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Abstract

Polyethylene glycol (PEG) can be used to mimic dgmstress in plant tissue cultures to study
mechanisms of tolerance. The aim of this experimead to investigate the effects of PEG
(M.W. 6000) on embryogenic callus bfedicago truncatulaLeaf explants were cultured on
MS medium with 2 mg i NAA and 0.5 mg ! BAP for 5 months. Then, calli were transferred
to the same medium further supplemented with 10%)(@000 PEG for six months in order
to study physiological and putative molecular meslad water stress. There were no significant
differences in growth rate of callus or mitotic @t PEG although embryogenic potential of
PEG treated callus was morphologically enhancedtls @&re rounder on PEG medium and
cell size, nuclear size and endoreduplication e®ee in response to the PEG treatment.
Significant increases in soluble sugar and praiceumulation occurred under PEG treatment
compared with the control. Significantly, hifhHWEElandMtCCS52expression resulted from

6 months of PEG treatment with no significant digfeces ilMtSERK 1lor MtP5CSexpression
but down regulation oMtSCS expression. The results are consistent in showiegated
expression of a cell cycle checkpoint gene, WEE]s likely that the cell cycle checkpoint
surveillance machinery, that would includ#E 1expression, is ameliorating the effects of the

stress imposed by PEG.

217 words

Keywords:. cell cycle, cell division,cell morphology, gene expressian, vitro, legumes,

Medicago truncatulawater stresSVEE1
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I ntroduction

Water stress can result in reducing crop yield dravide (Boyer, 1982; Gonzalet al, 1995;
Smirnoff, 1993) and a recent UN survey has undedlithe importance of water deficit in our
planet and its effects for the coming generatiaorless urgent measures are taken. This situation
is exacerbated in arid and semiarid ecosysteme ldgumes play a central agroecological role
through their ability to use atmospheric nitrogéa the symbiosis with Rhizobia, and thus it
reduces the need for fertilizers, improve food sé&guand generally favour the environment
(Aratjo et al, 2015; Kohleret al, 2008; Nayeaet al, 2007; Rubicet al, 2002; Ochatt, 2015).
Studying a legume model species is thus timelyMadicago truncatulas of particular interest
given its rather short life cycle and autogartyas a small and almost completely annotated
genome (500-550 Mbp) which is publicly availableo¢@steinet al, 2012), and it is more
drought tolerant than other legume crops such ashgsan and soybean (Costa Fragical,
2000; Galve=zt al, 2005;Gonzalert al, 1998; Motaret al, 1994). In spite of this, previous
studies on water stress resistanc#lintruncatulamostly concerned gene transfer (Alcantara
et al, 2015; Ardijp et al, 2015; Duquet al, 2016). The assessment of physiological responses
(Nuneset al, 2008) and their genetic mechanisms (Batlal, 2011) is more limited.

Osmotic stress or water deficit can be definechasabsence of adequate moisture necessary
for a plant to grow normally and complete its ldgcle (Cabuslayet al, 2002). Resistance
mechanisms can be grouped into three categorisflyfescape, which enables the plant to
complete its life cycle before the most intenseqaeof water shortage, secondly avoidance,
which prevents exposure to water stress, and yirtalerance, which enables the plant to
withstand stress conditions (Golldaekal, 2014; Levitt, 1972; Zhu, 2002). Some resistance
mechanisms are constitutive and active before expde water shortage. In other cases, plants
exposed to water stress alter their physiologygtweacclimating themselves to withstand drier
conditions. One of the tolerance mechanisms aetivahder such stress is that of mitigating
osmotic stress, via the production of osmolytes©r@scproline, and soluble sugars, that protect
cells against osmotic perturbation (Deinleinal, 2014; Choudhargt al, 2005; Fuldeet al,
2011; Elmaghrabet al, 2013; Valliyodan and Nguyen, 2006). On the othemnd,pw (water
potential) is also known to induce a morphologiatiation in tissues subjected to osmotic
stress, notably at the cellular level. Such vaoratis potentially useful to understand
biodiversity by identifying cellular responses toess that are not necessarily picked up by
taxonomic or phylogenetic indices that considel slehpe or sizen vitro (Ochattet al, 2008;

Ochatt and Moessner, 2010). It is also importanagsessing the competence for regeneration
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in vitro (Ochattet al, 2008) following the recovery of tissues with avelogenetic makeup
obtained vian vitro selection (Elmaghratat al, 2013) or gene transfehltantaraet al, 2015)
Responses to abiotic stress factors involve a gganoming of the expression of thousands of
genes, which in turn result in the modificatioragfinge of cellular and physiological processes
(Cushman and Bohnert, 2000; Sreenivastlal, 2004; Araujcet al, 2015). One example of
tolerance to stress at the molecular level, igridaction ofP5CSthat encodea!-pyrroline -
5-carboxylate synthetase involved in proline bidkgsis (Silva-Ortegat al, 2008). This gene
is highly expressed in salt-and drought-toleraathpkpecies (Choudhaey al, 2005) and it is
induced under salt and water stress in many pieettiss including legumes (Chenal, 2009).
TheP5CSgene was also up-regulatedvintruncatulain response to salt stress (Elmaghedtbi
al., 2013). The kinetics of expression of genes in@dlin the cell cycle in plants exposed to
high levels of abiotic stress has been the objeatrmumber of studies (Gill and Tuteja, 2010;
Roy, 2016; Zhaet al, 2014). In Arabidopsis, a negative regulator absis, WEE1,is strongly
expressed in response to abiotic stress (De Scletitik, 2007). Osmotic stress imposed using
PEG also up-regulated oxidative DNA damage andemuently DNA repair enzymes both in
imbibed seeds (Balestraztial, 2011) and in plantlets (Macowial, 2010). Our recent work
with M. truncatulaalso showed an increased expressioWBE1andCCS52(CELL CYCLE
SWITCH PROTEIN 52another gene involved in the cell cycle) in saltlimated tissues as
well as expression of genes involved in salt taleeaSOSlencoding &Na'/H* antiporter) and
embryogenesim vitro (SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASEERK)
(Elmaghrabiet al, 2013).

Tissue culture has been used in the selection tdrvetress tolerant cell lines that have been
used to regenerate plants resistant to harsh emwaotal conditions in a range of crops
includingMedicago sativd.., tomato, soybean and wheat (Sakthivatlal, 2008; Gudttet al,
2010; Mahmoocet al, 2012). Water deficiin vitro can be imposed through treatment with
PEG 6000 (Ochattt al, 1998; Guothet al, 2010; Yanget al, 2012; Raiet al, 2011). The
adsorbant property of this inert osmolyte provokegplant cells and tissues the same or
comparable effects to those obtained by drying abithe samew and without any other
associated detrimental effects (Michel and Kaufmd®73). PEG 6000 thus closely mimics
soil water stress (Let al, 1998) and induces increases in total solublersughich serve as
an osmoticum, or can be a source of respiratorgteaties (Srivastavet al, 1995; EImaghrabi

et al, 2013). Additionally, PEG was shown to stimulatenatic embryogenesis vitro (Attree

et al, 1995; Igasaket al, 2003). PEG 6000 was also used, and at similarerdgrations as here



107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

125

126
127
128
129
130
131
132
133
134
135
136
137
138
139

(although osmolarity was expressed in MPa ratham th mOsm/kg as in this work), in studies
on PEG-induced DNA damage with truncatula in vitroplantlets (Macoveet al, 2010) and
seeds (Balestrazet al, 2011).

As many legumes are grown (or have their centerigin) in regions with an arid to semi-arid
climate (Smykakt al, 2015), a number of studies have identified geQ&4,s, ESTs and SNPs
that are responsive to drought stress in seveediap (Jacolket al, 2016). However, the
molecular basis of water stress tolerance is figtdimderstood ifMedicago truncatulgdAraujo

et al, 2015). The aim of the current work was to exantireeextent to which treatments with
PEG could enhance osmotic stress tolerance pdtémt@allus of Medicago truncatulalin
addition, the accumulation of osmoprotectantsgfifects on cell morphology (shape and size)
and division competence, and the expressiolWMEE] CCSS52 P5CSand SOSl1were
monitored in the PEG treatments to investigatenteehanism underlying the induced water
stress responses as compared to those activatedpgaonse to salt stress (Elmaghratbal,
2013). The expression &ERK1was also analyzed, given its key role on the coernmst for
the subsequent regeneration through somatic eméngsis of plants that may potentially carry

the stress resistance trait acquired.

Materials and M ethods

Plant material

Medicago truncatulacv. Jemalong line A17 (2n = 2x = 16, 1C value 480pg) was used in
this study. One hundred leaves were explantedssmei culture from 4 week old aseptically
grown plants onto a medium consisting of MS basedliom (Murashige and Skoog, 1962)
with 2 mg ! NAA (alpha-naphthalene acetic acid; Sigma, Pddk), and 0.5 mg I BAP (6-
benzylaminopurine; Sigma, Poole, UK), hereaftelecaMANA medium as in EImaghralet

al. (2013), and dispensed in multi-well dishes as 2 afhiuots per well. Cultures were
incubated at 24/22C (day/night), with a 16/8 h (light/ dark) photojoer of 90 pmol ¥ s?
from warm white fluorescent tubes. After 4 weekglants were sub-cultured on the medium
above and the frequency of callus initiation assess

Leaf-derived embryogenic callus was obtained aiftéture on MANA medium for 5 months.
Calli were screened for embryogenesis (i.e. soneatioryos at different developmental stages,
identified as spherical glistening nodules whenbglar, through to elongated greening

structures at later stages) or, organogenesis l@@went of shoots and/ or roots), as reported

5



140 elsewhere (Ochatt al, 1998; ElImaghrabi and Ochatt, 2006; Cletl, 2011; Ochatet al,

141 2013; Ochatt and Revilla, 2016). Only embryogenit were transferred onto 25 ml of MANA
142  medium supplemented with or without 10 % w/v (-OMBa) PEG6000 (PEG; Sigma, Poole,
143  UK) for six months in order to acclimate the cudtsirunder conditions that mimic water
144  (osmotic) stress (at least 12 calli per treatmélrit)s PEG concentration was chosen based on
145  previous studies with various species (Bisetaal., 2002, Guéthet al, 2010) and also including
146 M. truncatula(Macoveiet al, 2010, Balestrazat al, 2011). Growth data (g fresh weight, g
147  FW) were recorded and results were statisticalblyaed P < 0.05; Kruskal Wallis followed
148 by a Dunn’s test).

149

150  Prolineand water soluble car bohydrate measur ements

151  Proline content was measured as described in Elrabggt al. (2013) and according to Troll
152  and Lindsley (1955) and Boukel and Houassine (18@m callus tissue (100 mg per sample
153  per treatment) grown on 0 and 10 % (w/v) PEG. Adatments were repeated three times.
154  Optical density was measured using a spectrophaennfgNICAM; Cambridge, UK) at a
155  wavelength of 528 nm and calibrated using a stahdarve of proline solutions (0.1-0.4 mg
156  mL; Sigma, Poole, UK).

157  Determination of soluble sugars was by the anthromthod (Elmaghrabet al, 2013;
158  Plummer, 1987) using 100 mg callus samples froon® B0 % (w/v) PEG treatments (3
159 replicates). The soluble sugar content was measspettrophotometrically (UNICAM,
160 Cambridge, UK) at 585 nm and the data were condeidemg L using the calibrations
161  established prior to the assay.

162

163  Medium and callus osmolarity
164  For measurements of medium and callus osmolarityeacor (model VAPRO 5520, South

165 Logan, USA) vapour pressure micro-osmometer was a@sel a minimum of three 10 pL
166 samples were measured. For medium osmolarity assess, 10 mL of the medium were
167 vortexed prior to collecting the 10uL samples to fneasured. For callus osmolarity
168 measurements, 1 g fresh weight of tissue was ¢elle;mm 2 mL of liquid medium and
169  centrifuged (100 g, 10 min, 10°C). The supernateas carefully removed, the pellet was
170  crushed in an Eppendorf with a pestle and centiiu@000g, 10 min, 4°C), and this second
171  supernatant was finally employed for measuremeritosmnolarity. Results from such
172 measurements, expressed in mMkgre the mean + S.E. of a minimum of three indiaid



173 samples per treatment, and were performed atrtiee df sub culturing and over at least three
174  consecutive subcultures.

175

176  Mitoticindex, cell viability and cell morphology

177  For determinations of C-value stability of callilaaving in vitro selection for several months
178  they were compared to leaf tissues from the origptants. Nuclei were mechanically isolated
179  from about 0.2 g of calli or from a single leaf Mt truncatulaAl17 grown in green house
180  conditions. Tissues were chopped roughly with agstezor in 400l of nuclei extraction buffer
181 and 1.6 mL of staining buffer (Partec®; Canterbiwif) (Ochatt, 2008). The suspension was
182  filtered through a 2@m nylon mesh and 4, 6 diamidino-2-phenylindole (DAgma, Poole,
183  UK), an A-T binding specific fluorochrome, was adde the filtrate to a final concentration
184  of 1 ug mLt. The DNA contents of the isolated nuclei suspansiere analysed using a Partec
185 PAS-Il flow cytometer equipped with an HBO-100 W nowey lamp and a dichroic mirror
186  (TK420). Ten replicated calli for each treatmentevanalyzed, with a minimum of 3000 to
187 10000 nuclei per run. The mitotic index was caltedaaccording to the formula: Ml = 4 x 4C/
188 X 2C + 4C, where 2C and 4C correspond to the meeagrated value of nuclei in G1 phase
189 and G2, respectively (Ochatt, 2008).

190 Cell viability was estimated by dual staining withorescein diacetate (FDA; Sigma, Poole,
191 UK) and propidium iodide (PI; Sigma, Poole, UK). lICguspensions (75 pL) from each
192 treatment were mixed with 75 pL of dual stainindution containing FDA (200 pg mt;
193  Widholm, 1972) and propidium iodide (P! at 120 p#Hion ice and incubated for 20 min.
194 The FDA molecule is cleaved by the esterases ircyh@plasm into acetate and fluorescein
195  which, being hydrophilic accumulates in the cytepheof metabolically active (alive) cells that,
196  upon excitation with the UV light fluoresce yellagveen, while dead cells appear red using a
197  fluorescent microscope. A minimum of 300 cells evanted and results are expressed as the
198  percentage of fluorescing cells referred to thaltetimber of cells in the field.

199  For the cell morphology characterization, FDA stairslides of the control and PEG-treated
200 cells were observed under the microscope undetherThe surface area of cells and nuclei
201 was determined at 2, 4 and 6 months of cultureyguihe image acquisition programmes
202  ArchimedPlus and Histolab (Microvision, Franceyegsorted (Ochatt al, 2008), and a shape
203  coefficient (Ochatt and Moessner, 2010) was apg@te@imonths of culture. Briefly, this shape
204  coefficient (SC) is calculated based on the haifyte of the cell along its longest (a) and

205  shortest (b) axes, as:
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For each treatment, nucleus and cell size wereuneasn 10 cells at 2 and 4 months of culture

SC=

and at least 20 cells at 6 months of culture, asdlts expressed as the mean + SE.
The SC distinguishes round from elongated shapese $C values close to 1.0 correspond to

elongated cells while SC values close to 0.5 cpoed to rounder cell shapes.

Real time PCR

RNA was extracted and genomic DNA removed by DNessgment (EImaghralgt al, 2013;
Spadaforeet al, 2012), and its absence verified using 18S rRNitners (Spadaforat al,
2011). Retrotranscription was carried out using Ambion kit (RETROscript Reverse
transcription for RT-PCR; Foster City, USA) and@aqf RNA. An ABsoluteTM QPCR SYBR
Green Mix (Thermo Scientific, Waltham, USA) kit wased for real time PCR. Reactions (in
a total volume of 25 uL) consisted of: 5 uL cDNAZQ dilution), 12.5 pL ABsoluteTM QPCR
SYBR Green Mix, 1.75 uL of each primer (10 uM) ahdL HO. Reactions were cycled in
an MJ Research OPTICON 2 (Quebec, Canada), incttpl under the following conditions:
95 °C for 10 min, 40 cycles of: 95 °C for 15 s,°60for 30 s and 72 °C for 30 s and one cycle
of 72 °C for 30 s. For testing primer specificilymelting curve analysis was performed after
amplification (from 60 to 98 °C with an increasimgat rate of 0.5 °C™3. A relative
guantification of gene expression was calculateshgushe 2-DDCT method (Livak and
Schmittgen, 2001). Primers for the target gehntSOS1 MtWEE1 MtSERK1 MtP5CSand
MtCCS52are as described in Elmaghraial. (2013). Mt18S rRNA primers were used to
normalise the results as it was shown previousy i8S rRNA was a reliable reference gene
for stress responseshh truncatula(EImaghrabiet al, 2013), and widely used across a range
of different species for developmental and stresponse studies (e.g. Priee al, 2008;
Wagstaffet al, 2010).

Statistical Analyses

Unless otherwise stated above, data were analysed (R software (R version 3.3.2,
Foundation for Statistical Computing). One or twewjas appropriate) ANOVA tests followed
by a Tukey’s test, or non-parametric statisticatd€Kruskal Wallis followed by a Dunn’s test)
were applied to determine differences across melspmples. Comparisons between pairs of
samples were performed using a Student’s t-teg#ftnot normally distributed using a Wilcoxon

signed rank test. Regression equation ahebiRie for the growth data were calculated in Excel

8
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Details of tests applied are provided in the legem@ach Figure and all original data are

provided as Supplementary materials (S1 to S6).

Results

PEG enhanced callus phenotype and embryogenic competence without reducing its
viability

There were no significant differences betwdéedicago truncatuldeaf callus cultured on
MANA medium or MANA medium supplemented with 10%wW#EG6000 over the 6 months
of culture, and the linear growth rates for conmt PEG treatments were 0.155 and 0.168 g
month? respectively (Figure 1). This only representsQ8 fold increase in the PEG compared
with the control treatment indicating very similaates of growth in each treatment
irrespectively of the presence or absence of PEBdrculture medium. However, these data
also suggest that callus tissues were PEG-toledegddy within 1 month of sub-culture and
retained such tolerance throughout the experin@@malitative observations of callus indicated
that those treated with PEG were typically brigtgem in colour and exhibited clear evidence
of embryogenesis as did also the controls; howekiercontrols were brown in colour and the
somatic embryos regenerated looked blocked atrgn(giobular to heart) developmental stage
(Figure 2 A,B). The typical bright green coloratiohcalli in the PEG treatment would tend to
indicate their robustness for both growth and emmgpeynesis regardless of the length of time in
culture, and could also be ascribed to an increissake photochemistry linked to the tolerance
acquired by onset of a priming process by the l@mg culture on PEG. This was confirmed
during the cell viability assessments with fluoeiaadiacetate where calli grown on 10% w/v
PEG for 6 months contained 81.00 + 1.5 % viablks @gimpared to 68.00 + 5.2 for calli grown
only on the MANA medium (Figure 2 C,D).

Mitotic index, cell and nuclear size increase, and cell shape changesin calli cultured on
PEG-medium

Flow cytometry (FCM) was used to compare the Cevalgtribution of cells from greenhouse
grownM. truncatulaleaves and callus derived from leaf material celiufor 6 months on 10%
w/v PEG6000 (Figure 3). Flow cytometry raw profilefsleaves exhibited two peaks (Figure
3A), corresponding respectively to the nuclei in @thse (2C DNA) and those in G2/M (4C
DNA), where their analysis after fitting them tou&a curves resulted in a distribution of nuclei
into three subpopulations as follows: G1 77.39%7 32% and G2/M 5.29%, and coupled with
a calculated mitotic index of 1.999 (Figure 3C)vexy similar profile was obtained from calli
cultured on MANA medium alone (not shown) which sfed no obvious deviation from the

9



272 mother plant tissues from which they originatedjlevithe flow cytometry profiles of calli
273 cultured on PEG was very different (Figure 3B)the 10% PEG6000 treatment, four peaks
274  were typically detected consistent with 2, 4, 8 46dC populations (Figure 3B), and indicative
275  of the occurrence of endoreduplication. The mitaidex was also significantly higher (P <
276  0.05) for the calli grown on PEG6000 containing med(Figure 3C), which is also indicative
277  of the onset of an endoreduplication phenomenon.

278 Interestingly, cell size also showed a significartigher value for cells from calli grown on
279  PEGG6000 after just 2 months of culture (Figure 4AJl nuclear area was greater on PEG after
280 4 months (Figure 4B). This is consistent with tihewrence of endoreduplication, and this was
281 coupled with a modified cell shape (Figure 4C),mgells grown on PEG6000 exhibiting a
282  significantly lower SC than control cells. Thus, ®grown cells were consistently and
283  significantly @ < 0.05) rounder (SC 8.608 + 0.117)than control cells which were more
284  elongated (SC 6.833 + 0.090) (Figure 4D)

285  Osmolarity, prolineand sugar levelsrise following PEG treatment

286  After six months of 10% PEG 6000 treatment, theas @& significant increase in osmolarity of
287 callus in the PEG treatment compared with the cbrfirigure 5A) while osmolarity of the
288  medium remained more constant. Proline and sokinyar levels also increased significantly
289  compared with the control (MANA without PEG) (FigubB,C). However there were no
290 significant differences in water content betweenPfEG and control treatments (Figure 5D).

291 MtWEEL expression is highly up-regulated following PEG treatment while MtSOS1 is
292  down-regulated.

293  We chose to examine the expression of five genesaalkers of processes related to osmotic
294  (water) stress. These compris@dtSOS1 (salt stress responseMtWEE1L (cell cycle

295  checkpoint) MtSERK1(embryogenesidfitP5CS(proline metabolism), anEitCC52 (ploidy

296  marker) in the embryogenic calli treated with PERpression of these genes was measured
297 using quantitative real time PCR after six monthgallus culture in PEG6000 (10%) and

298 compared with the control treatment (0 % PEG) ae@ighouse grown leaves.

299 A highly significant reduction in the expressiontfSOSloccurred in the 10% PEG compared
300 with the control treatment such thtSOSZranscripts were virtually undetectable, compagabl
301 to expression in leaf (Figure 6A). ConverseMiWEEL and MtCCS52 expression was

302  significantly higher in the PEG treated calli comgzhwith the control treatment which in turn

10
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was higher than expression in leaf (Figure 6BM)SERK and MtP5CSwere expressed
significantly more in the control callus and 10%Gteeated callus but there was no significant
difference in expression between the treated at@ated calli. (Figures 6C and D).

Discussion

Osmotic stress, provoked by insufficient ground/andain water, is a paramount constraint
for plant growth and development. Cultures of calun media that impose water deficit is a
method for generating new, more tolerant, planexeHve have shown that long term culture
of M. truncatulacalli on medium containing 10% PEG6000 to impasesmotic stress results
in the production of morphologically enhanced calin analysis of protective metabolite
levels, cellular morphology, cell division and gesression was undertaken to understand
the effects of the imposed stress.

In this work, callus growth was not significantliyfdrent plus or minus 10% PEG over a period
of six months, suggesting that calli on PEG acgliodéerance to osmotic (water) stress (Figure
1) probably mediated by an early osmotic adjustmdricth was likely associated to various
modifications at the cellular level (Singh al, 2015). In fact, both cell viability and mitotic
index were higher in the PEG treated cells compéwetthe control indicating a healthy and
proliferating culture. It is likely that this sustad viability in the PEG treated cells is due to
the activation of defence mechanisms that may dechn activation of DNA repair as shown
previously (Balestrazat al, 2011). The similarity in growth rates followingrdonth + PEG
further stresses that tolerance was obtained velgtrapidly. This result differs from those of
Biswaset al. (2002) who found that in rice, callus proliferation the presence of PEG was
greater than the controls in some genotypes, aithahis was at a much lower PEG
concentration (5-15 gt). However in two genotypes of wheat, one drouglerant, the other
drought sensitive, water deficit decreased onlghsly in the sensitive compared with the
tolerant genotype under water conditions and, dt miot change significantly in either the
sensitive or tolerant genotype + 400 mM PEG 60@D{#00 mOsm; -0.976 MPa; Gudth
al., 2010). Likewise in chili pepper cultures, wherertheas very good growth after 12 months
in 5-10 % PEGS8000 (0.57 MPa; Santos-Diaz and Oéthe@; 1994). Note that after six
months of treatment, although osmolarity of théusaihcreased, osmolarity of the medium did
not change since PEG is not metabolised. We de¢aadalyse both the medium and callus
osmolarity as an indirect way of assessing thaemttconsumption from the medium by cells,
which impacts their internal salt concentratiorsssaown before with various species among

which M. truncatula(Ochattet al, 2008). An increased cell osmolarity appeared tidee a

11
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reliable early marker of embryogenic competencénhéftet al, 2008; ElImaghratst al, 2013).
Thus the increased callus osmolarity and embryegeapacity seen here are in line with
previous observations.

In this work (Figure 4) PEG-induced stress resuited highly significant increase of the size
of both nuclei and cells after 6 months of cultareselection medium. Remarkably, this was
also coupled with a consistent and significant rhicalion of the cell shape, reflected by the
SC values observed, indicative of an increasedi@lgsof cell walls under PEG-induced
osmotic stress. A similar modification of cell wallasticity was observed M. truncatula
plants subjected to a severe drought stress (Netreds 2008) and in transgenM. truncatula
lines expressing the trehalose-6-Phosphate Synthd8€TPS) from Arabidopsis thaliana
with altered response to water deficit and recov@ilgantaraet al, 2015). Taken together,
these observations suggest a profound elastic roatith of the cell walls of water stress
tolerant cells, perhaps deriving form a modifielaccamong cell wall fractions, and should be
the object of future studies.

Similar levels of somatic embryogenesis were olegim the PEG and control calli, however,
calliin the PEG treatment were distinctly greenafour compared with the control. This might
be consistent with more robust embryogenic callughe PEG compared to the control
treatments (Figures 1 and 2), which is not sunpgisince MANA medium is not conductive
to full maturation of the somatic embryos formedvintruncatula(Ochattet al, 2013; Ochatt
and Revilla, 2016). It may also reflect the facattM. truncatulais adapted to semiarid
conditions and even under severe drought stregsigpit content is not affected (Biswal, 1997;
Nuneset al, 2008). PEG also improved somatic embryogenesshier species (Attreet al,
1995; Igasakiet al, 2003). Both control and PEG treatments resultegimilar levels of
somatic embryogenesis, which was consistent wetlsiimilar expression levels MtSERKIn
the two treatments. Note th@ERK1is highly expressed during embryo induction andyea
somatic embryo development iM. truncatula (Nolan et al, 2009) and inAraucaria
angustifolia (Steineret al, 2012). The possible stimulation of somatic embggyesis in
response to PEG treatment is consistent with atiygorts showing stress-induction of this
process (Karami and Saidi, 2010), whichMrtruncatulamay be linked to increases in ABA
(Nolan and Rose, 1998).

The physiological, metabolic and gene expressispaeses of calli to PEG-induced osmotic
stress mirrored those found under salt stressntezds (Elmaghrabet al, 2013) in some
respects but not in others, as summarized in Figura contrast to NaCl treatment, PEG

treatment did not result in any increase in watetent of the calli compared with the control
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although osmolarity did increase. This could bel&xred by the differential modes of action
between NaCl and PEG, as the high MW of PEG exedsnstant osmotic pressure but does
not allow its entry across the wall and hence avegll plasmolysis which results in different
energy costs and different effects on growth (Mur2@02). However soluble sugars did
increase suggesting they are a useful marker of $ait and water (osmotic) stress (Figure 5).
PEG also induced a high level of proline accumafgtivhich was far higher than the largest
proline accumulation under stress induced by N&Chéghrabiet al, 2013), indicating that
this might also be a component of osmaotic strdssance inVl. truncatula(Figure 5B), as has
been found in other species (Deinleinal, 2014). Validating this hypothesis would require
field trials with regenerants from these culturesl gjoes beyond the scope of this study.
However, the expression bitP5CSin callus grown on PEG was similar to the contFog(re
6D) and hence does not correlate with increaseeldesf proline in the PEG treatment. This
was surprising given that this gene encodes anneezfat is central to proline synthesis and
that its expression iNl. truncatulacultures exposed to salt stress was elevated (Hrabiet

al., 2013; Figure 7). It may suggest that this enzysneot a key regulatory step in proline
biosynthesis under these conditions, or that armalimise inMtP5CSexpression early in the
culture period was sufficient to elevate prolin@oentrations and that after 6 months culture,
increased gene expression was no longer necessather words, whether modifying proline
metabolism and the expression of genes involvat such a5CS may or not be used for
engineering drought tolerance, and which approbohld be adopted for such modification to
be done remains uncertain (Bhaskatral, 2015).

More predictably, PEG did not indudgltSOS1 expression which was down-regulated
compared with the control. This gene is highly e@ssed in salt stress conditions as it encodes
a protein that functions as a membrane-bountadéporter and contributes to Ndepletion

in the cytoplasm (Feket al, 2011; Smithet al, 2010). Therefore the PEG data indicate a
different (non ionic) pathway leading to osmotiess tolerance compared with NacCl (ionic)
tolerance (Figure 7) as reported by Elmaghedfail. (2013).

The expression dfitCCS52vas upregulated by the PEG treatment (Figure 8Erabidopsis
this gene is a regulator of ploidy level and itspression is positively correlated to
endoreduplication. 1. truncatulacultures exposed to long-term NaCl treatments dbise
was up-regulated (Figure 7), alongside and incre@asadoreduplication (EImaghraét al,
2013). Given the clear evidence for endoredupbecain the osmotic stress-resistant cultures
here (Figure 3), the upregulation MitCCS52 consistent with its role in Arabidopsis
(Vanstraeleret al, 2009).
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That MtWEE1expression was more highly expressed in the PE&ntent suggests that this
gene may have a role in maintaining normal growth treatment that mimics osmotic stress
conditions.WEE1kinase might be necessary to regulate normal cadl is the face of ion
toxicity and osmotic (non-ionic) water stress altbb this could only be resolved by exposing
calli from M. truncatulaweelknockouts to these treatments. Alternatively, @eae that is
expressed in the DNA damage and DNA replicatiortkpeints, it may be induced in response
to either single strand or double strand DNA bresk# is in Arabidopsis (De Schutietral,
2007). However, Gonzaleat al. (2004) observed high expression IHWEELlin tomato
(Lycopersicon esculentumdill.) which was correlated with endoreduplicatialuring fruit
development. Our results do not seem to indicatettiere has been irreversible DNA damage
due to the osmotic stress imposed on callus, andutd therefore be legitimate to link this to
WEE1expression and its role in replication checkpaiml DNA damage and the possibility
that the PEG concentration used and the long-tedtare on it resulted in priming (Singt

al., 2015). Other genes could also been involvedamptiocess though, and, in this respect, in
order to protect their gene integrity from DNA dagaglants are capable of activating a specific
response system that regulates the cell cyclealbatDNA repair and programmed cell death
where genes such &sippressor Of Gamma responsgESDG) (Yoshiyameet al, 2014) and
Breast Cancer {BRCA) (Block-Schmidtt al, 2011) are known to play a central role in DNA
repair, chromosome segregation and chromatin relngdéso the increase MtWEELlseen
here may be both linked to the increase in endgiezhiion and required to protect the cells

from DNA damage induced by the PEG-induced osnstit&ss treatment.

Conclusion

The data reported in this study of responses to PB®& compared with no PEG controls
indicates that at this level of osmotic stress gassible to induce a high level of embryogenesis
with no penalty on growth rate. This appears toabhieved by up-regulating protective
mechanisms such as the production of osmoprotestduities and switching on the expression
of Mt\WEEL. The increase iMtWEE1and MtCCS52expression may cause an increase in
endoreduplication while protecting the cells agaihe potentially damaging effects of the
osmotic stress on DNA integrity.
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Figure L egends

Figure l. Mean (= S.D.) callus growth over 6 months on MAN&dium with 10% w/v PEG
compared with control (MANA medium). Different lettcombinations indicate significant
differences P < 0.05; Kruskal Wallis followed by a Dunn’s test) (n > &ee Supplementary

File S1 for data and statistical analyses.

Figure 2. Callus phenotype and viability after 6 months 6folw/v PEG and control media:
(A) control callus;(B) PEG-selected callus, arrows indicate somatic eashryiability of
control callus after FDA staining observed undansmissior(C) or UV (D) light; viability
of PEG-selected callus after FDA staining obsemweder transmissio(E) or UV (F) light.
Scale bars are A = 2.13 mm, B = 3.34 mm; and Quiitrdo F = 200 pum.

Figure 3. FCM profile and % distribution of nuclei in G15{peak), G2 (> peak), S phase
(trough betweensiand 29 peaks) and polyploid nuclei'f38C) and # (16C) peaks) from
(A) leaves ofMedicago truncatula(B) M. truncatulacallus cultured on 10% w/v PEG6000
for 6 months;(C) Mean (£ S.D.) mitotic index in leaves compared atlus tissues after 9
continuous months growth on 10% w/v PEG. Diffelletters indicate significant differences
(P < 0.05); n=10. See Supplementary File S2 fom dat statistical analyses.

Figure 4. Effects of PEG6000 on cell morphology) cell and(B) nuclear size (um?2) at
different time points duringn vitro selection for PEG6000 (10%) resistance. Data ae th
means + S.D. from n = 9 replicates at 2 and 4 nwatttulture and n = 22 measurements at
6 months of culture. Bars with different lettersrevaignificantly different (Kruskal Wallis
followed by Dunn’s test) at different time pointgrass treatmentsP(< 0.05). See
Supplementary File S3 for data and statisticalyames.(C) Shape coefficient (SC) of cells
from control (blue) and PEG-grown (orange) calliq122) at 6 months of mean + S. D. (*
indicatesP < 0.05, Welch Two Sample t-test). See Supplemgriide S4 for data and
statistical analyse¢D) Images of cells from PEG and control cultures atahths of culture
(scale bars PEG =100 pum, Control 200 um)

Figure 5. Comparisons between control and 10% PEG treatnadt@is six months in vitro
culture in terms offA) medium and callus osmolari{) proline content(C) soluble sugars,

and(D) water content. Note different letters indicatangigant differences (R 0.05) between
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treatments (n=3 = SD); ns = non-significant. (Kruskall Wallis followed by Dung'test (A);
Wilcoxon signed rank test (B) and Welch Two Sanigiest (C and D)). See Supplementary
File S5 for data and statistical analyses.

Figure 6. Gene expression after 6 months culture on 10% PEGuUmM and control (MANA
medium) with leaf as reference: (MtSOS1 (B) Mt\WEE] (C) MtSERK (D) MtP5CSand
(E) MtCCS52 Different letters indicate significant differerscamongst treatments/tissu€s (
<0.05; 1-way ANOVA; n = 3 + SD).

Figure 7. Summarized effects on various parameters of imgaaimotic stress on
embryogenic callus d¥ledicago truncatuldollowing in vitro selection. Control callus
tissues are compared with NaCl-tolerant callus @glnmabi et al. 2013) and PEG-induced
osmotic stress tolerant callus tissues in thisystBtlue color indicates increase/upregulation.
Red color indicates decrease/downregulation. Winersignificant compared to controls
white is used.

Supplementary material: Data and statistical analyses

S1: Data for callus growth of control and PEG treatraesfitown in Figure 1

S2: Data for Mitotic Index of control and PEG treatmeshown in Figure 3(C)

S3 - Data for cell and nuclear are of control and REe@tments shown in Figure 4(A) and 4(B)
4 - Data for Shape Coefficient calculations of cohind PEG treatments shown in Figure 4(C)

S5 - Data for control and PEG treatments shown imfad: (A) osmolarity of media and callus; (B)
proline accumulation; (C) soluble sugars; (D) watamtent

S6 -Data for Realtime PCR of control and PEG treatimiehown in Figure 6

25



0.9 abc ab
OControl B 10% PEG

0.8 -

bc
0.7 -

0.6

FW (g)

0.5 - iglis

0.4 -
def
0.3 -

0.2 - Fg fg e-l:g

8]

1 2 3 4 5 =

Time {months)

Figure 1. Mean (+ 5.1) callus growth over 6 months on MANA medinm with 10% wiv
PEG compared with control (MANA medium) Different letter combinations indicate
significant differences (P = 0.05; Kruskal Wallis followed by a Dunn’s test) (n > 8). See
Supplementary File 51 for data and statistical analyses.
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Figure 2. Callus phenotype and viability after 6 months on 10% w/v PEG and control
media: (A) control callus; (B) PEG-selected callus, arrows indicate somatic embryos;
viability of control callus after FDA staining observed under transmission (C) or UV (D)
light; viability of PEG-selected callus after FDA staining observed under transmission (E)
or UV (F) light. Scale bars are A=2.13 mm, B =3.34 mm; and Cthrough to F = 200 pm.
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Figure 3. FCM profile and % distribution of nuclei in G1 (1* peak), G2 (2™ peak), § phase (trough between 1% and 27
peaks) and polyploid nuclei (37 (8C) and 4™ (16C) peaks) from [A) leaves of Medicogo fruncatula, (B) M. truncatulo
calluscultured on 10% w)v PEGROOO for & months; (C) Mean (£ 5.0.) mitoticindex in leaves compared to callustissues
after 9 continuous months growth on 10% w/v PEG. Different letters indicate significant differences (P < 0.05); n=10.
See Supplementary FileS2 for datas and statistical analyses.
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Figure 4. Effects of PEGB000 on cell morphology. (A) cell and (B} nuclear size (um?) at
different time points during in witro selection for PEG6000 (10%) resistance. Data are the
means £ 5.0. from n =9 replicates at 2 and 4 months of culture and n =22 measurements at
6 months of culture. Bars with different letters were significantly different (Kruskal Wallis
followed by Dunn's test) at different time points across treatments (P < 0.05). See
Supplementary File 53 for data and statistical analyses. (C) Shape coefficient (SC) of cells
from control (blue) and PEG-grown (orange) calli (n=22) at 6 months of mean £ 5. D. (*
indicates P< 0.05, Welch Two Sample t-test). See Supplementary File 54 for data and
statistical analyses. (D) Images of cells from PEG and control cultures at 6 months of culture
(scale bars PEG = 100 pum, Control 200 pm)
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Figure 5. Comparisons between control and 10% PEG treatments after six months in vitro
culture in terms of: (A) medium and callus osmolarity, (B) proline content, (C) soluble sugars,
and (D) water content. Note different letters indicate significant differences (P £ 0.05) between
treatments (n=3 + 5D); ns = non-significant. (Kruskall Wallis followed by Dunn'’s test (A};
Wilcoxon signed rank test (B} and Welch Two Sample t-test (C and D}). See Supplementary File
S5 for data and statistical analyses.
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Figure 6. Gene expression after & months culture on 10% PEG medium and control
(MANA medinm) with leaf as reference: (A) MzSOS!, (B) MtWEE!, (C) MtSERK, (D)
MtP3CS and (E) M#CCS552. Different letters indicate significant differences amongst
treatments/tissues (P =0.05; 1-way ANOVA; n =3+ 5D}
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Parameters assessed

Control

Growth (fresh weight)

Cell Viability (%)

Embryogenic competence

lonic (Nacl)
stress

Osmotic (PEG)
stress

Chlorophyll (green tissue)

Endoreduplication

Mitotic index

Medium esmolarity

Callus osmolarity

Water content

Proline accumulation

Soluble sugars

Relative expression of MtSERK1

Relative expression of MtWEE1

Relative expression of MtCCS52

Relative expression of MtP5CS

Relative expression of MtSOS1

Figure 7. Summarized effects on various parameters of imposing abiotic stress on embryogenic callus
of Medicago truncatula following in vitro selection. Control callus tissues are compared with NaCl-
tolerant callus (Elmaghrabi et al. 2013) and PEG-induced osmotic stress tolerant callus tissues in this

study. Blue colour indicates increase/upregulation. Red colour indicates decrease/downregulation.
When non significant compared to controls white is used.
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Figure 1. Mean (= S.D.) callus growth over 6 months on MANA medium with 10% wiv
PEG compared with control (MANA medmum). Different letter combinations indicate
significant differences (F = 0.05; Kruskal Wallis followed by a Dunn’s test) (n > ). See
Supplementary File 51 for data and statistical analyses.



Figure 2.JPEG

Figure 2. Callus phenotype and viability after 6 months on 10% w/v PEG and control
media: (A) control callus; (B) PEG-selected callus, arrows indicate somatic embryos;
viability of control callus after FDA staining observed under transmission (C) or UV (D)
light; viability of PEG-selected callus after FDA staining observed under transmission (E)
or UV (F) light. Scale bars are A=2.13 mm, B = 3.34 mm; and Cthrough to F = 200 pm.
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Figure 3. FCM profile and % distribution of nuclei in G1 (1% peak), G2 (2™ peak], S phase (trough between 15tand 2™
peaks) and polyploid nuclei (3 (8C) and 4™ (16C) peaks) from (A) leaves of AMedicago truncatula, (B) M. truncatula
calluscultured on 10% w/v PEGE000 for & maonths; (C) Mean (£ 5.0.) mitotic index in leaves compared to callustissues
after 9 continuous months growth on 10% w/v PEG. Different letters indicate significant differences (P < 0.05); n=10.
See Supplementary File52 for data and statistical analyses.
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Figure 4. Effects of PEGB000 on cell morphology. (A) cell and [B) nuclear size (um?) at
different time points during in vitro selection for PEGE000 (10%) resistance. Data are the
means +5.D. from n = 9 replicates at 2 and 4 months of culture and n = 22 measurements at
6 months of culture. Bars with different letters were significantly different (Kruskal Wallis
followed by Dunn’s test) at different time points across treatments (P < 0.05). See
Supplementary File 53 for data and statistical analyses. (C) Shape coefficient (SC) of cells
from control (blue) and PEG-grown (orange) calli (n=22) at 6 months of mean +5. D. (*
indicates P < 0.05, Welch Two Sample t-test). See Supplementary File 54 for data and
statistical analyses. (D) Images of cells from PEG and control cultures at 6 months of culture
(scale bars PEG = 100 pm, Control 200 pum)



Figure 5.JPEG
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Figure 5. Comparisons between control and 10% PEG treatments after six months in vitro
culture in terms of: (A) medium and callus osmolarity, (B) proline content, (C) soluble sugars,
and (D) water content. Note different letters indicate significant differences (P = 0.05) between
treatments (n=3 £ 5D); ns = non-significant. (Kruskall Wallis followed by Dunn's test (A);
Wilcoxon signed rank test (B) and Welch Two Sample t-test (C and D)). See Supplementary File
55 for data and statistical analyses.
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Figure 6. Gene expression after 6 months culture on 10% PEG medium and control
(MANA medium) with leaf as reference: (A) MeSOSI, (B) M¢WEEI, (C) MtSERK, (D)
MtP3CS and (E) MrCCS32. Different letters indicate significant differences amongst
treatments/tissues (P < 0.035; 1-way ANOVA; n=3+8D.).
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Figure 7. Summarized effects on various parameters of imposing abiotic stress on embryogenic callus
of Medicago truncatula following in vitro selection. Control callus tissues are compared with NaCl-
tolerant callus (Elmaghrabi et al. 2013) and PEG-induced osmotic stress tolerant callus tissues in this
study. Blue colour indicates increase/upregulation. Red colour indicates decrease/downregulation.
When non significant compared to controls white is used.





