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Abstract  

Here we report the synthesis and characterisation of high surface area MgO prepared 

via the thermal decomposition of various magnesium precursors (MgCO3, Mg(OH)2 

and MgC2O4). Bimetallic gold-palladium nanoalloy particles were supported on these 

MgO materials and were tested as catalysts for the solvent-free selective aerobic 

oxidation of benzyl alcohol to benzaldehyde. All these catalysts were found to be active 

and very selective (>97%) to the desired product (benzaldehyde). However, MgO 

prepared via the thermal decomposition of magnesium oxalate displayed the highest 

activity among all the magnesium oxide supports tested. Attempts were made to unravel 

the reasons for the deactivation of these catalysts using different characterisation 

techniques namely in situ XRD, XPS, ICP-MS, TEM, and TGA-MS. From the data 

obtained, it is clear that MgO undergoes phase changes from MgO to Mg(OH)2 and 

MgCO3 during catalyst preparation as well as during the catalytic reaction. Besides 

phase changes, strong adsorption of reactants and products on the catalyst surface, 

during the reaction, were also observed and washing the catalyst with organic solvents 

did not completely remove them. The phase change and catalyst poisoning were 

reversed through high temperature heat treatments. However, these processes led to the 

sintering of the metal nanoparticles. Moreover, substantial leaching of the support 

material (MgO) was also observed during the reaction. These latter two processes led 

to the irreversible deactivation of AuPd nanoparticles supported on MgO catalyst 

during the solvent-free selective aerobic oxidation of alcohols. Among the three 

different MgO supports studied in this article, an inverse correlation between the 

catalytic activity and Mg leaching has been observed. This article reports a deeper 

understanding of the mode of deactivation observed in metal nanoparticles supported 

on MgO during liquid phase reactions.    
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Introduction 

Selective aerobic oxidation is an important transformation not only in academic 

research but also in the industrial production of many fine and bulk chemicals.1-5 It has 

been reported that this transformation alone is involved in approximately 25% of global 

organic chemical production and the worldwide market for this has been estimated to 

be close to $50 billion.6, 7 Most of these oxidation reactions utilise undesirable 

stoichiometric oxidizing agents such as permanganates and chromates that produce 

environmentally unacceptable by-products. Hence, there is a need to design catalytic 

processes that use environmentally benign oxidants like such as, molecular O2, or H2O2 

that typically produce water as the only by-product.8-11 However, the development of 

catalysts for such processes is extremely challenging, as most catalysts cannot activate 

oxygen efficiently enough without preserving high selectivity due to over-oxidation. 

Therefore, the design of an efficient catalyst with high activity, selectivity, and stability 

is highly desirable. A number of supported noble metal nanoparticles have been 

reported as catalysts for this reaction.1,12 

 

Benzyl alcohol is often used as a model compound for the selective oxidation of 

primary alcohols to aldehydes because of the challenges in producing and the 

importance of benzaldehyde.13-16  It is used to add almond flavour in cosmetics, scented 

products and food. In chemical industries, benzaldehyde is used as a precursor for 

producing many useful compounds ranging from pharmaceuticals to plastics. For 

example, malachite green (dye) is produced from benzaldehyde and dimethylaniline.17 

A number of supported monometallic and bimetallic nanoparticles, typically Pt group 

metals, have been reported to be active for the solvent-free selective aerobic oxidation 

of benzyl alcohol to benzaldehyde.13, 18-21 However, during this reaction, toluene, 

benzoic acid, benzyl benzoate and benzene are formed as by-products lowering the 

selectivity to benzaldehyde.22-24 Typically, benzoic acid, benzylbenzoate, and benzene 

are formed in smaller quantities (ca <5%). During this reaction, toluene is also formed 

in a substantial amount (ca 20%). Production of toluene has to be supressed through 

catalyst design in order to increase the selectivity of benzaldehyde. Toluene is formed 

by the disproportionation of 2 moles of benzyl alcohol into an equimolar mixture of 

benzaldehyde and toluene, and occurs along with the oxidative dehydrogenation of 

benzyl alcohol to benzaldehyde.22 After extensive kinetic and mechanistic 



investigations on these two reactions, we found that the active site for the oxidative 

dehydrogenation reaction is the (bi)metallic sites and that for the disproportionation 

reaction is the metal-support interface.22, 25 We have further demonstrated that by tuning 

this metal-support interface, using basic supports such as MgO or ZnO, we can switch-

off the disproportionation reaction and thereby the toluene production.23, 25 The basicity 

of MgO in supported metal catalysts has been exploited for the homogeneous base-free 

oxidation of bioderived polyols.26, - 29 

 

 

 

 

 

Scheme 1. Schematic representation of the catalytic solvent-free, aerobic oxidation of 

benzyl alcohol. 

 

Several research groups have reported the catalytic activities of metal nanoparticles 

supported on MgO for many reactions including CO oxidation, base-free oxidation and 

hydrogenation/hydrogenolysis of bioderived platform molecules, oxidative 

esterification of alcohols, and more.30-33 MgO, on its own, has been reported to be an 

efficient solid-base catalyst for coupling and transesterification reactions.34-36 Recently 

we have reported the one-pot synthesis of “raspberry ketone” from 4-methoxy benzyl 

alcohol and acetone using AuPd/MgO catalyst, where MgO catalyses the aldol 

condensation reaction between 4-methoxy benzyl alcohol and acetone.37 In all these 

reactions, the basicity of MgO has been exploited for the catalytic reaction. The basicity 

of MgO is believed to be the result of the presence of Mg2+- O2- ion pairs in different 

coordination environments.34 Several studies show that the strongest basic sites are 

located at the low coordination sites such as defects, corners, edges, or on high Miller 

index surfaces. These sites, hence the basicity of MgO, are very sensitive to the 

preparation route.38  

 

In supported metal catalyst systems, the catalytically active sites are metallic sites, 

metal-support interfacial sites, and the support sites. In the case of supported bimetallic 



AuPd catalysts, the activities of bimetallic sites have been tuned by optimising the size, 

composition, and nanostructure through appropriate synthesis strategies.39 The metal-

support interfacial sites have been tuned by choosing different supports thereby 

enhancing the selectivity during aerobic oxidation of benzyl alcohol.23 Here, we attempt 

to optimise the support properties for the AuPd/MgO catalyst and study its effects on 

the resultant catalytic activity and stability. In order to achieve that, we prepared a 

variety of MgO materials from different precursors and used them as supports for 

1%AuPd/MgO catalyst. A number of metal nanoparticles supported on MgO have been 

reported for several reactions including liquid phase reactions, however, the stabilities 

of these catalysts have not been studied in detail. Hence, another important objective of 

this work is to study the stability and mode(s) of deactivation of AuPd/MgO catalyst 

during the liquid-phase, solvent-free, selective aerobic oxidation of benzyl alcohol.  

 

Experimental  

Preparation of high surface area MgO 

Three high surface area MgO materials were prepared from the following magnesium 

precursors: MgCO3, Mg(OH)2 and MgC2O4 via previously reported methods.40 The 

resultant high surface area materials were denoted as MgO(1), MgO(2), and MgO(3) 

respectively. Briefly, the high surface MgO materials were prepared as follows: 

MgO(1): 25 g of MgCO3 (Sigma Aldrich) was stirred in 750 mL of deionised water at 

70 °C for 30 min. The resulting solid was filtered, dried at 90 °C for 24 h and then 

calcined at 450 °C (heating ramp: 10 °C min-1) in static air for 2 h.  

MgO(2): Commercial Mg(OH)2 (Sigma Aldrich) was calcined at 600 °C (heating 

ramp: 10 °C min-1) in static air for 2 h. Following this heat treatment, the resultant MgO 

(10 g) was rehydrated by refluxing it in deionised water (125 mL) for 3 h. The resultant 

solid was filtered, dried at 90 °C for 24 h and then calcined at 450 °C (heating ramp: 

10 °C min-1) in static air for 2 h.  

MgO(3): This MgO was prepared by the calcination of magnesium oxalate. 

Magnesium oxalate (MgC2O4) was prepared using a method reported by Putanov et 

al.41 An aqueous solution of magnesium acetate was prepared by dissolving 26.8 g of 

Mg(CH3COO)2.4H2O (Sigma Aldrich) in 25 mL of deionised water. An aqueous 



solution of H2C2O4.2H2O (Sigma Aldrich) was also prepared by dissolving 16.5 g of it 

in 100 mL of deionised water separately. In a 250 mL round-bottom flask, the 

magnesium acetate solution was stirred at 40 ˚C and to that the oxalic acid solution was 

added dropwise while stirring over a period of 1 h. The resultant precipitate of 

magnesium oxalate was filtered, dried at 90 °C for 24 h and then calcined at 450 °C 

(heating ramp: 10 °C min -1) in static air for 2 h. 

MgO(C): Commercial magnesium oxide (light) was purchased from BDH and used 

as it is without any further heat treatment.  

All these support materials were used for the catalyst preparation without any further 

modification.  

Catalyst preparation 

Bimetallic AuPd nanoalloys were supported on MgO supports via sol immobilization 

and modified impregnation methods and the detailed experimental procedures are 

reported elsewhere.23, 26, 42 

 

Sol immobilisation    

In a typical procedure, 1 wt. % of AuPd/MgO (molar ratio of Au vs Pd is 1) catalyst 

was prepared by using aqueous solutions of the metal precursors [PdCl2 (99%, Sigma 

Aldrich) and HAuCl4·3H2O (>99.9%, Sigma Aldrich)] with a metal concentration of 6 

mgPd mL-1 and 12.5 mgAu mL-1, respectively. This catalyst is called as 1%AuPd/MgO 

further in this article. The requisite volumes of gold and palladium precursor solutions 

were added to 800 mL deionised water and stirred for 15 min before addition of aqueous 

polyvinyl alcohol (PVA, Sigma Aldrich, Mw=10000, 80% hydrolysed) solution (1 

wt.% solution). The solution was further stirred for 15 min. A freshly prepared aqueous 

solution of sodium borohydride (0.1 M, NaBH4/(Au+Pd) =5 (molar ratio)) was quickly 

added to the above mixture to form a dark brown sol. The mixture was stirred for an 

extra 30 min until addition of the support (MgO, 1.98 g for a 2 g catalyst batch). The 

final slurry was stirred for 1 h for complete immobilisation. Subsequently, the catalyst 

was recovered by filtration, washed with 2 L of deionised water, and dried at 110 ºC 

overnight. This catalyst was used in the reaction without any modification and it was 

labelled as SIm catalyst.  

 



Modified impregnation method 

1 wt.% AuPd/MgO catalyst with equal weight loadings of the two metals (i.e. 0.5wt% 

Au & 0.5wt%Pd) was prepared using a modified impregnation method. An aqueous 

solution of PdCl2 (99%, Aldrich) was prepared with a metal concentration of 6 mgPd 

mL-1 in a 0.58 M HCl solution. An aqueous solution of HAuCl4.3H2O (>99.9%, Aldrich) 

with a metal concentration of 12.5 mgAu mL-1 was also prepared separately. Requisite 

amounts of metal precursor solutions were added to a 50 mL round-bottom flask fitted 

with a magnetic stirrer bar. Additional volume of deionised water was added to make 

the total volume of the impregnation mixture to 16 mL. The solution was stirred 

vigorously and the temperature of the solution was increased from room temperature 

(27 oC) to 60 °C. At 60 °C, the MgO support (1.98 g) was added slowly over a period 

of 15-20 min with constant vigorous stirring. The slurry was stirred at 60 °C for an 

additional 15 min, followed by an increase in temperature to 95 °C and the slurry was 

stirred until full water evaporation (typically 16 h). Subsequently, the resultant dry 

powder was ground thoroughly and reduced at 400 °C under a flow of 5 vol% H2/Ar (4 

h, 10 °C min -1). This catalyst was labelled as MIm catalyst.  

 

Catalyst testing 

 

The catalytic activities of 1%AuPd/MgO catalysts were tested in a 50 mL glass, stirred 

Radleys® carousel reactor for the solvent-free liquid phase oxidation of benzyl alcohol 

with oxygen. In a typical reaction, 20 mg of the catalyst was suspended in 2 g of the 

substrate without any additional solvent. The reaction mixture was stirred at 1000 rpm 

with a constant inlet pressure (1 barg) of pure oxygen. At the end of the reaction, the 

reactor was cooled in an ice bath until the temperature of the reaction mixture reaches 

below 5oC. After de-pressuring the reactor, the catalyst was removed by centrifugation. 

An aliquot of the clear liquid reaction mixture along with a fixed amount of internal 

standard (o-xylene) was injected in a GC (Agilent 7820A) fitted with a Agilent J&W 

HP-5 GC column and a flame ionization detector. Quantitative analyses of the 

substrates and products were performed with the help of calibration plots and response 

factors. For reusability studies, after the end of the reaction, the catalysts were filtered, 

washed with acetone several times, and dried in an oven at 120 oC for overnight. These 

dried catalysts were calcined at 450 oC in static air for 4 h and used for the next reaction. 



The catalytic results are within an error limit of ± 5% (determined from 5 separate 

catalytic experiments). 

 

Catalyst Characterisation 

Powder X-ray diffraction studies 

In situ and ex situ powder X-ray diffraction (XRD) of MgO materials and 

1%AuPd/MgO catalysts were performed using a PANalytical® X’Pert PRO apparatus. 

The X-rays were generated by a copper anode (K 

 1.54184 Å). The samples were scanned between a 2θ angle of 10 and 80° with a step 

size of 0.017 or 0.008° for the in situ and ex situ measurements, respectively. The ex 

situ measurements were performed at 25 oC, whereas the diffraction profiles for the in 

situ measurements were recorded between 25 and 700 oC in static air with a heating rate 

of 10 oC min-1. 

Surface area measurements  

Surface area of the supports and catalysts were measured by nitrogen physisorption at 

−196 °C using a Quantachrome Nova instrument. Surface areas were calculated 

according to the Brauner Emmet Teller (BET) method over a P/P0 range where a linear 

relationship was maintained. All samples were degassed under N2 at 110 oC for 2 h to 

remove adsorbed water molecules prior to the analysis.  

TGA & TGA-MS analyses  

TGA experiments for different MgO materials were obtained using a TA Instruments 

Ltd SDT Q600 thermal analysis machine under the flow of air. In another set of 

experiments, fresh and spent 1%AuPd/MgO catalysts were characterised using a 

thermogravimetric analyser fitted with a mass spectrometer (TGA-MS) under an 

oxidising atmosphere. These later experiments were performed on a PerkinElmer Pyris 

1 thermogravimetric analyser connected to a Clarus® SQ 8S mass spectrometer. Under 

an air flow of 30 mL min-1 the sample was stabilised at 30 oC for 20 min. After 

stabilisation the temperature was increased to 800 oC at a rate of 10 oC min-1. No 

corrections for gas buoyancy effects were applied. For the MS data analysis the m/z 

ratios of molecular ion peaks of probable decomposition products are followed. 

Specifically, 18 - H2O, 44 - CO2, 78 - benzene (PhH), 91 - toluene (PhCH3), 106 - 



benzaldehyde (PhCHO), and 108 - benzyl alcohol (PhCH2OH) were followed. In this 

article only the relative intensities are reported. 

Inductively Coupled Plasma-Mass Spectroscopic (ICP-MS) studies  

Metal contents in catalysts, product solutions, and stock solutions for catalyst 

preparation were analysed and quantified by inductively coupled plasma-mass 

spectrometry (ICP-MS) on an Agilent 7900 ICP-MS with I-AS auto sampler with 

Platinum Sampling and Skimmer cones, concentric nebulizer and quartz double pass 

spray chamber. 2.5 mm ID torch for aqueous analysis of Pd and Au, 1.5 mm ID torch 

for analysis of Mg. All analysis was run using helium (He mode) and the ORS cell to 

reduce interferences. For metal content determination in solids, ca. 2 mg of catalyst was 

dissolved in 10 mL aqua-regia for at least 12 h. The final solution was diluted to 50mL 

with water in a volumetric flask. In all cases, further dilutions were done if required. 

All results were done in duplication and further analyses were performed if two results 

differed. 

For the analysis of Mg in reaction mixture auto-sampler was not used, sample aspirated 

manually using natural uptake through sampling probe. 20 % ArgOx is added to burn 

off carbon from organic solvent at 10% of the carrier gas which was set at 0.85l/min 

RF power 1600W, RF Matching 1.7 Sample Depth 10mm. Calibration carried out using 

Agilent Multi-Element calibration standard 2A (p/n 8500-6940) made up in MeOH at 

2, 1, 0.5, 0.1 and 0 mg/l.  Samples were diluted in MeOH (x5000 and x50 as per 

supplied report) to bring them within calibration range and to reduce matrix effects of 

high Mg concentration and match calibration matrix to subsequent sample matrices as 

closely as possible. Analyses were carried out using standard addition techniques using 

the first sample (on the supplied report) as calibrant, which is then converted by the 

instrument software into an external calibration for subsequent samples. 

X-ray Photoelectron Spectroscopic (XPS) studies 

Elemental analysis and atom oxidation states of the AuPd/MgO catalyst surfaces were 

performed on a Thermo ScientificTM K-Alpha+ X-ray photoelectron spectrometer 

(XPS) utilising monochromatic Al radiation operating at 72 W power at a spot size of 

400 microns. Dual low energy electron and Ar+ neutralisation was used and all data 

calibrated to the C(1s) line at 284.8 eV when required. All data was analysed using 



CasaXPS using Scofield sensitivity factors corrected with an energy dependence of 0.6, 

after application of a Shirley background. 

Transmission Electron Microscopic (TEM) studies 

Metal particle size analyses of the 1%AuPd/MgO catalysts were performed on a 

Transmission electron microscope (JEM-2100F (JEOL)). Prior to the TEM analysis, 

samples were dispersed with ethanol under ultrasonication. Supernatant liquid was 

dropped on a Ni grid and dried overnight before analysis. 

Scanning Electron Microscopic studies:  

Scanning EM imaging and X-ray analysis were carried out using TESCAN MAIA3 in 

Cardiff University, also equipped with Oxford Instrument SDD Detector X-MaxN 80 

T. The SEM-EDX mapping was carried out and analysed using AZtec software by 

Oxford Instrument. 

 

Results and discussion 

 

Figure 1: TGA curves of different MgO materials 



MgO has been widely used as a support material for metal nanoparticles to be used as 

catalysts for many reactions including selective oxidation reactions.32,33,43 Specifically, 

AuPd/MgO catalyst has been reported to be very selective for the aerobic oxidation of 

primary alcohols and polyols.23, 26 To study the role of the properties of MgO in this 

catalyst, we prepared different types of MgO from different precursors. MgO(1) from 

MgCO3, MgO(2) from Mg(OH)2 and MgO(3) from MgC2O4. The resultant MgO 

materials are reported to have high surface areas (typically between 200 – 300 m2g-1).40 

For comparison, commercial MgO (MgO(C) from BDH) was also used as a support. 

The TGA of all MgO materials (Figure 1) indicate the removal of varying quantities of 

CO2 and H2O during the heat treatments. It has been previously reported that water is 

lost between 250 and 400 oC and CO2 removal occurs between 325 and 500 oC.44 This 

is further proved by the TGA-MS of MgO(3), where CO2 and H2O are removed 

between 350 and 450 oC (supporting information Figure S1) The powder XRD patterns 

of all these materials (Figure 2) show that MgO(1), MgO(2) and MgO(3) have cubic 

periclase (MgO) phase with crystallite sizes between 45 – 60 Å (calculated using 

Debye-Sherrer equation). The MgO(C) sample displayed reflections from both MgO 

and Mg(OH)2 phases.44 However, TGA results (Figure 1) show that all samples contain 

CO2 and H2O. This suggests that in MgO(1), MgO(2) and MgO(3) materials, the 

Mg(OH)2 and MgCO3 phases are highly amorphous and/or highly dispersed whereas 

in the commercial sample the Mg(OH)2 phase is crystalline. BET surface areas of all 

the MgO samples were found to be high (220 – 280 m2g-1) (Table 1).  



 

Figure 2: The powder XRD patterns of MgO(C), MgO(3), MgO(2) and MgO(1). Key: 

o denotes indexed reflections corresponding to periclase MgO and # denotes reflections 

from Mg(OH)2. 

 

 

 

Table 1: Surface area of different MgO materials and supported AuPd catalysts.  

Support 

Material 

Crystallite Sizea 

Å 

SBET ( m2 g -1 ) 

Support  1%AuPd/MgO 

MgO (1) 47 267 ND 

MgO (2) 60 237 53b 

MgO (3) 55 283 73b/69c 

MgO (C) 167 228 87b 

 



a: Calculated using Debye-Scherrer equation, b: catalyst prepared via sol 

immobilisation method, and c: catalyst prepared via modified impregnation method. 

ND : not determined 

 

Bimetallic AuPd nanoalloys were supported on different MgO materials via sol 

immobilization and modified impregnation techniques.42, 45 These two methods have 

been reported to be very effective for the synthesis of active AuPd/MgO catalysts.25, 46 

The sol immobilization technique is the preferred method of preparing supported AuPd 

nanoalloy catalysts with precise control over the particle size, whereas the modified 

impregnation technique is preferred for controlling the metal particle size as well the 

composition of the bimetallic particles.47 1%AuPd/MgO(3) prepared by both 

techniques have been tested for the solvent-free, aerobic oxidation of benzyl alcohol 

(see supporting information Figure S2). Both catalysts (MIm and SIm) have been found 

to be equally active for the aerobic oxidation of benzyl alcohol and the selectivity for 

benzaldehyde has always >97%. The surface areas of MgO materials reduced 

substantially upon loading of AuPd nanoparticles (Table 1) because of the re-dispersion 

and drying processes involved during the catalyst synthesis.    

 

 



Figure 3: Reaction profile of solvent-free, aerobic oxidation of benzyl alcohol over 

AuPd supported on different MgO materials prepared by sol immobilisation technique. 

Reaction conditions: catalyst: 0.02 g; pO2: 1 barg; benzyl alcohol: 2 g; T: 120 °C. 

(Key: ●: AuPd/MgO(2); ■ : AuPd/MgO(1); ▼: AuPd/MgO(C) & ▲: AuPd/MgO(3)). 

In all these reactions, the selectivity for benzaldehyde was found to be >97% and the 

remaining products include toluene, benzyl benzoate, and benzoic acid.  

 

Since both methods resulted in catalysts with comparable activities, we decided to 

perform further studies using SIm catalysts only, unless specified. We prepared different 

1%AuPd/MgO catalysts using MgO(1), MgO(2), MgO(3) and MgO(C). All these 

catalysts were tested for the solvent-free selective aerobic oxidation of benzyl alcohol 

and activity profiles of all the catalysts are presented in Figure 3. The activity follows 

the order 1%AuPd/MgO(2) < 1%AuPd/MgO(1) < 1%AuPd/MgO(C) < 

1%AuPd/MgO(3). All these catalysts showed excellent selectivity for benzaldehyde 

(typically >97%) and other products such as toluene, benzoic acid, and benzyl benzoate 

were detected with a combined selectivity of <3%. Among the catalysts tested, 

1%AuPd/MgO(2) is the least active catalyst giving 21% conversion after 2 h of reaction 

time. However, under identical reaction conditions, 1%AuPd/MgO(3) catalyst gave 

41% conversion. This nearly 2-fold increase in the catalytic activity was achieved by 

tuning the synthesis strategy of the support material. Although in supported metal 

catalysts, most support materials are typically inert and these results indicate that they 

can actively influence the catalytic activity of the material, either directly or indirectly. 

The most active 1%AuPd/MgO(3) catalyst has also been found to be moderately active 

for the solvent-free aerobic oxidation of 1-octanol to 1-octanal (see supporting 

information Figure S3). It is important to note that aliphatic alcohols such as 1-octanol 

are inherently less active than benzylic alcohols.  



 

Figure 4: Reusability data for 1%AuPd/MgO(1), 1%AuPd/MgO(2), 1%AuPd/MgO(3), 

1%AuPd/MgO(C) and 1%AuPd/MgO(3)-MIm catalysts. Reaction conditions: catalyst: 

0.02 g; pO2: 1 barg; benzyl alcohol: 2 g; T: 120 °C; time: 1 h.  

Next we investigated the reusability of these active and selective catalysts, which is an 

important property of heterogeneous catalysts. For this study, the catalysts were 

separated from the reaction mixture after the end of the reaction, washed with acetone 

and dried overnight in an oven at 120 oC. Then the dried catalysts were calcined at 450 

oC under static air for 2 h and used for the 1st reuse experiment. The catalyst recovered 

from this 1st reuse reaction was treated similarly for the 2nd reuse data. The reusability 

data, presented in Figure 4, clearly indicate that all the catalysts tested deactivated at 

the end of the reaction. Common reasons for the deactivation of supported metal 

catalysts could be assigned to (a) leaching of active metal component, (b) sintering of 

metal nanoparticles, and/or (c) irreversible adsorption of products (poisoning).48 

Understanding the mode of deactivation of these catalysts is crucial to the design 

reactivation strategies.48, 49 For all the following studies, we used 1%AuPd/MgO(3)-SIm 

catalyst since it is the most active catalyst among all the catalysts tested.  

To study the role of adsorbed reactants and/or products on the deactivation of 

1%AuPd/MgO(3), the fresh and recovered catalysts were characterised using TGA-



MS. The results, presented in Figure 5, indicate that products such as toluene, 

benzaldehyde, benzene, and benzoic acid were adsorbed on the catalyst after the 

reaction (Figure 5b). Thorough washing the spent catalyst with acetone did not remove 

these strongly adsorbed products. The adsorbed compounds including CO2 and H2O 

constitute nearly 63% of the mass of the spent catalyst. Upon heating at 110 oC toluene, 

benzaldehyde and benzene are removed, indicating that these compounds are not 

strongly adsorbed. Around 300 oC, water and CO2 are removed and this is similar to 

the fresh 1%AuPd/MgO(3) catalyst though at a slightly lower temperature (Figure 5a). 

Remaining compounds such as CO2, benzene, benzyl alcohol, and benzaldehyde are 

removed between 400 and 600 oC. The CO2 and benzene generated in this temperature 

zone originate from the decomposition of benzoic acid and benzaldehyde, respectively. 

Benzene is formed by the decarbonylation of benzaldehyde and CO2 is produced by the 

decarboxylation of benzoic acid to benzene. In addition to these products, H2O is also 

removed at these temperatures, which suggests combustion of organic compounds. A 

few other compounds were also detected by the mass spectrometer, however their 

corresponding peaks are not presented in Figure 5b for clarity. These compounds are 

not related to the reactants or products of this reaction as they were formed by the 

decomposition of PVA, the stabiliser ligand used in the catalyst synthesis.  

 

 

 

 



a

 

b

 

Figure 5: TGA-MS of 1%AuPd/MgO(3)fresh (a) and 1%AuPd/MgO(3)used (b) under 

oxidation atmosphere. Some mass peaks detected in 1%AuPd/MgO used catalyst 

have been omitted for clarity.  

 

The presence and removal of CO2 and H2O from the support material prompted us to 

further study the phase transformations of both 1%AuPd/MgO(3) fresh and  

1%AuPd/MgO(3) spent catalysts using in situ XRD at different temperatures starting 

from 25 up to 700 oC under both oxidising and inert atmospheres at a heating rate of 10 

oC min-1 (Figure 6). XRD patterns of the catalysts were recorded after every 50 oC raise 

in temperature.  



 

 

 

Figure 6: In situ XRD of 1%AuPd/MgO(3) fresh (top) and 1%AuPd/MgO(3) used 

(bottom). XRD patterns of the materials at different temperatures under static air. (a) 

XRD pattern of 1%AuPd/MgO(3) at 25 oC and then each pattern was recorded after 

raising the temperature of the catalyst by 50 oC with temperature starting from 100 oC 



(b) until 700 oC (n). (o) XRD pattern recorded at 50 oC after treating the catalyst at 

700 oC.  

The support materials in both fresh and spent catalysts at 25 oC were predominantly 

Mg(OH)2, as evidenced by the reflections at 2θ 17o (001), 38o (101) and 58o (110), 

because of the method of immobilizing AuPd nanoalloys involving a large volume of 

water. However, the support in both samples transforms to MgO at 300 oC for the spent 

catalyst (Figure 6 bottom) and at 350 oC for the fresh catalyst (Figure 6 top). This data 

correlates well to the TGA-MS data presented in Figure 5. Above 350 oC the materials 

became more crystalline with the increase in temperature as evidenced by sharper peaks 

in the XRD patterns. A similar behaviour is also observed for the pure MgO(3) material 

(see supporting information Figure S4). For the used catalyst, some tiny unassigned 

reflections were observed at room temperature, however they disappeared above 300 

oC, indicating that they may be as a consequence of a portion of adsorbed reaction 

products. Reflections from Au and Pd were not visible due to low loading and small 

particle size. TGA-MS and in situ XRD results indicate that the adsorbed products and 

phase transformation of MgO(3) could be a major reason for the deactivation of the 

1%AuPd/MgO(3) catalyst. However, this can be reversed by heating the sample at 

temperatures above 400 oC.  

For the reusability studies, presented in Figure 4, we calcined the catalysts at 450 oC 

for 2 h, thereby removing all the adsorbed organics as well as transforming the 

Mg(OH)2 phase to MgO phase. However, the spent catalysts were still found to be less 

active than the corresponding fresh catalysts. Next, we studied the leaching of metal 

components in the reaction mixture using ICP-MS. The results presented in Figure 7 

indicate that the reaction mixture contained lesser amounts of Au and Pd, however there 

is substantial leaching of Mg for all the catalysts. There is a trend in the amount of Mg 

leaching. 1%AuPd/MgO(3)-SIm showed the least Mg leaching whereas the catalyst 

1%AuPd/MgO(2)-SIm showed maximum Mg leaching (ca 67%). This Mg leaching 

trend correlates well with the observed catalytic activities (Figure 7). The catalyst with 

maximum leaching (1%AuPd/MgO(2)) showed least activity whereas the catalyst with 

minimum leaching showed the maximum activity (1%AuPd/MgO(3)). Because of 

substantial leaching, the AuPd bimetallic sites may not be able to retain their original 

particle size and nanostructure. One of the products, benzoic acid, could be one of the 

reasons for MgO leaching. We further tested the leaching for 1%AuPd/MgO(3) MIm 



catalyst and found substantial Mg leaching (data not presented here). This indicates that 

leaching of MgO is because of the nature of the support rather than the method of 

supporting AuPd nanoparticles on MgO (i.e. sol immobilisation vs modified 

impregnation).  It is important to highlight that the sol immobilisation method involves 

only drying (at 120 oC), whereas the modified impregnation method involves high 

temperature gas phase reduction (at 400 oC for 4 h) 

 

Figure 7: Correlation of catalyst components leaching with the catalytic activity for 

1%AuPd/MgO(1), 1%AuPd/MgO(2) and 1%AuPd/MgO(3). The leached catalyst 

components were quantified using ICP-MS of the reaction mixture after 2 h of catalytic 

reaction at 120 oC. The benzyl alcohol conversion values are from Figure 3 (2 h data). 

The % leaching was calculated based on the amount of metal components present in 

the catalyst (0.02 g) taken for the reaction (through ICP-MS of the fresh catalyst) and 

the amount of metal components present in the reaction mixture determined by ICP-

MS.  

Fresh and spent AuPd supported on MgO(1), MgO(2) and MgO(3) catalysts were 

characterised by transmission electron microscopy (TEM) and the data are presented in 

Figure 8 (a-f). It is clear that there is no apparent particle size difference between the 

three fresh catalysts (Figure 8a-c). This is not unexpected because of the method of 



preparation of all these catalyst i.e. sol immobilisation. In this methodology, the 

procedure is identical till the addition of support. The bimetallic sol is prepared before 

the addition of support. Hence it is not surprising that all the catalysts have almost 

similar particle size. The change of the nature of MgO support can be also observed 

from TEM characterisation. As shown in Figure 8, the MgO in the fresh AuPd/MgO(3) 

and AuPd/MgO(2) catalysts have a “flake-like” morphology, evidenced by the curled 

edge features (highlighted using white arrows) in Figure 8 (b & c). In contrast, after the 

1st reuse (Figure 8(e & f)), those features in the MgO support disappeared, suggesting 

that the MgO has been significantly modified during the reaction. This is consistent 

with the TGA-MS & XRD characterisation results shown above (Figure 5 & 6). We 

also observed signs of particle agglomeration, for AuPd/MgO(3) (Figure 8(f)), which 

is also partially responsible for the deactivation. For this catalyst, the particle size 

agglomeration is more prominent after 2nd reuse (supporting information Figure S5). In 

the cases of AuPd/MgO(1) and AuPd/MgO(2) the metal particles sizes appear to be the 

same indicating less agglomeration in these catalysts.   

 

 

(a) (b) (c) 

(d) (e) (f) 



Figure 8: Top row: TEM bright field images of fresh (a) AuPd/MgO(1), (b) 

AuPd/MgO(2) and (c) AuPd/MgO(3) catalysts. Bottom row: TEM bright field images 

of the catalyst after 1st Reuse (d) AuPd/MgO(1), (e) AuPd/MgO(2) and (f) 

AuPd/MgO(3). The MgO supports are “flake-like” in the fresh catalyst, evidenced by 

many dark stripes which are curled edges of those MgO flakes (highlighted by a white 

arrow). The AuPd also agglomerated after reuse, especially in AuPd/MgO(3) (compare 

c & f). The scale bars represent 50 nm. 

 

X-ray photoelectron spectroscopy (XPS) analysis of the AuPd/MgO catalysts is 

challenging due to the overlap of the Pd(3d)/Au(4d) region with the Mg KLL Auger 

structure and also the overlap of the Mg(2s) region with the Au(4f) photoemission 

peaks. Nevertheless, by comparison with similarly treated unsupported MgO samples, 

we can be confident of the Mg(2s)/Au(4f) fitting which reveals solely metallic gold 

(binding energy (BE) 83.5 eV) in all samples. However the apparent concentration is 

markedly different in each sample (see figure 9 (a)) and can be related to the dispersion 

of the Au on the MgO surface. We cannot confidently determine the surface Pd 

concentration in all samples. However for those where we can fit a derived Auger line 

shape (obtained from standard reference materials)37 together with the Pd signal 

(supporting information Figure S6), we note that the Pd is metallic as reflected by the 

binding energy (~ 334.5 eV). In respect of the MgO supports, for all but AuPd/MgO(3)-

MIm prepared catalysts, the support is comprised of primarily hydroxide, although 

trace carbonate is present on all surfaces. The AuPd/MgO(3)-MIm catalyst comprises 

of a much higher carbonate component (verified by a corresponding C(1s) energy at 

ca. 290 eV) and oxide. 



  

Figure 9. X-ray photoelectron spectra for (a) Mg(2s)/Au(4f) and (b) O(1s) regions for 

the different fresh AuPd/MgO (X) catalysts where X = 1, 2, 3 

A close examination of the XPS data of the fresh and spent AuPd/MgO(3) catalysts and 

the support material (supporting information Figure S7) reveals that the fresh samples 

typically comprise of a hydroxide phase, whilst the spent catalyst has a large increase 

in carbonate species.50 Specifically, 1%AuPd/MgO(3) fresh catalyst comprise of 

Mg(OH)2 as evidence by the Mg(2s) peak at 88.4 eV and metallic Au (83.3 eV).51 This 

correlates well with the XRD data (Figure 6). Again, Au is found in a metallic state 

(83.7 eV), for the spent catalyst, the shift upwards in energy typically signifying an 

increase in particle size. Successive uses of this sample result in the laydown of organic 

oxygenated carbon species on the surface leading to deactivation, as evidenced by the 

TGA-MS studies, shown in Figure 5.  

The above results indicate that all the AuPd/MgO catalysts deactivate during the 

selective oxidation of benzyl alcohol under liquid phase conditions. Many deactivation 

pathways including (a) support phase changes from MgO to Mg(OH)2 and MgCO3, (b) 

leaching of MgO support into the reaction mixture, (c) small amount of AuPd leaching, 

(d) sintering of AuPd nanoparticles, (e) adsorption of reactants and products are active 



in this system. Some of the pathways such as AuPd leaching and AuPd sintering could 

be the result of MgO leaching and phase transformation. Chloride ions are known to 

contribute to the deactivation of supported metal catalysts and we uses excess of 

chloride ions during the catalyst synthesis. However, no Cl was detected in the 

AuPd/MgO(3) catalyst through X-ray energy dispersive spectroscopic (XEDS) analysis 

(supporting information Figure S8). Hence, we propose that Mg leaching and support 

phase transformation are the major deactivation pathways in this system. It is 

challenging to identify the most probable pathway because of the difficulty in 

separating one deactivation pathway with another. Another challenge is the dynamic 

nature of the support with reversible phase changes. In situ spectroscopic methods are 

necessary to characterise both the support and the metal nanoparticles during the 

reaction to have a better understanding of the deactivation pathway.   

Conclusion 

Bimetallic gold-palladium nanoalloy particles were supported on different MgO 

materials, prepared from different Mg precursors. All these catalysts were tested for the 

solvent-free selective aerobic oxidation of benzyl alcohol and found to be active and 

very selective (>97%) to benzaldehyde. Among all the different MgO supports tested, 

MgO prepared via the thermal decomposition of magnesium oxalate (MgO(3)) 

displayed the highest activity. However, all these catalysts were found to deactivate 

during the reaction. The mode of deactivation for 1%AuPd/MgO(3) was studied in 

detail using different characterisation techniques: in situ XRD, XPS, ICP-MS, TEM 

and TGA-MS. From the data, it is clear that MgO undergoes phase changes from MgO 

to Mg(OH)2 and MgCO3 during immobilisation of nanoparticles and during the 

catalytic reaction, because of the formation of H2O during the oxidative 

dehydrogenation reaction. Strong adsorption of reactants and products on the catalyst 

surface, during the reaction, were also observed. Simple washing with organic solvents 

and drying did not remove these compounds. The phase change and the adsorption of 

organic compounds could be reversed through appropriate high temperature heat 

treatments, however during this process the nanoparticles sinter substantially. Leaching 

of the support material was also observed during the reaction. Among the three different 

MgO supports studied in this article, an inverse correlation between the catalytic 

activity and Mg leaching has been observed. This data further suggests that changing 

the synthesis methodology of the support can control the leaching properties of MgO.  



Based on these evidences, we report that the leaching of support material and sintering 

of nanoparticles are the reasons for the deactivation of AuPd supported on MgO 

catalyst. Though MgO is a very good support for selective oxidation reactions, it may 

not be suitable for liquid phase reactions where water and/or carboxylic acids are 

involved.  
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