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ABSTRACT

A linear polarization field on the sphere can be uniquely decomposed into an E-mode and a B-mode component.
These two components are analytically defined in terms of spin-2 spherical harmonics. Maps that contain filtered
modes on a partial sky can also be decomposed into E-mode and B-mode components. However, the lack of full
sky information prevents orthogonally separating these components using spherical harmonics. In this paper, we
present a technique for decomposing an incomplete map into E and B-mode components using E and B
eigenmodes of the pixel covariance in the observed map. This method is found to orthogonally define E and B in
the presence of both partial sky coverage and spatial filtering. This method has been applied to the BICEP2 and the
Keck Array maps and results in reducing E to B leakage from ΛCDM E-modes to a level corresponding to a tensor-
to-scalar ratio of < ´ -r 1 10 4.

Key words: cosmic background radiation – cosmology: observations – gravitational waves – inflation –

polarization

1. INTRODUCTION

Current experiments are producing low noise maps of the
polarization of the cosmic microwave background (CMB)
radiation able to constrain models of inflation and measure B-
modes from gravitational lensing. These experiments include
BICEP2, the Keck Array, POLARBEAR, SPTPOL, ACTPol, and
Planck (Hanson et al. 2013; BICEP2 Collaboration I 2014;
Polarbear Collaboration 2014; Keck Array & BICEP2
Collaborations VI 2015; Planck Collaboration I 2015; van
Engelen et al. 2015). These experiments do not measure the
CMB over the entire sky for a variety of reasons. Galactic
foregrounds prevent any experiment from producing a map
of the CMB over the entire sky. Any ground or balloon
based experiment has a limited view of the full sky. Some

experiments, including BICEP2 and the Keck Array, choose to
observe a limited field of view to increase map depth over a
small region of sky or choose to filter their data so that the
maps incompletely measure the modes within the field.
The ability to uniquely separate a linear polarization field

into E and B-modes is critical for measuring gravitational
waves using the B-mode polarization. This separation allows
the distinction to be made between E-modes created by scalar
perturbations and B-modes coming from tensor perturbations
(Kamionkowski et al. 1997; Zaldarriaga 1998).
Unfortunately, the unique decomposition into E and B is

only possible for maps of the full sky. Maps containing a
limited view of the sky, or an incomplete measurement of the
true sky modes, are said to suffer from E/B leakage. E to B

The Astrophysical Journal, 825:66 (20pp), 2016 July 1 doi:10.3847/0004-637X/825/1/66
© 2016. The American Astronomical Society. All rights reserved.

1

mailto:jetolan@stanford.edu
http://dx.doi.org/10.3847/0004-637X/825/1/66
http://crossmark.crossref.org/dialog/?doi=10.3847/0004-637X/825/1/66&domain=pdf&date_stamp=2016-06-29
http://crossmark.crossref.org/dialog/?doi=10.3847/0004-637X/825/1/66&domain=pdf&date_stamp=2016-06-29


leakage is defined as measured power for a particular B-mode
estimator whose source is true sky E-mode power. B to E
leakage is leakage of power in the opposite direction, but in
practice it is less of a concern for CMB measurements due to
the much fainter B-mode signal. E/B leakage refers to both
types of leakage.

There are several ways to mitigate the effect of E/B leakage
in analysis. Full pixel-space likelihood methods in principle
can optimally separate E and B contributions for any given
map. These have been applied mainly to maps of relatively
modest pixel count, including many early detections of CMB
polarization (for example, Kovac et al. 2002; Readhead
et al. 2004; Bischoff et al. 2008). Current analyses more
commonly apply fixed estimators of E and B power spectra to
observed CMB polarization maps. The simplest way to correct
such estimators for leakage is to run an ensemble of simulations
through the analysis and subtract the mean level of leakage in
the angular power spectrum. However, the sample variance
from the leaked power remains and contributes to the final
uncertainty of measured power in each angular power spectrum
bin, limiting an experiment’s ability to measure B-modes
regardless of its instrumental sensitivity. For many experi-
ments, including BICEP2 and the Keck Array, the sample
variance of the leaked E-modes is comparable to the
instrumental noise and is a significant contribution to the
uncertainty in the B-mode power spectrum.

Solutions to this problem rely on the fact that for most B-
mode science it is not necessary to classify all the modes in the
measured polarization field. Instead, it is sufficient to find
subspaces that are caused by either E or B and ignore the modes
whose source cannot be determined. There are a number of
published methods that attempt this goal.

Smith (2006) presents an estimator that does not suffer from
E/B leakage arising from partial sky coverage. This method
has been incorporated into the xpure and S2HAT packages
(Grain et al. 2009), and the BICEP2 and Keck Array analysis
pipeline contains an option in which this algorithm is
implemented.

However, many experiments, including BICEP2 and the Keck
Array, produce maps in which some modes have also been
removed by filtering. The estimator presented in Smith (2006)
does not prevent filtered modes from creating E/B leakage.
Another method, presented in Smith & Zaldarriaga (2007),
accounts for incomplete mode measurement in partial sky
maps. However, we have found this method to be computa-
tionally infeasible for the BICEP2 and Keck Array observing and
filtering strategy.

For BICEP2 and the Keck Array, we developed a new method
for distinguishing true sky B-mode polarization from the leaked
E-modes in the observed maps. The method extends the work
of Bunn et al. (2003) and applies it to a real data set. It is a
standard component of the BICEP2 and Keck Array analysis
pipeline and effectively eliminates the uncertainty created by
E/B leakage. The method reduces the final uncertainty in the
measured BB power spectrum of the BICEP2 results (BICEP2
Collaboration I 2014) by more than a factor of two, compared
to analysis done with the Smith (2006) method. The method
results in a larger improvement for the analysis of the combined
BICEP2 and Keck Array maps (Keck Array & BICEP2
Collaborations VI 2015), where the noise levels are lower.

The organization of this paper is as follows: Section 2
provides an abbreviated background of a polarization field on a

sphere, decomposition into spin-2 spherical harmonics, and
analytically defines E and B-modes. Section 3 outlines the
eigenvalue problem used in the matrix based E/B separation.
Section 4 describes how an observation matrix is created in the
BICEP2 and Keck Array analysis pipeline. Section 5 describes
constructing the signal covariance matrix and Section 6 uses
the covariance matrix to solve the eigenvalue problem and find
purification matrices. Section 7 prensents results of matrix
based E/B separation in the BICEP2 data set. Concluding
remarks are offered in Section 8.
Unless otherwise stated, we adopt the HEALPix polarization

convention20 and work in J2000.0 equatorial coordinates
throughout this paper. Bold font letters and symbols represent
vectors or matrices, even when containing subscripts, in which
case the subscript is meant to designate a new matrix or vector.
Normal font letters and symbols represent scalar quantities.

2. E AND B-MODES FROM A POLARIZATION FIELD

This section demonstrates the decomposition of a polariza-
tion field on the full sky into E and B-modes. Much of the
discussion follows Zaldarriaga & Seljak (1997) and Bunn
et al. (2003).

2.1. Full Sky

The values of the Stokes parameters Q and U for a particular
location on the sky are dependent on the choice of coordinate
system. By rotating the local coordinate system, Q is rotated
into U and vice versa. Under rotation by an angle f, the
combinations Q+iU and Q−iU transform as:

( ) ( )
( ) ( ) ( )

+ ¢ = +
- ¢ = -

f

f

-Q iU e Q iU

Q iU e Q iU . 1

i

i

2

2

The T, Q, and U fields can be expressed as sums of spin
weighted spherical harmonics. While the temperature aniso-
tropies can be broken down into spin-0 harmonics, the
polarization field of Q and U must be expressed in terms of
spin-2 spherical harmonics (Goldberg et al. 1967):
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where  Ylm2 are the spin-2 case of spin weighted spherical
harmonics, and the spin-0 case are the normal spherical
harmonics, Ylm0 . Since Q+iU and Q−iU are affected by
rotations of the coordinate system, it is convenient to express
the coefficients of the spin-2 spherical harmonics using a set of
coordinate independent scalar aElm coefficients and pseudo-
scalar aBlm coefficients:
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( ) ( )
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º- -
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2, 2,

20 http://healpix.jpl.nasa.gov/html/intronode12.htm.
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We also define two combinations of spin-2 spherical
harmonics:

( )
( ) ( )

º +
º -

+ -

+ -

X Y Y
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2. 4
lm lm lm

lm lm lm

1, 2 2

2, 2 2

We can use the coefficients in Equation (3) and the
combinations in Equation (4) to construct real space forms of
T, Q, and U fields, according to Equation (2):

( ) ( ( ))

( ) ( ( ) ( ))

( ) ( ( ) ( )) ( )

å

å

å

=

=- +

=- -

r r

r r r

r r r

T a Y

Q a X ia X

U a X ia X . 5

lm
lm
T

lm

lm
lm
E

lm lm
B

lm

lm
lm
B

lm lm
E

lm

0

1, 2,

1, 2,

Using these relations, we can write the polarization field as a
vector:

( ) ( )
( )

( ) ( )
( ) ( )

( )
( )

( )
( )

[ ( ) ( )] ( )

å

å

å

º

=-
+

-

=-
-

+

=- +

⎛
⎝⎜

⎞
⎠⎟
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

r
r
r

r r

r r

r
r

r
r

r r

P
Q
U

a X ia X

a X ia X

a
X

iX
a

iX

X

a Y a Y , 6

lm

lm
E

lm lm
B

lm

lm
B

lm lm
E

lm

lm
lm
E lm

lm
lm
B lm

lm

lm
lm
E

lm
E

lm
B

lm
B

1, 2,

1, 2,

1,

2,

2,

1,

where YE
lm and YB

lm have been introduced and defined in the last
step. On the full sphere, YE

lm and YB
lm are orthogonal:

( ) · ( ) ( )ò =¢ ¢r rY Y dS 0, 7
S

lm
E

l m
B

2

for all ¢l l, and ¢m m, .

2.2. Orthogonality of Pure E and Pure B

The inner product of two polarization fields is defined as:

· · ( )ò¢ º ¢ W
W

P P P P d , 8

where Ω is the manifold on which the polarization field is
defined: for the full sky it is the celestial sphere. In pixelized
maps, the vector space of a polarization field has a finite
dimension: twice the number of pixels in the map.

As demonstrated in Equation (7), E and B-mode polarization
fields on the full sky are orthogonal. However, experiments
produce Q/U maps of portions of the sky, and often filter
spatial modes out of these maps. We define the term
“observed” maps or modes to refer to these incomplete
measurements of the true sky.

The spaces of observed E-modes and B-modes are non-
orthogonal. The overlapping subspace between the two is
called the ambiguous space. We cannot tell whether signal in
the ambiguous subspace came from full sky E-modes or full
sky B-modes.

The solution is to decompose vector fields on an observed
manifold into three subspaces: “pure” E-modes, “pure” B-
modes, and ambiguous modes. Pure E and B-modes are
subspaces of the polarization vector space of a particular
manifold, defined as:

1. A pure B-mode is orthogonal to observed E-modes.
2. A pure E-mode is orthogonal to observed B-modes.

Therefore, a pure B-mode is one that has no E to B leakage:
neither pure E-modes nor ambiguous modes contribute to it.

3. HOW MATRIX BASED E/B SEPARATION FINDS
PURE E AND PURE B

A pure B-mode on an observed manifold is defined in
Section 2.2 as being orthogonal to observed E-modes:

· ( )=P b 0. 9E

The vector b is any linear combination of modes in the
subspace of the pure B-modes. For pixelized maps, b contains
Q and U values for each of the pixels in the map, and PE is the
pixelized version of the E-mode spherical harmonics. It is
useful to multiply the above equation by its conjugate
transpose, and sum over l and m, so that we have a scalar
representing the degree of orthogonality:

( )†* å =
⎛
⎝⎜

⎞
⎠⎟b Y Y ba a 0. 10
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We have freedom to choose the power spectrum,
*= á ñC a al

EE
lm
E

lm
E , which is included in the covariance matrix,

CE:
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l
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We note that this product is the 2×2 [ ]Q U, covariance block
in the signal covariance matrix:
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E
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E

where the superscript denotes the E-mode component of the
full sky polarization field and i j, designate pixels in the map.
We can evaluate the covariance matrix for a particular set of
pixels and a chosen spectrum.
By solving a generalized eigenvalue equation of the form:

( )l=C x C x , 13i iB i E

and selecting eigenmodes corresponding to the largest
eigenvalues, we can find eigenmodes b that are nearly
orthogonal to E-modes and therefore approximate pure B.
Eigenmodes corresponding to the smallest eigenvalues approx-
imate pure E. This method is a natural extension to the signal to
noise truncation discussed in Bond et al. (1998) and Bunn &
White (1997) and applied in Kuo et al. (2004). The specific
application to E and B-modes was first discussed in Bunn
et al. (2003).
We say the modes approximate pure E and pure B-modes

because the degree of orthogonality is proportional to the
magnitude of the eigenvalues. The level of orthogonality is
discussed further in Section 6. However, for the remainder of
the paper, we will use the terms pure B and pure E to refer to
the largest and smallest eigenmodes of Equation (13), despite
the fact that their inner product is not identically zero.
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Now suppose that the true sky polarization field, P, is
transformed into an observed polarization field, P̃, by a real
space linear operation, R:

˜
( )å

=
=-

P RP
R Ya . 14

E E

lm
lm
E

lm
E

Throughout this paper, transformations into observed quantities
are indicated by the inclusion of a tilde over the variable, in the
above equation, ˜P P. The operator R will typically represent
filtering operations necessary to suppress noise and/or
systematics plus an apodization of the resulting observed maps.

The condition for pure E and pure B must be the same after
multiplying by R. We still demand that the vectors of pure B be
orthogonal to all those in the E space, which includes both the
pure E-modes and the ambiguous modes:

· ( )å =
⎛
⎝⎜

⎞
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lm
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We create a basis of pure E and pure B-modes by solving the
eigenvalue problem with the covariances of the form:
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so that Equation (13) becomes:

˜ ˜ ( )l=C x C x . 17i iB i E

In the simplest case, the matrix R is an apodization window
and filled only on its diagonal. However, Equation (15) does
not necessitate that the real space operator be a diagonal matrix.
Any analysis steps that can be expressed as linear operations
can be included.

In BICEP2 and Keck Array analysis a number of filtering
operations are typically performed during the map making
process. In the next section the matrix R corresponding to these
operations is derived. The practical implementation of a
solution to the eigenvalue equation is discussed in Section 6.

4. OBSERVATION MATRIX

The matrix R transforms an “input map,” m, a vector of the
true sky polarization field, into a vector of the observed map,
m̃. If the matrix R represents the apodization and linear filtering
of an analysis pipeline, it is defined to be the “observation”
matrix for a particular experiment. This choice of R ensures the
eigenspaces of Equation (17) are pure E and B for the observed
map. This section describes how the observation matrix is
computed for BICEP2 and the Keck Array.

The steps in constructing the observation matrix mirror
functions in the data reduction pipeline that was originally
developed for QUAD (Pryke et al. 2009) and later used in the
BICEP1 (BICEP1 Collaboration 2014), BICEP2 (BICEP2 Colla-
boration I 2014), and Keck Array (Keck Array & BICEP2
Collaborations V 2015) analyses. This pipeline consists of a
MATLAB library of procedures which constructs maps,
including several filtering steps, from real data or simulated
timestream data for a given input sky map.

The filtering operations performed sequentially in the
standard pipeline include data selection, polynomial filtering,
scan-synchronous signal subtraction, weighting, binning into
map pixels, and deprojection of leaked temperature signal. To
construct the observation matrix, matrices representing each of
these steps are multiplied together to form a final matrix that
performs all of the operations at once. Since each of the
operations is linear, the observation matrix is independent of
the input map. Therefore, the same matrix can be used on any
input map and will perform the same operations as the standard
pipeline.
If the combined matrix of timestream operations is  , then

transforming a timestream, d, into an observed map, m̃, is
simply:

˜ ( )=m d. 18

The signal component of a timestream can be generated from
an input map, m, using a matrix that contains information about
the pointing and orientations of the detectors, according to the
equation =d m. The observation matrix, R, is given by the
product of  and  :

˜ ( )=m m 19

( )= Rm. 20

It is not necessary for the input maps and observed maps to
share the same pixelization scheme, since the observation
matrix can easily be made to transform between the two.

4.1. Input HEALPix Maps

We choose a HEALPix pixelization scheme (Gorski
et al. 2005) for the input maps, m, because it has equal area
pixels on the sphere and is widely used in the cosmology
community.
A true sky signal is represented by the map

[ ]=m T Q U, ,o
xy
o

xy
o

xy
o , where (x y, ) are the (R.A., decl.)

coordinates of the map. Using synfast21, the unobserved
input map is convolved with the array averaged beam function,
̄, constructed from measurements of the beam function of all
detectors in the array:

¯ ¯ ( ) = * = *
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The input map vector is found by reforming the beam
convolved two-dimensional map into a one-dimensional
vector, m, of length j3 , where =j n1 ... p, for np pixels in the
input map:

( )º
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⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

m

T

Q

U
. 22

j

j

j

4.2. BICEP2 and Keck Array Scan Strategy

The observing strategies for BICEP2 and the Keck Array are
very similar and borrow heavily from BICEP1. All three
experiments target a region of sky centered at a right ascension

21 synfast is a program in the HEALPix suite that renders sky maps from
sets of input almʼs.
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of 0° and declination of −57°.5. A detailed description of the
scan strategy is contained in BICEP2 Collaboration II (2014).

1. Halfscans: During normal observations, the telescope
scans in azimuth at a constant elevation. The scan speed
of 2°.8 s−1 in azimuth places the targeted multipoles of

< <l20 200 at temporal frequencies less than 1 Hz.
Each scan covers 64°.2 in azimuth, at the end of which the
telescope stops and reverses direction in azimuth and
scans back across the field center. A scan in a single
direction is known as a “halfscan.”

2. Scansets: Halfscans are grouped into sets of ≈100
halfscans, which are known as “scansets.” The scan
pattern deliberately covers a fixed range in azimuth
within each scanset, rather than a fixed range in right
ascension. Over the course of the 50 minute scanset,
Earth’s rotation results in a relative drift of azimuthal
coordinates and right ascension of about 12°.5. At the end
of each scanset the elevation is offset by 0°.25, and a new
scanset commences. The telescope steps in 0°.25 eleva-
tion increments between each scanset. All observations
take place at 20 elevation steps, with a boresight pointing
ranging in elevation between 55° and 59°.75. The
geographic location of the telescope, near the South
Pole, means that elevation and declination are approxi-
mately interchangeable.

3. Phases: Scansets are grouped together into sets known as
“phases.” For BICEP2 and the Keck Array, CMB phases
consist of ten scansets, comprising 9 hours of observa-
tions. CMB phases are grouped into seven types and each
type has a unique combination of elevation offset and
azimuthal position.

4. Schedules: The third degree of freedom in the BICEP2 and
Keck Array telescope mounts is a rotation about the
boresight, referred to as “deck rotation.” The polarization
angles relative to the cryostats are fixed, so rotating in
deck angle allows detector pairs to observe at multiple
polarization angles.

A “schedule” typically consists of a set of phases at a
particular deck angle. The deck angle is rotated between
schedules. There is typically one schedule per fridge
cycle, occurring every ∼3 days for BICEP2 and ∼2 days
for the Keck Array.

4.3. Relationship Between Timestreams and [T, Q, U]

The BICEP2 and Keck Array detectors consist of pairs of
nominally co-pointed, orthogonal, polarization sensitive phased
array antennas coupled to TES bolometers (BICEP2/Keck &
Spider Collaborations 2015). The signal in the timestream from
detector “A” is:

( ) ( ) ( )t = + Y + YT Q Ucos 2 sin 2 , 23t
A

t t
A

t t
A

t

where [ ]T Q U, ,t t t are the Stokes parameters of the beam
convolved sky signal for timestream sample t. A timestream
consists of nt time ordered measurements of the sky, =t n1 ... t.
YA is the angle the “A” antenna makes with the Q U, axis on
the sky. For the HEALPix polarization convention, this axis is
a vector pointing toward the north celestial pole.

The relative gain normalized “A” timestream is summed and
differenced with the normalized timestream from its orthogonal

partner “B”:

( )

( ) ( )

t t a b

t t a b

= + = + +

= - = +

+ +

- -

s T Q U

d Q U

1

2
1

2
. 24

t t
A

t
B

t t t t t

t t
A

t
B

t t t t

The variables α and β are defined by:

[ ( ) ( )]

[ ( ) ( )] ( )

a

b

º Y  Y

º Y  Y





1

2
cos 2 cos 2

1

2
sin 2 sin 2 , 25

t t
A

t
B

t t
A

t
B

where YB is the angle the “B” antenna makes with the Q U,
axis on the sky. Assuming that “A” and “B” are perfectly co-
pointed and orthogonal, the signal portion of the timestream
vectors can be described with a transformation, Atj, from the
input map pixel (with index j) to the timestream sample (with
index t):

( )a b
=
= +- -

s A T

d A Q A U , 26
t tj j

t t tj j t tj j

where the terms a+ and b+ in the pair sum timestream cancel
due to the orthogonal orientation of the “A” and “B” detectors.
The signal-plus-noise timestreams, in vector notation, are:

( ) [ ] ( )= + +s n n A T
1

2
27A B

[ ]( ) ( )a b= - + - - ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥d n n A

A
Q
U

1

2
0

0
. 28A B

where nA and nB are the time ordered noise components of
detector “A” and detector “B,” assuming the noise is
uncorrelated with the pointing of the detector pair. For signal
only simulations, nA and nB can be ignored.
The matrix [ ]a b- - contains the information about the

orientation of a pair’s antennas relative to Q and U defined on
the sky. We call it the detector orientation matrix. The
combination:

[ ] ( )a b- - ⎡
⎣⎢

⎤
⎦⎥

A
A
0

0
29

transforms input Q U, maps into a pair difference timestream.
[ ]a b- - is constructed from two diagonal matrices,a- and b-,
which are filled with the sine and cosine of the detector
orientations at each time sample. A graphical representation of
the detector orientation matrix is shown in Figure 1. (Addi-
tional steps accounting for polarization efficiency and pair non-
orthogonality are absorbed into a normalization correction to
the pair difference timestream.)

Figure 1. Detector orientation matrix, [ ]a b- - . The matrix is only filled on the
diagonals of the two sub-blocks, a and b.
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4.4. Timestream Forming Matrix, A

The matrix A=Atj represents the timestream forming
matrix for a detector pair. It transforms the input temperature
map, Tj, into the signal component of the pair sum timestream,
st. A graphical representation of the timestream forming matrix
is shown in Figure 2.

To create timestreams with smooth transitions at pixel
boundary crossings, the input maps should have a resolution
higher than the spatial band limit imposed by the beam
function. For this reason, Nside=512 HEALPix maps are
used, whose pixels have a Nyquist frequency  ´2 the band
limit of the BICEP2 and Keck Array 150 GHz beam function.

The current BICEP2 and Keck Array CMB observations fall
within the region of sky bounded in right ascension by

a- < <3 40 3 40h m h m and in declination by
d-  < < - 70 45 . This region contains =n 111,593p pixels

in an Nside=512 HEALPix map. The number of samples in a
scanset is typically »n 43,000t .

The simplest form of A performs nearest neighbor
interpolation of the HEALPix maps, in which case A is
( ´n nt p) and is filled with ones where the detector pair is
pointed and zeros otherwise.

A more sophisticated form of A performs Taylor interpola-
tion on the HEALPix map, in which case A is

( )( )´ l l+n nt p
1

2
, where λ is the order of the Taylor polynomial

used in interpolation. In this case, A is a matrix that performs
Taylor interpolation, allowing sub-pixel accuracy to be
recovered from the input map, and m must also contain
derivatives of the true sky temperature and polarization field.
This matrix is used to build the deprojection templates in
Section 4.10 but is not used for forming timestreams because it
increases the dimensions of the observation matrix, making the
computation of the observation matrix more difficult.

4.5. Polynomial Filtering Matrix, F

To remove low frequency atmospheric noise from the data, a
third order polynomial is fit and subtracted from each halfscan
in the timestreams. Since each halfscan traces an approximately
constant elevation trajectory across the target field, the
polynomial filter removes power only in the right ascension
direction of the maps. In multipole, l, the third order
polynomial filter typically rolls off power below <l 40. This
can be represented by a “filtering matrix,” F, which is block

diagonal with the block size being the temporal length of a
halfscan. Each block is composed of a matrix:

( ) ( ) = - -F I V V V V , 301

where I is the identity matrix and V is the same third order
Vandermonde matrix for each halfscan of equal length. The
Vandermonde matrix is defined as:

( )= -V x , 31tj t
j 1

where j=4 for a third order filter and xt are the coordinate
locations.
For BICEP2 and the Keck Array, xt is a vector of the relative

azimuthal location of each sample in the halfscan. A
representation of the polynomial filtering matrix is shown in
Figure 3.

4.6. Scan-synchronous Signal Removal Matrix, G

Scan-synchronous subtraction removes signal in the time-
streams that is fixed relative to the ground rather than moving
with the sky. These azimuthally fixed signals are decoupled
from signals rotating with the sky by the scan strategy, which
observes over a fixed range in azimuth as the sky slides by (as
described in Section 4.2). A template of the mean azimuthal
signal is subtracted from the timestreams for each scan
direction. This procedure can be represented as a matrix
operator, referred to as a “scan-synchronous signal matrix.”
The mean azimuthal signal can be found using a matrix

X= ¢Xtt , for which each row is only filled for entries
containing the same azimuthal pointing as the diagonal entry.
The scan-synchronous signal matrix subtracts off the mean
azimuthal signal:

( )= -G I X, 32

where I is the identity matrix. A graphical representation of the
scan-synchronous signal removal matrix is shown in Figure 4.
Note that while the F matrix is block diagonal and sparse, and
the G matrix is sparse, once the two are combined, the resulting
filter matrix is neither sparse nor block diagonal, making matrix
operations more computationally demanding.

4.7. Inverse Variance Weighting Matrices, w

The timestreams are weighted based on the measured inverse
variance of each scanset. Pair sum and pair difference are
weighted separately from weights calculated from the two
timestreams, +w and -w . The scheme assigns lower weight to
particularly noisy channels and periods of bad weather. This

Figure 2. Timestream forming matrix, A: filled elements of the matrix that
takes HEALPix maps to timestreams. This matrix contains the pointing of a
single detector pair over one scanset within a Nside=512 HEALPix map. The
pattern of the filled elements is determined by the particular HEALPix pixel
indexing scheme. There are nt filled entries, consisting of a 1 for each
timestream sample. Note that although the above image appears to have
multiple pointing locations for a single timestream sample, nt, this is merely a
result of limited resolution in the image. The timestream forming matrix
contains only one HEALPix pixel location for each time sample.

Figure 3. Polynomial filtering matrix, F, showing the filled elements of the
matrix. The matrix is very sparse and is block diagonal with blocks the size of a
halfscan (»404 samples).
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choice of weighting is not a fully “optimal” map maker
(Tegmark 1997), but instead represents a practical solution that
avoids calculating and inverting a large noise covariance
matrix. The weighting is represented by a matrix whose
diagonal is filled with the vector +w = +wtt for pair sum and
-w = -wtt for pair difference, shown in Figure 5.

4.8. Filtered Signal Timestream Generation

Ignoring noise and combining all the operators of
Sections 4.5, 4.6 and 4.7, the sum and difference timestreams
in Equation (26) are tranformed to the filtered timestreams:

[ ]
˜ [ ]

˜ ( )a b

=

=

+

- - - ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

s w GFA T

d w GF A
A

Q
U

0
0

, 33

the second of which is graphically represented in Figure 6.

4.9. Pointing Matrix, L

The timestream quantities s and d are converted to maps by
the pointing matrix, L=Lit. If the pixelization of the input
maps were identical to the output maps, the pointing matrix
would be the transpose of the timestream forming matrix:

L = A .

As discussed in Section 4.1, the input maps are HEALPix
Nside=512. However, the BICEP maps instead use a simple
rectangular grid of pixels in R.A. and decl.: the size of the
pixels is 0°.25 in decl., with the pixel size in R.A. set to be
equivalent to 0°.25 of arc at the mid-declination of the map,
resulting in 236×100=23,600 pixels. If the BICEP maps are
naively used as “flat maps” then projection distortions are
inherent. However, note that the A and L matrices together
fully encode the mapping from the underlying curved sky to the
observed map pixels, allowing such distortions to be accounted
for. Figure 2 shows A for a single detector over a scanset and
Figure 7 shows L for a single detector over a scanset.

The pointing matrix for a single detector pair can be used to
construct a pair sum “pairmap:”

[ ] ( )L L= = +m s w GFA T . 34T

The pair difference timestream is converted into pairmaps using
two copies of the pointing matrix. The two pair difference

pairmaps correspond to linear combinations of Stokes Q and U:

[ ] ( )a
b a bL

L
=a

b

-

-
- - -

-

-

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

m
m w GF A

A
Q
U

0
0

0
0

. 35

For later convenience in abbreviating this equation, we define:

[ ] ( )
a
b a bL

L
º

-

-
- - -⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥w GF A

A
0

0
0

0
. 36

4.10. Deprojection Matrix, D

A potential systematic concerning polarization measure-
ments is the leakage of unpolarized signal into polarized signal.
In the case of CMB polarization, this takes the form of the
relatively bright temperature anisotropy leaking into the much
fainter polarization anisotropy. The leakage is caused by
imperfect differencing between the orthogonal pairs of
detectors. The beam functions can be well approximated by
elliptical Gaussians, the difference of which correspond to gain,
pointing, width and ellipticity(Hu et al. 2003; Shimon
et al. 2008).

Figure 4. Scan-synchronous signal removal matrix, G, showing the filled
elements. The scan-synchronous signal matrix is sparse Toeplitz, with off
diagonal components that subtract the average scan-synchronous signal for one
of the two scan directions in a scanset.

Figure 5. Weighting matrices w , showing the filled elements. The weighting
matrices are zero except on the diagonal, where they contain the weights based
on the inverse variance of the timestream.

Figure 6. Matrix generation of simulated timestreams corresponding to
Equation (33).

Figure 7. Pointing matrix, L: filled elements of the pointing matrix that
transforms timestreams to an observed map in the BICEP pixelization. This
matrix contains the mapping between the pointing of a single detector pair over
one scanset and the output map pixels. There are 23,600 pixels in a BICEP map,
denoted as ñp. There are nt filled entries, consisting of a 1 for each timestream
sample. Each leg of the zigzag pattern corresponds to a halfsan within the
scanset, where the telescope is scanning back and forth at a fixed elevation.
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The BICEP2 and Keck Array pipeline removes leaked
temperature signal from the polarization signal using linear
regression to fit leakage templates to the polarization data. This
method allows the beam mismatch parameters to be fitted
directly from the CMB data itself, rather than relying on
external calibration data sets, and is robust to temporal
variations of the beam mismatch.

The templates used in the regression are constructed from
Planck 143 GHz temperature maps.22 These maps contain both
CMB and foreground emission at approximately the BICEP2
band. The noise in Planck 143 GHz is significantly subdomi-
nant to the CMB temperature anisotropy. For a full description
and derivation of the deprojection technique, see Aikin (2013),
Sheehy (2013), BICEP1 Collaboration (2014), and BICEP2
Collaboration III (2015). In this section, the entire deprojection
algorithm is re-cast as a matrix operation.

For the purposes of generating deprojection templates, we
use a timestream forming matrix that performs Taylor
expansion around the nearest pixel center to the detector
pointing location. The Taylor interpolating matrix produces
higher fidelity timestreams than a nearest neighbor matrix. This
is important for the deprojection algorithm since small
displacements in beam position are responsible for the
systematic effect that is removed. Without Taylor interpolation,
pixel boundary discontinuities introduce noise and limit the
effectiveness of deprojection.

A Taylor polynomial of order λ has ( )l l+ 1

2
terms, so the

dimensions of the input map vector for second order
interpolation is ´ n1 6 p. Using Equation (21), the input maps
are convolved with the array averaged beam function. The
smoothing is done using synfast, which contains the ability
to output derivatives of the temperature (and polarization) field.
Because the beam is applied first, the output derivatives are less
noisy than they would be in the raw maps.

The maps are of the form:

( )







Q =

q

f

qq

ff

qf

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

T
T
T

T
T

T

, 37

where θ and f are the HEALPix map’s latitude and longitude.
Using the temperature map and its derivatives, we can find

the Taylor interpolated temperature timestream by replacing A
with a Taylor interpolating matrix, ¢A :

( )q f q fD D D D¢ = q fD D⎡⎣ ⎤⎦A A A A A A A , 38
2 2

2 2

where qD and fD are diagonal matrices giving the difference
between the detector pair’s pointing and the nearest HEALPix
pixel center.

A differential beam generating operator is applied to the
timestreams to create differential beam timestreams. For
example, the differential gain timestream is just the beam
convolved temperature field:

( )d Q= ¢dd A , 39g g

where the fit coefficient for the gain mismatch is dg. The
differential pointing components are found from the first
derivatives of the temperature field with respect to the focal
plane coordinates, x and y:

( )d Q= ¢dd A 40x x x

( )d Q= ¢dd A , 41y y y

where dx and dy are the differential beam coefficients and x

and y are partial differential operators with respect to the
focal plane coordinates. Further details of this calculation and
derivations for other beam modes are discussed in AppendixC
of Bicep2 Collaboration III (2015).
The differential beam timestreams are transformed into maps

analogously to Equation (35), creating a pairmap template, ̃ j,
for each differential beam mode, j. The template pairmaps for
each scanset, , are then coadded over phases. For instance, the
template pairmap for differential gain, is ̃1:

[ ]

˜

( )








å
a
b

a b

L
L

Q
Q

=

´ ¢
¢

Î -

-
-

- -

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

w GF

A
A

0
0

0
0

. 42

1

phase

A matrix performing weighted linear least-squares regression
against real pairmaps produces the fitted coefficients for each of
the differential beam modes, [ ]d d dº ¼c , , ,g x y :

( ˜ ( ) ˜ ) ˜ ( ) ( )    
 = a

b
- - - - -

-

-

⎡
⎣⎢

⎤
⎦⎥c

m
m , 431 1 1

where a
b

-

-

⎡
⎣⎢

⎤
⎦⎥

m
m is the real data pairmap coadded over a phase, ̃

is a vector of pairmap templates, and- is the pair difference
weight map, created from the weight matrix according to:

( )








å a a

b b
L L
L L

=-
Î - - -

- - -

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

w
w

. 44
phase

The pairmap templates weighted by c are then subtracted from
the real data pairmap:

˜
˜

˜ ( )= -a

b

a
b

-

-

-

-

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

m
m

m
m c. 45

This process takes the form of a matrix operator that includes
each of the beam systematics, giving the deprojection matrix:

˜ ( ˜ ( ) ˜ ) ˜ ( ) ( )     
 º - - - - - -D I . 461 1 1

Deprojected pairmaps are then found according to:

˜
˜ ( )




å=a

b

Î-

-

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

m
m

D Q
U

. 47
phase

The regression in Equation (43) operates simultaneously
over all the modes to be deprojected. Because the templates for
different modes are not in general orthogonal, the coefficient
for each mode depends on the full set of modes. Therefore, the
subtraction in Equation (46) must include the same mode list
used in the regression in Equation (43). If the regression
included more modes than the subtraction step, the regression
would have extra degrees of freedom. This could result in
incomplete removal of leakage signal. We avoid this possibility

22 For the Keck Array 95 and 220 GHz bands, we use Planck 100 GHz and
217 GHz maps.
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by deferring the regression step until immediately before the
subtraction step, and explicitly using the same mode selection
for both.

As in the standard pipeline, we deproject for each detector
pair, after coadding scanset to phases. To reduce the
computational demands, the matrix deprojection pairmaps have
additionally been coadded over scan direction, whereas the
standard pipeline performs regression separately for left going
and right going scans. This is the only difference between
simulations run with the standard pipeline and those calculated
from the observation matrix and leads to a negligible
difference, see Figures 11 and 12.

The deprojection matrix made for a phase is less sparse than
one made for a scanset because over the course of a phase a
particular pair will observe a larger range of elevation than it
would in a scanset. The filled elements of the matrix D, for one
pair across one phase, is shown in Figure 8.

4.11. Coadding Over Scansets and Detector Pairs to form the
Observation Matrix

An observed temperature map, ˜ ¢T , can be found by summing
the pair sum pairmaps temporally over scansets () and over
detector pairs ():

˜ [ ] ( )
 
å¢ = L +T w GFA T . 48

,

The matrix performing this transformation is defined as ¢R TT ,
where the prime indicates the apodization comes from the
inverse variance of the pair sum timestream, +w . The final
apodization is applied in Section 4.13.

The transformation from pair difference pairmaps to Q U,
maps depends on the detector orientations during the observa-
tions. This transformation relies on an inversion of a 2×2
detector orientation matrix. We will now derive the matrix that
performs this transformation.

Ignoring filtering, the pair difference timestream is found
using the timestream forming matrix, Atj:

( ) ( )t t a b= - = +- -d A Q A U
1

2
. 49t t

A
t
B

t tj j t tj j

Forming linear combinations of the pair difference timestream,

( )
a
b

a a a b
a b b b

=
-

-

- - - -

- - - -

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

d
d

A A

A A

Q

U
, 50t t

t t

t t tj t t tj

t t tj t t tj

j

j

and applying the pointing matrix, L, the vectors a-d and b-d
are binned into map pixels, i. At this point we coadd over
scansets and detector pairs, and apply a weighting, -w , equal to

the inverse of the variance of the timestreams during a scanset:

( )

   
å å
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a a a b
a b b b
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51

it t t t

it t t t

it t t t tj it t t t tj

it t t t tj it t t t tj

j

j

, ,

We invert the matrix on the right hand side of Equation (51)
to compute a matrix that generates Q and U maps:

( )
 
å

a a a b
a b b b

º
L L L L
L L L L
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w w
, 52

i i

i i

it t t t ti it t t t ti

it t t t ti it t t t ti,

1

where the t index has been summed over to find each of the
elements in the 2×2 matrix on the right hand side and Atj has
been replaced by Lti so the equation now determines the Q U,
values in the observed map, Q U,i i. There is one 2×2 matrix
inversion performed for each pixel, i, in the observed map. In
other words, one value of ei, fi, and gi is computed for each
pixel in the observed map, and filled into the i-th diagonal
element of e, f and g.
The pairmaps ˜ a-m and ˜ b-m are transformed into Stokes

Q U, by multiplying by
⎡
⎣⎢

⎤
⎦⎥

e f
f g

. Observed Q U, maps are

found according to:

˜
˜

( )
 

 å
¢

¢
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⎡
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⎤
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⎡
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⎤
⎦⎥

Q

U

e f
f g

Q
U

, 53
,

,

where  was defined in Equation (36).
If the sum of  matrices could be inverted, it would be

possible to use this inverse to recover an unbiased estimate of
the original Q and U. However,  is singular because it
includes polynomial filtering and scan-synchronous signal
subtraction, which completely remove some modes that were
present in the original maps. We therefore use instead the
matrix defined by the matrix inversion in Equation (52), which
does not include these filtering operations. Even the inversion
in Equation (52) is singular unless the coadded data contains
observations at multiple detector angles, Yt. Observations at
multiple detector orientations are made through deck rotations
or by coadding over receivers in different orientations. As
described in Section 4.2, deck rotations occur between phases,
so coadding over phases makes the matrix invertible.
Including deprojection, Equation (53) becomes:

˜
˜
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. 54
phase

This represents the entire Q U, map making process for signal
simulations: from input maps to observed maps, including
filtering operations. It can be summarized as:

˜

˜
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4.12. Non-Apodized Observation Matrix

As constructed, the matrix, ¢R , contains an apodization based
on the inverse variance of the timestreams, +w and -w . We can,

Figure 8. Deprojection matrix, D: filled elements of the deprojection matrix for
one pair, for one phase of data. The overall dimensions are ˜ ˜´n n2 2p p, twice
the number of pixels in a BICEP map.
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however, choose to remove this apodization, producing maps
with equal weight across the field in units of μK. We construct
the quantities:

( ) ( )

 
 å L L=+ +W w , 56

,
,
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, ,

and use these to remove the apodization from the observation
matrix, solving for the non-apodized observation matrix, :

( ) ( ) = ¢+ -W R 58TTTT
1
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4.13. Selecting the Observation Matrix’s Apodization

Using the non-apodized observation matrix of Section 4.12,
we can create an observation matix with an arbitrary
apodization, Z. The matrix R is constructed as follows:
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A sensible choice for the apodization, Z, may be the inverse
variance mask we removed in Section 4.12, or a smoothed
version thereof. However, there is freedom to choose any
apodization at this point, and this may prove useful in joint
analyses with other experiments, where the analysis combines
maps with low noise regions in slightly different regions of
the sky.

4.14. Summary

We have constructed a matrix, R, which performs the linear
operations of polynomial filtering, scan-synchronous signal
subtraction, deprojection, weighting and pointing. R has
dimensions ( ˜ )n n3 , 3p p where ñp is the number of pixels in
the BICEP map and np is the number of pixels in the input
HEALPix map.

Using the observation matrix, the entire process of
generating a signal simulation from an input map is:
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Here the off diagonal terms, RQU and RUQ, exist because the
filtering operations are performed on pair difference time-
streams, which are a combination of Q and U.

The deprojection operator contains regression against a
temperature map that must be chosen before constructing the
observation matrix. The deprojection operator is a linear
filtering operation, and it only removes beam systematics
arising from one particular temperature field. One could in
principle apply the deprojection operator to Q U, maps
corresponding to a different temperature field. The operator
would remove the same modes from the polarization field, but
these modes would not correspond to those which had been
mixed between T and Q U, by beam systematics (or TE
correlation).

When constructing an ensemble of E-mode realizations for
use in Monte Carlo power spectrum analysis, the TE correlation
and the fixed temperature sky force us to build constrained
realizations. The ensemble of simulations all contain identical
temperature fields, so we cannot use them for analysis of
temperature, which is acceptable because the focus of our
analysis is polarization. The ensemble does contain different
realizations of Q U, , constrained for the given temperature
field, and these can be used in Monte Carlo analysis of
polarization. The details of constructing these constrained input
maps is the subject of the Appendix.
Because the construction of RQQ, RQU, and RUU depends on

a fixed temperature field, the deprojection templates can be
thought of as numerical constants. RTT performs a separate
filtering on the temperature field that is largely decoupled from
the filtering of Q and U. To include systematics that leak
temperature to polarization, the terms RTQ and RTU would in
principle need to be non zero. However, so long as the leakage
corresponded to modes being removed by the deprojection
matrix D the the deprojection elements in the RQQ, RQU, and
RUU blocks would ensure that the output Q U, maps were
identical.
Although the nominal dimensions of R are large, our

constant elevation scan strategy means that R is only filled for
pixels at roughly the same declination. This means that R is
largely sparse, as shown in Figure 9.
Some intuition about the operations the observation matrix

performs can be gained by plotting a column of the matrix
reshaped as maps—see Figure 10. The column chosen in this
case corresponds to a central pixel in the observed field. It
shows how Q and U values in the observed map are sourced
from a Q pixel in the HEALPix map. The bright pixel in the Q
observed map corresponds to the location of the input Q. The
effects of polynomial and scan-synchronous signal subtraction
are visible to the left and right of the bright Q pixel. These two
types of filtering are performed on scansets and are therefore
confined to a row of pixels. Deprojection operates on phases,
creating the effects seen at other declinations. Because all of
these filtering operations are performed on pair difference data,
which contains linear combinations of Q and U, signal in the
observed U map can be created by signal in the input
HEALPix Q map. This is why the U map in Figure 10 is
non-zero.

Figure 9. Observation matrix, R: filled elements of the observation matrix for
the BICEP2 3 year data set. TQ, TU, UT, and QT are empty because no T P
leakage is simulated. The horizontal axis corresponds to the HEALPix
pixelization and has 3×111,593 elements. The vertical axis corresponds to
the BICEP pixelization, and has 3×23,600 elements. The matrix has only ∼5%
of its elements filled.
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4.15. Forming Maps from Real Timestreams

We can form observed maps from the real timestreams using
the matrices constructed above:
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1

phase

It is important to note that the exact same matrices are used to
process the real data in Equation (64) as are used to construct
the simulated maps in Equation (35).

4.16. Equivalence of Observation Matrix with Standard
Pipeline

The matrix formalism described above is self-contained and
complete in the sense that it contains the tools necessary to
create real data maps and simulated maps.

We demand that the map making and filtering operations be
identical between the standard pipeline and the observation
matrix. It is straightforward to test this equivalence: simulated
maps run through the standard pipeline must be identical to the
maps found with the observation matrix. Figures 11 and 12
show that the two match quite well, within a few percent over
the multipoles of < <l50 350. The lack of a perfect match is
due to the difference in deprojection timescale and because the
standard pipeline uses Nside=2048 HEALPix input maps that
are Taylor interpolated, whereas the observation matrix uses
Nside=512 input HEALPix maps with nearest neighbor
interpolation.

5. SIGNAL COVARIANCE MATRIX, C

The signal covariance matrix contains the pixel-pixel
covariances of a map for a given spectrum of Gaussian
fluctuations. The diagonal entries contain the variance of each
pixel, and each row describes the covariance of a given pixel

with the other pixels in the map. For [ ]T Q U, , maps, the
covariance matrix contains nine sub-matrices for the correla-
tions between T,Q, and U.

Figure 10. A single column of the observation matrix R, for a HEALPix Q
pixel near the center of our field. The value of a single input Q pixel affects
both Q and U values in the observed map over the range of declinations
covered in a phase.

Figure 11. Comparison of observed Q maps created by the observation matrix
and the standard pipeline. The input map for both is from the same simulation
realization. There are small differences due the difference in deprojection
timescales, input HEALPix map resolution, and interpolation.

Figure 12. Comparison of power spectra of maps created by the observation
matrix and the standard pipeline. The input map for both is from the same
simulation realization, which differs from the theory curve for this particular
realization in the BICEP field. The two methods are fractionally the same to
within a few percent over the multipoles of interest, < <l50 350.
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5.1. True Sky Signal Covariance Matrix

A pixel on the sky at location i, has values of the Stokes
parameters:

( )º
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⎝
⎜⎜

⎞

⎠
⎟⎟x

T
Q
U

. 65i

i

i

i

The 3×3 pixel-pixel covariance between two locations on the
sky, i and j, is given by:

( ) ( · ) ( ) ( ) a aº á ñ =C Mx x r r . 66i j i j i j,

The covariance matrix, M , is defined with the Q U, convention
referenced to the great circle connecting the two points, i j, . For
a particular spectrum M depends only on the dot product
between the pixels, ·r ri j. M contains nine symmetric sub-
matrices:
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The 3×3 matrix, , is applied to rotate from this local
reference frame to a global frame where Q U, are referenced to
the North–South meridians. The angle between the great circle
connecting any two points and the global frame is given by the
parameter a
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0 cos 2 sin 2
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. 68

Changing the sign of α allows us to change the polarization
convention from IAU to HEALPix (U to-U ), see Hamaker &
Bregman (1996). We have chosen to use the IAU convention
for BICEP2 and Keck Array covariance matrices.

The true sky pixel-pixel signal covariance matrix for the
Stokes Q U, parameters is derived in Kamionkowski et al.
(1997), Zaldarriaga (1998). To calculate the covariances, we
follow some of the suggestions in Appendix of Tegmark & de
Oliveira-Costa (2001).

We use the HEALPix ring pixelization, which allows the
covariance to be calculated simultaneously for all pixels at a
particular latitude that are separated by the same distance.23

This shortcut is exploited by simultaneously calculating all
equidistant pixels for rows in the map that have the same
latitude to within 1×10−4 degrees. This approximation is
much smaller than the ∼7 arcminute pixels in Nside=512
maps, and the rounding error has been found to be insignificant.

5.2. Observed Signal Covariance Matrix, C̃

The observed signal covariance matrix contains the pixel-
pixel covariance in the observed BICEP pixelized maps.
Theoretically, modifying the true sky signal covariance matrix
is simple: take the unobserved signal covariance of C of
Section 5.1 and the observation matrix R from Section 4 and
form the product:

˜ ( )=C RCR . 69

This equation results in a symmetric positive definite matrix,
which is rank deficient because of the filtering steps in the
observing process.
Unfortunately, performing this multiplication is computa-

tionally demanding: The input C is a square matrix, with
3×111,593 elements on a side, corresponding to the elements
of T, Q, and U. To reduce the memory requirements of the
calculation, we divide the covariance matrix, C, into row
subsets and calculate in parallel. Once a row subset is
calculated, the observation matrix is immediately applied to
transform the HEALPix covariance to the observed map
covariance, which reduces the dimensions of the covariance to
the 23,600 pixels of the observed maps.
The covariance and observed covariance should both be

symmetric, which provides a good check on our math. Usually
the output is slightly (fractionally,~1 107) non-symmetric due
to rounding errors in the multiplication, and we force the final
matrix to be symmetric to numerical precision by averaging
across the diagonal before moving to the next steps, since
symmetric matrices often allow the use of faster algorithms.
A row of the observed covariance matrix can be reshaped

into a map, which reveals the structure of the covariance for a
particular pixel, see Figure 13.

6. E/B SEPARATION USING A PURIFICATION MATRIX

The observed covariance matrix contains expected pixel-
pixel covariance in our observed maps given an initial
spectrum. The observation matrix, R, has made the E and B-
mode spaces of the observed covariance non-orthogonal. The
result of Section 3 is that we can find the orthogonal pure E and
pure B spaces by solving the eigenvalue problem from
Equation (17): ˜ ˜l=C x C xB i E ii .

6.1. Construction of Purification Matrix

As written, Equation (17) is not solvable: C̃B has a null space
that is the set of pure E-modes. Similarly, the space of pure B-
modes is the null space of C̃E. By adding the identity matrix
multiplied by a constant, s I2 , to the covariance matrices we
regularize the problem to find approximate solutions and
eliminate the null spaces:

( ˜ ) ( ˜ ) ( )s l s+ = +C I x C I x . 70B i E ii
2 2

Figure 13. Maps showing a row of the observed covariance matrix C̃. The row
selected corresponds to the covariance of an individual Q pixel at the center of
the map. The top row shows the covariance used to calculate the pure E and B-
modes described in Section 6. The bottom row shows the covariance for an
input spectrum corresponding to ΛCDM (left), and r=0.2 tensors (right).

23 This quality of the HEALPix maps is by design, see Gorski et al. (2005).
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The amplitude of s2 sets the relative magnitude of the
ambiguous mode eigenvalues versus the pure E and pure B-
mode eigenvalues. The eigenvalues are shown in Figure 14. In
our analysis, we choose s2 to be 1/100 the mean of the
diagonal elements of the covariance matrices, C̃E and C̃B.

In Equation (70), C̃E is an observed covariance matrix for
[ ]Q U, that is constructed according to Equations (11) and (69).
The input spectrum is set to a steeply red E-mode spectrum,

=C l1l
EE 2, =C 0l

BB . C̃B is the same except for an input
spectrum with only B-modes, =C l1l

BB 2, =C 0l
EE . The

eigenmodes in xi with the largest eigenvalues comprise a set of
vectors that span a space of pure B-modes, bi. The pure B
quality of these vectors can be seen in the fact that the product
C̃ xE is much smaller than the product C̃ xB . The eigenmodes in
xi with the smallest eigenvalues comprise a set of vectors that
span a space of pure E-modes, ei.

Using the reddened input spectrum l1 2 causes the
magnitude of the eigenvalues to be proportional to the band
of multipole, l, that each mode contains. The steepness of the
spectrum ensures each mode contains power from a limited
range of l. The particular choice of l1 2 is arbitrary.

A basis constructed from a subset of eigenmodes with large
eigenvalues spans a subspace of pure B-modes. We arbitrarily
choose the pure B subspace to consist of eigenmodes whose
corresponding eigenvalues are the largest 1/4 of the set. We find
modes contained in this subset adequate for preserving power up
to ~l 700. The pure E subspace is similarly constructed with
eigenmodes corresponding to the 1/4 smallest eigenvalues.
Figure 14 shows the sorted eigenvalues, and Figure 15 shows
four eigenmodes of the BICEP2 observed covariance.

Using the set of pure E and pure B-mode basis vectors, two
projection matrices are constructed from the outer products:

( )
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which we call the purification matrices for pure E and pure B.
Operating the purification matrices on an input map projects
onto the space of pure E and pure B:

˜ ˜
˜ ˜ ( )

P
P

=
=

m m

m m. 72
E

B

pureE

pureB

From the construction of the pure B basis, bi, one can see
that the vector m̃pureB vanishes for arbitrary input containing
only E-modes: ˜ ·= åm R Yalm

E
lm
E , as desired for a purified

B map.

7. MATRIX E/B SEPARATION APPLIED TO BICEP2

This section describes the application of the matrix based E/
B separation to the BICEP2 data set. The technique relies on the
existence of the observation matrix and purification matrix
from the previous sections.

7.1. Motivation for Matrix Based E/B Separation in BICEP2

The BICEP2 and Keck Array analysis pipeline contains the
following attributes that can leak E-modes to B-modes: partial
sky coverage, timestream filtering (including deprojection), and
choice of map projection+estimator. A simulation demonstrat-
ing the leaked B-mode maps for each of these effects is shown
in Figure 16. These maps are created by applying the standard
E and B estimator in Fourier space and then an inversion back
to map space. The observations and data reduction produce
three classes of E/B leakage:

1. Apodization: The first obvious deviation from the ideal
full sky map is the partial sky coverage of BICEP2 and
Keck Array maps. Once a boundary is imposed E/B
leakage is created. Map boundary effects are reduced by
an apodization window which tapers the maps smoothly
to zero near the edges. Use of apodization windows is
common practice in any Fourier transform analysis of
finite regions to prevent “ringing” near boundaries. For
small regions of sky, effects of the map boundary
dominate the leakage even after apodization is applied.
The apodization window used in BICEP2 and the Keck
Array are modified inverse variance maps. We apply a
smoothing Gaussian with a width of s = 0 .5 to the
inverse variance map, and, for the combined analyses of
BICEP2 and the Keck Array, we use a geometric mean of
the individual experiments’ apodization maps.

2. Map projection: The total extent of the BICEP2 and Keck
Array maps is about 50° on the sky in the direction of R.
A., over a declination of d- < <70 45. The chosen
projection is a simple rectangular grid of pixels in R.A.
and decl.. Taking standard discrete Fourier transforms of
such maps results in significant E/B leakage. While we
note that other map projections will have significantly
lower distortion, such effects will be present for all
projections when subjected to Fourier transform. How-
ever, note that the A andL matrices together fully encode
the mapping from the underlying curved sky to the flat
sky of the observed map pixels, and therefore so does the
observing matrix R derived from these.

3. Linear filtering effects: There are three main analytic
filters applied in the standard pipeline: polynomial filter,
scan-synchronous subtraction, and deprojection. With
respect to E to B leakage, all three filters are similar: by

Figure 14. The generalized eigenvalues for the BICEP2 observed covariance
matrix, sorted by magnitude. Eigenvalues near one correspond to ambiguous
modes: the modes that are simultaneously E and B in the observed space and
must be thrown out. By selecting eigenmodes with eigenvalues that are the
largest and smallest 1/4 of the set of eigenvalues (shown to the left and right of
the dashed red lines), we can construct subspaces that span the spaces of B-
modes and E-modes that can be effectively observed using our scan strategy
and analysis.
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removing modes in the Q U, maps, an E-mode can be
turned into an observed B-mode. Polynomial filtering and
scan-synchronous signal subtraction create comparable
leakage, both in amplitude and morphology. Deprojection
creates more power in the leaked B maps, and at smaller
angular scales, than either polynomial filtering or scan-
synchronous signal subtraction.

If matrix purification is not used, the sample variance of E/B
leakage in the BICEP2 BB power spectrum is comparable to the

uncertainty due to instrumental noise. This is clearly highly
undesirable, and led to the development of the purification
matrix described in this paper. The purification matrix “knows
about” all of the E/Bmixing effects and how to deal with them.

7.2. Effectiveness of Purification Matrix

The effectiveness of the purification matrix given by
Equation (72) can be immediately tested by applying the
operator to a vector of [ ]Q U, maps simulated with the standard

Figure 15. Eigenmodes of the BICEP2 observed covariance matrix. Shown are the modes corresponding to the largest and 50th largest eigenvalues of Equation (70).
Colormap shows amplitude of E and B-modes. The eigenvalues are shown graphically in Figure 14.

Figure 16. E to B leakage maps: examples of leaked B-modes in the BICEP2 maps. Top row, left: leaked B-modes due to map projection and apodization. Top row,
right: leaked B-modes due to third order polynomial subtraction. Bottom row, left: leaked B-modes due to scan-synchronous signal subtraction. Bottom row, right:
leaked B-modes due to deprojection of beam systematics.
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pipeline. The upper left map of Figure 17 shows an observed
map whose input is unlensed-ΛCDM E-modes, and the next
two rows in that column show the resulting E and B maps after
projection onto the pure E and B spaces. The right column of
Figure 17 shows an observed input map with both unlensed-
ΛCDM and r=0.1 projected onto pure E and B-modes.

Matrix purification is integrated with the existing BICEP

analysis code by applying the purification operator to maps
before calculating the power spectra. Since the observation
matrix is only used for this purification step, the purification
matrix need only work well enough to result in E/B leakage
less than the noise level of the experiment. Therefore, it is
acceptable to use an approximate observation matrix con-
structed from a subset of the full observation list, as long as it is
representative of the full scan strategy. This shortcut was
employed in Keck Array & BICEP2 Collaborations V (2015),
but the results shown in this section from BICEP2 are from the
full set of observations.

Figure 18 compares the spectra for purified maps to the
spectra from maps without purification, and to the spectra
found using the improved estimator suggested in Smith (2006).
Both the purified maps and unpurified maps use the standard E
and B estimator in Fourier space, and we refer to the unpurified
maps processed this way as the “normal method.” Figure 18
shows the spectra for 200 noiseless unlensed-ΛCDM simula-
tions passed through the three estimators. The leaked power is
roughly three orders of magnitudes smaller when using the

matrix purification than when using the normal method or
Smith estimator. While the Smith estimator improves over the
normal estimator by eliminating E/B leakage from apodization,
it does not account for spatial filtering, which is a significant
source of E/B leakage in the analysis pipeline. The mean of the
leaked power is de-biased from the final power spectra, so what
matters is the variance of the leaked spectra. Computing the
95% confidence limits based on the variance in each of the

Figure 17. Polarization maps showing the effectiveness of the BICEP2 purification matrix at separating noiseless simulations into pure E and pure B. Left column: on a
scalar only unlensed-ΛCDM BICEP2 simulation. Right Column: on the same simulation with the addition of a small tensor component. Top Row: the total polarization
of the BICEP2 observed map, containing E and ambiguous modes. Center Row: pure E-mode map, constructed by projecting the total polarization map onto the E
eigenmodes found in Equation (70). Bottom Row: pure B-mode map, constructed by projecting the total polarization map onto the B eigenmodes of Equation (70).

Figure 18. BB power spectra of noiseless unlensed-ΛCDM (r = 0) simulations,
estimated using various methods, demonstrating the effectiveness of the BICEP2
purification matrix. The E/B leakage using the matrix estimator is 3 orders of
magnitude lower than other methods.
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three methods, we find that in the absence of B-mode signal or
instrumental noise, the matrix estimator achieves a limit on the
tensor-to-scalar ratio of < ´ -r 8.3 10 5, while the normal
method and Smith estimator achieve limits of <r 0.17 and
<r 0.074 respectively.
Figure 19 shows the spectra from the three estimators for

input maps containing only input B-modes at the level of
r=0.1. The spectra for all three estimators show beam roll off
at high l. At the lowest l, the filtering prevents large angular
scale modes from being measured. For multipoles around
~l 100, the matrix estimator recovers slightly less signal than

the other two methods. However, the extra power measured by
the other methods near ~l 100 largely comes from the
ambiguous modes. On the left of Figure 18, these ambiguous
modes are seen as the bump in the normal and Smith method
near ~l 100.

The total number of degrees of freedom in each band power
can be estimated according to the formula:

( ) ( )
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=¢
¢

¢

N
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2 , 73l
l
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2

2

where ¢ml is the mean of the simulations in band power ¢l and
s ¢l

2 is the variance of the simulations in the band power. Table 1
shows the number of degrees of freedom for the three
estimators for a tensor B-mode. The fewer degrees of freedom
at low l for the matrix estimator are consistent with the decrease
in recovered power on the left side of Figure 18. The highest l
bins in Table 1 also show fewer degrees of freedom in the
matrix estimator because the purification matrix includes a
limited number of pure eigenmodes, as shown in Figure 14.

Figure 20 shows signal plus noise spectra for a set of 200
unlensed-ΛCDM+noise spectra. The noise simulations are the
standard BICEP2 sign flip realizations discussed in BICEP2
Collaboration I (2014). In Figure 20, the mean noise level and
leaked BB power are de-biased. The resulting ensemble of
simulations is used to construct the errorbars in the final
spectra. The tighter distribution of the matrix estimator
simulations is a result of the decrease in E/B leakage. Using
the matrix estimator results in an improvement in the r limit, for
BICEP2 noise level and filtering in the absence of B-mode
signal, of about a factor of two over the Smith method. The

remaining variance in the BB spectrum of the matrix estimator
is instrumental noise.

7.3. Transfer Functions

The observation matrix transforms an input HEALPix map
into an observed map with a simple matrix multiplication. The
speed of the operation facilitates the calculation of analysis
transfer functions, which are a necessary component of the
pseudo-Cl MASTER algorithm (Hivon et al. 2002).
We start with input maps, ml, which are delta functions in a

particular multipole. These maps are then observed using the
matrix R. The spectra calculated from these maps represent the
response in our analysis pipeline to the input delta function, in
a manner conceptually analogous to Greenʼs functions.
Our procedure uses two sets of HEALPix maps, one set

corresponding to = = =TT TE EE 1 and one set with
= =TT BB 1. The observation matrix is used to create maps

for l=1 through 700, with 100 random realizations for each l.
Processing the 140,000 maps would be infeasible without the
observation matrix, but using the observation matrix it can be
accomplished in a few hours.

7.3.1. Band Power Window Functions

The power spectra of the output maps for a particular l are
averaged over the N=100 realizations. The averaged spectra
are used to form a band power window function, ¢ll

XX , for a
particular band power, ¢l , which is a function of the input

Figure 19. BB power spectra of noiseless unlensed (r=0.1) tensor only
simulations, estimated using various methods. All methods suffer from loss of
power due to filtering and beam effects. The removal of ambiguous modes at
low l results in a further decrease in power for the matrix method. Note that the
spectra in this plot have not been corrected for the beam and filter suppression
factors, but in Figure 18 the correction is applied.

Table 1
Degrees of Freedom in Binned BB Power Spectra for Different Estimators

Degrees of Freedom

Bin Center, l Normal Smith Matrix

37.5 12.9 15.5 8.6
72.5 40.9 41.4 34.8
107.5 71.4 69.7 66.8
142.5 83.7 81.2 81.7
177.5 120.6 116.4 116.9
212.5 156.1 153.0 141.9
247.5 172.0 172.9 145.8
282.5 202.8 200.8 177.4
317.5 189.0 185.7 155.0

Figure 20. BB power spectra of unlensed-ΛCDM (r = 0) + BICEP2 noise
simulations, estimated using various methods, demonstrating the effectiveness
of the BICEP2 purification matrix. For BICEP2 noise levels the constraint on r (in
the absence of signal) is improved by about a factor of two. (The mean of the
noise and leakage have been de-biased in each case.)
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multipole of the delta function, l:
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where ¢ll is the analysis pipeline′s transformation from map to
power spectra24 and {=  XX TT TT TE TE, ,

  EE EE EE BB BB BB, , , }BB EE . When the input
maps contain E-modes, and we measure the BB spectra, the
result is the EE BB band power window. The use of the
purification matrix prevents leakage and makes these band
power windows have much lower amplitude than the

EE EE or BB BB ones. In BICEP2, it has been standard
procedure not to use the E-mode purification matrix, hence the

BB EE band power window contains (irrelevant) leakage
from B into E.

Calculating the band power window functions in this way
accounts for all aspects of our instrument and analysis: beam
convolution, sky cut, map projection, polynomial filtering,
scan-synchronous signal subtraction, deprojection, and power
spectrum estimation.

Figure 21 shows the results of the calculation. Although we
bin in annular rings of the two-dimensional power spectra, the
filtering operations move power from other l into those bins.
This means the band powers are sensitive to a broader range in
l than the nominal range of multipoles. The broad shelf in the
band power window functions at lower l is due to filtering.

Table 2 shows the “nominal” and “measured” centers and
edges of the band power bins, where “nominal” refers to the
defined range of annular rings in the two-dimensional power
spectra and “measured” refers to the center and s1 range

found in the end to end calculation discussed in this section.
The center is the mean of the bandpower window function and
the s1 interval corresponds to the percentiles of the
bandpower window function between 16% and 84%.

7.3.2. Suppression Factor

The integrated area under the curve of each band power
window function represents the response of that band power
measurement to an input spectrum. We call this set of values
the suppression factor, ¢Sl , since they approximate how our
analysis pipeline suppresses power.
The suppression factor is plotted in Figure 22. At small

angular scales, the suppression factor is dominated by the roll-
off of BICEP2ʼs 31 arcminute beam. The measured array
average 150 GHz beam function is shown as the dotted line in
Figure 22. The “map window function,” which includes the
finite size of the map and the pixel window function for the
∼0°.25 pixels, is shown as the dashed line.25 At high l, the pixel
window function is sub-dominant to the beam window
function. At low l the suppression factor is dominated by the
timestream filtering effects.

7.4. Computing Challenges

Building the observation matrix requires constructing,
multiplying, and finally averaging a large number of sparse
matrices. Applying the observation matrix to the true sky signal
covariance matrix requires a large matrix multiplication to find
the product, RCR .
Matrix multiplication is the dominant contributor to

computation time. We use matrix multiplication routines built
in to MATLAB. These routines incorporate a number of

Figure 21. Band power window functions,  ¢ll
XX . Filtering causes mixing of power from low multipoles up to higher multipoles. As noted in Section 7.3.1, the

BB EE panel in the bottom right shows significantly more power since matrix purification is not applied to E-modes.

24 Including the steps: apply matrix purification, two-dimensional Fourier
transform, construction of E and B, and binning to one-dimensional spectra. 25 Calculated according to http://healpix.jpl.nasa.gov/html/intronode14.htm.

17

The Astrophysical Journal, 825:66 (20pp), 2016 July 1 Ade et al.

http://healpix.jpl.nasa.gov/html/intronode14.htm


optimized algorithms for computing matrix products, including
BLAS (Lawson et al. 1979). At this time we have not compared
the run time on GPUs with that on CPUs, but are aware of this
as a possible avenue for reducing the compute time.

Solving the eigenvalue problem using the MATLAB function
eig() takes about 48 hr and 80 GB of RAM for the full
BICEP2 observed covariance. For BICEP2, this is small fraction
of the total computation time. However, for experiments whose
maps contain more pixels, the difficulty of the eigenvalue
problem increases. In these cases, the use of distributed
memory parallel code may be necessary.

For the BICEP2 results, we used computing resources
provided by the Odyssey cluster at Harvard.26 The Odyssey
cluster contains 54K CPUs with 190 terabytes of RAM and 10
petabytes of storage. High memory nodes have access to
256 GB of RAM, which is useful for large matrix multi-
plications. Odyssey uses SLURM27 as its queue manager,
allowing our analysis to utilize the large number of cores
available.

Although the raw BICEP2 data set comprises roughly 3 TB of
data, the data products from the steps in the matrix analysis
chain use 17 TB of storage. Processing during the BICEP2
matrix analysis steps required roughly 1 million CPU hours.
This represents a significant portion of the total computing

demand of the entire BICEP2 analysis effort, which comprised
roughly 6 million CPU hours.

8. CONCLUSIONS

We have described a method for decomposing an observed
polarization field into orthogonal components coming from
celestial E and B-modes. The method relies on numerically
calculating an observation matrix. In our case the observation
matrix encodes the mathematical steps translating the true sky
to an observed map including polynomial filtering, scan-
synchronous subtraction, pointing of individual detectors, and
linear regression of beam systematics.
Applying the observation matrix to pixel-pixel covariance

matrices for E and B-modes transforms the true sky covariance
into the observed space. We then solve for the E and B
eigenmodes and select those modes that are orthogonal. In this
way, the orthogonality relationship of the true sky is translated
to the observed maps. The method accounts for all types of E/
B leakage: boundary effects, polynomial filtering, linear
regression, etc.—as long as these properties of the observing
strategy and analysis have been encoded in the observation
matrix, making the method more general than the method
presented in Smith (2006), which only accounts for boundary
effects.
The observation matrix has many other possibilities and in

principle allows construction of fully optimal analyses through
to power spectra or cosmological parameters for a single
experiment, or a combination of experiments with partially
overlapping sky coverage. One simple application which we
have explored is to use the observation matrix to directly
produce simulated observed maps from input maps in a single
step. This is dramatically faster than the previous standard
pipeline. However production of observing matrices is
sufficiently costly that we have not generated them for the
many alternate “jackknife” data split maps and so for the
present standard simulations are still required.
We find that the matrix based E/B separation performs quite

well, limiting the leakage to a level corresponding to
< ´ -r 1 10 4, well below the noise level for any foreseeable

CMB experiment. The method should prove useful for future
ground based or balloon based experiments focused on
measuring large angular scale B-modes. Experiments measur-
ing the lensing potential using CMB polarization rely on
cleanly separating E and B as well and may find the technique
useful. Additionally, the ongoing search for the imprint of
gravitational waves in CMB polarization will require mitigation
of lensing signal from intervening structure and foreground
removal, both of which are improved by cleanly separating E
and B.

BICEP2 was supported by the US National Science Founda-
tion under grants ANT-0742818 and ANT-1044978 (Caltech/
Harvard) and ANT-0742592 and ANT-1110087 (Chicago/
Minnesota). The computations in this paper were run on the
Odyssey cluster supported by the FAS Science Division
Research Computing Group at Harvard University. The
analysis effort at Stanford/SLAC is partially supported by
the US Department of Energy Office of Science. Tireless
administrative support was provided by Irene Coyle and Kathy
Deniston.
We thank the staff of the US Antarctic Program and in

particular the South Pole Station without whose help this

Table 2
BB Band Power Widths

Nominal Measured

Bin Number Low Center High Low Center High

1 20.0 37.5 55.0 37.0 46.4 54.0
2 55.0 72.5 90.0 59.0 73.4 86.0
3 90.0 107.5 125.0 92.0 107.2 121.0
4 125.0 142.5 160.0 125.0 140.7 157.0
5 160.0 177.5 195.0 158.0 173.7 192.0
6 195.0 212.5 230.0 189.0 205.4 227.0
7 230.0 247.5 265.0 220.0 237.2 262.0
8 265.0 282.5 300.0 253.0 270.2 298.0
9 300.0 317.5 335.0 285.0 302.9 333.0

Note. Nominal and measured centers and edges of the band power bins. The
measured values are extracted from the band power window functions shown
in Figure 21. The low/high values for the latter are the s1 points.

Figure 22. The BB suppression factor. At high l the beam function dominates.
At low l the effects of filtering dominates. The map window function for the
BICEP 0°. 25 square pixels and finite map size is shown as a dashed line. The
band power window functions are plotted in colors corresponding to individual
band powers on a different scale.

26 https://rc.fas.harvard.edu/odyssey/
27 http://slurm.schedmd.com/
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research would not have been possible. We thank all those who
have contributed efforts to the BICEP/Keck Array series of
experiments, including the BICEP1 and BICEP3 teams.

APPENDIX
GENERATION OF CONSTRAINED REALIZATION

HEALPix MAPS

An ensemble of signal only simulations is needed for a
MASTER pseudo-Cl analysis. We use CAMB with input Planck
parameters to construct power spectra, Cl. The power spectra
are used to generate high resolution HEALPix maps that serve
as the starting point for each realization of the signal
simulations. Lacking any constraints on the realizations, the
maps generated from the power spectra will vary for both the
temperature and polarization fields. However, Planck has
measured the temperature field of the CMB to high signal to
noise. Since the goal of BICEP2 and the Keck Array is to
measure the polarization sky and not the temperature sky, our
ensemble of simulations does not need to contain variation in
the well measured temperature sky. We therefore use the
temperature field of the CMB measured by Planck as the
template for constrained realizations of the polarization field.

We have developed a technique for creating realizations of
the E-mode sky consistent with the known TE correlation and
the measured temperature field. These constrained realizations
have been shown to contain the same TE correlations and EE
spectra over many realizations of the temperature sky.
However, any particular set of constrained realizations based
on one temperature sky has a slightly different distribution of
TE and EE than the full ensemble average.

The primary motivation for fixing the temperature field is to
make the deprojection operation discussed in Section 4.10 into
a linear operator. Recall that deprojection involves a regression
against a fixed template of the temperature sky. If the
temperature sky varies from realization to realization, depro-
jection becomes non-linear and cannot be expressed as a matrix
operation.

A.1. TE Correlation

We start by fixing the coefficients of the spherical harmonics
of the temperature sky, aT

lm. The alm for the constrained E-
modes is found in Dvorkin et al. (2008) and can be derived
following the steps of a simple Cholesky decomposition. The
2×2 covariance between T and E for each mode (l m, ) is:
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The lower triangle Cholesky decomposition of this 2×2
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where nlm
T and nlm

E are unit norm, complex random numbers.
Since aTlm are known constraints, we can solve the system of
equations:
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substituting the first equation into the second to arrive at an
expression for aElm in terms of aTlm and the power spectra, Cl. To
ensure the maps are real, the condition ( )* = - -a a1lm

m
l m is

demanded.
Naively, we might expect the constrained aElm to have lower

variance in its power spectrum than the unconstrained aElm since
there is significant TE correlation and the temperature
component is fixed. However, this is not necessarily the case.
When the aTlm fluctuate high, the mean of the constrained
ensemble of aElmʼs is also high, resulting in increased variance in
the ensemble of simulations. For particularly high aTlm, this can
result in larger variance for the constrained simulations than the
unconstrained simulations. This happens to be the case in the
BICEP field near l=150, as seen in Figure 23.
In practice, we take the aTlm from the Planck temperature

Needlet Internal Linear Combination (NILC) map (Planck
Collaboration XII 2014). This map uses the multi-frequency
coverage of Planck to remove the galactic contribution to
microwave emission, leaving a high signal to noise map of the
CMB temperature field. The map has some contamination near
the galactic plane. However, we have found that the impact of
this is very local and does not affect the higher galactic
latitudes where the BICEP field is located. The noise level in the
Planck temperature map is fractionally small compared to the
temperature signal, and we have found that this noise
contributes a similarly small fraction to the constrained
realization of E-modes.

A.2. Lensing

The temperature anisotropies in the Planck NILC map have
been lensed by the intervening structure between us and the
surface of last scattering. This means the aTlm calculated from
the Planck NILC map contain the effects of lensing and when
used in Equation (77), the lensing distortion propagates through
to the constrained aElm. Ideally, the aTlm in Equation (77) would
be from the unlensed sky, however, in the absence of an
accurate map of the lensing deflection field, we have no way of
de-lensing the aTlm.
Because our power spectrum analysis is insensitive to the

off-diagonal correlations among modes with = ¢l l that are
produced by lensing, a reasonable workaround for this problem
is to use the Planck NILC but also to use the lensed CTT

l

spectrum. The result is an ensemble of aElm for the lensed aTlm,
but which have the correct covariance given by CTE

l . For the
multipole range of interest in BICEP2, lensing has a small impact
on aTlm. We use the unlensed power spectra for CTE

l and CEE
l .

Another subtlety incorporating lensing into constrained
realizations is the question of how to simulate lensing of the
polarization sky. This can be accomplished using LensPix
(Lewis 2011) to numerically lens the primordial E-modes,
which creates B-modes with the correct statistics. For the
constrained realizations, this is impossible because the NILC
map is lensed by the true sky lensing field. The true sky lensing
field is not known with high signal to noise, and therefore we
cannot lens the E-modes by the same field.
Our solution to this problem is to lens the E-modes with a

random realization of the lensing field, but use the
Planck 143 GHz map as the temperature field. This procedure
ignores lensing correlations in TE and TB because the
deflection field is different for the polarization and temperature.
However, the mean of the lensing TE and TB is zero, and the
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additional variance in TE and TB caused by lensing is small
enough that it can be ignored on degree scales.

REFERENCES

Aikin, R. W. 2013, PhD thesis, California Institute of Technology
BICEP1 Collaboration 2014, ApJ, 783, 67
BICEP2 Collaboration I 2014, PhRvL, 112, 241101
BICEP2 Collaboration II 2014, ApJ, 792, 62
BICEP2 Collaboration III 2015, ApJ, 814, 110
BICEP2/Keck and Spider Collaborations 2015, ApJ, 812, 176
Bischoff, C., Hyatt, L., McMahon, J. J., et al. 2008, ApJ, 684, 771
Bond, J., Jaffe, A. H., & Knox, L. 1998, PhRvD, 57, 2117
Bunn, E. F., & White, M. 1997, ApJ, 480, 6
Bunn, E. F., Zaldarriaga, M., Tegmark, M., & Oliveira-Costa, A. D. 2003,

PhRvD, 67, 023501
Dvorkin, C., Peiris, H. V., & Hu, W. 2008, PhRvD, 77, 063008
Goldberg, J. N., Macfarlane, A. J., Newman, E. T., Rohrlich, F., &

Sudarshan, E. C. G. 1967, JMP, 8, 2155
Gorski, K., Hivon, E., Banday, A., et al. 2005, ApJ, 622, 759
Grain, J., Tristram, M., & Stompor, R. 2009, PhRvD, 79, 123515
Hamaker, J. P., & Bregman, J. D. 1996, A&AS, 117, 161
Hanson, D., Hoover, S., Crites, A., et al. 2013, PhRvL, 111, 141301
Hivon, E., Górski, K. M., Netterfield, C. B., et al. 2002, ApJ, 567, 2

Hu, W., Hedman, M. M., & Zaldarriaga, M. 2003, PhRvD, 67, 043004
Kamionkowski, M., Kosowsky, A., & Stebbins, A. 1997, PhRvD, 55, 7368
Keck Array & BICEP2 Collaborations V 2015, ApJ, 811, 126
Keck Array & BICEP2 Collaborations VI 2016, PhRvL, 116, 031302
Kovac, J. M., Leitch, E. M., Pryke, C., et al. 2002, Natur, 420, 772
Kuo, C. L., Ade, P. A. R., Bock, J. J., et al. 2004, ApJ , 600, 32
Lawson, C. L., Hanson, R. J., Kincaid, D. R., & Krogh, F. T. 1979, ACM

Trans. Math. Softw, 5, 308
Lewis, A. 2011, LensPix: Fast MPI full sky transforms for HEALPix,

Astrophysics Source Code Library, ascl:1102.025
Planck Collaboration I 2015, arXiv:1502.01582
Planck Collaboration XII 2014, A&A, 571, A12
Polarbear Collaboration 2014, ApJ, 794, 171
Pryke, C., Ade, P., Bock, J., et al. 2009, ApJ, 692, 1247
Readhead, A. C. S., Myers, S. T., Pearson, T. J., et al. 2004, Sci, 306, 836
Sheehy, C. D. 2013, PhD thesis, University of Chicago
Shimon, M., Keating, B., Ponthieu, N., & Hivon, E. 2008, PhRvD, 77,

083003
Smith, K. M. 2006, PhRvD, 74, 083002
Smith, K. M., & Zaldarriaga, M. 2007, PhRvD, 76, 043001
Tegmark, M. 1997, PhRvD, 55, 5895
Tegmark, M., & de Oliveira-Costa, A. 2001, PhRvD, 64, 063001
van Engelen, A., Sherwin, B. D., Sehgal, N., et al. 2015, ApJ, 808, 7
Zaldarriaga, M. 1998, ApJ, 503, 1
Zaldarriaga, M., & Seljak, U. 1997, PhRvD, 55, 1830

Figure 23. Power spectra of unconstrained and constrained simulations. For the constrained simulations the T sky is fixed to the Planck NILC map. By chance, the TT
power in the BICEP field is above average near l=150, and this leads to increased power and variance in TE and EE for these multipoles. The BB spectrum is
computed with the Smith estimator for both constrained and unconstrained simulations in order to provide an equal comparison between the two as we cannot use the
matrix estimator on unconstrained simulations. It therefore contains both E/B leakage and lensing signal. The leaked B-mode power creates a significant TB signal in
the constrained simulations since the leaked B-modes correlate with the temperature template sky.

20

The Astrophysical Journal, 825:66 (20pp), 2016 July 1 Ade et al.

http://dx.doi.org/10.1088/0004-637X/783/2/67
http://adsabs.harvard.edu/abs/2014ApJ...783...67B
http://dx.doi.org/10.1103/PhysRevLett.112.241101
http://adsabs.harvard.edu/abs/2014PhRvL.112x1101B
http://dx.doi.org/10.1088/0004-637X/792/1/62
http://adsabs.harvard.edu/abs/2014ApJ...792...62B
http://dx.doi.org/10.1088/0004-637X/814/2/110
http://adsabs.harvard.edu/abs/2015ApJ...814..110B
http://dx.doi.org/10.1088/0004-637X/812/2/176
http://adsabs.harvard.edu/abs/2015ApJ...812..176B
http://dx.doi.org/10.1086/590487
http://adsabs.harvard.edu/abs/2008ApJ...684..771B
http://dx.doi.org/10.1103/PhysRevD.57.2117
http://adsabs.harvard.edu/abs/1998PhRvD..57.2117B
http://dx.doi.org/10.1086/303955
http://adsabs.harvard.edu/abs/1997ApJ...480....6B
http://dx.doi.org/10.1103/PhysRevD.67.023501
http://adsabs.harvard.edu/abs/2003PhRvD..67b3501B
http://dx.doi.org/10.1103/PhysRevD.77.063008
http://adsabs.harvard.edu/abs/2008PhRvD..77f3008D
http://dx.doi.org/10.1063/1.1705135
http://adsabs.harvard.edu/abs/1967JMP.....8.2155G
http://dx.doi.org/10.1086/427976
http://adsabs.harvard.edu/abs/2005ApJ...622..759G
http://dx.doi.org/10.1103/PhysRevD.79.123515
http://adsabs.harvard.edu/abs/2009PhRvD..79l3515G
http://adsabs.harvard.edu/abs/1996A&amp;AS..117..161H
http://dx.doi.org/10.1103/PhysRevLett.111.141301
http://adsabs.harvard.edu/abs/2013PhRvL.111n1301H
http://dx.doi.org/10.1086/338126
http://adsabs.harvard.edu/abs/2002ApJ...567....2H
http://dx.doi.org/10.1103/PhysRevD.67.043004
http://adsabs.harvard.edu/abs/2003PhRvD..67d3004H
http://dx.doi.org/10.1103/PhysRevD.55.7368
http://adsabs.harvard.edu/abs/1997PhRvD..55.7368K
http://dx.doi.org/10.1088/0004-637X/811/2/126
http://adsabs.harvard.edu/abs/2015ApJ...811..126A
http://dx.doi.org/10.1103/PhysRevLett.116.031302
http://adsabs.harvard.edu/abs/2016PhRvL.116c1302B
http://dx.doi.org/10.1038/nature01269
http://adsabs.harvard.edu/abs/2002Natur.420..772K
http://dx.doi.org/10.1086/379783
http://adsabs.harvard.edu/abs/2004ApJ...600...32K
http://dx.doi.org/10.1145/355841.355847
http://dx.doi.org/10.1145/355841.355847
http://adsabs.harvard.edu/abs/2011ascl.soft02025L
http://www.ascl.net/1102.025
http://arxiv.org/abs/1502.01582
http://dx.doi.org/10.1051/0004-6361/201321580
http://adsabs.harvard.edu/abs/2014A&amp;A...571A..12P
http://dx.doi.org/10.1088/0004-637X/794/2/171
http://adsabs.harvard.edu/abs/2014ApJ...794..171T
http://dx.doi.org/10.1088/0004-637X/692/2/1247
http://adsabs.harvard.edu/abs/2009ApJ...692.1247P
http://dx.doi.org/10.1126/science.1105598
http://adsabs.harvard.edu/abs/2004Sci...306..836R
http://dx.doi.org/10.1103/PhysRevD.77.083003
http://adsabs.harvard.edu/abs/2008PhRvD..77h3003S
http://adsabs.harvard.edu/abs/2008PhRvD..77h3003S
http://dx.doi.org/10.1103/PhysRevD.74.083002
http://adsabs.harvard.edu/abs/2006PhRvD..74h3002S
http://dx.doi.org/10.1103/PhysRevD.76.043001
http://adsabs.harvard.edu/abs/2007PhRvD..76d3001S
http://dx.doi.org/10.1103/PhysRevD.55.5895
http://adsabs.harvard.edu/abs/1997PhRvD..55.5895T
http://dx.doi.org/10.1103/PhysRevD.64.063001
http://adsabs.harvard.edu/abs/2001PhRvD..64f3001T
http://dx.doi.org/10.1088/0004-637X/808/1/7
http://adsabs.harvard.edu/abs/2015ApJ...808....7V
http://dx.doi.org/10.1086/305987
http://adsabs.harvard.edu/abs/1998ApJ...503....1Z
http://dx.doi.org/10.1103/PhysRevD.55.1830
http://adsabs.harvard.edu/abs/1997PhRvD..55.1830Z

	1. INTRODUCTION
	2. E AND B-MODES FROM A POLARIZATION FIELD
	2.1. Full Sky
	2.2. Orthogonality of Pure E and Pure B

	3. HOW MATRIX BASED E/B SEPARATION FINDS PURE E AND PURE B
	4. OBSERVATION MATRIX
	4.1. Input HEALPix Maps
	4.2. Bicep2&znbsp;and Keck Array Scan Strategy
	4.3. Relationship Between Timestreams and [T, Q, U]
	4.4. Timestream Forming Matrix, A
	4.5. Polynomial Filtering Matrix, F
	4.6. Scan-synchronous Signal Removal Matrix, G
	4.7. Inverse Variance Weighting Matrices, w&plusmn;
	4.8. Filtered Signal Timestream Generation
	4.9. Pointing Matrix, Λ
	4.10. Deprojection Matrix, D
	4.11. Coadding Over Scansets and Detector Pairs to form the Observation Matrix
	4.12. Non-Apodized Observation Matrix
	4.13. Selecting the Observation Matrix&#x02019;s Apodization
	4.14. Summary
	4.15. Forming Maps from Real Timestreams
	4.16. Equivalence of Observation Matrix with Standard Pipeline

	5. SIGNAL COVARIANCE MATRIX, C
	5.1. True Sky Signal Covariance Matrix
	5.2. Observed Signal Covariance Matrix, C&tilde;

	6. E/B SEPARATION USING A PURIFICATION MATRIX
	6.1. Construction of Purification Matrix

	7. MATRIX E/B SEPARATION APPLIED TO Bicep2
	7.1. Motivation for Matrix Based E/B Separation in Bicep2
	7.2. Effectiveness of Purification Matrix
	7.3. Transfer Functions
	7.3.1. Band Power Window Functions
	7.3.2. Suppression Factor

	7.4. Computing Challenges

	8. CONCLUSIONS
	APPENDIXGENERATION OF CONSTRAINED REALIZATION HEALPix MAPS
	A.1. TE Correlation
	A.2. Lensing

	REFERENCES



