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Figure 1: Image style transfer results. (a) style image, (b) content image, (c) result of [Johnson et al. 2016] and (d) our depth-
aware style transfer result. We can see that when stylizing an image with rich relative depth and spatial distance information,
compared to [Johnson et al. 2016], our results can better keep the original layout and relative depth relationships.

ABSTRACT
Neural style transfer has recently received signi�cant a�ention and
demonstrated amazing results. An e�cient solution proposed by
Johnson et al. trains feed-forward convolutional neural networks
by de�ning and optimizing perceptual loss functions. Such methods
are typically based on high-level features extracted from pre-trained
neural networks, where the loss functions contain two components:
style loss and content loss. However, such pre-trained networks are
originally designed for object recognition, and hence the high-level
features o�en focus on the primary target and neglect other details.
As a result, when input images contain multiple objects potentially
at di�erent depths, the resulting images are o�en unsatisfactory
because image layout is destroyed and the boundary between the
foreground and background as well as di�erent objects becomes
obscured. We observe that the depth map e�ectively re�ects the
spatial distribution in an image and preserving the depth map of
the content image a�er stylization helps produce an image that
preserves its semantic content. In this paper, we introduce a novel
approach for neural style transfer that integrates depth preservation
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as additional loss, preserving overall image layout while performing
style transfer.
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1 INTRODUCTION
�e goal of non-photorealistic rendering (NPR) is to render a scene
in a stylized or artistic manner. Broadly speaking, there are two
categories of approaches: image based NPR [Rosin and Collomosse
2013] and 3D model based NPR [Strotho�e and Schlechtweg 2002].
�e former has wide applicability, but the di�culties in parsing
the contents of images without prior semantic knowledge limits
the quality of the outputs. In contrast, the la�er has the advan-
tage of being able to use the available 3D information to directly
compute depth discontinuities, surface normals, etc. �ese are in-
valuable when performing rendering, e.g. in determining placement
of strokes. �is paper tackles the problem of image stylization
– in particular style transfer – and aims to leverage some of the
bene�ts of 3D based approaches, by inferring 3D information from
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2D images, in order to improve the quality of results compared to
existing methods that operate exclusively on 2D information.

Speci�cally, this paper investigates image-based style transfer.
Given a content image and a style image as input, the aim is to
synthesize an output image with the same content as the content
image but following the style given in the style image. �is is an
interesting problem in non-photorealistic rendering. Many meth-
ods have been developed for automatic style transfer. With the
fast development in deep learning, neural networks have shown
increasing power in many areas, especially in the �eld of computer
vision. From image detection [Cheng et al. 2014; Girshick et al. 2014;
Ren et al. 2015] to semantic segmentation [Long et al. 2015; Wei
et al. 2017, 2016], deep neural networks have made breakthroughs
in nearly all the areas. Recent progress has demonstrated deep
learning is not only e�ective at solving those well de�ned prob-
lems with ground truth, but also problems with no ground truth
available for training, a typical example being image style transfer
(e.g., [Gatys et al. 2016; Johnson et al. 2016; Ulyanov et al. 2016]).
For such problems, ground truth results are not well de�ned and
extremely time consuming to obtain. �e success of such methods
builds on the fact that deep neural networks have an extremely
strong feature extraction capability. As we know, features are es-
sential in determining the style of images. Traditional methods
usually use handcra�ed features typically in the form of mathe-
matical representations, determining e.g. the opacity and shape
of a brush stroke. Although some of these algorithms achieve re-
markable results, they have major disadvantages: low-level features
may fail to capture essential semantic styles or content, and the
e�ectiveness of features is o�en problem dependent. Deep neural
networks provide an alternative where the features are e�ectively
learned, which is generic and achieves signi�cant performance gain
compared to traditional methods, thanks to their strong nonlinear
representation capability.

Existing deep neural network based image style transfer methods
o�en produce impressive results. However, for challenging input
images with multiple objects and complex spatial layout, the syn-
thesized image tends to distribute style elements evenly across the
whole image, and make objects in the scene become unrecognizable.
�is is particularly true for images of scenes covering a wide range
of depths. �e results are not entirely satisfactory (see an example
in Figure 1c). �is is probably due to the fact that the pre-trained
networks used to de�ne perceptual loss functions were originally
designed to perform object recognition, and so their feature extrac-
tion ability for style transfer is limited. To supplement this, we
propose to add depth reconstruction loss to help train the image
transformation network. �e depth map captures the structure and
overall layout of the scene. Experimental results show that our
results achieve the desired style transfer and retain the essential
layout of the content image (see Figure 1d).

2 RELATEDWORK
Image style transfer and depth prediction are two fundamental prob-
lems in computer vision and computer graphics. Earlier research
uses traditional methods. With the prevalence of deep neural net-
works recently, researchers began to consider how to apply them
to style transfer and depth prediction. New approaches for style

transfer (e.g., [Gatys et al. 2016; Johnson et al. 2016]) and depth
prediction (e.g., [Chen et al. 2016; Liu et al. 2015]) with novel strate-
gies are constantly emerging. �ese methods achieve fairly good
results, and provide the basis for this work.

2.1 Image Style Transfer
Traditional Methods. When performing style transfer, obtaining

suitable feature representations is essential. Efros and Leung [1999]
propose a non-parametric method for texture synthesis, which
tries to preserve most of the local structure, and produces good
results for both synthetic and real-world textures. Efros and Free-
mann [2001] present a simple image-based method to change the
appearance of an image by stitching together small patches of ex-
isting images. Hertzmann et al. [2001] describe a framework for
processing images by example, named “image analogies”, which
transfers styles represented using a pair of non-styled and styled
images to novel input images. However, the common limitation
of these non-parametric methods is that they only use low-level
features of images and may not be able to capture content and style
e�ectively.

Deep Learning based Methods. With the development of both the-
ory and hardware capability, deep learning o�ers a novel alternative
for style transfer. As ground truth is generally unavailable for style
transfer, training a model that extracts features dedicated for style
transfer is challenging. As a �rst a�empt, Gatys et al. [2016] use
Gram matrices of the neural activations from di�erent layers of
a Convolutional Neural Network (CNN) to represent the artistic
style of an image, and generate a new image from a white noise
initialization followed by an iterative optimization process. �is
novel method a�racted many follow-up works aimed at improving
di�erent aspects of their approach. To reduce the computational
burden, Johnson et al. [2016] and Ulyanoy et al. [2016] train a
feed-forward network to quickly approximate solutions to the op-
timization problem. To improve the transfer results, researchers
have developed di�erent complementary schemes, e.g. by incor-
porating novel spatial constraints through gain maps [Selim et al.
2016] and semantic maps [Gatys et al. 2017], and by combining
deep convolutional neural networks with a Markov random �eld
(MRF) prior [Li and Wand 2016]. To expand the �eld of application,
Ruder et al. [2016] present an approach that transfers the style from
one image to a whole video sequence. Selim et al. [2016] propose
an approach for head portrait painting which works for di�erent
painting styles. Some works concentrate on theoretical studies,
exploring why the Gram matrices can represent artistic styles. Li
et al. [2017] demonstrate that matching the feature maps of the
style image and the generated image can be seen as minimizing
the Maximum Mean Discrepancy (MMD) with the second order
polynomial kernel. McCaig et al. [2016] investigate the value of
such neural style transfer algorithms when carrying out creative
computational research, explaining and schematizing the essential
aspects of the algorithm’s operation.

Among all the works, Johnson’s method [Johnson et al. 2016]
stands out by way of its fast speed whilst achieving results with
satisfactory quality. By pre-training a feed-forward network rather
than directly optimizing the loss functions as in [Gatys et al. 2016],
Johnson’s method is orders of magnitude more e�cient for stylizing
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new input images. We thus build our depth-aware style transfer
based on [Johnson et al. 2016] although the idea can as well be
incorporated into other image style transfer frameworks.

2.2 Single-Image Depth Perception
Traditional Methods. Image-to-depth conversion is a long-stan-

ding problem with a large body of literature. Prior traditional
methods (e.g., [Liu et al. 2010; Saxena et al. 2005]) typically for-
mulate the depth estimation as a Markov Random Field learning
problem. However, it is in general intractable to learn and infer
MRFs, so they usually employ some approximation methods. In
addition, many methods rely on upright orientation of images and
hence the �exibility is limited. Moreover, traditional methods usu-
ally use hand-cra�ed features (e.g., texton, GIST, SIFT), so their
representational power is also limited.

Deep Learning based Methods. �e recent convergence of deep
neural networks and RGB-D datasets [Geiger et al. 2013; Silberman
et al. 2012] has accelerated the development in this area. Liu et
al. [2015] utilize the continuous characteristic of depth values, and
treat the depth estimation problem as a continuous conditional
random �eld (CRF) learning problem. �ey propose a deep struc-
tural learning scheme, which learns potentials of continuous CRF
in a uni�ed deep CNN framework to estimate depths from a single
image. Eigen and Fergus [2015] address three di�erent computer
vision tasks, including depth prediction, using a single multiscale
convolutional network architecture. �e method progressively re-
�nes predictions using a sequence of scales without the help of
any superpixels or low-level segmentation. Li et al. [2015] tackle
this problem by regression on deep CNN features, which is com-
bined with a post-processing re�ning step using a CRF. Zhang et
al. [2015] develop a Markov random �eld to provide a coherent
single explanation of an image. Wang et al. [2015] utilize both
global prediction and local prediction, and formulate the problem
in a two-layer Hierarchical Conditional Random Field (HCRF) to
produce the �nal depth map. Although all of these methods can
produce good results, it is noteworthy that the networks in these
works are all trained on ground-truth metric depth.

In practice however, research shows that humans are be�er at
judging relative depth [Todd and Norman 2003]. Zoran et al. [2015]
propose a framework that infers mid-level visual properties of an
image by learning about ordinal relationships. �is work shows
that it is feasible to estimate metric depth using only annotations
of relative depth. Inspired by the previous work, Chen et al. [2016]
propose a new algorithm that learns to estimate metric depth using
annotations of relative depth. �e algorithm uses an “hourglass”
network, which has been used to achieve state-of-the-art results on
human pose estimation, and the training data are RGB images with
relative depth annotations. �ey demonstrate that this algorithm
signi�cantly improves single-image depth perception in the wild.

3 METHOD
As shown in Figure 2, our system is composed of three main parts:
an image transformation network fW , and two loss networks ϕ0
and ϕ1. �e two loss networks are used to de�ne three loss func-
tions: l1, l2 and l3, where l1 and l2 are based on ϕ0, and correspond

to the style loss and content loss, also denoted as lϕ0
style and lϕ0

content

respectively. l3 is the depth loss lϕ1
depth , based on ϕ1. �e image

transformation network is a deep residual convolutional neural
network parameterized by weightsW ; it transforms an input im-
age x into an output image ŷ via the mapping ŷ = fW (x ). Each
loss function computes a scalar value li (ŷ,yi ) measuring the di�er-
ence between the output image ŷ and a target image yi (i = 1, 2, 3
corresponding to content, style and depth images).

�e image transformation network is trained using stochastic
gradient descent to minimize a weighted combination of loss func-
tions:

W ∗ = arg min
W

Ex, {yi }[
3∑
i=1

λi li ( fW (x ),yi )] (1)

�e three loss functions fall into two categories: perceptual loss
function (lϕ0

style and l
ϕ0
content ) and per-pixel loss function (lϕ1

depth ).
Perceptual loss functions, based on high-level features extracted
from pre-trained networks, are used to measure high-level percep-
tual and semantic di�erences between images. Compared with
per-pixel losses, perceptual losses measure image similarities more
robustly. �is works because according to some recent work (e.g.,
[Mahendran and Vedaldi 2015; Simonyan et al. 2013]), the convo-
lutional neural networks pre-trained for image classi�cation have
already learned to encode the perceptual and semantic informa-
tion. In contrast, per-pixel loss is more suitable when we have a
ground-truth target that the network is expected to match. �is
is suitable for the depth loss, as relative depth can be estimated
from the content and synthesized images. In our method, ϕ0 is a
pre-trained image classi�cation network, and ϕ1 is a single-image
depth perception network [Chen et al. 2016].

In the training phase, we pass each input image x through the
image transform network fW and obtain synthesized image ŷ. To
measure the total loss, the input image x also serves as the content
targetyc . �e user supplied style image is treated as the style target
ys . �e style reconstruction loss lϕ0

style is produced by comparing
each ŷ with ys in the loss network ϕ0, and the content reconstruc-
tion loss lϕ0

content is produced by comparing each ŷ with yc in the
same loss network ϕ0. �e depth reconstruction loss l

ϕ1
depth is

produced by an additional depth prediction network ϕ1 through
comparing the output of ŷ and yc in ϕ1, with the aim of making the
stylized image retain a depth output consistent with the content.

3.1 Image Transformation Networks
Inspired by the architectural guidelines set forth by [Radford et al.
2015], we replace the pooling layers of the image transformation
networks with strided and fractionally strided convolutions, which
achieve the same goal of sampling. �e network body consists
of �ve residual blocks [He et al. 2016]. All non-residual convo-
lutional layers are followed by spatial batch normalization [Io�e
and Szegedy 2015] and ReLU nonlinearities with the exception of
the output layer, which instead uses a scaled tanh to range the
output pixels from 0 to 255. Generally, each layer in the network
is equivalent to a non-linear �lter bank. With the increase of the
layer’s position, the complexity of the �lter bank increases. Hence
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Figure 2: System Overview. We train an image transformation network to transform the input images. We use a loss network
pre-trained for object recognition to de�ne style and content loss, and an additional depth estimation network to de�ne depth
loss. In the training stage, for a speci�c style, we obtain the corresponding style transfer model through optimizing the total
loss.

the input image x is encoded in each layer of the network by the
�lter responses to that image.

Inputs and Outputs. In the training phase, the input and output
are both color images of size 256× 256 with 3 color channels. Since
the image transformation networks are fully-convolutional, there
is no limit to the size of test images.

Downsampling and Upsampling. We �rst use two downsampling
layers and then two upsampling layers, each of stride 2, to process
the input. Between the sampling layers are several residual blocks.
A�er these processing steps, the size of the image is preserved,
but this procedure comes with two advantages: On the one hand,
a�er downsampling, we can use a larger network for the same
computational cost. For instance, the computational cost of a 3 ×
3 convolution with C �lters on an input of size H ×W × C is
equal to a 3 × 3 convolution with DC �lters on an input of shape
H
D ×

W
D × DC , where D is the downsampling factor. On the other

hand, downsampling gives a larger e�ective receptive �elds with
the same number of layers. For instance, without downsampling,
each additional 3 × 3 convolutional layer increases the e�ective
receptive �eld size by 2. A�er downsampling by a factor of D, the
e�ective receptive �eld size increases to 2D. In general, the larger
the receptive �elds, the be�er the style transfer results are.

Residual Connections. He et al. [2016] point out that residual
connections make it easy for the network to learn the identity
function. It can be observed that when performing style transfer,

in many cases, the output image should share structure with the
input image, so we include several residual blocks in our network
to enhance this ability.

3.2 Depth Loss Function
�e depth loss function is used to measure the depth di�erences
between the transformed image ŷ and the content target image yc .
In order to preserve maximum depth information and potential
structural features, we take the outputs of the depth estimation
network and compute the distances as the depth loss.

Let x and ŷ be the original image and the transformed image,
ϕ1 (x ) and ϕ1 (ŷ) are their respective depth estimation with shape
H ×W . �e depth loss function is the (squared, normalized) Eu-
clidean distance between feature representations:

l
ϕ1
depth (ŷ,x ) =

1
C × H ×W

‖ϕ1 (ŷ) − ϕ1 (x )‖
2
2 (2)

Let ϕi jk1 be the activation of the ith �lter at position (j,k ) of the
outputs. �e derivative of this loss with respect to the outputs is:

∂l
ϕ1
depth

∂ϕ
i jk
1 (ŷ)

=




2(ϕi jk1 (ŷ )−ϕi jk1 (x ))
C×H×W if ϕi jk1 (ŷ) > 0

0 if ϕi jk1 (ŷ) < 0
(3)

3.3 Content Loss Function
Similar with [Johnson et al. 2016], the content loss is de�ned as the
(squared, normalized) Euclidean distance of high-level features in
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Figure 3: �alitative result comparison with [Johnson et al.
2016]. We can see that the style of the original method tends
to be distributed fairly evenly, which thus obscures the im-
age layout. In contrast, our image stylization method better
retains the structure of the content image. Content images
are from Pixabay. Style1: �e Starry Night by Vincent van
Gogh. Style2: �e Great Wave by Hokusai.

the speci�c layer of image classi�cation network ϕ0. Let ϕ j0 be the
activations of the jth layer of ϕ0 when processing the image x with
shape Hj ×Wj ×Cj . �e content loss function is:

l
ϕ0
content (ŷ,x ) =

1
Cj × Hj ×Wj

‖ϕ
j
0 (ŷ) − ϕ

j
0 (x )‖

2
2 (4)

�e derivative of this loss with respect to the outputs has the same
form as Eq. 3.

�e selected layer j is chosen from early layers, because doing so
tends to ensure the transferred image ŷ is visually indistinguishable
from x . Unlike the depth loss function, we use perceptual loss here,

Figure 4: �alitative result comparison with [Gatys et al.
2016]. We can see that the content of style images also ap-
pears in the stylized results of [Gatys et al. 2016], and the
original content is messed up. Our results apply the styles
of the style images without inserting their content, and the
original content is well preserved. Content image is from
Pixabay. Style images (from top to down): �e Scream by
EdvardMunch;�e Starry Night by Vincent van Gogh; Com-
position by Wassily Kandinsky.

because as mentioned in [Todd and Norman 2003], compared with
per-pixel di�erences of the feed-forward outputs, perceptual losses
are more robust and stable.

3.4 Style Loss Function
�e style loss is to help ensure the output image ŷ reproduces the
style target ys . We thus wish to penalize di�erences in style: colors,
textures, common pa�erns, etc. To achieve this e�ect, we select a
set of layers and compute the sum of individual losses as the �nal
style reconstruction loss, similar to [Gatys et al. 2016; Johnson et al.
2016].

As above, letϕ j0 be the �lter responses with a shape ofHj×Wj×Cj

at the jth layer of the network ϕ0 for the input x . �e Gram matrix
G
ϕ0
j is de�ned as the inner product of every two �lter responses.
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Figure 5: Comparison of depthmaps. �e style is the same as
style 2 in Figure 3. �e �rst row contains the content image
and the corresponding depth map using [Chen et al. 2016],
the second row shows results using [Johnson et al. 2016] and
the depth map using [Chen et al. 2016], the last row is our
method and the depth map. Content image is from Pixabay.

So it is a symmetric matrix ofCj ×Cj whose elements are given by

G
ϕ0
j (x )c,c ′ =

1
Cj × Hj ×Wj

Hj∑
h=1

Wj∑
w=1

ϕ
j
0 (x )h,w,cϕ

j
0 (x )h,w,c ′ (5)

�e contribution of layer j to the total style loss is then de�ned as
the squared Frobenius norm of the di�erence between the Gram
matrices of the output and target images:

l
ϕ0, j
style (ŷ,ys ) = ‖G

ϕ0
j (ŷ) −G

ϕ0
j (ŷs )‖

2
F (6)

Assuming J stands for the set of selected layers, the total style
loss is de�ned as:

l
ϕ0
style (ŷ,ys ) =

∑
j ∈J

l
ϕ1, j
style (ŷ,ys ) (7)

More details about speci�c selected layers J can be found in
Section 4.1.

It is noteworthy that the form of lϕ0
style is di�erent from l

ϕ1
depth

and l
ϕ0
content . �e form of style representation is di�erent. Also,

we select a set of layers instead of one. �ere are two reasons
why we use this representation. First, due to the characteristics

of the loss network ϕ0, the responses of its intermediate layers
cannot be directly used to represent the style of an image. Instead,
the style of an image can be intrinsically represented by feature
correlations in di�erent layers of a CNN, so we calculate the distance
between Gram matrices to measure the style similarity. Secondly,
by including feature correlations of multiple layers, we obtain a
multi-scale representation of the style. So, by �nding an image ŷ
that minimizes the style reconstruction loss for multiple layers, we
tend to preserve the stylistic features but do not preserve the spatial
structure.

4 EXPERIMENTS
In this section, we provide the training details and perform experi-
ments on some pictures with several styles. Compared to [Johnson
et al. 2016], our results are more e�ective: providing stylization
whilst preserving scene structure. Unfortunately, performing eval-
uation of NPR algorithms is well known to be a di�cult problem
due to the wide variety of NPR styles, the lack of ground truth and
objective evaluation measures [Hertzmann 2010; Isenberg 2013].
One solution is to use a proxy measure to gain at least an indi-
cation of the quality of an algorithm [Hertzmann 2010]. We take
this approach, and carry out comparative experiments which con-
sider the depth, edge and salience of the stylized images. Although
they do not provide a direct measurement for the quality of results,
they re�ect in part the capability of the method for maintaining
fundamental features of images.

4.1 Training Details
We choose Microso� COCO [Lin et al. 2014], including 80k im-
ages, as the training dataset. All the training images are resized to
256×256 and then trained with a batch size of 4 for 40, 000 iterations.
On the choice of optimization method, we use Adam [Kingma and
Ba 2014] with a learning rate of 1 × 10−3, because this method is
straightforward, is computationally e�cient, has few requirements
and is well suited for problems that involve large amounts of data.
Based on the cross-validation per style target, the output images
are regularized with a total variation regulation strength ranging
from 1 × 10−6 to 1 × 10−4. Weight decay and dropout are not used
in our model, as the model does not over�t within two epochs. We
compute feature reconstruction loss at layer relu2 2 and style recon-
struction loss at layers relu1 2, relu2 2, relu3 3, and relu4 3 of the
VGG-16 loss network. �e depth reconstruction loss is computed at
the output layer of the model in [Chen et al. 2016]. �e weights of
the three losses are 1 (content), 5 (style) and 5 (depth), respectively.
Our implementation uses Torch [Collobert et al. 2011] and cuDNN
[Chetlur et al. 2014]; the training process takes approximately 4
hours on a single GTX Titan X GPU.

4.2 �alitative Results
In Figure 3, we show qualitative examples comparing our results
with the method of [Johnson et al. 2016] for two style and content
images. Except for the extra depth reconstruction loss, in all cases
the hyperparameters are exactly the same between the two methods.
We see that for pictures containing a rich 3D spatial layout with
obvious distance relationships, our method can be�er retain the
content’s general layout. In addition, in the original method, the
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Figure 6: Example results of edge detection using [Liu et al. 2017]. �e three style images are respectively the same as the
styles in Figure 1 and Figure 3. �e �rst two columns are the content and the edge detection results using [Liu et al. 2017].
�e middle two columns are the results of [Johnson et al. 2016] and the edge detection results using [Liu et al. 2017]. �e last
two columns are our results. It can be seen that the results of [Johnson et al. 2016] introduce extensive spurious edges, which
spread over the whole image. Content images are from Pixabay.

style features are evenly distributed so that it is di�cult to tell apart
the foreground and background elements of the scene. In contrast,
while our results show a variety in the styles within an image,
structures with continuous change in depth tend to have the same
style, i.e. they are rendered in a consistent manner. Moreover, our
results can e�ectively maintain the basic properties of the original
images. For more comparative results, see Figure 8.

We also compare our method with [Gatys et al. 2016] (see Fig-
ure 4). Our method avoids the typical artifacts of [Gatys et al. 2016]
which tends to insert some content of the style images into the
synthesized images, and produces stylized images with well pre-
served image layout. For instance, like the second row of Figure 4,
when rendering a photograph of the �bingen in the style of the
painting �e Scream, in the result of [Gatys et al. 2016] we can see
the barrier, which belongs to the content of �e Scream. However,
our approach has a few disadvantages, such as the de�ciency of
expressing abstract lines.

4.3 Depth Map Comparison
�e depth map is an important characteristic of an image, since
it contains 3D feature information about the objects. In our view,
the purpose of style transfer is to change the image style whilst
retaining other fundamental characteristics as much as possible.
For certain types of images in particular, depth is critical to the
perception. When rendering these images, a good result should not
make a huge change to the depth map.

In Figure 5, we compare the depth maps of the original image and
the depth maps produced from the stylized results of two methods.
�e results indicate that we recover the overall subjective depth
structure of the scene quite well, o�en with crisp edges at depth
discontinuities.

It is not surprising that our results preserve the depth well, be-
cause we minimize the depth loss in the training stage. Although

not totally the same, our results well preserve the relative relation-
ship between positions, and it is enough to make people aware of
the spatial distribution and positional relation. Moreover, this extra
loss not only substantially alters the transferred results, but also
leads to changes in other basic properties.

4.4 Edge Comparison
When transferring the style of an image, what we want to change
is the brushwork and color scheme, and these changes have li�le ef-
fect on edges, which are usually the boundaries and outlines of the
major objects. So whatever the style is, the major objects’ bound-
aries and shapes should not change largely. �erefore, measuring
the preservation of detected edges provides an indication of the
e�ectiveness of the style transfer. A good result should maintain
the original edges well without introducing other clu�er edges.
We choose the recent richer convolutional features edge detector
(RCF) [Liu et al. 2017] as the edge detection method. As a CNN-
based method, HED has a distinct advantage over the traditional
methods in that it can be�er capture semantic boundaries and pro-
duces fewer responses to purely low-level features (e.g., gradient,
contrast). By using CNN, RCF tends to respond signi�cantly to se-
mantic boundaries. We �rst select images to apply style transform
to, and then use RCF to detect their edges.

As shown in Figure 6, in the result of [Johnson et al. 2016], the
stylistic elements are sca�ered over the image. So it is inevitable
that this has introduced unnecessary edges. In the worst case, as in
the �rst row, we cannot di�erentiate between the foreground and
background, the overall layout was disrupted and the content was
obscured. To a lesser degree, we see these phenomena in the other
two cases as well. In contrast, our method provides a strong sense
of object and depth layers, is artistically more a�raction, and very
dramatic.
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Figure 7: Example results of saliency detection using [Wang et al. 2017]. �e three style images are respectively the same as
the styles in Figure 1 and Figure 3. �e last column are the content image and the groundtruth. �e �rst two lines are the
transferred results of [Johnson et al. 2016] and the saliency detection results using [Wang et al. 2017]. �e last two lines are the
results of our method and the corresponding saliency map. It can be seen that the saliency maps of [Johnson et al. 2016] are
out of accordance with the groundtruth, while our method preserves largely the groundtruth. Content image is from Pixabay.

4.5 Saliency Comparison
In computer vision, a saliency map is useful as it points out the
visually dominant locations. During the style transformation, a
good result should not cause large changes in the saliency map
under the premise of retaining the original content. A�er styliza-
tion, it is acceptable to weaken or enhance the original saliency
map, but its integrity should be retained. We can still identify the
content from the new saliency map. So we apply saliency detection
as a supplementary evaluation method. On the choice of evalua-
tion method, we choose discriminative regional feature integration
method (DRFI) [Wang et al. 2017] as the detection method. DRFI
is based on performing multi-level image segmentation. It maps
the regional feature vector to a saliency score, and �nally fuses the
saliency scores to generate the saliency map. Prior to deep-learning
methods, DRFI is the best one among all the traditional methods.

As shown in Figure 7, the saliency detection result shows that our
method not only substantially enhances spatial detail information
of the result image, but also e�ectively preserves the saliency of
the original image. In the saliency maps of [Johnson et al. 2016],
the salient parts appear as tiny spots and the whole map loses
the sense of coherence, so that we cannot extract saliency object
from it. In contrast, our results make it easy for an observer to
determine the objects. �e root cause of these can be explained by
the correlation between the depth map and saliency map. Generally
speaking, depth information can a�ect identi�cation of visually

salient regions in images. �is phenomenon was studied in [Lang
et al. 2012], who concluded that humans �xate preferentially at
closer depth ranges and determined that the relation between depth
and saliency is non-linear. Our results also demonstrate that there is
an association between depth and saliency, since by strengthening
depth in the training phase, saliency was also enhanced.

4.6 Trade-o� between perceptual loss and
depth loss

When synthesizing an image optimizing a combination of the per-
ceptual loss and depth loss, an image that perfectly matches both
constraints at the same time does not usually exist. However, since
the loss function we minimize is a linear combination of the per-
ceptual and depth loss functions, we can freely adjust the relative
weighting between the two factors. A strong emphasis on depth
will result in images that match the spatial distribution of the con-
tent. When placing strong emphasis on perceptual loss, one can
be�er capture the image style, but the overall layout tends to be
less well preserved.

5 CONCLUSION
In this paper we have combined the bene�ts of feed-forward image
transformation methods and optimization-based methods for image
generation by training feed-forward transformation networks with
extra depth loss functions. Compared to existing methods, our
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Figure 8: Example results of using our method. Compared with [Johnson et al. 2016], our results better capture major struc-
tures of the image, and have crisper outlines. Content images are from Pixabay.
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method is advantageous. For a wide range of images, we achieve
aesthetically appealing results which be�er preserve the semantic
content and layout of the content images.

At the same time, we perform evaluation to compare the re-
sults of di�erent methods. As we have stated before, changing the
absolute value of depth is acceptable, but relative depths should
be retained in order to retain distinct rendering of objects as well
as foreground and background, especially for images that cover
a large range of depth. Finally, style transfer should preserve the
coherence and spatial layout of the original content image, and we
evaluate this by checking the amount of change in the saliency map
caused by style transfer.

In the future, we will investigate incorporating and combining
other information such as intrinsic images (e.g. shading, albedo),
which can also be extracted by CNNs, to improve style transfer.
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