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The water-gas shift (WGS) reaction (CO+H2O=H2+CO2) is an essential process for hydrogen generation and CO removal 
in various energy-related chemical operations. This equilibrium-limited reaction is favored at a low working temperature. 
Potential application in fuel cells also requires a WGS catalyst to be highly active, stable and energy-efficient and match 
the working temperature of on-site hydrogen generation and consumption units. We synthesized Au layered clusters on 
an α-MoC substrate to create an interfacial catalyst system for the ultra-low-temperature WGS reaction. Water was 
activated over α-MoC at 303 Kelvin (K), while CO adsorbed on adjacent Au sites is apt to react with surface hydroxyl 
groups formed from water splitting, leading to a high WGS activity at low-temperatures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Low-temperature efficient catalysts for the WGS reaction, 

especially those operating under 423 K (1–7), are of interest for 

applications in fuel cells, especially those use H2 generated by 

hydrocarbon reforming processes that are contaminated with CO, 

which deactivates the catalysts. For the heterogeneous catalysis, 

besides Cu based catalysts which display low activity at low 

temperature, (8, 9) Pt group noble metals and Au supported on 

reducible metal oxides, like ceria (1) or FeOx (10) which contain 

oxygen-vacancies, are commonly used. Flytzani-Stephanopoulos 

and co-workers demonstrated that noble metal catalysts dispersed 

on alkali promoted inert supports can also be active for WGS, 

making a reducible oxide support no longer 

 
a requirement (4, 6). The alkali ion-associated surface -OH 

groups are reactive toward CO in the presence of atomically 

dispersed platinum or gold, giving the catalyst superior  
metal atom efficiency in the WGS reaction. Metal carbide, (e.g. 

hexagonal closest packing (hcp) β-Mo2C) supported noble metal 

catalysts provide similar functionalities and are more active for 

the reaction at low temperature (7, 11, 12). However, none of 

these systems displays an activity higher than 0.1 

molCO/(molmetal·s) between 393 and 423 K (Table 1).  
In order to achieve high WGS activity at low tempera-ture, 

we searched for catalysts that could dissociate water 

 
efficiently and reform the generated oxygen-containing spe-cies 

(reaction of surface oxygen or hydroxyl with CO*) at low 

temperature. We report that Au confined over face cen-tered 

cubic (fcc) structured α-MoC is at least one order of magnitude 

more active than previous reports for the WGS reaction below 

423 K. The α-MoC substrate facilitates epi-taxially-grown atomic 

Au layers with altered electronic structure for favorable bonding 

with CO. Its synergy with adjacent Mo sites in α-MoC can 

effectively activate water at low temperature. 

 
Gold supported over pure phase α-MoC catalysts were 

synthesized by a precipitation method followed by sequen-tial 

temperature programmed ammonization and carburiza-tion. For 

comparative purposes, α-MoC, 2wt%Au/β-Mo2C (13, 14), 

2wt%Au/SiO2 (15) and 2wt%Au/CeO2 (1) catalysts were also 

prepared. The high dispersion of Au for the 2wt%Au/α-MoC 

catalyst was evidenced by the lack of x-ray diffraction (XRD) 

peaks associated with Au crystallites. Operando XRD studies 

(1% CO-3% H2O-He, 10 ml/min) revealed that the bulk structure 

of the 2%Au/α-MoC catalyst remained intact up to 523 K, 

beyond which the α-MoC was gradually oxi-dized by water (Fig. 

1A). Ex-situ XRD experiments (10.5%CO-21%H2O-20%N2-Ar, 

GHSV=180,000/h) confirmed that at higher water partial 

pressure, the bulk structure of 

 

 

 
 



 
 
 
catalysts is stable up to 473 K. Neither the oxidation of α-MoC 

nor the aggregation of Au was observed at tempera-tures up to 

473 K (fig. S1). 

The  WGS  activity  was  evaluated  under  product-free  
(10.5%CO-21%H2O-20%N2-Ar) and full reformate gas feeds 

(11%CO-26%H2O-26%H2-7%CO2-N2). In the product-free gas 

(GSVH=180,000 hours
−1

), α-MoC shows very low CO conver-

sion (3.4%) at 393 K (Fig. 1B), and none of the reference cat-

alysts achieved > 5% CO conversion < 423 K. However, for the 

2%Au/α-MoC catalyst, CO conversion was > 95% at 393 K and 

reaching 98% at only 423 K. For reaction tempera-tures to 523 K 

and beyond, CO conversion dropped, which may result from the 

thermodynamic limitation as well as the gradual transformation 

of α-MoC to molybdenum oxide, as confirmed by the operando 

XRD results (Fig. 1A and fig. S2). The Au normalized activity of 

the 2%Au/α-MoC catalyst in product-free gas was 0.012, 0.13, 

1.05, 1.66 and 3.19 molCO/(molAu*s) at 313, 353, 393, 423 and 

473 K, respectively, this high activity at low temperatures 

compares favorably with other reported WGS catalysts (Table 1, 

fig. S3, CO con-version below 15%). Due to the limitation of the 

water satu-ration vapor pressure, at low temperature the 

composition of reactant gas was adjusted). We determined that 

2% is the optimal Au loading for the Au/α-MoC catalyst (fig. 

S4).  
In full reformate gas feed under similar space velocity, the 

activity dropped slightly (62% activity at 393 K) because of 

product (H2 and CO2) inhibition (Fig. 1D). However, the activity 

of the 2%Au/α-MoC catalyst remained as high as 0.62 s
−1

 and 

2.02 s
−1

 at 393 and 473 K, respectively. The ap-parent barriers 

Eapp of α-MoC itself is actually low Eapp value of 58 ± 10 kJ/mol, 

and even lower for the 2%Au/α-MoC cata-lyst, 22 ± 1 kJ/mol. 

Thus, the addition of Au greatly en-hanced the low-temperature 

reactivity of a good WGS catalyst (Fig. 1E). Its exceptional 

activity and high equilibri-um CO conversion at low temperature 

can be exploited sim-ultaneously (fig. S5), and the catalyst shows 

an excellent total turnover number (TTN), reaching up to 385400 

molCO/molAu in a single-run reaction (fig. S6 and table S1). 

 

We designed a two-step temperature programmed sur-face 

reaction (TPSR) experiment to explore the reaction route. After 

pre-activation of the catalysts, 2% H2O/Ar (100 ml/min, 10 min) 

was introduced into the reactor at 303 K. Production of H2 was 

immediately observed on both 2%Au/α-MoC and α-MoC 

catalysts, indicating the presence of a low-temperature water 

dissociation center on α-MoC that led to the formation of H2 and 

surface OH species (Fig. 2, A and B; see also figs. S7 and S8). In 

contrast, no H2 pro-duction was observed on 2%Au/SiO2 or 

2%Au/β-Mo2C cata-lysts (Fig. 2C and fig. S9). After purging 

with Ar (100 ml/min), the system was then switched to 2% 

CO/Ar (100 ml/min) at 303 K, and kept at that temperature for 10 

min and then increased to 523 K at 5 K/min. For the Au/SiO2 

 
 

 

catalyst, only water desorption was observed at ~ 403 K. In sharp 

contrast, CO2 and H2 were detected simultaneously on the 

2%Au/α-MoC catalyst at around 308 K and their intensi-ties 

reached the maxima at 367 K. Thus, the reaction of CO with 

surface OH could occur at very low temperature (308  
K) to form CO2 and additional H2. The reforming reaction can 

also happen on α-MoC catalyst, but initiating at a much higher 

initialing temperature (347 K).  
The co-existence of a low-temperature water dissociation 

center on α-MoC and the low-temperature reforming center over 

the 2% Au/α-MoC catalyst is the key for the extraordi-nary 

activity of this catalyst. The Au L3 edge extended x-ray 

absorption fine structure (EXAFS) fitting (table S2 and fig. S10) 

shows a low Au-Au first shell coordination number(CN) of 6.9 

indicates that the average size of Au species is ~ 1.5 nm for a 

hemispherical morphology (16). The Au-Mo CN of 1.6 is 

particularly striking given that Au nanoparticles (NPs) tend to 

undergo sintering because of the low Tammann temperature (668 

K) of bulk Au. (17, 18) Given that this sample was activated at 

973 K for more than 2 hours, a  
strong metal-support interaction must exist between Au and α-

MoC. X-ray photoelectron spectroscopy (XPS) (fig. S11) 

revealed that the Au 4f binding energy shifted 0.6 eV to higher 

energy with respect to bulk gold (19), indicating that the 

electronic structure of the Au species is perturbed by the 

substrate. The reaction order of CO of -0.16 (Fig. 1D), also 

indicated that CO was already relatively strongly adsorbed on the 

electronically modified Au surface.  
Aberration-corrected scanning transmission electron mi-

croscopy (STEM) analysis on the 2%Au/α-MoC catalyst showed 

that the catalyst supports were porous assemblies of small α-MoC 

NPs (3 to 20 nm in diameter, fig. S12). High resolution STEM Z-

contrast imaging (Fig. 2, D and E) re-vealed two types of Au 

species on the surface of α-MoC, small Au layered clusters 

epitaxially grown on the α-MoC support and atomically dispersed 

Au. The epitaxial Au clus-ters had an average diameter of 1 to2 

nm and thickness of 2 to 4 atomic layers (<1 nm), as measured 

from edge-on clus-ters occasionally found in profile view (Fig. 

2E and fig. S13). Detailed crystal structure analysis (fig. S12, C 

and D) also  
showed that these epitaxial Au clusters strongly aligned with the 

(111) planes of the α-MoC support, with some ex-posed (200) 

facets. There were no larger Au NPs present in this sample (fig. 

S14). No obvious structural difference was observed between the 

fresh and the used catalyst samples (Fig. 2F), and both types of 

Au species were retained in the tested sample, which is also 

consistent with the relatively good stability of the catalyst noted 

in the catalytic reaction.  
We used NaCN solution to selectively leach the layered Au 

clusters from the 2% Au/α-MoC catalyst (1, 20). The Au loading 

decreased to around 0.9 wt%, leaving predominant-ly the 

atomically dispersed Au atoms, which was confirmed 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



 
 

 

by both STEM and XAFS results (Fig. 2G; fig. S12, E to G; and 

table S2). The Au normalized WGS activity of 0.9% Au/α-MoC 

(NaCN) at 393 and 423 K decreased to around 1/11 and 1/6 of 

their original values respectively, but was still higher than that of 

NaCN-leached α-MoC catalyst (with acti-vation barrier similar to 

that of fresh α-MoC, Fig. 1E). This result indicated that 

atomically dispersed Au species were indeed catalytically active 

(1), but the catalytic efficacy of the layered Au clusters on α-

MoC support for low tempera-ture WGS was even higher than 

the atomically dispersed Au. Furthermore, the Eapp increased to 

41 kJ/mol after NaCN leaching (Fig. 1E), suggesting some 

degree blocking of the low-temperature reaction route after the 

removal of layered Au clusters. Thus, we attribute the low-

temperature WGS activity mainly to the epitaxial Au clusters 

decorating the α-MoC support. 

 

We carried out DFT calculations to investigate the WGS 

reaction path on the Au/α-MoC catalyst. Three catalyst models 

(see fig. S15) of Au (111), monolayer Au/α-MoC (111) and 

cluster Au15/α-MoC (111) were constructed to represent the 

different sites on Au/α-MoC, in which Au (111) and mon-olayer 

Au/α-MoC (111) simulate large Au NPs and electronic property 

modified Au NPs, respectively. Au15/α-MoC (111) represents the 

interface model of our atomic-layered Au cluster over α-MoC 

(111). Similar to experimental observa-tions, the Au cluster in 

Au15/α-MoC has a layered structure, with (111) and (200) type 

exposed facets.  
As shown in fig. S16, H2O is hard to dissociate on Au  

(111)and monolayer Au/α-MoC (111) thermodynamically and 

kinetically, with barriers of 1.91 and 1.66 eV, and the reac-tions 

are endothermic by 1.57 and 1.15 eV, respectively. In  
contrast, when we investigated the first step of WGS, name-ly 

water dissociation, on Au15/α-MoC (111), we found that at lower 

coverage (Fig. 3A), two H2O molecules could be easily  
dissociated and form two H atoms and two OH species with the 

effective barrier of 0.77 eV (CO + 2H2O → CO + 2OH + 2H), and 

the two OH can immediately react (and without barrier), forming 

a surface O atom (CO + 2OH + 2H → CO + H2O + O + 2H, it is 

exothermic by 0.38 eV). These results indicate that some surface 

domains of α-MoC could be oxi-dized by water during the 

reaction, which has been con-  
firmed by XPS and 

18
O nuclear magnetic resonance experiments 

(figs. S7 and S8). After the surface was partially decorated with 
oxygen (Fig. 3B), the calculations found that surface O atoms 
could further promote water dissociation.  
The successive O-assisted water dissociation (CO + 3O + H2O → 

CO + 2O + 2OH) on the boundary of Au15 and α-MoC 

(111) had a much lower barrier of 0.22 eV, indicating that the 

first O-H bond of water could be easily broken at low 

temperature by this bifunctional catalyst.  
The formed surface OH species on the Mo site was apt to 

react with CO adsorbed on the adjacent Au surface, which 

 
 

 

has the right geometry (triangular) to enable a low reaction 

barrier. Indeed, at low CO coverage (Fig. 3A), the effective 

barrier for the reforming of CO on Au and OH on α-MoC  
(111)is 0.72 eV, including a migration barrier of 0.22 eV and the 

reaction barrier of 0.50 eV. At high CO coverage (Fig. 3C), the 

reforming barrier was even lower, i.e. 0.52 eV,  
demonstrating that the reaction between adsorbed CO and surface 

OH species on the peripheral interface of Au and α-MoC 

(CO+OH=CO2+ ½H2) was apt to proceed. Although the 

reforming process was facile, it still had a higher barrier  
than the first step of the WGS reaction, i.e., water dissocia-tion 

on partially oxidized α-MoC. Thus, the rate-determining step of 

the WGS process over Au15/α-MoC is the reforming process, 

which is in good agreement with our TPSR observa-  
tions (Fig. 2). The interfacial nature and optimum bonding of this 

α-MoC confined Au nanostructure that confers the catalyst with 

outstanding WGS reactivity at low tempera-ture. 
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Table 1. Comparison of the activities over the representative catalytic systems for low-temperature WGS 

reaction. 

 

   
Mass specific Metal normalized 

Apparent  
 Temp  activation  

 Gas feed composition activity activity Ref  (K) energy   [μmolCO/(gcat∙s)]    [molCO/(molmetal∙s)]  

   (kJ/mol)  

      

Reducible oxide supports      
       

Au/CeO2 523 11%CO-26%H2O-26%H2-7%CO2-He 4.8 0.13 37 (1) 

Pt/CeO2 523 11%CO-26%H2O-26%H2-7%CO2-He 22 0.17 75 (1) 

Ir1/FeOx 573 2%CO-10%H2O-He 1.2 2.32 50 (21) 

Au/FeOx 598 11%CO-26%H2O-26%H2-7%CO2-He 11 0.31 49 (22) 
     

Alkali promoted inert supports     
       

Au-Na/MCM41 423 11%CO-26%H2O-26%H2-7%CO2-He 0.8 0.067 44 (5) 

Pt-Na/SiO2 523 11%CO-26%H2O-26%H2-7%CO2-He 12 0.24 70 (4) 

Pt-Na/CNT 473 2%CO-10%H2O-He 1.25 0.024 70 (23)  
Molybdenum carbide supports (β-Mo2C)   

 Pt/Mo2C 513 11%CO-21%H2O-43%H2-6%CO2-N2 221 1.42 53 (11) 
 Pt/Mo2C 393 7%CO-22%H2O-37%H2-8.5%CO2-Ar 1.8 0.023 48 (12) 
 Au/Mo2C 393 7%CO-22%H2O-37%H2-8.5%CO2-Ar 1.6 0.021 44 (12) 
       

 Homogeneous catalysts      
        

 Ru3(CO)12 373 1 bar CO/NaOH solution 0.12 2.6 E-5 - (24) 
        

 Our results       
        

  313 3%CO-6%H2O-20%N2-Ar 1.22 0.012   
  

333 
     

  
5%CO-10%H2O-20%N2-Ar 

5.91 0.06   
  

353 13.06 0.13 
  

 

2% Au/α-MoC 
   

 

393 
    

-   103 1.05  
    

  423 10.5%CO-21%H2O-20%N2-Ar 167 1.66 22†  

  473  325 3.19   
        

  333 
5%CO-10%H2O-10%H2-3%CO2-N2 

2.39 0.02   
  

353 9.20 0.09 
  

     
 

2% Au/α-MoC 393 

    

-  
11%CO-26%H2O-26%H2-7%CO2-N2 

53 0.62  
  423 106 1.05 27  

  473  213 2.02   
        

 

0.9% Au/α-MoC 
393  9.07 0.09   

 423 10.5%CO-21%H2O-20%N2-Ar 26.6 0.26 41 - 
 (NaCN) 

473 
 

73.1 0.72 
  

     
        

  393  2.06 0.02   

 2%Au/β-Mo2C 423 11%CO-26%H2O-26%H2-7%CO2-N2 4.29 0.04 38 - 
  473  14.4 0.14   
        

  393  2.05    

 α-MoC 423 11%CO-26%H2O-26%H2-7%CO2-N2 8.57  64 - 
  473  56.7    
        

 2% Au/SiO2 673 10.5%CO-21%H2O-20%N2-Ar 0.24 2.4 E-3   
        

 2% Au/CeO2 423 11%CO-26%H2O-26%H2-7%CO2-N2 1.1 0.01   
        

 

 
*The operating pressure of the catalysts listed is 1 bar. †The activation energy was also determined by another method, see fig. S17. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 
Fig. 1. Catalytic properties and structural characterization of 2% Au/α-MoC catalyst. 

 
(A) In-situ XRD (λ=0.3196 Å) of 2% Au/α-MoC catalyst under WGS reaction conditions at 
various temperatures. (B) CO conversion on different catalysts at various temperatures. 
(Reaction condition: 10.5% CO, 21% H2O, 20% N2 in Ar; GHSV: 180,000 hours−1). (C) The  
activity of different catalysts (unit molCO/(molmetal.s), (measured at CO conversion below 15% 
in 11% CO-26% H2O-26% H2-7% CO2-30% N2). (D) Kinetic orders of the reactants and  
products. (E) Apparent activation energy Eapp of various catalysts in 10.5% CO-21% H2O-20% 
N2-Ar balance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. Mechanism study and electron microscopy characterization. Water adsorption (at 303 K) followed by 
CO-TPSR on 2% Au/α-MoC (A), α-MoC (B) and 2% Au/SiO2 (C). Signals of H2 (m/z=2), H2O (m/z=18), CO 
(m/z=28) and CO2 (m/z=44) were detected. (D and E) High-resolution HAADF-STEM images of 2% Au/α-MoC 
fresh catalyst, with single atoms of Au marked in blue circles and Au layered-structures highlighted in yellow. The 
Au clusters were further identified by elemental analysis (figs. S18 and S19). (F) HAADF-STEM image of 2% 
Au/α-MoC catalyst after reaction in which sample still contains both single-atom Au and Au layered-clusters. (G) 
HAADF-STEM image of the NaCN leached 2% Au/α-MoC catalyst, showing predominantly single atom Au, most 
of which overlap with Mo sites in the support lattice. Note that the very bright features in this image are caused by 
overlapping MoC particles, as confirmed by elemental mapping (figs. S18 and S19). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The reaction paths for the water-gas shift reaction on Au15/α-
MoC(111). (A) H2O dissociation and CO reforming at lower coverage, (B) 
O-assisted H2O dissociation on the boundary oxidized by 3 O atoms and 
(C) CO reforming at high coverage. The energies of gaseous molecules 
have included the zero-point energy (ZPE) and entropy correction at 423 
K. Au, Mo, C, O and H atoms are shown in gold, cyan, gray, red and 
white, respectively; while in order to make a distinction for the C atom 
from CO, it is represented by dark gray. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 


