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Abstract

Recent advances in cognitive computing technology, mobile
platforms, and context-aware user interfaces have made it
possible to envision multi-agency situational understanding
as a ‘conversational’ process involving human and machine
agents. This paper presents an integrated approach to in-
formation collection, fusion and sense-making founded on
the use of natural language (NL) and controlled natural lan-
guage (CNL) to enable agile human-machine interaction and
knowledge management. Examples are drawn mainly from
our work in the security and public safety sectors, but the ap-
proaches are broadly applicable to other governmental and
public sector domains. Key use cases for the approach are
highlighted: rapid acquisition of actionable information, low
training overhead for non-technical users, and inbuilt support
for the generation of explanations of machine-generated out-
puts.

Introduction

Decision-making in the governmental and public service
sectors commonly involves multiple agencies working to-
gether. Decision cycles often need to be relatively rapid,
and processes must be agile, based on a best-possible un-
derstanding of the current, evolving situation. The term
situational understanding is commonly used in a security
and public safety context to refer to the ‘product of ap-
plying analysis and judgment to...determine the relation-
ships of the factors present and form logical conclusions
concerning threats. .. or mission accomplishment, opportu-
nities for mission accomplishment, and gaps in informa-
tion’ (Dostal 2007). In this paper, we focus on the prob-
lem of achieving multi-agency situational understanding
(MASU) by means of approaches from cognitive comput-
ing (Kelly and Hamm 2013), chiefly natural language pro-
cessing, human-computer interaction, and knowledge repre-
sentation and reasoning.

We assume MASU domains where data and sources of
data may be plentiful, but where it may be difficult to assem-
ble the right set of data and analytic services to enable deci-
sions to be made in an effective and timely manner. MASU
emphasises the collection and fusion of actionable informa-
tion, to provide a clear picture of options, threats, and conse-
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quences (Broome 2012). Individual decision-making actors
may be at various levels in an organisation, from high level
commanders located near the centre of an information net-
work, to lower level operatives at or near the edge of the
network. Recent thinking in the field of command and con-
trol emphasises the empowerment of individuals at the net-
work edge who, prior to the widespread availability of mo-
bile information and communication platforms, have tradi-
tionally been unable to exploit the best-available actionable
information (Alberts and Hayes 2003). Empowering such
individuals in domains such as emergency response, polic-
ing, and military operations is viewed as highly desirable
since they are capable of directly affecting the evolving sit-
uation through their decisions and actions. Because the situ-
ation unfolds quickly, the information architecture that sup-
ports MASU must be highly responsive to changes in the
decision-maker’s requirements and the availability of rele-
vant sources.

Information needs to flow in two directions in an agile
MASU service-oriented architecture:

e A forward chain from data to decision: data is collected
by sensors (for example, imagery or audio data) or re-
trieved from other sources (e.g., media feeds, eyewitness
reports), processed by analytics services, and delivered to
a decision maker according to their information require-
ments.

e A backward chain from a decision maker’s requirements
to relevant analytics services able to provide the needed
information, and to data sources that can ‘feed’ those ser-
vices.

Traditionally, prior research and development work in this
area has tended to focus on the data-driven forward chain;
the backward direction has received less attention. Neverthe-
less, rapid construction of these backward chains has been
evident in recent well-publicised emergency responses. For
example, during the Fukushima Daiichi nuclear disaster in
the wake of the 2011 earthquake in Japan, it became nec-
essary urgently to track the spread of radiation, resulting
in the rapid construction of geospatial visualisation services
fed by networked Geiger counters — including private de-
vices shared via early Internet of Things (IoT) technology'.

"http://www.wired.com/opinion/2012/12/20-12-st_thompson/



This example is an instance of the general problem: how to
rapidly construct pipelines by working backwards from an
intended decision (or hypothesis or query), identifying use-
ful data analytics services and underlying data sources that
can meet the decision maker’s requirements.

Recent advances in cognitive, mobile, and context-
aware technologies enable an even more flexible and ag-
ile kind of MASU system. Data sources are becom-
ing increasingly self-describing and communicative. Au-
tonomous robotic systems, together with increasingly
computationally-capable IoT devices operating in decen-
tralised networks open up greater potential for collective in-
telligence and self-organisation at or near the edge of the net-
work, close to where data sources are often situated (Fraga-
Lamas et al. 2016). Moreover, increasingly capable mo-
bile devices have freed decision-makers to operate effec-
tively in contexts much nearer the ‘front line’. Widespread
user familiarity with commercial products such as Amazon’s
Alexa®, Google Now? Apple s Siri*, and IBM’s Watson’
have raised user expectations in terms of what MASU sys-
tems should be able to deliver. In this context, MASU can
be viewed (Figure 1) in terms of decentralised ‘conversa-
tional’ exchanges between agents with different specialisms:
the data sources, analytic services and decision-makers. In
this perspective, chains of interaction can start anywhere in
the network and flow in any direction, backwards and for-
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Figure 1: MASU viewed as conversational interaction

This paper reports on an approach to MASU intended to
prioritise agile decision-making via human-machine collab-
oration across multiple agencies and teams. We draw on ex-
amples from work in the security and public safety sectors,
but the approaches are broadly applicable to other govern-
mental and public sector domains. The next section outlines
a conceptual architecture for MASU systems. We then de-
scribe the core technical approach: a combination of nat-
ural language-based knowledge management and human-
machine interaction. The latter sections explain how the ap-
proach supports sensemaking activities to connect data with
hypotheses and decisions, and we conclude the paper with
pointers to future work.

“https://developer.amazon.com/alexa
3https://en.wikipedia.org/wiki/Google_Now
*http://www.apple.com/ios/siri/
Shttp://www.ibm.com/watson/

Conceptual Architecture for MASU Systems

Figure 2 depicts a layered conceptual architecture for a
MASU system. The bottom layer comprises a collection of
data sources, accessible across the multiple partner agen-
cies. These sources include ‘hard’ physical sensor data and
‘soft’ human-originated content. At each layer above the
data layer, the figure illustrates the primary cognitive com-
puting techniques applicable to processing products of the
layer(s) below:

HCC human-computer collaboration

KRR knowledge representation and reasoning
MAS multi-agent systems

ML machine learning

NLP natural language processing

VSP vision and speech processing

Hce KRR NLP Knowledge layer
Cind Cond Ciad
MAS ML Fusion layer
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NLP vSP Information layer
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Figure 2: MASU layered conceptual model distributed
across multiple partners

Data layer

The information layer uses incoming data streams to iden-
tify semantic entities together with their relationships at
multiple scales of granularity. The resulting information rep-
resentation explicitly or implicitly encodes a history of past
observations. ML, NLP, and VSP are the predominant cog-
nitive computing techniques used in this layer. MAS tech-
niques play an important role in communication and coor-
dination among distributed processing services across the
multiple agencies. The fusion layer utilises algorithms and
techniques to estimate the current state of the world from in-
formation derived at the lower layer; KRR and MAS have a
significant role here in terms of world-modelling and inter-
agency communication, though ML, NLP, and VSP tech-
niques are applicable at this level also. The knowledge layer
then uses the current world model and histories of past ob-
servations to explicate likely future states, with KRR again
playing a key role in reasoning about the world; HCC and
NLP approaches handle the necessarily-rich interaction be-
tween this layer and the human user.



The upper layers in Figure 2 need to be open to humans
to (i) provide expert knowledge for reasoning and (ii) be ca-
pable of generating explanations of the reasoning performed
by the system. Information flows in two directions between
the layers: in the upward (forward) direction, inferences
made at the lower layer act as input for the higher layer; in
the downward (backward) direction, information is used to
adjust the model and algorithm parameters and change the
tasking/querying of the data sources. The requirements to
create more agile systems to support MASU necessitates de-
veloping mature models and algorithms that can, over time,
reduce the need for human intervention and increase ma-
chine autonomy, without entirely replacing human engage-
ment and oversight.

The architecture emphasises the systems view of cog-
nitive computing as requiring a hybrid set of computa-
tional techniques. A key issue is how to combine KRR and
ML/NLP/VSP techniques. Figure 3 illustrates these as sep-
arate subsystems with points of semantic articulation. For
example, classes forming the output of an NLP or VSP clas-
sifier form part of a KRR ontology, allowing classified in-
stances to be fed upward (i.e., forward in Figure 1) to be-
come part of a represented model and used in reasoning pro-
cesses. Generally, the output of a ML/NLP/VSP classifier
will have some measure of associated uncertainty, that also
needs to be fed upwards.
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Figure 3: Linking ML/NLP/VSP and KRR approaches in a
MASU system
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Natural Language Interaction and Knowledge
Management

The main elements of our conversational model (Preece et
al. 2014) are shown in Figure 4. The model supports both
human-machine and machine-machine dialogues, differen-
tiating between natural language (NL) and controlled nat-
ural language (CNL) content. NL content is represented as
text but its origin can be speech, directly-typed input, or ma-
terial gathered from external sources including documents,
short text messages, or social media. It can also be origi-
nated by machine agents. A CNL is a uniform information

representation that is both machine-processable and human-
consumable (Kuhn 2014) and therefore provides a means to
express information models as well as structured instance
data. In this section, we first briefly introduce the CNL used
in this work, before discussing the conversational protocol.
ITA Controlled English (CE) is available in both Java (full®)
and JavaScript (lightweight”) open source implementations.
An example CE model definition is shown below.

conceptualise an ~ event 7 E that
has the time ST as start time ~ and
has the time ET as 7 end time ~ and

” involves ~ the agent A and

" is located at ~ the place P.
conceptualise a ~ “ P that
is an event.

protest

A conceptualise CE sentence introduces a new con-
cept in a model. New terms in the model appear between
the tilde () symbols. The example defines two concepts,
event and protest, the latter being a child of the former.
The concept event is defined as having properties start
time and end time and relationships to other concepts:
the relationship involves relates an event to an agent (a
human, machine agent, or organisation) and the relationship
is located at relatesanevent toaplace. The example
below shows the CE that creates an instance of the concept
protest.

there is a protest
named ‘Main Plaza protest’ that
has the time ‘'2017-11-09T15:07:44z'
as start time
and involves the group ‘Violet Group’ and
is located at the place ‘Main Plaza’.

This instance, named Main Plaza protest, has UTC
time 2017-11-09T15:07:447% as the value of its start
time property; it has an involves relationship with
a group instance named Violet Group and an is
located at relationship with a place instance named
Main Plaza.

CE is intended to be human-readable though generally we
expect users to input information in NL and we use NLP
to derive CE from the NL input. The simplest approach
to interpreting NL as CE uses a bag-of-words technique
to map elements of NL sentences to CE models. This ap-
proach has proven effective in both laboratory and field stud-
ies (see (Preece et al. 2017) and the next section).

The conversational protocol illustrated in Figure 4 con-
sists of four distinct types of interaction: confirm, ask/tell,
why, and gist/expand. A conversation can begin with any of
these except why. Contextual state is maintained during an
interaction and between interactions via the CE knowledge
base (KB) constructed as a result of the interactions.

Confirm interactions: These handle mapping of NL in-
put to CE. When the NL input originates from a human user,
this interaction typically involves showing the user a piece
of CE generated via NLP from their input, and asking them

®https://github.com/ce-store/
"http://cenode.io
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Figure 4: Model for human-machine conversational interac-
tions

explicitly to confirm or edit it. When the interpretation has
low ambiguity or does not originate directly from a user —
for example, if it comes from an external social media source
— the explicit confirmation step may be skipped. In either
case, the system retains the original NL in case it needs to
be revisited later.

Ask/tell interactions: NL can be ambiguous to the point
where it is not always possible to determine whether a sen-
tence is a query or states a fact. Mapping NL to CE removes
such ambiguity and, from this point, agents can engage in
query-response exchanges shown in Figure 4 as ask/tell in-
teractions. Such an exchange can be as simple as a single zell
— it does not need to involve an ask.

Why interactions:A key feature of the model is to allow
any agent to obtain an explanation, justification or prove-
nance for a piece of information in the form of rationale. For
example, if told a fact, an agent may seek an explanation of
how that fact was obtained or inferred. This is the purpose
of the why interaction. CE has a specific syntax for rationale
sentences, beginning with the keyword because.

Gist/expand interactions:CE is intended to be human-
readable but it is often rather verbose and can be especially
difficult to comprehend on mobile devices where smaller
screens favour shorter messages. A machine agent may gen-
erate NL purely for the convenience of human users, e.g.,
to make some output more easily readable when the human
user is engaged in tasks that require digestible information;
we refer to such generated NL as ‘gist’ and the conversa-
tional protocol requires any agent that issues gist to be able
to provide a full CE expansion of this if required by the re-
cipient: this is shown in Figure 4 as the gist/expand inter-
action. For the generation of gist from CE we use a simple
template-based approach that preserves the mapping from
the original CE to the gist form, to allow expansion back
into full CE if requested by the recipient.

Sensemaking for MASU

We view decision-making in the MASU context in terms of
the sensemaking process, commonly defined as a set of in-
terconnected loops (Figure 5). In the foraging loop, data is
gathered from the external environment and assembled into
a body of evidence. Then, in the sensemaking loop, schema-
tised evidence is connected to hypotheses and cases are built
to support decisions. Feedback loops exist between each pair

of successive steps in the process. The progression of the
process from bottom to top and from left to right reflects in-
creasing structure in the information artefacts created as well
as increasing effort on the part of the humans and machine
agents involved.
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Figure 5: The sensemaking process for intelligence analy-
sis (Pirolli and Card 2005)

The conversational model in Figure 1 and conceptual ar-
chitecture in Figure 2 are a means to operationalise the
sensemaking process for MASU, specifically by increasing
the level of automation in setting up data analytics pipelines
to improve operational agility and empower human actors
at the network edge (Alberts and Hayes 2003) as explained
in the introduction. We hypothesise that, a result of this in-
creased automation and agility, ‘edge’ users become more
active participants in the sensemaking process, shaping in-
formation products by means of ask/tell interactions. Users,
especially those at the network edge, are often themselves
sources of information — they are human sensors (Srivas-
tava, Abdelzaher, and Szymanski 2012). Our previous work
examines a number of use cases including spot reporting,
crowdsourcing, asset tasking, and fusion of soft and hard in-
formation (Preece et al. 2014).

We observe that the backward transitions between each
successive pair of steps — detailed along the top of Fig-
ure 5 — take the form of queries (i.e., asks), while the for-
ward transitions — detailed along the bottom of the figure
— impart information (i.e., tells). This is consistent with the
speech act view of conversational exchanges in both linguis-
tics and software agent communication (Austin and Urmson
1975; Labrou and Finin 1998). Viewed at a macro scale,
the process of adding structure that comes with increas-
ing effort, moving upwards and rightwards in the figure,
corresponds to the view of conversation as co-constructing
shared informational artefacts (Pask 1972). As the conver-
sation progresses, the potential for increased structure, in-
creased awareness of the different conversational partners’
worldviews (conceptual models), and increased alignment
of the agents to the context of the current task can occur.

Our approach has been evaluated and refined via a series
of field exercises (2014—present). The primary goal of each



exercise was to monitor a large-scale event through a com-
bination of real-time social media analysis and ethnographic
fieldwork; testing the information architecture and tools de-
scribed in the previous sections were secondary aims (Innes
et al. 2016; Roberts et al. 2017).

Field teams
S S S 1
CE
O Apps
-
= KB

Social media
data

Primary site

Secondary site

Figure 6: Typical field exercise set-up

Figure 6 shows a typical field exercise configuration. Two
sites are used to assess the capability to support real-time
analysis of a situation involving analysts working at differ-
ent locations and across multiple agencies: one site is des-
ignated as primary and the other is designated secondary.
Non-identical CE KBs are maintained at both sites, with
each incorporating local agency-specific information as well
as shared information. Different analytical apps are used at
each site (e.g., spatial visualisations, trending tools, or so-
cial network analysis algorithms). Information and knowl-
edge was communicated between both sites in NL and CE.
Audio and video communication (e.g., via Skype) was also
used. Social media data collection focussed on Twitter, due
to its properties as an effective carrier of real-time and sit-
uational information, incorporating links to other media. In
the set-up shown in Figure 6, social media data collection
and processing is based at the primary site; information thus
acquired is added to the KB and shared as appropriate with
the secondary site.

A key feature of the exercise set-up is the ability to task
field teams to visit specific locations and gather spot reports,
e.g., to supplement or verify data collected from social me-
dia. Field team members are equipped with mobile devices
and communicate with the primary site via NL messages
and, where appropriate, attached imagery. The entire team
uses a collaboration platform® supporting (i) real-time mes-
saging organised into a collection of thematic ‘channels’,
(i1) posting of documents and other media, including items
foraged from social media, and (iii) a persistent timeline-
based record of discussions after the event. Our conversa-
tional agents (including the Moira agent described below)
are connected as virtual users to the collaboration platform
(i.e., as chatbots).

8We have used both Slack (http://slack.com) and Mattermost
(http://mattermost.org) for this.

Foraging for ‘Fast Data’

Information foraging is supported by the ability to inter-
pret NL statements into CE to support subsequent machine
analysis and fusion. A key use case here is enabling di-
rect submission of in situ reports via the conversational
protocol confirm interactions. This facility is available to
users through a chatbot called Moira (Mobile Intelligence
Reporting Agent) (Preece et al. 2014). We have also exper-
imented with allowing a user to post brief reports via social
media, specifically Twitter, with the Moira bot configured
to ‘follow’ specific accounts — public or private — and/or
to process data collected via the Twitter API. This kind of
data obtained from social media or in situ reporting has been
termed ‘fast data’ (as opposed to ‘big data’) (Roberts et al.
2017).

. Moira @ @MoiraStream - 5s
The Violet Group are protesting in Main Plaza

O n Q il

Figure 7: Tweeted spot report as NL input to the Moira chat-
bot

Figure 7 shows an example spot report posted on Twitter
from a private account used in our exercises. The equivalent
CE form of this report was shown in the previous section as
the example protest instance. Key entities mentioned here
are an instance of an organisation (Violet Group), a loca-
tion (Main Plaza) and a kind of event (protest). As shown
above, the CE model of this domain includes the entity
classes (concepts) organisation, location, event, and
protest, together with the information that a protest isa
kind of event. Instances include Violet Group and Main
Plaza. In principle these can be discovered through named
entity recognition in natural language processing (NLP)’
though in this case both entities would probably already be
known a priori.

When the Moira chatbot is used, the confirm interaction
provides users with an opportunity to manually confirm (or
edit) the generated CE. Experiments indicate good usability
of the CE-based bot by untrained users in a crowdsourcing
context (Preece et al. 2017). However, for input via Twitter
it doesn’t make sense to do this as the user may be a member
of the public who would find such an interaction very con-
fusing; moreover, typical CE sentences tend to overrun the
140 characters of a tweet.

We have explored the use of rapid fact acquisition to build
CE KBs of background information such as people, organi-
sations, and places, useful as a means of connecting or con-
textualising other information in support of crowdsourcing
and in situ reporting. This background knowledge is valu-
able in NLP, performing an important role in named entity
recognition as illustrated by the examples ‘Main Plaza’ and
“Violet Group’ in Figure 7. In support of our field exercises,
focussed on monitoring community reactions to disruptive

For example, using http://nlp.stanford.edu/software/CRF-
NER.shtml



events in the UK, we constructed models and fact sets for
notable places, organisations, and public individuals includ-
ing politicians and journalists.'” This allowed our Moira bot
to perform question answering via the conversational inter-
face on this body of rapidly-sourced background data, as il-
lustrated in Figure 8.

8 Alun

Who is Paul Flynn?
8 Moira

Paul Flynn is a Labour MP and a man.
he uses the verified account PaulFlynnMP and

Where is HMS Duncan?

8 Moira

the ship HMS Duncan is not a location itself.

-3.15050156).

Figure 8: An example of question answering from foraged
data using the Moira chatbot

All of these activities demonstrate how the conversational
approach can support the foraging loop in sensemaking. We
regard part of our CE KB as the shoebox shown in Fig-
ure 5. This contains both NL and CE input from exter-
nal sources, including crowdsourced data, tweets, and back-
ground knowledge as discussed above. It is slightly different
from the traditional sensemaking shoebox in that the use of
CE for interpreted data and metadata gives the information a
degree of structure from the moment it arrives in the system,
whereas traditionally such structure is added during the pro-
cess of ‘schematising’ the information. However, note that
we are not attempting to ‘make sense’ of the data as it ar-
rives into the shoebox: we are adding only low level context
corresponding to the information layer in Figure 2; i.e., our
‘CE shoebox’ covers basic facts like who, what, when and
where, but does not yet attempt to capture anything about
how or why.

In the context of a sensemaking process, automati-
cally collecting large volumes of tweets into a foraging
shoebox would be unmanageable. CE models offer vari-
ous ways to help filter relevant social media fragments,

"For this we used public sources such as Tweetminister,
http://tweetminster.co.uk, Muckrack, http://muckrack.com, and
Wikipedia/Dbpedia.

e.g., by using NLP to associate the input media with re-
lated model elements. In the example above, this can be
done by detecting that the tweet refers to Violet Group
(an organisation), Main Plaza (a location) and a
protest (an event). This information, together with tweet
metadata (e.g., the poster, together with any knowledge of
their reliability, the time, GPS coordinates if the tweet is
geotagged, and so on) provides a significant amount of
context allowing the tweet to form part of a larger situa-
tional picture (for example, activities of the Violet Group,
currently-known protests, or disruption in the Main Plaza
area). Part of assembling the situational picture also involves
seeking corroboration unless the tweeter is a trusted source,
and this can be achieved in important cases by tasking the
field teams.

The contents of the shoebox are not limited to NL data
such as that acquired from humans or documents but can
also include multimedia data as illustrated in Figure 3. The
progression from shoebox to evidence file involves link-
ing, summarisation and inference. An advantage of col-
lecting and contextualising acquired information in a CE
KB is that we automatically build a graph of linked data,
around common entities such as people, organisations, and
places, and the relationships defined in the CE models be-
tween these and other entities. Note that the CE models
are not static: they evolve as new relationships and con-
cepts are found. This is done semi-automatically using tech-
niques like automatic term recognition to propose new con-
cept names (Spasié et al. 2013); it can also be done manually
by querying and filtering the data.

Sensemaking and ‘Storytelling’

The initial steps in the sensemaking loop (following on from
the end of the foraging loop in Figure 5) involve schematis-
ing evidence by adding further higher-level structure and in-
terpretation — corresponding to the information fusion and
knowledge layers in our MASU architecture (Figure 2). As
noted above, the CE-based approach already introduces a
degree of schematising at the lower levels of the process, and
at the end of the previous section we discussed how the ap-
proach allows progressive enrichment of the model, to better
contextualise evidential information. Thus, we do not see a
hard boundary between the two loops, but rather a gradual
KB refinement and enhancement.

The foraging process is framed by the human decision
makers’ hypotheses and intents; e.g., our field exercises
were framed by social science motivations to understand
the impacts of large-scale events involving major local dis-
ruption due to increased security, and threats of significant
protest by a broad spectrum of groups. The requirement to
monitor and make sense of such unfolding situations framed
the foraging activity primarily around event detection — es-
pecially protests and crowd mobilisation — and directed us
to gather background knowledge on key actors (including
politicians and journalists) and significant public locations.

The backward chain discussed in the introduction pushes
this contextual framing down into the foraging loop, result-
ing in the attachment of metadata to collected data that is



useful in the later stages of interpretation. In the case of so-
cial media data acquired from Twitter, we are interested in
the context as well as the content: who is saying it, when
and where. Whether a tweet originates from a politician’s
account, an activist group, a journalist, or a member of the
public is important in making sense of the signals avail-
able from open source media. Our approach represents all
of this information — data and metadata — in a uniform CE
KB (shareable across partner agencies) and information ar-
chitecture, processable by a diverse set of decision-support
apps.

The end-goal in Figure 5 is that of presenting a case: using
the connected data, evidence and hypotheses chain to tell a
story to inform making a decision. The conversational CE-
based approach emphasises HCC and human-consumable
KRR, including the key ability for a user to ask why to un-
cover rationale for any inference, statement or connection
in the KB. Building on these features, we can apply narra-
tive framings to the assembled KB, and have trialled the use
of techniques including comic strips and multiple-act story
structures modelled via CE metadata (Braines et al. 2015).
The CE story concept exists at a more abstract level to the
domain of interest (people, places, events, etc) and permits
domain-level information to be organised into a sequence
of episodes (preface, act one, act two, etc) with asso-
ciated key events and actors drawn from the domain-level
model and instances. The conversational ability to ask ques-
tions, including why?, permits the consumer of the narra-
tive to reveal detail that the higher-level story intentionally
omits. This may reveal unanswerable questions or prompt
the user to tell the system something that has not yet been
taken into account, causing feedback to flow back down the
sensemaking process, triggering further machine-machine
and human-machine ask/tell interactions.

In terms of higher-level situational understanding, includ-
ing modelling of intents and threats, we have ongoing work
looking at polarisation and conflict in relation to major crime
events (Innes et al. 2016; Roberts et al. 2017). Our infor-
mation modelling focus w.r.t. this social science research
is to gain a better understanding of the analytic processes
with a view to encoding these into our information architec-
ture with a view to assisting the analysts with their higher-
level sensemaking tasks. Concurrent research in applying
CE-based KRR techniques to intelligence analysis has high-
lighted promising use cases where HCC can assist human
cognitive processes (Mott et al. 2015).

Discussion and Conclusion

Open source information provides MASU processes in gov-
ernmental and public sector domains with an important type
of external data source. However, the vast amount of avail-
able data, especially in terms of social media, presents enor-
mous challenges in foraging and sensemaking. While there
have been significant advances made in techniques for event
detection using social media streams (Aiello et al. 2013;
Roberts et al. 2017; Wang et al. 2014), the collection and
processing of open source data to derive higher-level infor-
mation products beyond the shoebox is fundamentally one
of HCC, relying as it does on the relative strengths of human

and machine agents (Crouser and Chang 2012). Analysts are
increasingly well versed in modern team collaboration envi-
ronments and in the exploitation of social media, and sys-
tems are emerging that seek to combine the benefits of these
approaches with existing software tools and processes for
structuring and supporting intelligence analysis (Wollocko,
Farry, and Stark 2013). Multi-agency and collective intelli-
gence approaches are seen as particularly important in this
context (Hall and Jordan 2010) since, not only is collabora-
tion essential within the same analyst team, but the outcome
of analysis process can be greatly improved when collabora-
tion is extended to the crowd and mediated by an intelligent
software agent (Brantingham and Hossain 2013).

In the light of current concerns regarding transparency in
big data approaches (Lazer, King, and Vespignani 2014), a
significant issue in the use of all open source intelligence
concerns the potential for bias and misinformation (Jin et al.
2014), and mitigating these risks is a very active are of cur-
rent research (Wang, Abdelzaher, and Kaplan 2015). How-
ever, patterns of (mis)information flow are often extremely
valuable in terms of situational understanding, e.g., rumour-
ing is often a form of coordinated activity which needs to
be countered (Roberts et al. 2017). A key feature aimed at
promoting transparency in our approach is the why interac-
tion, allowing a user to seek an explanation for any inference
made by the system.

In addition to text-based open source media, there is con-
siderable value in social media imagery data, e.g., attached
to tweets on Twitter and on imagery-centric platforms such
as Instagram and YouTube. In this sense, social media is
a source of both hard and soft data, leading to significant
challenges in information fusion (Hall and Jordan 2010).
The application of ML and VSP to extract key features
from such sources — particularly common symbols and ob-
jects, as well as face recognition — offers considerable po-
tential but remains a hard problem. In the near term, pro-
cessing such data effectively is another aspect of MASU
that requires HCC. An issue that arises here is the genera-
tion of why explanations for inferences drawn by VSP and
ML.: these approaches are often regarded as black boxes, but
there is considerable ongoing work to make them more in-
terpretable (Lipton 2017).

In summary, we have presented an approach to MASU
founded on natural language interaction and knowledge
management that supports three key use cases:

e integration of cognitive approaches to exploiting ‘big
data’ with support for humans to input ‘fast data’;

e usability by people with relatively little technical training
and where, especially in field settings, personnel will be
primarily focused on tasks other than operating software;

e inbuilt support for users to seek explanations from cogni-
tive systems via why interactions.

Going forward, our immediate agenda is to focus on (i)
improved explanation generation and interaction, particu-
larly with ML-based cognitive services, (ii) improved han-
dling of misinformation including rumours and propaganda,
and (iii) integration of KRR and ML cognitive services for
hypothesis exploration.
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