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ABSTRACT: The aerobic oxidation of glycerol in aqueous 

solution over Au/TiO2 catalysts has been studied, and the eff ect 

of Au loading by wet impregnation, in the range 0.5−5% Au, has 

been assessed. Low metal loading favors the deposition of 

smaller particles, whereas higher loadings lead to the formation 

of much larger gold particles, as revealed by scanning 

transmission electron microscopy (STEM) analysis. Reaction 

studies show that a higher metal loading has a detrimental eff ect 

on the catalyst activity, which decreases significantly as the Au 

load increases. In addition to reaction studies, 
1
H NMR T1/T2 

relaxation time measurements have been used to 

assess the eff ect of metal loading and particle size  
on the adsorption properties of glycerol (reactant) and water (solvent) within the catalyst. The NMR results show that the 
adsorption properties of glycerol relative to water as a function of the Au loading have a similar trend to that observed 
for the reactivity, with glycerol exhibiting a higher surface affinity relative to water for the catalyst with low Au loading. 
The overall results indicate that metal loading significantly aff ects the typical Au particle size, which, in turn, aff ects 

both the reaction and adsorption properties of glycerol over the catalyst surface. In particular, the trend in T1/T2 ratio 

clearly indicates that glycerol has a much stronger affinity with smaller gold particles, which is an important factor in 
promoting glycerol oxidation. This result is of great significance in understanding the reactivity of polyols over 
supported gold catalysts and gives the first experimental evidence that smaller gold particles tend to be stronger 
adsorption sites for glycerol, in agreement with computational and theoretical studies.  
KEYWORDS: glycerol oxidation, gold catalysis, metal loading, NMR relaxometry, STEM  

■ INTRODUCTION 
 
In recent years, the oxidation of renewable feedstocks has 
become a topic of general interest in view of a more green or 

sustainable production of value-added chemicals.
1−4

 In 

particular, glycerol is often considered as a “platform” 

chemical,
3−7

 as it is a highly functionalized molecule and is 

widely available, being the main byproduct of the biodiesel 

production process.
8,9

 The oxidation of glycerol results in a 

large number of fine chemicals, such as dihydroxyacetone, 

glyceric acid, and tartronic acid, to mention some.
4,5,10,11

 The 

use of dioxygen is undoubtedly the greener way to carry out 
such reactions, and current interest lies in the use of 
heterogeneous catalysts, due to their advantages in terms of 
catalyst reusability, separation, and stability. Although the 
commercialization of such processes is still at an early stage, 
several studies on glycerol oxidation are now available in the 

scientific literature.
3−5,10

 
−14

 Due to the high viscosity, liquid-

phase heterogeneously catalyzed oxidations of glycerol and  

 
 
other polyols are usually carried out in the presence of a solvent; 

water is the solvent of choice,
11,15−19

 as it is largely available and 

nontoxic. Several types of catalysts have been used for such 

reactions, and a particular focus in the past decade has been 

directed toward gold nanoparticles supported on mesoporous 

solids. Hutchings and Haruta were pioneers in discovering that 

gold nanoparticles supported on metal oxides are eff ective 

oxidation catalysts at relatively mild conditions,
20

 and the use of 

this type of catalysts is currently attracting the attention of the 

scientific community for the liquid-phase oxidation of alcohols 

and polyols in general. Catalysts such as gold supported on porous 

TiO2, Al2O3, and activated carbon,
10,13−15,21−23

 including gold 

alloyed with other metals, have  been  used  for  the  

oxidation  of  polyols. 
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Glycerol can be eff ectively oxidized to produce glycerate and 

mesoxalate on Au/TiO2 prepared by the deposition− precipitation 

method.
4
 The reaction is usually carried out in alkaline conditions, 

as this tends to avoid metal leaching and facilitates product 

desorption.
26

 In recent developments, it has been reported that 
glycerol oxidation can be eff ectively carried out also in base-free 

conditions.
12,27,28

 More recently, the eff ect of solvent 

composition on the catalytic activity of Au/TiO2 

 

used in the oxidation of polyols has been reported, combining catalyst 
screening tests with NMR relaxation time measurements. This novel 
protocol allows the characterization of surface interaction strength in 
porous catalysts by measuring the spin−lattice, T1, and transverse 

spin, T2, relaxation time 

constants and has been previously used to understand 
 

wettability and hydration in rocks, plasters, and concrete.
31

 
−33

 It has been suggested that the T1/T2 ratio can be seen as 

analogous to an energy of adsorption over a surface;
34

 this has 
recently been experimentally validated by combining NMR 
relaxation with temperature-programmed desorption (TPD) 

measurements.
35

 It was shown that the T1/T2 is particularly 
sensitive to the strength of the adsorption sites over the 
surface. The NMR relaxation methods off er several 
advantages, as such experiments are noninvasive, chemically 
selective, and with relatively short data acquisition times 
compared to many other methods and are particularly suitable 

to study liquids in porous materials.
35 

 

Recent studies on polyol oxidations over Au/TiO2 suggest a strong 

dependence of catalyst activity upon the adsorption 
 

strength of the reactant. Adsorption properties of diff erent  

polyols were seen to vary greatly by changing the solvent 

composition and the type of polyols,
17

 which indicated that 

the molecular structure of the polyols can greatly aff ect their 
adsorption over the catalyst surface. A major point of 
discussion in gold catalysis, particularly for glycerol oxidation 
reactions, is the eff ect of gold particle size on catalyst activity. 
The eff ect of gold loading on catalytic activity can be related 
to the particle size, and it has been reported that a lower metal 
loading leads to the deposition of smaller gold particles over 

the surface,
36

 which has been reported to improve catalytic 

activity in glycerol oxidation reactions.
24,37

 Dimitratos et al.
24

 

studied the eff ect of Au particle size in the liquid-phase 
oxidation of glycerol over Au/C catalysts and observed a 
decrease in catalyst activity with increasing particle size. 
Theoretical and computational studies have suggested that 
smaller Au particles favor the formation of stronger bonds 

with adsorbates such as glycerol.
38

 
,39

 However, such 

conclusions are still based on theoretical results, and according 
to our knowledge, there is as yet no clear understanding of 
how these smaller gold particles promote higher activity. 
 

The purpose of this paper is to use NMR relaxation techniques 

to understand adsorption properties of glycerol as a function of 

metal loading, the latter reported to aff ect metal particle size, and 

understand what are the key factors explaining how smaller gold 

particles promote higher activity in glycerol oxidation. Early 

applications of NMR relaxation measurements to solid catalysts 

have shown the potential of the technique as a characterization 

tool to probe molecular adsorption, which can be used in 

combination with other methods in order to optimize catalyst 

selection and design.
40

 In the current work, we have studied the 

oxidation of glycerol in aqueous solution over Au/TiO2 catalysts, 

focusing on the eff ect of the Au content and particle size on the 

catalytic activity and on NMR relaxation times, in order to 

understand the dependence of 

 

 

 

 

reaction and adsorption properties on the Au loading and particle 

size. We have also carried out scanning transmission electron 

microscopy (STEM) of the diff erent Au/TiO2 catalysts, in order 

to understand the relationship between surface morphology and 

NMR relaxation times. The results are of significance because: (i) 

they give fundamental insights into surface interactions of 

glycerol and water with Au supported catalysts; (ii) it is 

experimentally shown for the first time that smaller Au particles 

contribute to a stronger adsorption strength for glycerol relative to 

water over the catalyst surface, which may have significant 

implications in understanding the role of metal as well as support 

in heterogeneous catalysis. 

■ EXPERIMENTAL SECTION 
 

Materials and Methods. Au/TiO2 catalysts with diff erent 

Au contents were prepared by wet impregnation of TiO2 

(Degussa, P25), using aqueous solutions of HAuCl4·3H2O 
(Johnson Matthey). The paste formed was ground and dried at 
110 °C for 16 h and then calcined in static air, typically at 400 

°C for 3 h. The 0%Au/TiO2 solid sample was obtained using 

the same procedure but without contacting the solid TiO2 with 
the gold precursor. Glycerol (≥99%) was obtained from 
Sigma-Aldrich. Deionized water was obtained by using a 
laboratory purification system (PURELAB option, Elga). 
 

Catalytic Experiments. Catalytic reactions were carried out 

using a 50 mL Parr autoclave. The aqueous glycerol solution (0.6 

M and NaOH/glycerol ratio = 2, mol/mol) was added into the 

reactor, and the desired amount of catalyst (glycerol/metal ratio = 

500/2000, mol/mol) was suspended in the solution. The autoclave 

was pressurized with oxygen (10 bar pressure) and heated at 60 

°C. The reaction mixture was stirred at 1500 rpm for 4 h. The 

reactor vessel was cooled to room temperature, and the reaction 

mixture was analyzed by HPLC with ultraviolet and refractive 

index detectors. Reactants and products were separated using a 

Metacarb 67H column. The eluent was an aqueous solution of 

H3PO4 (0.01 M), and the flow was 0.45 mL min−
1
. Samples of the 

reaction mixture (0.5 mL) were diluted (to 5 mL) using the eluent. 

Products were identified by comparison with authentic samples. 

For the quantification of the amounts of reactants consumed and 

products generated, an external calibration method was used. 

 

NMR Experiments. NMR experiments were performed in 

a Bruker Biospin DMX 300 operating at a 
1
H frequency of 

300.13 MHz. NMR relaxation experiments were performed 

using a T1−T2 pulse sequence, which comprises a saturation 

recovery measurement to encode T1 (using a comb of 90° 
pulses) followed by a Carr-Purcell Meiboom-Gill (CPMG) 

echo train of 180° pulses to encode T2. The sequence is 

schematically shown in Figure 1. The T1 recovery interval, 

tdelay, was varied logarithmically between 1 ms and 15 s in 32 
steps. The echo spacing between the 180° pulses of the CPMG 
was set to 250 μs. More details of the pulse sequence used are 

reported elsewhere.
35

 All NMR measurements were carried 
out at room temperature. 

STEM Characterization. The samples, in dry powder 
form, were dispersed on standard Cu grids for transmission 
electron microscopy. A FEI Tecnai F20 S/TEM with an 
acceleration voltage of 200 kV was used; acquisition was 
carried out in scanning mode (STEM) using the high-angle 

annular dark field (HAADF) signal. Image processing and 
analysis were carried out with ImageJ. 
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Figure 1. T1−T2 NMR pulse sequence. The thin and thick vertical 

bars represent 90° and 180° radiofrequency (RF) pulses, respectively.  
T1 relaxation is encoded in the variable time tdelay. T2 relaxation is 
encoded in the train of n 180° pulses. A single data point is acquired at  
the center of each echo time, τ. The application of homospoil 
magnetic field gradients (HG) is identified by the cross-hatched 
patterns. 

■ RESULTS AND DISCUSSION   
Glycerol Oxidation and Competitive Adsorption. The 

conversion for the glycerol oxidation (at 4 h final reaction time) is 

reported in Figure 2 as a function of Au mean particle size, 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Conversion at 4 h time for glycerol oxidation on 

Au/TiO2 catalyst as a function of Au mean particle size. 

Indication of the corresponding Au loading is also reported. The 
solid line is a guide to the eye.  
 

which is related to the Au loading, also reported in the same 

figure. The 0.5%Au/TiO2, which is the catalyst with the 
smallest Au particle size, shows the highest conversion, with a 

value of 54%. The conversion decreases significantly to 11% 

for the 1.5% Au/TiO2 and continues a steady decrease down to 

approximately 7% for the 5%Au/TiO2, along with an increase 

in Au particle size. The main reaction products were in all 

cases glycolic acid (∼40%), formic acid (∼30%), and glyceric 

acid (∼30%), with very small amounts of oxalic acid detected.  
Given that the catalysts are all prepared with the same 

method using the same precursors, it seems reasonable to 
assume that the dramatic drop in conversion as a function 
of metal load has to be associated with structure sensitivity 
processes over the catalyst surface.  

In order to understand the origin of catalyst activity, we have 

used NMR relaxation time measurements to probe the T1 and T2 

relaxation times of glycerol (reactant) and water (solvent), which 
can be used as probe parameters for the strength of the  

l i q u i d / s u r f a c e i n t e r a c t i o n i n f e r r e d b y t h e T 1 / T 2 

ratio,
29,30,35,41,42

 together with STEM analysis to probe surface  
morphology and how this links with catalyst activity and 

adsorption properties. Unlike single values of T1 and T2, the 

ratio T1/T2 represents a much more robust measurement, as 
this is independent of pore geometry and size; hence, it allows 

a more direct comparison between diff erent materials.
35,43

 
Previous studies with NMR relaxation methods on oxidation 

 

of polyols in aqueous and methanol solutions over Au/TiO2 
catalysts have shown that the adsorption properties of these 
molecules over the catalyst surface have a strong eff ect on 
conversion. Adsorption properties were strongly influenced 

by the type of solvent and the structure of the diol.
16,17 

 
In this work, we are interested in how competitive adsorption 

over the catalyst surface aff ects the reaction pattern and glycerol 

conversion. In doing this, we also demonstrate the eff ect of the 

surface morphology of the catalyst on the NMR relaxation times 

of adsorbed species, an aspect that has been largely unexplored. 

Typical two-dimensional T1−T2 plots of glycerol and water inside 

diff erent solid samples are shown in Figure 3.  
In all cases, a single peak is observed, with glycerol giving rise 

to broader peaks due to the greater uncertainty involved in fitting 

the exponential decay function for short T2 relaxation  
Similar  plots  have  been  observed  when  studying  

adsorption of water and hydrocarbons on Ag/Al2O3 

catalysts.
41

 It is noted that the shape of the peaks is determined 

predominantly by the raw data quality (degree of smoothing on 

inversion
44

) and is not considered representative of physical 

sample properties. The position of the dashed diagonal in each 
plot is determined from the maximum peak intensity and 

corresponds to the T1/T2 ratio. This ratio is considered to be an 

indicator of the strength of interaction between the liquid and the 

solid surface. An increase in the magnitude of T1/T2 indicates an 

increase in the strength of the surface interaction of  

a given molecular species with the surface.
30,35

 The T1/T2 

numerical values for glycerol and water over the Au/TiO2 
catalyst as a function of the Au mean particle size (and the 
corresponding metal loading) are reported in Figure 4.  

It is noted that the T1/T2 values recorded for the 0%Au/ TiO2 
sample (not shown on the plot) are the lowest, with values of 

T1/T2 = 60 for glycerol and T1/T2 = 12 for water. The deposition 

of gold nanoparticles increases the T1/T2 for both glycerol and 
water; however, there are major diff erences between the two 

molecules. From Figure 4 it can be observed that the T1/T2 of 
water increases steeply at low Au content and reaches a plateau at 
higher metal loading. This suggests that the increase in Au 
loading has the eff ect of increasing the strength of interaction of 
water with the catalyst surface. In the case of glycerol, the metal 
deposition at low Au loading also produces a significant increase 

in T1/T2, which increases from T1/T2 = 60 for 0%Au/TiO2 up to 

T1/T2 = 109 for 0.5%Au/TiO2. However, it can be clearly seen 

that the T1/T2 ratio of glycerol starts dropping with increasing Au 

loading, and for the 5%Au/TiO2 catalyst, water becomes 

dominant over the surface with a T1/T2 higher relative to glycerol. 

Such a very dramatic change, compared to the 0.5%Au/TiO2 
catalyst, indicates that the Au loading, and corresponding Au 
particle size, is significantly aff ecting the adsorption properties of 
these two species.  

It is interesting to note that the significant decrease in T1/T2 
for glycerol relative to water, when moving from the 0.5% to 

the 1.5% Au/TiO2 sample, corresponds to a significant drop in 

conversion observed for the 1.5% Au/TiO2 sample compared 

to the 0.5% Au/TiO2 sample. By comparing the T1/T2 

adsorption data for the 0.5, 1.5, 3, and 5% Au/TiO2 samples 
with the reaction data, it is clear that the increase in metal 
loading results in a reduced adsorption interaction of glycerol 
with the catalyst, which corresponds with the reduced activity 
of the catalyst. This strongly suggests that the affinity of the 
catalyst surface toward glycerol and water is crucial in 
determining the catalytic activity. In particular, a stronger 

affinity of the Au/TiO2 surface for glycerol relative to water 
  

 
times.35 



     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. T1−T2 plots for: (a) glycerol in 0%Au/TiO2; (b) glycerol in 0.5%Au/TiO2; (c) glycerol in 5%Au/TiO2; (d) water in 0%Au/TiO2; 

(e) water in 0.5%Au/TiO2; (f) water in 5%Au/TiO2. The solid diagonal line indicates T1/T2 = 1. The dotted diagonal line indicates the 

T1/T2 of the liquid over the catalyst surface.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. T1/T2 ratio for glycerol and water over Au/TiO2 catalysts as 

a function of Au mean particle size. Indication of the corresponding 
Au loading is also reported. The solid line is a guide to the eye.  
 
leads to a much greater reactivity compared to the case 
where the relative affinity of glycerol decreases; that is, 
water becomes the dominant species over the surface. We 
have previously shown that the strength of adsorption of 

diols in Au/TiO2 catalysts is aff ected by the type of solvent 

and can be related to its reactivity.
16,17

 The results reported 
here support such earlier findings.  

Effect of Au Particle Size on Activity and Molecular 
Adsorption of Glycerol. As shown in Figure 4, the 
competitive adsorption eff ect observed in this work is clearly 

related to the Au loading. While for water the T1/T2 trend 

finds a plausible explanation in terms of increasing Au content, 

the T1/T2 trend observed for glycerol is more puzzling, as it 

shows a spike at low Au loading and it then drops at higher 
loading. To further investigate this aspect, in addition to NMR 
relaxation measurements, we have carried out STEM analysis 

 
of the catalysts at diff erent metal loadings to understand if 
and how the morphology of the surface is aff ected by the 
diff erent Au loadings, and how this is related to the 
reactivity profile and importantly to the adsorption profile 
obtained by NMR relaxation measurements.  

Figure 5 shows typical STEM images of the catalysts at 
diff erent metal loadings. In this imaging mode, heavier 
elements appear brighter; the brightest particles are gold 

aggregates. The straight features in some corners are the metal 

bars supporting the sample for STEM analysis. The TiO2 

particles have a similar structure in all the samples, with a size 
in the 10−25 nm range, as expected for P25 titanium dioxide. 

The particle size distribution (PSD) of Au particles, 
normalized over the total count, is shown in Figure 6.  

The 0.5%Au/TiO2 sample presents well dispersed Au 

particles, with a rather narrow PSD, with a well-defined peak 

at ∼10 nm. The mean particle size is 19 nm, with a median 

value of 12 nm and a standard deviation of 21 nm. As the Au 

loading increases, the typical dimension of the particles starts 

increasing. For the 1.5%Au/TiO2 sample, we observe the peak 

of the distribution at ∼20 nm, a mean particle size of 36 nm, 

with a median value of 25 nm and a standard deviation of 50 

nm, with particle diameter up to 190 nm. For Au loadings of 3 

and 5%, small (<50 nm) particles become less common, 

particularly for the 5% sample, and the vast majority of the 

gold is aggregated in much larger particles, as can be observed 

by inspection of Figure 5 and Figure 6. The PSD for the 

3%Au/ TiO2 sample has a peak in the range 40−50 nm, with a 

mean diameter of 92 nm, a median value of 45 nm, and a 

standard deviation of 106 nm. The 5%Au/TiO2 sample shows 

the presence of fewer but significantly larger gold particles, 

most of them with a size in the range 50−200 nm, with a mean 

diameter of 163 nm, median value of 96 nm, and a very broad 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Typical STEM dark field images of the catalyst for (a) 0.5%, (b) 1.5%, (c) 3%, and (d) 5% Au loadings. Gold is brighter than 

TiO2; the straight surfaces appearing in some corners are the support grid for the STEM specimen. At higher loadings, large aggregates 
(>100 nm) contain most of the gold.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. Size distribution of the Au particles over TiO2 for 
diff erent Au loadings.  
 
distribution with a standard deviation of 246 nm. The total 
count for all samples was of over a hundred particles and 
comparable in all cases. It is clear that as the gold loading 
is increasing, the PSD becomes broader, shifting toward 
larger particles. It has previously been reported that low Au 
loading favors the formation of smaller, better dispersed 

particles,
45

 which is in agreement with our observations. 
This might be due to a reduced “clustering” eff ect during 
the catalyst preparation process.  

Glycerol oxidation reactions are very sensitive to Au particle 

size. Dimitratos et al.
24

 have studied glycerol oxidation over Au/C 

catalysts and reported that above a gold particle size of 10 nm the 

catalytic activity experiences a dramatic drop. Ketchie et al.
46

 

have reported analogous findings, showing a 

 
significant drop in catalyst activity when moving from 12 to 20 

nm gold particles. Our current findings strongly support this 

correlation between catalyst activity and Au particle size. Indeed, 

the results reported here show that the 0.5% Au/TiO2 sample is 

the catalyst with the highest activity and has a narrow Au PSD 

highly centered around 10 nm. As shown in Figure 2, the catalyst 

activity drops significantly for the 1.5% Au/TiO2 sample, which 

has an Au PSD centered on 20 nm. This agrees very well with the 

earlier experimental reports discussed above and also with 

previously reported computational studies relating particle size 

and catalyst activity.
38,39

 Another eff ect which may be in 

operation is the irreversible binding of reaction products, i.e. 

product inhibition. It has been shown that the products of glycerol 

oxidation can poison the catalyst by blocking active sites.
14

 Two 

of the major products in this study, glycolic acid and formic acid, 

do not have a strong affinity for catalyst binding; however, the 

third major product, glyceric acid, does bind strongly to gold 

catalyst surface. On the basis of the study by Zope and Davis,
14

 

we conclude that it is highly unlikely that the small amounts of 

glyceric acid formed in this study would account for the marked 

decrease in activity observed with increasing weight loading. 

 
It is now of interest to analyze the NMR relaxation results in 

light of the Au PSD obtained by STEM. Here, it is important 

to note that the T1/T2 ratio probes an “average” interaction 
strength of the species adsorbed within the catalyst with the 

overall catalyst surface, that is, Au + TiO2, and not the specific 

interaction with Au particles. However, given that the TiO2 
support is the same in all cases, it is reasonable to assume that 
the distribution of Au particles will be mostly responsible for 

any changes in T1/T2. The STEM results suggest that, unlike 

water, the strength of interaction of glycerol is highly aff ected 

by the size of the gold particles over the TiO2 surface. In 
particular, a low Au loading favors the deposition of smaller 

gold particles; for such samples, a higher T1/T2 of glycerol is 
observed relative to higher Au loading samples, with the latter 

showing much larger gold particles. The increase of the T1/T2 
ratio of glycerol with decreasing Au loading, hence decreasing 
particle size, strongly suggests that smaller Au particles are 
much stronger relaxation sinks for glycerol, which can be 
related to their higher adsorption strength. In particular, we 
observe that catalysts with a PSD shifted toward smaller gold 
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particles show a higher affinity for glycerol, as measured by its 

T1/T2 ratio. This may play an important role in the promoting 

eff ect of smaller gold particles in enhancing catalyst activity 
for glycerol oxidation, which has been documented in the 
literature. This result is of significance because it gives the first 
experimental evidence that smaller gold particles have higher 
affinity toward glycerol. This has significant implications in 
understanding gold catalysis of polyols and is in agreement 
with computational and theoretical studies previously re-

ported.
38,39

 With regard to the role that the oxygen plays in 

the reaction, it has been demonstrated by DFT studies and 
labeling experiments that the oxygen incorporated into the 
substrate originates from hydroxyl species, not dissociated 

molecular oxygen.
47

 The molecular oxygen replenished the 

hydroxyl species via the formation and destruction of peroxide 
species. It has been shown previously that large particles (>20 
nm) decompose peroxides more slowly than smaller 

particles;
48

 this phenomenon may contribute to the results 

reported in this study. 

■ CONCLUSIONS 
 
The eff ect of gold loading and particle size on the oxidation of 
glycerol in aqueous solutions has been investigated using 
catalytic reaction studies, NMR relaxation methods, and 
STEM microscopy analysis. The results suggest that a low 
gold loading has several important implications in aff ecting 
catalyst activity, as it results in a better dispersion of smaller 

gold nanoparticles over the TiO2 support. NMR relaxation 

studies reveal that smaller gold particles improve the overall 
condition for the glycerol adsorption over the surface, as 

measured by the T1/T2 ratio. This suggests that smaller Au 

particles act as much stronger adsorption sites for glycerol, 
suggesting that the gold particle size distribution is a very 
important parameter to consider in order to improve the 
conditions for a better glycerol adsorption over the surface. 
The results reveal insights into molecular adsorption on gold 
catalysts and contribute to advancing the understanding of 
gold catalysis of biorenewable feedstocks, such as glycerol. 
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