et al. (2013) [†] , 4 , Ujor et	al. (2012) [†] ; 5, 0	Ujor et al. (2012) ^{\dagger} ; 5, O'Brien et al. (2015); 6, Adomas et al. (2006) ^{\dagger}	as et al. (2006) [†] .			

Present in main references. Other references found in supporting document 1.

Silar 2005), but their role(s) remain unclear, and accumulation may be an incidental result of the disruption of cellular processes caused by other antagonistic mechanisms, rather than active production. Fungi employ a range of molecular machineries to alleviate the effects of ROS and mitigate any oxidative damage during combat, such as increased expression of genes encoding catalase and putative DNA repair proteins (Iakovlev *et al.* 2004; Eyre *et al.* 2010). Increases in ROS levels may function as a defence response similar to that in plants (Silar 2005). Similarly, increases in another potential signalling compound, nitric oxide (NO), have also been detected during interactions between *Inonotus obliquus* and *Phellinus morii*, triggering production of antifungal phenylpropanoid metabolites (Zhao *et al.* 2015).

Activities of peroxidases and laccase (phenoloxidase) increase at interaction zones (Baldrian 2004), and are highly localised to this region (Hiscox et al. 2010). Laccase and peroxidases may be associated with increased utilisation of the resource during combat, or generation of ROS, but their main function is probably the extracellular detoxification of competitor VOCs and DOCs (Baldrian 2004; Hiscox et al. 2010), or in the formation of melanins (see Sub-section Morphological changes). In addition to their structural properties, melanins confer protection from ROS and toxins, and may also have antibiotic properties, as has been shown for wall bound melanins of Phellinus weirii (Haars and Hetterman 1980). However, the most important role of melanin is thought to be protection against hydrolytic enzymes; generally, the ability of hydrolytic enzymes to degrade fungal walls is inversely correlated with the melanin content of the wall (Bloomfield and Alexander 1967). Upregulation of intracellular detoxifying enzymes may constitute another line of defence: cytochrome monooxygenases, short-chain dehydrogenases/ reductases, and glutathione-S-transferases have all been implicated in the intracellular detoxification of xenobiotics, and are upregulated during interactions (Table 1).

3. Outcomes of interactions

Fungi vary markedly in their combative ability, which is roughly related to their position within the successional community in decaying wood: primary colonisers are usually the weakest combatants, and the strongest are often later secondary colonisers (Hiscox et al. 2016). At the latest stages of decay, the ability to tolerate abiotic nutrient stress or disturbance by saproxylic invertebrates becomes a more important determinant of community composition than relative combative ability (Swift and Boddy 1984; Rayner and Boddy 1988). Within any particular system there is a hierarchy of combative ability, similar to a sports league (Boddy 2000). It is not a rigid hierarchy, and intransitive (non-hierarchical) relationships are common between wood decay fungi (Boddy 2000; Laird and Schamp 2006; Fig. 3). The simplest example of intransitive competition is the game of rock-paper-scissors, where rock is covered by paper, paper is cut by scissors, and scissors are blunted by rock. In spatially explicit interactions, such as those between fungi inhabiting decaying wood, the cyclical competition structure of intransitive interactions promotes species coexistence compared to combinations without

Table 2 – Enz	zymes changing	in activity during interactions.				
Enzyme	Function	Proposed role in interactions	Increase/decrease	Interaction (species) reported ir	n & substrate	Ref
Laccase	Degradation of lignin	Detoxification of competitor metabolites; pigment production;	Increase	Trametes versicolor vs. Stereum gausapatum, Bjerkandera adusta, Hypholoma fasciculare, Daldinia concentrica	Malt agar	7
	Ū	ROS generation		T. versicolor vs. Trichoderma harzianum, Acremonium sphaerospermum, Penicillium rugulosum, Escherichia coli, Endomyces magnusii	CLN (cellulose low nutrient) broth	8
				Pleurotus ostreatus vs. Trichoderma harzianum, Humicola grisea, P. rugulosum, E. magnusii	CLN broth	8
				T. harzianum vs. 16 competitors	CLN broth	8
				Heterobasidion annosum vs. Resinicium bicolor	Hagem agar $+$ cellophane	9
				T. verisicolor vs. T. harzianum	Defined low nitrogen broth (DLNB)	10
				Phellinus weirii vs. competitors	Malt agar	11
				Phlebia radiata, Phlebia rufa, T. versicolor, Stereum hirsutum, P. velutina and H. fasciculare	Malt agar	12
				Pleurotus sp., Dichomitus squalens vs. soil microbiota	Wheat straw & soil	13
				T. harzianum vs.Lentinula edodes	Yeast malt extract broth	14
				T. harzianum vs. competitors	Yeast malt extract agar	15
				Rhizoctonia solani vs. Pseudomonas fluorescens	Potato dextrose agar (PDA)	16
				Serpula lacrymans, Coniophora puteuna, Trichoderma spp., Scytalidium	Malt agar	17
				P. ostreatus vs. Ceriporiopsis subvermispora	Defined broth	18
				P. ostreatus vs. Phanerochaete chrysosporium	Neem hull waste, wheat bran, sugarcane bagasse	19
				H. fasciculare vs. Peniophora lycii	Malt agar & cellophane	20
				Marasmius pallescens vs. Marasmiellus troyanus	Defined broth	21
				Coprinopsis cinerea vs. Gongronella sp.	Defined medium	22
				Trametes maxima vs. Paecilomyces carneus	PDA + additives	23
			Decrease	T. versicolor vs. Fomes fomentarius	Malt agar	7
MnP	Degradation of lignin	Detoxification of competitor metabolites; pigment production;	Increase	T. versicolor vs. S. gausapatum, B. adusta, H. fasciculare, D. concentrica, F. fomentarius	Malt agar	7
		ROS generation		Pleurotus sp., D. squalens vs. soil microbiota	Wheat straw & soil	13
				P. ostreatus vs. C. subvemispora or Physisporinus rivulosus	Defined broth	18
				P. ostreatus vs. Phanerochaete chrysosporium	Neem hull waste, wheat bran, sugarcane bagasse	19
				Marasmius pallescens vs. Marasmiellus troyanus	Defined broth	21
				Trametes maxima vs. Paecilomyces carneus	PDA + additives	23
Peroxidase	Degradation	Detoxification of competitor	Increase	Phellinus weirii vs. competitors	Malt agar	11
	of lignin	metabolites; pigment production; ROS generation		Phlebia radiata, P. rufa, Coriolus versicolor, Stereum hirsutum, Phanerochaete velutina and Hypholoma fasciculare	Malt agar	12
				Serpula lacrymans, Coniophora puteuna, Trichoderma spp., Scytalidium	Malt agar	17
LiP	Degradation of lignin	Detoxification of competitor metabolites; pigment production; ROS generation	Increase	P. ostreatus vs. P. chrysosporium	Neem hull waste, wheat bran, sugarcane bagasse	19

Attack of competitor cell walls, Increase
Increase
(gene expression)
Increase
Increase
Increase
Increase
Increase

Present in main references. Other references found in supporting document 1.

intransitivity (Laird and Schamp 2006; Hiscox et al. 2017). The mechanisms governing intransitive situations are unclear, but presumably result from different combinations of attack and defence traits, with different opponents varying in susceptibility to different mechanisms.

Fungi may utilise different antagonistic mechanisms against different competitors. Only 21 % of the transcripts overexpressed in P. coccineus were common between interactions with two competitors, suggesting that P. coccineus employs different pathways to eliminate different competitors (Arfi et al. 2013). However, whilst the transcripts themselves were different, they appeared to converge to similar functions (e.g. different isoforms of the detoxifying enzyme glutathione-S-transferase; Arfi et al. 2013). Further, different species exhibit different combative strengths; there are fungi that are good attackers, good defenders, both, or neither. In artificially inoculated wood blocks, Stereum hirsutum was good at defending its territory and resisting invasion, but unable to capture territory even from otherwise weak competitors (Boddy and Rayner 1983; Hiscox et al. 2015a).

Fungal interactions are dynamic and changes occur with time, the actual time course of interactions varies between competing fungi (Hiscox et al. 2015a). The time spent in each of the interaction 'stages' (e.g. deadlock or partial replacement) will vary between different combinations, and is roughly correlated with the disparity in competitor combative abilities (Hiscox et al. 2015a). For example, the highly combative P. velutina starts to replace V. comedens within seven days, but T. versicolor takes four weeks to begin replacing V. comedens (Hiscox et al. 2015a). Many different factors, both biotic and abiotic, can contribute to the progression or outcome of an interaction (Table 4). Small differences in abiotic conditions or physiological state may influence competitive outcomes, so it is impossible to predict the winner of interactions with certainty (Huisman and Weissing 2001).

The ability to translocate resources to the interaction zone from elsewhere in the mycelium is likely to be of major significance in the interplay of interactions (Lindahl and Olsson 2004). This is evidenced by the facts that: (1) outcomes of interactions sometimes depend on the relative size of the resources occupied by competing mycelium, fungi being more successful the larger the territory held (e.g. Holmer and Stenlid, 1993; Lindahl et al. 2001), implying that nutrients are moved from the bulk of the mycelium to the interaction front; and (2) radiotracer studies in mycelial cord systems have shown that carbon and phosphorous move to mycelial fronts and can be picked up by competing mycelia (Wells et al. 1995; Lindahl et al. 1999, 2001). Success in combat provides access to further resources, initially as nutrients from the mycelium of the displaced competitor, and subsequently from the substratum that it occupied. These acquired resources may be reallocated to support further combat, so there is positive feedback where the stronger combatant gets even stronger.

4. **Ecological significance of interactions**

Competitive interactions drive community change in wood decay communities, with community development resembling a complex, ever-changing mosaic, rather than a simple

Chemical class	Name	VOC/DOC	Interaction (species) reported in	Substrate	Change in production	Ref
Benzenoid	1-Hydroxy-3-methoxy-6- methylanthraquinine	DOC	Stereum hirsutum vs. Coprinus micaceus	Malt agar	Increases during interactions	28
	1,2-Dihydroxyanthaquinone	DOC	Stereum hirsutum vs. Coprinus diseminatus	Malt agar	Increases during interactions	28
	3-Amino-2, 6-dimethoxypyridine	DOC	Nodulisporium sp. intraspecific interaction	Potato dextrose agar (PDA)	Interaction specific	29
	3,5-Dimethlanisole	DOC	Nodulisporium sp. vs. Pythium aphanidermatum	PDA	Interaction specific	29
	4-Hydroxyphenyl ethanol	DOC	Trichoderma viride vs. Schizophyllum commune	PDA	Upregulated in T. viride	4
	5-Methyl,1,3-cyclohexadiene	VOC	Trametes versicolor vs. Stereum gausapatum	Malt broth	Interaction specific	30
	Dibutylbenzene	VOC	T. versicolor vs. S. gausapatum	Malt broth	Interaction specific	30
	Dimethylebenzoic acid, methyl ester	VOC	T. versicolor vs. S. gausapatum	Malt broth	Increases during interactions	30
	Indane	DOC	Nodulisporium sp. intraspecific interaction	PDA	Interaction specific	29
	Methoxybenzoic acid, methyl ester	VOC	T. versicolor vs. S. gausapatum	Malt broth	Increases during interactions	30
	Unidentified benzaldehyde	VOC	T. versicolor vs. S. gausapatum	Malt broth	Decreases in interactions	30
Carboxylic acid	2-Furanocaboxylic acid	DOC	T. viride vs. Schizophyllum commune	PDA	Upregulated in both	4
	2-Hydroxyglutaric acid	DOC	T. viride vs. S. commune	PDA	Upregulated in T. viride	4
	2-Methyl-2,	DOC	Stereum hirsutum vs.	Malt agar	Increases during interactions	28
	3-dihydroxypropanoic acid		Coprinus micaceus	0	0	
	2,3-Dihydroxybutanoic acid	DOC	S. hirsutum vs. C. micaceus	Malt agar	Increases during interactions	28
	3-Hydroxypropanoic acid	DOC	T. viride vs. S. commune	PDA	Upregulated in both	4
	a-Amino butyric acid	DOC	T. viride vs. S. commune	PDA	Upregulated in S. commune	4
	Citramalic acid	DOC	T. viride vs. S. commune	PDA	Upregulated in S. commune	4
	Malic acid	DOC	S. hirsutum vs. Coprinus diseminatus	Malt agar	Increases during interactions	28
			T. viride vs. S. commune	PDA	Upregulated in S. commune	4
	Mandelic acid	DOC	T. viride vs. S. commune	PDA	Upregulated in both	4
	Pyruvic acid	DOC	T. viride vs. S. commune	PDA	Downregulated in S. commune	4
	Tropic acid	DOC	T. viride vs. S. commune	PDA	Upregulated in both	4
Sesquiterpene	Azulene-like	DOC	Nodulisporium sp. intraspecific interaction	PDA	Interaction specific	29
	Caryophyllene-like	DOC	Nodulisporium sp. intraspecific interaction	PDA	Interaction specific	29
	E-Germacrene D	VOC	Hypholoma fasciculare vs. Resinicium bicolor; H. fasciculare vs. Phanerochaete velutina; P. velutina vs. R. bicolor	Beech wood	Interaction specific	31

	Iso-longifolene	VOC	H. fasciculare vs. R. bicolor	Beech wood	Interaction specific	31
	α-Bulgarene	VOC	H. fasciculare vs. R. bicolor	Malt broth	Interaction specific	32
	α-Bulnesene	VOC	H. fasciculare vs. P. velutina; R. bicolor vs. D. immudiana D. venting	Beech wood	Increases during interactions	31
			P. impudicus; P. veutina vs. P. impudicus			
			R. bicolor vs. P. velutina;		Decreases during interactions	
			H. fasciculare vs.			
			P. impudicus			
	α-Cadinene	VOC	H. fasciculare vs. R. bicolor	Malt broth	Increases during interactions	32
	α-Muurolene α-Selinene	VOC DOC	H. fasciculare vs. R. bicolor	Malt broth PDA	Interaction specific	32 29
	α-Seimene	DOC	Nodulisporium sp. intraspecific interaction	PDA	Interaction specific	29
	β-Chamigrene	VOC	H. fasciculare vs. R. bicolor	Beech wood	Interaction specific	31
	β-Selinene	DOC	Nodulisporium sp. vs. Pythium	PDA	Interaction specific	29
	,		aphanidermatum			
	γ-Amorphene	VOC	H. fasciculare vs. R. bicolor	Malt broth	Interaction specific	32
	γ-Cadinene	VOC	H. fasciculare vs. R. bicolor	Beech wood	Interaction specific	31
	γ-Gurjunene	DOC	Nodulisporium sp. intraspecific interaction	PDA	Interaction specific	29
	γ-muurolene	VOC	H. fasciculare vs. R. bicolor	Malt broth	Interaction specific	32
Monoterpene	4-Carene	DOC	Nodulisporium sp. vs.	PDA	Interaction specific	29
			P. aphanidermatum		c	
	a-Myrcene	VOC	T. versicolor vs. S. gausapatum	Malt broth	Interaction specific	30
	Limonene	VOC	H. fasciculare vs. R. bicolor P. velutina vs. P. impudicus	Beech wood	Interaction specific	31
			P. velutina vs. R. bicolor		Increases during interactions Decreases during interactions	
		DOC	Nodulisporium sp. vs.	PDA	Interaction specific	29
		Dod	P. aphanidermatum	1011	interaction opecine	25
	p-Cymene	DOC	Nodulisporium sp. vs.	PDA	Interaction specific	29
	1 9		P. aphanidermatum			
	Pinene	VOC	Trichoderma viride vs.	Straw powder	Interaction specific	33
			Aspergillus niger			
	Thujene	DOC	Nodulisporium sp. vs.	PDA	Interaction specific	29
			P. aphanidermatum			
	Unidentified monoterpene	DOC	Nodulisporium sp. vs.	PDA	Interaction specific	29
			P. aphanidermatum			
	γ-Terpinene	DOC	Nodulisporium sp. vs.	PDA	Interaction specific	29
Courses alongly al	Eventh with a l	DOG	P. aphanidermatum			4
Sugar alcohol	Erythritol	DOC	T. viride vs. S. commune	PDA	Upregulated in S. commune	4
	Galactosylglycerol	DOC DOC	T. viride vs. S. commune T. viride vs. S. commune	PDA PDA	Upregulated in T. viride Downregulated in S. commune	4 4
	Glycerol Hexanetetrol	DOC	T. viride vs. S. commune T. viride vs. S. commune	PDA PDA	Upregulated in S. commune	4 4
	Meso-erythritol	DOC	S. hirsutum vs. C. micaceus	Malt agar	Increases during interactions	4 28
	Meso-eryunnor	DOC	and C. disseminatus	iviait agai	mereases during interactions	20
	Myo-inositol phosphate	DOC	T. viride vs. S. commune	PDA	Upregulated in S. commune	4
	ingo montor prospriate	DOC	S. hirsutum vs. C. micaceus	Malt agar	Increases during interactions	28
	37 1'. 1			•	e e	4
	Xylitol	DOC	T. viride vs. S. commune	PDA	Upregulated in T. viride	4

179

Table 3 (continued	<i>l</i>)					
Chemical class	Name	VOC/DOC	Interaction (species) reported in	Substrate	Change in production	Ref
Ketone	3-Octanone	VOC	H. fasciculare vs. P. velutina; R. bicolor vs. P. impudicus; P. veutina vs. P. impudicus	Beech wood	Increases during interactions	31
			R. bicolor vs. H. fasciculare; H. fasciculare vs. P. impudicus		Decreases during interactions	
	Bicyclo-oct-6-en-3-one	DOC	Nodulisporium sp. intraspecific interaction	PDA	Interaction specific	29
Alkane	Alkanes (C7-C54)	VOC	T. viride vs. Aspergillus niger	Straw powder	Interaction specific	33
	Unidentified alkane	DOC	Nodulisporium sp. intraspecific interaction	PDA	Interaction specific	29
Pyridoxine	Pyridoxine	DOC	S. hirsutum vs. C. micaceus	Malt agar	Increases during interactions	28
	,		T. viride vs. S. commune	PDA	Upregulated in S. commune	4
Alcohol	2-Methyl-1-butanol	DOC	Nodulisporium sp. vs. P. aphanidermatum	PDA	Interaction specific	29
Aldehyde	2,3,4-Trihydroxybutanal	DOC	T. viride vs. S. commune	PDA	Upregulated in T. viride	4
Amino acid	Alanine	DOC	T. viride vs. S. commune	PDA	Downregulated in S. commune	4
Monosaccharide	N-Acetylglucosamine	DOC	T. viride vs. S. commune	PDA	Upregulated in S. commune	4
Nonadiyne	1,8-Nonadiyne	DOC	Nodulisporium sp. intraspecific interaction	PDA	Interaction specific	29

4, see Table 1; 28, Peiris et al. (2008); 29, Sanchez-Fernandez et al. (2016); 30, Evans et al. (2008)[†]; 31, El Ariebi et al. (2016)[†]; 32, Hynes et al. (2007); 33, Chen et al. (2015). [†] Present in main references. Other references found in supporting document 1.

Fig. 3 – A: Intransitive hierarchy involving Phallus impudicus (Pi), Psathyrella hydrophilum (Ph), and Megacollybia platyphylla (Mp) during interactions on malt agar. P. impudicus was replaced by P. hydrophilum, P. hydrophilum was replaced by M. platyphylla, and M. platyphylla was replaced by P. impudicus (Chapela et al., 1988). B: Non-linear hierarchy in combative behaviour between P. velutina (Pv), H. fasciculare (Hf), and Stereum hirsutum (Sh) during interactions in beech wood blocks. P. velutina deadlocked with S. hirsutum, and replaced H. fasciculare, and S. hirsutum was replaced by H. fasciculare. Although not truly intransitive, this type of non-linear hierarchy is common in wood decay communities.

ordered sequence. The assembly history (the order in which species arrive at a resource) affects subsequent community composition and development. Wood decay fungi modify the territory they inhabit both chemically and physically, by altering water content, pH, or by the deposition of different secondary metabolites (as explained above). This niche modification may act as a sort of constitutive defence, or in certain cases, effectively select for species that are adapted to such conditions (Ottosson et al. 2014; Fukami 2015). When earlier colonising species affect the colonisation success of species arriving later, they are described as exerting priority effects (Ottosson et al. 2014; Fukami 2015). Such priority effects are common in wood decay communities (e.g. Fukami et al. 2010; Hiscox et al. 2015b), and there are examples of predecessor-successor relationships where certain species almost exclusively succeed a particular species (including Rayner et al. 1987; Heilmann-Clausen and Christensen 2004).

Since different species of fungi decompose wood at different rates, and in different ways, the species composition within a resource will ultimately determine its rate of decomposition (van der Wal et al. 2015). Further, interactions

themselves directly affect decomposition rate through alteration of fungal respiration and resource utilisation; 60 % of interacting fungi increased total CO2 evolution relative to non-interacting controls (Hiscox et al. 2015a). In the face of global climate change, the sensitivity of interaction outcomes to even slight changes in abiotic conditions, and the resultant changes in community structure, may have large effects on decomposition (Hiscox et al. 2016). Further, the carbon-use efficiency (CUE; the amount of fungal mycelium formed per amount of decomposed wood) of the wood decay community will likely alter under changing conditions, and thus affect the amount of CO₂ released into global cycles; decreases in CUE of artificial wood decay communities occurred with increasing community complexity under a fluctuating temperature regime (Toljander et al. 2006). Although quite large changes in conditions would have to occur to seriously disrupt the ecosystem function of wood decay communities, we predict that alterations in wood decay fungal combative hierarchies and community composition are inevitable in the near future.

5. Research priorities

Previous interactions research has focused on pairwise combinations, often in artificial resources. It is hugely important for future research to use multiple combatants simultaneously to ensure results are ecologically meaningful, since woody resources are colonised by a mixed species community. Pairwise combinations are not always accurate predictors of the outcomes of multispecies interactions (Huisman and Weissing 2001), and simultaneous exposure to multiple competitors may induce novel antagonistic mechanisms in a mycelium (El Ariebi et al. 2016). Studying interactions in artificial media may be convenient - and good for illustrating interaction processes, as shown in Fig. 2 - but interaction processes and outcomes in agar media can be totally different from those in natural substrates (Table 4), and the majority of research is now shifting towards using natural resources, which is more challenging but far more realistic.

Relatively few pairing combinations have been investigated using transcriptomic or proteomic approaches to date (Tables 1 and 2), although with the increasing affordability of emerging technologies this is likely to change. Results from transcriptomic or proteomic profiles of interacting mycelia would provide explanations for the roles of genes and proteins already identified as of importance during interactions. Using knockout or knockdown strains may also help elucidate some of the complex processes involved in these complex and intricate antagonistic relationships. Also of significant interest are the signalling processes involved during self- and non-self-recognition between hyphae, and the events that follow contact between two hyphae of different species. Publication of data - especially the large datasets that result from new technological approaches - from interactions experiments in global databases will facilitate sharing of information and allow more comprehensive comparisons to be undertaken. Altogether, exciting new insights into the

Factor	Venue	Findings	Ref
Temperature	Wood	Combative ability of different species varied between temperatures, with early and late successional species more successful at lower temperatures, and mid successional species more successful at higher temperatures	34
	Soil	A temperature increase of 3 °C (15–18 °C) significantly altered the outcome of interactions between Resinicium bicolor and Phanerochaete velutina	35
	Soil	The fungal dominance hierarchy at ambient temperature (16 °C; P. velutina > R. bicolor > Hypholoma fasciculare) was altered by elevated temperature (20 °C; R. bicolor > P. velutina > H. fasciculare) in ungrazed systems	36
Invertebrate grazing	Soil	Grazing by collembola (Folsomia candida) at 18 °C but not 15 °C reversed the outcome of interactions between R. bicolor and P. velutina	35
	Soil	Grazing by collembola (F. candida) stimulated growth of the dominant species, P. velutina, over its opponent, H. fasciculare	37
	Soil	Grazing by woodlice (Oniscus asellus) and nematodes reversed outcomes of interaction between R. bicolor, P. velutina, and H. fasciculare	38
	Spruce and fir needles	Selective grazing by collembola (F. candida) of primary saprotrophs led to faster replacement by secondary saprotrophs on spruce and fir needles	39
	Soil	Woodlice (O. <i>asellus</i>) preferentially grazed R. <i>bicolor</i> , reversing the outcomes of interactions with P. <i>velutina</i> and H. <i>fasciculare</i> compared to ungrazed combinations. Grazing also reversed outcomes of interactions between P. <i>velutina</i> and H. <i>fasciculare</i>	36
	Sitka spruce needles	Selective grazing by collembola of the dominant fungus Marasmius androsaceus increased the relative abundance of the less palatable Mycena galopus	40
Relative size of mycelium/resource	Wood	Competitive success, measured as the replacement of the opposing fungus, was generally greatest for mycelia inhabiting sectors representing 92 % of a disc and smallest for 8 % sectors	41
	Wood	Competitive ability overrode effects of inoculum size	42
	Wood	Gloeophyllum trabeum, previously shown to lose in 'equal-footing' competition with <i>Irpex lacteus</i> , was able to win in two out of four types of wood when given higher inoculum potential	43
Quality of resources	Wood	T. versicolor, S. hirsutum, and H. fasciculare, combative ability was negatively correlated with colonisation time, however, in B. adusta there was a positive correlation	34
Venue	Wood vs. soil vs. agar	H. fasciculare replaced Steccherinum fimbriatum in agar culture under ambient conditions, but deadlocked with it when mycelial cords met in soil, and was itself replaced when paired in wood	44
Water potential	Agar	Daldinia concentrica was more combative at lower water potentials, whereas other species were less combative	45
Gaseous regime	Agar	D. concentrica was more combative at higher CO ₂ concentrations, whereas other species were less combative	45

34, Hiscox et al. (2016)[†]; 35, Crowther et al. (2012); 36, A'Bear et al. 2(013); 37, Rotheray et al. (2011); 38, Crowther et al. (2011); 39, Klironomos et al. (1992); 40, Newell (1984); 41, Holmer and Stenlid (1993); 42, Holmer and Stenlid (1997); 43, Song et al. (2015); 44, Dowson et al. (1988); 45, Boddy et al. (1985)[†].

[†] Present in main references. Other references found in supporting document 1.

mechanisms underlying antagonistic interactions can be expected in the near future.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

This work was supported by the Natural Environment Research Council grant NE/K011383/1.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.fbr.2017.07.001.

REFERENCES

Abraham, W.R., 2010. Bioactive sesquiterpenes produced by fungi, are they useful for humans as well? Curr. Med. Chem. 8, 583–606.

Adomas, A., Eklund, M., Johansson, M., Asiegbu, F.O., 2006. Identification and analysis of differentially expressed cDNAs during nonself competitive interaction between Phlebiopsis gigantea and Heterobasidion parviporum. FEMS Microbiol. Ecol. 57, 26–39.

- Arfi, Y., Levasseur, A., Record, E., 2013. Differential gene expression in Pycnoporus coccineus during interspecific mycelial interactions with different competitors. Appl. Environ. Microbiol. 79, 6626–6636.
- Baldrian, P., 2004. Increase of laccase activity during interspecific interactions of white-rot fungi. FEMS Microbiol. Ecol. 50, 245–253.
- Bell, A.A., Wheeler, M.H., 1986. Biosynthesis and functions of fungal melanins. Ann. Rev. Phytopathol. 24, 411–451.
- Bloomfield, B.J., Alexander, M., 1967. Melanins and resistance to fungal lysis. J. Bacteriol. 93, 1276–1280.
- Boddy, L., 2000. Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol. Ecol. 31, 185–194.
- Boddy, L., Rayner, A.D.M., 1983. Ecological roles of basidiomycetes forming decay communities in attached oak branches. New Phytol. 93, 77–88.
- Boddy, L., Gibbon, O.M., Grundy, M.A., 1985. Ecology of Daldinia concentrica, effect of abiotic variables on mycelial extension and interspecific interactions. Trans. Br. Mycol. Soc. 85, 201–211.
- Boddy, L., Hiscox, J., 2016. Fungal ecology, principles and mechanisms of colonisation and competition by saprotrophic fungi. Microbiol. Spectr. 4. http://dx.doi.org/10.1128/microbiolspec.-FUNK-0019-2016.
- Chapela, I.H., Boddy, L., Rayner, A.D.M., 1988. Structure and development of fungal communities in beech logs four and a half years after felling. FEMS Microbiol. Ecol. 53, 59–70.
- Collinge, A.J., Markham, P., 1987. Response of severed Penicillium chrysogenum hyphae following rapid Woronin body plugging of septal pores. FEMS Microbiol. Lett. 40, 165–168.
- El Ariebi, N., Hiscox, J., Scriven, S., Müller, C.T., Boddy, L., 2016. Production and effects of volatile organic compounds during interspecific interactions. Fungal Ecol. 20, 144–154.
- Evans, J.A., Eyre, C.A., Rogers, H.J., Boddy, L., Müller, C.T., 2008. Changes in volatile production during interspecific interactions between four wood rotting fungi growing in artificial media. Fungal Ecol. 1, 57–68.
- Eyre, C., Muftah, W., Hiscox, J., Hunt, J., Kille, P., Boddy, L., Rogers, H.J., 2010. Microarray analysis of differential gene expression elicited in *Trametes versicolor* during interspecific mycelial interactions. Fungal Biol. 114, 646–660.
- Fukami, T., Dickie, I.A., Wilkie, J.P., Paulus, B.C., Park, D., Roberts, A., Buchanan, P.K., 2010. Assembly history dictates ecosystem functioning, evidence from wood decomposer communities. Ecol. Lett. 13, 675–684.
- Fukami, T., 2015. Historical contingency in community assembly, integrating niches, species pools, and priority effects. Ann. Rev. Ecol. Evol. Syst. 46, 1–23.
- Haars, A., Huttermann, A., 1980. Function of laccase in the whiterot fungus Fomes annosus. Arch. Microbiol. 125, 233–237.
- Heilmann-Clausen, J., Christensen, M., 2004. Does size matter? On the importance of various dead wood fractions for fungal diversity in Danish beech forests. For. Ecol. Manag. 201, 105–117.
- Heilmann-Clausen, J., Boddy, L., 2005. Inhibition and stimulation effects in communities of wood decay fungi, exudates from colonized wood influence growth by other species. Microb. Ecol. 49, 399–406.
- Hiscox, J.A., Baldrian, P., Rogers, H.J., Boddy, L., 2010. Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus *Trametes versicolor*. Fung. Gen. Biol. 47, 562–571.
- Hiscox, J., Savoury, M., Vaughan, I.P., Müller, C.T., Boddy, L., 2015a. Antagonistic fungal interactions influence carbon

dioxide evolution from decomposing wood. Fung. Ecol. 14, 24–32.

- Hiscox, J., Savoury, M., Müller, C.T., Lindahl, B.D., Rogers, H.J., Boddy, L., 2015b. Priority effects during fungal community establishment in beech wood. ISME J. 9, 2246–2260.
- Hiscox, J., Clarkson, G., Savoury, M., Powell, G., Savva, I., Lloyd, M., Shipcott, J., Choimes, A., Cumbriu, X.A., Boddy, L., 2016. Effects of pre-colonisation and temperature on interspecific fungal interactions in wood. Fung. Ecol. 21, 32–42.
- Hiscox, J., Savoury, M., Toledo, S., Kingscott-Edmunds, J.,
 Bettridge, A., Al Waili, N., Boddy, L., 2017. Threesomes destabilise certain relationships, multispecies interactions between wood decay fungi in natural resources. FEMS Microbiol. Ecol. 93 (3). http://dx.doi.org/10.1093/femsec/fix014.
- Holmer, L., Stenlid, J., 1993. The importance of inoculum size for the competitive ability of wood decomposing fungi. FEMS Microbiol. Ecol. 12, 169–176.
- Huisman, J., Weissing, F.J., 2001. Fundamental unpredictability in multispecies competition. Am. Nat. 157, 488–494.
- Iakovlev, A., Olson, A., Elfstrand, M., Stenlid, J., 2004. Differential gene expression during interactions between Heterobasidion annosum and Physisporinus sanguinolentus. FEMS Microbiol. Letts 241, 79–85.
- Imtiaj, A., Lee, T.S., 2007. Screening of antibacterial and antifungal activities from Korean wild mushrooms. World J. Agric. Sci. 3, 316–321.
- Karlsson, M., Stenlid, J., Lindahl, B., 2016. Functional differentiation of chitinases in the white-rot fungus Phanerochaete chrysosporium. Fung. Ecol. 22, 52–60.
- Laird, R., Schamp, B.S., 2006. Competitive intransitivity promotes species coexistence. Am. Nat. 168, 182–193.
- Lemfack, M.C., Nickel, J., Dunkel, M., Preissner, R., Piechulla, B., 2013. mVOC, a database of microbial volatiles. Nucleic Acids Res. 42, 744–748.
- Lindahl, B.D., Finlay, R.D., 2006. Activities of chitinolytic enzymes during primary and secondary colonisation of wood by wooddegrading basidiomycetes. New Phytol. 169, 389–397.
- Lindahl, B.D., Olsson, S., 2004. Fungal translocation creating and responding to environmental heterogeneity. Mycologist 18, 79–88.
- Lindahl, B., Stenlid, J., Finlay, R., 2001. Effects of resource availability on mycelial interactions and 32P transfer between a saprotrophic and an ectomycorrhizal fungus in soil microcosms. FEMS Microbiol. Ecol. 38, 43–52.
- Lindahl, B., Stenlid, J., Olsson, S., Finlay, R., 1999. Translocation of 32P between interacting mycelia of a wood decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytol. 144, 183–193.
- McGuire, K.L., Treseder, K.K., 2010. Microbial communities and their relevance for ecosystem models, decomposition as a case study. Soil Biol. Biochem. 42, 529–535.
- Ocón, A., Hampp, R., Requena, N., 2007. Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytol. 174, 879–891.
- Ottosson, E., Nordén, J., Dahlberg, A., Edman, M., Jönsson, M., Larsson, K.H., Olsson, J., Penttilä, R., Stenlid, J., Ovaskainen, O., 2014. Species associations during the succession of woodinhabiting fungal communities. Fungal Ecol. 11, 17–28.
- Swift, M.J., Boddy, L., 1984. Animal-microbial interactions in wood decomposition. In: Anderson, J.M., Rayner, A.D.M., Walton, D.W.H. (Eds.), Invertebrate-Microbial Interactions. Cambridge University Press, Cambridge, UK, pp. 89–131.
- Rayner, A.D.M., Boddy, L., Dowson, C.G., 1987. Temporary parasitism of Coriolus spp. by Lenzites betulina, a strategy for domain capture in wood decay fungi. FEMS Microbiol. Ecol. 45, 53–58.
- Rayner, A.D.M., Boddy, L., 1988. Fungal Decomposition of Wood: Its Biology and Ecology. John Wiley and Sons, Chichester, UK.

- Rayner, A.D.M., Griffith, G.S., Wildman, H.G., 1994. Induction of metabolic and morphogenetic changes during mycelial interactions among species of higher fungi. Biochem. Soc. Trans. 22, 389–395.
- Silar, P., 2005. Peroxide accumulation and cell death in filamentous fungi induced by contact with a contestant. Mycol. Res. 109, 137–149.
- Toljander, Y.K., Lindahl, B.D., Holmer, L., Högberg, N.O.S., 2006. Environmental fluctuations facilitate species co-existence and increase decomposition in communities of wood decay fungi. Oecologia 148, 625–631.
- Tornberg, K., Olsson, S., 2002. Detection of hydroxyl radicals produced by wood-decomposing fungi. FEMS Microbiol. Ecol. 40, 13–20.
- Tudor, D., Robinson, S.C., Cooper, P.A., 2013. The influence of pH on pigment formation by lignicolous fungi. Int. Biodeter. Biodegr. 80, 22–28.

- Ujor, V.C., Peiris, D.G., Monti, M., Kang, A.S., Clements, M.O., Hedger, J.N., 2012. Quantitative proteomic analysis of the response of the wood-rot fungus Schizophyllum commune to the biocontrol fungus Trichoderma viride. Lett. Appl. Microbiol. 54, 336–343.
- van der Wal, A., Ottosson, E., de Boer, W., 2015. Neglected role of fungal community composition in explaining variation in wood decay rates. Ecology 96, 124–133.
- Wells, J.M., Boddy, L., Evans, R., 1995. Carbon translocation in mycelial cord systems of Phanerochaete velutina (DC: Pers.) Parmasto. New Phytol. 129, 467–476.
- Zhao, Y., Xi, Q., Xu, Q., He, M., Ding, J., Dai, Y., Keller, N.P., Zheng, W., 2015. Correlation of nitric oxide produced by an inducible nitric oxide synthase-like protein with enhanced expression of the phenylpropanoid pathway in *Inonotus obliquus* cocultured with *Phellinus morii*. Appl. Microbiol. Biotechnol. 99, 4361–4372.