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Abstract

Assimilation of terrestrial water storage (TWS) information from the Gravity Recovery And1

Climate Experiment (GRACE) satellite mission can provide significant improvements in hydro-2

logical modeling. However, the rather coarse spatial resolution of GRACE TWS and its spatially3

correlated errors pose considerable challenges for achieving realistic assimilation results. Conse-4

quently, successful data assimilation depends on rigorous modelling of the full error covariance5

matrix of the GRACE TWS estimates, as well as realistic error behavior for hydrological model6

simulations. In this study, we assess the application of local analysis (LA) to maximize the con-7

tribution of GRACE TWS in hydrological data assimilation. For this, we assimilate GRACE8

TWS into the World-Wide Water Resources Assessment system (W3RA) over the Australian9

continent while applying LA and accounting for existing spatial correlations using the full error10

covariance matrix. GRACE TWS data is applied with different spatial resolutions including 1◦11

to 5◦ grids, as well as basin averages. The ensemble-based sequential filtering technique of the12

Square Root Analysis (SQRA) is applied to assimilate TWS data into W3RA. For each spatial13

scale, the performance of the data assimilation is assessed through comparison with indepen-14

dent in-situ ground water and soil moisture observations. Overall, the results demonstrate that15

LA is able to stabilize the inversion process (within the implementation of the SQRA filter)16

leading to less errors for all spatial scales considered with an average RMSE improvement of17

54% (e.g., 52.23 mm down to 26.80 mm) for all the cases with respect to groundwater in-situ18

measurements. Validating the assimilated results with groundwater observations indicates that19

LA leads to 13% better (in terms of RMSE) assimilation results compared to the cases with20

Gaussian errors assumptions. This highlights the great potential of LA and the use of the full21
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error covariance matrix of GRACE TWS estimates for improved data assimilation results.22

23

Keywords: Data assimilation, GRACE, Localization, Hydrological model.

1. Introduction24

The Gravity Recovery And Climate Experiment (GRACE) satellite mission provides25

global time-variable gravity field solutions that have been used to obtain global terrestrial26

water storage (TWS) changes (Tapley et al., 2004). Several studies indicate that GRACE27

TWS can play an important role in better understanding surface and sub-surface physical28

processes related to water redistribution within the Earth system (e.g., Huntington, 2006;29

Chen et al., 2007; Kusche et al., 2012; Forootan et al., 2014; van Dijk et al., 2014; Wouters30

et al., 2014). A growing number of studies has also been applying GRACE TWS to constrain31

the mass balance of hydrological models (e.g., Zaitchik et al., 2008; Thomas et al., 2014;32

van Dijk et al., 2014; Eicker et al., 2014; Tangdamrongsub et al., 2015; Reager et al., 2015;33

Khaki et al., 2017). This combination is motivated by the fact that hydrological models use34

conceptual or physical knowledge (or both) to simulate hydrological processes at global (e.g.,35

Huntington, 2006; Coumou and Rahmstorf, 2012) and regional (e.g., Zaitchik et al., 2008; Chen36

et al., 2013; Munier et al., 2014) scales. The accuracy of simulations might be limited due to37

imperfect models (i.e., lack of knowledge about the processes or simplified model equations) and38

uncertainties in input and forcing data (Vrugt et al., 2013). Data limitation (both on temporal39

and spatial scales) also plays a substantial role in land hydrological modeling, especially for40

closing the water balance that requires reliable information about all storage compartments41

from which that of groundwater is very challenging. In this regard, GRACE TWS estimates42

are of great importance since they can be used through data assimilation to constrain the43

vertical summation of water storages (including groundwater) in the models.44

Data assimilation is a technique to incorporate observations into a dynamic model in order45

to improve its state estimation (Bertino et al., 2003; Hoteit et al., 2012). It has been widely46

applied in the fields of ocean and climate science (Garner et al., 1999; Elbern and Schmidt,47

2001; Bennett, 2002; Kalnay, 2003; Schunk et al., 2004; Lahoz, 2007; Zhang et al., 2012). In48

hydrological studies, different in-situ measurements (e.g., river discharge and soil moisture)49

have been assimilated into models (Liu et al., 2012) to improve their estimates of different50
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hydrological quantities (see, e.g., Crow and Wood, 2003; Seo et al., 2003; Vrugt et al., 2005;51

Weerts et al., 2006; Reichle et al., 2010).52

The application of remotely sensed data in data assimilation for hydrological purposes has53

gathered interests in the past few years. This is especially due to the increased development and54

availability of satellite remote sensing systems such as Sentinel, Soil Moisture Active Passive55

(SMAP), GRACE, and satellite radar altimetry (e.g., Moradkhani et al., 2006; Clark et al.,56

2008; Houborg et al., 2012; van Dijk et al., 2014; Renzullo et al., 2014; Reager et al., 2015;57

Kumar et al., 2016). Data assimilation can improve various water compartments of hydrological58

models such as soil (e.g., Reichle et al., 2002, 2008; Brocca et al., 2010; Kumar et al., 2014;59

Renzullo et al., 2014), surface water (e.g., Alsdorf et al., 2007; Neal et al., 2009; Giustarini et60

al., 2011), and snow (e.g., Liu et al., 2013; Kumar et al., 2015) storages. A number of studies61

has also investigated the possibility of using GRACE data to improve hydrological models (e.g.,62

Zaitchik et al., 2008; Houborg et al., 2012; Li et al., 2012; Eicker et al., 2014; van Dijk et al.,63

2014; Tangdamrongsub et al., 2015; Kumar et al., 2016; Schumacher et al., 2016).64

GRACE data with a suitable coverage, both temporally and spatially, provide a unique65

opportunity to study water storages in lands on global and regional scales. The mission now66

provides 15 years of data with a global coverage, which provides the chance to study seasonal to67

decadal changes in TWS. Before using GRACE TWS in any assimilation framework, however,68

there are some important aspects which should be considered such as the temporal and spatial69

resolution mismatch between GRACE observations and model simulations, as well as existing70

spatial and temporal correlations in the time series of GRACE TWS and model simulations.71

Its spatial resolution is limited to a few hundred kilometers depending on the signal strength72

and the inversion technique applied to recover time-variable gravity fields (Schmidt et al.,73

2008). This coarse spatial resolution exists in both GRACE level 2 solutions provided in74

terms of spherical harmonics potential coefficients or mass concentration (mascon) solutions.75

Although mascon is provided on a finer spatial scale (e.g., 0.5◦), the native resolution of the76

data is smaller (e.g., 3◦; Watkins et al., 2015; Wiese, 2015). Different studies have tried to77

assimilate GRACE data in either basin scales (e.g., Zaitchik et al., 2008; Houborg et al., 2012;78

Li et al., 2012) or grid element scales (e.g., Eicker et al., 2014; Tangdamrongsub et al., 2015;79

Schumacher et al., 2016). GRACE level 2 products have been truncated (e.g., at degree and80

order 60-120). They also have been filtered (e.g., Swenson and Wahr, 2006; Kusche, 2007)81
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resulting in low spatial resolutions. Upscaling of the original established TWS with a limited82

spatial resolution to create a high spatial resolution data (e.g., 1◦) with grid points that are83

not independent of each other increases spatial correlation significantly (see e.g., Schumacher84

et al., 2016). Accounting for these correlations is important especially in the context of data85

assimilation, where complete knowledge of the data error structure including uncertainties and86

existing correlations is necessary.87

Data assimilation as an inverse problem uses the covariance information of model simula-88

tions and observations. Significantly correlated errors yield covariance matrices that are bad89

conditioned or not invertible leading to inefficiency in filtering process during data assimilation.90

Due to the lack of information (or to enhance computations), the decision of uncorrelated data91

(Gaussian error for observations) is often made to deal with this problem, which can be realis-92

tic when observations are denser than models’ grid, e.g., independent grid points of neighbours93

(Berger and Forsythe, 2004; Stewart et al., 2008). In contrast, when the spatial resolution of94

models is finer than the assimilated observations, it can lead to no improvement in the accuracy95

of final assimilation results (e.g., Liu and Rabier, 2003; Dando et al., 2007; Stewart et al., 2008).96

In this regard, it is necessary to precisely consider the full GRACE error covariance for different97

spatial resolutions in data assimilation applications especially where the model spatial scale is98

finer than GRACE TWS, and the existing correlations in the observations are problematic (see99

e.g., Schumacher et al., 2016).100

Most of the previous studies assimilated GRACE TWS (e.g., grid-based or basin aver-101

aged) into models while assuming white noise (i.e., uncorrelated observations). This, for basin102

averaged applications, might be justified to some extent as the spatial averaging of TWS ob-103

servations adds up the non-Gaussian noise distributions and generates a mixture that is closer104

to Gaussian distribution according to the central limit theorem (Stone, 2004, Chapter 5). In105

this regard, for example, Zaitchik et al. (2008) applied GRACE TWS on a sub-basin scale106

(sub-basins of the Mississippi River) and assumed a Gaussian error (with zero correlation)107

for GRACE TWS measurements. Reichle et al. (2013) investigated the effects of coarse-scale108

satellite observations (e.g., GRACE) and vertically integrated measurements (such as TWS) on109

model variables within the assimilation system. For a grid-based assimilation of GRACE-TWS110

in models, Eicker et al. (2014) studied the relationship of different GRACE spatial resolutions111

on the data assimilation process and reported that there is always a trade-off between em-112

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ploying GRACE data in a higher spatial resolution while keeping the GRACE error covariance113

matrices reasonably well conditioned. Girotto et al. (2016, 2017) have considered the fact that114

1◦ GRACE error covariances are spatially highly correlated and to address this issue, they have115

used a spatial correlation length of 3◦ for the observation errors (see also Kumar et al., 2016;116

Khaki et al., 2017). Schumacher et al. (2016) indicated that both the characteristics of GRACE117

error correlation and spatial discretization of TWS observations are important on the perfor-118

mance of the data assimilation process. In another effort, van Dijk et al. (2014) proposed an119

alternative approach for estimating GRACE TWS errors in data assimilation. The triple collo-120

cation technique was used to merge model-derived storage in (sub-) surface compartments with121

TWS estimates from GRACE measurements (van Dijk et al., 2014). In the studies discussed122

above, GRACE error covariance for different spatial resolutions is hardly treated. For example,123

Eicker et al. (2014) considered error covariance of various spatial resolutions that were rescaled124

(e.g., rescaling 0.5◦ to 5◦) rather than solving for distinct spatial resolution individually (e.g.,125

0.5◦, 1◦, and 5◦).126

In the present study, we extend the works above by employing a Local Analysis (LA) tech-127

nique. LA allows utilization of different GRACE TWS spatial resolutions by addressing insta-128

bility in data assimilation that arises from the GRACE covariance matrices of the corresponding129

spatial resolutions. The contribution of this study is, therefore, twofold: (i) we mathematically130

assess the efficiency of the localization technique to use GRACE TWS with its full error infor-131

mation and with high spatial resolution in an assimilation framework; and (ii), we compare the132

performance of a localization technique to in-situ data in a real case study covering the entire133

Australian continent. These will assess the ability of local data assimilation in maximizing the134

contribution of GRACE TWS into a hydrological model by considering its full error covariance135

matrix. Here, we use the full variance-covariance of GRACE to establish the observation error136

covariance matrices for the grid resolutions of 1◦, 2◦, 3◦, 4◦, 5◦, and a basin scale, and examine137

their effects on data assimilation. More importantly, for the first time, we offer a solution to138

increase the performance of data assimilation in using GRACE data. A localization technique139

is applied to account for correlations in high spatial resolution observations, which can lead to a140

rank deficiency problem and correspondingly an instability in the data assimilation procedure.141

In terms of localization technique, Local Analysis (LA) of the filter (Evensen, 2003; Ott et al.,142

2004) is considered mainly due to its ability in dealing with correlations by spatially limiting143

the use of ensemble-based covariance information of high-dimensional systems to the limited144
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local region (Ott et al., 2004). LA effects on each data assimilation scenario (i.e., using different145

spatial resolutions) are assessed to explore its ability for improving the results. In addition, the146

application of LA has the potential to minimize a large part of error sources in the ensemble147

filtering methods when a small number of ensembles is used (Mitchell and Houtekamer, 2000;148

Houtekamer and Mitchell, 2001).149

GRACE TWS data is assimilated into the World-Wide Water Resources Assessment (W3RA,150

van Dijk, 2010) over Australia. The ensemble-based sequential technique of the Square Root151

Analysis (SQRA) filtering scheme represented by Evensen (2004) is used to assimilate GRACE152

TWS into W3RA. SQRA, which is a deterministic form of ensemble Kalman filtering, has153

considerable advantages in comparison to some existing methods in terms of the computa-154

tional speed, simplicity, and its independency to an observation perturbation unlike traditional155

Kalman filtering methods (see detail in Section 3.1 and Khaki et al., 2017). In addition to im-156

plementing the LA, in order to further address possible problems that arise from ensemble size,157

sampling errors, and insufficient ensemble variance in ensemble-based techniques (Anderson et158

al., 2007; Oke et al., 2007), ensemble inflation is applied. This technique, which has frequently159

been used in previous works (e.g., Anderson and Anderson, 1999; Anderson et al., 2007; Ott160

et al., 2004), tries to increase the variance of ensembles around the ensemble mean by inflating161

prior ensembles (Anderson et al., 2007).162

The remainder of this contribution is organized as follows: in Section 2, the GRACE163

TWS data, W3RA, and in-situ observations are introduced. The SQRA filtering scheme used164

for data assimilation, ensemble inflation, and the applied localization method are described in165

Subsection 3.1 and details of an experiment set up are provided in Subsection 3.2. In Section166

4, the results of data assimilation and their evaluation against the in-situ validation data are167

presented and discussed, and finally in Section 5, the study is concluded.168

2. Datasets169

2.1. GRACE170

Monthly GRACE level 2 (L2) potential coefficients products along with their full error171

covariance information are obtained from the ITSG-Grace2014 gravity field model (Mayer-172

Gürr et al., 2014). The solution is computed up to degree and order (d/o) 90 resulting in173
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approximately ∼300 km spatial resolution at the equator. The study period (February 2003 to174

December 2012) is limited by the availability of the climate data (see Section 2.2) to force the175

hydrological model.176

Following Swenson et al. (2008), degree 1 coefficients (http://grace.jpl.nasa.gov/data/get-177

data/geocenter/) are replaced to account for the movement of the Earth’s centre of mass. Degree178

2 and order 0 (C20) coefficients (http://grace.jpl.nasa.gov/data/get-data/oblateness/) are not179

well determined and are replaced by those from Cheng and Tapley (2004). Correlated noise180

in the TWS data products is reduced by applying de-striping and smoothing using a Gaussian181

averaging kernel with 300 km half radius following Swenson and Wahr (2006). This causes some182

degree of signal attenuation (Klees et al., 2008) and moving anomalies from one region to another183

(Chen et al., 2007). This leakage effect can lead to some degree of signal inference especially at184

the land-ocean boundary. In order to address this issue, following Swenson and Wahr (2002), we185

apply an isotropic kernel using a Lagrange multiplier filter to best balance signal and leakage186

errors over the entire Australia. This filter uses a basin averaging kernel method expanded187

in spherical harmonic coefficients and subsequently combined with L2 potential coefficients to188

improve the GRACE estimates (see details in Swenson and Wahr, 2002).189

The filtered gravity fields, are then converted to TWS changes (following Wahr and Mole-190

naar, 1998) over the entire Australia in both grid and basin scales. The amount of rainfall over191

Australia, especially over its northeast, western, and central parts, is low in comparison to other192

inhabited continents on Earth leading to prolonged drought in the interior regions (Forootan193

et al., 2016). This effect can be seen from the average precipitation (between February 2003194

and December 2012) in Figure 1. This map shows small amount of rainfall over most parts195

of Australia (e.g., the western and eastern parts). Therefore, an accurate estimation of water196

storages (e.g., using hydrological models) is necessary to manage water resources in this region.197

TWS changes from GRACE are gridded into the spatial grid resolutions of 1◦, 2◦, 3◦, 4◦, 5◦,198

and also a basin scale for 12 major Australian drainage divisions and river basin (cf. Figure199

1). As a number of studies have used basin averaged GRACE TWS for data assimilation (e.g.,200

Zaitchik et al., 2008; Houborg et al., 2012), we test the LA in both grid and basin scales. Ac-201

cordingly, for each grid size as well as basin scale error covariance matrices are calculated using202

the full error information of the L2 potential coefficients for each month. Note that the errors203

in lower degree potential coefficients provided along with degree 1 coefficients and C20 are sub-204
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stituted into the GRACE covariance matrix. No correlation is considered between the GRACE205

covariance matrix and errors in the lower degree potential coefficients. This error information is206

then used to reach observation errors for data assimilation. To this end, following Schumacher207

et al. (2016), an error propagation is implemented to convert the full error information of the208

GRACE coefficients to TWS errors.209

FIGURE 1

2.2. W3RA210

In this study, we use the World-Wide Water Resources Assessment system (W3RA),211

which was developed in 2008 by the Commonwealth Scientific and Industrial Research Or-212

ganisation (CSIRO) to monitor, represent and forecast Australia’s terrestrial water cycles213

(http://www.wenfo.org/wald/data-software/). W3RA is a grid distributed biophysical model214

that simulates water stores and flows with significant information of water storages over Aus-215

tralia (van Dijk, 2010; Renzullo et al., 2014). Globally distributed 1◦×1◦ minimum and max-216

imum temperature, downwelling short-wave radiation, and precipitation from Princeton Uni-217

versity (http://hydrology.princeton.edu) are used as meteorological forcing data (see detail in218

Sheffield et al., 2006). The model parameters include effective soil parameters, water hold-219

ing capacity and soil evaporation, relating greenness and groundwater recession, and saturated220

area to catchment characteristics (van Dijk et al., 2013). Model state in this study includes the221

W3RA water storages in the top, shallow, and deep root soil layers, groundwater storage, and222

surface water storage in a one-dimensional system (vertical variability). Here, we use W3RA223

(with a daily scale) for the same temporal coverage of GRACE (e.g., February 2003 to Decem-224

ber 2012) and the spatial resolution of 1◦×1◦. More detailed information on W3RA can be225

found in van Dijk et al. (2013).226

2.3. Validation Data227

We use groundwater in-situ measurements over the Murray-Darling basin228

extracted from the New South Wales Government (NSW) groundwater archive229

(http://waterinfo.nsw.gov.au/pinneena/gw.shtml) to evaluate the performance of applied230

data assimilation. Although data assimilation is done over entire Australia, due to limited231
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availability of in-situ stations, the existing in-situ measurements over the Murray-Darling basin232

are used for result assessment. Measurements with data gaps and those that did not exhibit233

seasonal variations are flagged as belonging to confined aquifers and are excluded (Houborg234

et al., 2012; Tangdamrongsub et al., 2015). Therefore, daily and monthly well measurements235

of 54 spatially distributed stations over the basin (cf. Figure 1) are used and time series236

of groundwater storage anomalies are generated for each station. Selected well-water levels237

need to be converted to variations in groundwater (GW) storage in terms of equivalent water238

heights. This is usually done through the specification of yield estimates (e.g., Rodell et al.,239

2007; Zaitchik et al., 2008). However, such information does not exist in this study. Hence,240

following Tangdamrongsub et al. (2015), TWS variations from GRACE and soil moisture241

products from Global Land Data Assimilation System (GLDAS) NOAH (Rodell et al., 2004)242

are used to calculate the specific yield and scale the observed head water by modifying the243

magnitude of GW time series (Tregoning et al., 2012). As Tregoning et al. (2012) showed,244

the GW component can be extracted over Australia by removing the soil moisture component245

from GRACE TWS data. Other water compartments including biomass and surface water246

variations can be excluded due to their small contribution to regional scale mass variations247

within Australia. Through this approach, rather than assuming a constant specific yield248

everywhere (e.g., 0.1 by Tregoning et al., 2012), different yield values can be derived leading249

to a more realistic representation of groundwater systems in different areas.The calculated250

specific yields range between 0.08 and 0.16, falling within the 0.05–0.2 range suggested by251

the Australian Bureau of Meteorology (BOM) and Seoane et al. (2013), hence justifying the252

application of the method. The extracted yield factor is used at each in-situ location to scale253

the observed in-situ head time series (see also Rodell et al., 2007; Longuevergne et al., 2013).254

After removing temporal averages of in-situ groundwater time series, the anomaly time series255

are used in this study to assess W3RA estimates after the assimilation process.256

Further result assessment is done using in-situ soil moisture measurements. These datasets257

are obtained from the moisture-monitoring network (http://www.oznet.org.au/) known as258

OzNet network and spotted in the Murrumbidgee catchment (Smith et al., 2012). OzNet259

network provides long-term records of measured volumetric soil moisture at various soil depths260

at 57 locations across the Murrumbidgee catchment area (cf. Figure 1). The anomalies of261

in-situ soil moisture measurements are calculated and then averaged into daily scale. Following262

Renzullo et al. (2014), 0–8 cm data is used to evaluate the estimated model top-layer soil mois-263
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ture and the 0–30 cm and 0–90 cm measurements are applied for the evaluation of the model264

shallow root-zone soil moisture estimation.265

3. Data Assimilation266

3.1. Methods267

3.1.1. Square Root Analysis (SQRA)268

The solution of the data assimilation problem is based on Bayes’ theorem (Jazwinski,269

1970; van Leeuwen et al., 1996), which tries to improve the model state by updating the prior270

Probability Density Function (PDF) whenever new observations are introduced. The sequential271

data assimilation technique solves the Bayesian estimation problem numerically by providing a272

probabilistic framework and sequentially estimates the whole system using propagated informa-273

tion (ensembles) only forward in time (Jardak et al., 2007). There are various filtering methods274

in this framework, however, one of the mostly applied techniques is ensemble-based Kalman275

filter. In this study, we use the square root analysis (SQRA) scheme for the Ensemble Kalman276

Filter (EnKF), represented by Evensen (2004) as a data assimilation filtering method. SQRA277

is a deterministic form of ensemble-based Kalman filters and uses a statistical sample of state278

estimates (Sakov et al., 2008). The model state contains N different vectors (N is the number279

of ensembles), each with the same size of the model state variables. The forecast model state280

is represented by Xf = [X1
f . . . XN

f ], where Xi
f (i = 1 . . . N) is the ith ensemble (hereafter281

‘f’ stands for forecast and ‘a’ stands for analysis). The model state forecast error covariance of282

P f is defined by:283

P f =
1

N − 1

N∑

i=1

(Xi
f − X̄f )(Xi

f − X̄f )T =
1

N − 1
AfAf T , (1)

where X̄f is the ensemble mean and can be calculated using,284

X̄f =
1

N

N∑

i=1

(Xi). (2)

Forecast ensemble of anomalies, Af = [A1
f . . . AN

f ], is the deviation of model state ensembles285

from the ensemble mean,286

Ai
f = Xi

f − X̄f . (3)
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SQRA eliminates the need for the perturbation of measurements, which is essential in tradi-287

tional EnKF (Burgers et al., 1998). Instead, SQRA uses unperturbed observations without288

imposing any additional approximations like uncorrelated measurement errors (Evensen, 2004)289

by introducing a new sampling scheme. Rather than updating each sample separately in the290

analysis step, SQRA updates all of them in two stages; firstly by updating the ensemble-mean291

using X̄f (cf. Equation 1) as,292

X̄a = X̄f + K(y −HX̄f ), i = 1 . . . N, (4)

K = P f (H)T (HP f (H)T + R)−1, (5)

where X̄a is the mean analysis state, K represent the Kalman gain, y and R are the observation293

vector and associated covariance matrix. The transition matrix from the state vector space to294

the observation space is shown by H. Next, SQRA computes the ensemble anomalies. In this295

regard, one needs to first calculate the ensemble version of the analysis error covariance matrix,296

which can be done using Equation 6. Afterward, by inserting the forecast (P f from Equation 1)297

and analysis (P a from Equation 6) error covariances in Equation 7 and solving for Aa, analysis298

ensemble of anomaly can be computed.299

P a =
Aa(Aa)T

N − 1
(6)

P a = (I −KH)P f (7)

After a few simplification steps (cf. Evensen, 2004), Aa can be obtained by,300

Aa = AfV
√

I − ΣTΣΘT , (8)

where Σ and V are calculated using singular value decomposition of Af (Af = UΣV T ). Γ301

refers to the singular value decomposition and Θ is a random orthogonal matrix (e.g., the right302

singular vectors from a singular value decomposition of a random N ×N matrix) for ensemble303

redistribution of the variance reduction (cf. Evensen, 2004, 2007; Khaki et al., 2017).304

3.1.2. Filter Tuning305

Many studies have previously investigated the sensitivity of ensemble-based schemes306

on ensemble size (e.g., Houtekamer, 1995; Houtekamer and Mitchell, 1998; Keppenne, 2000;307

Mitchell et al., 2002; Keppenne and Rienecker, 2002). It has been proven that a large num-308

ber of ensemble members in ensemble data assimilation systems causes computation time to309
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significantly increase while using a small ensemble size can also be problematic, as it can lead310

to filter divergent or inaccurate estimation (Tippett et al., 2003). A successful ensemble-based311

filter needs to adequately span the model sub-space for a better approximation of probability312

distribution of the background errors (Ott et al., 2004). This, however, can be very challenging313

once a small ensemble number (considerably less than the model dimension) is used. To tackle314

this problem, we apply ensemble inflation, which uses a small coefficient to separately inflate315

prior ensemble deviation from the ensemble-mean and increases their variations (Anderson et316

al., 2007). Here, we use a constant factor (S = 1.12; Anderson, 2001) to inflate the ensemble317

perturbations as,318

X ′f = S(Xf − X̄f ) + X̄f , (9)

with X ′f representing the new forecast state, which contains the inflated ensemble perturbation.319

A further solution when dealing with a limited ensemble number is the application of lo-320

calization techniques initially proposed by Houtekamer and Mitchell (2001). In this study, we321

use the Local Analysis (LA) scheme not only to address the issue of the small ensemble num-322

ber, but also to investigate its effects in dealing with the GRACE error covariance for different323

spatial resolutions. LA works by restricting the information used for the covariance matrix324

computation to a spatially limited area and uses only measurements located within a certain325

distance from a grid point (Evensen, 2003; Ott et al., 2004; Khaki et al., 2017).326

In using LA, at each horizontal grid point (m,n), with m and n representing geographic327

latitude and longitude directions, respectively, the selected measurements close to the grid328

point contribute to the SQRA filtering process. This means that only particular state variables329

close to the point (m,n) within an assumed distance and corresponding observations at the330

same locations are used in the assimilation process. To do this, a local system state vector,331

observations, and their covariance matrix need to be chosen at each grid point separately.332

Following Ott et al. (2004), a model state vector X(r) (r is a two-dimensional vector with rmn)333

is used to achieve the local forecast state vector Xf
mn in Equation 9 using a linear operator334

Mmn by,335

X ′fmn = MmnX
′f (r). (10)

At the specific grid point of (m0, n0), X
′f

mn contains the information of X ′f (rm+m0,n+n0) with336

−l ≤ m − m0, n − n0 ≤ l (l localization length) and limited to grid points close to (m0, n0)337
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within a (2l + 1) by (2l + 1) patch (Ott et al., 2004).338

Local state vectors and observations within the local region (ymn) with covariance matrix339

Rmn can then be used in SQRA to locally estimate the model state for each grid point. In340

case of using a gridded GRACE TWS dataset in a finer spatial resolution (e.g., 1◦ and 2◦),341

the calculated error covariances have rank deficiency mainly due to correlation errors (see more342

details in Section 4.1). This problem can cause instability in the data assimilation procedure.343

Applying LA, therefore, can be helpful since it numerically resolves the possible singularity344

in the filtering process during data assimilation. Ott et al. (2004) proved that LA yields a345

good approximate representation of the background covariance matrix using a small ensemble346

number with a rank much lower than the state dimension. LA localization can also be used347

in the vertical direction, where different water compartments (e.g., shallow and deep soil mois-348

ture, groundwater storage, and surface water storage) exist. This can be helpful to vertically349

decrease the influence of the layers on each other by limiting the filtering process to specific350

layers, especially when there is a high correlation between the observed components at different351

layers. Here, however, LA is applied only horizontally because the GRACE TWS observation352

at each grid point is assimilated to an aggregate of water compartments at the same point.353

Therefore, a vertical variability in system states is not reflected in the observation error covari-354

ance. Furthermore, we are more interested in monitoring the performance of the localization355

scheme on the GRACE covariance matrix rather than a state covariance matrix. Different trial356

localisation lengths (2◦ to 10◦ for gridded TWSs) are applied in this study and their results are357

assessed against independent groundwater in-situ measurements (cf. Section 2.3) to find the358

best case (see details in Section 4.2).359

3.2. Assimilating GRACE Data360

In order to address the rather low temporal resolution of GRACE (approximately 30361

days), its monthly data and errors are interpolated to 5-day data following Tangdamrongsub et362

al. (2015), the spline interpolation between consecutive months is used to generate these time363

series, which allows the ensemble to gradually change between updates. Next, the mean water364

storage over the study area between 2003 and 2013 is calculated from the W3RA and is added365

to GRACE TWS changes time series in order to achieve the absolute values. The provided366

observations are assimilated into W3RA for the 5 different grid resolutions of 1◦, 2◦, 3◦, 4◦, and367

5◦ and also in basin scales.368
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The 1◦×1◦ spatial resolution of the model leads to a model state vector (Xf ) with 794369

elements within the Australian continent. Each of these elements contains different water370

compartments. This means that the state vectors for every grid point in our experiments are371

composed of the different water storages, including top soil, shallow soil, and deep soil water,372

canopy, snow, surface, and groundwater. The observations matrix (H) accumulates the state373

variables (the individual water storages) at each grid point to determine the simulated TWS374

in order to update them with the GRACE TWS during assimilation. In the update steps, the375

5-day temporal average update increment (i.e., the difference between the simulated TWS and376

GRACE TWS) is applied.377

Initial ensemble members are generated by perturbing the meteorological forcing fields fol-378

lowing Renzullo et al. (2014). In this regard, the three most important forcing variables includ-379

ing precipitation, temperature, and radiation and their reported error characteristics (Sheffield380

et al., 2006) are used. To generate the perturbations, we assume a multiplicative error of 30%381

for precipitation, an additive error of 50Wm−2 for the shortwave radiation, and an additive382

error of 2◦C for temperature (Jones et al., 2007; Renzullo et al., 2014). Monte Carlo sam-383

pling of multivariate normal distributions with the errors representing the standard deviations384

without considering correlations (spatial and/or temporal) are used to produce an ensemble385

(according to Renzullo et al., 2014). Different ensemble sizes (30-120) and their spread are386

tested. The selected number of 72 members agrees with the suggestion by Oke et al. (2008) and387

shows promising performance and is used in this study. The perturbed meteorological forcing388

datasets, then, are integrated forward with the model for two years (January 2001 to January389

2003). This provided a set of state vectors at the beginning of the study period, considered as390

the initial ensemble. A schematic illustration of the assimilation process steps is provided in391

Figure 2.392

FIGURE 2

4. Results393

In the following, we first analyze the effects of GRACE TWS spatial scaling on the394

error covariance matrix. Then, LA behavior in dealing with GRACE error covariance with395

different spatial resolutions is addressed. Afterwards, we evaluate the results of data assimilation396
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using LA with respect to different resolutions against the in-situ groundwater and soil moisture397

products. These results are also compared with the data assimilation process without applying398

LA (with a consideration of zero correlation in GRACE data) to be able to better investigate399

its effects on the model estimations.400

4.1. Scaling Effect401

In this section, we review the behavior of assimilating GRACE TWS data for different402

spatial resolutions into the W3RA model. To this end, GRACE TWS is assimilated with the403

following spatial resolutions, 1◦, 2◦, 3◦, 4◦, 5◦, and a basin scale to monitor the effects of404

localization on the process. For each of the spatial resolution considered, 5-day GRACE TWS405

data (cf. Section 3.2) are assimilated into the model to address the coarser GRACE temporal406

scale in comparison to the model. As an example, in Figure 3, we compare the assimilated time407

series using the 1◦×1◦ observations for a monthly (Figure 3a) and 5-day temporal scale over408

an arbitrary point (Figure 3c) to show the effect of temporal rescaling. The denser temporal409

resolution in Figure 3c eventuates in a much smoother time series. This is more obvious in410

Figures 3b and 3d, which show only one year of the time series, respectively presented in Figures411

3a and 3c. Given daily time steps of W3RA, assimilating GRACE TWS data once a month412

(e.g., in the middle of the month) causes unnatural jumps at the assimilation steps (cf. Figure413

3b). Such a jump is much smaller in magnitude in Figure 3d where a 5-day sampling interval414

is used. This leads to keeping the ensemble spread smoother without significant artifacts or415

temporal discontinuities. It should be mentioned that another solution for keeping ensemble416

spread smooth is the application of ensemble Kalman smoother (EnKS), which redistributes417

analysis increments evenly over all days of the month with the expense of more computational418

cost (see, e.g., Zaitchik et al., 2008; Houborg et al., 2012).419

FIGURE 3

We can now assess the behaviour of LA on data assimilation when the full error covari-420

ance of GRACE is used for the different applied spatial scales. Figure 4 shows the estimated421

correlation matrices for each grid resolution (following Eicker et al., 2014). This figure helps422

in understanding how different grid resolutions affect the corresponding observation covariance423

matrix. It can be seen that the spatial scaling influences the correlation between points. The424
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correlation (off-diagonal elements) between grid points decreases for larger grid resolutions, with425

the least for the 5◦ gridded TWSs, which is significantly less than that of 1◦ grid resolution.426

This correlation is even smaller when the basin scale GRACE data is considered. To clarify how427

this affects the data assimilation procedure, Table 1 indicates the number of gridded observa-428

tions in various grid resolutions and the estimated ranks of covariance matrices. We find that429

there is a close relationship between the grid resolution and covariance matrix rank (cf. Table430

1). As mentioned earlier, rank deficiency problem in covariance matrices causes instability in431

the data assimilation procedure and inaccurate estimations. The application of LA, however,432

numerically addresses this issue. It can be seen that LA affects the estimated covariance matrix433

rank for each grid resolution. Details on the number of observations and the rank of the re-434

spective covariance matrices (cf. Table 1) demonstrates the LA effect on improving the process435

by solving the mathematical problem related to the rank deficiency especially in the cases of 1◦436

and 2◦.437

FIGURE 4
438

TABLE 1

Rank deficiency likely happens for error covariance matrices of GRACE TWS with grid439

resolutions that GRACE can resolve (e.g., 3◦ or coarser). However, when using smaller grid440

resolutions, the matrix does not have a full rank leading to instabilities in the data assimilation441

procedure. Although applying GRACE data at lower spatial resolutions might be helpful in442

dealing with the covariance matrix, this will reduce the number of observations during data443

assimilation process (cf. Table 1) leading to some loss of signal in the observations. This might444

not be obvious considering the spatial correlation between grid points for higher resolution445

GRACE TWS. However, we show that using more observations and considering their full error446

covariance information in the assimilation process allows more information to be transferred447

with a higher number of observations into the system states. In this regard, we use the frequently448

employed indexes of Shannon Information Content (SIC or entropy reduction) and degrees of449

freedom (Dof) to measure information, which is transferred from observations into the system450

states (Rodgers, 2000) at the assimilation steps. SIC (12 ln(P f/P a)) uses the information in451

the state probability density function (pdf) before and after assimilation to reflect a real-valued452

functional (Shannon and Weaver, 1949). Dof (n−trace(P a/P f ), with n number of observations)453
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on the other hand, is a measure of the amount of information from observations that is used454

(Stewart et al., 2008). For each grid resolution, the indexes of SIC and Dof are measured455

(Figure 5).456

FIGURE 5

It can be seen in Figure 5 that by decreasing the spatial resolution, some information457

contained within the observations is lost. Therefore, although increasing the scale size (reducing458

the resolution) might be helpful in dealing with GRACE error covariance, it is at the cost of459

losing part of the signal. This justifies the application of LA, which allows us to use information460

with a higher spatial resolution in datasets.461

As outlined in section 3.1.2, one important effect of LA is underestimating the influences of462

spatially distant grid points on each other. The distance in localization preserves the informa-463

tion in observations close to each other while at the same time making it possible to use full464

error covariance information. To demonstrate this, we consider the correlation coefficient of the465

arbitrary point (at a location 136.6854◦E and 23.9015◦S) to the other grid points in Figure 6.466

This point is chosen to be approximately in the middle of the study area for a better visual467

representation while similar results are achieved for all other grid points. We integrate the468

model and performed data assimilation using the 1◦ GRACE TWS (as the worst case among469

different applied resolutions) during the study period. The average correlation coefficients be-470

tween the arbitrary point and the other grid points before and after assimilation using LA are471

then measured. Figure 6b shows how LA successfully reduces the correlation coefficients for472

more distant grid elements but maintains the correlations in the close vicinity.473

FIGURE 6

The important point to consider when using LA is the removal of some information from the474

data, which is not desirable. Thus, attention needs to be taken when choosing the localization475

length to preserve the adequate continuity of analysis on adjacent points (Zeng, 2014). LA476

length depends on the observation density and can be chosen arbitrarily. After testing different477

localization lengths, it is found that a small length (e.g., less than 5◦ for 1◦×1◦ GRACE TWS)478

can result in large errors even though there would be no inverse problem in assimilation filter.479
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We use groundwater in-situ measurements to assess the results of applying different localiza-480

tion lengths (2◦ to 10◦ for gridded TWSs). For every scenario (different grid resolutions), we481

interpolate assimilation time series at the location of the groundwater in-situ and calculate482

the root-mean-square error (RMSE). The average computed RMSE of each grid resolution for483

the applied lengths (Figure 7) show that better results are obtained using the 5◦ localization484

halfwidth length compared to the other applied localization lengths.485

FIGURE 7

A similar experiment is implemented to find efficient localization length for a basin scale486

spatial resolution. For each basin, we test different lengths mostly larger than those for grid487

scales (e.g., 5◦ to 15◦ with the best performance of 10◦ radii in average) and estimate TWS488

errors using the GRACE TWS data where in-situ measurements are not available for all basins.489

The localization length with the least error for each basin (Figure 8) is used to assess the LA490

effects at the basin scale and also to compare corresponding results with grid scale resolutions.491

FIGURE 8

4.2. Assessment with in-situ data492

Post processed in-situ measurements of groundwater changes (cf. Section 2.3) over the493

Murray-Darling basin as well as OzNet soil moisture network in the Murrumbidgee catchment494

(see Figure 1 for the location of the catchment) are used to evaluate the assimilation results.495

First, to compare the time series obtained from assimilation results with those of in-situ mea-496

surements, the GW results for each spatial resolution considered are spatially interpolated using497

the nearest neighbor (the closest four data values) to the location of the in-situ measurements.498

Afterward, the error time series are computed as the difference between the estimated GW and499

in-situ GW measurements. We then estimate average errors using these time series for each500

scenario of data assimilation.501

The TWS time series of the assimilation process for the case of 3◦ is shown in Figure 9a.502

Data assimilation with this spatial resolution results in a minimum GW error compared to the503

in-situ measurements. This figure also contains the open loop time series which refers to the504

estimations without implementation of any data assimilation and the assimilated observations.505
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The absolute errors, i.e., the difference between the in-situ measurements and either the open506

loop or the assimilated estimates (for the best case of 3◦ spatial resolution) are presented in507

Figure 9b. The assimilated time series fits well with the groundwater in-situ measurements (cf.508

Figure 9a) and results in a higher correlation than the open loop time series (85% average).509

Note that in terms of representing the hydrology, sometimes the estimates do not really depict510

the signal of the in-situ measurements. In some instances, the error (for no assimilation) is511

as large as the signal itself. This could be due to the fact that W3RA only simulates the dy-512

namics of unconfined aquifers, that is, groundwater that receives soil drainage and discharges513

into streams. In some cases, a deeper (confined) aquifer underneath can also affect ground-514

water measurements. Nevertheless, data assimilation causes the updated time series to reflect515

better the real fluctuations in groundwater storage in most of the cases as given by the in-situ516

measurements.517

FIGURE 9

The average estimated error of all GW in-situ stations during the study period for each518

scenario illustrates the LA performances for the different spatial resolutions (Figure 10). The519

least error is obtained from the 3◦ spatial resolution by comparing assimilation results of all520

scenarios. In addition, to be able to monitor the effectiveness of LA, data assimilation is also521

applied using GRACE-derived TWS and only diagonal elements of its error covariance matrix.522

Results without applying LA (represented in Figure 10) refers to this case where correlations523

between grid points are neglected. This comparison is of interest because many of the previously524

presented studies in using GRACE for hydrological data assimilation have neglected the existing525

correlation in observations (see e.g., Zaitchik et al., 2008; Houborg et al., 2012; Li et al., 2012;526

Tangdamrongsub et al., 2015; Sun et al., 2015; Kumar et al., 2016).527

FIGURE 10

It can be seen that locally applying the GRACE observations effectively reduces errors for528

every grid resolution considered in comparison to the uncorrelated observation assumption.529

This, however, is more obvious for higher spatial resolution (e.g., 3◦ and higher) where a large530

difference between the assimilation results with and without the application of LA can be found.531

Although LA mathematically solves the inverse problem for using 1◦ gridded GRACE TWS532

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

data and associated error covariance (cf. Table 1) in the filtering process, this spatial resolution533

results in a larger error in comparison to the other scenarios. From Section 2.1, we know that534

truncating and smoothing procedures cause losing a part of GRACE data, especially in higher535

frequencies. Rescaling such a data into 1◦ spatial resolution results in an error in gridded536

GRACE TWS and correspondingly in the assimilation result (cf. Figure 10). Figure 10 shows537

that increasing the spatial resolution results in a better estimation when LA is not applied.538

This error reduction by using a higher spatial resolution is also true when LA is applied but539

only to the point of 3◦. After this point, errors start increasing, which can be explained by540

fewer observations used leading to less information content to be transferred to model states.541

The application of LA, however, reduces the error for all spatial resolutions while in an absolute542

sense, the smallest errors are obtained for 3◦. Interestingly, this spatial resolution is about the543

spatial resolution that GRACE can resolve.544

More detailed results are proposed in Figure 11 and Table 2 in terms of RMSE and cor-545

relation analysis. As mentioned before, first, assimilation time series are interpolated at the546

location of the groundwater in-situs and then, their anomalies are calculated. A similar proce-547

dure is also applied to achieve assimilation time series over the soil moisture in-situ stations.548

Then for all stations, RMSE and correlation factor between assimilation results (for various549

scenarios) and in-situ measurements are calculated and their averages are used for assessment.550

Note that considering the difference between W3RA estimations (column water storage) and551

the OzNet measurements (volumetric soil moisture), only correlation analysis is assumed for552

assessing results against soil moisture in-situ data. The reason for this refers to the fact that553

converting model outputs (with unit ‘mm’) into volumetric units may introduce a bias (Ren-554

zullo et al., 2014). Estimated correlations between assimilation results and OzNet soil moisture555

(an average correlation for the total soil column; Figure 11a) as well as groundwater in-situ556

level data (Figure 11b) demonstrate the ability of LA in dealing with GRACE data. Also, both557

correlation analyses show that applying GRACE TWS with 3◦ leads to closer results to the558

in-situ measurements.559

FIGURE 11
560

TABLE 2

Based on the results in Table 2, all the results successfully improved the model estimation561
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of water storage variation. Applying LA in data assimilation leads up to 24.73% (13% average)562

better estimations in comparison to the non-correlated assumption. This proves the importance563

of using local data assimilation for incorporating GRACE data into the hydrological model. We564

know from Eicker et al. (2014) that spatial upscaling of GRACE data to coarser resolutions565

(e.g., 5◦) can significantly stabilize the assimilation process leading to more reliable results,566

however, LA can improve the results not only for these resolutions but also for smaller grid567

sizes (cf. Table 2).568

It can be seen from Table 2 that using gridded TWS observation with 3◦ shows the best569

performance in terms of RMSE. Although there is no rank deficiency in using the full error570

covariance matrix for this grid resolution, local implementation of the assimilation process571

helps to improve the agreement with the in-situ measurements. The reason why LA does not572

have a similar impact on finer spatial resolutions, especially for a 1◦ resolution in comparison573

to 3◦, could be due to the characteristic of GRACE L2 product as a degree limited data,574

e.g., truncated spherical harmonics sets. An interesting observation from Table 2 refers to the575

results of using GRACE TWS for a 2◦ spatial resolution. Considering Table 1, employing the576

2◦ grid resolution causes a rank deficiency in covariance matrix leading to the unstable data577

assimilation. LA successfully solves this problem and significantly improves the results with a578

better performance (57.87% improvement). Fewer observations incorporated in the assimilation579

on a basin scale and for 5◦ resolution in comparison to the other spatial scales (e.g., 3◦) leads580

to a weaker performance for these two cases.581

5. Conclusion582

The global time variable terrestrial water storage (TWS) data from the Gravity Recovery583

And Climate Experiment (GRACE) has provide an important opportunity for a hydrological584

model adjustment. In this study, we assessed the performance of local analysis (LA) method585

in accounting for the existing correlation in GRACE data and improving its effect on model586

states. To this end, we assimilated the GRACE-derived TWS changes into the World-Wide587

Water Resources Assessment system (W3RA) during 2003 to 2012 using Square Root Analysis588

(SQRA) filtering technique. LA was applied to (i) solve the mathematical problem of using589

correlated data for assimilation especially when the observation spatial resolution is high (e.g., 1◦590

gridded TWS), and (ii) improve the assimilation results using GRACE TWS data for different591
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spatial resolutions (1◦ to 5◦ and a basin scale). The observations were applied for a 5-day592

temporal scale and for 5 different grid resolutions to monitor the impact of LA on each scenario.593

The results showed that implementing LA successfully reduced data assimilation errors for all594

the cases (54.08% on average). This improvement is larger for the cases with smaller grid595

sizes along with the higher error correlations. LA addressed the rank deficiency problem in596

using the full information from the error covariance matrix for a higher spatial resolution of597

GRACE TWS data (e.g., 1◦). This, to the best of our knowledge, for the first time, allowed598

us to be able to apply GRACE TWS considering spatial error correlation information at finer599

spatial resolutions (e.g., 1◦ and 2◦) for the hydrological data assimilation. LA also improved the600

assimilation results at all grid resolutions and basin scale especially in comparison to using non-601

correlated observations (13.76% average). This highlights the great potential of LA in different602

scenarios for improved data assimilation. The best performance with 67.84% improvement was603

found with the application of GRACE data in assimilation with 3◦ spatial resolution. Overall,604

the importance of the application of LA in hydrological data assimilation is: (1) stabilising605

the assimilation of GRACE TWS observation using its full error covariance for finer spatial606

resolutions (e.g., 1◦ and 2◦), and (2) improving the results for all the spatial grid sizes without607

the assumption of white noise. This study offered a method to deal with the GRACE error608

covariance matrix during data assimilation, however, further assessment needs to be undertaken609

to examine other potential methods like inflation of the observation error variances and circulant610

approximation.611
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Figure 1: Overview of the study area. The black polygons indicate the twelve river basins that are considered

for spatial aggregation of GRACE data to basin scale. The red and blue polygons indicate the Murray-Darling

Basin and Murrumbidgee Catchment, respectively. Data from in-situ groundwater stations (red circles) and data

from the OzNet soil moisture network (blue circles) are used in these regions for independent validation of the

data assimilation results. The underlaying map shows temporally averaged precipitation between 2003-2013 from

TRMM-3B42 products (Huffman et al., 2012) on a 1◦ × 1◦ grid.
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Figure 2: A schematic illustration of the data assimilation approach implemented for this study and of the

considered data sets.
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Figure 3: Comparison between the assimilated time series using the 1◦ observations in a monthly (a) and 5-day

temporal scale for an arbitrary point (c). (b) and (d) respectively magnified the green areas of (a) and (c)

representing a zoom-in for one year. Ensemble spread represents the spread of the ensemble of updated TWS

states. Note that we use LA to account for correlated errors in GRACE error covariance for this figure.
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Figure 4: Correlation matrices of the GRACE observations corresponding to various spatial aggregations. Here,

no localization is applied. The variable n refers to the number of assimilated observations.
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Figure 5: Shannon Information Content (SIC) and Degrees of freedom (Dof) with respect to the number of

assimilated GRACE observations (n).
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Figure 6: 2-D representation of correlation coefficients between the TWS anomalies of the arbitrary point

(136.6854◦E and 23.9015◦S) and the rest of the grid points. The temporal average of the correlation coeffi-

cients before and after assimilation using LA are shown in (a) and (b) respectively.
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Figure 7: Comparison between normalized RMSE of TWS anomalies for different localisation radii (degree)

applied for each case of GRACE TWS spatial resolution used for assimilation. RMSEs are calculated in mm,

however, for a better visual presentation, normalized values are presented.
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Figure 8: The estimated optimized localisation radii (in degree and presented by L) and corresponding TWS

errors with respect to the GRACE data for each basin.
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Figure 9: (a) Comparison between the TWS time series of the assimilation process for the case of 3◦ spatial

resolution (red), the GRACE observation (blue), with the open loop referring to the model estimation without

applying data assimilation (black). (b) Absolute groundwater (GW) error bars before (black) and after (red)

data assimilation process in comparison to the GW in-situ measurements. The time series shown in (a) and (b)

are spatially averaged over the Murray-Darling Basin.
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Figure 10: Average estimated error in groundwater anomalies from assimilating GRACE data for different spatial

scales with (blue) and without (red) implementation of LA. The results are spatial averages over all groundwater

data points within the Murray-Darling Basin.
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Figure 11: Comparison between the correlation of assimilation results (using different spatial resolutions) with

OzNet soil moisture anomalies spatially averaged over the Murrumbidgee Catchment (a) and with anomalies of

groundwater in-situ level measurements spatially averaged over the Murray-Darling Basin (b). The correlation

results in both cases of data assimilation using LA (blue) and without using LA (red) are shown.
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Table 1: The details of GRACE observations used in each grid resolution.

Spatial Scale Observation Number Rank LA Rank∗

1◦ 794 268 794

2◦ 220 211 220

3◦ 111 111 111

4◦ 67 67 67

5◦ 45 45 45

BasinScale 12 12 12

∗ Computed rank after the implementation of LA.
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Table 2: A summary of the results belonging to each scenario of data assimilation. Improvements in groundwater

are calculated using the estimated RMSE with and without applying data assimilation (open loop) in relation

to groundwater in-situ measurements.

Assimilation without LA Assimilation with LA

Spatial Scale RMSE (mm) Improvement (%) RMSE (mm) Improvement (%)

1◦ 68.54 17.76 52.23 37.33

2◦ 51.09 38.70 35.11 57.87

3◦ 47.41 43.11 26.80 67.84

4◦ 43.18 48.19 32.35 61.18

5◦ 44.37 46.76 41.19 50.58

BasinScale 43.84 47.40 41.93 49.69
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