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Abstract

Several platforms are currently being explored for simulating physical systems, whose complexity

increases faster than polynomially with the number of particles or degrees of freedom in the system.

Many of these computationally intractable problems can be mapped into classical spin models,

such as the Ising and the XY models and be simulated by a suitable physical system. Here, we

investigate the potential of polariton graphs as an efficient simulator for finding the global minimum

of the classical XY Hamiltonian. By imprinting polariton condensate lattices of bespoke geometries

we show that we can simulate a large variety of systems undergoing the U(1) symmetry breaking

transitions. We realise various magnetic phases, such as ferromagnetic, anti-ferromagnetic, and

frustrated spin configurations on a linear Ising chain, the unit cells of square and triangular lattices,

a disordered graph, and demonstrate the potential for size scalability on an extended square lattice

of 45 coherently coupled polariton condensates. Our results provide a route to study unconventional

superfluids, spin-liquids, Berezinskii-Kosterlitz-Thouless phase transition, and classical magnetism

among the many systems that are described by the XY Hamiltonian.
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Social and natural sciences are dominated by systems with many interacting degrees of

freedom that operate with a large number of parameters that characterize the state of the

system and grow exponentially with system size. Protein folding [1], behaviour of financial

markets [2], dynamics of neural networks [3], behaviour of multi-agent systems [4], devising

new chemical materials [5], finding the ground state of spin liquids [6] – the list of hard

computational problems that modern classical computers cannot tackle for sufficiently large

system sizes is large and growing. Recently, it was shown that a large variety of such

computationally intractable systems can be mapped into certain universal classical spin

models that are characterised by the given degrees of freedom, “spins”, by their interactions,

“couplings”, and by the associated cost function, “Hamiltonian” [7]. Depending on the sign,

geometry and symmetries of the couplings the problem of finding the global minimum of

the associated cost function can be in class P, NP or NP-hard [8, 9]. Finding the global

minimum of some classical spin models is known to be NP-complete [10], which means

every other problem in NP can be efficiently transformed into it. As a result there has

been much interest recently in the possibility of devising a physical system, an analogue

simulator, to solve such spin models – n-vector models of classical unit vector spins si with

the Hamiltonian H = −
∑

ij Jijsi · sj, where Jij are real numbers specifying the coupling

strengths between the sites labelled i and j [11]. The Ising model corresponds to the n = 1

case of the n-vector model, with si ∈ {−1, 1}. For n = 2 the n-vector Hamiltonian becomes

HXY = −
∑

ij Jij cos(θi − θj), where we have parameterized unit planar vectors using the

polar coordinates si = (cos θi, sin θi). The mapping of the XY model into a universal spin

model has been rigorously established [7]. Replacing the unit vectors in the XY Hamiltonian

with complex numbers zj = cos θj + i sin θj leads to formulation as the continuous complex

constant modulus quadratic optimization problem [12, 13], that is known to be NP-hard in

general. The interest in simulating the XY model also comes from the property ofHXY to be

invariant under rotation of all spins by the same angle θi → θi +φ, therefore, the XY model

is the simplest model that undergoes the U(1) symmetry-breaking transition. As such, it

is used to emulate other systems featuring a similar broken-symmetry transition whether

or not the system is quantum or classical such as the Berezinskii-Kosterlitz-Thouless phase

transition and the emergence of a topological order [14, 15], unconventional superfluids and

spin-liquid phases.

In this Article, we propose and experimentally demonstrate the use of polariton graphs
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as a scheme for finding the global minimum of the classical XY Hamiltonian. Polaritons are

the mixed light-matter quasi-particles that are formed in the strong exciton-photon coupling

regime in semiconductor microcavities [16]. Under non-resonant optical excitation, rapid re-

laxation of carriers and bosonic stimulation result in the formation of a non-equilibrium

polariton condensate characterized by a single many-body wave-function [17]. Polariton

condensates can be imprinted into any two-dimensional graph by spatial modulation of the

pumping source, offering straightforward scalability. Optically injected polariton conden-

sates can potentially be imprinted in multi-site configurations with arbitrary polarisation

and density profiles offering unprecedented control of the interactions between sites. Due to

finite cavity lifetimes, polaritons decay in the form of photons that carry all the information

of the corresponding polariton state (energy, momentum, spin and phase) enabling in-situ

characterisation of static polariton graphs.

In a graph of two or more coupled polariton vertices, with increasing excitation den-

sity, polariton condensation occurs at the state with the phase configuration that carries the

highest polariton occupation [18]. This is due to the bosonic character of the condensate for-

mation: the probability of a particle to relax in a particular state grows with the population

of that state. At condensation threshold a macroscopic coherent state is formed described

by the wavefunction Ψg. To the leading order, Ψg can be written as a superposition of the

wavefunctions Ψj at the sites xj with phases θj; that is Ψg ≈
∑

j Ψj exp[iθj]. Below we will

show that the system of an arbitrary polariton graph condenses into the global minimum

of the XY Hamiltonian: HXY = −
∑
Jij cos θij, where θij is the phase difference between

two sites, θij = θi − θj, and Jij is the corresponding coupling strength; the latter depends

on the density of the sites i and j, the distance between them, dij = |ri − rj|, and the

outflow condensate wavenumber kc, which under non-resonant optical excitation depends

on the pumping intensity and profile. The bottom-up approach for the search of the global

minimum of the XY Hamiltonian is achievable within the linewidth of the corresponding

state. This is an advantage over classical or quantum annealing techniques, where the global

ground state is reached through transitions over metastable excited states (local minima),

with an increase of the cost of the search with the size of the system.

Modelling the phase coupling: we model the phase coupling in polariton graphs using

the complex Ginzburg-Landau equation (cGLE) with a saturable nonlinearity and energy
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relaxation [19, 20]:

i~
∂ψ

∂t
= − ~2

2m
(1− iηdR)∇2ψ + U0|ψ|2ψ + ~gRRψ

+
i~
2

(
RRR− γC

)
ψ, (1)

∂R
∂t

= −
(
γR +RR|ψ|2

)
R+ P (r), (2)

where ψ is the condensate wavefunction, R is the density profile of the hot exciton reservoir,

m is the polariton effective mass, U0 and gR are the strengths of effective polariton-polariton

interaction and the blue-shift due to interactions with non-condensed particles, respectively,

RR is the rate at which the exciton reservoir feeds the condensate, γC is the decay rate

of condensed polaritons, γR is the rate of redistribution of reservoir excitons between the

different energy levels, ηd is the energy relaxation coefficient specifying the rate at which

gain decreases with increasing energy, and P is the pumping into the exciton reservoir.

We non-dimensionalize these equations using ψ →
√

~2/2mU0`20ψ, r → `0r, t → 2mt`20/~

and introducing the notations g = 2gR/RR, γ = mγC`
2
0/~, p = m`20RRP (r)/~γR, η =

ηd~/mRR`
2
0, and b = RR~2/2m`20γRU0. We choose `0 = 1µm and consider the stationary

states.

By using the Madelung transformation Ψ =
√
ρ exp[iS] in the dimensionless Eqs. (1,2),

where ρ = |Ψ|2, u = ∇S is the velocity, S is the phase and separating the real and imaginary

parts we obtain the mass continuity and the integrated form of the Bernoulli equation which

we write for a steady state, and, therefore, introduce the chemical potential µ

µ = −
∇2√ρ
√
ρ

+ u2 + ρ +
p(r)

1 + bρ

(
g − η∇ · (ρu)

ρ

)
, (3)

∇ · (ρu)

ρ
=

p(r)

1 + bρ

(
1 + η

(
∇2√ρ
√
ρ
− u2

))
− γ. (4)

First, we consider a single pumping spot with a radially symmetric pumping profile. Asymp-

totics at large distances from the center of the pump gives the velocity |u| = kc = const and

ρ ∼ exp[−γrk−1c ]r−1. From Eq. (3) at infinity, therefore, we obtain µ = k2c − γ2/4k2c . We

can estimate the chemical potential for a wide pumping spot so that the quantum pressure

term ∇2√ρ/√ρ and ur are insignificant at the pumping center. Under this assumption

ρmax ≈ (pmax − 1)/b and µ ≈ (pmax − 1)/b + g. Using the asymptotics of the density at

infinity and at the center of the pumping spot we can further approximate the density of
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the individual pumping spot as

ρ(r) ≈ ξ0
ξ1 + ξ2r + ξ3r3 + k−1c r exp[γrk−1c ]

, (5)

where the parameters ξi are defined by the pumping profile. In [18] we established experi-

mentally under pulsed excitation that the coupling between two pumping spots (a“polariton

dyad”) can be either in-phase or with a π phase difference depending on the outflow

wavenumber kc and the distance between the spots. Below, in the steady state excita-

tion regime, we obtain a general criterion for the switching between the relative phases. We

start by considering the wavefunction of the condensate Ψg as the sum of the wavefunctions

of lN individual condensates, Ψ(r) ≈
√
ρ(r) exp[ikcr], located at r = ri with the phases θi:

Ψg(r) ≈
∑lN

i=1 Ψ(|r− ri|) exp(iθi). To find the total amount of matter N we write:

N =

∫
|Ψg|2 dr =

1

(2π)2

∫
|Ψ̂g(k)|2dk, (6)

Ψ̂g(k) =

∫
exp(−ik · r)Ψg(r) dr =

= Ψ̂(k)

lN∑
i=1

exp(ik · ri + iθi), (7)

where Ψ̂(k) = 2π
∫∞
0

Ψ(r)J0(kr)rdr and J0 is the Bessel function. The total amount of

matter becomes

N = lNN0 +
∑
i<j

Jij cos(θi − θj), (8)

Jij =
1

π

∫ ∞
0

|Ψ̂(k)|2J0(k|ri − rj|)k dk, (9)

where N0 = 2π
∫∞
0
ρ(r)r dr is the number of particles in a single, isolated condensate.

The oscillating behaviour of the Bessel function, J0(kdij), brings about the sign change

in the coupling constants, Jij, depending on the distance dij. When Jij is positive the

coupling is said to be ferromagnetic and when Jij is negative the coupling is said to be anti-

ferromagnetic. We approximate the switching of the coupling sign by cos(kcd + φ), where

φ is fixed by the system parameters (see Supp. Inf. for the discussion). The state with the

phase configuration that carries the highest number of particles in Eq. (8) corresponds to the

solution that minimises the XY Hamiltonian, HXY = −
∑n

i<j Jij cos θij. Between any two

polariton condensates the polariton wavefunction forms a standing wave with the density

|Ψg|2 ≈ ρ++ρ−+2
√
ρ+ρ− cos[kc|x−dij/2|−kc|x+dij/2|−θij], where x is the coordinate along

5



FIG. 1: Schematic of the condensate density map for a five-vertex polariton graph. The sign of

the coupling is annotated for some of the edges of the graph: depending on the separation distance

between the sites and the outflow wavevector kc the interactions are either ferromagnetic (solid-

blue lines) or anti-ferromagnetic (dashed-red lines). At each vertex ri of the graph polaritons have

a local phase θi that is mapped to a classical vector spin si = (cos θi, sin θi).

the line that connects the two nodes separated by a distance dij and ρ± = ρ(x ± dij/2, y).

Between two polariton condensates the density oscillates proportional to 1 + cos(2kcx+ θij),

from which the phase difference θij of a single shot realization can be extracted directly.

For more complex geometries the phase difference can be verified through interferometry

and Fourier-space analysis. In Fig. 1 we plot the density of a polariton graph, where for

simplicity we have annotated the sign of the coupling for some of the edges of the graph.

Depending on the separation distance between the vertices and the outflow wavevector kc,

the interactions are either ferromagnetic (solid-blue lines) or anti-ferromagnetic (dashed-red

lines). At each vertex ri of the graph polaritons have a local phase θi, which in the following

we map to a classical vector spin si = (cos θi, sin θi) and annotate on top of each vertex as

calculated from the minimisation of the XY Hamiltonian.

The Ising polariton chain: we theoretically describe and experimentally address the min-

imization of the XY Hamiltonian for the simple case of a linear polariton chain with equal

spacing d = dij between neighbours. In the steady state excitation regime, we can calculate

the maximum particle number of a polariton dyad as a function of the separation distance,

d, by numerically integrating the cGLE to find the solutions of Eqs. (3-4) that maximize N

for a given pumping profile p(r) = p0[exp(−α|r− d/2|2) + exp(−α|r + d/2|2)] of a charac-

teristic width α−1; the results are shown in Fig. 2(a). The relative phases that realise the

maximum particle number switch periodically between 0 and π with the period 2π/kc as

shown by superimposing the function cos(kcd+φ) in Fig.2(a); we have used the experimen-

tal parameters for the pumping profile and kc as described in “Wavevector Tomography” in
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FIG. 2: (a) The maximum number of particles, N , of a polariton condensate dyad formed under

incoherent pumping of two nodes as the function of the product kcd between the nodes obtained

by numerical integration of the cGLE for a fixed kc starting with random initial conditions and

choosing the realization that maximizes N . The solid black line corresponds to the maximum

number of particles in the in-phase ferromagnetic configuration and the dashed black line to the π-

phase difference anti-ferromagnetic configuration. The switching occurs with the periodicity 2π/kc

as the superimposed graph of cos(kcd+ φ) illustrates in red, where φ ≈ 225◦. (b-e) Experimental

realization of an Ising chain of five equidistant polariton nodes with lattice constants of ∼ 9µm,

∼11.1µm, ∼11.4µm, and ∼13.4µm respectively. The false-grey scale images show the normalised

real-space photoluminescence intensity at the energy of the condensate; (b,c) are saturated at 0.7

and (d,e) are saturated at 0.25 to increase the visibility of the low intensity fringes between the

nodes. The corresponding kcd are shown by solid circles on (a).

Supp. Inf. Where the coupling is ferromagnetic (anti-ferromagnetic) the graph of the max-

imum number of particles is plotted with a solid (dashed) line. We experimentally address

an analogue of the Ising chain by injecting a linear chain of five equidistant polariton con-

densates through non-resonant, continuous wave and spatially modulated optical excitation

of a multiple InGaAs quantum well strain compensated semiconductor microcavity [21] that

allows for detection of the polariton photoluminescence in the transmission geometry (for

the sample description read the “Microcavity sample” and for the description of the excita-

tion/detection scheme read the “Experimental setup” in Supp. Inf.). Figures 2(b-e) show the

real-space photoluminescence intensity of the linear chain condensate with increasing lattice

constant from ∼ 9µm to ∼13.4µm, at condensation threshold. The relative phase difference

realised between neighbours in the chain is either π or zero. The linear chain configura-

tion restricts the spins to two states effectively reducing the chain to the Ising model. The

patterns are clearly distinguishable by the number of fringes (density maxima) between the

sites: zero or even for anti-ferromagnetic and odd for ferromagnetic coupling. In Fig.2(a) we

have annotated the abscissa with solid circles for each of the two separation distances from

which the expected sign of coupling is depicted, showing good agreement with the experi-

ment. The observed phase configurations realise the ferromagnetic and anti-ferromagnetic

Ising spin chain.
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FIG. 3: Spin configurations of square polariton lattices. The diagrams of the numerically calcu-

lated spins vectors at the pumping sites si = (cos θi, sin θi), the real-space energy tomography of

the experimental realisations, and the averaged condensate densities of the numerically simulated

condensate wavefunctions for several realizations are shown on the left, central and right columns

respectively. Solid and dashed blue lines on the spin vector diagrams (left column) indicate ferro-

magnetic and anti-ferromagnetic coupling, respectively. The false-grey scale images of the middle

column show the normalised real-space photoluminescence intensity at the energy of the conden-

sate at condensation threshold; (c) is saturated at 0.5 to increase the visibility of the low intensity

fringes between the vertices. The configurations shown are some elementary building blocks of

square lattices such as (a,c) anti-ferromagnetic, (b) ferromagnetic, (d) 90◦-compass. The centers

of the pumping spots are shown by white dashed circles on the numerical density profiles (right

column). The parameters of the numerical simulations of Eqs. (1,2) are listed in the Supp. Inf.

Equidistant vertices across a circle: we consider a geometry of lN incoherently pumped

equidistant polariton vertices positioned on the circumference of a circle. For equal sepa-

ration distances d = dij between adjacent sites the XY Hamiltonian to minimise becomes

HXY = −J
∑lN

i=1 cos(θi,i+1), where J = Jij, the summation is cyclic and we took into account

only nearest neighbour interactions. If J is positive, then all sites lock in phase (θi,i+1 = 0).

If J is negative, the minimum of HXY occurs for θi,i+1 = ±π, when lN is even and for

θi,i+1 = ±π(lN − 1)/lN when lN is odd (lN > 1). For odd number of vertices, therefore,

the configurations bring about topological vortices of winding ±(lN − 1)/2, whose proper-

ties we explore elsewhere [22]. We experimentally access these regimes through incoherent

injection of polaritons at the vertices of a square; Figure 3(a,b,c) show the spin configura-

tion, experimental results of the real-space photoluminescence intensity at the energy of the

condensate at condensation threshold and numerical simulations for a square with lattice

constants that lead to anti-ferromagnetic, ferromagnetic and the next anti-ferromagnetic

coupling respectively. Similar to the Ising polariton chain the type of coupling is clearly

distinguishable by the number and symmetry of fringes between the vertices: zero or even

for anti-ferromagnetic (Fig.3(a,c)) and odd for ferromagnetic coupling (Fig.3(b)). These

observations are in agreement with the π phase difference reported in Ref.[23]. We can thus

summarise in the case of the square lattice cell that for ferromagnetic coupling polaritons at
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the vertices lock with zero phase difference and for anti-ferromagnetic coupling polaritons

at neighbouring vertices lock with π phase difference.

90◦ compass model: in the context of solving universal spin models apart from the trivial

all ferromagnetic or all anti-ferromagnetic coupling configurations in a square geometry,

more complex coupling configurations are of interest. Examples of such configurations are

the compass models, where the coupling between the internal spin components is inherently

directionally dependent. Such compass-type coupling appears in various physical systems,

where the interactions are sensitive to the spatial orientation of the involved orbitals. In

polariton graphs the compass models with direction dependent coupling or spin glassy models

with random couplings can be realised by changing the pumping intensity and preserving

the square geometry, or alternatively, tuning the separation distances so that each vertex has

one ferromagnetic and one anti-ferromagnetic coupling with its nearest neighbours. In Fig.

3(c) we have realised the 90◦ compass model, where each vertex has one ferromagnetic and

one anti-ferromagnetic coupling with its neighbours as it is clearly distinguishable by the

number of fringes between nearest vertices. The 90◦ compass, where both ferro- and anti-

ferromagnetic coupling appear across the two orthogonal diagonals here, has been proposed

as a model to Mott insulators with orbital degrees of freedom and frustrated magnets [24],

the plaquette orbital model [25], and the orbital compass model on a checkerboard lattice

[26]. Other systems accessible through polariton graphs, include fully random couplings in

the square lattice that describe the thermodynamic behaviour of several disordered systems,

such as magnetic systems with random Dzyaloshinskii-Moriya interactions [27], disordered

Josephson junction arrays [28], disordered substrates [29], and vortex glasses in high-Tc

cuprate superconductors [30].

FIG. 4: Spin configurations of the diamond-shaped polariton lattices. The columns of images

are as described in the caption to Fig.3. The configurations shown are some elementary building

blocks of triangular lattices such as (a,c) anti-ferromagnetic and (b) ferromagnetic rhombuses. The

false-grey scale images of the middle column show the normalised real-space photoluminescence

intensity at the energy of the condensate at condensation threshold saturated at 0.5 to increase

the visibility of the low intensity fringes between the vertices.

Triangular lattice: the XY Hamiltonian has been simulated on a triangular lattice of
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FIG. 5: Spin configurations of a random polariton graph. The panels of images are as described

in the caption to Fig.3. The false-grey scale image of the middle column show the normalised

real-space photoluminescence intensity at the energy of the condensate at condensation threshold

saturated at 0.5 to increase the visibility of the low intensity fringes between the vertices.

atomic condensates discovering a variety of magnetic phases and frustrated spin configura-

tions [31]. In the case of an anti-ferromagnetically coupled polariton triad, arranged at the

vertices of an equidistant triangle, the phase configuration that minimizes the XY Hamilto-

nian corresponds to ±1 winding (2π/3 phase difference between the condensates) [18]. Here,

we experimentally realise a unit cell of a triangular lattice (rhombus configuration) under

incoherent injection of polaritons. Figure 4(a,b,c) show the spin configuration, experimental

results of the real-space photoluminescence intensity at the energy of the condensate at con-

densation threshold and numerical simulation for a rhombus with lattice constants that lead

to anti-ferromagnetic, ferromagnetic and the next anti-ferromagnetic coupling, respectively.

In the case of ferromagnetic coupling between nearest neighbours and neglecting opposite

neighbours interactions across the long diagonal axis of the rhombus, the XY Hamiltonian

is minimised at HXY ∼ −5J when all polariton sites lock in phase, as shown in Fig. 4(b).

Similarly, in the case of anti-ferromagnetic coupling between nearest neighbours the XY

Hamiltonian is minimised at HXY ∼ 3J when there is ±π phase difference between the

outer edges of the rhombus. This configuration forces the rhombus in a frustrated state

wherein opposite vertices have the same phase. This type of frustrated spin configuration is

experimentally realised in Fig. 4(a,c). The corresponding states in Figs. 4(a,b,c) are shown

in the order of increasing distance between the sites, therefore, the anti-ferromagnetic states

of Figs. 4(a) and 4(c) belong to two different bands of anti-ferromagnetic regions separated

by a ferromagnetic band (the alternating anti-ferromagnetic/ferromagnetic couplings bands

are shown in Fig. 2(a)). The measured density profiles show some clear differences: the

local minimum at the center of the rhombus along the long diagonal in Fig. 4(a) is replaced

by a local maximum in Fig. 4(c).

Random polariton graph: beyond the minimization of the classical XY Hamiltonian of

polariton condensates on regular lattices we test our platform on a disordered polariton

graph of five vertices. We took a graph initially consisting of a half-hexagon for a lattice
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FIG. 6: The first row shows the normalised real-space photoluminescence intensity at the energy

of the condensate at condensation threshold in a false-grey scale for (a,c) anti-ferromagnetic and

(b) ferromagnetic configuration of 45 coherently coupled polariton condensates arranged at the

vertices of a square lattice; (a) is saturated at 0.7 and (b,c) are saturated at 0.3 to increase the

visibility of the low intensity fringes between the vertices. The second row shows the normalised

photoluminescence intensity of the two-dimensional Fourier-space corresponding to the lattices of

(a-c) at the energy of the condensate at condensation threshold in a false-grey scale; (a,b) are

saturated at 0.5 and (c) is saturated at 0.3 to increase the visibility of the low intensity coherent

spots.

constant that leads to anti-ferromagnetic coupling, but with one spot breaking the symme-

try. This is achieved experimentally by slightly displacing one spot on the graph. Figure

5 shows the spin configuration, experimental results of the real-space tomography of the

photoluminescence intensity at the energy of the condensate at condensation threshold and

numerical simulations that correspond to this graph. For the symmetric configuration of

a half-hexagon and considering only nearest neighbours interactions, the XY Hamiltonian

is minimised at HXY ∼ 3.86J with an alternating winding around each cell slightly de-

viating from 2π/3 difference reported for a single equilateral triangle (see Supp. Inf. for

details). Breaking the symmetry leads to a different phase distribution, while maintaining

the winding around each cell. The analysis of the fringes on the experimental image (with

the different rows of local maxima along the two long diagonals) shows that the symmetry

is explicitly broken.

Extended polariton lattices: in the following we explore the potential of the polariton sim-

ulator in finding the global minimum of the XY Hamiltonian with increasing the number

of vertices on a square lattice. Figure 6(a,b,c) shows the experimental results of the nor-

malised real-space photoluminescence intensity at the energy of the condensate at condensa-

tion threshold for 45 coherently coupled polariton condensates arranged at the vertices of a

square lattice. The lattice constants chosen here result in anti-ferromagnetic, ferromagnetic

and next anti-ferromagnetic coupling respectively. Figure 6(d,e,f) shows the corresponding

normalised photoluminescence intensity of the two-dimensional Fourier-space corresponding

to the lattices of Fig.6(a-c) at the energy of the condensate at condensation threshold. The
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contrast of the interference pattern observed in the Fourier-space images is indicative of the

degree of coherence across the lattice. In particular, the low intensity centre surrounded by

sharp intense “Bragg peaks” in Fig.6(d,f) indicates anti-ferromagnetic coupling, whereas the

high intensity centre in the two-dimensional Fourier-space of Fig.6(e) indicates ferromagnetic

coupling. We find that in the steady-state excitation regime and for the number of vertices

that we are technically capable to realise, -up to 45 here-, the injected square polariton

lattices always condense with the phase configuration that corresponds to the ground state

of the bespoke XY Hamiltonian.

Discussion and conclusions: Unlike a proposal for a quantum computer that is intended

as a universal platform, analogue simulators are proposed to solve specialized classes of

problems suited for the architecture and capabilities of the underlying physical system.

For example the intensely investigated superconducting quantum bits platform intends to

simulate the Ising model with transverse fields through the quadratic unconstrained binary

optimization model (QUBO) [32]. Trapped ions were used to simulate Ising, XY, and

XYZ interactions between effective spins [33]. Another scalable platform that benefits from

high temperature operation is the coupled degenerate OPOs Ising Machine, which solves

the MAX-CUT [34, 35]. Our polariton platform simulates the XY model, which can be

formulated as a quadratic non-convex constrained optimization model (QNCO). The hardest

instances of all mentioned problems are in the NP-hard classical complexity class of problems.

QUBO or MAX-CUT can be mapped into QNCO and vice versa but with a huge overhead

on the number of nodes [7]. Therefore, assuming that all platforms eventually show better

than classical computer behavior it is likely that each platform will be used to address

its own type of problems. Most relevant platforms addressing the XY Hamiltonian for a

large number of spins are the optical lattices of atomic condensates [31] and the photon

lasers networks [36]. Whereas both are scalable, they are likely to reach a local rather than

the global minimum of the Hamiltonian. In both the photon laser and polariton platform,

the phase configuration of the lasers or the condensates, at the threshold, corresponds to

the global minimum of the energy landscape. In the case of the polariton platform, it is

possible to operate in the steady state regime at threshold, and as we have demonstrated

experimentally, achieve the global minimum of the XY Hamiltonian; photon laser systems

that operate stably well above threshold are described by the Kuramoto model and can be

trapped in local minima of the energy landscape. In the configurations we considered so far,

12



the energy gap between the ground and excited states is larger than the linewidth and that

allows for the ground state to be accurately found. Further work is needed to establish how

the energy gap relates to the linewidth in more general lattice configurations. Clearly for the

polariton simulator introduced here, more work also is needed to determine the fundamental

computation power, the upper limit on the number of coherently coupled vertices and level

of connectivity. Nevertheless, the optical approach of imprinting two-dimensional polariton

lattices of arbitrary geometries and density profiles allows for tunable coupling strengths

between vertices and as we have demonstrated it offers the potential for rapid scalability

utilising mature semiconductor and photonic technologies.
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