
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/104332/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Walker, David W. 2018. Morton ordering of 2D arrays for efficient access to hierarchical memory.
International Journal of High Performance Computing Applications 32 (1) , pp. 189-203.

10.1177/1094342017725568

Publishers page: http://dx.doi.org/10.1177/1094342017725568

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

Morton Ordering of 2D Arrays for
Efficient Access to Hierarchical Memory

Journal Title

XX(X):1–16

c©The Author(s) 2016

Reprints and permission:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/ToBeAssigned

www.sagepub.com/

David. W. Walker1

Abstract

This paper investigates the recursive Morton ordering of two-dimensional arrays as an efficient way to access

hierarchical memory across a range of heterogeneous computer platforms, ranging from many-core devices, multi-

core processor, clusters, and distributed environments. A brief overview of previous research in this area is given,

and algorithms that make use of Morton ordering are described. These are then used to demonstrate the efficiency

of the Morton ordering approach by performance experiments on different processors. In particular, timing results are

presented for matrix multiplication, Cholesky factorisation, and fast Fourier transform algorithms. The use of the Morton

ordering approach leads naturally to algorithms that are recursive, and exposes parallelism at each level of recursion.

Thus, the approach advocated in this talk not only provides convenient and efficient access to hierarchical memory, but

also provides a basis for exploiting parallelism.

Keywords

Morton ordering; hierarchical memory; parallel algorithms

Introduction

Modern high performance computers are characterised
by deeply nested hierarchical memories, and application
performance may be significantly degraded if data movement
between the different memory layers is not performed
efficiently. Maintaining high spatial and/or temporal locality
of reference is necessary to reduce data movement overhead
and to keep more frequently used data in the higher levels
of the memory hierarchy, and may be achieved through
compiler transformations, or by the programmer at the source
code level. Two and three-dimensional arrays are commonly-
used data structures in scientific computing, and are usually
stored in memory in one of two canonical layouts: row-
major (RM) order or column-major (CM) order. In the case
of an m× n array that is stored contiguously in memory,
the address offset in elements from the start of the array
of the element at row i and column j is in+ j for RM
order, and jm+ i for CM order. Tiled algorithms are often
used to achieve good locality of reference, and hence good
performance. A tiled algorithm transforms nested loops by
first organising each loop as a loop over blocks of some
size, and an inner loop over items in a block. Where
algorithmically valid, the resulting loops are then re-ordered
so the “block” loops are the outer loops and the loops over

items in a block are the inner loops. For a 2D matrix this is
equivalent to dividing the matrix into rectangular tiles and
acting on each one at a time. Tiled algorithms are expressed
in terms of interactions between tiles. For example, in a
tiled matrix multiplication algorithm, C = AB, each tile of
the output matrix can be formed by multiplying a row of
tiles of A by a column of tiles of B. Tiling an algorithm
changes the execution order of operations and hence the
data access pattern. Given a matrix with a canonical layout
the aim is to maximise reuse of a tile’s data in the higher
levels of the memory hierarchy, with the tile size being
chosen to match the capacity of some level in the memory
hierarchy. Whereas the tiles in a tiled algorithm are all the
same size and shape, blocked algorithms are expressed in
terms of interactions between blocks in which the blocks do
not have to be identical in size. For example, the LAPACK
library1 is largely based on blocked algorithms through the
use of BLAS3 operations5. A tiled algorithm is a particular

School of Computer Science & Informatics, Cardiff University, Cardiff
CF24 3AA, UK

Corresponding author:
David W. Walker, School of Computer Science & Informatics, Cardiff
University, 5 The Parade, Cardiff CF24 3AA, UK.

Email: WalkerDW@cardiff.ac.uk

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

2 Journal Title XX(X)

type of blocked algorithm. In a blocked algorithm the
same computations are carried as in the unblocked version;
however, the order of execution is changed.

For a canonically ordered array, spatial locality can only be
exploited with respect to one array dimension. In the absence
of an API allowing the programmer to control explicitly
the movement of data between the levels of the memory
hierarchy, tiled and blocked algorithms for such an array
will still not be optimal in managing data movement. The
basic idea of the research presented in this paper is that the
performance of tiled algorithms can be improved by using
non-canonical data orderings, such as space-filling curves
and Morton ordering12. It is posited that such non-canonical
orderings can support efficient access to hierarchical memory
across a range of heterogeneous computer platforms, ranging
from many-core devices, multi-core processor, clusters, and
distributed environments. Morton ordering (see the next
section) has been used to optimise database access, in
image processing algorithms, and in dense linear algebra
computations15. The use of Morton ordering in matrix
multiplication was also investigated by Valsalam and
Skjellum for an earlier generation of processors16, who
considered a number of matrix multiplication algorithms,
including Strassen’s algorithm. The use of the Hilbert curve
and Morton ordering in data layout has been investigated in
molecular dynamics applications11.

This paper makes the following contributions:

1. The use of partial Morton orderings is considered so
that the minimum tile size is larger than 2× 2 (the case
considered by Thiyagalingam et al.15).

2. Performance results are presented for a tiled fast
Fourier transform (FFT) algorithm, as well as for
matrix multiplication and Cholesky factorization, and
the optimal tile size for Morton order matrices is
investigated.

The use of the Morton ordering approach, and similar
approaches based on space-filling curves, leads naturally
to algorithms that are recursive, and exposes parallelism at
each level of recursion. Thus, the approach advocated in this
paper not only provides convenient and efficient access to
hierarchical memory, but also provides a basis for exploiting
parallelism. Furthermore, good spatial locality is maintained
at all levels of the recursion.

Morton Ordering

Morton ordering takes a two-dimensional array stored in
row-major order and re-orders it as a 2× 2 block array in

r = 1 r = 2

Figure 1. The lefthand part of the figure shows the original
array. The middle part of the figure shows the result of Morton
ordering to level r = 1. The righthand part of the figure shows
the result of Morton ordering to level r = 2. Each small square
represents one array item, and the continuous line between cell
centres shows the order in which they are stored, starting in the
top left corner. The shading highlights the division into
sub-blocks.

which the items of each block is stored in row-major order.
This process can then be applied recursively to each of the
four blocks, and after r levels of recursion the array will
be re-ordered as 4r sub-arrays, each in row-major order.
This is illustrated in Fig. 1 for m = n = 8, which shows
Morton ordering being applied to level r = 2, resulting in
16 sub-arrays. A similar approach can be applied to arrays
in column-major order, and for arrays of dimension greater
than 2.

Morton ordering can be applied to arbitrary arrays,
however, for the rest of this paper attention will focus on
Morton ordering of n× n arrays, where n = 2t. Applying
Morton ordering to such an array to level r results in sub-
arrays of size 2t−r × 2t−r. Level r = 0 corresponds to the
original array, and so 0 ≤ r < t. If r = t− 1 the Morton
blocks are of minimum size, namely 2× 2.

Applying Morton ordering to a depth r can be expressed as
a manipulation of the bitwise representation of the row and
column array indices, (i, j), to give the Morton index, kr.
The upper r bits of i are interleaved with the corresponding
bits of j to form the upper 2r bits of kr. The lower t− r bits
of i form the next least significant bits of kr, and the lower
t− r bits of j form the least significant bits of kr. This is
shown in Fig. 2. The sub-arrays defined by Morton ordering
can be numbered consecutively from 0 according to the order
in which they are visited. The interleaved upper r bits of
i and j give the number of the sub-array containing (i, j),
while the lower t− r bits of i and j give the row and column
index within the sub-array. For example, consider position
(2, 3) in an 8× 8 matrix, which corresponds to location
k = 2 ∗ 8 + 3 = 19 in a row-major ordering. Applying one
level of Morton ordering (r = 1) this item would be at index
(001011)2 = 11. The upper 2 bits indicate that the item in in
sub-array 0. Applying a second level (r = 2) gives an index
of (001101)2 = 13, where the upper 4 bits indicate that the
item is in sub-array 3. This example can be verified using
Fig. 1.

Prepared using sagej.cls

David W. Walker 3

Methods for converting between canonical and Morton
ordering based on dilated integers have been investigated
by Raman and Wise17. The dilated form of an integer is
obtained by interposing a 0 between each of its bits. For
example, consider i = 13 so that i = (1101)2: then the
dilated form of i is d(i) = (01010001)2 = 81. The bits of
two integers, i and j, can be interleaved by forming 2d(i) +

d(j).

Given a level r − 1 Morton ordering, a level r Morton
ordering can be achieved by cyclically rotating bits t− r to
2(t− r) of the index one position to the right. To go from a
level r to a level r − 1 Morton ordering it is simply necessary
to cyclically rotate the same set of bits one position to the
left. Returning to the example above, for which item (2, 3)

of an 8× 8 array has index 19 in a row-major ordering, then
to go from level 0 to level 1 of the Morton ordering requires
bits t− r = 2 to 2(t− r) = 4 to be cyclically rotated to the
right. Since 19 = (010011)2, cyclically rotating bits 2 to 4
one step to the right gives (001011)2 = 11. To go from level
1 to level 2 requires bits 1 to 2 to be cyclically shifted to the
right (i.e., exchanged), giving (001101)2 = 13.

i t-1 j t-1 i t-2 j t-2 … i t-r j t-r i t-r-1 … i0 j t-r-1 … j0

        

2r interleaved bits

    

t-r lower bits
of i

    

t-r lower bits
of j

Figure 2. The bits of the Morton index kr at level r ≥ 1.

Morton ordering can also be represented in terms of linear
algebra operations. Suppose X0 is an n× n matrix, where
n = 2t. Let x0 be the row vector created by concatenating
the rows of X0, i.e., x0 represents X0 stored in row-major
order. LetXr denote the matrix obtained by applying Morton
ordering to level r to X0, and let xr be the corresponding
vector of concatenated rows. Then,

xr = xr−1(Ip ⊗ (Π2b ⊗ Ib)) (1)

where b = 2t−r, p = 22r−1, and 1 ≤ r < t. Πm is anm×m
permutation matrix such that vΠT

m performs a perfect shuffle
operation on the elements of the row vector, v, and A⊗B
denotes the Kronecker product of the matrices A and B.

An n× n array, A, in row-major order with n = 2t, can
be re-ordered as a level 1 Morton order array, consisting
of four n/2× n/2 sub-arrays A00, A01, A10 and A11, by
a simple in-place algorithm. Consider row k of A, where
0 ≤ k < n/2, which consists of the n/2 elements that form
row k of A00 followed by the n/2 elements that form row
k of A01. Thus, if we denote row k of A00 and A01 by ak
and bk, respectively, then the first k rows of A are laid out as

follows in linearised index space:

a0b0a1b1 . . . an/2−1bn/2−1. (2)

Level 1 Morton ordering transforms this layout by means
of an unshuffle operation (see next subsection) to give the
ordering:

a1a2 . . . an/2−1b0b1 . . . bn/2−1 (3)

A recursive algorithm for converting a power-of-two array
from row-ordered to a level r Morton order using unshuffle
operations is shown in Alg. 1. It is a simple matter to extend
this algorithm to more general arrays.

ALGORITHM 1: morton: recursive routine for transforming row-
ordered power-of-two array to level r Morton order.

Function morton(A,n,r)
Input: Array A of size n× n, integer n = 2t, and integer r

(0 ≤ r < t) for terminating recursion.
Output: The array A in level r Morton order.
if (r ≤ 0) then

return
end
n1=n/2
unshuffle (A00, n1, n1, n1)
unshuffle (A10, n1, n1, n1)
morton (A00, n1, r − 1)
morton (A01, n1, r − 1)
morton (A10, n1, r − 1)
morton (A11, n1, r − 1)
return

end

Unshuffle and Shuffle Operations

Consider the following contiguous sequence of 2m row
vectors: a1b1a2b2 . . . ambm, where each ai is itself a
contiguous vector of `a elements, and each bi is a
contiguous vector of `b elements. Then the unshuffle
operation corresponds to the following reordering of the
vectors:

a1b1a2b2 . . . ambm → a1a2 . . . amb1b2 . . . bm (4)

The shuffle operation performs the inverse of this reordering:

a1a2 . . . amb1b2 . . . bm → a1b1a2b2 . . . ambm (5)

In the algorithms presented in this paper, use is made of
the shuffle and unshuffle functions, in which the
first argument is (a pointer to) the data to be reordered,
and the subsequent arguments are `a, `b, and m. The
shuffle and unshuffle operations can themselves be expressed
recursively9.

Prepared using sagej.cls

4 Journal Title XX(X)

Matrix Multiplication

Suppose the matrices A and B are multiplied to give the
matrix C, where all matrices are of size n× n where n = 2t.
This matrix multiplication can be expressed in block form as:

 C00 C01

C10 C11

 =

 A00 A01

A10 A11

 B00 B01

B10 B11


=

 A00B00 +A01B10 A00B01 +A01B11

A10B00 +A11B10 A10B01 +A11B11


where each of the blocks is of size n/2× n/2. This shows
how the product of two matrices can be expressed in terms
of the products of smaller matrices, and can be used as the
basis of a recursive algorithm for matrix multiplication. At
each level of the recursion the matrices to be multiplied are
partitioned into quadrants. The recursion terminates at some
specified depth, r < t. If the matrices A and B are Morton
ordered then only contiguously stored matrix blocks are
multiplied and the recursive matrix multiplication algorithms
can be expressed as in Alg. 2, where the routine matmul can
be any general-purpose matrix multiplication routine, such as
DGEMM from the LAPACK library1.

ALGORITHM 2: mmRecursive: Recursive matrix multiplication
of power-of-two matrices. Routine matmul performs C ← C +
AB.
Function mmRecursive(A,B,C,n,r)

Input: Matrices A, B, and C of size n× n, integer n = 2t,
integer r (0 ≤ r < t) for terminating recursion. All
elements of matrix C must be zero initially,

Output: On exit, the matrix C contains AB.
if (r ≤ 0) then

matmul (A,B,C, n)
else

n1=n/2
mmRecursive (A00, B00, C00, n1, r − 1)
mmRecursive (A01, B10, C00, n1, r − 1)
mmRecursive (A00, B01, C01, n1, r − 1)
mmRecursive (A01, B11, C01, n1, r − 1)
mmRecursive (A10, B00, C10, n1, r − 1)
mmRecursive (A11, B10, C10, n1, r − 1)
mmRecursive (A10, B01, C11, n1, r − 1)
mmRecursive (A11, B11, C11, n1, r − 1)

end
end

Algorithm 2 is a tiled algorithm as all the computation
involves the multiplication of tiles of size 2t−r × 2t−r in the
leaves of the recursion tree. It should also be noted that, if A
and B are Morton order matrices, then Alg. 2 will leave the
output matrix C in Morton order.

Cholesky Factorisation

Cholesky factorisation decomposes a real, symmetric,
diagonally-dominant matrix A as LLT , where L is a
lower triangular matrix. The blocked Cholesky factorisation
algorithm is based on the following matrix partitioning in
which A00 is b× b, A10 = AT01 is (n− b)× b, and A11 is
(n− b)× (n− b): A00 A01

A10 A11

 =

 L00 0

L10 L11

 LT00 LT10

0 LT11


=

 L00L
T
00 L00L

T
10

L10L
T
00 L10L

T
10 + L11L

T
11


The recursive right-looking Cholesky factorisation

algorithm is shown in Alg. 3, in which routine
cholesky performs a Cholesky factorisation on a
b× b block; triangularSolve solves L10L

T
00 = A10;

symmetricRankUpdate performs a symmetric rank-b
update on A11, replacing it with A11 − L10L

T
10. Algorithm

3 exhibits tail recursion, but as noted by Gustavson8, the
algorithm can also be cast in binary recursive form, as shown
in Alg. 4

ALGORITHM 3: choleskyTailRecursive: Tail recursive Cholesky
factorisation of real symmetric matrix.

Function choleskyTailRecursive(A,n,b)
Input: Real symmetric matrix A of size n× n, integer n,

integer b is the block size.
Output: On exit, the lower-triangular part of matrix A

contains the Cholesky factor, L.
if (n = b) then

cholesky (A, b)
else

cholesky (A00, b)
triangularSolve (A10, A00, n− b, b)
symmetricRankUpdate (A11, A10, n− b, b)
choleskyTailRecursive (A11, n− b, b)

end
end

Fast Fourier Transform

The discrete Fourier transform (DFT) of a two-dimensional
array, X , of size n× n is given by:

yjk =

n−1∑
p=0

n−1∑
q=0

xpq exp (−2πi(jp+ kq)/n) (6)

where i =
√
−1 and 0 ≤ j, k < n. xpq is the element in

row p and column q of X , and this is also indicated by
writing X = (xpq). The 2D DFT can be expressed in terms
of matrices as:

Y = FnXFn (7)

Prepared using sagej.cls

David W. Walker 5

ALGORITHM 4: choleskyBinaryRecursive: Binary recursive
Cholesky factorisation of real symmetric matrix. A00, A01, A10
and A11 are the four quadrants of the input matrix A, and are all
n/2× n/2 matrices.

Function choleskyBinaryRecursive(A,n,b)
Input: Real symmetric matrix A of size n× n, integer n,

integer b is the block size at which the recursion
terminates.

Output: On exit, the lower-triangular part of matrix A
contains the Cholesky factor, L.

if (n = b) then
cholesky (A,n, b)

else
choleskyBinaryRecursive (A00, n/2, b)
triangularSolve (A10, A00, n/2, n/2)
symmetricRankUpdate (A11, A10, n/2, n/2)
choleskyBinaryRecursive (A11, n/2, b)

end
end

where Fn = (ωpqn) and wn = exp (−2πi/n). It should be
noted that the complex matrix Fn is symmetric: Fn = FTn .

It is well known that the fast Fourier transform (FFT)
replaces the dense matrix multiplications in Eq. 7 by a
series of sparse matrix multiplications (for example, see Van
Loan10). Thus, when n = 2t, Eq. 7 may be written as,

Y = FnXFn = FnXF
T
n

= At . . . A1P
T
n XPnA

T
1 . . . A

T
t (8)

where PTn is an n× n permutation matrix that, when applied
to a column vector v, stores vj at the index obtained by
reversing the t bits of j. Thus, PTn XPn re-orders the rows
and columns of X by bit-reversing the row and column
indices. In addition,

Aq = Ir ⊗BL (9)

BL =

[
IL∗ ΩL∗

IL∗ −ΩL∗

]
(10)

ΩL∗ = diag(1, ωL, . . . , ω
L∗−1
L) (11)

where Im is the m×m identity matrix, L = 2q , r = n/L,
L∗ = L/2. Equations 8-11 express the Cooley-Tukey radix-
2 formulation of the FFT algorithm.

Common 2D FFT Algorithms

There are two common approaches to evaluating a 2D FFT
based on Eq. 8, which are presented here for clarity of
exposition.

1. The first algorithm is shown in Alg. 5, and will
be referred to as the transpose FFT algorithm.
This algorithm performs all the pre-multiplications
of X in Eq. 8 to give X̃ = At . . . A1P

T
n X and then

transposes Eq. 8 to give Y T = At . . . A1P
T
n X̃

T . The
pre-multiplications done here on X̃T are identical
to those performed on X in the first stage of the
algorithm, and correspond to performing 1D FFTs
along the n rows of the matrix. Having performed the
second set of multiplications the result is transposed to
give Y . This approach separates out the operations on
the rows and columns of X , and maintains unit stride
when X is stored in row-major order. For column-
major matrices unit stride access is achieved by doing
all the post-multiplications first. Step q of each pre-
multiplication stage can be expressed as:

X ← AqX (12)

2. An alternative approach is to operate on both rows and
columns in each stage of the algorithm, as shown in
Alg. 6, which is referred to as the vector-radix FFT

algorithm in Van Loan10. Step q of Alg. 6 can be
expressed as:

X ← AqXA
T
q (13)

ALGORITHM 5: transposeFFT: 2D FFT with transpose.

Function transposeFFT(X,n)
Input: Matrix X of size n× n.
Output: The matrix X is overwritten by its Fourier transform.
t = log2 n

X = PT
n XPn

for q = 1, 2, . . . , t do
X = AqX

end
transpose (X,n)
for q = 1, 2, . . . , t do

X = AqX
end
transpose (X,n)

end

ALGORITHM 6: vectorradixFFT: Vector-radix 2D FFT.
Function vectorradixFFT(X,n)

Input: Matrix X of size n× n.
Output: The matrix X is overwritten by its Fourier transform.
t = log2 n

X = PT
n XPn

for q = 1, 2, . . . , t do
X = AqXAT

q

end
end

From Eq. 9 it may be seen that Aq is a block-diagonal
matrix in which each of the r diagonal blocks is BL.
Partitioning X in the same way as BL, i.e., as a 2× 2 block
matrix with blocks of size L∗ × L∗, then Eq. 12 of Alg. 5
can be written as

Xij ← BLXij (14)

Prepared using sagej.cls

6 Journal Title XX(X)

which gives,

Xij ≡

 X00
ij X01

ij

X10
ij X11

ij


←

 X00
ij + ΩL∗X

10
ij X01

ij + ΩL∗X
11
ij

X00
ij − ΩL∗X

10
ij X01

ij − ΩL∗X
11
ij

(15)

where the superscripts 00, 01, 10, and 11 refer to the upper-
left, upper-right, lower-left and lower-right quadrants ofXij .

Applying a similar approach to Eq. 13 of Alg. 6 shows that
the blocks of X are updated at each stage of the algorithm as
follows:

Xij ← BLXijB
T
L (16)

The product BLXij may be computed as in Eq. 15, and the
result is then post-multiplied by BTL , which further updates
the blocks of X: X00

ij X01
ij

X10
ij X11

ij

←
 X00

ij +X01
ij ΩL∗ X01

ij −X01
ij ΩL∗

X10
ij +X11

ij ΩL∗ X10
ij −X11

ij ΩL∗


(17)

For row-ordered matrices, the updates in Eq. 15 can be
done with unit stride accesses to X . Unit stride access can
also be maintained in the updates in Eq. 17 by transposing
X before and after the second set of updates. However,
this requires two transpositions to be performed in each of
the t stages of Alg. 6, which may result in excessive data
movement.

Recursive 2D FFTs

Both of the algorithms presented above involve loops over
q = 1, . . . , t. For each value of q, blocks ofX of size 2q × 2q

are updated using the four constituent sub-blocks, according
to Eqs. 15 and 17. The number of rows and columns in each
block doubles for successive values of q. This means that the
2D FFT can readily be performed by a recursive algorithm
when the matrix X is stored in Morton order.

To formulate a recursive version of the 2D FFT algorithms
presented in Algs. 5 and 6 for Morton order arrays the
algorithm should terminate the recursion at some level in the
recursion tree when the block size is b = 2s for 0 < s < t.
A 2D FFT is performed on each of the b× b blocks of X ,
using any algorithm, and the algorithm then moves back up
the recursion tree, first assembling 2b× 2b blocks, and then
4b× 4b blocks, and so on. To develop the recursive algorithm
the following three lemmas are required:

• Lemma 1: The radix-2 splitting equation (Theorem
1.2.1 from Van Loan10)

FnΠn = Bn(I2 ⊗ Fn/2) (18)

where Πn is an n× nmatrix such that Πnv performs a
perfect shuffle operation on the elements of the column
vector, v.
• Lemma 2: (A⊗B)(C ⊗D) = (AC)⊗ (BD), if the

matrix multiplications AC and BD are defined.
• Lemma 3: Ip ⊗ (Iq ⊗A) = Ipq ⊗A.

It should be noted that Lemma 2 and Lemma 3 correspond to
the properties of the Kronecker product referred to as Kron1
and Kron7, respectively, in Van Loan10. The following
theorem provides the basis for a recursive 2D FFT algorithm.

Theorem 1. If 1 ≤ b ≤ n then

FnΠb,n = Bb,n(In/b ⊗ Fb) (19)

where

Πb,n = Πn(I2 ⊗Πn/2)(I4 ⊗Πn/4) . . . (In/(2b) ⊗Π2b)

Bb,n = Bn(I2 ⊗Bn/2)(I4 ⊗Bn/4) . . . (In/(2b) ⊗B2b)

(20)

Proof. Proof is by induction on b. Equation 19 holds when
b = n since in this case Πb,n = Πn and Bb,n = Bn and
Eq. 18 is recovered. Now suppose Eq. 19 is true for b = 2β

for 1 ≤ β ≤ n/2. Then,

FnΠβ,n = FnΠ2β,b(In/(2β) ⊗Π2β)

= B2β,n(In/(2β) ⊗ F2β)(In/(2β) ⊗Π2β)

= B2β,n(In/(2β) ⊗ (F2βΠ2β)) by Lemma 2

= B2β,n(In/(2β) ⊗ (B2β(I2 ⊗ Fβ)) by Lemma 1

= B2β,n(In/(2β) ⊗B2β)(In/(2β) ⊗ (I2 ⊗ Fβ))

by Lemma 2

= B2β,n(In/(2β) ⊗B2β)(In/β ⊗ Fβ)

by Lemma 3

= Bβ,n(In/β ⊗ Fβ)

Thus, Eq. 19 is also true for b = β, which completes the
inductive proof.

Using Eq. 19 the 2D FFT of X may be written,

FnXFn = FnXF
T
n

= Bb,n(In/b ⊗ Fb)Hb,n(In/b ⊗ Fb)BTb,n
(21)

Prepared using sagej.cls

David W. Walker 7

where Hb,n = ΠT
b,nXΠb,n. Now, (In/b ⊗ Fb)Hb,n(In/b ⊗

Fb) is the result of partitioning the matrix Hb,n into b× b
blocks and independently performing a 2D FFT on each
block. The matrix In/k ⊗Πk is a permutation matrix such
that (In/k ⊗Πk)v performs a perfect shuffle on blocks of the
column vector v of size n/k. This is equivalent to cyclically
rotating the lower p bits of the vector index one step to the
left, where k = 2p. Repeating such operations, as in Eq. 20, it
may be seen that Πb,n is a permutation matrix that performs
a partial bit reversal, i.e., if w = Πb,nv then wj′ = vj where
j′ is the partial bit reversal of j. If the bits of j are,

(j)2 = jt−1jt−2 . . . j1j0 (22)

where j0 is the least significant bit, then,

(j′)2 = js−1 . . . j1j0jsjs+1 . . . jt−2jt−1 (23)

A recursive algorithm for performing partial bit-reversal
on a vector is shown in Alg. 7. This makes use of a shuffle
operation, introduced above, in which the vectors being
shuffled are all of length 1.

ALGORITHM 7: PBR: Recursive routine for performing partial
bit-reversal on a vector. x← Πb,nx.

Function PBR(x,n,b)
Input: Vector x of length n, integer n = 2t, and integer

b = 2s.
Output: The vector x in partially bit-reversed order.
if (n <= b) then

return
end
PBR (x, n/2, b)
PBR (x + n/2, n/2, b)
shuffle (x, 1, 1, n/2)

end

Note that when s = 0 then b = 1, and Π1,n = Pn,
corresponding to a complete bit reversal. Equation 21 may
be written,

FnXFn = FnXF
T
n = At . . . As+1Kb,nA

T
s+1 . . . A

T
t (24)

where Kb,n = (In/b ⊗ Fb)Hb,n(In/b ⊗ Fb).
Equation 24 shows how to modify Algs. 5 and 6 to give

corresponding recursive algorithms in which the recursion
terminates at block size b× b. The algorithm shown in
Algs. 8 and 9 is the recursive version of Alg. 5, and that
shown in Algs. 10 and 11 is the recursive version of Alg. 6. In
Algs. 9 and 11 the routine FFT2D performs a 2D FFT on the
matrix X of size b× b, overwriting the input with the result.
Algorithm 8 calls routine recursiveFFT two times, so the
recursion tree is traversed twice. The first call evaluatesKb,n

(see Eq. 24) in each of the leaf nodes of the recursion tree,

and then calls routine butterflyPre to apply the butterfly
operations in Eq. 15 at each non-leaf node to give:

Yb,n = At . . . As+1Kb,n (25)

This is then transposed and used to evaluate At . . . As+1Y
T
b,n

in the second call to recursiveFFT. Transposing the
result of this gives the required result. As in Alg. 5,
this approach ensures unit stride access when performing
the butterfly operations. However, in Alg. 11 the butterfly
operations in Eqs. 15 and 17 are both applied in the same
node of the recursion tree, which is traversed only once.
Unit stride access is not maintained in the post-multiplicative
butterfly operations in Eq. 17. This will result in more data
movement, particularly in higher levels of the recursion tree,
but this is offset by avoiding the data movement in the
transposition operations.

ALGORITHM 8: transposeFFT2: FFT using recursion and block
size b.
Function transposeFFT2(X,n,b)

Input: Matrix X of size n× n, integer n, integer block size b.
Output: The matrix X is overwritten by its Fourier transform.
X = ΠT

b,nXΠb,n

recursiveFFT (X,n, b, 1)
transpose (X,n)
recursiveFFT (X,n, b, 0)
transpose (X,n)

end

ALGORITHM 9: recursiveFFT: recursive FFT with block size b.
Function recursiveFFT(X,n,b,dofft)

Input: Matrix X of size n× n, integer n, integer termination
size b, boolean dofft.

Output: The matrix X is overwritten by its partial Fourier
transform, or the full transform if L = b.

if (n==b) then
if (dofft) fft2D (X, b)

else
n2 = n/2
recursiveFFT (X00, n2, b, dofft)
recursiveFFT (X01, n2, b, dofft)
recursiveFFT (X10, n2, b, dofft)
recursiveFFT (X11, n2, b, dofft)
butterflyPre (X,n)

end
end

ALGORITHM 10: vectorradixFFT2: Vector-radix FFT using
recursion and block size b.
Function vectorradixFFT2(X,n,b)

Input: Matrix X of size n× n, integer n, integer block size b.
Output: The matrix X is overwritten by its Fourier transform.
X = ΠT

b,nXΠb,n

recursiveVRFFT (X,n, b)
end

Prepared using sagej.cls

8 Journal Title XX(X)

ALGORITHM 11: recursiveVRFFT: recursive vector-radix FFT.
Function recursiveVRFFT(X,n, b)

Input: Matrix X of size n× n, integer n, integer termination
size b.

Output: The matrix X is overwritten by its partial Fourier
transform, or the full transform if L = b.

if (n==b) then
fft2D (X, b)

else
n2 = n/2
recursiveVRFFT (X00, n2, b)
recursiveVRFFT (X01, n2, b)
recursiveVRFFT (X10, n2, b)
recursiveVRFFT (X11, n2, b)
butterflyPre (X,n)
butterflyPost (X,n)

end
end

Recursive FFTs of Morton Order Matrices

In the matrix multiply algorithm shown in Alg. 2 all the
work is performed in the leaf nodes of the recursion tree.
If the input matrices are stored in Morton order this has no
effect on the computation, and Alg. 2 will work correctly
provided the matrices multiplied by the routine matmul in
the leaf nodes are row-major order blocks (or column-major
order blocks if that is what matmul expects). However,
for the FFT algorithms in Algs. 8-11 there are three types
of operation associated with non-leaf nodes: (1) partial bit
reversal, X ← ΠT

b,nXΠb,n; (2) butterfly computations; and
(3) matrix transposition. The algorithms for these operations
have to be modified if the matrices are stored in Morton
order.

Partial Bit Reversal. A partial bit reversal can be performed
on a matrix either by bitwise manipulations or by matrix
operations. The bitwise approach for performing partial bit
reversal on a Morton ordered matrix is as follows:

1. Find the index k′ such that after converting the matrix
to Morton order xk′ is now stored at index k. The bits
of k′ are:

k2t−1, k2t−3, . . . , k2t−2r+1|k2t−2r−1, . . . , kt−r|

k2t−2, k2t−4, . . . , k2t−2r|kt−r−1, . . . , k0

2. Let k′′ be the index at which the element at index k′ of
the row-major order matrix is stored after the Morton
order and partial bit reversal operations. From the
bitwise transformations that occur in these operations
the bits of k′′ are given by:

k′t, k
′
0, k
′
t+1, k

′
1 . . . , k

′
t+r−1, k

′
r−1|k′2t−1 . . . , k′t+r|

k′t−1, . . . , k
′
r

3. Store the element at index k in the Morton order matrix
at index k′′.

The matrix approach is based on the observation that
ΠT
b,nXΠb,n = (ΠT

b,n(ΠT
b,nX)T)T , and that ΠT

b,nX can be
evaluated as shown in Alg. 12, in which the unshuffle

routine performs an unshuffle permutation on the rows of X .
Thus, to evaluate ΠT

b,nX when X is stored in Morton order
requires a Morton order version of the unshuffle operation.

ALGORITHM 12: pbrMorton: recursive routine for evaluating
X ← ΠT

b,nX for a Morton ordered matrix.

Function pbrMorton(X,n, b)
Input: Matrix X of size n× n, integer n = 2t, and integer

b = 2s.
Output: The matrix ΠT

b,nX .
if (n > b) then

unshuffle (X,n, n, n/2)
pbrMorton (X00, n/2, b)
pbrMorton (X01, n/2, b)
pbrMorton (X10, n/2, b)
pbrMorton (X11, n/2, b)

end
end

If the column vector x is formed of the concatenated rows
of the n× n matrix, X, then the partial bit reverse over rows
of X can be represented in terms of x as:

Ln,n . . .L2b,nLb,nx

where Lb,n = In/b ⊗ (Πb ⊗ In).

Butterfly Operations. When pre- or post-multiplying a
Morton ordered matrix by a butterfly matrix it is necessary
to process each element in the upper-left quadrant by row
(if pre-multiplying) or by column (if post-multiplying). Each
such element is updated, together with the corresponding
elements in the other three quadrants. The Morton butterfly
algorithm follows the row-major version, but for each row
and column index, (j, i), it is necessary to find the index k of
the corresponding element in the Morton ordered matrix, as
follows:

(k)2 = jn−1, in−1, jn−2, in−2 . . . , jn−r, in−r|

jn−r−1 . . . , j0|in−r−1, . . . , i0

Transposition. A matrix stored in Morton form can be
transposed recursively as shown in Alg. 13. In this algorithm
transpose performs a standard matrix transpose, and
exchange swaps the upper-right and lower-left quadrants.
The algorithm is based on the observation that:

X =

[
X00 X01

X10 X11

]
⇒ XT =

[
XT

00 XT
10

XT
01 XT

11

]

Prepared using sagej.cls

David W. Walker 9

ALGORITHM 13: transposeMorton: matrix transpose of a
Morton ordered matrix.
Function transposeMorton(X,n, b)

Input: Matrix X of size n× n, integer n, integer block size b.
Output: The matrix X is overwritten by its transpose.
if (n==b) then

transpose (X, b)
else

exchange (X01, X10, n/2)
transposeMorton (X00, n/2, b)
transposeMorton (X01, n/2, b)
transposeMorton (X10, n/2, b)
transposeMorton (X11, n/2, b)

end
end

A Variant of the Algorithm

If v is a column vector, the product ΠT
b,nv permutes v

through a partial bit reversal into blocks of length b, with
the elements in each block being of the form vi+k(n/b) for
k = 0, 1, . . . , b− 1. The n/b blocks are then permuted in
bit-reverse order. This can be verified from Eq. 23. The
block-based bit reversal can be removed by multiplying Πb,n

by (Pm ⊗ Ib), where m = n/b and Pm is the m×m bit-
reversal matrix. This results in the same blocks of v, but
now the first block is v(0 : b : m− 1), the second block
is v(1 : b : m), and so on. The permutation that gives this
ordering is:

Pm,n = Πb,n(Pm ⊗ Ib). (26)

If, in addition:

Bm,n = Bb,n(Pm ⊗ Ib), (27)

then the properties of the Kronecker product allow Eq. 19 to
be written as:

FnPm,n = Bm,n(Im ⊗ Fb) (28)

which is the standard radix-m splitting equation (see section
2.1.3 of Van Loan10). This allows the 2D Fourier transform
to be expressed as:

FnXFn = FnXF
T
n

= Bb,n(Pm,n ⊗ Ib)(Im ⊗ Fb)

PTm,nXPm,n(Im ⊗ Fb)(PTm,n ⊗ Ib)BTb,n

The algorithmic variant expressed in this equation first
evaluates Hm,n = PTm,nXPm,n and then finds the 2D FFT
of the resulting b× b blocks. The blocks are then permuted
in bit-reversed order, before applying the butterfly operations
in Bb,n. The effect has been to split the permutations

ΠT
b,nXΠb,n in Eq. 19 into two simpler permutation

operations.

Performance Experiments

The run-time performance of the Cholesky factorisation and
the recursive matrix multiplication and 2D FFT algorithms
for Morton order arrays, described in the preceding sections,
has been compared with canonical non-recursive algorithms
on two different computing platforms. In these experiments
the input arrays were taken to be n× n, where n is an
exact power of 2. The block size, b, at which the recursion
terminated was varied for each matrix size. b is also the
minimum block size used in the Morton ordering of the
matrix. Each reported time is the average over 10 separate
program executions. The standard deviation for each time
was also found and in all cases was less than 2% of the
average time. In all cases the input and output matrices are in
Morton order, and the timings reported are for the algorithms
described in the previous sections.

In the performance experiments presented below there is
no direct programmatic control over the content of the cache;
this is determined by the caching policies of the different
platforms. Being able to explicitly control the movement of
data in and out of the cache might be expected to further
improve the performance of Morton order algorithms since
it would then be possible to ensure that both blocks were in
cache before multiplying them.

Platform 1: Intel Core i7

The first computing platform is a MacBook Pro with a 2.5Gz
Intel Core i7 processor. This processor has four cores, with a
256 KB L2 cache per core, and a 6 MB L3 cache. The system
has a 16GB main memory, and the operating system is OS X
10.10.4. Version 4.8.2 of the gcc compiler was used with the
“O3” optimisation flag set.

Platform 2: Xeon E5-2620

The second platform, named g00, is a node with two sockets,
each containing a 2GHz Intel Xeon E5-2620 processor. This
processor has 6 cores with a 256 KB L2 cache per core, and
a 15MB L3 cache. The system has a 16 GB main memory
and the operating system is Red Hat Enterprise Linux Server
release 6.2. Version 4.8.5 of the gcc compiler was used with
the “O3” optimisation flag set.

Performance Results for Matrix Multiplication

The recursive matrix multiplication algorithm shown in
Alg. 2 multiplies 2t−r × 2t−r matrix tiles at the leaves of

Prepared using sagej.cls

10 Journal Title XX(X)

the recursion tree. The algorithm chosen to do this, and
its implementation, has a large impact on the performance
of Alg. 2. The issues involved in designing algorithms for
high performance matrix multiplication have been discussed
by Goto and Van de Geijn7 who point out the importance
of a layered approach based on a small number of highly
optimized kernels, and the efficient use of L2 cache and the
Translation Look-aside Buffer. These kernels may be written
in assembly code. The impact of the choice of routine for
the matrix multiplication of the tiles is shown in Fig. 3,
which presents results for platform1 using (a) the BLAS
matrix multiplication routine GEMM, and (b) a reference
implementation making use of an ikj loop ordering that
ensures unit stride in accessing the matrices. The matrix
elements are stored as 4-byte floating-point values.

0

5

10

15

20

25

16 32 64 128 256 512 1024 2048 4096 8192

Re
la
tiv
e	

tim

e

Tile	
 size

Platform	
 1:	
 GEMM

n	
 =	
 16384

n	
 =	
 8192

n	
 =	
 4096

n	
 =	
 2048

(a)

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

16 32 64 128 256 512 1024 2048 4096 8192

Re
la
tiv
e	

tim

e

Tile	
 size

Platform	
 1:	
 ikj

n	
 =	
 16384

n	
 =	
 8192

n	
 =	
 4096

n	
 =	
 2048

(b)

Figure 3. Matrix multiplication using (a) GEMM and (b) a
reference ikj implementation: time for tiled Morton order
algorithm relative to untiled row-major order algorithm on
Platform 1.

Figure 3(b) shows that Morton ordering reduces the
runtime by over 35% in some cases when the reference ikj
algorithm is used. For a small block size the Morton ordering
case is slower than the untiled RM case, possibly because the
loops are shorter, and for larger blocks sizes Morton ordering
does not give any significant advantage for matrices smaller
than 4096× 4096. However, the performance benefits of

0

1

2

3

4

5

6

7

16 32 64 128 256 512 1024 2048 4096 8192

Re
la
tiv
e	

tim

e

Tile	
 size

Platform	
 2:	
 GEMM

n	
 =	
 16384

n	
 =	
 8192

n	
 =	
 4096

n	
 =	
 2048

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

16 32 64 128 256 512 1024 2048 4096 8192

Re
la
tiv
e	

tim

e

Tile	
 size

Platform	
 2:	
 ikj

n	
 =	
 16384

n	
 =	
 8192

n	
 =	
 4096

n	
 =	
 2048

(b)

Figure 4. Matrix multiplication using (a) GEMM and (b) a
reference ikj implementation: time for tiled Morton order
algorithm relative to untiled row-major order algorithm on
Platform 2.

Morton ordering can be seen for larger matrices and block
sizes b ≥ 32, as the improved cache performance outweighs
the effect of the shorter loops. Once the blocks no longer
fit into L3 cache, then the performance of the Morton order
case worsens. Figure 3(a) shows that for small blocks the
tiled Morton ordering case reduces the performance by
up to a factor of about 20. For block sizes greater than
1024 the performance of the tiled and untiled algorithms
is comparable, with the tiled algorithm being 5% faster for
n = 16384 and b = 4096.

The timings results for platform 2, shown in Fig. 4,
exhibit similar behaviour to those in Fig. 3. However,
the performance improvement of the tiled Morton ordered
algorithm is less marked than for platform 1. For matrices
larger than 2048× 2048 and block sizes b between 256 and
1024 the tiled Morton order algorithm reduces the execution
time by up to 13%. There is no performance advantage for
block sizes of b = 2048 or larger, and again this may be
attributed to the fact that for such block sizes the input matrix
blocks do not fit in the L3 cache.

Prepared using sagej.cls

David W. Walker 11

Performance Results for Cholesky Factorisation

The relative timings for Cholesky factorisation for platform
1 are shown in Fig. 5. For each size of matrix times are
shown relative to the time to perform the factorisation using
the LAPACK routine DPOTRF, and it should be noted that
this routine uses a blocked algorithm with the block size
automatically chosen according to the matrix size. Figure
5(a) shows results for a matrix in row-major order using a
blocked algorithm that calls DPOTRF, DTRSM, and DSYRK

to perform the main steps of Alg. 3. Figure 5(b) also shows
results for a row-major matrix, but for a tiled algorithm
constructed using LAPACK and BLAS routines. Finally,
Fig. 5(c) shows results for a tiled algorithm, but for a Morton
order matrix.

Comparison of Figs. 5(a) and 5(b) shows that for a
row-major matrix the blocked algorithm is faster than
the tiled algorithm with the same block size. However,
Figs. 5(b) and 5(c) show that Morton ordering gives some
improvement over the row-major case for all matrix sizes.
Similar behaviour is seen in the timing results for platform
2, shown in Fig. 6. Figures 5 and 6 show that for a given
block size, the time relative to DPOTRF is smaller for smaller
matrices. This is because DPOTRF runs more efficiently for
larger matrices, as may be seen in Fig. 8, which shows the
time per floating-point operation as a function of matrix
size, n, assuming the number of floating-point operations for
Cholesky factorisation is n3/3.

Figure 7 shows the relative times for the binary recursive
Cholesky factorisation algorithm, given in Alg. 4, for
Platform 1. Figure 7(a) shows that the binary recursive
algorithm is faster than DPOTRF for all matrix and tile sizes
presented. It can also be seen that Morton order gives some
performance advantage over RM order for sufficiently small
tile sizes, but there is not much difference at larger tile sizes.
Similar results were found for Platform 2, and so are not
shown, although the relative performance of DPOTRF was
better in this case.

Performance Results of FFT

Two main options were considered for performing the FFTs
in the leaves of the recursion tree, i.e., the routine fft2D in
the Alg. 11:

1. The transpose based Alg. 5 that maintains unit stride
and make use of multiple one-dimensional FFTs.

2. The two-dimensional vector-radix routine, Alg. 6.

In addition, different ways of evaluating the dilated integers
needed to index Morton ordered arrays were considered.

0

0.5

1

1.5

2

2.5

16 32 64 128 256 512 1024 2048 4096 8192

Re
la
tiv
e	

Ti
m
e

Block	
 size

Platform	
 1:	
 Blocked	
 Row-­‐Major	
 Order

n	
 =	
 16384

n	
 =	
 8192

n	
 =	
 4096

n	
 =	
 2048

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

16 32 64 128 256 512 1024 2048 4096 8192

Re
la
tiv
e	

Ti
m
e

Tile	
 size

Platform	
 1:	
 Tiled	
 Row-­‐Major	
 Order

n	
 =	
 16384

n	
 =	
 8192

n	
 =	
 4096

n	
 =	
 2048

(b)

0

0.5

1

1.5

2

2.5

3

3.5

16 32 64 128 256 512 1024 2048 4096 8192

Re
la
tiv
e	

Ti
m
e

Tile	
 size

Platform	
 1:	
 Tiled	
 Morton	
 Order

n	
 =	
 16384

n	
 =	
 8192

n	
 =	
 4096

n	
 =	
 2048

(c)

Figure 5. Cholesky factorisation using (a) a blocked algorithm
and RM order, (b) a tiled algorithm and RM order, and (c) a tiled
algorithm and Morton order on Platform 1. All times are relative
to the time taken by the LAPACK routine DPOTRF.

Timing results are shown for platforms 1 and 2 in Figs. 9 and
10, respectively. In all cases, the fft2D, butterflyPre,
and butterflyPost routines in Algs. 9 and 11 were
implemented in the C language.

Figure 9(a) shows that for a given array size the relative
time for the vector radix case tends to be larger for smaller
tiles, decreases as the tile size increases, and then begins
to rise again as the tile size increases further. A similar
trend can be seen in Fig. 9(b), except that for large arrays
no increase in relative time is seen for the larger tile sizes.
The vector-radix algorithm involves O(n2 log n) large stride

Prepared using sagej.cls

12 Journal Title XX(X)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

16 32 64 128 256 512 1024 2048 4096 8192

Re
la
tiv
e	

Ti
m
e

Block	
 size

Platform	
 2:	
 Blocked	
 Row-­‐Major	
 Order

n	
 =	
 16384

n	
 =	
 8192

n	
 =	
 4096

n	
 =	
 2048

(a)

0

1

2

3

4

5

6

7

8

16 32 64 128 256 512 1024 2048 4096 8192

Re
la
tiv
e	

Ti
m
e

Tile	
 size

Platform	
 2:	
 Tiled	
 Row-­‐Major	
 Order

n	
 =	
 16384

n	
 =	
 8192

n	
 =	
 4096

n	
 =	
 2048

(b)

0

0.5

1

1.5

2

2.5

3

16 32 64 128 256 512 1024 2048 4096 8192

Re
la
tiv
e	

Ti
m
e

Tile	
 size

Platform	
 2:	
 Tiled	
 Morton	
 Order

n	
 =	
 16384

n	
 =	
 8192

n	
 =	
 4096

n	
 =	
 2048

(c)

Figure 6. Cholesky factorisation using (a) a blocked algorithm
and RM order, (b) a tiled algorithm and RM order, and (c) a tiled
algorithm and Morton order on Platform 2. All times are relative
to the time taken by the LAPACK routine DPOTRF.

array accesses, which impacts performance once a tile does
not fit into cache. The transpose-based algorithm maintains
unit stride access in the FFT computation at the added
expense of having to perform two array transposes, which
requires O(n2) data movements that in general involve non-
unit stride accesses. Thus, for large tiles the performance
of the vector-radix algorithm is degraded more by cache
misses than the transpose-based algorithm. This is evident
from Fig. 11, which shows the times per flop for the vector-
radix and transpose-based 2D FFT algorithms on platforms 1
and 2, assuming that the number of floating-point operations

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

16 32 64 128 256 512 1024 2048 4096 8192

Re
la
tiv
e	

Ti
m
e

Block	
 size

Platform	
 1:	
 Recursive	
 Untiled	
 RMO

n	
 	
 =	
 16384

n	
 =	
 8192

n	
 =	
 4096

n	
 =	
 2048

(a)

0

1

2

3

4

5

6

16 32 64 128 256 512 1024 2048 4096 8192

Re
la
tiv
e	

Ti
m
e

Tile	
 size

Platform	
 1:	
 Recursive	
 Tiled	
 RMO

n	
 =	
 16384

n	
 =	
 8192

n	
 =	
 4096

n	
 =	
 2048

(b)

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

16 32 64 128 256 512 1024 2048 4096

Re
la
tiv
e	

Ti
m
e

Tile	
 size

Platform	
 1:	
 Recursive	
 Tiled	
 Morton	
 Order

n	
 =	
 16384

n	
 =	
 8192

n	
 =	
 4096

n	
 =	
 2048

(c)

Figure 7. Cholesky factorisation using the binary recursive
algorithm: (a) a blocked algorithm and RM order, (b) a tiled
algorithm and RM order, and (c) a tiled algorithm and Morton
order on Platform 2. All times are relative to the time taken by
the LAPACK routine DPOTRF.

to do a complex n× n FFT is 10n2 log2 n. The time
per flop increases with array size, n, for the vector-radix
algorithm, whereas it is almost constant for the transpose-
based algorithm.

Discussion

Morton ordering is expected to be most effective if most of
the floating-point operations in an algorithm are performed
in the leaves of the recursion tree because this maximises
the ratio of computation to data movement (assuming the

Prepared using sagej.cls

David W. Walker 13

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

512 1024 2048 4096 8192 16384

Ti
m
e	

pe
r	
 f
lo
p	

(n
s)

Matrix	
 size,	
 n

Platform	
 1

Platform	
 2

Figure 8. Cholesky factorisation: dependence of time per
floating-point operation on matrix size, n.

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

16 32 64 128 256 512 1024 2048 4096 8192

Re
la
tiv
e	

Ti
m
e

Tile	
 size

Platform	
 1:	
 Vector	
 Radix	
 FFT

n	
 =	
 16384

n	
 =	
 8192

n	
 =	
 4096

n	
 =	
 2048

(a)

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

16 32 64 128 256 512 1024 2048 4096 8192

Re
la
tiv
e	

Ti
m
e

Tile	
 size

Platform	
 1:	
 Transpose	
 FFT	

n	
 =	
 16384

n	
 =	
 8192

n	
 =	
 4096

n	
 =	
 2048

(b)

Figure 9. Platform 1: FFT for Morton order arrays using (a) the
vector radix algorithm, and (b) the standard transpose-based
algorithm, for performing the FFTs in the leaves of the recursion
tree. In both cases times are relative to the time for a standard
transpose-based algorithm on a RM array of the same size.

tiles involved in the computation fit into higher-level memory
such as the L3 cache). In the tiled algorithm for matrix
multiplication, shown in Alg. 2, all the computation is done
in the leaves of the recursion tree, and the total number of
floating-point operations performed is 2n3.

In contrast, the algorithm for block Cholesky factorisation
in Alg. 3 exhibits tail recursion, which most modern
compilers will convert to an iterative algorithm to avoid
the overhead of allocating a new stack frame on each

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

16 32 64 128 256 512 1024 2048 4096 8192

Re
la
tiv
e	

Ti
m
e

Tile	
 size

Platform	
 2:	
 Vector	
 Radix	
 FFT

n	
 =	
 16384

n	
 =	
 8192

n	
 =	
 4096

n	
 =	
 2048

(a)

0

0.5

1

1.5

2

2.5

3

16 32 64 128 256 512 1024 2048 4096 8192

Re
la
tiv
e	

Ti
m
e

Tile	
 size

Platform	
 2:	
 Transpose	
 FFT

n	
 =	
 16384

n	
 =	
 8192

n	
 =	
 4096

n	
 =	
 2048

(b)

Figure 10. Platform 2: FFT for Morton order arrays using (a)
the vector radix algorithm, and (b) the standard
transpose-based algorithm, for performing the FFTs in the
leaves of the recursion tree. In both cases times are relative to
the time for a standard transpose-based algorithm on a RM
array of the same size.

0.05

0.55

1.05

1.55

2.05

2.55

1024 2048 4096 8192 16384

Ti
m
e	

pe
r	
 f
lo
p	

(n
s)

Array	
 size,	
 n

Transpose-­‐based	
 P1

Vector	
 radix	
 P1

Transpose-­‐based	
 P2

Vector	
 radix	
 P2

Figure 11. Dependence of time per floating-point operation on
array size, n, for the vector-radix and transpose-based FFT
algorithms.

recursive call. Thus, whereas for matrix multiplication
recursion provided a natural and simple way of expressing
the Morton order algorithm, there is no such advantage
for Cholesky factorisation. The number of floating-point
operations involved in each phase of Alg. 3 is as follows:

1. Cholesky factorisation of A00: b3/3 flops.
2. Triangular solve of L10L

T
00 = A10: mb2 flops, where

m is the number of rows of L10 and A10.

Prepared using sagej.cls

14 Journal Title XX(X)

3. Symmetric rank-b update L11L
T
11 = A11 − L10L

T
10:

mb(m+ b)/2 flops.

Summing these expressions over the n/b stages of the
algorithm gives a total flop count of:

TCF (n, b) =
n3

3
+
bn(n− b)

2
(29)

In the tiled implementation used in this work, the routine
DGEMM is used to multiply the tiles when doing the
symmetric rank-b update. This means that when updating
the diagonal tiles extra work is done to update the elements
above the diagonal, which accounts for the second term in
Eq. 29. This extra work could be avoided by using DSYRK to
update the diagonal tiles; however, it was found that although
this improves the performance for larger tile sizes, it results
in a small reduction in performance for smaller tile sizes.

In the tiled Algs. 9 and 11 for performing a 2t × 2t FFT
on a 2D Morton ordered array, there are 4k nodes at level k
of the recursion tree. Each leaf node computes a b× b FFT,
where b = 2t−r. This involves 10b2 log2 b floating-point
operations. Thus, the number of floating-point operations
associated with the leaf nodes is:

10(2t)2(t− r) (30)

From Eqns. 15 and 17, non-leaf node multiplies four
2t−k−1 × 2t−k−1 matrices by a diagonal matrix, and does
eight matrix additions. Since, in general, the matrices are
complex, the number of floating-point operations associated
with a non-leaf node is 40× (2t−k−1)2, and the total number
for all the non-leaf nodes in the recursion tree is:

40

r−1∑
k=0

4k × 22t−2k−2 = 10× (2t)2r (31)

It can be seen that the total number floating-point operations
is, as expected, 10× n2 log2 n, where n = 2t. However, the
ratio of non-leaf to leaf flops is r/(t− r). For the matrix
multiplication algorithm the corresponding ratio is zero.
Thus, in the FFT case relatively more computational work
is done in the higher levels of the recursion tree, which
explains why Morton ordering is less effective in improving
the performance of the FFT algorithm when compared with
matrix multiplication.

It might be expected that the recursive algorithms
presented here would incur overheads that are not applicable
in loop-based algorithms. The number of recursive calls
in the Cholesky factorisation algorithm is O(n/b). For
the recursive 2D FTT and matrix multiplication algorithms
the number of recursive calls is O(n2/b2) and O(n3/b3),

respectively. Thus, if recursive overhead has a large impact
on performance this should be more apparent for large values
of n/b in the matrix multiplication timings.

Summary and Conclusions

The timing results presented here show that, for the three
algorithms considered, Morton ordering of arrays results
in optimal performance for intermediate tile sizes of about
256× 256. For smaller tile sizes performance decreases due
to the overhead associated with managing recursion, such as
stack frame allocation. For larger tile sizes the tiles no longer
fit into cache, which again degrades performance. In some
cases it was found that a tiled algorithm based on Morton
ordering has higher performance than the corresponding
canonical implementation, although this is dependent on the
algorithm and hardware. The efficient use of the Translation
Look-Aside Buffer (TLB) can also have a significant effect
on performance, as demonstrated by Park et al.13.

In the timing experiments presented here no attempt
has been made to explicitly control the transfer of data
between different levels in the memory hierarchy – this
is under the control of the run time system and possibly
the compiler. It could be argued that tiled algorithms using
Morton ordering would have even better performance if
data movement were controlled more at the program level.
This idea of “programming the memory hierarchy” underlies
the Sequoia programming language developed at Stanford
University2;6. Sequoia represents the memory hierarchy
directly in the programming model and provides abstractions
that separate the expression of algorithms from machine-
dependent optimisation. The lessons learned from Sequoia
have now been carried forward into the Legion programming
model and runtime system3, which allows the programmer
to achieve good performance through reasoning about data
locality and task independence. Similar ideas have been
put forward by Schneider et al.14, who compare the use
and performance of the Cellgen and Sequoia programming
models with the Cell SDK for two applications running on
the Cell Broadband Engine processor.

Support for tiled algorithms has been investigated by
Bikshandi et al.4, based on their Hierarchically Tiled Array
(HTA) datatype, of which Morton ordering is a special
case. Bikshandi et al. point out that in many cases the
HTA approach facilitates the expression of parallelism,
and demonstrate efficient parallel HTA implementations
of several algorithms. Similarly, the recursive matrix
multiplication and FFT algorithms for Morton order arrays
presented in Algs. 2 and 11 are readily parallelisable as

Prepared using sagej.cls

David W. Walker 15

each recursive call can be made independently. However,
in the recursive Cholesky factorisation algorithm in
Alg. 4 the triangular solve and symmetric update tasks
must be executed in order between the recursive calls
to choleskyBinaryRecursive, so the latter cannot
be executed in parallel. The parallelisation of recursive
algorithms applied to Morton order arrays on modern
multicore and manycore processors will be presented in a
subsequent paper.

Acknowledgements

This research received no specific grant from any funding agency in

the public, commercial, or not-for-profit sectors.

References

1. Anderson E, Bai Z, Bischof C, Blackford L, Demmel J,

Dongarra J, Du Croz J, Greenbaum A, Hammarling S,

McKenney A and Sorensen D (1999) LAPACK Users’ Guide.

Third edition. Society for Industrial and Applied Mathematics.

DOI:10.1137/1.9780898719604. URL http://epubs.

siam.org/doi/abs/10.1137/1.9780898719604.

2. Bauer M, Clark J, Schkufza E and Aiken A (2011)

Programming the memory hierarchy revisited: Supporting

irregular parallelism in sequoia. In: Proceedings of

the 16th ACM Symposium on Principles and Practice of

Parallel Programming, PPoPP ’11. New York, NY, USA:

ACM. ISBN 978-1-4503-0119-0, pp. 13–24. DOI:10.

1145/1941553.1941558. URL http://doi.acm.org/

10.1145/1941553.1941558.

3. Bauer M, Treichler S, Slaughter E and Aiken A (2012)

Legion: Expressing locality and independence with logical

regions. In: Proceedings of the International Conference

on High Performance Computing, Networking, Storage

and Analysis, SC ’12. Los Alamitos, CA, USA: IEEE

Computer Society Press. ISBN 978-1-4673-0804-5, pp. 66:1–

66:11. URL http://dl.acm.org/citation.cfm?

id=2388996.2389086.

4. Bikshandi G, Guo J, Hoeflinger D, Almasi G, Fraguela BB,

Garzarán MJ, Padua D and von Praun C (2006) Programming

for parallelism and locality with hierarchically tiled arrays. In:

Proceedings of the Eleventh ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP ’06.

New York, NY, USA: ACM. ISBN 1-59593-189-9, pp. 48–57.

DOI:10.1145/1122971.1122981. URL http://doi.acm.

org/10.1145/1122971.1122981.

5. Dongarra JJ, Du Croz J, Hammarling S and Duff IS (1990) A

set of level 3 basic linear algebra subprograms. ACM Trans.

Math. Softw. 16(1): 1–17. DOI:10.1145/77626.79170. URL

http://doi.acm.org/10.1145/77626.79170.

6. Fatahalian K, Horn DR, Knight TJ, Leem L, Houston M, Park

JY, Erez M, Ren M, Aiken A, Dally WJ and Hanrahan P (2006)

Sequoia: Programming the memory hierarchy. In: Proceedings

of the 2006 ACM/IEEE Conference on Supercomputing, SC

’06. New York, NY, USA: ACM. ISBN 0-7695-2700-0. DOI:

10.1145/1188455.1188543. URL http://doi.acm.org/

10.1145/1188455.1188543.

7. Goto K and van de Geijn RA (2008) Anatomy of high

performance matrix multiplication. ACM Transactions on

Mathematical Software 34(3): 12:1–12:25. DOI:10.1145/

1356052.1356053. URL http://doi.acm.org/10.

1145/1356052.1356053.

8. Gustavson FG (1997) Recursion leads to automatic variable

blocking for dense linear-algebra algorithms. IBM Journal of

Research and Development 41(6): 737–755. DOI:10.1147/rd.

416.0737.

9. Gustavson FG and Walker DW (2014) Algorithms for in-

place matrix transposition. In: Wyrzykowski R, Dongarra J,

Karczewski K and Waśniewski J (eds.) Parallel Processing

and Applied Mathematics: 10th International Conference,

PPAM 2013, Warsaw, Poland, September 8-11, 2013, Revised

Selected Papers, Part II. Berlin, Heidelberg: Springer Berlin

Heidelberg. ISBN 978-3-642-55195-6, pp. 105–117. DOI:

10.1007/978-3-642-55195-6 10. URL http://dx.doi.

org/10.1007/978-3-642-55195-6_10.

10. Loan CV (1992) Computational Frameworks for the Fast

Fourier Transform. SIAM Press.

11. Mellor-Crummey J, Whalley D and Kennedy K (2001) Improv-

ing memory hierarchy performance for irregular applications

using data and computation reorderings. International Journal

of Parallel Programming 29(3): 217–247. DOI:10.1023/A:

1011119519789. URL http://dx.doi.org/10.1023/

A:1011119519789.

12. Morton GM (1966) A computer oriented geodetic data base;

and a new technique in file sequencing. Technical report, IBM

Ltd.

13. Park N, Hong B and Prasanna VK (2003) Tiling, block

data layout, and memory hierarchy performance. IEEE

Transactions on Parallel and Distributed Systems 14(7): 640–

654. DOI:10.1109/TPDS.2003.1214317.

14. Schneider S, Yeom JS and Nikolopoulos DS (2009) Program-

ming multiprocessors with explicitly managed memory hierar-

chies. Computer 42(12): 28–34. DOI:10.1109/MC.2009.407.

15. Thiyagalingam J, Beckmann O and Kelly PHJ (2006) Is

Morton layout competitive for large two-dimensional arrays

yet? Concurrency and Computation: Practice and Experience

18(11): 1509–1539. DOI:10.1002/cpe.v18:11. URL http:

Prepared using sagej.cls

http://epubs.siam.org/doi/abs/10.1137/1.9780898719604
http://epubs.siam.org/doi/abs/10.1137/1.9780898719604
http://doi.acm.org/10.1145/1941553.1941558
http://doi.acm.org/10.1145/1941553.1941558
http://dl.acm.org/citation.cfm?id=2388996.2389086
http://dl.acm.org/citation.cfm?id=2388996.2389086
http://doi.acm.org/10.1145/1122971.1122981
http://doi.acm.org/10.1145/1122971.1122981
http://doi.acm.org/10.1145/77626.79170
http://doi.acm.org/10.1145/1188455.1188543
http://doi.acm.org/10.1145/1188455.1188543
http://doi.acm.org/10.1145/1356052.1356053
http://doi.acm.org/10.1145/1356052.1356053
http://dx.doi.org/10.1007/978-3-642-55195-6_10
http://dx.doi.org/10.1007/978-3-642-55195-6_10
http://dx.doi.org/10.1023/A:1011119519789
http://dx.doi.org/10.1023/A:1011119519789
http://dx.doi.org/10.1002/cpe.v18:11

16 Journal Title XX(X)

//dx.doi.org/10.1002/cpe.v18:11.

16. Valsalam V and Skjellum A (2002) A framework for

high-performance matrix multiplication based on hierarchical

abstractions, algorithms and optimized low-level kernels.

Concurrency and Computation: Practice and Experience

14(10): 805–839. DOI:10.1002/cpe.630. URL http://dx.

doi.org/10.1002/cpe.630.

17. Wise DS and Raman R (2008) Converting to and from dilated

integers. IEEE Transactions on Computers 57(4): 567–573.

DOI:10.1109/TC.2007.70814.

Prepared using sagej.cls

http://dx.doi.org/10.1002/cpe.v18:11
http://dx.doi.org/10.1002/cpe.v18:11
http://dx.doi.org/10.1002/cpe.v18:11
http://dx.doi.org/10.1002/cpe.630
http://dx.doi.org/10.1002/cpe.630

	Introduction
	Morton Ordering
	Unshuffle and Shuffle Operations

	Matrix Multiplication
	Cholesky Factorisation
	Fast Fourier Transform
	Common 2D FFT Algorithms
	Recursive 2D FFTs
	Recursive FFTs of Morton Order Matrices
	Partial Bit Reversal.
	Butterfly Operations.
	Transposition.

	A Variant of the Algorithm

	Performance Experiments
	Platform 1: Intel Core i7
	Platform 2: Xeon E5-2620
	Performance Results for Matrix Multiplication
	Performance Results for Cholesky Factorisation
	Performance Results of FFT
	Discussion

	Summary and Conclusions

