

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/103264/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Teodoro Rezende, Maria, Romão, Tatiany Patrícia, Batista, Michel, Berry, Colin, Adang, Michael J. and Neves Lobo Silva-Filha, Maria Helena 2017. Identification of Cry48Aa/Cry49Aa toxin ligands in the midgut of Culex quinquefasciatus larvae. Insect Biochemistry and Molecular Biology 88, pp. 63-70. 10.1016/j.ibmb.2017.08.001

Publishers page: http://dx.doi.org/10.1016/j.ibmb.2017.08.001

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

1	To: Insect Biochemistry and Molecular Biology
2	
3	Identification of Cry48Aa/Cry49Aa toxin ligands in the midgut of Culex quinquefasciatus
4	larvae
5	
6	Tatiana Maria Teodoro Rezende ¹ , Tatiany Patrícia Romão ¹ , Michel Batista ² , Colin Berry ³ ,
7	Michael J. Adang ⁴ , Maria Helena Neves Lobo Silva-Filha ^{1*}
8	
9	¹ Instituto Aggeu Magalhães-FIOCRUZ, Recife-PE 50740-465, Brazil. ² Instituto Carlos Chagas-
10	FIOCRUZ, Curitiba-PR 81350-010, Brazil. ³ University of Georgia, Athens-GA 30602, USA. ⁴
11	Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AT, United Kingdom.
12	
13	* Corresponding author
14	Maria Helena Neves Lobo Silva-Filha
15	Department of Entomology, Instituto Aggeu Magalhães-FIOCRUZ Av. Moraes Rego s/n,
16	Cidade Universitária, Recife-PE, 50740-465, Brazil
17	Tel: +55-81-21012553
18	Fax: +55-81-21012516
19	E-mail: mhneves@cpqam.fiocruz.br
20	
21	
22	
23	
24	

25 Abstract

A binary mosquitocidal toxin composed of a three-domain Cry-like toxin (Cry48Aa) and a 26 27 binary-like toxin (Cry49Aa) was identified in Lysinibacillus sphaericus. Cry48Aa/Cry49Aa has action on *Culex quinquefasciatus* larvae, in particular, to those that are resistant to the Bin Binary 28 29 toxin, which is the major insecticidal factor from L. sphaericus-based biolarvicides, indicating 30 that Cry48Aa/Cry49Aa interacts with distinct target sites in the midgut and can overcome Bin 31 toxin resistance. This study aimed to identify Cry48Aa/Cry49Aa ligands in C. quinquefasciatus 32 midgut through binding assays and mass spectrometry. Several proteins, mostly from 50 to 120 kDa, bound to the Cry48Aa/Cry49Aa toxin were revealed by toxin overlay and pull-down 33 assays. These proteins were identified against the C. quinquefasciatus genome and after analysis 34 35 a set of 49 proteins were selected which includes midgut bound proteins such as 36 aminopeptidases, amylases, alkaline phosphatases in addition to molecules from other classes that can be potentially involved in this toxin's mode of action. Among these, some proteins are 37 orthologs of Cry receptors previously identified in mosquito larvae, as candidate receptors for 38 39 Cry48Aa/Cry49Aa toxin. Further investigation is needed to evaluate the specificity of their interactions and their possible role as receptors. 40 41 Keywords: Lysinibacillus sphaericus, Binary toxin, Cry, biolarvicides, receptors, mosquito. 42 43 44 45 46

48 **1. Introduction**

Lysinibacillus sphaericus is an entomopathogen that can produce crystals containing protoxins 49 with high and selective activity against mosquito larvae, in particular those from the Culex 50 pipiens complex. Some insecticidal proteins have been identified in L. sphaericus strains (Allievi 51 52 et al., 2014; Berry, 2012) and the Binary crystal protoxin (Bin), which was the first 53 mosquitocidal factor characterized, remains the active principle of the commercial larvicides 54 based on this bacterium (Silva Filha et al., 2014). Bin is a heterodimer composed of BinA (42 55 kDa) and BinB (51 kDa) polypeptides which are produced at high levels in equimolar 56 concentrations by some strains (Charles et al., 1996). Bin achieves the optimal activity only 57 when both components are present, which characterizes its binary nature (Nicolas et al., 1993). Its mode of action has been mostly studied in species from the *Culex pipiens* complex and, after 58 ingestion and proteolytic processing of protoxins, the active BinB subunit is responsible for 59 specifically binding to the Cpm1/Cqm1 α-glucosidases that act as midgut receptors (Darboux et 60 al., 2001; Romão et al., 2006; Silva-Filha et al., 1999), while the BinA component is associated 61 62 with cell toxicity (Nicolas et al., 1993). Resistance of C. pipiens and C. quinquefasciatus larvae to Bin toxin has been recorded (Mulla et al., 2003; Nielsen-Leroux et al., 2002; Rao et al., 1995; 63 Wirth et al., 2000; Yuan et al., 2000) due to mutations in genes encoding the receptors, which 64 lead to the production of truncated or non-functional proteins and cause the failure of Bin toxin 65 binding on the midgut epithelium. This has been the major resistance mechanism documented 66 and cqm1/cpm1 alleles causing such failures have been reported (Chalegre et al., 2012; Chalegre 67 et al., 2015; Darboux et al., 2007; Darboux et al., 2002; Guo et al., 2013; Romão et al., 2006). 68 69 Resistance to L. sphaericus based on loss of Bin toxin binding highlights the need to 70 characterize molecules with distinct modes of action. Investigation of L. sphaericus strain IAB59 71 began soon after the first reports of Bin-based resistance since this strain is toxic to Bin-resistant 72 larvae, suggesting the production of a novel insecticidal factor that can overcome resistance to 73 Bin toxin (Nielsen-LeRoux et al., 2001; Pei et al., 2002; Yuan et al., 2003). Jones et al. (2007) identified the insecticidal factor as Cry48Aa (135 kDa) and Cry49Aa (53 kDa), which are also 74 75 produced as protoxins in small crystalline inclusions during sporulation. Cry48Aa/Cry49Aa is 76 considered a new binary toxin produced by L. sphaericus since neither the Cry48Aa nor 77 Cry49Aa component shows toxicity to larvae alone (Jones et al., 2007). They can act in synergy 78 forming the complex Cry48Aa/Cry49Aa through the N-terminal portion of the Cry49Aa subunit 79 (Guo et al., 2016). These toxins have comparable toxicity to Bin against C. quinquefasciatus, and 80 remain active to Bin-resistant larvae, when both Cry toxins are produced as recombinant proteins and are administered in equimolar ratios (Jones et al., 2008). Unfortunately, native strains are 81 82 deficient in expression of Cry48Aa and do not attain the optimal 1:1 Cry48:Cry49 ratio required for high toxicity, which accounts for why strains such as IAB59 can produce both binary toxins, 83 84 but are not more toxic than strains producing only Bin toxin. 85 The Cry48Aa component of the toxin belongs to the three-domain (3D) structural family of Cry proteins with 33% amino acid identity with the Cry4Aa toxin from Bacillus 86 thuringiensis svar. israelensis (Bti) (Boonserm et al., 2006; Jones et al., 2007). Cry49Aa is part 87 of the group Bin-toxin-like proteins (Toxin–10 family) with about 30% identity to both subunits 88 89 of the Bin toxin from L. sphaericus, in addition to comparable identity to Cry36 (34%) and 90 Cry35 (20%) produced by *B. thuringiensis* strains (Berry, 2012; Jones et al., 2007). The initial

91 steps of the mode of action of Cry48Aa and Cry49Aa are similar to that of the Bin toxin

92

comprising ingestion of crystals, solubilization under alkaline pH and proteolytic activation of

93 protoxins into toxins (Jones et al., 2008), interaction with midgut (de Melo et al., 2009; Guo et

94 al., 2016) followed by cytopathological effects which appear similar to those produced by a 95 synergistic mixture of Cry-like and Bin-like toxins (de Melo et al., 2009). However, the identity 96 of ligands and receptors in the larval midgut that underlie toxic action and larval mortality is still unknown. The investigation of this specific step of the mode of action is strategic since 97 98 Cry48Aa/Cry49Aa is toxic to Bin-resistant C. quinquefasciatus lacking the midgut receptors 99 (Cqm1) for Bin toxin (de Melo et al., 2009; Pei et al., 2002) which indicates that the 100 Cry48/Cry49 toxin complex interacts with distinct molecules mediating toxicity to larvae. 101 Recently it was shown that both subunits display the ability to bind to the C. quinquefasciatus 102 larval midgut (Guo et al., 2016). In this context, the major goal of the present study was to 103 identify potential ligands for Cry48Aa/Cry49Aa in the midgut of C. quinquefasciatus larvae and contribute to the understanding of the mode of action of this mosquitocidal toxin. 104

105

106 2. Materials and methods

107 2.1 Preparation of Cry toxins

108 Cry48Aa and Cry49Aa were produced individually in the acrystalliferous Bacillus thuringiensis svar. israelensis strain 4Q7 transformed with plasmids pSTAB135 and pHTP49, which carry 109 genes encoding the respective toxins (Jones et al., 2007). Cultures were grown in sporulation 110 111 medium (de Barjac and Lecadet, 1976) supplemented with 1% glucose and erythromycin (25 112 µg/ml), under agitation (200 rpm) at 30°C, for 72 h until reaching sporulation (≥80%). Spore-113 crystal biomass was centrifuged, sequentially washed with 1M NaCl/10 mM EDTA pH 8.0 and 10 mM EDTA pH 8.0, and stored at -80°C. Crystal/spores from both recombinant Bt strains 114 115 were also processed together. For this purpose biomass containing spore-crystals of each 116 protein were combined (1:1 wt/wt), solubilized (50 mM NaOH, 30°C, 1 h, at 150 rpm), the

117	supernatant containing both solubilized proteins was separated by centrifugation $(21.000g,$
118	4°C, 30 min) and the pH was adjusted to \approx 8.5 using 0.1 M HCl. Combined protoxins were
119	activated with pancreatic bovine trypsin (1:100 wt/wt, 30°C, 1 h). Supernatant, containing
120	the activated proteins, was centrifuged as described above and then dialyzed (0.02 M
121	sodium phosphate, pH 8, 4°C, 16 h). Protein concentration was determined according to
122	Bradford (1976) using the Biorad reagent (Biorad, Hercules, CA, USA) and a bovine serum
123	albumin standard curve. Size and the integrity of proteins were analyzed in 10% SDS-
124	PAGE. Activated proteins were stored at -80°C. Moreover, in this study Cry49Aa protein
125	fused to a C-terminal poly-histidine tag (Cry49Aa-His) was individually produced in Escherichia
126	coli T7 express cells (New England Biolabs, Beverly, Ma, USA). For this purpose, the cry49Aa
127	gene was amplified from pHTP49 (described above) using specific primers containing BamHI
128	(bold) and NotI (underlined) restriction sites (Fwd 5'-
129	CGAGGATCCATGGAAAATCAAATAAAAGAAGAAGAATTTAAC-3', Rev 5'-
130	CGAGCGGCCGCATTATAATATGGCTTTGAATTTTCATG-3') and subsequently cloned into
131	the expression vector pET21a [®] (Novagen, USA). Antibodies against the His-tag were used to
132	track binding of the Cry48Aa/Cry49Aa mix through the Cry49-His. Attempts to produce
133	Cry48Aa in E. coli in order to have a suitable expression to evaluate this toxin were not
134	successful. For Cry49Aa cultures of transformed T7 express cells were grown using Luria-
135	Bertani (LB) medium supplemented with ampicillin (100 μ g/ml) (under agitation, 200 rpm, 37°C
136	until reaching an OD ₆₀₀ of 0.5), and induced with IPTG (0.1 mM, 30°C, 4 h). Cultures were
137	centrifuged (21.500g, 4°C, 10 min), the cell pellets were re-suspended in phosphate-buffered
138	saline pH 7.4 (PBS), sonicated, and Triton X-100 was added to a final 1% vol/vol. The samples
139	were centrifuged (1700g, 30 min, 4°C) and proteins from the supernatants were purified using

140	the Ni-NTA resin (Qiagen, Hilden, Germany), according to the manufacturer's instructions.
141	Proteins were eluted with 1M imidazole in wash buffer (50 mM sodium phosphate-buffer, 300
142	mM NaCl, 10% glycerol, pH 6, 4°C, 1 h) and dialyzed (50 mM dibasic sodium phosphate, 5 mM
143	monobasic sodium phosphate, 50 mM NaCl, 0.1% Triton x-100, 5% glycerol, pH 7.8, 4°C,
144	overnight). Protein integrity and concentration were verified, as previously described. The
145	purified Cry49Aa-His from E. coli was combined with solubilized Cry48Aa from Bt in 1:2 ratio
146	(µg protein: µg protein) and the mixed sample was subjected to <i>in vitro</i> processing, as previously
147	described. The concentration and integrity of the activated mix of proteins was verified by 10%
148	SDS-PAGE and then it was stored at -80°C. Cry49Aa fused to glutathione S-transferase
149	(Cry49Aa-GST) was also individually produced in <i>E. coli</i> BL21 Star TM (DE3) cells
150	(ThermoFischer Scientific, Waltham, MA, USA). cry49Aa gene was amplified from
151	pHTP49 using the following primers containing <i>Bam</i> HI and <i>Not</i> I sites as described (Fwd
152	5'-CGAGGATCCATGGAAAATCAAATAAAAGAAGAATTTAAC-3', Rev 5'-
153	CGAGCGGCCGCTTAATTATAATATGGCTTTGAATTTTCATG -3'). The BinB subunit of
154	the binary toxin fused to glutathione S-transferase (BinB-GST) was also produced
155	according to Romão et al. (2006). Further steps to produce both purified GST proteins are
156	also described in that study.
157	

158 2.2 Mosquito strain

159 Fourth instar larvae of the CqSLab *Culex quinquefasciatus* strain were used in this study. This

160 colony has been maintained in the insectarium of the Instituto Aggeu Magalhães/FIOCRUZ for

161 more than five years under controlled conditions of $26 \pm 1^{\circ}$ C, 70% relative humidity, and a

162 12h:12h (light/dark) photoperiod. CqSLab is a laboratory reference colony susceptible to

insecticidal compounds. Larvae were reared in dechlorinated water and fed on cat food. Adults
were maintained on a 10% sugar solution, and females were also artificially fed with rabbit
blood.

166

167 2.3 Midgut brush border membrane fractions

Midgut apical membrane enriched preparations, called brush border membrane fractions 168 (BBMFs), were prepared with batches of whole frozen $(-80^{\circ}C) 4^{\text{th}}$ instar larvae (5 g) as described 169 170 by (Silva-Filha et al., 1997). BBMFs were solubilized with 1% CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-2-hydroxy-1-propanesulfonate) according to Silva-Filha et al. (1999). BBMF 171 and CHAPS-solubilized proteins (CHAPS-extract) were stored at -80°C. Protein concentration 172 173 was determined as described in section 2.1 and the enrichment of proteins from apical cell 174 membranes was evaluated through the detection of α -glucosidase activity (EC 3.2.1.20), 175 according to Ferreira et al. (2014). 176

177 2.4 Homologous competition binding assays

Competition assays were performed to evaluate the capacity of radiolabeled (¹²⁵I) 178 individual Cry48Aa, Cry49Aa and a mixture of these toxins to bind to BBMF, according to 179 Silva-Filha et al. (1997). Labeled individual toxins or a mixture of Cry48Aa/Cry49Aa (1:1) 180 (10 nM) were incubated with BBMF proteins (25 μ g) in the absence, or in the presence of 181 182 increasing concentrations (3, 10, 30, 100, 300, 1000, 3000 nM), of each homologous unlabeled toxin used as competitor, for 16 h at room temperature (RT). After incubation, 183 ¹²⁵ I-toxins bound to BBMF were separated through centrifugation (21,000g, 15 min, 4 °C), 184 185 sediments were rinsed twice with PBS, added to a scintillation cocktail and analyzed using a scintillation beta counter. Each experimental point was repeated at least four times and
the inhibitory concentration of the competitor that reduces the binding response by half
(IC₅₀) was determined using GraphPad Prism[™] software (GraphPad, La Jolla, CA, USA).

189

190 2.5 Toxin overlay assays

191 As an initial approach to identify the C. quinquefasciatus midgut proteins that bind to Cry48Aa/Cry49Aa-His toxin, proteins (30-40 µg) from BBMF and CHAPS-extracts were 192 separated on 10% SDS-PAGE and transferred to nitrocellulose Protran[®] membranes (GE 193 Healthcare, Germany). Membranes were first incubated in TBS-T buffer (20 mM Tris-HCl pH 194 7.6, 150 mM NaCl, 0.05% Tween 20), containing 5% nonfat dry milk at RT for 1h and then with 195 a mix (100 µg) of Cry48Aa/Cry49Aa-His activated toxins (16 h at 4°C). Unbound toxins were 196 197 removed by washing with TBS-T buffer (4x 15 min at RT). Membranes were then incubated 198 with a primary monoclonal serum raised against poly-histidine (Sigma-Aldrich, St Louis, MO, 199 USA) (1:5.000, 1 h at RT) followed by washings and incubation with the secondary serum raised 200 against mouse IgG conjugated to horseradish peroxidase (1:10.000, 1 h at RT). After washing, 201 membranes were subjected to chemiluminescence detection using Luminata Forte® (Millipore, 202 Billerica, MA, USA) to detect binding of the Cry48Aa/Cry49Aa mix through the Cry49-His 203 bound to midgut proteins. Similar membranes with midgut proteins, but without incubation with the Cry48Aa/Cry49a-His mix, were subjected to immunodetection and were used as 204 205 negative controls. Assays were conducted in triplicate. 206 207 2.6 Pull-down assays

208 Protein-protein binding assays were also performed using a mix of Cry48Aa/Cry49Aa activated toxins immobilized on CNBr activated sepharose 4B[®] (GE Healthcare, Uppsala, Sweden) beads 209 210 adapted from the protocol described by Zhou et al. (2016). Briefly, activated Cry48Aa/Cry49Aa mix (1 mg) was immobilized on beads (500 μ L), for 16h at 4°C. After washings (0.2 M NaHCO₃) 211 212 pH 8.3) potential remaining active groups on the resin were blocked (glycine 0.1 M pH 8, 6h at 213 RT) and the coupled Cry48Aa/Cry49Aa beads were re-suspended in a final volume of 500 µL of 214 phosphate-buffered saline (pH 7.4) and stored at 4°C. Pull-down assays were then conducted 215 using Cry48Aa/Cry49Aa beads (50 µL) and CHAPS-extracts (50 µg) incubated for 2 h at 4°C. 216 After incubation, unbound proteins were removed by centrifugation (400g, 30 s, $4^{\circ}C$) and beads 217 were washed five times with 500 µL of phosphate-buffered saline pH 7.4/1 M NaCl, followed by five washes with 500 μ L of phosphate-buffered saline pH 7.4. Proteins that remained bound 218 to the Cry48Aa/Cry49Aa beads were solubilized in Laemmli buffer boiled for 10 min and 219 220 visualized in 10% SDS-PAGE. Samples of CNBr sepharose beads coupled with 0.1 M Tris-HCl 221 buffer (pH 8.5) were submitted to pull-down assays with CHAPS-extracts and used as negative 222 controls. Gels were stained with Coomassie blue or PlusOne Silver Staining kit® (GE 223 Healthcare). At least three gels for each staining were analyzed. A second set of pull-down assays was conducted using recombinant Cry49Aa and BinB 224 toxins produced by E. coli fused to glutathione S-transferase (GST) and immobilized on 225 glutathione-sepharose 4B[™] beads (GE Healthcare, Uppsala, Sweden), according to Romão 226 227 et al. (2006). For the assays the Cry49Aa-GST beads were pre-incubated with activated 228 recombinant Cry48Aa toxin from Bt for 1 h at RT. After this, Cry49Aa-GST beads were recovered by centrifugation (1.500 g, 2 min, 4°C) and washed three times with BB3 buffer 229 (100 mM KCl /1 mM MgCl₂/50 mM HEPES/0.2% Nonidet P-40®/5% glycerol). Sf9 cell 230

231	culture medium samples enriched with Cqm1 recombinant protein were obtained as
232	described in Ferreira et al. (2014) and Cqm1 content in samples was estimated based on a
233	standard curve of purified Cqm1 protein immunodetected with an antibody raised against
234	Cqm1 (Romão et al., 2006). Medium samples containing Cqm1 protein (0.015-1.5 μ g) were
235	incubated with equivalent amounts (~10 μ g) of BinB beads, or Cry49Aa beads, or GST
236	beads (negative control) for 2 h, at RT in BB3 buffer. After incubation beads samples,
237	washed and recovered as described above, were separated on 10% SDS-PAGE, transferred
238	to nitrocellulose membranes and subjected to immunoblotting with the antibody anti
239	Cqm1.

241 2.7 Mass spectrometry analysis

242 Protein samples from a silver stained gel were sectioned into eight parts according to the 243 molecular weight range and sent for LC-MS/MS analysis in the Proteomics and Mass Spectrometry Facility (PAMS) from the University of Georgia. In-gel digestions of these bands 244 245 were performed. The tryptic peptides were analyzed by an Orbitrap Elite mass spectrometer 246 coupling with a Proxeon nanoLC system (Thermo Scientific, Waltham, MA, USA). The data-247 dependent acquisition (DDA) Top 8 method was used to acquire MS data. Protein identification 248 and characterization of modifications were performed using Thermo Proteome Discoverer 249 (version 1.4) with Mascot (Matrix Science, London, UK). The NCBI proteome reference 250 database for C. quinquefasciatus was downloaded on October 10, 2016. The searched protein 251 database was complete, but redundant; the 39,875 entry database was composed of 18,883 entries from the NCBI reference protein database for C. quinquefasciatus and Refseq, UniProt 252 and EMBL C. quinquefasciatus protein entries. 253

255 **3. Results**

256 3.1 Production of Cry toxins

Crystal/spore samples produced individually in the recombinant Bt strains were the sources of 257 258 Cry49Aa (≈53 kDa) and Cry48Aa (≈135 kDa), yielding protoxins with their expected molecular 259 weights (Fig. 1A, lanes 1 and 3). In vitro processing of Cry49Aa protoxin produced a major 260 polypeptide of ≈44 kDa while Cry48Aa processing resulted in fragments of ≈68 and 46 kDa 261 (Fig. 1A, lanes 2 and 4). Crystal/spores from both recombinant Bt strains were also processed 262 together, as described in section 2.1, and the mix of activated proteins showed a similar activation pattern to that of the individually processed toxins (Fig. 1A, lane 5). The mix of 263 264 activated Cry48Aa/Cry49Aa toxins was employed for pull-down assays, based on the results of competition binding assays described below in section 3.2. Cry49Aa protoxin 265 containing a poly-histidine tag (Cry49Aa-His) was also produced in E. coli as a recombinant 266 267 protein of \approx 53 kDa (Fig. 1B, lane 1). A mix of protoxins produced in Bt and E. coli 268 (Cry48Aa/Cry49Aa-His) respectively, (Fig. 1B lane 2) processed in vitro exhibited the pattern (Fig. 1B, lane 3) (Cry48Aa, ≈68 and 46 kDa; Cry49Aa ≈44 kDa) as observed before (Fig. 1A, 269 lane 5). Similarly, this Cry48Aa/Cry49Aa-His mixture of activated toxins was employed to 270 271 perform overlay assays. Cry49Aa-GST and BinB-GST were successfully produced and showed a expected molecular of around 80 kDa (data not shown). 272 273

274 *3.2 Cry toxins binding to midgut proteins*

BBMFs used in assays showed a protein concentration of $5.1\pm0.8 \ \mu g/\mu l$ and the enrichment of aglucosidase activity in the BBMF, compared to the initial whole larvae extract used, was 3.3 ± 0.9

277	fold. First, homologous competition assays were performed to evaluate the binding capacity
278	of Cry48Aa and Cry49Aa toxins to C. quinquefasciatus midgut brush border proteins
279	(BBMF). Individual labelled toxins and the mixture of labeled Cry48Aa/Cry49Aa bound
280	specifically to BBMF and were displaced in presence of the respective unlabeled
281	homologous competitors (Fig. S1). Labeled Cry48Aa/Cry49Aa showed a lower IC_{50} (41
282	nM), compared to those observed for Cry48Aa (83 nM) and Cry49Aa (95 nM) individual
283	labeled toxins (Fig. S1), indicating that the binding affinity of the Cry48Aa/Cry49Aa mix to
284	C. quinquefasciatus BBMF is higher than the individual toxins.
285	The binding ability of the activated Cry48Aa/Cry49Aa-His mixture to the C .
286	quinquefasciatus BBMF proteins was investigated through overlay assays. Cry48Aa/Cry49Aa-
287	His mix recognized midgut proteins of about 52, 58, 65, 73, 80, 90, 100-125 kDa, based on the
288	immunodetection of bound Cry49Aa-His toxin (Fig. 2A, lanes 1, 3). Most of the proteins
288 289	immunodetection of bound Cry49Aa-His toxin (Fig. 2A, lanes 1, 3). Most of the proteins observed in these BBMF samples were also detected in solubilized midgut proteins (CHAPS-
288 289 290	immunodetection of bound Cry49Aa-His toxin (Fig. 2A, lanes 1, 3). Most of the proteins observed in these BBMF samples were also detected in solubilized midgut proteins (CHAPS- extract) (Fig. 2A, lanes 2, 4). Cry49Aa-His, included among the SDS-PAGE samples as positive
288 289 290 291	immunodetection of bound Cry49Aa-His toxin (Fig. 2A, lanes 1, 3). Most of the proteins observed in these BBMF samples were also detected in solubilized midgut proteins (CHAPS- extract) (Fig. 2A, lanes 2, 4). Cry49Aa-His, included among the SDS-PAGE samples as positive control, was recognized by the monoclonal antibody raised against the poly-histidine tail of this
288 289 290 291 292	immunodetection of bound Cry49Aa-His toxin (Fig. 2A, lanes 1, 3). Most of the proteins observed in these BBMF samples were also detected in solubilized midgut proteins (CHAPS- extract) (Fig. 2A, lanes 2, 4). Cry49Aa-His, included among the SDS-PAGE samples as positive control, was recognized by the monoclonal antibody raised against the poly-histidine tail of this protein (Fig. 2A, lane 5). In parallel the immunodetection of midgut proteins without incubation
288 289 290 291 292 293	immunodetection of bound Cry49Aa-His toxin (Fig. 2A, lanes 1, 3). Most of the proteins observed in these BBMF samples were also detected in solubilized midgut proteins (CHAPS- extract) (Fig. 2A, lanes 2, 4). Cry49Aa-His, included among the SDS-PAGE samples as positive control, was recognized by the monoclonal antibody raised against the poly-histidine tail of this protein (Fig. 2A, lane 5). In parallel the immunodetection of midgut proteins without incubation with the Cry48Aa/Cry49Aa-His mix, was used as a negative control. In this assay two major
288 289 290 291 292 293 293 294	immunodetection of bound Cry49Aa-His toxin (Fig. 2A, lanes 1, 3). Most of the proteins observed in these BBMF samples were also detected in solubilized midgut proteins (CHAPS- extract) (Fig. 2A, lanes 2, 4). Cry49Aa-His, included among the SDS-PAGE samples as positive control, was recognized by the monoclonal antibody raised against the poly-histidine tail of this protein (Fig. 2A, lane 5). In parallel the immunodetection of midgut proteins without incubation with the Cry48Aa/Cry49Aa-His mix, was used as a negative control. In this assay two major proteins (≈44 and 48 kDa) from BBMF and CHAPS-extract (Fig. 2B, lanes 1-4) were recognized
288 289 290 291 292 293 293 294 295	immunodetection of bound Cry49Aa-His toxin (Fig. 2A, lanes 1, 3). Most of the proteins observed in these BBMF samples were also detected in solubilized midgut proteins (CHAPS- extract) (Fig. 2A, lanes 2, 4). Cry49Aa-His, included among the SDS-PAGE samples as positive control, was recognized by the monoclonal antibody raised against the poly-histidine tail of this protein (Fig. 2A, lane 5). In parallel the immunodetection of midgut proteins without incubation with the Cry48Aa/Cry49Aa-His mix, was used as a negative control. In this assay two major proteins (≈44 and 48 kDa) from BBMF and CHAPS-extract (Fig. 2B, lanes 1-4) were recognized by the anti-His antibody and they were discarded from further analysis as potential binding
288 289 290 291 292 293 293 294 295 296	immunodetection of bound Cry49Aa-His toxin (Fig. 2A, lanes 1, 3). Most of the proteins observed in these BBMF samples were also detected in solubilized midgut proteins (CHAPS- extract) (Fig. 2A, lanes 2, 4). Cry49Aa-His, included among the SDS-PAGE samples as positive control, was recognized by the monoclonal antibody raised against the poly-histidine tail of this protein (Fig. 2A, lane 5). In parallel the immunodetection of midgut proteins without incubation with the Cry48Aa/Cry49Aa-His mix, was used as a negative control. In this assay two major proteins (≈44 and 48 kDa) from BBMF and CHAPS-extract (Fig. 2B, lanes 1-4) were recognized by the anti-His antibody and they were discarded from further analysis as potential binding proteins as well as proteins whose molecular weights were lower than 40-50 kDa since they
288 289 290 291 292 293 294 295 296 297	immunodetection of bound Cry49Aa-His toxin (Fig. 2A, lanes 1, 3). Most of the proteins observed in these BBMF samples were also detected in solubilized midgut proteins (CHAPS- extract) (Fig. 2A, lanes 2, 4). Cry49Aa-His, included among the SDS-PAGE samples as positive control, was recognized by the monoclonal antibody raised against the poly-histidine tail of this protein (Fig. 2A, lane 5). In parallel the immunodetection of midgut proteins without incubation with the Cry48Aa/Cry49Aa-His mix, was used as a negative control. In this assay two major proteins (≈44 and 48 kDa) from BBMF and CHAPS-extract (Fig. 2B, lanes 1-4) were recognized by the anti-His antibody and they were discarded from further analysis as potential binding proteins as well as proteins whose molecular weights were lower than 40-50 kDa since they seemed to be a result of non-specific binding, as observed on negative control blot overlays.

3.3 Identification of Cry48Aa/Cry49Aa binding proteins

A proteomic approach was performed to identify Cry48Aa/Cry49Aa binding proteins from C.

301 quinquefasciatus solubilized BBMF proteins. Pull-down assays were performed between midgut 302 CHAPS-solubilized proteins (Fig. 3, lane 1) and activated Cry48Aa/Cry49Aa toxins immobilized 303 on CNBr-beads (Fig. 3, lane 2). Pulled-down, i.e. extracted proteins were separated by 10% 304 SDS-PAGE and then visualized by silver staining. Separation of proteins from the 305 Cry48Aa/Cry49Aa beads alone (not incubated with gut extracts) showed major bands of $\approx 68, 46$ 306 and 44 kDa, a profile similar to the activated Cry48Aa/Cry49Aa toxins (Fig. 1A, lane 5). A band 307 of \approx 90 kDa is possibly a Cry49Aa dimer that is stable under the conditions of this assay. Midgut 308 proteins that bound to the immobilized toxins (Fig. 3, lane 3) showed apparent molecular weights 309 consistent with those immunodetected as potential ligands in the overlay assays (Fig. 2A, lanes 1-4). When midgut solubilized proteins were incubated with CNBr beads that had been prepared 310 by incubation with Tris buffer only (without Cry48Aa/Cry49Aa), used as a negative control, no 311 proteins bound to the beads were visualized by silver staining (data not shown). Lane 3 from the 312 313 pull-down assay (Fig. 3) was cut into eight sections that were subjected to LC-MS/MS analysis. 314 A list of 266 C. quinquefasciatus proteins from gel sections (1-8) with a significance score higher than 67 and the number of unique peptides greater than 2 as threshold, is presented in the 315 supplementary table 1 (Table S1). From this dataset a group of 49 proteins was selected (Table 316 1), in most cases, because they belong to a class previously reported as Cry receptors/ligands, or 317 318 they were already cited as molecules potentially involved in the mode of action of those toxins. 319 Proteins that were detected in more than one gel section were cited in that section corresponding 320 to its expected molecular weight (Table 1). When a protein occurred in sections where the 321 molecular weight range differs from the predicted weight, they were cited in the section where 322 they displayed the highest scores. Gel section 8 (30-45 kDa) displayed the highest number of

323 identified proteins and this is likely to be related to the presence of polypeptides resulting from 324 the degradation of higher molecular weight proteins. Several selected proteins from Table 1 325 belong to protein classes that have been described as functional receptors to 3-domain Cry toxins, including aminopeptidases (APN), maltases and alkaline phosphatases (ALPs). Eight of 326 327 these proteins are orthologs of functional receptors for Cry toxins from *B. thuringiensis* svar. 328 israelensis or B. thuringiensis svar. jegathesan previously identified in Aedes aegypti or 329 Anopheles gambiae larvae (Table 2). These proteins have molecular weights that were consistent 330 with those of the bands detected in the binding assays. APN molecules were detected in all 331 sections analysed regardless of the fact that their predicted molecular weights are greater than 332 100 kDa. Maltases including α -glucosidases also were found in almost all sections and the C. quinquefasciatus maltase 1 (Cqm1), the receptor of the Bin toxin, was detected in sections 5 and 333 6. ALPs, on the other hand, were exclusively detected in section 5. Proteins already described as 334 ligands to Cry toxins as apolipophorin, actin, dipeptidyl-peptidase, glyceraldehyde-3-phosphate 335 dehydrogenase, glucosil transferase, myosin-Id, prohibitin, ATP synthase (alpha or beta subunit), 336 337 and V-ATP synthase (subunit E or H) were found with high score in one or more sections analyzed. In addition, proteins not previously characterized as Cry binding proteins were 338 identified such as aldehyde dehydrogenase, calcium-transporting ATPase 339 sarcoplasmic/endoplasmic reticulum type, carboxylesterase-6, carboxypeptidase A1, fasciclin, 340 341 maltose phosphorylase, panthetheinase, sodium-potassium-transporting ATPase alpha chain, sodium-potassium-dependent ATPase beta-2 subunit, transferrin, truncated ER mannose-binding 342 343 lectin, and vanin-like protein 1.

344 345 The identification of Cqm1 among the ligands led to the investigation of its role in the mode of action of Cry48Aa/Cry49Aa since this toxin is active against *L. sphaericus*

resistant larvae due to the loss of Cqm1 (de Melo et al., 2009). Pull-down assays between
recombinant Cqm1 protein and Cry49Aa-GST immobilized on sepharose beads previously
pre-incubated with Cry48Aa, was compared with the respective assay between Cqm1 and
the BinB subunit. Cqm1 bound to BinB-GST, as expected, while Cqm1 bound to Cry49AaGST but binding was only detected using Cqm1 amounts about 30-fold higher, compared
to that used to detect binding to BinB (Fig. S2).

352

353 4. Discussion

354 Three-domain Cry toxins might require midgut processing for their insecticidal activity and Bin 355 protoxins are also converted in this way (Berry, 2012; Tabashnik et al., 2015). In this study a mixture of Cry48Aa and Cry49Aa protoxins processed in vitro yielded a pattern of activated 356 toxins similar to that observed for individually processed toxins (Jones et al., 2008). These 357 activated individual subunits showed the capacity to bind to C. quinquefasciatus midgut, in 358 agreement with Guo et al. (2016). The IC₅₀ values determined in our work were higher but 359 360 it is likely that differences in the methodology, biotinylated Cry toxins and fresh BBMF 361 employed by Guo et al. (2016), might have improved the resolution of these binding assays. On the other hand our study showed that the Cry48Aa/Cry49Aa mixture bound with 362 363 higher affinity than the individual subunits and this indicated that both Crv48Aa and Cry49Aa toxins are required to attain maximal binding affinity to C. quinquefasciatus 364 365 midgut, in contrast to Bin binary toxin whose binding ability relies exclusively on the BinB 366 subunit (Charles et al., 1997). Cry48Aa/Cry49Aa interacts with larval midgut and our study 367 shows a set of C. quinquefasciatus proteins that bound to Cry48Aa/Cry49Aa toxin using overlay and pull-down assays. Although our study showed midgut ligands when both Cry48Aa/Cry49Aa 368

toxins were employed in the assays, the role of each toxin for this interaction requires furtherinvestigation.

371 Cry48Aa/Cry49Aa ligands identified in this study include molecules belonging to protein 372 classes previously characterized as receptors of other Cry toxins, plus other proteins that may be 373 potentially involved in the mode of action. Several forms of APNs/metalloproteases were 374 detected as ligands, which is consistent with previous studies that have demonstrated that APNs 375 act as Cry toxin receptors. In mosquito larvae, for instance, APNs were identified as Cry11Ba, 376 Cry11Aa and Cry4Ba receptors in Anopheles quadrimaculatus (Abdullah et al., 2006), An. 377 gambiae (Zhang et al., 2008) and Aedes aegypti (Aroonkesorn et al., 2015; Chen et al., 2009; 378 Chen et al., 2013). The apparent sizes of several identified APNs suggested proteolytic degradation and/or formation of dimers with high-molecular weight. Some of these C. 379 380 quinquefasciatus APNs are orthologs, with more than 60% identity, to known Cry receptors cited above, which reinforces their possible role as Cry48Aa/Cry49Aa receptors. Maltases, including 381 α -glucosidases and α -amylases, although less numerous than APNs, were also identified and 382 383 proteins from this class have been reported as receptors for Cry11Aa and Cry4Ba toxins in An. albimanus (Fernandez-Luna et al., 2010) and Cry11Ba toxin in An. gambiae (Zhang et al., 2013). 384 Ortholog α -glucosidases Cpm1 and Cqm1 are proven, and Agm3 is a putative receptor of Bin 385 toxin in C. pipiens, C. quinquefasciatus and An. gambiae, respectively (Darboux et al., 2001; 386 387 Opota et al., 2008; Romão et al., 2006). Agm3 was also reported as a receptor to Cry11Ba toxin in An. gambiae (Zhang et al., 2013) and Cqm1, the Bin receptor in C. quinquefasciatus, was 388 389 identified among the Cry48Aa/Cry49Aa ligands in this study. Cry48Aa/Cry49Aa is active 390 against Bin-resistant larvae deprived of the Cqm1 α -glucosidase and this finding might indicate 391 that Cry48Aa/Cry49Aa binding to Cqm1 is not specific or that the toxin can bind alternative

392	receptors without dependence on Cqm1. Comparative binding assays performed in this study
393	confirmed that Cqm1 binding to Cry48Aa/Cry49Aa is much more limited than that
394	observed to the BinB subunit from the Bin toxin. In contrast to APNs and maltases, only three
395	alkaline phosphatases (ALPs) were detected exclusively in gel section 5 (50-62 kDa) and one of
396	them is an ortholog of an Ae. aegypti ALP which is a binding protein for Cry4Ba (Bayyareddy et
397	al., 2009). ALPs have been identified as receptors for Cry11Aa and Cry4Ba in Ae. aegypti
398	(Dechklar et al., 2011; Fernández et al., 2006) and Cry11Ba in An. gambiae (Hua et al., 2009).
399	Cadherins play a major role for the binding and oligomerization of some 3-domain Cry toxins
400	(Bravo et al., 2004) but they were not identified in this study. This could be due the low
401	abundance of cadherins in mosquito midgut and their relative instability in brush border
402	preparations. Whether or not cadherins have a role in Cry48/49 action merits more attention.
403	Some proteins identified in our study were shown to be associated with lipid rafts that are
404	enriched in glycosphingolipids, cholesterol and GPI-anchored proteins; functionally they are
405	proposed to be involved in signal transduction, sorting and trafficking of proteins and pathogens
406	(Bayyareddy et al., 2012). Among them apolipophorin, identified in this study, was previously
407	found as a ligand for the Cry8Ea toxin (Shu et al., 2015), glucosyl transferase was identified as
408	binding protein for Cry1Aa (Zhou et al., 2016), prohibitin was detected as ligand for Cry4Ba and
409	Cry3Aa (Kuadkitkan et al., 2012; Ochoa-Campuzano et al., 2013). Other proteins associated
410	with lipid rafts of Ae. aegypti were identified in our study including calcium-transporting
411	ATPase sarcoplasmic/endoplasmic reticulum type, carboxylesterase-6, fasciclin, maltose
412	phosphorylase and transferrin, however, their functional relevance to the Cry toxin mode of
413	action is unknown (Bayyareddy et al., 2012). Vanin-like protein 1 and pantetheinase are
414	members of the Vanin family that can be expressed as membrane-associated proteins (Pitari et

al., 2000). Vanin-1 proteins, as well as aldehyde dehydrogenases, are associated with lipid rafts
in *Ae. aegypti* and although their function has been scarcely studied, it could be related to the
regulation of responses to oxidative stress, detoxification processes and recycling (Bayyareddy et
al., 2012; Pitari et al., 2000; Popova-Butler and Dean, 2009).

419 Several proteins identified as integral membrane components according to their Gene 420 Ontology (GO) classifications were extracted by Cry48Aa/49Aa beads including sodium-421 potassium-transporting ATPase alpha chain, sodium-potassium-dependent ATPase beta-2 422 subunit, and truncated ER mannose-binding lectin. Dipeptidyl-peptidase, a membrane 423 component found in our study, was already identified as a Cry1Aa ligand (Zhou et al., 2016). 424 Consistent with other studies that detected intracellular proteins forming part of the cell cytoskeleton as Cry toxin ligands, some, such as actin, myosin and glyceraldehyde-3-phosphate 425 426 dehydrogenase (Bayyareddy et al., 2009; Chen et al., 2010; Krishnamoorthy et al., 2007; Shu et 427 al., 2015; Zhou et al., 2016), were also found in this investigation. However, further studies remain to be performed to understand the function of these proteins in Cry48Aa/Cry49Aa mode 428 of action. Among the mitochondrial proteins detected in our study the most relevant were V-429 ATPases, as they have been identified as Cry toxin binding proteins in different insects, although 430 their localization on the cytoplasmic side of the plasma membrane seems inconsistent with a 431 direct receptor function (Bayyareddy et al., 2009; Chen et al., 2010; Krishnamoorthy et al., 432 433 2007). Detection of the α - and β -ATP synthases is also consistent with the literature as they are reported as Cry4Ba and Cry1Ac toxin ligands (Bayyareddy et al., 2009; Zhou et al., 2016). 434 435 However, the ATP synthase complex is related with ATP generation in mitochondrial membrane and their presence has been considered as evidence of contamination in midgut preparations. 436

437 This study reveals a set of ligands of the Cry48Aa/Cry49Aa toxin in C. quinquefasciatus 438 that are described as molecules involved in the mode of action of Cry toxins in different target 439 insects. Some of them were identified as toxin ligands in binding assays and it is possible that they could be involved in the intracellular mode of action of Cry toxins rather than being 440 441 membrane receptors. Molecules such as APNs, ALPS and maltases have been characterized as 442 toxin receptors based on their localization as membrane-bound proteins and their capacity to 443 bind specifically to the toxins with high affinity, as monomers or oligomers, in order to display 444 toxicity in insect midguts. This study provides evidence of binding ligands for Cry48Aa/Cry49Aa toxin in C. quinquefasciatus midgut and further work is necessary to 445 446 elucidate their role on its mode of action since the unique composition of Cry48Aa/Cry49Aa, 447 consisting of a 3D-Cry like and Bin-like subunits, could display distinct features compared to 448 models already described for toxins from these groups. 449 Acknowledgements 450 451 The authors thank Drs. Chau-Wen Chou and Dennis Phillips of the Proteomics and Mass

452 Spectrometry Facility at the University of Georgia for their expert proteomics analyses, the

453 insectarium from CPqAM-FIOCRUZ for the technical support, Dr. Danielle Moura (IAM-

454 FIOCRUZ) for helpful discussion of the experimental procedures, Dr. Antonio Mauro Rezende

455 (IAM-FIOCRUZ) for the technical support with the figures, the Program for Technological

456 Development in Tools for Health-PDTIS-FIOCRUZ for use of its facilities.

457 Funding: This work was supported by FACEPE/Brazil (APQ-0660-2.01/12, APQ-1616-2.13/15,

458 APQ-1659-2.01/15 and IBPG-1364-2.13/13).

460 Supplementary data

461 **Table S1.** Complete data set of *Culex quinquefasciatus* midgut proteins found as ligands of

462 Cry48Aa/Cry49Aa toxin through pull-down assays and identification by mass spectrometry.

463

Figure S1. Homologous competition binding assays between labeled (125 I-) Cry48Aa, Cry49Aa, or a mixture of both toxins (10 nM) with midgut brush border membrane fractions (25 µg) from *Culex quinquefasciatus* larvae in the absence, or in the presence, of respective unlabeled toxins (3-3000 nM). Maximum binding corresponds to the binding observed in the absence of competitor. The competitor concentration that displaces 50% of the ¹²⁵I-bound toxin (IC₅₀) is indicated. Each point is the mean of, at least, four experimental replicates.

471

Figure S2. Pull-down assay to evaluate the binding of the recombinant Cqm1 protein to the
recombinant Cry48Aa/Cry49Aa-GST toxin (A), BinB-GST toxin (B) or GST (C, negative
control) immobilized on sepharose beads. After incubation, beads were washed and bound
proteins were separated on 10% SDS-PAGE, transferred to nitrocellulose membranes and
subjected to immunodetection with an antibody raised against Cqm1 protein. P. Cqm1
protein (0.15 µg). MW molecular weight in kDa.

478

479 **References**

480 Abdullah, M.A., Valaitis, A.P., Dean, D.H., 2006. Identification of a Bacillus thuringiensis

481 Cryl1Ba toxin-binding aminopeptidase from the mosquito, *Anopheles quadrimaculatus*. BMC
482 Biochem. 7, 16.

- 483 Allievi, M.C., Palomino, M.M., Prado Acosta, M., Lanati, L., Ruzal, S.M., Sanchez-Rivas, C.,
- 484 2014. Contribution of S-layer proteins to the mosquitocidal activity of *Lysinibacillus sphaericus*.
- 485 PLoS One 9, e111114.
- Aroonkesorn, A., Pootanakit, K., Katzenmeier, G., Angsuthanasombat, C., 2015. Two specific
 membrane-bound aminopeptidase N isoforms from *Aedes aegypti* larvae serve as functional
 receptors for the *Bacillus thuringiensis* Cry4Ba toxin implicating counterpart specificity.
- 489 Biochem. Biophys. Res. Commun. 461, 300-306.
- 490 Bayyareddy, K., Andacht, T.M., Abdullah, M.A., Adang, M.J., 2009. Proteomic identification of
- 491 Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes
- 492 from *Aedes* (Stegomyia) *aegypti* Linnaeus (Diptera, Culicidae) larvae. Insect Biochem. Mol.
 493 Biol. 39, 279-286.
- 494 Bayyareddy, K., Zhu, X., Orlando, R., Adang, M.J., 2012. Proteome analysis of Cry4Ba toxin-
- 495 interacting *Aedes aegypti* lipid rafts using geLC-MS/MS. J. Proteome Res. 11, 5843-5855.
- Berry, C., 2012. The bacterium, *Lysinibacillus sphaericus*, as an insect pathogen. J. Invertebr.
 Pathol. 109, 1-10.
- Boonserm, P., Moonsom, S., Boonchoy, C., Promdonkoy, B., Parthasarathy, K., Torres, J., 2006.
- 499 Association of the components of the binary toxin from *Bacillus sphaericus* in solution and with
- 500 model lipid bilayers. Biochem. Biophys. Res. Commun. 342, 1273-1278.
- 501 Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities
- of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
- 503 Bravo, A., Gómez, I., Conde, J., Muñoz-Garay, C., Sánchez, J., Miranda, R., Zhuang, M., Gill,
- 504 S.S., Soberón, M., 2004. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab

- pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane
 microdomains. Biochim. Biophys. Acta 1667, 38-46.
- 507 Chalegre, K.D., Romão, T.P., Tavares, D.A., Santos, E.M., Ferreira, L.M., Oliveira, C.M.F., de-
- Melo-Neto, O.P., Silva-Filha, M.H.N.L., 2012. Novel mutations associated to *Bacillus sphaericus* resistance are identified in a polymorphic region of the *Culex quinquefasciatus cqm1*
- 510 gene Appl. Environ. Microbiol. 78, 6321-6326.
- 511 Chalegre, K.D., Tavares, D.A., Romao, T.P., Menezes, H.S.G., Nascimento, A.L., Oliveira,
- 512 C.M.F., de-Melo-Neto, O.P., Silva Filha, M.H.N.L., 2015. Co-selection and replacement of
- resistance alleles to *Lysinibacillus sphaericus* in a *Culex quinquefasciatus* colony. The FEBS J.
 282, 3592-3602.
- 515 Charles, J.F., Nielsen-LeRoux, C., Delecluse, A., 1996. *Bacillus sphaericus* toxins: molecular
 516 biology and mode of action. Annual review of entomology 41, 451-472.
- 517 Charles, J.F., Silva-Filha, M.H., Nielsen-LeRoux, C., Humphreys, M.J., Berry, C., 1997. Binding
- 519 mosquito larval midgut membranes from *Culex* and *Anopheles* sp. (Diptera: Culicidae). FEMS

of the 51- and 42-kDa individual components from the Bacillus sphaericus crystal toxin to

520 Microbiol. Lett. 156, 153-159.

- 521 Chen, J., Aimanova, K.G., Fernandez, L.E., Bravo, A., Soberon, M., Gill, S.S., 2009. Aedes
- 522 *aegypti* cadherin serves as a putative receptor of the Cry11Aa toxin from *Bacillus thuringiensis*
- 523 subsp. *israelensis*. Biochem. J. 424, 191-200.
- 524 Chen, J., Likitvivatanavong, S., Aimanova, K.G., Gill, S.S., 2013. A 104 kDa Aedes aegypti
- aminopeptidase N is a putative receptor for the Cry11Aa toxin from *Bacillus thuringiensis* subsp.
- 526 *israelensis*. Insect Biochem. Mol. Biol. 43, 1201-1208.

- 527 Chen, L.Z., Liang, G.M., Zhang, J., Wu, K.M., Guo, Y.Y., Rector, B.G., 2010. Proteomic
- 528 analysis of novel Cry1Ac binding proteins in Helicoverpa armigera (Hubner). Arch. Insect
- 529 Biochem. Physiol. 73, 61-73.
- 530 Darboux, I., Charles, J.F., Pauchet, Y., Warot, S., Pauron, D., 2007. Transposon-mediated
- resistance to *Bacillus sphaericus* in a field-evolved population of *Culex pipiens* (Diptera:
 Culicidae). Cell Microbiol. 9, 2022-2029.
- Darboux, I., Nielsen-LeRoux, C., Charles, J.F., Pauron, D., 2001. The receptor of *Bacillus sphaericus* binary toxin in *Culex pipiens* (Diptera: Culicidae) midgut: molecular cloning and
 expression. Insect Biochem. Mol. Biol. 31, 981-990.
- 536 Darboux, I., Pauchet, Y., Castella, C., Silva-Filha, M.H., Nielsen-LeRoux, C., Charles, J.F.,
- 537 Pauron, D., 2002. Loss of the membrane anchor of the target receptor is a mechanism of
- bioinsecticide resistance. Proceedings of the National Academy of Sciences of the United Statesof America 99, 5830-5835.
- 540 de Barjac, H., Lecadet, M.M., 1976. Dosage biochimique de l'exotoxine thermostable de *Bacillus*
- *thuringiensis* d'après l'inhibition de ARN-polymérases bactériennes. C. R. Acad. Sci. Paris 282D,
 2119-2122.
- de Melo, J.V., Jones, G.W., Berry, C., Vasconcelos, R.H., de Oliveira, C.M., Furtado, A.F.,
- Peixoto, C.A., Silva-Filha, M.H., 2009. Cytopathological effects of *Bacillus sphaericus*Cry48Aa/Cry49Aa toxin on binary toxin-susceptible and -resistant *Culex quinquefasciatus*larvae. Appl. Environ. Microbiol. 75, 4782-4789.
- 547 Dechklar, M., Tiewsiri, K., Angsuthanasombat, C., Pootanakit, K., 2011. Functional expression
- in insect cells of glycosylphosphatidylinositol-linked alkaline phosphatase from Aedes aegypti

- larval midgut: a *Bacillus thuringiensis* Cry4Ba toxin receptor. Insect Biochem. Mol. Biol. 41,
 159-166.
- 551 Fernandez-Luna, M.T., Lanz-Mendoza, H., Gill, S.S., Bravo, A., Soberón, M., Miranda-Rios, J.,
- 552 2010. An alpha-amylase is a novel receptor for Bacillus thuringiensis ssp. israelensis Cry4Ba
- and Cryl1Aa toxins in the malaria vector mosquito Anopheles albimanus (Diptera: Culicidae).
- 554 Environ. Microbiol. 12, 746-757.
- 555 Fernández, L.E., Aimanova, K.G., Gill, S.S., Bravo, A., Soberón, M., 2006. A GPI-anchored
- alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in *Aedes aegypti* larvae.
- 557 Biochem. J. 394, 77-84.

- 558 Ferreira, L.M., Romão, T.P., Nascimento, N.A., Costa, M.D., Rezende, A.M., de-Melo-Neto,
- 559 O.P., Silva-Filha, M.H., 2014. Non conserved residues between Cqm1 and Aam1 mosquito

alpha-glucosidases are critical for the capacity of Cqm1 to bind the Binary (Bin) toxin from

- 561 *Lysinibacillus sphaericus*. Insect Biochem. Mol. Biol. 50, 34-42.
- Guo, Q.Y., Cai, Q.X., Yan, J.P., Hu, X.M., Zheng, D.S., Yuan, Z.M., 2013. Single nucleotide
 deletion of *cqm1* gene results in the development of resistance to *Bacillus sphaericus* in *Culex quinquefasciatus*. J. Insect Physiol. 59, 967-973.
- Guo, Q.Y., Hu, X.M., Cai, Q.X., Yan, J.P., Yuan, Z.M., 2016. Interaction of *Lysinibacillus sphaericus* Cry48Aa/Cry49Aa toxin with midgut brush-border membrane fractions from *Culex quinquefasciatus* larvae. Insect Mol. Biol. 25, 163-170.
- Hua, G., Zhang, R., Bayyareddy, K., Adang, M.J., 2009. Anopheles gambiae alkaline
 phosphatase is a functional receptor of *Bacillus thuringiensis jegathesan* Cry11Ba toxin.
 Biochem. 48, 9785-9793.

- Jones, G.W., Nielsen-Leroux, C., Yang, Y., Yuan, Z., Dumas, V.F., Monnerat, R.G., Berry, C.,
- 572 2007. A new Cry toxin with a unique two-component dependency from *Bacillus sphaericus*.
- 573 FASEB J. 21, 4112-4120.
- Jones, G.W., Wirth, M.C., Monnerat, R.G., Berry, C., 2008. The Cry48Aa-Cry49Aa binary toxin
- from *Bacillus sphaericus* exhibits highly restricted target specificity. Environ. Microbiol. 10,
 2418-2424.
- 577 Krishnamoorthy, M., Jurat-Fuentes, J.L., McNall, R.J., Andacht, T., Adang, M.J., 2007.
- 578 Identification of novel Cry1Ac binding proteins in midgut membranes from *Heliothis virescens*
- using proteomic analyses. Insect Biochem. Mol. Biol. 37, 189-201.
- Kuadkitkan, A., Smith, D.R., Berry, C. 2012. Investigation of the Cry4B-prohibitin interaction in *Aedes aegypti* cells. Curr. Microbiol. 65: 446-454.
- 582 Mulla, M.S., Thavara, U., Tawatsin, A., Chomposri, J., Su, T., 2003. Emergence of resistance 583 and resistance management in field populations of tropical *Culex quinquefasciatus* to the 584 microbial control agent *Bacillus sphaericus*. J. Am. Mosq. Control Assoc. 19, 39-46.
- Nicolas, L., Nielsen-Leroux, C., Charles, J.F., Delécluse, A., 1993. Respective role of the 42-
- and 51-kDa components of the *Bacillus sphaericus* toxin overexpressed in *Bacillus thuringiensis*.
- 587 FEMS Microbiol. Lett. 106, 275-280.
- 588 Nielsen-Leroux, C., Pasteur, N., Pretre, J., Charles, J.F., Sheikh, H.B., Chevillon, C., 2002. High
- resistance to *Bacillus sphaericus* binary toxin in *Culex pipiens* (Diptera: Culicidae): the complex
- situation of West Mediterranean countries. J. Med. Entomol. 39, 729-735.
- 591 Nielsen-LeRoux, C., Rao, D.R., Murphy, J.R., Carron, A., Mani, T.R., Hamon, S., Mulla, M.S.,
- 592 2001. Various levels of cross-resistance to *Bacillus sphaericus* strains in *Culex pipiens* (Diptera:

- 593 Culicidae) colonies resistant to *B. sphaericus* strain 2362. Appl. Environ. Microbiol. 67, 5049594 5054.
- 595 Ochoa-Campuzano, C., Martinez-Ramirez, A.C., Contreras, E., Rausell, C., Real, M.D., 2013.
- Prohibitin, an essential protein for Colorado potato beetle larval viability, is relevant to *Bacillus thuringiensis* Cry3Aa toxicity. Pestic. Biochem. Physiol. 107, 299-308.
- Opota, O., Charles, J.F., Warot, S., Pauron, D., Darboux, I., 2008. Identification and
 characterization of the receptor for the *Bacillus sphaericus* binary toxin in the malaria vector
 mosquito, *Anopheles gambiae*. Comp. Biochem. Physiol. -Part B Biochem. Mol. Biol. 149, 419427.
- Pei, G., Oliveira, C.M., Yuan, Z., Nielsen-LeRoux, C., Silva-Filha, M.H., Yan, J., Regis, L.,
 2002. A strain of *Bacillus sphaericus* causes slower development of resistance in *Culex quinquefasciatus*. Appl. Environ. Microbiol. 68, 3003-3009.
- Pitari, G., Malergue, F., Martin, F., Philippe, J.M., Massucci, M.T., Chabret, C., Maras, B.,
- Dupre, S., Naquet, P., Galland, F., 2000. Pantetheinase activity of membrane-bound Vanin-1:
- lack of free cysteamine in tissues of Vanin-1 deficient mice. FEBS Lett. 483, 149-154.
- Popova-Butler, A., Dean, D.H., 2009. Proteomic analysis of the mosquito *Aedes aegypti* midgut
 brush border membrane vesicles. J. Insect Physiol. 55, 264-272.
- 610 Rao, D.R., Mani, T.R., Rajendran, R., Joseph, A.S., Gajanana, A., Reuben, R., 1995.
- 611 Development of a high level of resistance to *Bacillus sphaericus* in a field population of *Culex*
- 612 quinquefasciatus from Kochi, India. J. Am. Mosq. Control Assoc. 11, 1-5.
- Romão, T.P., de Melo Chalegre, K.D., Key, S., Ayres, C.F., Fontes de Oliveira, C.M., de-Melo-
- 614 Neto, O.P., Silva-Filha, M.H., 2006. A second independent resistance mechanism to Bacillus

- *sphaericus* binary toxin targets its alpha-glucosidase receptor in *Culex quinquefasciatus*. The
 FEBS J. 273, 1556-1568.
- 617 Shu, C., Tan, S., Yin, J., Soberon, M., Bravo, A., Liu, C., Geng, L., Song, F., Li, K., Zhang, J.,
- 618 2015. Assembling of *Holotrichia parallela* (dark black chafer) midgut tissue transcriptome and
- 619 identification of midgut proteins that bind to Cry8Ea toxin from *Bacillus thuringiensis*. Appl.
- 620 Microbiol. Biotechnol. 99, 7209-7218.
- 621 Silva-Filha, M.H., Nielsen-Leroux, C., Charles, J.F., 1997. Binding kinetics of *Bacillus*
- 622 sphaericus binary toxin to midgut brush-border membranes of Anopheles and Culex sp. mosquito
- larvae. European journal of biochemistry / FEBS 247, 754-761.
- 624 Silva-Filha, M.H., Nielsen-LeRoux, C., Charles, J.F., 1999. Identification of the receptor for
- 625 *Bacillus sphaericus* crystal toxin in the brush border membrane of the mosquito *Culex pipiens*
- 626 (Diptera: Culicidae). Insect Biochem. Mol. Biol. 29, 711-721.
- 627 Silva Filha, M.H.N.L., Berry, C., Regis, L.N., 2014. Lysinibacillus sphaericus: toxins and mode
- of action, applications for mosquito control and resistance management in: Dhadialla, T.S., Gill,
- 629 S.S. (Eds.), Insect midgut and insecticidal proteins. Academic Press, Oxford, pp. 89-176.
- 630 Tabashnik, B.E., Zhang, M., Fabrick, J.A., Wu, Y., Gao, M., Huang, F., Wei, J., Zhang, J.,
- 631 Yelich, A., Unnithan, G.C., Bravo, A., Soberon, M., Carriere, Y., Li, X., 2015. Dual mode of
- action of Bt proteins: protoxin efficacy against resistant insects. Sci. Rep. 5, 15107.
- 633 Wirth, M.C., Georghiou, G.P., Malik, J.I., Abro, G.H., 2000. Laboratory selection for resistance
- to Bacillus sphaericus in Culex quinquefasciatus (Diptera: Culicidae) from California, USA. J.
- 635 Med. Entomol. 37, 534-540.

- 436 Yuan, Z.M., Pei, G.F., Regis, L., Nielsen-Leroux, C., Cai, Q.X., 2003. Cross-resistance between
- 637 strains of *Bacillus sphaericus* but not *B. thuringiensis israelensis* in colonies of the mosquito
- 638 *Culex quinquefasciatus*. Med. Vet. Entomol. 17, 251-256.
- 639 Yuan, Z.M., Zhang, Y.M., Liu, E.Y., 2000. High-level field resistance to *Bacillus sphaericus* C3-
- 640 41 in *Culex quinquefasciatus* from Southern China. Biocontrol Sci. Technol. 10, 43-51.
- 641 Zhang, Q., Hua, G., Bayyareddy, K., Adang, M.J., 2013. Analyses of alpha-amylase and alpha-
- 642 glucosidase in the malaria vector mosquito, Anopheles gambiae, as receptors of Cryl1Ba toxin
- of *Bacillus thuringiensis* subsp. *jegathesan*. Insect Biochem. Mol. Biol. 43, 907-915.
- Zhang, R., Hua, G., Andacht, T.M., Adang, M.J., 2008. A 106-kDa aminopeptidase is a putative
- receptor for *Bacillus thuringiensis* Cry11Ba toxin in the mosquito *Anopheles gambiae*. Biochem.
 47, 11263-11272.
- 647 Zhou, Z., Wang, Z., Liu, Y., Liang, G., Shu, C., Song, F., Zhou, X., Bravo, A., Soberon, M.,
- Zhang, J., 2016. Identification of ABCC2 as a binding protein of Cry1Ac on brush border
- 649 membrane vesicles from *Helicoverpa armigera* by an improved pull-down assay. Microbiol.
- 650 Open 5, 659-669.
- 651
- 652
- 653
- 654
- 655
- 656
- 657
- 658

659 FIGURE LEGENDS

660

661 H	F ig. 1 .	Crv48Aa and Crv	49Aa recombinant r	proteins separa	ated in 1	10% SDS-	PAGE and
-------	------------------	-----------------	--------------------	-----------------	-----------	----------	----------

- 662 visualized with Coomassie blue. A. Proteins expressed in *Bacillus thuringiensis* svar. *israelensis*
- 4Q7 strain, Cry49Aa solubilized (1) and activated (2), Cry48Aa solubilized (3) and activated (4),
- 664 mixture of Cry48Aa/Cry49Aa activated together (5). **B**. Cry49Aa-His produced in *Escherichia*
- *coli* (1), mix of protoxins Cry48Aa/Cry49Aa-His (2), mix Cry48Aa/Cry49Aa-His activated
- together (3). MW molecular weight in kDa. * protoxins and their activated forms.

667

- 668 Fig. 2. Overlay assays performed between *Culex quinquefasciatus* midgut proteins and
- 669 Cry48Aa/Cry49Aa-His. Midgut proteins from BBMV (30-40 μg, lanes 1, 3) and after
- solubilization with CHAPS (30-40 μ g, lanes 2, 4) were separated on 10% SDS-PAGE,
- transferred to a nitrocellulose membrane, incubated with activated Cry48Aa/Cry49Aa-His (2 μg)
- 672 (A) or without toxin (B) and subjected to immunodetection with a monoclonal anti-poly-histidine
- antibody to detect bound Cry49-His. Sample of Cry49-His protein (lane 5). MW molecular
- weight in kDa. Major proteins detected (*) and those (°) observed in negative control (B).

675

Fig. 3. Proteins identified by pull-down assay. Pull-down assays were performed between

- 677 solubilized *Culex quinquefasciatus* migdut proteins (A) and a mix of activated
- 678 Cry48Aa/Cry49Aa toxins immobilized on CNBr-beads (B) and resulting bound proteins to toxin
- 679 beads (C). Samples were separated in 10% SDS-PAGE and silver stained. MW molecular weight
- 680 in kDa. The eight sections from lane 3 were subjected to mass spectrometry. Cry49Aa putative
- 681 dimer (*).

Continu	A 000000 m		Conto	Coverage	No. unique	Predicted	Detection
Dection	Accession no.	beseribnon	SCOLE	(%)	peptides	MW (kDa)	sections
1 (110-180 kDa)	EDS27419.1 ^a	protease m1 zinc metalloprotease	365.96	18.00	9	113.2	2,3,4,5,7,8
	EDS27892.1	calcium-transporting ATPase sarcoplasmic/ER type	146.88	7.74	4	88.8	2,4
2 (90-110 kDa)	EDS27418.1 ^a	protease m1 zinc metalloprotease	93.25	11.25	6	101.2	
	EDS40798.1	CHP°	78.46	2.96	2	100.1	
	EDS36841.1 ^a	aminopeptidase N	74.67	8.38	3	105.0	
3 (70-90 kDa)	EDS38951.1 ^a	alpha-glucosidase	619.19	40.83	25	69.4	4,5,6,8
	EDS30018.1	apolipophorins	374.88	6.41	18	366.8	4,5
	EDS38952.1	alpha-glucosidase	374.85	25.37	12	70.6	4,5
	EDS32575.1	maltose phosphorylase	277.49	18.29	10	85.4	
	EDS45210.1	dipeptidyl peptidase 4	250.82	19.19	12	84.1	
	EDS32578.1	maltose phosphorylase	206.18	15.58	11	85.1	
	EDS32127.1	alpha-glucosidase	199.35	20.66	10	70.7	
	EDS32576.1	maltose phosphorylase	172.15	7.89	5	84.8	
	EDS26147.1	sodium/potassium-transporting ATPase alpha chain	97.64	5.44	3	80.3	5,6,7,8
	EDS35643.1	glutamyl aminopeptidase	93.53	6.02	5	116.5	

Ч Table 1. Selected Culex quinquefasciatus midgut proteins detected as ligands of Cry48Aa/Cry49Aa toxin through pull-down assays

2 and identification by LC-MS/MS.

Р

	EDS37148.1	dipeptidyl-peptidase	88.24	6.05	5	88.2	2
4 (62-70 kDa)	EDS38950.1 ^a	maltase 1	183.05	11.26	6	69.4	5
	EDS45922.1	pantetheinase	113.26	16.47	9	57.1	
5 (50-62 kDa)	EDS35272.1	CHP°: ATP synthase subunit alpha	1914.86	59.17	40	59.3	6,8
	EDS27254.1	ATP synthase beta subunit	1100.18	56.16	21	54.6	2,6,8
	EDS29323.1	alkaline phosphatase	563.81	27.30	14	62.9	
	ABC59609.1 ^b	maltase 1 (Cqm1)	528.27	29.31	18	66.2	6
	EDS39442.1	V-type ATP synthase beta chain	515.83	38.82	15	54.7	8
	EDS29322.1 ^a	alkaline phosphatase	485.67	17.04	13	100.6	
	EDS29972.1	ATP synthase alpha subunit vacuolar	474.63	31.76	15	68.1	3,4,5,6,8
	EDS27420.1 ^a	protease m1 zinc metalloprotease	215.56	8.23	6	102.7	4
	EDS35286.1	CHP: Aldehyde dehydrogenase	200.25	12.86	2	58.1	
	EDS29320.1	alkaline phosphatase	186.96	15.91	S	28.9	
	EDS45921.1	Vanin-like protein 1	166.86	7.21	4	61.6	
	EDS28386.1	transferrin	158.64	15.15	S	51.4	4
	EDS42579.1	glucosyl transferase	98.98	6.01	ω	58.2	
	EDS44961.1	myosin-Id	113.40	3.18	2	77.9	6
	EDS31007.1	aminopeptidase N	68.48	4.43	4	105.4	
6 (48-50 kDa)	EDS31006.1 ^a	aminopeptidase N	984.52	13.66	23	210.0	2,3,5,8
	EDS27170.1	truncated ER mannose-binding lectin	279.17	18.26	8	53.4	5,7,8

Ν

	EDS35706.1	vacuolar ATP synthase subunit H	243.87	15.19	6	54.5	8
7 (45-48 kDa)	EDS44431.1	fasciclin	71.84	7.08	2	48.4	
8 (30-45 kDa)	EDS26297.1	Ca-transporting ATPase sarcoplasmic/ER type	2335.41	32.46	4	109.1	3,5,6
	EDS44094.1	actin 1	1699.07	48.94	3	41.7	
	EDS25844.1	actin-2	1689.34	47.61	6	41.6	3,5
	EDS38275.1	CHP°	755.20	34.77	10	33.0	3,5
	EDS28370.1	Na/K-dependent ATPase beta-2 subunit	602.81	34.05	10	37.9	
	EDS28367.1	Na/K-dependent ATPase beta-2 subunit	521.83	35.65	10	36.2	
	EDS36304.1	Na/K-dependent ATPase beta-2 subunit	447.15	24.66	7	33.4	
	EDS29666.1	vacuolar ATP synthase subunit e	389.43	27.88	7	25.8	
	EDS45475.1	CHP: Glyceraldehyde-3-phosphate dehydrogenase	225.43	20.78	6	35.4	
	EDS28502.1	carboxylesterase-6	177.38	5.06	ω	71.1	6
	EDS26618.1	prohibitin-2	164.97	15.38	S	33.1	
	EDS34662.1	carboxypeptidase A1	96.08	9.18	3	48.4	
2) · · · · · · · · · · · · · · · · · · ·						~	

4 ^b Culex quinquefasciatus maltase 1 (Cqm1) receptor of the Binary toxin. ^a Orthologs identified in Aedes aegypti or Anopheles species known as functional receptors to Cry toxins, details are shown in Table 2.

ω

ഗ ^c CHP:Conserved hypothetical protein.

ი

Aedes aegypti	i or Anopheles species that were desc	cribed as rec	eptc	eptors of other	eptors of other Diptera-active C	eptors of other Diptera-active Cry toxins.
Accession	Description	Orthologs id	Ide	ntity	ntity Specie	ntity Specie Toxin
no.			(%	J)	
EDS31006.1	aminopeptidase N	AAEL008155	31	.4	.4 Ae. aegypti	.4 Ae. aegypti Cry11Aa
EDS36841.1	aminopeptidase N	AAEL005808	63	.6	.6 Ae. aegypti	.6 Ae. aegypti Cry4Ba
EDS27418.1	protease m1 zinc metalloprotease	AAEL012783	7().9).9 Ae. aegypti).9 Ae. aegypti Cry4Ba
EDS27419.1	protease m1 zinc metalloprotease	AAEL012778	6	5.1	5.1 Ae. aegypti	5.1 Ae. aegypti Cry11Aa
						Cry4Ba
EDS27420.1	protease m1 zinc metalloprotease	AAEL012776	6	3.4	3.4 Ae. aegypti	3.4 Ae. aegypti Cry4Ba
EDS38951.1	alpha-glucosidase	AALB015771	6	<u>5</u> 4.3	54.3 An. albimanus	54.3 An. albimanus Cry11Aa
		AGAP008963	~	54.9	54.9 An. gambiae	54.9 An. gambiae Cry11Ba
EDS38950.1	maltase 1	AALB015771	•	51.3	51.3 An. albimanus	51.3 An. albimanus Cry11Aa
		AGAP008963	~	52.8	52.8 An. gambiae	52.8 An. gambiae Cry11Ba
EDS29322.1	alkaline phosphatase	AAEL003313	~	67.1	57.1 Ae. aegypti	57.1 Ae. aegypti Cry4Ba

Table 2. Culex quinquefasciatus midgut proteins identified as potential ligands of Cry48Aa/Cry49Aa toxins and their orthologs in

Ч

4 ω

	Supplementa
•	rv F
C	ig. 1
	. Complete
	data
	set (
	of Cule
٢	x qui
•	nquef
	asciatus
(midgut
F	proteins
	found
	as 1
C	igands
	of (
ļ	<u>1748</u>
	3Aa/Cr
ļ	v49Aa 1
	toxin tl
(rough

pull-down assays and identification by mass spectrometry.

						3									2		1		Section
EDS35981 1	EDS38952.1	EDS30018.1	EDS39731.1	EDS38951.1	EDS27419.1	EDS29972.1	EDS36841.1	EDS27254.1	EDS41405.1	EDS40798.1	EDS37148.1	EDS27418.1	EDS27892.1	EDS27419.1	EDS31006.1	EDS27892.1	EDS27419.1		Accession N°
andanlaamin	alpha-glucosidase	apolipophorins	78 kDa glucose-regulated protein	alpha-glucosidase	protease m1 zinc metalloprotease	ATP synthase alpha subunit vacuolar	aminopeptidase N	ATP synthase beta subunit	angiotensin-converting enzyme	conserved hypothetical protein	dipeptidyl-peptidase	protease m1 zinc metalloprotease	calcium-transporting ATPase sarcoplasmic/endoplasmic reticulum type	protease m1 zinc metalloprotease	aminopeptidase N	calcium-transporting ATPase sarcoplasmic/endoplasmic reticulum type	protease m1 zinc metalloprotease		Description
354 28	374.85	374.88	415.13	619.19	632.33	744.99	74.67	77.51	78.22	78.46	90.93	93.25	144.70	271.97	316.58	146.88	365.96		Score
07 YC	25.37	6.41	28.31	40.83	26.51	51.63	8.38	8.22	3.09	2.96	10.09	11.25	13.27	14.05	14.69	7.74	18.00	(%)	Coverage
00	12	18	16	25	20	23	3	2	2	2	4	6	5	8	13	4	9	Peptides	N° Unique
794	611	3324	657	605	1011	614	919	511	1229	911	793	868	814	1011	1852	814	1011		N° AAs
01.0	70.6	366.8	72.3	69.4	113.2	68.1	105.0	54.6	142.8	100.1	88.2	101.2	88.8	113.2	210.0	88.8	113.2	[kDa]	Predicted MW
4.98	5.31	7.36	5.20	5.20	5.12	5.39	5.01	5.12	5.22	7.30	6.47	5.14	6.00	5.12	5.08	6.00	5.12		pI

EDS37148.1	EDS35643.1	EDS26794.1	EDS26147.1	EDS38275.1	EDS40938.1	EDS25844.1	EDS36767.1	EDS39080.1	EDS42654.1	EDS33460.1	EDS39919.1	EDS42649.1	EDS32138.1	EDS32576.1	EDS32127.1	EDS32578.1	EDS45210.1	EDS31006.1	EDS32575.1	EDS26512.1	EDS35048.1	EDS34040.1	EDS26297.1
dipeptidyl-peptidase	glutamyl aminopeptidase	conserved hypothetical protein	sodium/potassium-transporting ATPase alpha chain	conserved hypothetical protein	integrin alpha-ps	actin-2	CD98hc amino acid transporter protein	beta-galactosidase	5' nucleotidase	carnitine O-palmitoyltransferase 2. mitochondrial	disulfide isomerase	long-chain-fatty-acid coa ligase	heat shock 70 kDa protein cognate 4	maltose phosphorylase	alpha-glucosidase	maltose phosphorylase	dipeptidyl peptidase 4	aminopeptidase N	maltose phosphorylase	succinate dehydrogenase flavoprotein subunit. mitochondrial	conserved hypothetical protein	fatty acid oxidation complex subunit alpha	calcium-transporting atpase sarcoplasmic/endoplasmic reticulum type
88.24	93.53	94.97	97.64	100.53	103.28	106.42	112.54	112.60	120.83	132.79	135.33	139.79	140.16	172.15	199.35	206.18	250.82	258.73	277.49	278.70	308.85	329.63	346.17
6.05	6.02	3.06	5.44	17.22	4.86	18.09	6.73	9.69	11.54	14.92	11.16	10.06	9.16	7.89	20.66	15.58	19.19	6.26	18.29	19.21	27.29	27.69	14.97
S	S	7	ω	4	4	3	4	6	5	9	5	6	3	5	10	11	12	10	10	9	14	19	13
793	1030	2324	735	302	1112	376	639	650	546	657	493	696	655	760	610	764	745	1852	760	661	645	744	995
88.2	116.5	249.4	80.3	33.0	124.5	41.6	70.2	73.7	59.9	74.5	55.4	78.0	71.4	84.8	70.7	85.1	84.1	210.0	85.4	72.1	71.4	79.7	109.1
6.47	6.25	4.96	5.67	9.72	5.53	5.48	5.08	4.89	4.84	7.97	4.91	8.18	5.52	6.37	4.92	5.67	5.01	5.08	5.78	6.46	6.86	9.06	5.59

	EDS31874.1	neurotactin	84.61	5.83	4	857	94.2	5.01
	EDS35272.1	conserved hypothetical protein	76.96	8.53	4	551	59.3	8.94
	EDS36798.1	long-chain-fatty-acid coa ligase	76.18	6.47	4	649	72.3	7.93
	EDS28166.1	elongation factor 2	72.03	4.07	4	1031	114.4	6.71
	EDS31200.1	nodal modulator 3	70.21	2.88	2	868	93.8	6.54
4	EDS38950.1	maltase 1	382.03	37.42	20	604	69.4	4.94
	EDS27892.1	calcium-transporting ATPase sarcoplasmic/endoplasmic reticulum type	206.55	13.76	10	814	88.8	6.00
	EDS28386.1	transferrin	176.12	21.21	8	462	51.4	6.67
	EDS38952.1	alpha-glucosidase	156.43	27.00	14	611	70.6	5.31
	EDS25721.1	electron transfer flavoprotein-ubiquinone oxidoreductase	139.13	16.31	9	607	66.1	6.54
	EDS36767.1	CD98hc amino acid transporter protein	132.75	11.42	7	639	70.2	5.08
	EDS39919.1	disulfide isomerase	129.60	8.72	4	493	55.4	4.91
	EDS38951.1	alpha-glucosidase	121.82	11.90	7	605	69.4	5.20
	EDS45922.1	pantetheinase	113.26	16.47	9	516	57.1	5.39
	EDS27419.1	protease m1 zinc metalloprotease	101.76	4.45	4	1011	113.2	5.12
	EDS27420.1	protease m1 zinc metalloprotease	99.42	9.34	7	668	102.7	5.59
	EDS29972.1	ATP synthase alpha subunit vacuolar	91.37	11.40	S	614	68.1	5.39
	EDS42654.1	5' nucleotidase	82.25	8.97	S	546	59.9	4.84
	EDS30018.1	apolipophorins	78.86	1.11	3	3324	366.8	7.36
S	EDS35272.1	conserved hypothetical protein - ATP synthase subunit alpha	1914.86	59.17	40	551	59.3	8.94
	EDS27254.1	ATP synthase beta subunit	1100.18	56.16	21	511	54.6	5.12
	BAI77924.1	cytochrome P450	923.53	48.39	24	496	56.3	7.69
	EDS31872.1	lactase-phlorizin hydrolase	779.33	44.92	22	532	61.4	5.20
	EDS26297.1	calcium-transporting atpase sarcoplasmic/endoplasmic reticulum type	660.27	22.61	2	995	109.1	5.59

EDS27419.1 EDS29323.1 ABC59609.1 EDS39442.1 EDS29322.1 EDS36767.1 EDS29972.1 EDS31870.1 EDS35287.1	protease m1 zinc metalloprotease alkaline phosphatase maltase 1 V-type ATP synthase beta chain alkaline phosphatase CD98hc amino acid transporter protein ATP synthase alpha subunit vacuolar lactase-phlorizin hydrolase conserved hypothetical protein	596.77 563.81 528.27 515.83 485.67 485.29 474.63 474.63 453.52 416.13	20.57 27.30 29.31 38.82 17.04 25.20 31.76 19.35 26.74	17 18 11 11 11 11 11 11	1011 564 580 492 639 614 920 460	
9322.1	alkaline phosphatase CD98hc amino acid transporter protein	485.67 485.29	17.04 25.20	13 17		904 639
EDS29972.1	ATP synthase alpha subunit vacuolar	474.63	31.76	15		614
EDS31870.1	lactase-phlorizin hydrolase	453.52	19.35	11		920
EDS35287.1	conserved hypothetical protein	416.13	26.74	8		460
EDS37279.1	croquemort	375.07	24.31	10		469
EDS42910.1	disulfide isomerase	347.91	35.54	14		484
EDS38951.1	alpha-glucosidase	339.73	20.83	12		605
EDS25844.1	actin-2	313.78	37.77	4		376
EDS45363.1	cytochrome P450	310.42	30.46	16		522
EDS36420.1	cytochrome p450 family protein 44A1	286.50	27.05	13		499
EDS34125.1	conserved hypothetical protein	271.63	31.91	2		376
EDS38514.1	sarcalumenin	248.99	8.66	7		958
EDS31006.1	aminopeptidase N	241.43	5.62	9		1852
EDS35981.1	endoplasmin	235.94	14.99	10		794
EDS27504.1	5' nucleotidase	219.42	18.77	9		554
EDS27420.1	protease m1 zinc metalloprotease	215.56	8.23	6		899
DS27170.1	truncated ER mannose-binding lectin	213.76	13.59	6		471
DS36419.1	cytochrome P450 26B1	211.90	12.83	6		499
EDS26147.1	sodium/potassium-transporting ATPase alpha chain	209.18	9.52	6		735

EDS35286.1 EDS38952.1 EDS41433.1	conserved hypothetical protein alpha-glucosidase conserved hypothetical protein	200.25 195.21 188.63	12.86 11.95 30.43	3 6 2	521 611 115	58.1 70.6 13.3	
EDS28872.1	disulfide-isomerase A6	187.22	19.95	7	436	47.5	
EDS29320.1	alkaline phosphatase	186.96	15.91	5	264	28.9	
EDS38275.1	conserved hypothetical protein	185.09	20.86	6	302	33.0	
EDS38950.1	maltase 1	183.05	11.26	6	604	69.4	
EDS38022.1	chitotriosidase-1	178.22	17.27	7	440	48.6	
EDS34537.1	cytochrome P450 12b1. mitochondrial	177.44	8.19	4	525	60.0	
EDS45921.1	Vanin-like protein 1	166.86	7.21	4	555	61.6	
BAK26813.1	cytochrome P450	164.41	13.41	7	537	61.4	
EDS28166.1	elongation factor 2	163.42	5.43	S	1031	114.4	
EDS28386.1	transferrin	158.64	15.15	S	462	51.4	
EDS32421.1	calnexin	158.29	13.41	7	589	66.6	
EDS34510.1	cytochrome P450 9b2	157.50	11.42	S	534	61.3	
EDS40900.1	saccharopine dehydrogenase domain-containing protein	156.83	11.63	S	430	47.7	
EDS32097.1	prolylcarboxypeptidase	150.43	9.38	ω	501	57.5	
EDS38838.1	glutactin	150.03	10.70	S	570	63.2	
EDS44930.1	l(2) long form	148.82	4.95	S	1294	148.8	
EDS32098.1	prolylcarboxypeptidase	144.01	15.29	6	726	84.5	
EDS25721.1	electron transfer flavoprotein-ubiquinone oxidoreductase	141.98	6.75	4	607	66.1	
EDS27857.1	UDP-glucuronosyltransferase 2B4	141.38	10.56	4	521	59.0	
AEN19673.1	cytochrome P405 CYP9J40	136.89	15.46	5	524	59.8	
EDS28616.1	catalase	134.43	12.04	S	490	55.0	

		6																					
EDS27254.1	EDS35272.1	EDS31006.1	EDS31007.1	EDS43339.1	EDS34513.1	EDS41303.1	EDS30010.1	EDS31797.1	EDS35048.1	EDS34040.1	EDS42579.1	EDS41432.1	EDS27182.1	EDS30018.1	EDS43476.1	EDS26138.1	BAI77925.1	EDS44961.1	BAI77921.1	EDS45144.1	EDS26512.1	B0WYY2.1	EDS37300.1
ATP synthase beta subunit	conserved hypothetical protein - ATP synthase subunit alpha	aminopeptidase N	aminopeptidase N	brain chitinase and chia	cytochrome P450 9b2	24-dehydrocholesterol reductase	conserved hypothetical protein	synaptotagmin	conserved hypothetical protein	fatty acid oxidation complex subunit alpha	glucosyl transferase	conserved hypothetical protein	prolylcarboxypeptidase	apolipophorins	glycogen phosphorylase	cytochrome P450	cytochrome P450	myosin-Id	cytochrome P450	dolichyl-diphosphooligosaccharide protein glycotransferase	succinate dehydrogenase flavoprotein subunit. mitochondrial	RecName: Full=Moesin/ezrin/radixin homolog 1	olygosaccharyltransferase alpha subunit
546.45	613.20	984.52	68.48	70.89	71.72	72.17	77.74	85.68	90.01	97.04	98.98	100.23	104.81	105.93	106.39	109.67	112.08	113.40	116.88	118.05	122.42	123.67	128.00
33.07	32.30	13.66	4.43	9.48	3.33	3.57	2.04	3.64	8.99	6.45	6.01	7.54	8.79	0.72	2.73	6.79	7.30	3.18	13.41	5.08	6.05	9.62	10.46
13	16	23	4	S	2	2	2	ω	S	4	ω	2	4	2	2	2	4	2	6	2	ω	6	S
511	551	1852	926	485	540	504	931	825	645	744	516	305	512	3324	842	501	493	692	507	453	661	572	459
54.6	59.3	210.0	105.4	53.5	61.8	58.4	103.5	89.9	71.4	79.7	58.2	34.6	58.3	366.8	96.6	57.3	57.3	77.9	57.4	49.5	72.1	67.7	51.8
5.12	8.94	5.08	6.19	5.34	6.49	8.38	5.02	6.35	6.86	9.06	7.69	7.14	4.56	7.36	6.37	7.53	8.12	9.14	8.46	5.71	6.46	5.68	8.22

			7																				
EDS30648.1	EDS27093.1	EDS42147.1	EDS26629.1	EDS28502.1	ABC59609.1	EDS30648.1	EDS44961.1	EDS42147.1	EDS29972.1	EDS26585.1	EDS32421.1	EDS26147.1	EDS45881.1	EDS38951.1	EDS26631.1	EDS28872.1	EDS36615.1	EDS37675.1	EDS34125.1	EDS35706.1	EDS27170.1	EDS38798.1	EDS26297.1
arginine kinase	trifunctional enzyme beta subunit	gram-negative bacteria binding protein	juvenile hormone epoxide hydrolase 1	carboxylesterase-6	maltase 1	arginine kinase	myosin-Id	gram-negative bacteria binding protein	ATP synthase alpha subunit vacuolar	enolase	calnexin	sodium/potassium-transporting ATPase alpha chain	gamma glutamyl transpeptidase	alpha-glucosidase	juvenile hormone epoxide hydrolase 1	disulfide-isomerase A6	adipocyte plasma membrane-associated protein	conserved hypothetical protein	conserved hypothetical protein	vacuolar ATP synthase subunit H	truncated ER mannose-binding lectin	mitochondrial processing peptidase beta subunit	calcium-transporting atpase sarcoplasmic/endoplasmic reticulum type
142.07	159.37	163.44	206.65	75.82	76.87	77.89	86.80	88.09	91.18	92.12	92.60	117.12	118.93	121.02	126.90	178.50	182.45	210.59	211.62	243.87	279.17	352.77	380.57
15.61	16.49	12.86	25.16	3.96	4.14	7.80	3.18	8.74	4.40	5.08	7.98	5.44	4.49	7.77	9.52	15.14	8.56	11.50	31.65	15.19	18.26	20.25	13.67
6	7	S	7	2	2	ω	2	ω	2	2	4	ω	2	4	S	6	6	7	3	6	8	10	2
410	467	412	457	632	580	410	692	412	614	433	589	735	579	605	462	436	841	887	376	474	471	474	995
45.1	50.3	46.7	51.7	71.1	66.2	45.1	77.9	46.7	68.1	46.6	66.6	80.3	62.2	69.4	53.0	47.5	92.2	98.8	41.8	54.5	53.4	52.2	109.1
5.80	9.01	5.08	8.41	6.19	5.95	5.80	9.14	5.08	5.39	6.76	4.65	5.67	5.20	5.20	6.92	5.49	8.06	5.76	5.48	6.14	6.05	6.13	5.59

5.39 5.48 9.06 9.72 8.56 6.79 5.20 6.93	41.7 41.6 32.8 68.1 79.7 33.0 30.7 37.9 107.6 36.2 72.3 34.5	376 376 297 614 302 282 326 317 317 306	3 6 17 17 18 10 11 10 10 9	48.94 47.61 54.21 31.76 26.34 34.77 45.39 34.05 13.57 35.65 21.46	1699.07 1689.34 1211.21 765.00 760.17 755.20 652.29 602.81 579.44 521.83 520.06 494.92	 actin 1 actin-2 ATP synthase gamma chain. mitochondrial ATP synthase alpha subunit vacuolar fatty acid oxidation complex subunit alpha conserved hypothetical protein voltage-dependent anion-selective channel sodium/potassium-dependent ATPase beta-2 subunit sarcalumenin sodium/potassium-dependent ATPase beta-2 subunit actinum/potassium-dependent ATPase beta-2 subunit 3-demethylubiquinone-9 3-methyltransferase 	EDS44094.] EDS25844.] EDS30322.] EDS29972.] EDS34040.] EDS38275.] EDS26604.] EDS26604.] EDS28370.] EDS28370.] EDS28367.] EDS28367.] EDS39731.]
8.94 5.59 5.48 5.12	59.3 109.1 41.8 54.6	551 995 376 511	35 4 19	55.90 32.46 56.65 46.97	2921.97 2335.41 2191.72 2118.71	 conserved hypothetical protein - ATP synthase alpha subunit calcium-transporting atpase sarcoplasmic/endoplasmic reticulum type conserved hypothetical protein ATP synthase beta subunit 	EDS35272.1 EDS26297.1 EDS34125.1 EDS27254.1
5.17 5.12	80.3 48.4 113.2	733 452 1011	2 2 3	4.70 7.08 2.57	02.21 71.84 67.48	.1 soutuur/potassiuu-itansporting Arrase alpha chain .1 fasciclin .1 protease m1 zinc metalloprotease	EDS20147 EDS44431.] EDS27419.]
6.92 9.47 5.67	53.0 69.7 80 3	462 628 735	w 0 u	7.79 4.62 4.76	107.01 85.94 87.71	 juvenile hormone epoxide hydrolase 1 polyadenylate-binding protein 1 sordium/notassium-transnorting ATPase alpha chain 	EDS26631.] EDS31071.] EDS26147 1
5.02 6.05 7.77	103.5 53.4 51.6	931 471 466	ω ω 4	4.19 6.58 12.45	116.28 110.70 110.41	 conserved hypothetical protein truncated ER mannose-binding lectin adenosine diphosphatase 	EDS30010.1 EDS27170.1 EDS26190.1

EDS36550.1	ubiquinol-cytochrome c reductase complex core protein	493.72	21.41	10	439	45.3	> ~
EDS40274.1	40S ribosomal protein S3	484.58	34.80	. 9	250	27.5	
EDS30648.1	arginine kinase	458.40	26.83	13	410	45.1	
EDS26147.1	sodium/potassium-transporting ATPase alpha chain	449.65	17.41	11	735	80.3	
EDS36304.1	sodium/potassium-dependent ATPase beta-2 subunit	447.15	24.66	7	292	33.4	
EDS26512.1	succinate dehydrogenase flavoprotein subunit. mitochondrial	436.97	13.77	7	661	72.1	
EDS37338.1	short-chain dehydrogenase	416.40	21.52	7	316	34.6	
EDS29666.1	vacuolar ATP synthase subunit e	389.43	27.88	7	226	25.8	
EDS27419.1	protease m1 zinc metalloprotease	377.47	11.28	10	1011	113.2	
EDS34105.1	vacuolar ATP synthase subunit ac39	367.69	33.05	8	348	39.6	
EDS28166.1	elongation factor 2	349.85	6.40	6	1031	114.4	
EDS44958.1	myosin heavy chain	341.20	1.61	2	1927	219.3	
EDS34461.1	60S ribosomal protein L5	314.24	16.50	6	297	34.0	
EDS32198.1	vacuolar ATP synthase subunit C	303.68	17.99	10	528	60.0	
EDS41621.1	40S ribosomal protein SA	303.08	14.54	3	282	30.8	
EDS38023.1	bacteria responsive protein 1; AgBR1	300.66	14.03	S	449	49.2	
EDS33081.1	60S acidic ribosomal protein P0	296.73	25.08	6	315	33.9	
EDS35981.1	endoplasmin	291.51	15.11	10	794	91.0	
EDS41216.1	anionic trypsin-2	281.48	12.12	3	297	31.8	
EDS42199.1	proliferation-associated 2g4	280.01	13.82	S	434	46.8	
AEN19673.1	cytochrome P405 CYP9J40	275.46	15.84	6	524	59.8	
EDS44784.1	lysosomal aspartic protease	275.27	19.90	6	387	41.7	
EDS36212.1	tubulin alpha-2 chain	268.68	9.35	3	449	49.8	
BAI77924.1	cytochrome P450	257.61	19.76	9	496	56.3	

EDS30010.1	conserved hypothetical protein	257.32	6.12	5	931	103.5	5.02
EDS27170.1	truncated ER mannose-binding lectin	253.46	12.31	6	471	53.4	6.05
EDS42768.1	steroid dehydrogenase	243.73	16.30	4	319	34.7	9.50
EDS34510.1	cytochrome P450 9b2	242.12	8.24	4	534	61.3	7.90
EDS42147.1	gram-negative bacteria binding protein	235.12	13.59	S	412	46.7	5.08
EDS45475.1	conserved hypothetical protein	225.43	20.78	6	332	35.4	8.25
EDS32263.1	serine-type enodpeptidase	224.32	19.59	ω	296	32.0	5.02
EDS32138.1	heat shock 70 kDa protein cognate 4	218.49	10.53	4	655	71.4	5.52
EDS30841.1	conserved hypothetical protein	216.54	9.31	6	462	52.9	5.24
EDS33630.1	zinc carboxypeptidase A 1	193.62	14.65	4	430	48.9	5.19
EDS38373.1	activated protein kinase C receptor	189.62	28.30	9	311	34.9	7.88
EDS38397.1	soluble NSF attachment protein	177.44	17.75	S	293	33.0	5.85
EDS28502.1	carboxylesterase-6	177.38	5.06	ω	632	71.1	6.19
EDS44930.1	l(2) long form	165.06	3.79	4	1294	148.8	4.58
EDS26618.1	prohibitin-2	164.97	15.38	S	299	33.1	9.67
EDS39442.1	V-type ATP synthase beta chain	162.82	9.15	4	492	54.7	5.49
EDS35346.1	membrane associated progesterone receptor	153.54	23.25	4	228	24.3	4.83
EDS31006.1	aminopeptidase N	152.31	2.21	4	1852	210.0	5.08
EDS37258.1	cytochrome P450 9b1	152.07	6.55	2	534	61.0	7.78
EDS33477.1	phosphatidylinositol transfer protein/retinal degeneration b protein	151.83	24.07	S	270	31.1	6.44
EDS34661.1	zinc carboxypeptidase	151.47	6.78	2	428	48.8	5.10
B0WN96.2	RecName: Full=40S ribosomal protein S3a	150.45	15.56	3	270	30.0	9.42
EDS35048.1	conserved hypothetical protein	147.19	12.25	6	645	71.4	6.86
EDS40443.1	mitochondrial cytochrome c1	146.62	18.30	4	306	33.2	8.94

EDS28847.1	EDS38798.1	EDS37025.1	EDS44962.1	EDS35443.1	B0WYY2.1	EDS44578.1	EDS36767.1	EDS34662.1	EDS28607.1	EDS25938.1	EDS43476.1	EDS37463.1	EDS34537.1	EDS34505.1	EDS44707.1	EDS33238.1	EDS33030.1	EDS38951.1	EDS27414.1	EDS35706.1	EDS37912.1	EDS31640.1	EDS39919.1
long-chain fatty acid transport protein 4	mitochondrial processing peptidase beta subunit	disulfide-isomerase tigA	myosin heavy chain	60S ribosomal protein L14	RecName: Full=Moesin/ezrin/radixin homolog 1	motor-protein	CD98hc amino acid transporter protein	carboxypeptidase A1	lipase	succinate dehydrogenase	glycogen phosphorylase	polyserase-2	cytochrome P450 12b1. mitochondrial	cytochrome P450 52A5	cytochrome P450 93A3	fructose-bisphosphate aldolase	cytochrome P450 4g15	alpha-glucosidase	palmitoyl-protein thioesterase 1	vacuolar ATP synthase subunit H	UDP-glucuronosyltransferase 2C1	conserved hypothetical protein	disulfide isomerase
86.09	87.83	88.59	89.24	90.05	93.26	94.33	95.47	96.08	98.30	101.44	103.80	111.44	112.63	117.92	118.01	118.87	120.09	121.69	126.32	126.53	131.65	145.27	145.56
4.78	5.27	7.32	1.21	13.41	3.32	3.51	3.29	9.18	10.72	10.56	5.46	8.14	7.43	8.52	10.02	7.99	4.42	8.93	8.70	8.44	9.63	20.90	6.29
ω	ω	ω	2	2	2	З	2	ω	2	З	5	ω	4	ω	5	ω	4	5	2	ω	4	5	ω
627	474	396	2068	179	572	769	639	425	345	303	842	381	525	540	499	363	566	605	299	474	509	244	493
69.7	52.2	44.0	237.3	20.7	67.7	85.2	70.2	48.4	37.4	34.1	96.6	40.2	60.0	62.0	57.6	39.2	64.6	69.4	34.0	54.5	56.9	26.7	55.4
8.18	6.13	5.07	5.85	11.15	5.68	8.85	5.08	5.19	6.76	7.50	6.37	8.10	7.74	7.44	8.50	7.62	8.53	5.20	6.39	6.14	8.79	6.65	4.91

EDS35011.1 conserved hypothetical protein	EDS45747.1 plasma membrane calcium-transporting ATPase 2	EDS39751.1 conserved hypothetical protein	EDS45227.1 DNA-J/hsp40	EDS29539.1 guanine nucleotide-binding protein subunit beta 1	EDS36469.1 multidrug resistance-associated protein 14	EDS36124.1 NADH-cytochrome b5 reductase	EDS33797.1 retinol dehydrogenase 14	EDS38696.1 40S ribosomal protein S4	BAK26813.1 cytochrome P450
70.43	71.69	74.80	75.82	76.74	78.19	81.51	82.53	84.10	85.07
5.05	3.18	7.04	8.66	10.59	5.23	7.84	7.01	10.27	3.17
2	ω	ω	3	2	2	ω	2	ω	2
436	1195	412	358	340	440	319	328	263	537
50.1	131.7	47.9	40.8	37.2	48.9	35.1	36.1	29.7	61.4
5.39	6.80	8.07	5.58	6.58	6.67	8.43	8.81	10.33	7.55

Supplementary Fig. 1. Homologous competition binding assays between labeled (¹²⁵I-) Cry48Aa, or Cry49Aa, or a mixture of both toxins (10 nM) with midgut brush border membrane fractions (25 μ g) from *Culex quinquefasciatus* larvae in the absence, or in the presence, of the respective unlabeled toxins (3-3000 nM). Maximum binding corresponds to the binding observed in the absence of competitor. The competitor concentration that displaces 50% of the ¹²⁵I-bound toxin (IC₅₀) is indicated. Each point is the mean of, at least, four experimental replicates.

Supplementary Fig. 2. Pull-down assay to evaluate the binding of the recombinant Cqm1 protein to the recombinant Cry48Aa/Cry49Aa-GST toxin (A), BinB-GST toxin (B) or GST (C, negative control) immobilized on sepharose beads. After incubation, beads were washed and bound proteins were separated on 10% SDS-PAGE, transferred to nitrocellulose membranes and subjected to immunodetection with an antibody raised against Cqm1 protein. P. Cqm1 protein (0.15 μ g). MW molecular weight in kDa.