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ABSTRACT

Fungal community structure and development in decaying woody resources are largely
dependent on interspecific antagonistic interactions that determine the distribution of ter-
ritory — and hence the nutrients within — between different individuals occupying that
resource. Interactions are mediated by antagonistic mechanisms, which determine the
combative outcome: either deadlock, where neither mycelium loses any territory, or
replacement, where one mycelium displaces the other. These mechanisms function
aggressively and/or defensively, and include changes in primary metabolism and growth,
as well as secondary metabolite production and stress mitigation responses. This chemical
warfare may occur as a constitutive defence through modification of the territory occupied
by an individual, and the deposition of antimicrobial compounds within. Following detec-
tion of a competitor, the metabolite and enzymic profile of a mycelium alters both qualita-
tively and quantitatively, and different mechanisms may be stimulated when confronted
with different competitors. Biotic and abiotic factors, even small alterations, can affect
the deployment of these antagonistic mechanisms, altering the general hierarchy of
combative ability between species and making it impossible to predict outcomes with cer-
tainty. Here we explore recent advances in our understanding of combative interactions
between wood decayers, and explain why future research priorities involving the applica-
tion of emerging biochemical and molecular technologies must focus on interactions in
more ecologically realistic and meaningful scenarios.
© 2017 The Authors. Published by Elsevier Ltd on behalf of British Mycological Society. This
is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
4.0/).

1. Introduction

effectively competition for territory and the nutrients within,
and encompasses both interference and exploitation competi-

Understanding the dynamics of decomposer community
development is essential for modelling carbon cycling and
other ecosystem functions, and the resilience of these pro-
cesses to environmental change (e.g. McGuire and Treseder
2010). Fungal competition in decaying woody resources is

tion; fungi exhibit the former by inhibiting other organisms
and limiting their access to resources, and the latter by
sequestering nutrients within the territory they occupy, hence
preventing other organisms from using them (Boddy and
Hiscox 2016). In general, fungal competition can be divided
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into primary resource capture, where a fungus colonises pre-
viously unoccupied territory, and secondary resource capture,
where a fungus captures territory from fungi that have
already colonised a resource (Boddy 2000). Success in primary
resource capture is determined by efficient dispersal mecha-
nisms, rapid growth rate, and the ability to use easily acces-
sible nutrients (R-selected characteristics; Boddy 2000).
Success in secondary resource capture depends on aggressive
and/or defensive antagonistic mechanisms (C-selected), or at
very late stages of decomposition, the ability to tolerate
abiotic/biotic stress and disturbance (S-selected and R-
selected; Boddy 2000).

The ultimate outcome of combative interactions can either
be deadlock, where neither fungus loses any territory, or
replacement, where one fungus displaces the other. Between
these extremes lies a spectrum of outcomes, including partial
replacement of one fungus by another, or mutual replace-
ment, where both fungi capture territory from each other
(Boddy 2000). These combative interactions can be mediated
at a distance, following contact at the level of individual hy-
phae (e.g. hyphal interference and mycoparasitism, see
Boddy and Hiscox 2016), or following contact at the mycelial
level. The establishment of physical contact between two
competing myecelia, often called ‘gross mycelial contact’, re-
sults in the induction of antagonistic mechanisms in one or
both competitors. Competing mycelia undergo changes in
morphology, secondary metabolite production, pigment
deposition, accumulation of reactive oxygen species, and al-
terations in enzyme activity (see Section 2). These changes
may function aggressively and/or defensively against a
competitor, and different mechanisms may be stimulated
when confronted with different competitors (Eyre et al.
2010). The majority of this review will concentrate on mycelial
interactions, as they are the most frequently observed interac-
tion type within wood decay communities.

2. Antagonistic mechanisms
Constitutive defence and antagonism at a distance

Constitutive defences function to impede the invasion of
colonised territory by a competitor mycelium. Certain species
modify the territory they occupy to make it less hospitable for
invaders, for example lowering water potential or pH (Boddy
et al. 1985; Tudor et al. 2013). Some fungi produce pseudo-
sclerotial plates, thin shells of melanised tissue completely
surrounding the territory they occupy, which maintain the
conditions within, and can also act as a physical barrier
against invasion (Rayner and Boddy 1988; Fig. 1A). Further,
fungi produce, and perhaps accumulate, inhibitory secondary
metabolites, which can slow or halt the extension of compet-
itors (Heilmann-Clausen and Boddy 2005; Fig. 1B and C). These
secondary metabolites span a variety of chemical classes;
different species tend to produce a characteristic metabolite
profile, although this is partly dependent on their growth con-
ditions (Lemfack et al. 2013; Fig. 1D and E). Inhibitory effects of
both diffusible and volatile organic compounds (DOCs and
VOCs, respectively) have been demonstrated for fungi
growing in wood blocks, across soil, and in artificial agar

media (Heilmann-Clausen and Boddy 2005; El Ariebi et al.
2016). DOCs have local antagonistic potential (e.g. in scenarios
where they can accumulate or diffuse through substrata),
whereas VOCs can act over greater distances and in heteroge-
neous environments. Whilst these chemical defences may
help protect against invasion by most competitors, adaptive
relationships occur where certain species are attracted to
the metabolite profile emitted by a competitor, with certain
VOC/DOC profiles stimulating competitor growth (Evans
et al. 2008). Similarly, territory modification may provide an
advantage for invading fungi with analogous preferences.

Morphological changes

Changes in mycelial morphology are most dramatic in areas
in direct contact with the competitor: the interaction zone.
Hyphae may aggregate to form barrages which physically
block invasion by competitors, or to form invasive replace-
ment fronts or cords (linear aggregations of hyphae) to pene-
trate competitor defences (Fig. 2A—C). Morphological
structures may differ between regions of the same interaction
front, indicating that antagonistic mechanisms are deployed
in response to local stimuli (Rayner et al. 1994). Morphological
changes during interactions are associated with changes in
gene expression compared to non-interacting mycelia (Table
1). For example, cytokinesis-related proteins and 1,3-beta
glucan synthase were upregulated in Trametes versicolor during
antagonism with Stereum gausapatum, indicating increases in
cell division and cell wall formation or alteration (Eyre et al.
2010). This was concomitant with a downregulation of chitin
synthase expression in S. gausapatum; the decrease in growth
of this fungus may be associated with its eventual replace-
ment by T. versicolor (Eyre et al. 2010).

Melanin deposition is often associated with morphological
changes at interacting hyphal fronts, and may be wall-bound
or extracellular, often visible as pigmentation (Rayner et al.
1994). Melanins are formed by the oxidative linkage of aro-
matic metabolites into complex heteropolymers which alter
hyphal hydrophobicity, and confer structural strength by
strengthening cell-to-cell adhesion (Bell and Wheeler 1986).
Similarly, hydrophobin proteins, which are involved in form-
ing attachments in aggregating cells and have been linked to
the formation of aerial hyphae and cell wall assembly, in-
crease in expression in both competitors during interactions
between Phlebiopsis gigantea and Heterobasidion parviporum
(Adomas et al. 2006). Hydrophobins may also have a role in
sealing off hyphae damaged by antagonistic processes, pre-
venting loss of cytoplasm from surrounding compartments.
A similar role has been suggested for the protein HEX-1 (hex-
agonal protein 1) which is upregulated in Schizophyllum
commune during interactions with Trichoderma viride (Ujor
et al. 2012). HEX-1 is a major component of the Woronin
body, which functions to plug septa (the junctions between
different hyphal compartments) and seal off damaged hyphae
(Collinge and Markham 1987).

Changes in metabolism

The processes involved in antagonism are energetically
expensive. Increases in respiration and nutrient acquisition
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Fig. 1 — A: Cross section of a decaying beech trunk showing the mosaic structure of the decay community within. Dark lines
are pseudosclerotial plates (PSPs) demarcating the territory of different individuals. B: Transverse section of a beech wood
block colonised with Coniophora puteana (left, darkly pigmented) and Trametes versicolor (right, lightly pigmented). T. versi-
color will eventually replace C. puteana. C: Decaying beech disk colonised by two main competitors, one highly pigmented
and the other non-pigmented. D: Resinicium bicolor growing across soil, under exposure to the VOCs produced by bare soil. E:
R. bicolor growing under exposure to VOCs from self-pairings of R. bicolor. Images D and E adapted from El Ariebi et al. (2016).

may occur to fund these processes; for example, production of
invasive mycelial cords by a competitor is associated with in-
creases in respiration (Hiscox et al. 2015a). Increased expres-
sion of genes encoding key components of the glycolytic
pathway, glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) and phosphoglucomutase, were detected in P. gigan-
tea during combat with H. parivporum, and also in T. versicolor
during interactions with Bjerkandera adusta (Table 1; Adomas
et al. 2006; Eyre et al. 2010). Increased production of cellulases,
phosphatase and chitinases, both at interaction zones and
throughout competing mycelia, implies upregulation of
nutrient acquisition to support increased energetic demands
(Table 2 and references within). The concurrent reduction in
biomass accumulation during interactions between Pycnopo-
rus coccineus and Coniophora puteana supports the theory that
this increased nutrient acquisition functions to fund antago-
nistic mechanisms rather than mycelial growth (Arfi et al.
2013).

The mycelium of a displaced competitor is utilised by the
victor; metabolism and respiration increased in regions where
one mycelium had captured the territory of another, concom-
itant with increases in activity and expression of genes whose
products likely function to recycle the mycelium of the dis-
placed competitor (Lindahl and Finlay 2006; Ujor et al. 2012;
Arfi et al. 2013; Hiscox et al. 2015a; Karlsson et al. 2016).

Changes in activity of proteases likely function to hydrolyse
competitor cell walls and contents, and increased expression
of an array of genes encoding aspartyl proteases, serine-like
proteases, and endochitinases have been detected during
antagonistic interactions (Ujor et al. 2012; Arfi et al. 2013).
Further, genes whose products are involved in carbohydrate
and nitrogen metabolism were significantly upregulated in
myecelia of T. versicolor during interactions where it replaced
S. gausapatum or deadlocked with Bjerkandera adusta (i.e.
where it captured or maintained territory), but not during in-
teractions where T. versicolor was itself replaced by Hypholoma
fasciculare (Eyre et al. 2010).

Several metabolites related to stress mitigation are upregu-
lated during antagonism, including cyclophilins, protein
chaperones and heat shock proteins, which are known to
function in stress tolerance by maintaining protein stability
and enhancing folding (Adomas et al. 2006; Eyre et al. 2010;
Ujor et al. 2012). The disaccharide trehalose also functions as
a protein- and membrane-stabiliser, and accumulates in
stressed mycelia (Ocon et al. 2007). Reductions in trehalose
phosphorylase content of S. commune during interactions
with T. viride suggests preservation of trehalose by decreasing
its catabolism by this enzyme (Ujor et al. 2012). Sugar alcohols
increase during interactions, possibly with a similar function
in stress tolerance (Table 3).
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Fig. 2 — A: Three-way interaction between Hypholoma fasciculare (left), Trametes versicolor (middle), and Stereum hirsutum
(right) on 2 % malt agar. A barrage was formed at the interaction zone between T. versicolor and S. hirsutum, and cords of H.
fasciculare are beginning to encroach over T. versicolor. B: Interaction between T. versicolor (bottom) and H. fasciculare (top) in
beech wood blocks. Cords of H. fasciculare are overgrowing the block colonised by T. versicolor. Interestingly, at this stage of
the interaction, no replacement of T. versicolor had occurred, although it would later be completely replaced by H. fasciculare.
C: Interaction between cord systems of P. velutina (left) and H. fasciculare (right) with a beech wood block colonised by T.
versicolor (middle), across soil. Cords of P. velutina have overgrown the T. versicolor block, and are beginning to attack the H.
fasciculare block, resulting in the eventual replacement of both competitors. D: S. hirsutum (left) interacting with H. fasciculare
on 2 % malt agar which has been supplemented with a dye that forms a purple colour when oxidised by laccase; H. fasciculare
produced laccase at the colony margins but S. hirsutum did not. E: Accumulation of ROS (superoxide) during interaction
between Kretschmaria deusta (left) and T. versicolor on 2 % malt agar; ROS levels are highest in interaction structures. F:
Peroxidase activity is highest at the edge indicated by brown dye of the invading front during interaction between T. ver-

sicolor (left) and Eutypa spinosa (right). Staining techniques used in D—F were taken from Silar (2005).

Secondary metabolite production

Profiles of VOCs and DOCs alter both quantitatively and qual-
itatively during antagonism (Table 3 and references within).
Compounds that were constitutively produced may be up- or
downregulated, and additional compounds are often made.
For example, production of dimethylbenzoic acid by S. gausa-
patum increased when confronted with T. versicolor, and the
terpenoid a-myrcene was detected, which was not present
in the VOC profile of either competitor during solo growth
(Evans et al. 2008). Interaction specific VOCs are frequently ter-
penoids, predominantly sesquiterpenes (El Ariebi et al. 2016),
which have bioactive properties, such as antifungal activity
(Abraham 2010). Secondary metabolites may be actively toxic
to one or both competitors, possibly through disruption of
metabolic processes, a trait referred to as ‘'metabolic interfer-
ence’. The fungi producing these metabolites may either have
resistance to their own toxins, or sacrifice their own mycelium

in the region of production. The reduction in biomass accumu-
lation during interactions between P. coccineus and C. puteana
may partly result from self-inhibition of P. coccineus by its
own antifungal toxins (Imtiaj and Lee 2007; Arfl et al. 2013).

Enzyme activity and ROS

In addition to alteration of activities of enzymes involved in
nutrient acquisition (see Sub-section Changes in
metabolism), interacting fungi often produce extracellular en-
zymes to attack competitor mycelium directly, e.g. cell wall-
hydrolysing chitinases and glucanases (Lindahl and Finlay
2006). Enzymes involved in generation of reactive oxygen spe-
cies (ROS), such as NADPH oxidases, laccase (phenoloxidase)
and peroxidases, are sometimes upregulated (Eyre et al.
2010; Fig. 2D and F). ROS accumulate at interaction zones
(Fig. 2E) and may have a toxic function by causing oxidative
damage to competitor mycelia (Tornberg and Olsson 2002;



Table 1 — Genes & proteins changing in expression during interactions. R, replacement. References in footnotes.

Mechanism Name/class Up/down Focal species Competitor Substrate Eventual outcome  Ref
regulated
Detoxification Cystathione gamma-lyase Down Physisporinus sanguinolentus Heterobasidion annosum Hagem agar + Inhibition of H. annosum 1
cellophane
Cytochrome c oxidase subunit 1 Down Trametes versicolor Stereum gausapatum Malt agar R by T. versicolor 2
Cytochrome P450 Down Pycnoporus coccineus Coniophora puteana; Malt-yeast extract R by P. coccineus 3
Botrytis cinerea broth (MYEB)
Cytochrome P450 Down T. versicolor S. gausapatum Malt agar R by T. versicolor 2
Serine/threonine protein kinases Down P. coccineus C. puteana; B. cinerea MYEB R by P. coccineus 3
Killer toxin resistant gene Up P. sanguinolentus H. annosum Hagem agar + Inhibition of H. annosum 1
cellophane
Glutathione-S-transferase Up P. coccineus B. cinerea MYEB R by P. coccineus 3
Dihydrolipoamide acetyltransferase Up P. coccineus B. cinerea MYEB R by P. coccineus 3
Zinc-binding oxidoreductase Up P. coccineus B. cinerea MYEB R by P. coccineus 3
Predicted short-chain-type dehydrogenase Up P. coccineus B. cinerea MYEB R by P. coccineus 3
Kynurenine 3-monooxygenase Up P. coccineus B. cinerea MYEB R by P. coccineus 3
Aldo/keto reductase Up P. coccineus B. cinerea MYEB R by P. coccineus 3
Predicted short-chain-type dehydrogenase Up P. coccineus B. cinerea MYEB R by P. coccineus 3
Zinc-binding oxidoreductase Up P. coccineus B. cinerea MYEB R by P. coccineus 3
Glycosyl transferase Up Schizophyllum commune Trichoderma viride PDA R by T. viride 4
Short-chain dehydrogenase/reductase Up T. viride S. commune PDA R by T. versicolor 4
Oxidoreductase Up T. versicolor S. gausapatum Malt agar R by T. versicolor 2
Superoxide dismutase Up Trichoderma aggressivum Agaricus bisporus Malt broth + R by T. aggressivum 5
compost extract
Nutrient acquisition Fimbrin Down P. sanguinolentus H. annosum Hagem agar + Inhibition of H. annosum 1
and growth cellophane
Chitin synthase Down P. coccineus B. cinerea MYEB R by P. coccineus 3
1,3-Beta-glucan synthase Up & T. versicolor S. gausapatum Malt agar R by T. versicolor 2
Down
Cytokinesis-related protein Up T. versicolor S. gausapatum Malt agar R by T. versicolor 2
Guanylate kinase Up T. aggressivum A. bisporus Malt broth + R by T. aggressivum 5
compost extract
Actin depolymerase Up T. aggressivum A. bisporus Malt broth + R by T. aggressivum 5
compost extract
Primary Mitochondrial inner membrane protein Down P. sanguinolentus H. annosum Hagem agar + Inhibition of H. annosum 1
metabolism cellophane
Mitochondrial protein Down P. gigantea H. parviporum Hagem agar R by P. gigantea 6
ATP-binding cassette Down P. gigantea H. parviporum Hagem agar R by P. gigantea 6
Triosephosphate isomerase Down S. commune T. viride PDA R by T. viride 4
Trehalose phosphorylase Down S. commune T. viride PDA R by T. viride 4
Sugar transporter Down T. versicolor S. gausapatum Malt agar R by T. versicolor 2
ABC transporter Down T. versicolor S. gausapatum Malt agar R by T. versicolor 2
Succinyl-CoA synthetase Up H. parviporum P. gigantea Hagem agar R by P. gigantea 6
Mitochondrial protein Up H. parviporum P. gigantea Hagem agar R by P. gigantea 6
GAPDH Up P. gigantea H. parviporum Hagem agar R by P. gigantea 6

(continued on next page)
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Table 1 (continued)

Mechanism Name/class Up/down Focal species Competitor Substrate Eventual outcome  Ref
regulated
GAPDH Up T. viride S. commune PDA R by T. viride 4
Glutamine synthetase Up P. gigantea H. parviporum Hagem agar R by P. gigantea 6
Endopolygalacturonase Up P. gigantea H. parviporum Hagem agar R by P. gigantea 6
Ca2*-dependent phospholipid-binding protein Up P. coccineus B. cinerea MYEB R by P. coccineus 3
GTPase effector Up P. coccineus B. cinerea MYEB R by P. coccineus 3
Two-component phosphorelay intermediate Up P. coccineus B. cinerea MYEB R by P. coccineus 3
Glycoside hydrolase family 13 protein Up & T. versicolor S. gausapatum Malt agar R by T. versicolor 2
Down
Protein metabolism Peptide N-myristoyl transferase Down P. gigantea H. parviporum Hagem agar R by P. gigantea 6
Amino acid transporters Down P. coccineus B. cinerea MYEB R by P. coccineus 3
Alpha-ketoglutarate dependent Down T. versicolor S. commune Malt agar R by T. versicolor 2
xanthine dioxygenase
Ubiquitin Up H. parviporum P. gigantea Hagem agar R by P. gigantea 6
Cyclophilin Up P. gigantea H. parviporum Hagem agar R by P. gigantea 6
Probably E3 ubiquitin protein ligase Up S. commune T. viride PDA R by T. viride 4
Aspartyl protease Up T. viride S. commune PDA R by T. viride 4
Ubiquitin activating enzyme Up T. versicolor S. gausapatum Malt agar R by T. versicolor 2
Secondary metabolite Phenylalanine ammonia lyase Up S. commune T. viride PDA R by T. viride 4
production
Stress mediation Hydrophobins 2 & 3 Down P. gigantea H. parviporum Hagem agar R by P. gigantea 6
Hydrophobin 1 Up P. gigantea H. parviporum Hagem agar R by P. gigantea 6
Heat shock protein 90 Down P. gigantea H. parviporum Hagem agar R by P. gigantea 6
REcA homolog rah1 Up H. annosum P. sanguinolentus Hagem agar + Inhibition of H. annosum 1
cellophane
HEX1 Up S. commune T. viride PDA R by T. viride 4
Cyclophilin A-1 Up S. commune T. viride PDA R by T. viride 4
Spermine synthetase Down T. aggressivum A. bisporus Malt broth + R by T. aggressivum 5
compost extract
Maintenance of telomere Down T. aggressivum A. bisporus Malt broth + R by T. aggressivum 5
capping protein 2 compost extract
Transcription/translation Mago nashi like protein Down P. sanguinolentus H. annosum Hagem agar + Inhibition of H. annosum 1
cellophane
RNA helicase Down P. coccineus B. cinerea MYEB R by P. coccineus 3
Transcriptional regulator Down T. viride S. commune PDA R by T. viride 4
Transcriptional repressor Up H. annosum P. sanguinolentus Hagem agar + Inhibition of H. annosum 1
cellophane
40S ribosomal protein Up T. versicolor S. gausapatum Malt agar R by T. versicolor 2
60S ribosomal protein Up P. gigantea H. parviporum Hagem agar R by P. gigantea 6
60S acidic ribosomal protein Up T. aggressivum A. bisporus Malt broth + R by T. aggressivum 5
compost extract
60S ribosomal protein L20A Up T. versicolor S. gausapatum Malt agar R by T. versicolor 2
ExoRNase Up S. commune T. viride PDA R by T. viride 4
Transcriptional regulator Up S. commune T. viride PDA R by T. viride 4
RNA polymerase Up S. commune T. viride PDA R by T. viride 4
elF-5A Up S. commune T. viride PDA R by T. viride 4
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Silar 2005), but their role(s) remain unclear, and accumulation
may be an incidental result of the disruption of cellular pro-
cesses caused by other antagonistic mechanisms, rather
than active production. Fungi employ a range of molecular
machineries to alleviate the effects of ROS and mitigate any
oxidative damage during combat, such as increased expres-
sion of genes encoding catalase and putative DNA repair pro-
teins (lakovlev et al. 2004; Eyre et al. 2010). Increases in ROS
levels may function as a defence response similar to that in
plants (Silar 2005). Similarly, increases in another potential
signalling compound, nitric oxide (NO), have also been
detected during interactions between Inonotus obliquus and
Phellinus morii, triggering production of antifungal phenylpro-
panoid metabolites (Zhao et al. 2015).

Activities of peroxidases and laccase (phenoloxidase) in-
crease at interaction zones (Baldrian 2004), and are highly
localised to this region (Hiscox et al. 2010). Laccase and perox-
idases may be associated with increased utilisation of
the resource during combat, or generation of ROS, but their
main function is probably the extracellular detoxification
of competitor VOCs and DOCs (Baldrian 2004; Hiscox
et al. 2010), or in the formation of melanins (see Sub-section
Morphological changes). In addition to their structural proper-
ties, melanins confer protection from ROS and toxins, and
may also have antibiotic properties, as has been shown for
wall bound melanins of Phellinus weirii (Haars and Hetterman
1980). However, the most important role of melanin is thought
to be protection against hydrolytic enzymes; generally, the
ability of hydrolytic enzymes to degrade fungal walls is
inversely correlated with the melanin content of the wall
(Bloomfield and Alexander 1967). Upregulation of intracellular
detoxifying enzymes may constitute another line of defence:
cytochrome monooxygenases, short-chain dehydrogenases/
reductases, and glutathione-S-transferases have all been
implicated in the intracellular detoxification of xenobiotics,
and are upregulated during interactions (Table 1).

R by T. versicolor
R by T. versicolor

R by T. versicolor
R by T. viride

R by T. viride

Malt agar
Malt agar
PDA

Malt agar

PDA

S. commune
S. gausapatum
S. gausapatum

T. viride
S. gausapatum

T. viride

T. versicolor
T. versicolor
S. commune
T. versicolor

Up
Up
Up
Up
Up &
Down

3. Outcomes of interactions

Fungi vary markedly in their combative ability, which is
roughly related to their position within the successional com-
munity in decaying wood: primary colonisers are usually the
weakest combatants, and the strongest are often later second-
ary colonisers (Hiscox et al. 2016). At the latest stages of decay,
the ability to tolerate abiotic nutrient stress or disturbance by
saproxylic invertebrates becomes a more important determi-
nant of community composition than relative combative abil-
ity (Swift and Boddy 1984; Rayner and Boddy 1988). Within any
particular system there is a hierarchy of combative ability,
similar to a sports league (Boddy 2000). It is not a rigid hierar-
chy, and intransitive (non-hierarchical) relationships are
common between wood decay fungi (Boddy 2000; Laird and
Schamp 2006; Fig. 3). The simplest example of intransitive
competition is the game of rock-paper-scissors, where rock
is covered by paper, paper is cut by scissors, and scissors are
blunted by rock. In spatially explicit interactions, such as
those between fungi inhabiting decaying wood, the cyclical
competition structure of intransitive interactions promotes
species coexistence compared to combinations without

Bifunctional preprotein translocase
Glycine-rich RNA binding protein

DNA binding protein SART-1
Pre-mRNA splicing factor 38B

Elongation factor II
1, lakovlev et al. (2004)'; 2, Eyre et al. (2010); 3, Arfi et al. (2013)f; 4, Ujor et al. (2012)"; 5, O’Brien et al. (2015); 6, Adomas et al. (2006).

T Present in main references. Other references found in supporting document 1.




Table 2 — Enzymes changing in activity during interactions.

Enzyme Function Proposed role Increase/decrease Interaction (species) reported in & substrate Ref
in interactions
Laccase Degradation Detoxification of competitor Increase Trametes versicolor us. Stereum gausapatum, Bjerkandera Malt agar 7
of lignin metabolites; pigment production; adusta, Hypholoma fasciculare, Daldinia concentrica
ROS generation T. versicolor us. Trichoderma harzianum, Acremonium CLN (cellulose low nutrient) broth 8
sphaerospermum, Penicillium rugulosum, Escherichia
coli, Endomyces magnusii
Pleurotus ostreatus vs. Trichoderma harzianum, Humicola CLN broth 8
grisea, P. rugulosum, E. magnusii
T. harzianum vs. 16 competitors CLN broth 8
Heterobasidion annosum vs. Resinicium bicolor Hagem agar + cellophane 9
T. verisicolor vs. T. harzianum Defined low nitrogen broth (DLNB) 10
Phellinus weirii vs. competitors Malt agar 11
Phlebia radiata, Phlebia rufa, T. versicolor, Stereum hirsutum, Malt agar 12
P. velutina and H. fasciculare
Pleurotus sp., Dichomitus squalens vs. soil microbiota Wheat straw & soil 13
T. harzianum vs.Lentinula edodes Yeast malt extract broth 14
T. harzianum vs. competitors Yeast malt extract agar 15
Rhizoctonia solani vs. Pseudomonas fluorescens Potato dextrose agar (PDA) 16
Serpula lacrymans, Coniophora puteuna, Trichoderma Malt agar 17
spp., Scytalidium
P. ostreatus vs. Ceriporiopsis subvermispora Defined broth 18
P. ostreatus vs. Phanerochaete chrysosporium Neem hull waste, wheat bran, 19
sugarcane bagasse
H. fasciculare vs. Peniophora lycii Malt agar & cellophane 20
Marasmius pallescens vs. Marasmiellus troyanus Defined broth 21
Coprinopsis cinerea vs. Gongronella sp. Defined medium 22
Trametes maxima vs. Paecilomyces carneus PDA + additives 23
Decrease T. versicolor vs. Fomes fomentarius Malt agar 7
MnP Degradation Detoxification of competitor Increase T. versicolor us. S. gausapatum, B. adusta, H. fasciculare, Malt agar 7
of lignin metabolites; pigment production; D. concentrica, F. fomentarius
ROS generation Pleurotus sp., D. squalens vs. soil microbiota Wheat straw & soil 13
P. ostreatus vs. C. subvemispora or Physisporinus rivulosus Defined broth 18
P. ostreatus vs. Phanerochaete chrysosporium Neem hull waste, wheat bran, 19
sugarcane bagasse
Marasmius pallescens vs. Marasmiellus troyanus Defined broth 21
Trametes maxima vs. Paecilomyces carneus PDA + additives 23
Peroxidase Degradation Detoxification of competitor Increase Phellinus weirii vs. competitors Malt agar 11
of lignin metabolites; pigment production; Phlebia radiata, P. rufa, Coriolus versicolor, Stereum Malt agar 12
ROS generation hirsutum, Phanerochaete velutina and Hypholoma fasciculare
Serpula lacrymans, Coniophora puteuna, Trichoderma Malt agar 17
spp., Scytalidium
LiP Degradation Detoxification of competitor Increase P. ostreatus vs. P. chrysosporium Neem hull waste, wheat bran, 19
of lignin metabolites; pigment production; sugarcane bagasse

ROS generation
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Malt agar

T. versicolor vs. H. fasciculare
Fomitopsis pinicola, Coniophora

Increase
arida, Hypholoma

Attack of competitor cell walls,

Chitin
degradation after

NAG

24

Spruce veneer

degradation

secondary colonisation

capnoides, R. bicolor

25

PDA

Trichoderma aggressivum vs.

Agaricus bisporus

26

PDA

R. solani vs. T. harzianum

Increase

(gene expression)

Increase

Malt agar

T. versicolor vs. S. gausapatum,

B. adusta

Increased nutrient acquisition

Phosphate
release

Acid phosphatase

D. concentrica

27

Soil
Soil
Soil

are vs. P. velutina
are vs. P. velutina
are vs. P. velutina
or vs. B. adusta

H. fascicu

27

H. fascicu

Increase
Increase
Increase
Increase

Increased nutrient acquisition

Cellulose

a-Glucosidase

27

H. fascicu

degradation

Cellobiohydralase
B-Glucosidase
Cellobiase

Malt agar
DLNB

T. versico

10

T. verisicolor vs. T. harzianum

7, Hiscox et al. (2010)'; 8, Baldrian (2004)'; 9 Iakovlev and Stenlid (2000); 10, Freitag and Morrel (1992); 11, Li (1981); 12, White and Boddy (1992); 13, Lang et al. (1998); 14, Savoie et al. (1998); 15, Savoie et al.

(2001); 16, Crowe and Olsson (2001); 17, Score et al. (1997); 18, Chi et al. (2007); 19, Verma and Madamwar (2002); 20, Rayner et al. (1994); 21, Gregorio et al. (2006); 22, Pan et al. (2014); 23, Cupul et al. (2014);

24, Lindahl and Finlay (2006); 25, Guthrie and Castle (2006); 26, Zeilinger et al. (1999); 27, Snajdr et al. (2011).

f Present in main references. Other references found in supporting document 1.

intransitivity (Laird and Schamp 2006; Hiscox et al. 2017). The
mechanisms governing intransitive situations are unclear,
but presumably result from different combinations of attack
and defence traits, with different opponents varying in sus-
ceptibility to different mechanisms.

Fungi may utilise different antagonistic mechanisms
against different competitors. Only 21 % of the transcripts
overexpressed in P. coccineus were common between interac-
tions with two competitors, suggesting that P. coccineus em-
ploys different pathways to eliminate different competitors
(Arfi et al. 2013). However, whilst the transcripts themselves
were different, they appeared to converge to similar functions
(e.g. differentisoforms of the detoxifying enzyme glutathione-
S-transferase; Arfi et al. 2013). Further, different species
exhibit different combative strengths; there are fungi that
are good attackers, good defenders, both, or neither. In artifi-
cially inoculated wood blocks, Stereum hirsutum was good at
defending its territory and resisting invasion, but unable to
capture territory even from otherwise weak competitors
(Boddy and Rayner 1983; Hiscox et al. 2015a).

Fungal interactions are dynamic and changes occur with
time, the actual time course of interactions varies between
competing fungi (Hiscox et al. 2015a). The time spent in each
of the interaction ’stages’ (e.g. deadlock or partial replace-
ment) will vary between different combinations, and is
roughly correlated with the disparity in competitor combative
abilities (Hiscox et al. 2015a). For example, the highly
combative P. velutina starts to replace V. comedens within seven
days, but T. versicolor takes four weeks to begin replacing V.
comedens (Hiscox et al. 2015a). Many different factors, both bi-
otic and abiotic, can contribute to the progression or outcome
of an interaction (Table 4). Small differences in abiotic condi-
tions or physiological state may influence competitive out-
comes, so it is impossible to predict the winner of
interactions with certainty (Huisman and Weissing 2001).

The ability to translocate resources to the interaction zone
from elsewhere in the mycelium is likely to be of major signif-
icance in the interplay of interactions (Lindahl and Olsson
2004). This is evidenced by the facts that: (1) outcomes of inter-
actions sometimes depend on the relative size of the re-
sources occupied by competing mycelium, fungi being more
successful the larger the territory held (e.g. Holmer and
Stenlid, 1993; Lindahl et al. 2001), implying that nutrients are
moved from the bulk of the mycelium to the interaction front;
and (2) radiotracer studies in mycelial cord systems have
shown that carbon and phosphorous move to mycelial fronts
and can be picked up by competing mycelia (Wells et al. 1995;
Lindahl et al. 1999, 2001). Success in combat provides access to
further resources, initially as nutrients from the mycelium of
the displaced competitor, and subsequently from the substra-
tum that it occupied. These acquired resources may be reallo-
cated to support further combat, so there is positive feedback
where the stronger combatant gets even stronger.

4. Ecological significance of interactions

Competitive interactions drive community change in wood
decay communities, with community development resem-
bling a complex, ever-changing mosaic, rather than a simple



Table 3 — Secondary metabolites produced during interactions.

Chemical Name VOC/DOC Interaction (species) Substrate Change in Ref
class reported in production
Benzenoid 1-Hydroxy-3-methoxy-6- DOC Stereum hirsutum vs. Coprinus micaceus Malt agar Increases during 28
methylanthraquinine interactions
1,2-Dihydroxyanthaquinone DOC Stereum hirsutum vs. Malt agar Increases during 28
Coprinus diseminatus interactions
3-Amino-2, DOC Nodulisporium sp. intraspecific Potato Interaction specific 29
6-dimethoxypyridine interaction dextrose
agar (PDA)
3,5-Dimethlanisole DOC Nodulisporium sp. vs. PDA Interaction specific 29
Pythium aphanidermatum
4-Hydroxyphenyl ethanol DOC Trichoderma viride vs. PDA Upregulated in 4
Schizophyllum commune T. viride
5-Methyl,1,3-cyclohexadiene VOoC Trametes versicolor vs. Stereum Malt broth Interaction specific 30
gausapatum
Dibutylbenzene voC T. versicolor vs. S. gausapatum Malt broth Interaction specific 30
Dimethylebenzoic acid, VvoC T. versicolor vs. S. gausapatum Malt broth Increases during interactions 30
methyl ester
Indane DOC Nodulisporium sp. intraspecific interaction PDA Interaction specific 29
Methoxybenzoic acid, VvoC T. versicolor vs. S. gausapatum Malt broth Increases during interactions 30
methyl ester
Unidentified benzaldehyde vocC T. versicolor vs. S. gausapatum Malt broth Decreases in interactions 30
Carboxylic acid 2-Furanocaboxylic acid DOC T. viride vs. Schizophyllum commune PDA Upregulated in both 4
2-Hydroxyglutaric acid DOC T. viride vs. S. commune PDA Upregulated in T. viride 4
2-Methyl-2, DOC Stereum hirsutum vs. Malt agar Increases during interactions 28
3-dihydroxypropanoic acid Coprinus micaceus
2,3-Dihydroxybutanoic acid DOC S. hirsutum vs. C. micaceus Malt agar Increases during interactions 28
3-Hydroxypropanoic acid DOC T. viride vs. S. commune PDA Upregulated in both 4
a-Amino butyric acid DOC T. viride vs. S. commune PDA Upregulated in S. commune 4
Citramalic acid DOC T. viride vs. S. commune PDA Upregulated in S. commune 4
Malic acid DOC S. hirsutum vs. Coprinus Malt agar Increases during 28
diseminatus interactions
T. viride vs. S. commune PDA Upregulated in S. commune 4
Mandelic acid DOC T. viride vs. S. commune PDA Upregulated in 4
both
Pyruvic acid DOC T. viride vs. S. commune PDA Downregulated in S. commune 4
Tropic acid DOC T. viride vs. S. commune PDA Upregulated in both 4
Sesquiterpene Azulene-like DOC Nodulisporium sp. PDA Interaction specific 29
intraspecific interaction
Caryophyllene-like DOC Nodulisporium sp. PDA Interaction specific 29
intraspecific interaction
E-Germacrene D voC Hypholoma fasciculare vs. Beech Interaction specific 31
Resinicium bicolor; wood

H. fasciculare vs. Phanerochaete
velutina;
P. velutina vs. R. bicolor
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Monoterpene

Sugar alcohol

Iso-longifolene
a-Bulgarene
a-Bulnesene

a-Cadinene
a-Muurolene
a-Selinene

B-Chamigrene
B-Selinene

y-Amorphene
y-Cadinene

y-Gurjunene

y-muurolene
4-Carene

a-Myrcene
Limonene

p-Cymene

Pinene

Thujene

Unidentified monoterpene
y-Terpinene

Erythritol
Galactosylglycerol
Glycerol

Hexanetetrol
Meso-erythritol

Myo-inositol phosphate

Xylitol

VOC
VOC
VOC

VOC
VOC
DOC

vocC
DOC

VOC
vocC
DOC

VOC
DOC

VOC

VOC

DOC

DOC

vocC

DOC

DOC

DOC

DOC

DOC

DOC

DOC

DOC

DOC

DOC
DOC

H. fasciculare vs. R. bicolor
H. fasciculare vs. R. bicolor
H. fasciculare vs. P. velutina;
R. bicolor vs.

P. impudicus; P. veutina

us. P. impudicus

R. bicolor vs. P. velutina;

H. fasciculare vs.

P. impudicus

H. fasciculare vs. R. bicolor
H. fasciculare vs. R. bicolor
Nodulisporium sp. intraspecific
interaction

H. fasciculare vs. R. bicolor
Nodulisporium sp. vs. Pythium
aphanidermatum

H. fasciculare vs. R. bicolor
H. fasciculare vs. R. bicolor
Nodulisporium sp. intraspecific
interaction

H. fasciculare vs. R. bicolor
Nodulisporium sp. vs.

P. aphanidermatum

T. versicolor vs. S. gausapatum
H. fasciculare vs. R. bicolor
P. velutina vs. P. impudicus
P. velutina vs. R. bicolor
Nodulisporium sp. vs.

P. aphanidermatum
Nodulisporium sp. vs.

P. aphanidermatum
Trichoderma viride vs.
Aspergillus niger
Nodulisporium sp. vs.

P. aphanidermatum
Nodulisporium sp. vs.

P. aphanidermatum
Nodulisporium sp. vs.

P. aphanidermatum

T. viride vs. S. commune

T. viride vs. S. commune

T. viride vs. S. commune

T. viride vs. S. commune

S. hirsutum vs. C. micaceus
and C. disseminatus

T. viride vs. S. commune

S. hirsutum vs. C. micaceus
T. viride vs. S. commune

Beech wood
Malt broth
Beech wood

Malt broth
Malt broth
PDA

Beech wood
PDA

Malt broth
Beech wood

PDA

Malt broth
PDA

Malt broth
Beech wood
PDA

PDA

Straw powder
PDA

PDA

PDA

PDA

PDA

PDA

PDA

Malt agar
PDA

Malt agar
PDA

Interaction specific
Interaction specific
Increases during interactions

Decreases during interactions

Increases during interactions
Interaction specific
Interaction specific

Interaction specific
Interaction specific

Interaction specific
Interaction specific
Interaction specific

Interaction specific
Interaction specific

Interaction specific
Interaction specific
Increases during interactions
Decreases during interactions
Interaction specific

Interaction specific
Interaction specific
Interaction specific
Interaction specific
Interaction specific
Upregulated in S. commune
Upregulated in T. viride
Downregulated in S. commune
Upregulated in S. commune
Increases during interactions
Upregulated in S. commune

Increases during interactions
Upregulated in T. viride

31
32
31

32
32
29

31
29

32
31
29

32
29

30

31

29

29

33

29

29

(continued on next page)
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Table 3 (continued)

Chemical Name VOC/DOC Interaction (species) Substrate Change in Ref
class reported in production
Ketone 3-Octanone VvoC H. fasciculare vs. P. velutina; Beech wood Increases during interactions 31
R. bicolor vs.
P. impudicus; P. veutina vs.
P. impudicus
R. bicolor vs. H. fasciculare; Decreases during interactions
H. fasciculare vs.
P. impudicus
Bicyclo-oct-6-en-3-one DOC Nodulisporium sp. intraspecific PDA Interaction specific 29
interaction
Alkane Alkanes (C7-C54) VOC T. viride vs. Aspergillus niger Straw powder Interaction specific 33
Unidentified alkane DOC Nodulisporium sp. intraspecific PDA Interaction specific 29
interaction
Pyridoxine Pyridoxine DOC S. hirsutum vs. C. micaceus Malt agar Increases during interactions 28
T. viride vs. S. commune PDA Upregulated in S. commune 4
Alcohol 2-Methyl-1-butanol DOC Nodulisporium sp. vs. PDA Interaction specific 29
P. aphanidermatum
Aldehyde 2,3,4-Trihydroxybutanal DOC T. viride us. S. commune PDA Upregulated in T. viride 4
Amino acid Alanine DOC T. viride vs. S. commune PDA Downregulated in S. commune 4
Monosaccharide N-Acetylglucosamine DOC T. viride vs. S. commune PDA Upregulated in S. commune 4
Nonadiyne 1,8-Nonadiyne DOC Nodulisporium sp. intraspecific PDA Interaction specific 29

interaction

4, see Table 1; 28, Peiris et al. (2008); 29, Sanchez-Fernandez et al. (2016); 30, Evans et al. (2008); 31, El Ariebi et al. (2016); 32, Hynes et al. (2007); 33, Chen et al. (2015).

f Present in main references. Other references found in supporting document 1.
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A Phallus
impudicus
R by Pi R by Ph
Megacollybia Psathyrella
4_—_. .
platyphylla R by Mp hydrophilum
B Stereum
hirsutum
R by Hf deadlock
Hypholoma Phanerochaete
fasciculare Rb velutina
y Pv

Fig. 3 — A: Intransitive hierarchy involving Phallus impudicus
(Pi), Psathyrella hydrophilum (Ph), and Megacollybia platy-
phylla (Mp) during interactions on malt agar. P. impudicus
was replaced by P. hydrophilum, P. hydrophilum was replaced
by M. platyphylla, and M. platyphylla was replaced by P. im-
pudicus (Chapela et al., 1988). B: Non-linear hierarchy in
combative behaviour between P. velutina (Pv), H. fasciculare
(Hf), and Stereum hirsutum (Sh) during interactions in beech
wood blocks. P. velutina deadlocked with S. hirsutum, and
replaced H. fasciculare, and S. hirsutum was replaced by

H. fasciculare. Although not truly intransitive, this type of
non-linear hierarchy is common in wood decay
communities.

ordered sequence. The assembly history (the order in which
species arrive at a resource) affects subsequent community
composition and development. Wood decay fungi modify
the territory they inhabit both chemically and physically, by
altering water content, pH, or by the deposition of different
secondary metabolites (as explained above). This niche modi-
fication may act as a sort of constitutive defence, or in certain
cases, effectively select for species that are adapted to such
conditions (Ottosson et al. 2014; Fukami 2015). When earlier
colonising species affect the colonisation success of species
arriving later, they are described as exerting priority effects
(Ottosson et al. 2014; Fukami 2015). Such priority effects are
common in wood decay communities (e.g. Fukami et al
2010; Hiscox et al. 2015b), and there are examples of predeces-
sor—successor relationships where certain species almost
exclusively succeed a particular species (including Rayner
et al. 1987; Heilmann-Clausen and Christensen 2004).

Since different species of fungi decompose wood at
different rates, and in different ways, the species composition
within a resource will ultimately determine its rate of decom-
position (van der Wal et al. 2015). Further, interactions

themselves directly affect decomposition rate through alter-
ation of fungal respiration and resource utilisation; 60 % of
interacting fungi increased total CO, evolution relative to
non-interacting controls (Hiscox et al. 2015a). In the face of
global climate change, the sensitivity of interaction outcomes
to even slight changes in abiotic conditions, and the resultant
changes in community structure, may have large effects on
decomposition (Hiscox et al. 2016). Further, the carbon-use ef-
ficiency (CUE; the amount of fungal mycelium formed per
amount of decomposed wood) of the wood decay community
will likely alter under changing conditions, and thus affect
the amount of CO, released into global cycles; decreases in
CUE of artificial wood decay communities occurred with
increasing community complexity under a fluctuating tem-
perature regime (Toljander et al. 2006). Although quite large
changes in conditions would have to occur to seriously disrupt
the ecosystem function of wood decay communities, we pre-
dict that alterations in wood decay fungal combative hierar-
chies and community composition are inevitable in the near
future.

5. Research priorities

Previous interactions research has focused on pairwise com-
binations, often in artificial resources. It is hugely important
for future research to use multiple combatants simulta-
neously to ensure results are ecologically meaningful, since
woody resources are colonised by a mixed species commu-
nity. Pairwise combinations are not always accurate predic-
tors of the outcomes of multispecies interactions (Huisman
and Weissing 2001), and simultaneous exposure to multiple
competitors may induce novel antagonistic mechanisms in a
mycelium (El Ariebi et al. 2016). Studying interactions in artifi-
cial media may be convenient — and good for illustrating inter-
action processes, as shown in Fig. 2 — but interaction
processes and outcomes in agar media can be totally different
from those in natural substrates (Table 4), and the majority of
research is now shifting towards using natural resources,
which is more challenging but far more realistic.

Relatively few pairing combinations have been investi-
gated using transcriptomic or proteomic approaches to date
(Tables 1 and 2), although with the increasing affordability
of emerging technologies this is likely to change. Results
from transcriptomic or proteomic profiles of interacting
mycelia would provide explanations for the roles of genes
and proteins already identified as of importance during inter-
actions. Using knockout or knockdown strains may also help
elucidate some of the complex processes involved in these
complex and intricate antagonistic relationships. Also of sig-
nificant interest are the signalling processes involved during
self- and non-self-recognition between hyphae, and the
events that follow contact between two hyphae of different
species. Publication of data — especially the large datasets
that result from new technological approaches — from inter-
actions experiments in global databases will facilitate sharing
of information and allow more comprehensive comparisons
to be undertaken. Altogether, exciting new insights into the
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Table 4 — Variables affecting interaction outcomes.

Factor Venue

Findings

Ref

Temperature Wood

Soil

Soil

Invertebrate grazing Soil

Soil

Soil

Spruce and fir needles

Soil

Sitka spruce needles

Relative size of mycelium/resource Wood

Wood
Wood

Quality of resources Wood

Venue Wood vs. soil vs. agar

Water potential Agar

Gaseous regime Agar

Combative ability of different species varied between temperatures, with
early and late successional species more successful at lower temperatures,
and mid successional species more successful at higher temperatures

A temperature increase of 3 °C (15—18 °C) significantly altered the outcome
of interactions between Resinicium bicolor and Phanerochaete velutina

The fungal dominance hierarchy at ambient temperature (16 °C; P.

velutina > R. bicolor > Hypholoma fasciculare) was altered by elevated
temperature (20 °C; R. bicolor > P. velutina > H. fasciculare) in ungrazed
systems

Grazing by collembola (Folsomia candida) at 18 °C but not 15 °C reversed the
outcome of interactions between R. bicolor and P. velutina

Grazing by collembola (F. candida) stimulated growth of the dominant
species, P. velutina, over its opponent, H. fasciculare

Grazing by woodlice (Oniscus asellus) and nematodes reversed outcomes of
interaction between R. bicolor, P. velutina, and H. fasciculare

Selective grazing by collembola (F. candida) of primary saprotrophs led to
faster replacement by secondary saprotrophs on spruce and fir needles
Woodlice (0. asellus) preferentially grazed R. bicolor, reversing the outcomes
of interactions with P. velutina and H. fasciculare compared to ungrazed
combinations. Grazing also reversed outcomes of interactions between P.
velutina and H. fasciculare

Selective grazing by collembola of the dominant fungus Marasmius
androsaceus increased the relative abundance of the less palatable Mycena
galopus

Competitive success, measured as the replacement of the opposing fungus,
was generally greatest for mycelia inhabiting sectors representing 92 % of a
disc and smallest for 8 % sectors

Competitive ability overrode effects of inoculum size

Gloeophyllum trabeum, previously shown to lose in ‘equal-footing’
competition with Irpex lacteus, was able to win in two out of four types of
wood when given higher inoculum potential

T. versicolor, S. hirsutum, and H. fasciculare, combative ability was negatively
correlated with colonisation time, however, in B. adusta there was a positive
correlation

H. fasciculare replaced Steccherinum fimbriatum in agar culture under ambient
conditions, but deadlocked with it when mycelial cords met in soil, and was
itself replaced when paired in wood

Daldinia concentrica was more combative at lower water potentials, whereas
other species were less combative

D. concentrica was more combative at higher CO, concentrations, whereas
other species were less combative

34

35

36

35

37

38

39

36

40

41

42
43

45

45

34, Hiscox et al. (2016)'; 35, Crowther et al. (2012); 36, A’Bear et al. 2(013); 37, Rotheray et al. (2011); 38, Crowther et al. (2011); 39, Klironomos et al.
(1992); 40, Newell (1984); 41, Holmer and Stenlid (1993); 42, Holmer and Stenlid (1997); 43, Song et al. (2015); 44, Dowson et al. (1988); 45, Boddy et al.

(1985)*.

f Present in main references. Other references found in supporting document 1.

mechanisms underlying antagonistic interactions can be ex-

pected in the near future.
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