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Abstract 

In the present study a novel data-driven topological filtering technique is introduced to derive the 

backbone of functional brain networks relying on orthogonal minimal spanning trees (OMST). 

The method aims to identify the essential functional connections to ensure optimal information 

flow via the objective criterion of global efficiency minus the cost of surviving connections. The 

OMST technique was applied to multichannel, resting-state neuromagnetic recordings from four 

groups of participants: healthy adults (n=50), adults who have suffered mild traumatic brain injury 

(n=30), typically developing children (n=27), and reading-disabled children (n=25). Weighted 

interactions between network nodes (sensors) were computed using an integrated approach of 

dominant intrinsic coupling modes based on two alternative metrics (symbolic mutual information 

and phase lag index), resulting in excellent discrimination of individual cases according to their 

group membership. Classification results using OMST-derived functional networks were clearly 

superior to results using either relative power spectrum features or functional networks derived 

through the conventional minimal spanning trees algorithm.  
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Introduction 

Neuronal populations generate oscillatory electrical activity as a result of complex 

neurophysiological processes taking place within individual neurons and across neuronal populations 

(Buzsaki et al., 2004, 2006; Llinas, 2014). Such firing patterns can give rise to synchronized input to 

other cortical areas, supporting the interaction of a given assembly with more distant neuronal 

assemblies at the prominent oscillating frequency of the source population (Shew et al., 2009). It has 

been proposed that this cross-frequency coupling (CFC) promotes accurate timing between different 

oscillatory rhythms and dynamic control of distributed functional networks (Canolty and Knight, 

2010; Varela et al., 2001; Buzsaki, 2006). Magnetoencephalography (MEG) is uniquely suited to 

address functional connectivity based on CFC because it possesses adequate temporal resolution to 

describe the real-time dynamics of fine-grained interactions between neuronal populations. There is 

rapidly accumulating experimental evidence supporting the role of CFC in cognition (Canolty and 

Knight, 2010; Buzsaki and Watson 2012; Jirsa and Muller, 2013; Dimitriadis et al., 2015a,c, 2016) 

and as a marker of neurophysiological dysfunction in developmental disorders such as reading 

disability (Dimitriadis et al., 2016b). 
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Neuronal interactions at the basic brain rhythms (Buzsaki, 2006) can be quantified through a 

variety of connectivity estimators, each featuring distinct advantages and limitations (Bastos and 

Schoffelen, 2016). The application of any type of connectivity estimator to a multichannel recording 

set leads to a fully-connected graph containing a large proportion of potentially spurious connections. 

Identifying such spurious interactions requires statistical filtering (Aru et al., 2014). The most 

common approach toward this goal is through surrogate analysis that permits calculation of p-values 

associated with each interaction, which are then thresholded using an adaptive criterion, such as False 

Discovery Rate, to control for Type I error.  

Following statistical filtering, surviving interactions typically need to undergo spatial 

(topological) filtering in order to derive a network structure that contains only the essential interactions 

between nodes and is consequently more likely to be meaningful from a neuroscience perspective 

(Bullmore and Bassett, 2011; Van Wijk et al., 2010). Existing topological filtering approaches rely on, 

largely, arbitrary criteria, such as absolute weight threshold (e.g., > 0.5), upper density limits (e.g., 

keeping the strongest 10% of connections), and mean graph degree (e.g., retaining connections so that 

the mean degree value is kept > 5; Dimitriadis et al., 2010). A recent study explored the caveats of 

applying proportional thresholding on fMRI resting-state brain networks from clinical populations 

(van den Heuvel et al., 2017). The aforementioned observations highlight the need for data-driven 

topological filtering techniques. In principle, the latter may possess greater sensitivity to network 

features to serve as connectomic biomarkers for disorders such as Alzheimer’s disease, schizophrenia, 

autism, and reading disability. Data-driven techniques are also crucial to ensure compatibility of results 

across laboratories and/or scanner types where absolute threshold criteria are not applicable (Abraham 

et al., 2017; Dansereau et al., 2017). 

An increasingly popular, assumption-free method for identifying the essential set of 

connections within a fully connected graph is based on Minimal Spanning Trees (MST; Meier et al., 
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2015; Tewarie et al., 2015). More specifically, the MST connects all the N nodes in a graph through 

N-1 connections my minimizing the total cost of information flow and without introducing cycles. The 

method addresses crucial limitations of existing topological filtering schemes, which rely on absolute 

threshold or density and, additionally, preserves the connectedness of the brain network. However, the 

conventional MST approach typically results in trees with only N-1 links, which for large graphs are 

too sparse to allow reliable discrimination between two (Dimitriadis et al., 2015a; Antonakakis et al., 

2016) or more groups (Khazaeea et al., 2016). To address this problem, the orthogonal MST approach 

(OMST) was introduced (Dimitriadis et al., 2017) by utilizing alternative algorithms to construct the 

MST of a weighted graph (Kruskal, 1956; Prim, 1957). The OMST method preserves the main 

advantage of MST (i.e., assumption-free, data-driven approach that maintains network connectedness) 

and further ensures a denser and, potentially, more meaningful network. It is implemented by sampling 

connections over multiple rounds of MST in order to identify the subset of functional interactions that 

would ensure optimal information flow (indexed by network global efficiency) while minimizing the 

cost incurred by preserved functional connections. OMST has been used in pattern recognition and 

computer vision task as a re-ranking method (Fotopoulou et al., 2014). The superior performance of 

this topological filtering approach over several conventional filtering schemes has recently been 

demonstrated using large EEG and fMRI databases (Dimitriadis et al., 2017).  

In the present work we demonstrate the advantages of OMST as a topological filtering approach 

for sensor-level, resting-state neuromagnetic recordings. At the temporal scale characteristic of CFC, 

source localization (and related arbitrary choices of algorithms and anatomic templates) may introduce 

significant distortions to the source-level (reconstructed) signals. This added layer of complexity, 

although in principle desirable to enhance the anatomic relevance of results, would likely have 

confounded the primary goal of the study.  
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In addition to using OMST, a novel feature of the present work involves use of mutual 

information derived from symbolized time series (symbolic mutual information; SMI) to quantify the 

strength of coupling between MEG sensors both within- and between-predefined frequency bands (i.e., 

cross-frequency coupling; Robinson and Mandell, 2015). In this approach, neuromagnetic signals are 

first transformed into symbolic sequences consisting of a finite set of substrings (Janson et al., 2004). 

Signal complexity was assessed by the degree of repeatability of substring sequences over time using 

the symbolization procedure described in Dimitriadis et al. (2016a). The theoretical advantage of SMI 

lies in its capacity to represent each pair of time series as a set of two symbolic sequences utilizing a 

common set of symbols. SMI is a weighted connectivity estimator which describes interactions 

between any two signals in the form of the strength of linear and non-linear functional associations 

(King et al., 2013; Robinson and Mandell, 2015). Being less susceptible to artifacts, SMI was chosen 

to handle MEG data from young children in the current study. Moreover, SMI was favored over delay 

Transfer Entropy, which may be more appropriate for source-level data (Roux et al., 2013). A more 

conventional connectivity estimator (Phase Lag Index; PLI) was also employed to derive functional 

connectivity graphs which were submitted to the OMST-based topological filtering in a separate 

analysis.  

Briefly the analysis pipeline adopted in the present study involves the use of surrogate data 

sets to perform statistical filtering of functional connections, resulting in integrated functional brain 

networks featuring the dominant types of sensor interactions for each participant (Engel et al., 2013; 

Dimitriadis et al., 2016b). Such sparse networks were obtained independently for SMI and PLI and 

were subsequently filtered, topologically, using OMST. The sensitivity of this procedure to 

differences in resting-state brain connectivity attributed to participant age, presence of reading 

disability, and history of acute brain insult (mild traumatic brain injury; MTBI) was assessed on a 
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large dataset consisting of four subgroups of participants: healthy adults (n=50), adults who have 

suffered MTBI (n=30), typically developing children (n=27), and reading-disabled children (n=25).  

 

Materials and Methods 

Participants 

For the demonstration of the proposed algorithm, we used resting-state neuromagnetic recordings 

from four groups: healthy adults (n=50; 31 women, aged: 33.5±9.32 years with 15.4  3.3 years of 

formal education), adults who had suffered mild traumatic brain injury (n=30; 13 women, aged: 

32.3±9.9 years with 15.1  2.9 years of formal education), typically developing children (n=27; 15 

girls, aged: 10.45±2.6 years), and reading-disabled children (n=25; 14 girls, aged: 11.05±2.42 

years). Resting state data were collected as part of ongoing projects at the Magnetoencephalography 

Laboratory, University of Texas Health Science Center-Houston. Detailed information on particpant 

characteristics can be found elsewhere (Antonakakis et al., 2016; Dimitriadis et al., 2013, 2015, 

2016b).  

 

Preprocessing 

The MEG data underwent artifact reduction using Matlab (The MathWorks, Inc., Natick, MA, 

USA) and Fieldtrip (Oostenveld et al., 2011). Independent component analysis (ICA) was used to 

separate cerebral from non-cerebral activity using the extended Infomax algorithm as implemented 

in EEGLAB (Delorme and Makeig, 2004). The data were whitened and reduced in dimensionality 

using principal component analysis with a threshold set to 95% of the total variance (Delorme and 

Makeig, 2004; Escudero et al., 2011). Kurtosis, Rényi entropy, and skewness values of each 

independent component were used to identify and remove ocular and cardiac artifacts. A given 

component was considered an artifact if, after normalization to zero mean and unit variance, more 
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than 20% of its values were greater/lower than 2 SDs from the mean (Escudero et al., 2011; 

Dimitriadis et al., 2013, 2015a,b; Antonakakis et al., 2015, 2016). To further ensure that Independent 

Components meeting the aforementioned criterion were indeed artifactual, we examined their time 

course and morphology (characteristic for cardiac and myogenic artifacts). In addition, source 

localization was performed using linearly constrained minimum variance beamformers (van Veen 

et al., 1997) to ensure that source locations at the magnetic field peak of each artifact were outside 

the brain.  

Subsequently, the reconstructed axial gradiometer recordings were transformed into planar 

gradiometer field approximations using the sincos method implemented in Fieldtrip (Oostenveld et 

al., 2011). The data were finally bandpass-filtered in the following frequency ranges using a 3rd-

order Butterworth filter (in zero-phase mode): 0.5-4, 4-8, 8-10, 10-13, 13-15, 15-19, 20-29, and 30-

45Hz corresponding to δ, θ, α1, α2, β1, β2, β3, and γ bands. 

 

Integrated Functional Connectivity Graphs 

The strength of intra- and inter-frequency coupling for each pair of sensors was indexed by the 

undirected, weighted SMI (King et al., 2013; Robinson and Mandell, 2015). Initially, each pair of 

time series was transformed into two symbolic sequences utilizing a common set of symbols using 

the Neural Gas algorithm, which was first adapted to handle time series pairs (see Section 1 in 

Supplementary Material). Our group has demonstrated the utility and relative advantages of the 

Neural Gas algorithm in identifying dynamic functional graphs and introduced the notion of 

functional connectivity microstates (Dimitriadis et al., 2013). Additionally, we have used the Neural 

Gas algorithm to symbolize pairs of time series and then estimate delay symbolic transfer entropy 

(Dimitriadis et al., 2016a). We have further demonstrated that the Neural Gas algorithm produced 
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more stable results which were proven more robust to various types of noise, compared to ordinal 

pattern analysis, a frequently employed alternative method to symbolize time series. 

SMI is defined as: 

𝑆𝑀𝐼𝑓(𝑋, 𝑌) =  𝐼(𝐴𝑠𝑡(𝑓), 𝐵𝑠𝑡(𝑓) ) = ∑ ∑ 𝑝(𝑥, 𝑦) log (
𝑝(𝑥, 𝑦)

𝑝𝑥(𝑥)𝑝𝑦(𝑦)
)        

𝑥∈𝑋𝑦∈𝑌

(1) 

where X = Ast and Y = Bst are the two symbolic sequences, p(x, y) is the joint probability distribution 

function of X and Y, and px(x) = ∑ p(x, y)y∈Y  and py(y) = ∑ p(x, y)x∈X  are the marginal probability 

distribution functions of X and Y, respectively. SMI values range between 0 and 1, with 0 denoting 

no functional coupling and 1 indicating perfect functional coupling over the entire recording period. 

This procedure resulted in a single functional connectivity graph (FCG) per participant, frequency 

band (8), and pair of frequency bands (28) consisting of SMI values.  

Individual FCGs were submitted to statistical filtering using surrogate data to determine the 

Dominant Intrinsic Coupling Mode (DICM) for each pair of symbolic sequences (sensors). 10,000 

surrogate data sets were created by shuffling the symbolic sequence of the second MEG sequence 

(Bst) in each pair (Ast, 
Bst) and reestimated the SMI values. The concept of DICM is closely linked 

to the notion that although the specific frequencies and strengths of interactions between sensors 

may vary during the resting-state recording for a given participant, each sensor pair displays a 

typical (i.e., more temporally stable) mode of interaction which can identified via application of a 

conservative statistical criterion using surrogate data (Dimitriadis et al., 2016b,c). In the present 

work, a p-value was assigned to each pair of symbolic sequences (same-frequency/between-sensor, 

cross-frequency/between-sensor, and cross-frequency/within-sensor pairs) reflecting the proportion 

of permutations that yielded surrogate SMI values higher than the observed SMI values. This 

procedure produced a 3D tensor of p values for each participant of size 36 x 248 x 248. Significant 

DICM(s) for each pair of symbolic sequences were determined by applying a Bonferroni-adjusted 
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p < 0.01/36 = 0.00028 in order to control for family-wise Type I error. When more than one 

frequency or frequency pairs exceeded this threshold, the one associated with the lowest p value 

was retained. This procedure resulted in two 2D matrices for each participant of size 248 x 248: one 

containing the highest/statistically significant SMI values and the second the identity of the 

corresponding frequency or frequency pair (e.g., 1 for δ, 2 for θ, …, 8 for γ, 9 for δ-θ, …, 15 for δ-

γ,…, 36 for β3-γ). 

For comparison, FCGs were also constructed using a conventional connectivity metric, Phase 

Lag Index (PLI; Stam et al., 2007), which is considered to be less susceptive to volume conduction 

(see Section 2 in Supplementary Material).  

 

Topological filtering of Functional Connectivity Graphs using OMST 

A crucial difference of the Orthogonal Minimal Spanning Trees (OMST) algorithm from the 

conventional MST method is that the latter tends to preserve the weakest connections under the 

constraint of minimizing overall cost of connecting all the nodes in the graph. To address this 

limitation functional connectivity graphs were first inverted to emphasize the strongest connections 

corresponding to higher SMI values.  

The proposed OMST algorithm was applied to the statistically thresholded FCGs, independently 

for each participant, as follows (Dimitriadis et al., 2017): 

a) The MSTs were extracted by iteratively applying Kruskal's algorithm on the inverted weighted 

Functional Connectivity Graphs containing the Dominant Intrinsic Coupling Mode for each pair of 

sensors.  

b) After extracting the 1st MST, which connects all the N sensors through N-1 edges, the N-1 

edges were substituted with 'Inf' in the original network in order to avoid capturing the same edges 

and also to maintain orthogonality with the next MST. Then a 2nd MST was estimated that connects 



11 

 

all of the N sensors with minimal total distance, satisfying the constraint that it is orthogonal (i.e., 

does not share common edges) with the 1st MST. Next, the N-1 connections of the 2nd MST were 

substituted with zeros and a 3rd MST was estimated that connected the sensors with the minimal total 

weight, subject to the constraint that it is orthogonal to the previous two constructed MST's (1st and 

2nd). In general, an mth-MST is orthogonal to all the previous (m-1)th MSTs, having exactly m(N-1) 

edges. 

c) Connections were aggregated across OMSTs (including the 1st) in order to optimize the 

function of global efficiency (GE) minus Cost over Cost as described in more detail in (e) below. 

For instance, this step can aggregate 3*(N-1) edges from the first three OMSTs plus the 4th OMST. 

d) For each added connection to the aggregated network, the objective function of Global Cost 

Efficiency (GCE) = GE-Cost was estimated, where Cost denotes the ratio of the total weight of the 

selected edges, over multiple iterations of OMST, divided by the total strength of the original fully-

weighted graph. The values of this formula range within the limits of an economical small-world 

network for healthy control participants (Bassett and Bullmore, 2006). The network which is 

considered as functionally optimal is the one associated with the maximum value of the following 

quality formula: 

)2(CostGEJ OMSTs
GCE

  

e) Topological filtering on the person-specific FCGs featuring the Dominant Intrinsic Coupling 

Modes entailed retaining those sensor interactions that optimized the function of global efficiency 

(GE) minus Cost over Cost. A sample plot of this function from a typical reader, obtained after 

running exhaustive OMSTs until all observed weights were tested, is shown in Fig. 1. The maximum 

of this (always) positive curve reflects the optimization of the proposed OMST algorithm. In the 

example of Fig. 1, the GE-Cost vs. Cost function was optimized after 11 OMSTs leading to a 
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selection of 2,689 connections—a mere 8.9% of the total number of connections which were initially 

retained following statistical filtering. 

 

     [Figure 1 around here] 

 

Person-specific graph metrics of topologically filtered Functional Connectivity Graphs 

Subject-specific, OMST-filtered FCGs were characterized using the following network 

metrics: global efficiency (GE), eccentricity, radius, and diameter. Global efficiency is the average 

inverse shortest path length in the network and is, perhaps, is the most informative estimator of the 

integration of information flow within a network. Eccentricity is defined as the maximum shortest 

path length between a given sensor and any other sensor, whereas the radius and diameter 

correspond to the average and maximum eccentricity values across all sensors, respectively. Graph 

metrics selected for the present study represent the most widely used across imaging modalities and 

research questions (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010; Telesford et al., 2011; 

Stam, 2015). Pairwise group comparisons on each network metric were performed using the 

Wilcoxon-Rank Sum Test (evaluated at a conservative p < 0.0001). 

 

Graph Diffussion Distance: A metric of group differences on network structure 

In order to assess group differences in the OMST-filtered Functional Connectivity Graphs at the 

single-case level, we computed the Graph Diffusion Distance metric (Fouss et al., 2012; Hammond 

et al., 2013). The graph laplacian operator of each subject-specific FCG was defined as L = D – 

FCG, where D is a diagonal degree matrix related to FCG. This method entails modeling 

hypothetical patterns of information flow among sensors based on each observed (static) FCG. The 

diffusion process on the person-specific FCG was allowed for a set time t; the quantity that 
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underwent diffusion at each time point is represented by the time-varying vector N)t(u  . Thus, 

for a pair of sensors i and j, the quantity FCGij (ui(t) – uj(t)) represents the hypothetical flow of 

information from i to j via the edges that connect them (both directly and indirectly). Summing all 

these hypothetical interactions for each sensor leads to  
i

jiij

'

j ))t(u)t(u(FCG)t(u , which can 

be written as: 

)t(Lu)t(u i                    (3) 

where L is the graph laplacian of FCG. At time t = 0 Equation 2 has the analytic solution: 

.u)tLexp()t(u )0(  Here exp(-tL) is a N x N matrix function of t, known as Laplacian exponential 

diffusion kernel (Fouss et al., 2012), and u(0) = ej, where 
N

je  is the unit vector with all zeros 

except in the jth component. Running the diffusion process through time t produced the diffusion 

pattern exp(-tL)ej which corresponds to the jth column of exp(-tL).  

Next, a metric of dissimilarity between every possible pair of person-specific diffusion-

kernelized FCGs (FCG1,FCG2) was computed in the form of the graph diffusion distance dgdd(t). The 

higher the value of dgdd(t) between two graphs, the more distinct is their network topology as well 

as the corresponding, hypothetical information flow. The columns of the Laplacian exponential 

kernels, exp(-tL1) and exp(-tL2), describe distinct diffusion patterns, centered at two corresponding 

sensors within each FCG. The dgdd(t) function is searching for a diffusion time t that maximizes the 

Frobenius norm of the sum of squared differences between these patterns, summed over all sensors, 

and is computed as: 

)4()tLexp()tLexp()t(d
2

F21gdd   

where 
F

. is the Frobenius norm.  
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Given the spectral decomposition L=VΛV (V defines the eigenvectors and Λ the eigenvalues), the 

laplacian exponential can be estimated via: 

(5) )V'Vexp(-t=exp(-tL)   

where for Λ, exp(-tΛ) is diagonal to the ith entry given by i,it
e


.We computed dgdd(FCG1,FCG2) by 

first diagonalizing L1 and L2 and then applying equations (3) and (4) to estimate dgdd(t) for each 

time point t of the diffusion process. In this manner, a single dissimilarity value was computed for 

each pair of participants based on their corresponding FCGs.   

 

Group differences on relative spectral power 

Relative power in each frequency band was examined as a lower-level feature that could account 

for group differences in FCGs. Initially, statistical filtering was to the RP values obtained for each 

of 8 frequency bands (Fr) and 248 sensors (S) by first computing Laplacian scores (LSFr_S). The 

null distribution for each of the 1984 features was obtained through bootstrapping by randomizing 

the group identity labels assigned to each feature for 10,000 times and estimating the corresponding 

Laplacian scores. Next, we assessed deviations of the Laplacian score of each feature from the null 

distribution R

S_FrLS  and assigned a (one-sided) p-value as the percentage of observed R
SFrLS _  

exceeding the original estimated LSFr_S (evaluated at a Bonferroni-corrected p < 0.05/(8*248)).  

 

Group separation and classification 

A k-nearest neighbor classifier was employed to assess the accuracy of assigning cases to each 

of the four study groups based on either the Graph Diffusion Distance metric derived from the 

OMST-filtered functional connectivity graphs or the statistically filtered relative power metrics. 

Results were obtained for two classification schemes to permit direct comparison with those 
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obtained using the proposed OSMT-GDD scheme: a) contrasting groups in a pair-wise fashion and 

b) multi-group classification. 

Finally, Graph Diffusion Distance values were projected to a common 3D space using 

multidimensional scaling, as a means of visualizing the level of similarity of individual cases (Borg 

and Groenen, 2005). The multidimensional scaling algorithm aims to place each case in N-

dimensional space by preserving between-case distances. Each case is then assigned coordinates on 

each of a predetermined set of N dimensions (N=3 in the present work). 

 

Results 

Group characteristics on topologically filtered Functional Connectivity Graphs 

Typically achieving students showed higher eccentricity and radius values, as well as smaller 

diameter values than adult typical readers (Fig. 2). Moreover, RD children showed lower global 

efficiency and higher eccentricity, radius, and diameter values than age-matched typical readers. 

Participants with a history of mTBI displayed higher diameter and lower eccentricity and higher 

global efficiency and diameter values than healthy adults.  

The reliability of OMST-derived network metrics was further assesed through split-half analyses, 

whereby global efficiency, eccentricity, radius, and diameter values were recomputed for each age- 

and gender-matched split half sections of the four study groups. As shown in Figure S2 

(Supplementary Material) average network metrics were very similar between split-half subgroups 

(p> .15 in all cases). 

 

[Figure 2 around here] 
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Group differences on OMST-derived network features 

Applying dgdd(t) in a pair-wise fashion on person-specific FCGs based on Symbolic Mutual 

Information across the 132 participants produced the dissimilarity matrix displayed in Fig. 3A. The 

clear group separation was visualized by projecting individual Graph Diffusion Distance values onto 

a common 3D space following dimensionality reduction using multidimensional scaling (Fig. 3B). 

Classification accuracy reached 100% for both the pairwise and multi-group contrasts. As displayed 

in Fig. S1 (Supplementary Material) similar results were obtained for the OMST-derived PLI-based 

FCGs.  

For comparison, we computed a dissimilarity matrix of laplacian kernels using FCGs which were 

subsequently topologically filtered through conventional MST (Tewarie et al., 2015). Results of 

multidimensional scaling displayed in Fig. 4 reveal poor separation of individual cases especially 

among the healthy adult, mTBI, and typically achieving children. Classification accuracy did not 

exceed 45% for either the pairwise or the multi-group contrast. 

To further ensure that discrimination between healthy adults and adults with a history of mTBI 

was not associated with differences in gender ratio between the two groups, the entire analysis was 

replicated on gender-matched subsets of the two groups (n=44 and n=28, respectively). Results 

presented in Section 4 of the Supplementary Material confirmed the superiority of topological 

filtering using OMST as compared to conventional MST in deriving FCGs that clearly distinguish 

between the two clinical groups. 

 

[Figures 3,4 around here] 

 

 

Group differences on Relative Power 
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Statistical filtering of relative power features derived a total of 14 features that were used for 

contrasting non-impaired and reading disabled readers resulting in an average of 67.3% correct 

classification (see Table S1 in Supplementary Material). Discrimination accuracy between non-

impaired readers (children) and healthy young adults averaged 62.3% using a total of 49 features. 

Similarly, discrimination accuracy between mild traumatic brain injury (mTBI) subjects and healthy 

young adults averaged 68.1% using a total of 11 features. Finally, the multi-group discrimination 

accuracy did not exceed 53.3% using a total of 48 features.  

 

Group-specific Dominant Coupling Modes 

Characteristic Dominant Coupling Modes, based on SMI, for each group of participants are 

displayed in the comodulograms of Fig. 5. Each 2D matrix tabulates the probability distribution of 

functional connections associated with intra- (diagonal cells) or inter-frequency coupling (cells 

above the diagonal). A notable finding is the higher proportion of significant cross-frequency 

coupling modes among typically-achieving students (12%; compared to only 5% in the reading-

disabled group). Conversely, the latter group showed slightly higher within-frequency DICMs in 

the θ, α1, and β1 bands compared to non-impaired readers. Interestingly, both groups showed 

prominent DICMs in the δ band (Fig. 5A vs. Fig. 5B).  

Moreover, the comodulograms of both adult groups were characterized by substantially higher 

relative contributions of cross-frequency DICMs as compared to groups of younger participants 

(with over 40% of DICMs representing cross-frequency interactions). Compared to healthy adults, 

participants with a history of mTBI displayed (i) prominent modulation of all higher frequency 

oscillations by δ frequencies and, (ii) more prominent within-frequency DICMs in the α1 and α2 

bands.  

[Figure 5 around here] 
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Discussion 

Topological filtering using OMST 

The Orthogonal Minimal Spanning Tree (OMST) algorithm was introduced in the present work 

as a convenient, data-driven and computationally efficient method to perform topological filtering 

of a dense functional brain network. This method was introduced previously by our group in order 

to help identify the essensial connections within a given network in a manner that optimizes 

information flow between every element (node) of the network while mainitaining the 

functional/metabolic cost of connections at a minimum. Results from classification analyses on 

sensor-level MEG data from 132 participants confirmed the prediction that network metrics 

obtained from OMST-filtered networks would be sensitive to age- and diagnostic-group categories. 

Moreover, the superiority of OMST over the conventional MST approach, which is often too sparse 

to capture the most significant connections of a network, was unquestionable (100% vs. 45% 

classification accuracy in the multi-group analyses). The high classification accuracy based on the 

topologically filtered sensor networks via OMST underlines the effectiveness of this method to 

capture the most essential pathways of information flow within a given functional brain network. 

Robust group discrimination results were demonstrated for functional connectivity graphs derived 

from two complementary types of interdepenceny metrics: within- and cross-frequency coupling 

(Dimitriadis et al., 2015c; 2016a,b,c,d), as well as the phase lag index, which is considered to be 

less susceptible to volume conduction effects (Stam et al., 2007). 

In the current application example, static sensor-level networks were analyzed, although the 

OMST method may be suitable for a variety of features (including dynamic metrics of MEG resting 

state data, and also network metrics derived from task-related MEG recordings; Dimitriadis et al., 

2017). The OMST method was supplemented by estimation of diffusion distance metric (GDD), 

bearing distinct advantages over traditional approaches used to derive person-specific functional 
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connectivity graphs, which rely on either unstructured data or vectors. In contrast, the diffusion 

distance metric was designed to identify systematic individual differences in functional brain 

networks, associated with distinct patterns of modeled information flow (Dimitriadis et al., 2015b). 

The GDD metric substituted Euclidean distance in a k-NN classifier as a more appropriate distance 

metric that respects the 2D format of the functional connectivity graph. 

 

Developmental and clinical correlates of OMST-derived functional networks 

Although the present findings were based on sensor-level data, limiting their anatomic 

interpretability, the fact that we used planar-gradiometer neuromagnetic data to estimate patterns of 

within- and cross-frequency coupling modes permits certain conclusions regarding certain apparent 

features of underlying brain networks at rest. At a global network level, participants with a history 

of developmental (RD) or acute brain damage (mTBI) demonstrated lower global efficiency and 

higher diameter indices compared to typically achieving students and healthy adults, respectively 

(Fig. 2; Antonakakis et al., 2016; Dimitriadis et al., 2013, 2015a, 2016b). This finding is consistent 

with less efficient information flow during rest (at least at the sensor level) in both clinical groups 

compared to their age-matched typical/healthy counterparts. Compared to both student groups, adult 

comodulograms were also characterized by substantially higher proportions of cross-frequency 

interactions (40% and 45%, for young adults and mTBI patients, respectively). This finding is in 

accordance with the proposed trend toward more complex communication modes between remotely 

located neuronal assemblies with development (Buzsaki et al., 2012; Basar et al., 2016; Deco et al., 

2017; Stamoulis et al., 2015). Interestingly, students who experienced severe reading difficulties in 

the present study were even less likely to display cross-frequency coupling modes at rest (5% of the 

total DICMs as compared to 12% among age-matched typical readers).  
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Moreover, history of mild traumatic brain injury was associated with a higher proportion of cross-

frequency interactions involving δ modulating oscillators, in agreement with a recent report of 

abnormalities in functional brain networks in δ frequencies in mTBI (Dunkley et al., 2015).  

 

Limitations and future directions 

The present study has several noteworthy limitations. Firstly, static networks were analyzed, 

although the OMST method is suitable for a variety of features (including dynamic metrics of MEG 

resting state data, and also network metrics derived from task-related MEG recordings). Secontly, 

connectivity patterns reflecting cross-frequency coupling were explored at the sensor-level. At this 

temporal scale, source localization (and related arbitrary choices of algorithms and anatomic 

templates) may introduce significant distortions to the source-level (reconstructed) signals. This 

added layer of complexity, although in principle desirable for enhancing the anatomic relevance of 

results, would very likely have confounded the primary goal of the study, namely to assess the 

capacity of OMST as a data-driven technique to derive sufficiently sparse graphs which could, in 

turn, reliably differentiate between age- and clinical diagnosis groups of participants. Thirdly, as 

presently applied OMST did not take into account the actual anatomic distance between sensors. 

Especially when applied to source-level data, this feature may enhance the sensitivity of the 

technique to explore functional cortical networks and can be aided by DTI-tractography data. 

Finally, independent assessment of the performance of the proposed algorithms and analysis 

pipeline on a new sample that includes both healthy participants and clinical groups is paramount 

in order to establish their generalizability.  

 

Conclusions 
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Orthogonal Spanning Trees is a promising method to identify important features (connections) 

of densely interconencted functional networks as represented by both conventional (PLI) and novel 

connectivity metrics (Symbolic Mutual Information). Integrating OMST-based network analyses 

with the notion of dominant coupling modes can offer complementary information regarding 

functional changes in the resting connectivity during the course of human development and also in 

relation to both developmental disorders and acute brain insults.  
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Figure Captions 

Fig. 1. Optimization of the function of Global Efficiency (GE) minus Cost over Cost over 

multiple OMST runs in data from a typical reader. The red circle denotes the peak of the 

computed curve, while the resulting topologically filtered Functional Connectivity Graphs 

(FCG) is shown in the inset. Abbreviation; SMI: Symbolic Mutual Information. HC: Typically 

developing children, 

Fig. 2. Group-averaged network metrics of the topologically filtered FCGs characterizing MEG 

resting-state data. Brackets indicate significant pair-wise group differences (Wilcoxon Rank 

Sum Test p < 0.0001). Abbreviations; HC: Typically developing children, RD: Reading-

Disabled children, HA: Healthy Adults, mTBI: mild Traumatic Brain injury patients; GE: global 

efficiency, Ecc: Eccentricity, R: radius, D: diameter. 

Fig. 3. Topological filtering of Graph Diffusion Distance (GDD) values using Orthogonal 

MST. A) Dissimilarity matrix of subject-specific FCGs (N=132) based on the GDD metric. B) 

Multi-dimensional Scaling (MDS) was applied to the dissimilarity matrix of GDD values 

which were rescaled and projected in a common 3D space. Stress indicates the % loss of 

information due to the dimensionality reduction process via the MDS algorithm. 

Abbreviations; HC: Typically developing children, RD: Reading-Disabled children, HA: 

Healthy Adults, mTBI: mild Traumatic Brain injury patients, R1, R2, and R3 indicate the three 

predetermined dimensions used to plot participant cases through MDS.  

Fig. 4. Topological filtering of Graph Diffusion Distance values using conventional MST. 

Dissimilarity matrix and Multi-dimensional Scaling (MDS) results for subject-specific FCGs 

(N=132) using the conventional MST method. All conventions are similar to those in Fig. 3. 
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Fig. 5. Group-averaged empirical Probability Distributions of dominant intrinsic coupling 

modes. Within-frequency coupling is shown in diagonal cells whereas cross-frequency 

interactions are shown in the off-diagonal cells. Abbreviations; HC: Typically developing 

children, RD: Reading-Disabled children, HA: Healthy Adults, mTBI: mild Traumatic Brain 

injury patients. 
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