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With a large penetration of low carbon technologies (LCTs) at medium voltage and low voltage levels,
electricity distribution networks are undergoing rapid changes. Much research has been carried out to
analyse the impact of employing LCTs in distribution networks based on either real or synthetic network
samples. Results of such studies are usually case specific and of limited applicability to other networks.
Topological properties of a distribution networks describe how different network components are located
and connected, which are critical for the investigation of network performance. However, the number of
network modelling and simulation platforms are limited in the open literature which can provide random
realistic representations of electricity distribution networks. Thus, it is difficult to arrive to generalized
and robust conclusions on impact studies of LCTs. As the initial step to bridge this gap, this paper studies
the topological properties of real-world electricity distribution networks at the medium voltage level by
employing the techniques from complex networks analysis and graph theory. The networks have been
modelled as graphs with nodes representing electrical components of the network and links standing
for the connections between the nodes through distribution lines. The key topological properties that
characterize different types (urban and sub-urban) of distribution networks have been identified and
quantified. A novel approach to obtain depth-dependent topological properties has also been developed.
Results show that the node degree and edge length related graph properties are a key to characterize dif-
ferent types of electricity distribution networks and depth dependent network properties are able to bet-
ter characterize the topological properties of urban and sub-urban networks.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction significantly changed the traditional approaches to planning,

design and operation of the electrical power system. The High

The increasing penetration of Distributed Energy Resources
(DERs) together with load growth, the new requirements of
decarbonisation, efficiency, security and quality of power
supply and the deregulation of the electricity markets have
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Voltage (HV) transmission grid is usually the backbone of a
national power system. Distribution networks are very large
and topologically complicated systems which connect the HV
transmission grid to end users. Electricity distribution networks
are undergoing rapid changes in recent years. With numerous
Low Carbon Technologies (LCTs), e.g. electric vehicles, wind
and solar farms, introducing at the Medium Voltage (MV) and
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Nomenclature

Abbreviations

CNA complex networks analysis
DER distributed energy resources
HV high voltage

LCT low carbon technologies

LV low voltage

MV medium voltage

Sets and matrices

A adjacency matrix
D distance matrix

E edges set

G graph

K degree matrix

L Laplacian matrix

Vv vertices/nodes set

Parameters and variables

b, branching rate

C average clustering coefficient

G clustering coefficient of node i
circuit_id circuit identification number

drx depth of node x from the root node r
Dy fractal dimension

dimax maximum depth
€avg average edge length
k; degree of a node i
kavg average degree of the network
level of the network
lavg average path length
Leotal total network length
total number of edges
Me number of edges in the edge length range e
N total number of nodes
" number of nodes with degree equals to k
P(k) degree distribution
P(e) edge length distribution
r root node
X,y coordinates of the nodes

start,, start, coordinates of a starting point of an edge

end,, end, coordinates of an end point of an edge

o Pearson correlation coefficient

e box size used in the box counting method

2(1) number of edges between the neighbours of node i
T(i) total number of edges that can exist among the

neighbours of node i

Low Voltage (LV) levels, the distribution networks are of
increasing importance [1].

Much research has been carried out worldwide to analyse and
quantify the impacts of LCTs on electricity distribution networks.
Most of these studies are based on real network samples [2-4]
standard synthetic networks such as the IEEE test cases [5,6] or
other representative test networks [7,8]. As a result, most reported
analysis in the literature is only useful for evaluating a specific test
case and conclusions made from such studies have limited applica-
bility to other networks. Moreover, a large number of new method-
ologies and algorithms have been proposed recently to overcome
the operational challenges of the electrical power system with
the integration of smart grids technologies. The effectiveness of
these methodologies were mostly tested or implemented on one
or a few specific test networks that are not yet able to provide
robust and generalized conclusions [9-11].

However, there is a clear need of providing generalized and
robust conclusions on network studies for strategic decision-
making and policy support. For example, it is important for policy
making to have the ability of characterizing and quantifying how
differently the urban networks and rural networks perform with
different integration levels of a new LCT. A network modelling
and simulation platform with the ability of providing
statistically-similar realistic models of electricity distribution net-
works, can be used to make such generalized conclusions through
a large number of simulation studies.

However, it is often difficult to produce a large amount of ran-
dom, realistic models for most of the real-world networks includ-
ing the electricity distribution networks. Identifying and
quantifying the important statistical properties of different types
of distribution networks is a key requirement when developing
such random, realistic network models. Statistical properties of
electric power networks can be categorized into two groups: topo-
logical properties and electrical properties. Both electrical and
topological properties of electricity distribution networks have a
significant impact on their overall network performance including
voltage drops, power losses, network reliability and costs, etc. This

paper focuses on investigating the topological properties of the
real-world electricity distribution networks.

Statistical properties of power networks have been studied by
many researchers. In the past, the interest of studying the statisti-
cal properties, primarily the topological properties of electrical
power grid was mainly led by the major blackouts happened in
North America [12,13], Italy [14], Europe [15] and few other power
grids [16]. After these large-scale blackouts happened worldwide,
researchers were seeking solutions for improving security and reli-
ability of the power grid from different perspectives. Ref. [17] pro-
vides an overview of the security and privacy issues in Smart Grids
and [18] developed a new control method for nonlinear dynamics
of the power systems. Advances in statistical physics and complex
network theory together with graph theory applications also have
developed new areas of interest in vulnerability assessment in
power systems.

Much literature is summarized in the recent survey conducted
by G. A. Pagani on the review on ‘power grids as complex networks’
[19]. Majority of the studies focused on the HV networks and the
work carried out in the MV and LV level are very limited. The main
goal of many HV network studies was to find out the connection
between the structure of the power grid and the risk probability
based on well-known complex network models [20,21] such as
random graph model [22], small-world network models [23] and
scale-free network models [24]. The structure of HV grids is differ-
ent from that of MV and LV grids. The HV transmission and sub-
transmission is usually a meshed system, but distribution net-
works (MV and LV) are mainly with radial structures. Therefore,
the research findings in the HV network analysis cannot be directly
used in MV and LV networks.

In addition, a few new network models have been developed in
the past decade some of them with some efforts in investigating
the statistical properties of the power grid [25-30]. It was observed
that the electricity distribution networks consist of self-repeating
patterns, which is a key property in fractal structures. Fractal based
models have been proposed for the power grid [26,29]. However,
the main objective of these new developments was different from
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the objectives of previously discussed HV network studies, and
they focused on generating test cases to evaluate smart grid tech-
nologies. Using a fractal based software tool, a statistical approach
was introduced to investigate the technical and cost performance
of alternative network design strategies for electricity distribution
networks under different development scenarios [29]. Different
ranges of the fractal parameter for different types of distribution
networks have been used in their work. A complex networks based
model for the integration of distributed energy systems in urban
areas was developed in [30]. A simulation platform was developed
that generates electrical power grid test cases with realistic topolo-
gies and electrical parameter settings, while providing an underly-
ing statistical investigation for the statistical properties of real and
synthetic power grids [25]. In [27], the need for generating syn-
thetic graphs for electrical power networks was identified and a
methodology was developed to produce random, realistic models
for power networks. However these work [25,27] also fall into
the HV level.

A comprehensive statistical study on the distribution (MV and
LV) level of the power grid was carried out in [22], using a lot of
real world data. In their work, a novel analysis of the power grids
using statistical tools from the complex networks analysis (CNA)
field is presented and the study focused on a methodology of inte-
grating topological metrics with economic factors.

While all above-mentioned research demonstrates the value of
investigating topological properties and generating random realis-
tic network models of real world power networks, most of them
were carried out for the HV level. Also, majority of the previous
studies were supported by a limited set of real network data or a
limited set of topological properties of the real networks were
analysed. Hence, a wider statistical analysis supported by a large
amount of real world data is required for electricity distribution
networks.

The motivation behind this study comes from finding out
answers to the following two questions; (i) what are the key topo-
logical properties that characterize the realistic nature of different
types of electricity distribution networks? (ii) can we find an
approach to efficiently generate the ensembles of random but real-
istic topologies similar to the real electricity distribution networks
in order to conduct a large amount of simulation studies? The main
contributions of this paper include: (1) identifying the key topolog-
ical properties that are useful to characterize the topological struc-
tures of real world MV distribution networks; (2) quantifying the
topological properties of real world MV urban and sub-urban net-
works using graph theory and complex networks analysis tech-
niques; and (3) introducing a novel, depth dependent approach
to better characterize the topological properties of the MV distri-
bution networks. Fig. 1 shows the schematic overview of this
paper.

The organization of this paper is as follows. Section 2 summa-
rizes the definitions and formulations of the key statistics used to
investigate the topological properties of electricity distribution
networks. A thorough topological investigation of real distribution
networks at MV level is presented and the results are discussed in
Section 3. Section 4 provides the conclusions followed by some
suggestions for future work.

1103
2. Properties for investigation of network topologies

In order to understand and model a real world complex net-
work such as electrical power grid, a right set of tools and tech-
niques are required. Most widely used techniques and tools are
coming from the fields of CNA and graph theory. Ignoring the
3-Dimensional features such as very tall buildings and elevation
of the equipment, the electrical power grid can be considered
as a 2-Dimensional grid composed of various elements such as
transmission lines, distribution transformers and switchgears. A
graph model can be easily constructed by taking into considera-
tion the relationship between these elements. This section
describes some of the essential definitions and formulations of
the key statistics used in the topological investigation of the dis-
tribution networks. In parallel, the physical meanings of the
graph related measures with reference to the electrical power
networks are also described in this section. Fig. 2 summarizes
the fundamental approach and the key topological features used
in this study.

2.1. Graph properties

2.1.1. Basic graph properties

A graph G consists of a collection of vertices V (nodes) and a col-
lection of edges E: G = (V, E). With reference to an electricity distri-
bution network, V-nodes set include substations, distribution
transformers, switches, busbars and consumer locations. Edges
set E, stands for the physical connections between the nodes
through underground (UG) cables and overhead (OH) distribution
line segments. Since the collected real network data includes the
actual geographical location of the electrical components, the
information about nodes are extracted with the x, y coordinates.
The edges are represented using the start and end x, y coordinates
of the nodes. For an electrical power network with N nodes and M
edges,

V= [XYly.2 (1)
E = [starty, stary,, endy, end,, circuit id],, . (2)

In real networks, very often two or more circuits share the same
towers. In that case, to distinguish them a fifth dimension called
circuit_id is added to E.

Connectivity between nodes in the graph is represented by an
Adjacency Matrix ‘A’ using the unique node identifiers. As the elec-
trical power grid can be considered as an undirected graph, the
adjacency matrix of a power grid becomes a symmetric N x N
matrix. The element A; becomes 1 if there exists a link between
nodes i and j, otherwise A;; equals to 0 (3).

{1, if(i.j) € E

Aj = s s

0, if(i.j)¢E
The distance matrix ‘D’ is defined for a graph using the edge

lengths between nodes. The element D; becomes the length of

the edge e;; if there exists an edge between nodes i and j. Otherwise
Dj; is equal to zero.

3)

Definitions and formulations of the key
statistics (Section 2)

|

Identification and
quantification of key

Data analysis
(Section 3.2.1)

topological properties

Real world
network data

Group urban and
sub-urban networks

(Section 3.1)

A 2
Clustering and of MV distribution
validation networks

(Section 322) (Sections 33&34)

Fig. 1. Schematic overview of the study.
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Real world network data
(Including geographical maﬁ and technical information)

Graph representation of the network ,G(V,E)
V-Nodes set (Substations, busbars, consumer locations)
E-Edges set (Distribution lines)

Input data matrices for topological investigation

Adjacency matrix, 4

Node degree matrix, K

Distance matrix, D
Laplacian matrix, L

Topological properties

Node degree related
graph properties

. Node degree distribution

graph properties . Network length per km?

1
2
3
Network length related = 6. Total network length
7
8. Average path length

Clustering measures 11. Clustering coefficient

Fractal properties 12. Fractal dimension

Depth dependent
network properties

. Average node degree of the network
. Maximum node degree of the network

13. Depth dependent degree distribution
14. Depth dependent edge length distribution

4. Branching rate
5. Pearson correlation coefficient

9. Average edge length
10. Edge length distribution

15. Maximum depth

Fig. 2. Feature extraction.

p; = 4 VIVE1D =V, 1} +{V(i,2) - V(j,2)},
"o, if(i.j) ¢ E

4)

The degree of a node i in a graph which is denoted as k;, is the

number of edges incident to that node and is obtained using the

adjacency matrix. The values obtained for the node degrees are

used to construct the Degree Matrix ‘K’ which is a N x N diagonal
matrix.

N
ki=> Ay (5)
=
. ki, ifi=j
Ki = {O, otherwise ©)

Laplacian matrix ‘L’ is also useful in obtaining the graph properties
of the power networks which is written as,

L=K-A (7)

A connected component in graph theory refers to a set of ver-
tices in a graph that are linked to each other by paths. For instance,
aradial 10 kV network supplied by one 33 kV/10 kV substation can
be considered as one connected component (ignoring the connec-
tions to the main grid from the 33 kV side of the main supply
point). According to this definition, the number of connected com-
ponents in a radial electricity distribution network of a certain
voltage level (in a given area) is equal to the number of main grid
supply points in the network. From the graph theory definitions,
the number of connected components in a graph is equal to the
number of times 0 appears as an eigenvalue in the Laplacian matrix
of the graph.

Most of the graph-related properties of the networks described
below are derived using the above basic graph properties A, D, K,
and L.

2.1.2. Node degree related graph properties

Degrees can be used to identify the key components in a net-
work. In power networks, nodes such as substations have a high
node degree compared to the other nodes. Also, degrees, and

notably degree distributions can be used to derive information
on the structure of a network. For example, if most vertex degrees
are the same the network is more or less a regular network in
which vertices have equal roles. The degree distribution P(k) of a
network is defined as the fraction of nodes in the network with
degree k. If the total number of nodes in the network is N and ny
of them have degree k, P(k) is defined in Eq. (8).

Pl = ®)

Researches have observed that the HV electrical transmission
grids have heavy-tailed degree distributions. A network is said to
be scale-free when the degree distribution of the network follows
a power law, resulting in few nodes having many edges and many
nodes having few edges [31]. The power law relationship between
P(k) and k is as shown in Eq. (9) where, 7y is a parameter whose
value is typically >1.

P(k) k7 9)

In vulnerability assessment studies on the HV transmission
grid, this scale free property has been broadly analysed. However,
for weakly meshed and radial networks in distribution level a
power law distribution for P(k) has not been observed. But still it
is worth to observe the behaviour of P(k) for similar types of distri-
bution level networks. The average node degree kg, of a graph G is
also an important measure about the structure of the network. If
kavg > 2 the network has a meshed structure.

1 2M
Kavg = NZk,- =N (10)
i=1

Another node degree related measure is the branching rate b,,
which gives an indication of how much a given network tends to
branch out. For instance, the urban distribution networks tend to
branch out more compared to the rural distribution networks.
Branching rates are usually different for different types of net-
works (rural, urban), for different voltage levels, and for different
locations, i.e. close to the supply points or close to the customer
points.

_ Number of nodes with degree > 3
" Total number of node sin the network

(11)

r
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A network is said to show assortative mixing if there exists a
correlation between nodes of similar degree. Assortativity property
of the networks is examined in terms of node degrees using the
Pearson correlation coefficient p:

,‘1 . ,‘1 »1 . 2
M5 ik — [M 2z Ui +kz’)}
= 2
MG k) - MG+ k)
where j;, k; are the degrees of the vertices at the ends of the ith edge,
with i=1, ..., M. A positive value for p indicates correlation
between nodes with similar degree and negative values for p indi-

cates the relationship between nodes of different degree which is
called disassortative mixing [32].

(12)

2.1.3. Network length related graph properties

In power system terminology, network length of an MV distri-
bution network refers to the total length of the overhead and
underground electricity distribution line segments. The network
length is a critical parameter for electrical power networks since
it impacts on a number of technical and economic factors such as
the voltage drops, power losses and the cost of cables/overhead
lines in the network. It is also important when describing the net-
work topology realistically. An edge can be referred to a feeder sec-
tion in an electrical distribution network. Total network length
Liorar, average edge length eq,g that is obtained by dividing the total
network length by the total number of edges, and the average path
length Io,e, are some of these length related network measures.

A path is a sequence of edges from one vertex to another. Length
of a path is the addition of the lengths of all the edges in the path.
The geodesic distance between nodes 7, and v, denoted as [ (7, 7»)
is the length of the shortest path between »; and 7,. Diameter of a
network is defined as the longest graph geodesic between any two
graph vertices vy, 1, of a graph. Then the average path length is
defined as the average length along the shortest paths for all pos-
sible pairs of network nodes. It has been widely used as a measure
of the efficiency of information or mass transport on a network.

1
lavg :mzl(% vj) (13)
i#j

Similar to the degree distribution, the edge length distribution P
(e) of a network is defined as the fraction of edges in the network,
with length e. Here, length e represents a range of edge lengths. If
the total number of edges in the network is M and m, of them fall
into the length range e, P(e) is expressed as:

_Me

Pe) =37 (14)

Some network models assume equal spacing between nodes.
However, this is not true for most of the real networks. Therefore,
the edge length distribution is an important feature to be consid-
ered in geographical network modelling.

2.1.4. Clustering of the nodes

In graph theory, clustering coefficient C is a measure of the
degree to which nodes in a graph tend to cluster together. The clus-
tering coefficient is defined as the average of the clustering coeffi-
cient for each node C; [15]. G; is expressed as the ratio of number of
edges between the neighbours of node i, i¢(i) to the total number
of edges that can exist among neighbours of node i, t¢(i) [23]. Evi-
dence suggests that in most real-world networks, and in particular
social networks, nodes tend to cluster into groups. However, clus-
tering coefficient of a radial network is zero. Therefore, in order to
analyse the MV and LV radial networks this measure is not very
useful. But in HV network studies this measure has been widely
used.

1 N
C:N;Q (15)

C =2 (16)

2.1.5. Fractal properties

A few researchers have observed that the real world electricity
distribution networks consist of self-repeating patterns across all
scales [26]. This property is called the self-similarity. Self-
similarity is a typical property of fractals. Fractal dimension is
another important property of fractals that provides a statistical
index of complexity of a fractal pattern with the scale at which it
is measured. It has also been characterized as a measure of the
space-filling capacity. If this property of a fractal needs to be
explained, the box counting method provides the practical solution
for that. In this method, the fractal object (e.g. image of the net-
work layout) is covered with boxes with equal sides ¢, and find
how the number of boxes n(€) which include the fractal object
changes with the box size [33]. A network is said to be fractal if
the box counting dimension exists for that network. The box-
counting dimension Dy is defined as:

logn(e)

log(;)

Dy = lim, o (17)

2.2. Depth property

Analysing the depth dependent network properties is an effec-
tive approach in both feature identification and the network model
development. A simple connected graph with no cycles is called a
tree. Mostly the electricity distribution networks at MV and LV
levels have radial or tree like structures. The depth d, of a node x,
in a tree is defined as the number of edges n., from the root node
r, to the node x (Fig. 3(a)).

dr.x = ne(r,x) (18)

It was observed that the power networks have considerably dif-
ferent graph related properties at different depths of the networks.
In this case, according to the depth of the nodes network properties
are observed; closer to the supply point (level 1), at the middle
level (level 2) and at the furthest away area from the supply point
(level 3) respectively. The different types (rural/urban, MV/LV) of
networks usually have different depth dependent properties. Elec-
trical power grid is an evolving network, with new nodes and
edges added with time. Similar to most of the real-world networks,
the development and evolution of the electrical power network is
closely defined by the factors such as geographical environment,
population distribution, social and economic development. Due
to these factors, different networks may have observable topolog-
ical differences. For example, in rural networks consumer locations
tend to aggregate in a more clustered fashion with large open areas
dedicated to farms and green spaces, while in urban networks con-
sumer locations are usually evenly distributed. The distribution of
consumer settlements also defines the distribution of feeder
lengths.

The depth of a node from the given root node can be obtained
using Dijkstra shortest path algorithm [34]. The HV/MV substation
is considered as the root of a MV radial network. Maximum depth
dmay is the number of edges along the longest path from the root
node down to the farthest leaf node. The network is divided into
several levels along the depths as shown in Fig. 3(a). The number
of levels chosen, can be varied. In this paper, the network is divided
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Root/Source node
Depth 0 ‘

Depth 1

Depth 2

Depth 3 ‘

Depth 4 *

Depth 5

Depth 6 |

_— LN

y l\ |F— s‘ “‘\.

(a)

(b)

Fig. 3. (a) The concept of depth of a node. (b) The idea of the levels of a network along the depth.

Dijkstra’s shortest
Adjacency Matrix, 4 and | Path algorithm

Root node, »

Distance Matrix, D

Find the depth of all
nodes from root node, »

Re-numbering of nodes
according to the depth.

Generate new adjacency
matrix 4., and distance
matrix D, according to
the new numbering of the

>

Fig. 4. Algorithm to obtain depth dependent network properties.

into three levels I, I, and 5 along the depth. Fig. 3(b) illustrates
segmenting a radial network into levels.

Ly 0<d< du

e < 2o (19)

l3§ 2d3ﬂ<d<dmax

In order to obtain the depth dependent properties for a tree like
graph, the adjacency ‘A’ and distance ‘D’ matrices can be re-
organized as ‘Apey’ and ‘Dye,,’ following the new node identifiers
given according to the depth of the node (Fig. 4). For example,
the root/source node is now numbered as ‘node 1’ and the nodes
immediately connected to the root node takes the next consecutive
numbers for their node identifiers. Submatrices of the Ap., and
Dyew are used to derive the depth dependent degree and edge
length distributions of the network. For example, the edge length
distribution of the network at level 1 (I;) is obtained from the val-
ues in submatrix Dj; of Dyey, using the basic definition in (14). Sim-
ilarly, the values in submatrices D;, and D3 are used to obtain the
edge length distributions of level 2 and level 3 respectively. The
idea is illustrated in Fig. 5.

3. Topological properties of the real-world electricity
distribution networks

3.1. Power grid data for topological investigation

An investigation of the topological properties of the real-world
networks was conducted using real network data that was col-
lected from China, covering urban and sub-urban areas. These data
include the detailed technical and geographical information of
transmission, sub-transmission, and distribution level networks
and also the population data of the supplied areas of the networks.
Since the present work is mainly focused on MV level networks,

nodes
A D, I D, Iy
= 2 3/ 4 S 6 Yoo vamnusnes i N
=10 | he | ke | hae [|As | A e
ol B {0 | o | Be [[as | 2e by
3t | e | Q| Be | |8 | Be Ly
gl |l | B |0 e || g Iix
s|[& [k [k | =0 |0 s Isx Dy=D,
Dy 6| fn | fer | fos | dou | s | Q|- n & - " ths DD}
0 || = - 5 Dj3= DD
0
0
0
N | o | e | ke | ke [ b [ b |- [« [ [- [~ [0

Fig. 5. New distance matrix (node numbers 1 to N are given according to the depth
of the node from its root node).

only the 10kV level network information was extracted. All
selected networks have a radial structure.

A graph representation of each radial network component was
obtained. A graph representation obtained from the geographical
layout of Network 1 under study, is shown in Fig. 6(a). The red’
nodes represent the 10 kV level consumers, 10 kV/400 V distribution
transformers and busbars. The green circle represents the main grid
supply point of the 10 kV network.

Table 1 summarizes the basic information available for the
selected 30 networks at the 10kV level. The networks were

! For interpretation of color in Figs. 6 and 10, the reader is referred to the web
version of this article.
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Fig. 6. (a) Graph representation of network 1 (b) Distribution of population densities of the networks.
Table 1
Basic network information of 30 networks at 10 kV level.

Network  Area Population Total network Number Number Network  Area Population Total network Number Number
ID (km?)  density (/km?) length (km) of nodes  of edges ID (km?)  density (/km?) length (km) of nodes  of edges
1 66.2 482 76.4 254 253 16 101 256 103 377 376
2 142 328 88.5 399 398 17 443 1054 84.1 384 383
3 64.5 405 64.2 285 284 18 9.8 1939 283 234 233
4 86.2 377 80.6 350 349 19 9.2 1935 29.6 237 236
5 33.8 376 35.5 136 135 20 10 1930 34.2 331 330
6 108.5 256 78.8 204 203 21 8 1750 34.2 205 204
7 86.2 229 66.8 226 225 22 14 3200 38 328 327
8 93.8 228 81.5 246 245 23 16 3200 52.5 400 399
9 69 464 90.6 308 307 24 14 3200 31.2 267 266
10 443 361 32.1 100 99 25 7 3600 28.7 227 226
11 78.5 369 61.1 196 195 26 7.5 3600 29 217 216
12 84.1 473 87.3 321 320 27 7 3600 17.5 115 114
13 69.1 411 71.6 220 219 28 7.5 3600 14.7 114 113
14 80.9 449 54.2 173 172 29 7.5 3600 16.1 153 152
15 1254 364 95.6 351 350 30 8 3600 304 265 264

categorized as sub-urban and urban depending on the population
density. According to the Demographic Yearbook 2013 by United
Nations the definition of ‘urban’ for the cities in China is defined
as the areas with population density higher than 1500 people per
square kilometre [35]. The distribution of the population density
of the networks under study is shown in Fig. 6(b).

According to Fig. 6(b) out of 30 10 kV networks, 17 networks are
in the sub-urban category while the other 13 networks fall into the
urban category.

3.2. Topological analysis

3.2.1. Quantification of the topological properties

Table 2 presents the results of the basic topological investiga-
tion of the above 30 networks at 10 kV level.

In order to compare the results in Table 2, probability distribu-
tions of the topological properties of both sub-urban and urban
networks were obtained. Fig. 7 shows the comparative probability
distribution plots for the two types of networks, arranged back to
back on the x-axis (probability of occurrence). For one topological
property, the same bin size and the same number of bins were used
to generate the probability distributions of both types of networks.

It can be observed from Fig. 7 (sub-graphs with letter A) that,
some of the topological properties such as, nodes per km?, network
length per km?, average edge length and average path length are
able to clearly characterize the topological differences of the two
types of networks. The ranges of the variation of the above four
properties are summarised in Table 3.

Even though the probability distributions of branching rate,
maximum node degree, fractal dimension and maximum depth
have some noticeable differences (Probability distribution plots
of the two network types are biased into different directions) of
the two types of networks, still there are some overlapping of
the values (sub-graphs with letter B). According to Fig. 7 (sub-
graphs with letter C), properties such as Average node degree
and Pearson correlation coefficient do not give clear information
to characterize urban and sub-urban networks.

3.2.2. Validation using clustering

Clustering is defined as the grouping of similar objects. A simple
procedure to classify the data set in Table 2 through a number of
clusters was carried out using the k-means clustering algorithm.
The k-means clustering aims to partition a number of observations
into k clusters in which each observation belongs to the cluster
with the nearest mean. Each observation is a d-dimensional real
vector. Euclidian distances are used to calculate the distance from
the observation to the mean. In this study, it was assumed that the
number of clusters are known. The implementation of the k-means
algorithm is as follows; (1) make initial guesses for the means m,
My, ... My (2) use the estimated means to classify the samples into
clusters. (3) for i from 1 to k, replace m; with the mean of all of the
samples for cluster i (4) repeat steps 2 and 3 until there are no
changes in any mean [36,37].

Fig. 8 illustrates the k-means cluster analysis procedure of the
present study. According to the above explanation of k-means clus-
tering the 30 networks used in the study represent 30 observa-
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Table 2

Graph related properties of the 30 networks at 10 kV level.
Network  Number of Network length Average Branching Maximum Pearson Average edge  Average path  Fractal Max
ID nodes per per 1 km? (km) node rate node degree  correlation length (km) length (km) dimension depth

1 km? degree coefficient

1 4 1.154 1.992 0.324 7 0.534 0.302 7.408 1.301 28
2 3 0.623 1.995 0.313 5 0.559 0.222 10.356 1.270 54
3 4 0.995 1.993 0.365 4 0.457 0.226 7.551 1.275 35
4 4 0.934 1.994 0.377 7 0516 0.231 6.445 1.331 28
5 4 1.052 1.985 0.346 4 0.421 0.263 5.404 1.266 23
6 2 0.726 1.990 0.363 5 0.504 0.388 8.418 1.261 26
7 3 0.775 1.991 0.292 3 0.776 0.297 8.518 1.273 34
8 3 0.868 1.992 0.350 4 0.356 0.332 9.694 1.276 35
9 4 1.316 1.994 0.361 5 0.477 0.295 8.179 1.323 38
10 2 0.724 1.980 0.330 3 0.394 0.324 4.546 1.228 25
11 2 0.779 1.990 0.352 4 0.597 0313 7.625 1.270 24
12 4 1.038 1.994 0.336 6 0.616 0.273 7.983 1.319 35
13 3 1.036 1.991 0.341 3 0.600 0.327 9.840 1.285 38
14 2 0.670 1.988 0.358 4 0.353 0.315 6.513 1.266 27
15 3 0.762 1.994 0.288 7 0.475 0.273 9.792 1.296 51
16 4 1.020 1.995 0.358 8 0.612 0.274 9.452 1.319 37
17 9 1.899 1.995 0.299 9 0.363 0.220 6.820 1.344 36
18 24 2.885 1.991 0.350 7 0.538 0.121 2.879 1.304 23
19 26 3.222 1.992 0.371 7 0.682 0.126 3.388 1.302 38
20 33 3.418 1.994 0.390 7 0.606 0.104 2.641 1.336 30
21 26 4.275 1.990 0.263 9 0.502 0.168 3.738 1.281 22
22 23 2.711 1.994 0.348 8 0.499 0.116 3.788 1.324 45
23 25 3.281 1.995 0.370 8 0.678 0.132 4.370 1.341 29
24 19 2.230 1.993 0.397 9 0.101 0.117 3.415 1.352 33
25 30 3.828 1.991 0.370 6 0.633 0.127 4.494 1.353 40
26 29 3.867 1.991 0.373 6 0.580 0.134 3.578 1.341 29
27 15 2.336 1.983 0.365 7 0.390 0.154 2.583 1.327 20
28 15 1.960 1.982 0.272 6 0.491 0.130 2.232 1.319 20
29 20 2.152 1.987 0.366 7 0.542 0.106 2.053 1.369 31
30 35 4.048 1.992 0.343 10 0.226 0.115 2.507 1.344 21
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Fig. 7. Comparison of the topological properties of urban and sub-urban networks.

tions, and each observation is a 10-dimensional real vector. The 10
dimensions (cluster variables) are the 10 topological properties
listed in Table 2. The input data matrix for the k-means algorithm

was formed using different subsets of the properties from Table 2

to find out which subsets of the parameters together can effec-
tively characterize the two network types (urban and sub-urban).
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Table 3
The ranges of variations of the topological properties of sub-urban and urban
distribution networks.

Topological property The range of variation

Sub-urban networks Urban networks

Nodes per km? 2-9 15-35

Network length per km? 0.6-2.0 km 2.0-4.2 km
Average edge length 0.2-0.4 km 0.1-0.2 km
Average path length 4.5-10.5 km 2.0-4.5 km

Therefore, it was assumed that the number of clusters k is known
for the data set (k = 2). Two clusters are the urban and sub-urban
networks. Then, the k-means algorithm was used to group the 30
networks into two clusters. Trial 10 and trial 3 were used as exam-
ples for the discussion of the clustering results in this section. In
the trial 10 all the 10 topological parameters in Table 2 were used
as cluster variables. The grouping done by the clustering in trial 10
exactly followed the sub-urban and urban classification done by
the population density parameter. Hence trial 10 was used to val-
idate the urban, sub-urban classification of the networks.

The results shown in Fig. 9 are graphical representations of the
case where, different subsets with 3 parameters were chosen as
the cluster variables (trial 3). In the first two cases (Fig. 9
(a) and (b)), the selected sets of cluster variables were able to group
the network sample into two clusters accurately, as defined by the
population density of the networks. However, the third set of clus-
ter variables shown in Fig. 9(c) did not cluster the network sample
into the right groups. Some of the sub-urban type networks were
fallen into the urban category and also the data points in each clus-
ter seemed to be much more dispersed that the previous two cases.
This observation explains the importance of feature selection when
characterizing different network types.

1109

3.2.3. Identification of key topological features

From the results so far, it is evident that the node degree and
edge length related topological measures are a key to characterize
different types of networks (most of the above listed topological
properties are related with node degrees and edge lengths). There-
fore, apart from using the single value properties to express degree
and length related graph properties of the networks (Table 2),
investigating the degree distributions and edge length distribu-
tions have clear benefits as they can also be used to capture most
of the above single value properties.

Fig. 10(a) and (b) show the edge length distributions of sub-
urban and urban networks respectively. Light blue and light red
curves in both figures represent the edge length distribution of a
single network. The dashed dark blue and dark red lines show
the average curves of the edge length distributions of all the net-
works in the corresponding figure. The average curve was obtained
by taking into consideration the edge lengths in all the networks of
one type as one set and by getting the probability of occurrences
for the whole set.

The curves of average edge length distribution of sub-urban and
urban types of networks are compared in Fig. 10(c). It was
observed that edge length distributions of both types of networks
follow negative exponential patterns. The edge length distribution
of urban networks has a faster decay compared to the sub-urban
networks and this observation explains that the urban networks
have a considerably higher fraction of shorter edge lengths com-
pared to the sub-urban networks.

Similarly, degree distributions of the sub-urban and urban net-
works are shown in Fig. 11(a) and (b) respectively. The average
degree distribution curves for the two types of the networks are
compared in Fig. 11(c). The curves do not follow any well-known
distribution. However, it is noticeable that the number of nodes
with a degree 2 in most of the urban networks is less than the
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Fig. 11. Node degree distributions of; (a) sub-urban networks, (b) urban networks and (c) comparison of node degree distributions of sub-urban and urban networks.
sub-urban networks. This implies that the urban networks tend to
have more branches (nodes with degree > 3) and leaf nodes (nodes

the length and degree related measures play a critical role in
with degree 1) than sub-urban networks. Also, the maximum

degree observed in sub-urban networks is 7 while maximum
degree of the urban networks is up to 10.

3.3. The depth dependent topological properties

An investigation for the depth dependent topological properties
was conducted with the same set of real world network data. Since

describing the topology of a network, the depth dependent degree
distributions and the edge length distributions were thoroughly
investigated.

Fig. 12(a)-(c) show the results of depth dependent analysis of
one sub-urban type network (Network 1 in Table 2). From Fig. 12
(a) it can be observed that in Network 1, the edge length distribu-
tions of all the three ‘levels’ approximately follow negative expo-
nential distributions. However, the maximum edge length and

the total number of edges in each level has been reduced when
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2 3
Level of the network according to the depth

(©)



S. Abeysinghe et al./Applied Energy 210 (2018) 1101-1112

Table 4
Number of nodes in different levels of the networks.

1111

Level Number of nodes in different levels of sub-urban networks (Network IDs 1-17)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Level 1 128 185 122 150 52 102 93 106 172 39 66 164 94 84 174 180 214
Level 2 85 159 109 130 53 80 74 100 107 38 86 117 80 69 104 136 130
Level 3 41 54 54 70 31 22 59 40 29 23 44 40 46 20 73 61 40
Total no. of nodes 254 398 285 350 136 204 226 246 308 100 196 321 220 173 351 377 384
Level Number of nodes in different levels of urban networks (Network IDs 18-30)
18 19 20 21 22 23 24 25 26 28 27 29 30
Level 1 70 107 175 70 158 171 108 96 106 47 58 74 101
Level 2 96 100 95 99 121 175 112 89 88 44 38 48 121
Level 3 68 30 61 36 49 54 47 42 23 23 19 31 43
Total no. of nodes 234 237 331 205 328 400 267 227 217 114 115 153 265

going towards level 3 from the level 1 of the network. Fig. 12(b)
shows the degree distributions of the three levels of the network
1. Fig. 12(c) shows the distribution of the nodes among the levels
of the network 1. It was observed that the number of nodes in each
level has been reduced when moving from level 1 to level 3 of the
network.
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Fig. 13. Comparison of the distribution of the nodes among the levels of sub-urban
and urban networks.
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Table 4 provides the information regarding the distribution of
the number of nodes in different levels of urban and sub-urban
networks used in the study. Fig. 13 compares and summarizes
the information in Table 4. For instance, the average probability
that a given node in an urban network belongs to level 1 was
obtained by dividing the total number of nodes in level 1 by the
total number of nodes in all urban networks. From Fig. 13 it was
identified that in both types of networks the number of nodes in
each level has been reduced when going away from the source
node. According to Fig. 13, the fraction of nodes in levels 2 and 3
of urban networks are slightly higher than that of the sub-urban
networks. This is due to the higher density of the distribution of
consumers in urban areas, compared to that of the sub-urban
areas.

Fig. 14(a) shows a comparison of the edge length distributions
of sub-urban and urban networks at their levels 1, 2 and 3. Each
curve represents the average variation of all the networks of one
type (e.g. Average variation of 17-sub-urban and average variation
of 13-urban networks). When comparing the results with the sub-
urban networks it can be observed that at the same level, the urban
networks have faster decaying negative exponential pattern and a
shorter ‘maximum edge length’ in their edge length distributions.
Also for both types of networks, the maximum edge length that
can be observed in level 1 has been reduced when going away from
the source node towards level 2 and level 3 (Table 5), and the expo-
nential decaying of the distribution has also become faster.
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Fig. 14. (a) Comparison of edge length distributions of sub-urban and urban networks at different levels. (b) Comparison of degree distributions of sub-urban and urban

networks at different levels.
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Table 5
Maximum value for edge length in sub-urban and urban networks at different levels
of the network.

Level Maximum edge length (km)

Sub-urban networks Urban networks

1 2.9 1.4
2.0 0.9
3 1.6 0.7

Similarly, a comparison of the depth dependent network analy-
sis for the degree distributions is shown in Fig. 14(b). Compared to
the information delivered by the degree distribution curves in
Fig. 11, the depth dependent analysis provides detailed informa-
tion regarding the network structure. It can be observed that in
both types of networks, close to the supply point the network is
less branched and when going away from the supply node branch-
ing (nodes with degree > 3) and the fraction of leaf nodes (nodes
with degree = 1) have increased. Comparison of the degree distri-
bution of the same level in two types of networks shows that the
urban networks tend to have a strong depiction of the above dis-
cussed property than that of the sub-urban networks.

4. Conclusions and future work

Investigating topological properties of real world electricity dis-
tribution networks have great benefits of providing random, realis-
tic test network models for various simulation studies. In the
present study an in-depth topological investigation on real world
MV electrical power networks was presented.

Results of the real world network investigation showed that (1)
node degree and edge length related graph properties are funda-
mental in characterizing the topological structures of the radial
type sub-urban and urban electricity distribution networks; (2)
results from the clustering approach showed the importance of
feature selection when characterizing different types of distribu-
tion networks; (3) the depth dependent approach was able to bet-
ter capture the topological features at different depth levels of the
networks. Results from the depth dependent analysis showed that
urban and sub-urban types of electricity distribution networks
have different graph related properties at different depth levels
of the networks.

Similar investigation will be conducted in future for MV rural
networks and for LV networks of different types (urban, sub-
urban, and rural). These results will be used to build a network
generation tool which can produce statistically similar, random-
realistic network topologies.
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