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Pattern production through a chiral chasing mechanism

Thomas E. Woolley
Cardiff School of Mathematics Cardiff University, Senghennydd Road, Cardiff, CF24 4AG

(Dated: July 28, 2017)

Recent experiments on zebrafish pigmentation suggests that their typical black and white striped
skin pattern is made up of a number of interacting chromatophore families. Specifically, two of
these cell families have been shown to interact through a non-local chasing mechanism, which has
previously been modelled using integro-differential equations. We extend this framework to include
the experimentally observed fact that the cells often exhibit chiral movement, in that the cells chase,
and run away, at angles different to the line connecting their centres. This framework is simplified
through the use of multiple small limits leading to a coupled set of partial differential equations which
are amenable to Fourier analysis. This analysis results in the production of dispersion relations and
necessary conditions for a patterning instability to occur. Beyond the theoretical development and
the production of new pattern planiforms we are able to corroborate the experimental hypothesis
that the global pigmentation patterns can be dependent on the chirality of the chromatophores.

I. INTRODUCTION

Developmental systems are able to create and
sustain a wide variety of patterns, from digit for-
mation [1] to animal skin pigmentation [2]. How-
ever, despite decades of research, an experimen-
tally tested mechanistic theory of developmental
pattern formation still eludes us [3].

Many mathematical theories of pattern for-
mation exist [4], some are hydrodynamic in be-
haviour [5], whilst others look at a more me-
chanical descriptions of domain boundaries, re-
sulting in cellular patterns [6]. Perhaps the most
successful theory of patterning stems from Alan
Turing’s seminal work on the chemical theory
of morphogenesis [7], which showed that two
distinct diffusible populations (known as mor-
phogens) could produce stationary heterogeneous
spatial patterns if the interactions of the two pop-
ulations satisfied specific criteria. Pluripotent
cells would then be able to detect the hetero-
geneous morphogen distribution and differentiate
based on the local environment, giving rise to dif-
ferentiated and, hence, patterned structures [8].
This theory was highly counter-intuitive because
the interaction conditions assume that in the ab-
sence of diffusion the population densities would
evolve to a stable and stationary value. Thus,
it is diffusion (which is normally thought of as a
homogenising process) that drives the system to
spatial heterogeneity [9]. Since Turing’s original
work, his theory has been extended in multiple di-
rections [10, 11] including higher order networks,
stochastic effects and delays [12–17].

Turing’s morphogens are usually thought to
be diffusible proteins. However, although there
are a number of potential candidates for putative

morphogens (e.g. TGF-β, WNT, DKK [18, 19]
and Hox genes [20]) the hunt for the first conclu-
sive developmental evidence of a Turing structure
at the molecular level continues. More recently,
experimental work has suggested that the mor-
phogens may be the cells themselves, rather than
the cells reading chemical gradients [21–23].

Specifically, it has been suggested that the
black and white stripes of the zebrafish may
be formed due to the movement and interac-
tions of three types of pigment cells, known as
chromatophores. The dark stripes of the pat-
tern consist of melanophores (black cells con-
taining melanin granules) and iridophores (sil-
very and/or white cells containing ultra-fine re-
flecting platelets), whilst the light stripes consist
of xanthophores (yellow to orange cells contain-
ing pteridine and carotenoid granules) and iri-
dophores [24, 25].

When the melanophores and xanthophores are
extracted and plated together they are seen to
interact and move relative to one another. In
particular, wild-type xanthophores move more
slowly than melanophores. However, the xan-
thophores are able to extrude long pseudopodia
which, on contact with a melanophore, induce the
xanthophore to move closer to the melanophore,
whilst the melanophore is induced to move away
from the xanthophore, resulting in a chasing form
of motion. Critically, the movement direction of
the xanthophores and melanophores is not along
the line connecting their cell centres. Indeed,
their directed motions can be rotated at a sig-
nificant angle away from this line (see Figure 1)
[26–28]. Moreover, the pigment cells of mutant
fish are seen to exhibit different behaviours and
different patterns, suggesting a correspondence
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between microscale cell behaviour and mesoscale
patterning of the skin.

Including the attraction-repulsion dynamics
suggested by the experimental observations into
the standard reaction-diffusion framework has al-
ready been done by Painter, Sherratt and co-
authors [29, 30] and their research shows that
such a chasing mechanism cannot support sta-
tionary heterogeneity without the addition of fur-
ther assumptions, confirming the earlier result of
Woolley et al. [27]. Here, we will extend their
work by including the rotational disparity of the
chasing and evading agents. It should be noted
that although we use the zebrafish pigmentation
observations as a motivating example this pa-
per focuses on introducing the modelling frame-
work and illustrating the diversity of patterns
contained within. However, we are able to gen-
erate the conclusion that the global pattern does
depend on the microscale angles, as suggested by
Kondo’s experiments [31].

In Section II we derive the basic framework
from a two-dimensional space-jump model in a
complementary approach to [32]. Standard lin-
earisation arguments and Fourier analysis are
used to derive conditions under which patterns
can form and these are shown to hold through
numerical simulations in Section III. Finally, we
summarise the variety of different dynamics ex-
hibited in Section IV.

II. FRAMEWORK

Although we will initially not be considering
the influence of diffusion in the results section, as
we will be focusing on the angular chasing mech-
anism, we will include diffusive movement later
in Section III A 3. The inclusion of diffusion is
in order to understand how this additional move-
ment process effects the patterns produced by the
angular chasing mechanism. Equally, it allows us
to introduce the reader to the modelling frame-
work through a familiar example. The diffusion
operator is derived in Appendix A.

We now consider the situation of angular chas-
ing, where the motion of the populations is no
longer independent of location, but rather the
motion of one population depends on the sur-
rounding densities of another population. Specif-
ically, we consider the following set up: two con-
tinuous cell populations, u and v, in an infinite
domain two-dimensional domain are able to non-
locally interact over a range R, which mirrors the

non-local interaction abilities of the cells in the
zebrafish. When the cells of type u sense the
cells of type v they move a distance r1x horizon-
tally and r1y vertically, such that the movement
vector makes a fixed angle θ1, against the line
joining the cells, measured in an anti-clockwise
manner. Similarly, the v cells respond by moving
a distance r2x and r2y producing a fixed angle θ2
(see Figure 1).

FIG. 1. When the centres of two individuals from dif-
ferent populations come within a distance R of one
another the cell of type u will move a distance r1δs
towards the cell of type v, whilst the cell of type v
will move a distance r2δs away from u. Note that
δs is some spatial length scale used to discretise the
space, whilst r1/r2 measures the ratio of movement
distance between the two species. Complicating mat-
ters further is the fact that the populations u and v
do not move along the line joining their centres. In-
stead, the populations u and v travel at angles θ1 and
θ2, respectively, to this line. Initially, we consider the
populations moving on an infinite domain.

For total accuracy we should start the mod-
elling at the individual scale of the cells using a
stochastic formalism and derive mean-field limit
differential equations, which define the densities.
However, assuming that the patterning process
involves a large number of cells we can appeal to
the weak noise limit [33], meaning that we can ef-
fectively use individuals and density interchange-
ably, as they are approximately proportional.

The time evolution equation for this system de-
fines the net flux of population density at a given
point, (x, y). Each species’ flux is made up of two
components, the rate at which the cells jump to
the given point and the rate at which the cells
jump from the given point. For example, using
the Law of Mass Action, the flux of population u
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away from (x, y) is proportional to the product of
the density of u at (x, y) at time t (i.e. u(x, y, t))
and the density of v at some point within a circle
of radius R of (x, y) at time t. Defining r ∈ [0, R],
α ∈ [0, 2π] and j > 0 to be the constant of pro-
portionality then the interaction equation of the
flux of u away from (x, y) is given by the follow-
ing interaction equation (compare with equation
(A1))

v(x+ r cos(α), y + r sin(α))+

u(x, y)
j−→ u(x+ r1x, y + r1y)+

v(x+ r cos(α) + r2x, y + r sin(α) + r2y), (1)

where ril, i ∈ {1, 2}, l ∈ {x, y}, have the specific
form r1x = r1δx cos(θ1) and r1y = r1δy sin(θ1),
with r2x and r2y defined similarly. Later we
will fix δx = δy = δs justifying the variables il-
lustrated in Figure 1. Further, we should note
that equation (1) holds for all r ∈ [0, R] and
α ∈ [0, 2π]. Finally, the time dependence is sup-
pressed in the above and following derivation for
brevity.

Using the Law of Mass Action on equation (1)
and integrating over the circle or radius R, cen-
tred at (x, y) means that the flux of u out of the
point (x, y) is given by∫ 2π

0

∫ R

0

ju(x, y)v(x+r cos(α), y+r sin(α))r dr dα,

(2)
where we note that the flux has the form of an
integral because the interactions can occur at any
point within the circle of radius R. Further de-
tails can be found in Appendix B.

In order to simplify the evolution equations
we assume that the radius of detection is small,
namely R = δs, and take the limit of R = δx =
δy = δs tending to zero. In Appendix C it is
demonstrated how Taylor expanding the resulting
integro-differential equations, setting J = δ4sjπ/3
to remain constant and taking the limit δs → 0
leads to the following closed system of partial dif-
ferential equations (PDEs),

∂u

∂t
=

3Jr21
4
∇2(uv)− r1J∇ · (uM(θ1)∇v) , (3)

∂v

∂t
=

3Jr22
4
∇2(uv) + r2J∇ · (vM(θ2)∇u) , (4)

where

M(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
(5)

is the standard two-dimensional rotation opera-
tor.

If we consider equation (3) (with analogous
insights holding for equation (4)) we see that
∇2(uv) is the local sensing term, whilst the
∇·(uM(θ)∇v) term is the non-local sensing term,
in that u is sensing the gradient in v. This can be
seen in the case that we consider v to be initially
a uniform field. In this case ∇v = 0, but there
should still be movement, which corresponds to
the term ∇2(uv), i.e. random motion, with a dif-
fusion rate proportional to the v concentration.
Further, ∇2(uv) does not contain an angle de-
pendent term because if the two cells are at the
same point there cannot be a preferred direction.
The first term does not appear in the work of
Painter, Sherratt and co-authors [29, 30] as they
only consider non-local interactions.

In the production of equations (3) and (4) we
have used many small scale approximations. Pre-
liminary stochastic, individual based simulations
suggest that at least some of the patterns present
in the continuum case (see Section III) are present
in the discrete case too (data not shown). How-
ever, the rigorous demonstration of this fact is
still in its infancy and the author intends to re-
turn to this question as a subject of future work.

A. Additional reactions

As we will see later the rotational dispersion
as defined in Section II cannot solely support
patterning, thus we include local interactions de-
fined by the functions f(u, v) and g(u, v), which
can simply be added to equations (3) and (4).
The functions f and g model the kinetic terms
and are, thus, usually non-linear. Whence, as
seen in Appendix D, we are able to apply the
standard Turing linear stability analysis, in or-
der to derive conditions under which pattern-
ing occurs. Specifically, in Appendix D, we as-
sume that in the absence of motion, J = 0,
there is a stable steady state, (u0, v0) satisfying
f(u0, v0) = g(u0, v0) = 0, whilst in the presence
of motion, J > 0, we derive sufficient conditions
that cause this steady state to be linearly unsta-
ble, resulting in a motion-driven instability that
drives the system into a heterogeneous state. Al-
though the linear stability analysis demonstrates
that the uniform steady state is unstable, we have
to carefully choose non-linear terms in order to
bound the heterogeneous solution.

From Appendix D we discover that the a pat-
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terning instability requires us to satisfy the fol- lowing inequalities,

fu + gv < 0, (6)

fugv − fvgu > 0, (7)

4 cos (θ1) cos (θ2)− 3r1 cos (θ2) + 3 cos (θ1) r2 > 0, (8)((
r2 (4 cos (θ2) + 3r2) fv − 3r1

2gv
) v0

4
−
(
r1 (4 cos (θ1)− 3r1) gu + 3fur2

2
) u0

4

)
<

−
√
r1r2 (4 cos (θ1) cos (θ2) + 3 cos (θ1) r2 − 3r1 cos (θ2))u0v0 (fugv − fvgu). (9)

Inequalities (6) to (9) are denoted patterning
conditions P1 – P4, respectively, and form the
four critical stability conditions that will keep the
steady state stable in the absence of motion, but
be driven to instability when motion is incorpo-
rated.

Here, we note a few key observation about the
conditions P1 – P4:

1. If interactions are not considered, f = g =
0, then no unstable frequencies can exist in
the presence of motion (as seen from equa-
tions (D4) and (D5)), hence, no patterns
can form. Thus, reactions are required in
this framework.

2. Since the four criteria depend (at most)
only on the cosine of the angles then
any stability criterion derived for (θ1, θ2)
would also hold for (−θ1, θ2), (θ1,−θ2) and
(−θ1,−θ2). Hence, we can restrict our anal-
ysis to the interval (θ1, θ2) ∈ [0, π]× [0, π].

3. Condition P3 depends solely on the geo-
metric variables (r1, r2, θ1, θ2). Further, P3
is illustrated for multiple values of (r1, r2) in
Figure 2 and, so, we observe that the valid
patterning values of (θ1, θ2) are highly re-
stricted. Critically, depending on the val-
ues of (r1, r2) there can be two disjoint
regions of (θ1, θ2) that are not admissible
(Figure 2(a)) or just one region (Figure
2(b)). Presently, we focus on the single re-
gion form and, thus, we are able to rear-
range P3 to provide the single-valued in-
equality

θ2 > max

{
0, arccos

(
3r2 cos(θ1)

3r1 − 4 cos(θ1)

)}
.

4. For all values of r1 and r2, the ‘high-θ1-
low-θ2’ parameter region is always outside
of the region defined by P3. Note that
high and low angles are used to colloquially
define appropriate regions of the interval
[0, π]. For an example ‘high-θ1-low-θ2’ see
the white region of Figure 2(b). The inter-
pretation of this region is that the ‘chaser’
and ‘chased’ cells run away from one an-
other, as each interaction will lead to a
wider separation than their previous states.
Intuitively, under these conditions, no pat-
tern can form.

5. Since inequality P3 depends only on r1,
r2, θ1 and θ2 the geometry of the chasing
cells fundamentally influences the stability
of the system, independently of the interac-
tion functions f and g. This means that it
is possible to set the chasing dynamic pa-
rameters, (r1, r2, θ1, θ2), in such a way that
the system will never pattern, regardless of
the interaction functional forms.

6. None of the four inequalities depend on the
reaction rate parameter J , thus, instability
is possible no matter how slow the interac-
tions occur, as long as J is positive.

7. As we will see in Section III patterns can
arise when θ1 = θ2. Equally, patterns are
possible when r1 = r2.

8. The previous two points highlight one of the
key differences between the requirements of
curved chasing and Turing patterns. Specif-
ically Turing patterns demand that the dif-
fusion coefficients of the two morphogen
populations are widely different. Here, the
movement rate and geometry of the chasing



5

(a) r1 = 0.3, r2 = 0.3. (b) r1 = 1, r2 = 2. (c)

FIG. 2. Illustrating condition P3 for different values of r1 and r2. In (a) and (b) the black region shows where
P3 is satisfied for specific examples of (r1, r2) noted beneath each figure, respectively. (c) illustrates multiple
different possible configurations of the (θ1, θ2) space. Each small square represents inequality condition P3
evaluated over (θ1, θ2) ∈ [0, π]× [0, π] with the corresponding values of r1 and r2 shown on the axes. The values
of r1 and r2 range over all possible combinations of {0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2}.

and chased populations can all be the same
and patterns will still occur.

9. The most likely chosen wave mode can be
derived from the dispersion relation in Ap-
pendix D. Critically, although it will be de-
pendent on the first derivatives and steady
states of the functional forms it can be seen
that frequencies will also be proportional to
J−1/2. Thus, even if the reaction kinetics
and geometry of the chasing dynamics are
fixed, we will still have explicit control over
the pattern wavelength through the reac-
tion rate, J .

III. RESULTS

In this section we look at multiple kinetic forms
and even add diffusion into the system. Our goal
is to illustrate not only the pattern forms that are
possible, but also demonstrate how the rotational
motion offers new types of previously unseen dy-
namics. Note that because we are application
independent, all variables and results are in ar-
bitrary consistent units. Since we have seen that
the instability is independent of J then through-
out the results section we fix J = 1. Equally,
since we want to maintain a large (θ1, θ2) param-
eter region we fix r1 = 1, r2 = 2, which produces
a parameter region as seen in Figure 2(b). Thus,
we are left with only a minority of angles in the
‘high-θ1-low-θ2’ region that are unable to pattern.

It should be noted that the analysis in Section
II and Appendix D does not include the influ-
ence of boundary conditions. Including bound-
aries simply restricts the frequencies, k, that can
appear. However, unless the wave modes are
highly constrained this extra restriction does not
help specify what pattern (e.g. spots, stripes, sta-
tionary or non-stationary) is likely to appear in
the full non-linear case as there are usually too
many patterning modes available to accurately
predict which one will be chosen by the random
initial conditions. Thus, we depend on the in-
sights provided by simulations as to the influence
of the boundary upon the solution. Specifically,
we will alter the simulation domain geometry to
include circles and squares and vary the bound-
ary conditions to include both zero-flux, periodic
and mixed conditions.

Finally, it should be reiterated that the
Schnakenberg kinetics, presented in Section III A,
and the kinetics derived later are chosen on an
ad-hoc basis. Specifically, we choose a variety of
prototypical patterning kinetics to demonstrate
the diversity of available patterns rather than fo-
cus on a single experimentally motivated case.

A. Schnakenberg kinetics

The first set of kinetics we consider are a
modified form of Turing kinetics known as the
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Schnakenberg system [34]

f = α− u+ u2v − εu3, (10)

g = β − u2v − εv3. (11)

Note that in addition to the standard kinetics a
non-linear term with coefficient ε > 0 has been
subtracted from each interaction function. In
the case that ε = 0 it can be shown that the
Schnakenberg kinetics are either stable or have
limit cycle behaviour, depending on the coeffi-
cients α and β [34, 35]. Critically, the kinet-
ics never cause either population density to blow
up. Thus, by subtracting a cubic non-linearity
of each population from their, respective, inter-
action functions we not only preserve the positiv-
ity of a solution (i.e. a solution beginning with
u, v > 0 will always remain in the positive pop-
ulation quadrant) but also the populations are
further constrained to exhibit finite bounded so-

lutions for all time (i.e. blow up will not occur).
The above arguments only work in the case

that we ignore space and treat the kinetics as
functional forms for ordinary differential equa-
tions. Once spatial motion is considered, we
can no longer guarantee finite populations for all
time, which is why the cubic terms are subtracted
from the kinetics. The idea is that if any popu-
lation begins to increase without bound then the
negative cubic terms will dominate the equations
and cause the equations (10) and (11) to be neg-
ative, resulting in a negative time derivative for
large population and, hence, a reduction in the
population. Hence we contradict the assumption
that a population could grow without bound. We
then assume that the argument holds similarly in
the spatially extended case.

Assuming ε � 1 conditions P1–P4 take the
form

P1 : 0 < 1 + (α+ β)2 − 2
β

(α+ β)
; (12)

P2 : 0 < (α+ β)2; (13)

P3 : 0 < 4 cos(θ1) cos(θ2) + 6 cos(θ1)− 3 cos(θ2); (14)

P4 : 2 (cos(θ1) + cos(θ2))− 15

4
+ 3

(α+ β)

β
< −

√
2(α+ β)

β
(4 cos(θ1) cos(θ2) + 6 cos(θ1)− 3 cos(θ2)).

(15)

Firstly, we note that P2 is always trivially sat-
isfied, the other three conditions depend on
(α, β, θ1, θ2).

In Figure 3 we illustrate the kinetic and an-
gular inequalities separately. For fixed values of
(θ1, θ2) we observe that the patterning region in
the (α, β) plane is unbounded. In particular,
for any given value of α we can always choose
β big enough to satisfy P4. However, given
fixed values of (α, β) the viable region in the
(θ1, θ2) parameter space is much smaller. Crit-
ically, π/2 < θ1, θ2 < π, thus, in terms of the in-
terpretation of the angles the ‘chaser’ would actu-
ally be running away from the ‘chased’, whilst the
‘chased’ would be running towards the ‘chaser’,
i.e. the roles would appear to be reversed.

Figure 4 illustrates the patterns possible when
parameters are chosen in the unstable regions of
Figure 3. We clearly observe that standard spot

patterns are able to form, similar to a Turing pat-
tern. However, although the pattern is stable in
terms of the number and size of spots the patterns
in figures 4(a) and 4(b) are able to slowly pro-
cess around their circular domain. Specifically,
we mark a spot on the outer ring with an as-
terisk and a spot on the inner ring with an ar-
row head. These track their respective spots and
aid in the visualisation of rotation. Critically,
in both figures 4(a) and 4(b) the outer ring of
spots rotates in a clockwise manner. This con-
trasts with the inner ring of spots which rotates
anti-clockwise in Figure 4(a), but does not move
in Figure 4(b). The only difference between these
two simulations is the size of the domain. In Fig-
ure 4(a) the radius is 11 and is able to sustain 12
spots in the outer ring and five in the inner ring.
This can be compared with Figure 4(b), which
has radius 12 and is able to support 13 spots in



7

(a)

(b)

FIG. 3. Possible parameter regions for a pattern-
ing instability to occur in the Schnakenberg kinet-
ics. (a) The feasible (α, β) parameter region when
(θ1, θ2) = (1.8, 2.2), note condition P2 is satisfied
everywhere under these kinetics. (b) The feasible
(θ1, θ2) parameter region when (α, β) = (0.1, 0.9).

the outer ring, 6 hexagonally packed spots in the
inner ring and 1 central spot.

These rotating patterns can be further com-
pared with Figure 4(c), which illustrates the ex-
act same simulation but on a square domain of
side length 20. Now the pattern evolves to a sta-
tionary stable state. Overall, we are able to use

Figure 4 to clearly show that the boundary of the
simulation has a critical influence on the evolu-
tion of the patterned state.

Following on from this we then consider the im-
pact of the kinetics of the simulation. As noted
in Figure 3(a), patterns can always be formed
for large enough values of β. Thus, in Figure 5
we illustrate the influence of increasing β, whilst
keeping all other parameters, initial conditions
and boundary conditions the same. For small val-
ues of β we find only stationary structures and a
transition from spots to stripes that matches the
insights gained from a standard Turing pattern
(see figures 5(a)-5(d)). However, for large enough
β the system forms a central region of low density
surrounded by a high density ‘ring’. This high
density ring then has multiple thin ‘tendrils’, or
‘arms’ of high density linking it to the boundary.
The number of tendrils is dependent on β. Once
this pattern is formed it appears to process stably
in a clockwise manner, even though we are on a
square domain (see figures 5(e) and 5(f)).

1. Periodic boundary conditions

Figure 5 demonstrated that the patterns are
highly sensitive to boundary geometry. In this
section we briefly investigate the influence of
changing the boundary conditions. Specifically,
we simulate the exact same system as that seen
in Figure 5, but the left and right boundary con-
ditions are periodically identified and the top
and bottom boundaries are periodically identi-
fied. Thus, the simulations are topologically on a
torus.

When β = 1.4 a stationary, regular array of
spots is produced, similar to that seen in Figure
5(a) (data not shown). Equally, when β = 2.3
the simulation simply converges to a stationary
labyrinthine pattern, similar to that seen in Fig-
ure 5(c) (data not shown). However, the cases
of β = 1.9, 3.2, 3.7 are quite different. Specif-
ically, the rotating patterns of figures 5(e) and
5(f) become stationary labyrinthine patterns that
produce an approximately hexagonal grid (data
not shown). Further, the β = 1.9 case does not
seem to converge to a steady state (see Figure
6(a)), rather the labyrinthine patterns appears
to constantly evolve, writhe and twist. Finally,
although the β = 3.2 case appears to settle into
a final labyrinthine pattern the global pattern is
not stationary. Critically, it is seen to slowly drift
down the domain (compare the left and right im-
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(a)

(b)

(c) (d)

FIG. 4. Patterns present at one parameter set of the Schnakenberg kinetics (without diffusion). (a) and (b)
present five different time points of the simulation, t = 3000, 3500, 4000, 4500, 5000. The figures illustrate a
stable rotating pattern that appears on circular domains of radius (a) 11 and (b) 12. The yellow asterisk and
white arrow head indicate the motion of a particular spot, thus making the rotation easier to see. (c) presents
the equations solved on a square domain (side length 20), with the same parameter values and boundary
conditions as (a) and (b). The pattern in (c) is stationary. (d) illustrates the relative angles and distance of
the cell movement. The qualitative motion of the u population is given by the light yellow cell on the left,
whilst the dark black cell on the right illustrates the qualitative motion of the v population (c.f. Figure 1). In
this, and all other schematic images, the angles, θ1 and θ2, are measured relative to the dashed, horizontal line
joining their cell centres. Parameters are α = 0.1, β = 0.9, ε = 10−2 θ1 = 1.8, θ2 = −2.2, boundary conditions
are zero-flux everywhere and the same uniformly distributed random initial initial conditions were used in each
simulation. The pseudo-colour scale spans 7 (arbitrary units) in the spot peak to 0.1 (arbitrary units) in the
trough, inter-spot region.

ages of Figure 6(b)).

2. Mixed boundary conditions

Having simulated both zero-flux and periodic
boundary conditions separately, we now seek to
combine the influences in this section. Specifi-
cally, Figure 7 simulates the exact same kinet-
ics, initial conditions and parameter values as in
Section III A, except that the zero-flux bound-
ary condition is only defined on the left and right
boundaries. The top and bottom boundaries are
assumed to be periodic. Thus, the simulations

are topologically on a cylinder. Each subfigure
of Figure 7 illustrates increasing time points (see
caption) demonstrating pattern evolution.

Intriguingly, the simulations outcomes are
quite different from either of the cases in which
the boundary conditions are purely zero-flux, or
purely periodic. Specifically, although the pat-
terns transitions between spots and stripes at
broadly the same values of β (compare figures 5
and 7) the patterns are able to constantly evolve
in unusual ways.

Figure 7(a) illustrates a simulation of moving
spots, however, the spots do not all move in the
same direction. The three left-hand spot columns
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(a) β = 1.4 (b) β = 1.9 (c) β = 2.3 (d) β = 3.2

(e) β = 3.7

(f) β = 4.1

FIG. 5. A parameter sweep of the Schnakenberg kinetics (without diffusion) over β. Patterns (a)-(d) are
stationary, whilst (e) and (f) produce stable rotating ‘rings’ with five and six ‘arms’, respectively. Parameters
are the same as in Figure 4 except for β, which is noted beneath each subfigure.

(a) β = 1.9

(b) β = 3.2

FIG. 6. Simulations from figures 5(b) and 5(d) repeated, but with periodic boundary conditions linking the
left and right boundaries, as well as the top and bottom boundaries. (a) Time points shown (left to right) are
210, 300, 650, 850 and 1000. (b) Time points shown (left to right) are 600 and 1000. Parameters and all other
conditions are the same as Figure 5 except for β, which is noted beneath each subfigure.

travel up the domain with a consistent hexagonal
planiform. The two right-hand columns travel
down the domain (see the illustrated black ar-

rows on Figure 7(a)) but their spacing is much
less consistent and the spots often coalesce and
split apart (see the top right of the centre image
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(a) β = 1.4

(b) β = 2.3

(c) β = 3.2

(d) β = 3.7

FIG. 7. Simulations from Figures 5(a), 5(c), 5(d) and 5(e) repeated, but with mixed boundary conditions.
Specifically the top and bottom boundaries are linked periodically, whilst the left and right boundaries have
zero-flux boundary conditions. Time points shown (left to right) are: (a) 280, 350, 420, 490 and 560; (b) 400,
450, 500, 550, 600; (c) and (d) 400, 480, 560, 640, 720. Parameters and all other conditions are the same as
Figure 5. The β parameter is noted beneath each subfigure.

of Figure 7(a) for an example of spot splitting).
Here the ‘shuttling’ movement dynamics of the
spots can be compared with the simulations from
Section III A and Section III A 1, where it was
noted that in both cases the spot patterns were
stationary.

When β = 1.9, 2.3, or 2.8 the simulations are
much simpler to understand. The pattern evolves
to a looped labyrinthine state. This state is then
fixed relative to a moving frame of reference, as
the pattern simply moves up the solution domain
at a constant rate (see Figure 7(b) as a proto-
typical example). This again can be compared
with the single type boundary conditions in the
previous two sections, where the patterns were
stationary

In contrast to figures 7(a) and 7(b) the simu-

lation illustrated in Figure 7(c) does not trans-
late up or down the domain. Instead, we ob-
serve enclosed structures that oscillate between
two states. For example if we label the subfig-
ures of Figure 7(c) 1-5, left to right, respectively,
then subfigures 1, 3 and 5 present one form of
structure, whilst subfigures 2 and 4 illustrate the
alternative oscillation form.

Finally, Figure 7(d), illustrates the most com-
plex dynamics of all. Namely, the labyrinthine
pattern is constantly evolving. Simultaneously
the pattern undergoes a noticeable upwards drift.

In summary Section III A, Section III A 1 and
Section III A 2 have illustrated that the patterns
producible within the chiral chasing mechanism
are incredibly complex. Moreover, the patterns
depend heavily on the boundary conditions, spa-
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tial geometry and parameter values. This sen-
sitivity to the noted factors appear to be more
critical in the chasing mechanism than in a sim-
ple Turing pattern case, where, in general, it
is seen that zero-flux boundary conditions often
produce the same outcomes as periodic boundary
conditions since zero-flux conditions are a sub-
symmetry of the periodic boundary conditions.

3. Schnakenberg kinetics with diffusion

In Section III A we saw that the Schnakenberg
kinetics heavily restrict the angles that can lead
to a patterning instability. In order to maximise
the patterning domain we add in the assumption
that the morphogens are allowed to diffuse with
constant, positive diffusion rates, Du and Dv, re-
spectively. Further, we choose the diffusion rates
to ensure that the system is Turing unstable to
begin with. Hence, the chasing dynamic becomes
a perturbation around the original Turing pat-
tern and we can question how the pattern changes
with the angle.

Specifically, we consider the equations

∂u

∂t
= Du∇2u

+
3Jr21

4
∇2(uv)− r1J∇ · (uM(θ1)∇v)

+ α− u+ u2v − εu3, (16)

∂v

∂t
= Dv∇2v

+
3Jr22

4
∇2(uv) + r2J∇ · (vM(θ2)∇u)

+ β − u2v − εv3, (17)

where, as before, r1 = 1 and r2 = 2. Note that
although we will be also fixing J = 1 during the
simulations of the equations we allow the vari-
able to remain in the equations to illustrate its
appearance in the conditions P3 and P4 and, fur-
ther, illustrate that if J = 0 then the conditions
simplify to the standard Turing conditions. The
Fourier analysis in Appendix D can be applied
nearly identically to equations (16) and (17). We
note that conditions P1 and P2 are identical and
that we can derive the following forms for P3 and
P4:

P3 : 0 <
J2β(4 cos(θ1) cos(θ2) + 6 cos(θ1)− 3 cos(θ2))

2(α+ β)
+ 3J

(
Du(α+ β) +

βDv

4(α+ β)2

)
+DuDv;

(18)

P4 :
J

4
(8 cos(θ1)β + 8 cos(θ2)β − 15β + 12(α+ β)) +Du(α+ β)2 +Dv

α− β
(α+ β)

< (19)

− 2(α+ β)

√
J2β(4 cos(θ1) cos(θ2) + 6 cos(θ1)− 3 cos(θ2))

2(α+ β)
+ 3J

(
Du(α+ β) +

βDv

4(α+ β)2

)
+DuDv.

Figure 8(a) demonstrates that by adding dif- fusion into the equation many more values of
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(θ1, θ2) can drive the uniform steady state unsta-
ble, although the ‘small-θ1-small-θ2’ is still not
valid. By increasing the ratio Dv/Du the en-
tire (θ1, θ2) parameter region can be made viable.
However, in this case diffusion dominates the sys-
tem and rotational chasing effects are not seen.
Critically, what we have gained in (θ1, θ2) param-
eter space we have lost in the (α, β) parameter re-
gion (see Figure 8(b)). Here, we observe that the
patterning region is now no longer unbounded.
Moreover, although we are only showing the out-
come for one set of (θ1, θ2) the size of the valid pa-
rameter region is only weakly dependent on these
angles and not only does the valid region always
stay bounded but it also hardly changes size as
the angles are varied.

The main point that we want to illustrate in
this section is that we can theoretically repro-
duce the experimental trends discovered in [26].
Namely that the microscale chirality of the popu-
lation agents can change the macroscale popula-
tion pattern (see Figure 9) as we observe a tran-
sition from stripes to spots on all domains as θ2
is varied. Further, we see the boundary geometry
once again playing a large role in pattern selec-
tion and dynamics. Specifically, when θ2 = −1.4
the circle domain supports spot patterns, whereas
the square domain produces stripes. Equally, all
square domain patterns are stationary, whilst the
patterns on the circle domains rotate. Notably,
the direction of pattern rotation also appears to
be dependent on θ2, that is, the circular domain
patterns spiral clockwise for θ2 > −0.7 and an-
ticlockwise for θ2 < −0.7. Finally, we note that
similar results occur if θ1 is varied (simulations
not shown), thus, these results are not special to
the v population.

We close this section by illustrating one final
result that demonstrates that stripes on a square
domain are also able to undergo boundary rota-
tions. Specifically, in Figure 10(a), we see ten
time points in a simulation that shows that al-
though the main vertical stripe pattern is sta-
ble there are boundary spots that rotate anti-
clockwise. Moreover, the dynamics repeat them-
selves because the pattern at time 4100 appears
to match that at time 4600 and so the boundary
densities are able to rotate around the domain in
500 time units.

(a)

(b)

FIG. 8. Possible parameter regions for a pattern-
ing instability to occur in the Schnakenberg kinetics
when diffusion is added. (a) The feasible (θ1, θ2) pa-
rameter region when (α, β) = (0.11, 0.9). (b) The
feasible (α, β) regions (when (θ1, θ2) = (1.8, 2.2)) for
P1 (top left), P3 (top right) and P4 (bottom left),
respectively. The bottom right figure of (b) shows the
intersection of the other three feasible regions. Note
condition P2 is satisfied everywhere under these ki-
netics. Parameters are J = 1, Du = 1 and Dv = 22.

B. Small angle patterns

Although we have shown that the angular chas-
ing mechanism can generate patterns we have still
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(a)θ2 = 0

(b)θ2 = −0.7

(c)θ2 = −1.4

(d)θ2 = −2.1

(e)

FIG. 9. The influence of angle on the pattern. Each
simulation is done both on a circular and a square
domain using Schnakenberg kinetics (with diffusion).
The circle and square on the left of each subfigure
are snapshots taken at time t = 4500, whilst those on
the right are taken at time t = 5000. The two time
points are to highlight which patterns are stationary
and which are rotating. Namely, all circular patterns
are rotating, whilst all square patterns are stationary.
(e) illustrates the relative angles and distance of the
cell movement in (a)-(d). Parameters are J = 1, α =
0.11, β = 1.1 and θ1 = 2.79. The value of θ2 is given
beneath each subfigure. The circle has radius 10, the
square has side length 20.

to show that patterns can form in the ‘small-θ1-
small-θ2’ region, which is perhaps the most real-
istically pertinent region of parameter space. In
Appendix E we show that it is theoretically pos-
sible to generate patterns when |θ1|, |θ2| < 1. In
this section we use those insights to provide two
sets of kinetics that were produced on an ad-hoc
basis to satisfy conditions P1-P4. Again, we note

that we are not suggesting that these model a par-
ticular biological reaction, rather we are demon-
strating the dynamics that the angular chasing
framework can produce. Specifically, the reader
can check that

f1 = 1 + u1.9 − 2u0.9v2 − 10−6u2, (20)

g1 = 0.1− 2.1v2.8 + 2u3v1.59 − 10−6v2, (21)

and

f2 = 2.95− u41/40 − 1.95
√
uv − 10−3u7, (22)

g2 = 2− 2uv − 10−3v7. (23)

satisfy the patterning conditions with steady
states approximately equal to (1, 1). The analo-
gous (θ1, θ2) parameter regions are shown in Fig-
ure 11. Clearly, we observe that both sets of ki-
netics are predicted to evolve to spatial hetero-
geneity for values of |θ1|, |θ2| < 1.

Upon simulating kinetics f1 and g1 with θ1 =
0.1 = θ2 we find we can produce a spot patten on
the circular domain (see Figure 12) in which the
density of the morphogens never becomes station-
ary. Specifically, we observe that the spots con-
tinuously oscillate irregularly, with no apparent
coupling between spots (see Figure 12(c)). Fur-
thermore the spots on the boundary slowly rotate
clockwise. Although proving such density oscilla-
tions are chaotic is outside the scope of this paper
we should not be surprised that chaotic effects
can be found by coupling the set of kinetics to
the motion as it is well-known that chaotic Tur-
ing patterns can appear if the non-linearities of
the interactions are chosen carefully [36].

Our final simulation, in Figure 13, of kinet-
ics f2 and g2 illustrates points 2 and 7 of the
list in Section II A. Specifically, patterns can
form when θ1 = θ2 and for all combinations of
(±θ1,±θ2). Similar to the result seen in Figure 9,
different angle values produce different patterns
and directions of rotation. However, as we might
expect, the system patterns are the same when
both angles switch sign, although the direction
of rotation is reversed. Namely, (0.4, 0.4) and
(−0.4,−0.4) both produce labyrinthine patterns
on the circle, but (0.4, 0.4) rotates anticlockwise,
whilst (−0.4,−0.4) rotates in a clockwise man-
ner. Similar observations can be made when the
angles are (0.4,−0.4) and (−0.4, 0.4).

One critical note should be made when consid-
ering the patterns exhibited under the four angles
(±θ1,±θ2). Although the linear analysis suggests
that in all four cases the uniform steady state
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(a)

(b)

FIG. 10. Simulations of the Schnakenberg kinetics (with diffusion) at time points 4100 to 5000 in steps of 100
showing that the pattern on the boundary of the square domain rotates. If the pattern is simulated on a circle
then the whole pattern rotates (simulations not shown). (b) illustrates the relative angles and distance of the
cell movement. Parameters α = 0.11, β = 1.1, θ1 = 3.14, θ2 = 1.4. The square has side length 20.

becomes unstable in the same way this does not
mean that the non-linear interactions will be able
to stabilise a final pattern for all four angles. In-
deed, many of the patterns produced in Section
III A exhibit solution blow up instabilities if the
signs of the angles are changed.

IV. SUMMARY AND CONCLUSION

In this paper we have been motivated by bi-
ological results on chiral cellular chasing to ex-
tend a deterministic integro-differential equation
framework to include a rotational chasing mech-
anism. The framework was simplified through
the use of multiple small limits leading to a cou-
pled set of partial differential equations which
were amenable to standard Fourier analysis. By
extending the derivation to include higher order
derivatives, and by choosing the correct balance
of parameters, it maybe possible to produce a sys-
tem of PDEs, which have a non-trivial, bounded
dispersion relation, without the need for extra ki-
netics. This is outside the scope of the current
paper, but will be considered in future work.

The analytical and simulated results in sections
II and III clearly demonstrate that the chiral
chasing mechanism is able to destabilise a homo-
geneous steady state, similar to a Turing insta-
bility. However, the dependence of the instability
conditions on the motion mechanism appear to
be weaker than most Turing systems, which are
well known for only patterning in small regions
of parameter space [37].

The addition of this new motion type has en-
riched the complexity of the framework presented

by Painter, Sherratt and co-authors [29, 30].
Specifically, a number of the patterns (see Fig-
ure 5) have never before been seen by the author.
Further, although we may question the applica-
tion of such new patterns to biological systems,
the purpose of this article has not been to fo-
cus on a specific realistic application, but rather
develop the underlying theory and demonstrate
the wide variety of patterns available. Namely
all of the known standard patterning solutions:
spots; stripes; labyrinthine; etc. patterns are
available with the added dynamics of stable spa-
tial rotations. However, beyond the theoretical
development of the framework, perhaps the most
important applicable result we have produced
is that our results corroborate the experimental
idea that the global pigmentation pattern of a ze-
brafish’s skin can be dependent on the chirality
of the morphogens. Critically, due to the ad-hoc
nature of the kinetics, the resulting insights gen-
erated in this paper only demonstrate that such
micro- to macro-scale relationship can occur. In
future work the author intends to focus on the
specific case of the zebrafish chromatophore in-
teractions and compare the data of wild-type and
mutated fish with simulations produced from the
theoretical framework constructed here.

Notably, although, the zebrafish’s patterns do
not generally move it has been shown through
laser ablation experiments that the stripes can ac-
tively evolve to a steady state if their initial pat-
tern is disrupted [21]. However, moving pigmen-
tation patterns in fish are possible. The flamboy-
ant cuttlefish, metasepia pfefferi, presents active
moving stripes and spiral patterns in real time on
its skin [38].
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(a)

(b)

FIG. 11. Possible parameter regions for a pattern-
ing instability to occur when kinetic functions (a) f1
and g1 (equations (20) and (21)) and (b) f2 and g2
(equations (22) and (23)) are used.

Due to the increased complexity of rotating
patterns seen in this framework there are many
further interesting questions to investigate re-
garding the chasing motion. For example, we
have seen that the rotational speed and direction
of the pattern appears to depend on the geometric
angle of the chasing (see Figure 9). Equally, the
influence of the boundary conditions and shape
seem to be key. However, at the moment we need
to rely on simulation in order to understand these

non-linear effects. Thus, we look forward to in-
vestigating these and other questions arising from
rotational chasing in the future.
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Appendix A: Diffusion equation derivation

The derivation that follows derives the diffu-
sion equation in one dimension. Critically, the
angular chasing mechanism that we will be con-
sidering needs a minimum of two-dimensions to
be defined. Thus, we should note that we are only
considering a one-dimensional diffusion deriva-
tion for simplicity and to illustrate the connection
between a discretised system and its continuous
analogue.

We consider a one-dimensional space, [0, L],
discretised into N ∈ N intervals of equal size,
δx = L/N . Note that extending the derivation
to higher dimensions is trivial, but algebraically
cumbersome. Each interval, i = 1, . . . , N , con-
tains a density ui = u((i − 1/2)δx), which is de-
fined to be in the centre of each interval. Each
population is able to undergo an unbiased ran-
dom walk, with rate d. This can be written as a
set of interaction equations,

u1
d−⇀↽−
d
u2

d−⇀↽−
d
. . .

d−⇀↽−
d
uN−1

d−⇀↽−
d
uN . (A1)

These equations assume that the boundaries are
reflective and that nothing can leave the domain.
Thus, the system has zero-flux boundary condi-
tions.

Using the Law of Mass Action on equation (A1)
we are able to derive the following system of cou-
pled ordinary differential equations, which define
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(a) (b)

(c)

FIG. 12. ‘Twinkling spots’ of density oscillations, with rotating boundary spots can be produced from the
angular chasing mechanism. (a) Consecutive time points taken every one arbitrary unit of time illustrating the
twinkling spot pattern. (b) illustrates the relative angles and distance of the cell movement. (c) Concentration
trace over time of a single point. The point is marked with an asterisk in the left pattern and the chosen point
is the centre of a spot. Parameters θ1 = 0.1 = θ2. The circle’s radius is 10.

the evolution of each continuous population:

du1
dt

= d (u2 − u1) , (A2)

dui
dt

= d (ui−1 − 2ui + ui+1) , i = 2, . . . , N − 1,

(A3)

duN
dt

= d (uN−1 − uN ) . (A4)

Upon taking the limit δx → 0 and requiring
D = dδ2x to be finite, we derive the standard
partial differential equation representation of the

diffusion equation,

∂u

∂t
= D

∂2u

∂x2
, (A5)

∂u

∂x
= 0, x = 0, L. (A6)

Appendix B: Detailed derivation of chiral
chasing equations

Considering Figure 1 and assuming that all in-
teractions have the same propensity rate, j > 0,
then all fluxes to and from a point (x, y) can be
written in terms of similar interaction equations:

u(x− r1x, y − r1y) + v(x− r1x + r cos(α), y − r1y + r sin(α))
j−→ u(x, y)+ (B1)

v(x− r1x + r cos(α) + r2x, y − r1y + r sin(α) + r2y);

u(x− r cos(α), y − r sin(α)) + v(x, y)
j−→ u(x− r cos(α) + r1x, y − r sin(α) + r1y)+ (B2)

v(x+ r2x, y + r2y);

u(x− r cos(α)− r2x, y − r sin(α)− r2y) + v(x− r2x, y − r2y)
j−→ v(x, y)+ (B3)

u(x− r cos(α) + r1x − r2x, y − r sin(α) + r1y − r2y).
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(a)(θ1, θ2) = (0.4, 0.4)

(b)(θ1, θ2) = (−0.4, 0.4)

(c)(θ1, θ2) = (0.4,−0.4)

(d)(θ1, θ2) = (−0.4,−0.4)

(e)

FIG. 13. Influence of angle sign on pattern. Each
simulation is identical except for the values of (θ1, θ2),
which are specified in the subcaption of each figure,
respectively. Two time points are shown for each sim-
ulation, namely the figures on the left are at t = 3500,
whilst the figures on the right are at t = 5000. This
illustrates the rotation of the patterns on the circu-
lar domains. (e) illustrates the relative angles and
distance of the cell movement in (a). The relative
angle and distances for (b)-(c) are simply appropri-
ate reflections of the arrows in the horizontal dashed
line. The circle’s radius is 10 and the square has side
length 20.

In terms of meaning: equations (1) and (B1)
are the equations governing the rate at which
u moves from and to the position (x, y), respec-
tively; equations (B2) and (B3) are the analogous

equations for the v population.
Using the Law of Mass Action, the evolu-

tion equations can then be rewritten in terms of
integro-differential equations,

∂u

∂t
=

∫ 2π

0

∫ R

0

[−u(x, y)v(x+ r cos(α), y + r sin(α)) + u(x− r1x, y − r1y)× (B4)

v(x− r1x + r cos(α), y − r1y + r sin(α))] jr dr dα,

∂v

∂t
=

∫ 2π

0

∫ R

0

[−u(x− r cos(α), y − r sin(α))v(x, y) + v(x− r2x, y − r2y)× (B5)

u(x− r cos(α)− r2x, y − r sin(α)− r2y)] jr dr dα.
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Next, we take the limits δx, δy → 0 with the fur-
ther constraint that δx = δy = δs and j is chosen
such that J = jδs remains finite.

Specifically, the integrals in equations (B4) and
(B5) calculate the net flux of the u and v popu-
lations into a point (x, y), respectively. Further

the variables ril, i ∈ {1, 2}, l ∈ {x, y}, are de-
fined to be r1x = r1δx cos(θ1), r1y = r1δy sin(θ1),
r2x = r2δx cos(θ2) and r2y = r2δy cos(θ2).

Assuming δx and δy are small we derive a mul-
tiseries expansion of equations (B4) and (B5) up
to first order. Specifically, equation (B4) becomes

∂u

∂t
=

∫ 2π

0

∫ R

0

− cos (α+ θ1) jrr1δx

(
∂u

∂x
(x, y) v (x+ r cos (α) , y + r sin (α)) (B6)

+u (x, y)
∂v

∂x
(x+ r cos (α) , y + r sin (α))

)
− sin (α+ θ1) jrr1δy

(
∂u

∂y
(x, y) v (x+ r cos (α) , y + r sin (α))

+
∂v

∂y
(x+ r cos (α) , y + r sin (α))u (x, y)

)
+O

(
δ2x, δ

2
y, δxδy

)
drdα.

We now fix δx = δy = δs, define J = jδs and let
δs → 0. Upon simplification we derive

∂u

∂t
= −r1J

∫ 2π

0

∫ R

0

(
cos(α+ θ1)
sin(α+ θ1)

)
· ∇ (u(x, y)v(x+ r cos(α))) r dr dα. (B7)

(B8)

If equation (B5) is handled in the same way then
we derive.

∂v

∂t
= −r2J

∫ 2π

0

∫ R

0

(
cos(α− θ2)
sin(α− θ2)

)
· ∇ (v(x, y)u(x− r cos(α))) r dr dα. (B9)

In the case that θ1 = θ2 = 0 we reduce to the
previously derived equations from [29, 30] with
appropriate choices of integral kernel and addi-
tional local term.

Appendix C: Expanding in terms on R, δx
and δy

In order to simplify the equations produced in
Appendix B further we also take the limit of small

detection radius. Namely, we return to equation
(B4) and Taylor expand the equation up to order
four in R, δx and δy, in order to give
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∂u

∂t
=
πR3jr1

3
((vxyu+ vyux) δx − (vxyu+ vxuy) δy) sin (θ1)

− πR3jr1
3

((uvxx + uxvx) δx + (uvyy + uyvy) δy) cos (θ1)

+
πR2jr1

2

4

(
(uvxx + uxxv + 2uxvx) δx

2 + (uvyy + uyyv + 2uyvy) δy
2
)

+O
(
Ri1δi2x δ

i3
y

)
, (C1)

where i1 + i2 + i3 > 4. For the sake of brevity,
we have suppressed the arguments, (x, y, t), and
written all spatial derivatives as underscores.

We intend to take the limit of R = δx = δy = δs
tending to zero, however, we specify that j be
chosen such that J = δ4sjπ/3 remains constant.
Hence, substituting δs and J into the equations
and taking the limit δs → 0, we derive (3). The
equation for v can be produced analogously and
is shown in (4).

Appendix D: Stability conditions arising from
linearising about a homogeneous steady state

The following analysis all takes place on an in-
finite domain, thus, we begin by defining the per-
turbation

u = u0 + eu exp(Ik · x + λt), (D1)

v = v0 + ev exp(Ik · x + λt), (D2)

where I is the standard imaginary unit, k =
(kx, ky)T is a general wave mode from the so-
lution’s Fourier expansion, x = (x, y)T is the
regular Cartesian coordinate vector, eu and ev
are general constants that control the size of
the initial perturbation, so we assume that 0 <
|eu|, |ev| � 1, and λ defines the stability of the
steady state. From the above assumptions, when
J = 0 we require that all possible values of λ
have negative real part, whilst when J > 0 we
require that there is at least one viable value of λ
that has positive real part. Finally, we note that,
by combining the spatial perturbation into the
exponential equation we are assuming that the
system is being simulated on an infinite domain.
Other boundary conditions can be accounted for
by altering the perturbation form [9].

Substituting equations (D1) and (D2) into
equations (3) and (4), with reaction terms f and g
added to the u and v equations, respectively, and
expanding each equation to linear order we can
turn the two resulting linear relationships into a
single matrix equation,

(
−λ+ fu − 3Jk2r21v0/4 Jk2r1u0 (cos(θ1)− 3r1/4) + fv

−Jk2r2v0 (cos(θ2)− 3r2/4) + gu −λ+ gv − 3Jk2r22u0/4

)(
e1
e2

)
= 0, (D3)

where fi, i ∈ {u, v} represents the partial deriva-
tive of f , with respect to i and then evaluated at
the steady state. The gi, i ∈ {u, v} are similarly
defined.

In order for a non-trivial solution of (e1, e2)T

to exist the matrix in equation (D3) must be sin-
gular and the problem of stability converts to a

problem of finding null-eigenvalues, λ, of equa-
tion (D3). Setting the determinant of the matrix
to zero we derive the dispersion relation,

λ2 +

((
r1

2v0 + r22u0
) 3Jk2

4
− fu − gv

)
λ+h(k2),

(D4)
where
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h(k2) = (4 cos (θ1) cos (θ2)− 3r1 cos (θ2) + 3 cos (θ1) r2)
r1r2u0v0J

2k4

4

+
((
r2 (4 cos (θ2) + 3r2) fv − 3r1

2gv
)
v0 −

(
r1 (4 cos (θ1) + 3r1) gu − 3fur2

2
)
u0
) Jk2

4
+ fugv − fvgu.

(D5)

In order to ensure that the roots of equation
(D4) have negative real part when J = 0 it is nec-
essary and sufficient for the constant term, h(k2),
and the coefficient of λ to be positive. Hence, for
stability in the absence of motion, J = 0, we must
have

fu + gv < 0 (D6)

fugv − fvgu > 0, (D7)

which, unsurprisingly, match the initial Turing
conditions without diffusion. We denote these
conditions P1 and P2, respectively. In the case
that J > 0 we desire that an instability exists.
Thus, either the constant term, h(k2), or the co-
efficient of λ must be negative, for some value of
k. Since the term(

r1
2v0 + r22u0

) 3Jk2

4
(D8)

is guaranteed to be positive (as we are assuming
that the steady states are realistic and, thus, non-
negative) then we deduce that the coefficient of
λ must always be positive. Hence, the only way
to drive the system to instability is if h(k2) < 0,
for some k2 > 0.

We, firstly, note that h(k2) is quadratic in k2.
Thus, for large enough k, the sign of h will be
determined by the sign of the coefficient of k4. In
order to stop arbitrarily small wavelengths from
growing and breaking a simulation down to just
noise (simulations not shown), we require that the
unstable wave modes should be bounded above,
meaning that h(k2) should be positive for large
k > 0 and, so, we require

4 cos (θ1) cos (θ2)− 3r1 cos (θ2) + 3 cos (θ1) r2 > 0,
(D9)

This inequality is denoted condition P3.
Having specified the problem to ensure that

h(k2) has positive leading order polynomial term
we now require that the quartic becomes negative
for a non-trivial interval of k. This means that
not only do we want at least two roots of the
quartic h to have a positive real part, but we also
demand that the roots are real at the bifurcation
point. Treating the equation as a quadratic in
k2 and considering the binomial formula we con-
clude that we need the discriminant to be positive
and the coefficient of k2 to be negative. These
two conditions can be wrapped up into a single
inequality,

((
r2 (4 cos (θ2) + 3r2) fv − 3r1

2gv
) v0

4
−
(
r1 (4 cos (θ1)− 3r1) gu + 3fur2

2
) u0

4

)
< (D10)

−
√
r1r2 (4 cos (θ1) cos (θ2) + 3 cos (θ1) r2 − 3r1 cos (θ2))u0v0 (fugv − fvgu),

which is denoted condition P4.

Appendix E: Small angle derivation

In this section we further simplify the condi-
tions derived in Appendix D under the assump-
tion that we are looking for solutions with only

small values of θ1 and θ2. This section is needed
because from simulation experience (as seen in
Section III) some of the common patterning ki-
netics tend to rule out small angle solutions, as
they require θ1, θ2 > π/2. Hence, we want to
show that such small angle patterns are (at least
theoretically) possible in order to match the re-
sults in [26], where a number of the deviating
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angles were less than 1 rad.
Firstly, inequalities (D6) and (D7) are inde-

pendent of the angles and, so, they remain the
same regardless the values of (θ1, θ2). Further,
since the equations all contain only cosine func-
tions then the leading order correction will come
in at the order of θ2i , i ∈ {1, 2}, thus, linearised
equations will eliminate all angular terms. Ex-
panding inequality (D9) about θ1 = θ2 = 0 we
see that the condition to be satisfied is simply

r1 <
4

3
+ r2. (E1)

Hence, we can see that, although the chaser
cells, u, can move further than the escaping cells,
v, during each interaction, their movement is
bounded above, whereas the movement range of
the v population is not.

Condition P4 is not so easy to simplify and,
thus, we show that small angle patterned solu-
tions are possible by appealing to a specific sim-
plified form of the kinetics, namely,

f = 1 + fuu+ fvv, (E2)

g = 1 + guu+ gvv, (E3)

where we further assume that fv, gu > 0, to
ensure the positivity of the homogeneous steady
state solution and we fix r1 = 1 and r2 = 2 to
reduce the number of free parameters. Note that
because we are only dealing with linear kinetics

any motion-driven instability will grow without
bound. However, once we have derived a sys-
tem that is driven unstable by motion we can
add non-linearities, multiplied by small factors.
These non-linearities are designed to keep the so-
lution bounded, and the small multiplicative fac-
tors ensure that they will not greatly influence
the prior linear analysis, that is, we are in the
weakly non-linear regime.

Substituting equations (E2) and (E3) into con-
ditions P1-P4 and linearising with respect to
θ1 and θ2 generates four inequalities. We in-
sert these inequalities along with the constraints
u0, v0 > 0 into an algebraic manipulation package
in order to see if there are non-trivial parameter
regions in which the conditions can all be satis-
fied. Critically, there are many possible parame-
ter regions that satisfy the conditions, thus, there
are plenty of possible values of (fu, fv, gu, gv) to
choose from, even with the large number of con-
straints we have placed on the solution. For ex-
ample, one particular simple set of kinetics have
the generic form

−12fv =gv < 0, (E4)

fu < −
69gu
100

, (E5)

0 <gu < −
656gv
3191

. (E6)
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