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Abstract—There is much interest in developing solutions for
protecting data privacy in recent years, and many privacy models
and data sanitization methods have been proposed. However,
relatively little has been done to understand how existing data
analysis techniques may be adapted to work with sanitized data.
In this paper we report a study on learning decision trees from
anonymized data. We sanitize data using the Mondrian algorithm
to satisfy k-anonymity and adapt the ID3 algorithm to learn
decision trees from sanitized data. Our preliminary experiments
show that accurate decision trees can be learnt from anonymized
data, and degradation of classification accuracy is no more than
2% with typical settings.

I. INTRODUCTION

With widespread and increased deployment of data captur-
ing applications and services, more and more data is being
generated, collected and analyzed. While analyzing such data
is beneficial and important to businesses and organizations,
the data may contain sensitive information about individuals
and their privacy must be respected. Unfortunately, simply
removing individual identification information such as social
security number from a dataset is not sufficient to protect
privacy. To address this, there is much interest in developing
solutions for protecting data privacy in recent years and
many privacy models and data sanitization methods have been
proposed [4].

A privacy model specifies certain properties that a dataset
must satisfy, in order to protect the data against a particular
type of privacy risk. For example, k-anonymity is a well-
known privacy model which requires each individual contained
in a dataset to be not distinguishable from at least k− 1 other
individuals based on a set of so-called quasi-identifiers (QIDs)
such as gender, postcode and age [13]. When a dataset to
be released does not satisfy a particular privacy model, data
sanitization is carried out to perturb or modify the data as
necessary. For example, the age of a person may be generalized
into a range, so that k individuals can have the same age range
in order to satisfy k-anonymity.

While much study has been carried in the last decade or so
to derive data sanitization methods that can anonymize data to
achieve different levels of privacy protection, including various
heuristic data utility optimization measures, surprisingly little
has been done to consider how some common data analysis
tasks may be conducted using anonymized data. As a step in
this direction, we consider in this paper how a decision tree
may be learnt from sanitized data and assess the effect of data
sanitization on classification accuracy.

How data analysis tasks may be performed on sanitized data
will depend heavily on how data is sanitized to achieve a level
of privacy protection. The goal of data sanitization is to ensure
that while privacy requirements are met, the utility of sanitized
data is optimized. That is, the sanitized data should be as useful
as possible in subsequent data analysis studies. To achieve
this, different heuristics have been proposed. Some heuristics
use generic measures to guide data sanitization, for example,
to ensure that modification to the data is minimum [8]. By
keeping sanitized data as close to original data as possible, it
is hoped that the sanitized data will be as useful as the original
data in analytic studies. Other methods take the characteristics
of intended data analysis task into account when sanitizing
the data, for example, to produce sanitized data specifically
optimized for learning a decision tree [3].

Given that the purpose of anonymizing a set of data is to
enable its publication to support analytic studies, the approach
that optimizes data sanitizaton by taking data analysis require-
ments into account is appealing. However, this is not realistic
in practice. Consider, for example, a medical researcher who is
to analyze data collected from several hospitals. Due to privacy
concerns, it is unlikely that hospitals will be willing to share
their original data, but the researcher may be granted access
to anonymized data. Clearly, it would not be reasonable to
assume that hospitals will know exactly what the researcher’s
analytic requirements may be, and they may not be willing to
sanitize data per analytic study either.

Thus, instead of attempting to sanitize data with some
intended analysis in mind, it is desirable that data analysis
techniques can be adjusted to work with generically sanitized
data. In this paper we propose to modify a decision tree
learning method to work with generically sanitized data. Our
approach does not require data sanitization methods to know
decision tree learning requirements [3], nor do we require the
anonymization process to release extra statistical information
to aid the derivation of a decision tree [6]. As a proof of
concept, we experimented our idea on the simple ID3 decision
tree learning algorithm, and we tested our method on the
Adult dataset [10], a de facto benchmarking dataset for testing
privacy solutions, in order to determine the extent to which
privacy preservation of data truly affects its usefulness. Our
results show that accurate decision trees can be learnt from
anonymized data and degradation of classification accuracy is
small with typical settings when compared to the trees derived
from the original data.

The rest of the paper is organized as follows. In Section 2,



we give the necessary definitions that we use in the paper and
the background material necessary to understand our approach.
In Section 3, we introduce our modified ID3. Section 4 briefly
discusses experimental results and finally in Section 5, we
conclude the paper.

II. RELATED WORK

Most work on assessing and determining the usefulness
of sanitized data is based on some generic, task-independent
measures. For example, earlier measures rely purely on some
data characteristics such as the size of an equivalence group
in k-anonymization [1], [8], [15], [7], as an indication of how
likely the data will be useful in subsequent data analysis tasks.
These measures in fact are measures of how much information
is lost during data sanitization, rather than how useful the
sanitized data will be in practice. Workload based measures
have also been proposed [14], [5], trying to link sanitized data
to the likely tasks to be performed on them, thereby giving
more plausible measures. In so doing, these measures resort
to some generic operations that a data analysis task is likely to
perform, for example, counting the number of instances in a
group. Clearly, these measures are a guess of how sanitization
may affect a data analysis task, but not an accurate reflection
of how useful such data will be in real applications. We do
not propose yet another generic measure of how likely data
will be useful, but study how data analysis techniques may
be modified to work with sanitized data, thereby assessing the
effect of data sanitization on data analysis.

There are also works that attempt to optimize a sanitization
process by taking intended data analysis tasks into account. For
example, Inan et al [6] proposed a method where in addition
to publishing the sanitized data, some associated statistics
such as the mean of an equivalence group is also released.
Such statistics can then help derive more accurate classifiers
from sanitized data. Fung et al [3] proposed a method which
sanitize the data in a top-down specialization fashion, where
each step is guided by class entropy measure. As such, the
data is sanitized with a specific type of classifier learning
method in mind. In contrast, our approach does not require
the data publisher to release any extra information apart from
the sanitized data itself, and we do not require the data to be
sanitized specifically for a particular task. Instead, we adapt an
existing decision tree learning method to work with generically
sanitized data.

III. PRELIMINARIES

A. k-Anonymity and Set-Based Generalization

Without loss of generality, we assume that data is con-
tained within a single table T (A1, A2, . . . , Am, C), where
each Aj , 1 ≤ j ≤ m, is a numerical or categorical attribute
and C is a categorical class attribute. We may drop C from T
when it is not needed in the discussion. We also assume that
the first q attributes in T are quasi-identifiers (QIDs). That is,
they are publicly available (e.g. from a voters list) and may
be used by an adversary to identify an individual contained in
T . Other attributes are deemed as sensitive attributes.

Definition 1 (k-Anonymity): Let T (A1, A2, . . . , Am) be a
table and v = 〈v1, v2, . . . , vm〉 be any tuple in T . T satisfies
k-anonymity if

|{t | t ∈ T, t.A1 = v1, t.A2 = v2, . . . , t.Aq = vq}| ≥ k

That is, for any tuple in T , there are at least k−1 other tuples
that have the same QID values. We call each such group an
equivalence group.

When k-anonymity is not satisfied, data needs to be modi-
fied prior to its publication to ensure that equivalence groups
form across the entire dataset. Different methods have been
proposed to do so and one approach is set-based generalization
[9].

Definition 2 (Set-based Generalization): Let
T (A1, A2, . . . , Am) be a table, A1, A2, . . . , Aq be QIDs,
and G = {t1, t2, . . . , tk} be a set of tuples in T . A set-
based generalization of G is a replacement of each value
aij , 1 ≤ i ≤ k, 1 ≤ j ≤ q, in G by ãij =

⋃
aij∈Aj

aij ,
the union of all values in Aj occurred in G. We denote
a set-based generalization of G by G̃ and call each ãij a
generalized value.

To explain the concepts of k-anonymity and set-based
generalization, consider this example. Suppose that we have
Table I that is required to be 3-anonymized, where Age,
Gender and Postcode are assumed to be QIDs and Disease
is the only sensitive attribute.

TABLE I
ORIGINAL TABLE

Age Gender Postcode Disease
20 M 1032 HIV
23 M 2113 Flu
27 F 5632 HIV
25 F 1023 Obesity
27 F 1132 Cancer
29 M 3232 Heart Attack

As the table currently does not satisfy 3-anonymity, we
apply set-based generalization to the table to generate the 3-
anonymized table in Table II, where a generalized value is
represented by listing its values in bracket and we interpret it
as representing any of its members, e.g. (M, F) may represent
M or F.

TABLE II
A 3-ANONYMISED TABLE

Age Gender Postcode Disease
(20, 23, 27) (M, F) (1032, 2113, 5632) HIV
(20, 23, 27) (M, F) (1032, 2113, 5632) Flu
(20, 23, 27) (M, F) (1032, 2113, 5632) HIV
(25, 27, 29) (M, F) (1023, 1132, 3232) Obesity
(25, 27, 29) (M, F) (1023, 1132, 3232) Cancer
(25, 27, 29) (M, F) (1023, 1132, 3232) Heart Attack



A key issue in set-generalizing a table T is to find an
optimal partition of T into groups of k tuples, and then apply
the generalization given in Definition 2 to each group. Many
different methods have been proposed. In this paper we follow
the Mondrian algorithm [8], though our approach is applicable
to other sanitization methods too.

B. The Mondrian Algorithm

Mondrian was originally proposed by LeFevre et al to
anonymize a set of data to satisfy k-anonymity using a
multidimensional global recoding [8]. It works by recursively
choosing an attribute and partitioning the dataset at the median
of the chosen attribute until k-anonymity is violated, that is,
when the partition will result in a group that has less than k
tuples. The Mondrian method is given in Algorithm 1.

Algorithm 1 Mondrian
input: a dataset D
output: a partition of D
1. if D cannot be split then
2. return D
3. else
4. dim← ChooseAttribute(D)
5. fs← CalculateFrequency(D, dim)
6. SplitV al← FindMedian(fs)
7. DL ← {t|t.dim ≤ splitV al}
8. DR ← {t|t.dim > splitV al}
9. return Mondrian(DL) ∪ Mondrian(DR)

The algorithm takes a dataset D as input. If a partition can
be made, i.e. the dataset is large enough to be cut into two
subsets each having at least k tuples (step 1), then a best cut
along one of the attributes will be sought in the following
steps. First, an attribute with the widest normalized range of
values will be selected (step 4). Then the frequency of each
distinct value in the selected attribute is calculated, and these
frequencies are placed in an ordered set (step 5). Note that as
we use the median value to split D, the ordering of the values
in the frequency set is significant. For numerical attributes, the
values are placed in ascending order. For categorical attributes,
any ordering can be used but the same ordering must be
consistently used for the attribute throughout the partitioning
process. For simplicity we use alphabetical ordering for all
categorical attributes. For example, the frequency set for the
Race attribute in the Adult dataset [10] is as follows:

Value frequency
Amer-Indian-Eskimo 286
Asian-Pac-Islander 895

Black 2817
Other 231
White 25,933

This frequency set is then used to determine a point at which
we will partition D (step 6). Two modes of partitioning are

possible: strict partitioning and relaxed partitioning. Strict par-
titioning requires that when D is split, its two resultant subsets
must not contain any overlapping values within the attribute
concerned. This means that the set of values containing the
median must be taken in its entirety and placed in one partition
only. Relaxed partitioning, on the other hand, allows the two
partitions to contain the same values. This would mean that
in our example the value White could be split into 10,852
instances in one partition and the other 15,081 instances in
another. Due to our set-based generalization, strict partitioning
will be used.

The final step is simply to split D and recursively run the
algorithm using the two partitions as inputs. The algorithm
stops when there are no further cuts can be made to any of
the partitions. After the algorithm returns a set of partitions,
we apply set-based generalization to each partition, i.e. the
QID values for the instances contained with each partition
are unioned and each individual value is replaced by the
generalized value.

C. The ID3 Algorithm

The ID3 algorithm is one of simplest decision tree learning
algorithms. As the purpose of our study is to assess the impact
of data sanitization on classification accuracy, rather than
attempting to develop a new decision tree learning algorithm
that can produce as accurate classification as possible, a
simple method such as ID3 suffices. The method is shown
in Algorithm 2, which is based on a version given in [11].

Algorithm 2 ID3
input: a dataset D with attributes A = {A1, A2, . . . , Am} and

class values C = {c1, c2, . . . , cs}
output: a decision tree
1. dim← ChooseAttribute(D)
2. {D1, D2, . . . , Dh} ← partition(D, dim)
3. make each Dj a child node of dim
4. for each Dj do
5. if all class values in Dj are cs then
6. label Dj with cs
7. else if |A| = 1 then
8. label Dj with the majority of C
9. else
10. ID3(A− {Aj}, Dj)

The algorithm works as follows. Each time one attribute
is chosen to be the root of the tree, and the choice is based
on entropy heuristic: the attribute that has the most gain in
entropy will be chosen as the root (step 1). The dataset D is
then split into subsets based on the distinct values of the root
attribute (step 2), and they are made children of the root (step
3). Each subset is then considered in turn: if all the tuples in
it belong to the same class, then we label it with the class
value; if dim is the last attribute, then we label the subset
with the majority class value in the group. Otherwise, the ID3



algorithm is recursively called with the subset and reduced
attribute list as input.

IV. PRIVACY-ENABLED DECISION TREE LEARNING

In this section we introduce our modified ID3 algorithm
to work with data sanitized by the Mondrian algorithm with
set-based generalization. As some of the original values have
been replaced by generalized values by Mondrian in order to
satisfy k-anonymity, we need to consider how such generalized
values are dealt with in two key steps of the ID3 algorithm: the
calculation of entropy when selecting the root of the tree and
the partition of D into subsets. That is, we need to consider
how steps 1 and 2 of the ID3 algorithm given in Algorithm 2
may be modified.

A. Calculating Entropy

In our sanitized data, a generalized value can represent
a number of possible values. Therefore, it is necessary to
consider how this can be taken into account and result in
an accurate interpretation of the entropy for a given attribute.
There are three possible ways of doing so, and we will explain
them using Table III as an example.

TABLE III
EXAMPLE FOR ENTROPY CALCULATION

Sex Salary
(M, F) ≤ 50

F ≤ 50
F > 50
F ≤ 50
M > 50

(F, M) ≤ 50
F ≤ 50

(M, F) > 50

One possible solution is to consider a generalized value such
as (M, F) as representing a value in its own right. That is, in
a tuple containing this value, we interpret it as an individual
who is either male or female, but we are not certain if it is
male or female. Each time it appears in the dataset, instead of
attempting to determine whether a particular instance actually
possesses the M or F value, it is simply left as (M, F). This
way, the entropy value of the Sex attribute can be calculated
as normal, and we simply have three possible values rather
than two for the Sex attribute.

Using this method to compute the entropy for the Sex
attribute given in Table III, we obtain the following:

E(SexF ) = −1

4
log2

1

4
− 3

4
log2

3

4
= 0.811

E(SexM ) = −1

1
log2

1

1
− 0

1
log2

0

1
= 0

E(Sex(M,F )) = −1

3
log2

1

3
− 2

3
log2

2

3
= 0.918

Note that with this method, a new value label, (M, F), would
be introduced into the decision tree, as the Sex attribute would
have a three-way split. This would pose no problem if unseen
cases to be classified are also generalized in the same way,
but the new label must be carefully interpreted when using
the tree to classify cases that are not generalized.

Another method for calculating an attribute’s entropy is to
convert generalized values into original values a priori. For
example, (M, F) could be mapped randomly to either M or
F. Once the generalized dataset has been converted this way,
entropy can then be calculated as normal. While this allows
entropy calculation to be carried out normally and does not
suffer the classification problem that the first method has, it
also has a problem. When M and F are generalized into (M, F),
the distribution of these values within the equivalence group is
lost. Mapping a generalized value back to one of the original
values can essentially be seen as a process of reconstructing
the original data from its generalized version, and without
some relevant statistics available [6], this approach can attract
significant error in the calculation of entropy.

In this paper we propose to treat each generalized value as
equally likely to represent any of its members, and factor this
likelihood into entropy calculation. We consider a generalized
value such as (M, F) in Table III to indicate that there is an
equal probability of 0.5 for it to be M or F. In general, if
a generalized value contains r values, then we consider that
there is a probability of 1

r to be one of the original values
contained in it. When totalling the number of each value in
the dataset, we have 5.5 for F and 2.5 for M, and the original
size of the dataset is preserved.

Using this method to compute the entropy for the Sex
attribute given in Table III, we obtain the following:

E(SexF ) = −1.5

5.5
log2

1.5

5.5
− 4

5.5
log2

4

5.5
= 0.845

E(SexM ) = −1.5

2.5
log2

1.5

2.5
− 1

2.5
log2

1

2.5
= 0.971

As can be seen, with this approach we basically distribute
the amount of uncertainty equally towards the certain cases.
This has two advantages. First, it is unlikely that such a
mapping will cause some significant bias as the random
mapping method we described above may produce. Second, as
the uncertainty is equally distributed, the overall entropy of a
particular attribute will still be determined by the distribution
of the values that are not generalized. Thus, the entropy
calculation, and hence the choice of root node, will favour
those attributes that have incurred less generalizations. This
is intuitively welcome as using such attributes will lead to a
decision tree that is more likely to resemble the tree that would
be learnt from the original data.

B. Converting Generalized Values

Once a root attribute is selected, we need to use its values
to partition the dataset into subsets, and then continue to build
the decision tree with these subsets. As we keep generalized



values in entropy calculation but do not wish to label branches
of the tree with generalized values, we need to consider how
to map a generalized value to one of its original values when
we create a decision tree. There are alternative solutions:
• Random Selection. Out of the set of possible values, we

can select one value at random to become the instance’s
value in this attribute and use it to create the tree. This
would mean that each time the algorithm is run, different
values could be assigned to each instance, resulting in
varied final decision trees. Note that this randomness is
different from mapping a generalized value to a original
value randomly before entropy calculation: this mapping
will affect mainly how tuples in the dataset may be
partitioned, rather than the choice of attributes to be the
root of a subtree.

• Highest Frequency. Out of a generalized set of possible
values, we can select the value that occurs the most
throughout the dataset to become the instance’s value.
While this method is plausible, it could result in some
values that would never get selected, and as such their
representation in the decision tree could be skewed.

• Replicate Original Distribution. We can calculate the
distribution of the values of a generalized value in the
original dataset and replicate this during the assignment
of instance’s value. For example, a distribution of 45%
males and 55% females in the original dataset would
be maintained when generalized values are mapped to
original values. This method would require the data
sanitization process to release some relevant statistics.
Furthermore, there would be no guarantee that general-
ized values are mapped back to the correct instances in
the original dataset, even though the overall distribution
is maintained.

In this paper we use the random selection method to map
a generalized value into a single value to be an instance’s
value when building a tree. Note that all these methods
will have an element of randomness in attempting to map
a generalized value to its original value, and this level of
randomness or uncertainty should be expected as otherwise
our data sanitization method would not have done its job.
This could result in a slightly different decision tree being
created each time when the algorithm is run on a given dataset.
However, given that our objective is to study how much
degradation of classification accuracy may result from set-
based generalization, a basic method such as random selection
is useful as it would serve as a baseline study for future work
to be built upon. That is, any improvement on the mapping
process will only improve the quality of the decision tree learnt
from the sanitized data.

V. EXPERIMENTAL RESULTS

In this section we report some preliminary experimental
results. Our general approach is shown in Fig. 1. We begin
with a dataset to be classified. Using this dataset as training
data, a decision tree will be derived. The dataset will then be
anonymized using a chosen privacy preservation technique to

produce its sanitized form. The sanitized dataset will then be
used as training data to derive a second decision tree. Both
decision trees will be used to classify the same test data in
order to compare their classification accuracy.

Fig. 1. Experiment Approach

For decision tree derivation, we implemented our ID3 algo-
rithm based on a version given in [11] and the implementation
of the Mondrian algorithm followed the one given in [8].
Experiments were performed on Adult [10], a real-world
dataset which is widely used in privacy protection studies. We
compare classification accuracy of the decision trees derived
from the original dataset and its anonymized version.

The Adult dataset contains 6 numerical and 8 categorical
attributes. Similar to other studies, we removed all the in-
stances with missing values, resulting in 30,162 training cases
and 15,060 test cases. The dataset was anonymized using
the Mondrian algorithm with different numbers of QIDs and
varying values of k, but only categorical attributes were used in
deriving decision trees due to the nature of the ID3 algorithm.
For each setting, we ran our experiments three times and
average their classification accuracy. This is necessary because
our modified ID3 algorithm is not deterministic in dealing with
generalized values, and can generate slightly different decision
trees in different runs.

A. Effect of Varying k

We first tested our modified ID3 algorithm by varying
the values of k from 4 to 64 while fixing the QIDs to
{Age, Education, Hours-Per-Week, Native-Country, Capital-
Gain, Work-Class} which is the same setting used by Inan
et al. [6] in their study. We ran our ID3 algorithm on the
original dataset to derive a decision tree and used this decision
tree to classify the test instances to obtain an accuracy of
80.96%. This is then used as a benchmark to compare to all
other tests to see how classification accuracy was affected by
anonymization. The results are shown in Figure 2.

As can be seen, an increase in the value of k led to
a decrease in classification accuracy. This is expected as a
lower k will require less generalization to be made to the
data. However, it is worth observing that when k = 4, the
accuracy is only decreased by 0.09% when compared to the
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Fig. 2. Classification accuracy with varying k

classification accuracy using the original dataset, and when
k = 64, a decrease of accuracy was only at 1.68%. The
maximum variation in classification accuracy in different runs
is only 0.56, so the fact that our solution involves an element of
randomness and can generate slightly different trees each time
when it is run on a given set of data does not seems to impact
our classification accuracy. These are significant as k = 5 is
often recommended in practice for k-anonymizing a set of data
[2], so a good performance at k = 4 is important. On the other
hand, setting k = 64 for the size of Adult dataset is equivalent
to a case where a smaller k is used for a smaller dataset, that
is, a case where substantial generalization on original data
is required due to the size and k ratio. As our experiments
show, in all the cases we are able to derive decisions trees
from anonymized data with no more than 2% degradation in
classification accuracy.

We have also observed from experiments that due to the
heuristics used by the Mondrian algorithm in sanitizing the
data, values are usually generalized only with one or two other
values. As such, the likelihood that a generalized value will
be mapped back to its original value during the creation of
the decision tree is relatively high. Therefore, the semantic
relationships between the attributes can be preserved, leading
to a classification accuracy which is similar to the accuracy
obtained through the use of the original dataset.

B. Effect of Varying QIDs

We then tested our modified ID3 algorithm by varying the
number of QIDs while fixing the value of k at 64. In varying
the QIDs, we start with the set of 6 QIDs used in the varying
k tests. We then added one extra attribute as QID at a time,
starting with a categorical one that has most distinct values
and ending with the numerical attributes. The Fnlwgt and
Education-num attributes were not used in this test because
Fnlwgt is not useful from the classification point of view and
Education-num carries similar information to the Education
attribute. Therefore, the maximum number of QIDs used in
this investigation was 12.

By selecting the QIDs this way, we hope to test the effect
of using more QIDs better. This is because with more distinct
values, it is likely that more generalization will be exercised
during data sanitization and there will be a lesser chance of
generalized value being mapped back to their original value
during the creation of a decision tree. Thus, selecting QIDs
this way will test how the resultant classification accuracy will
be affected, even when the least number of QIDs is used. The
results are shown in Figure 3.
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Fig. 3. Classification accuracy with varying QIDs

As can be seen, as the number of QIDs used in the
anonymization process increases, the classification accuracy
decreases. This again is expected since the more QIDs that are
specified, the rarer the value combinations become across these
attributes. This means that the combinations of values appear
less frequently, requiring more generalization to be carried out
in order to enforce k-anonymity. This in turn leads to more
instances to have generalized values and more values to be
included in a generalized value. Both of these result in a lesser
likelihood that in the creation of a decision tree, a generalized
value will be mapped back to the original one, hence lowering
down classification accuracy since the semantic relationships
between the attribute values may have been distorted. Again,
the maximum variation in classification accuracy in different
runs was relatively small at 2.16.

To understand the amount of classification accuracy decreas-
ing with each addition of a new QID, we analyzed the decision
trees produced from the anonymized datasets from different
runs. It was observed that with the addition of each new QID,
the decision tree tends to favour an attribute that has not been
selected as QID, as the root of the tree. Table IV shows the
number of QIDs used for each anonymized dataset along with
the attribute that was added to the QID list each time and the
attribute that was selected as the root of the decision tree.

The first six QIDs shows that the best attribute for the
root is Relationship. This continued with Occupation and
Marital Status are added as QIDs. The values of Relationship
have still not been generalized at this point, though the
classification accuracy decreased when more QIDs were used.
The Relationship attribute was then generalized when it was



TABLE IV
ADDITION OF NEW QID

Number of QIDs New QID Root
6 Relationship
7 Occupation Relationship
8 Marital Status Relationship
9 Relationship Sex
10 Race Sex
11 Sex Native Country
12 Capital Loss Native Country

used as a QID too. At this point, the decision tree no longer
used Relationship as its root and instead opted for Sex. The
same pattern persisted with the remaining QIDs being added.
i.e Sex continues to be selected as the root of the decision tree
until it is added as QID, and Native Country is selected when
it is not used as a QID. This confirmed our intuition that the
way we deal with generalized values in entropy calculation
should favour attributes that are not generalized. Due to this,
the decision tree is able to maintain reasonably satisfactory
classification accuracy despite an increasing number of QIDs
used.

From looking at the chart in Figure 3, it appears that there
are not big differences in classification accuracy between some
consecutive numbers of QIDs. For example, the difference
between using 7 and 8 QIDs is a decrease in classification
accuracy of only 0.14%. However, it does look that including
more attributes as QIDs may not result in uniform degradation
of classification accuracy, suggesting that the quality of a
decision tree learnt from sanitized data is also related to the
characteristics of the QIDs that were added.

VI. CONCLUSIONS

The majority of the existing work on data privacy protection
focus on developing privacy models and data sanitization
methods. Relatively little has been done to consider how data
analysis techniques may be adapted to work with sanitized
data. In this paper we have reported a study on how a simple
decision tree learning algorithm may be designed to work with
set-generalized data that satisfies k-anonymity. Our results
show that good classifiers could be build even with some
simple adaptation. Thus, we believe that current solutions on
data sanitization is useful and sanitized data can reasonably
be expected to support data analysis tasks well.

Our work is at a preliminary stage and much more could be
done. Our entropy calculation and generalized data mapping
are relatively basic, and more advanced methods can help
improve the accuracy of learnt classifiers. There is also an
opportunity to study how other data analysis techniques may
be adapted to work anonymized data.
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