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Abstract 

 

AuPt/AC and Bi modified AuPt/AC were prepared by impregnation using activated granular carbon as 

support followed by chemical reduction. The catalysts were characterized by means of Atomic 

Absorption Spectroscopy (AAS), transmission electron microscopy (TEM) and X-ray photoelectron 

spectroscopy (XPS). The catalysts were evaluated in the base free glycerol oxidation at mild reaction 

conditions in a continuous flow fixed bed reactor. Experimental parameters, such as, contact time 

(Liquid Hourly Space Velocity: LHSV), temperature and O2 flow have been varied in order to evaluate 

catalytic performance in terms of activity, selectivity and long-term stability. Under optimized reaction 

conditions AuPt/AC showed a high selectivity to glyceric acid (68.3%) whereas Bi-AuPt/AC promoted 

the oxidation of the secondary alcohol giving a selectivity to dihydroxyacetone (DHA) of 48.1% at 

28% conversion, one of the most promising values reported in the current literature. Long-term 

catalytic performance was carried out for 80 h and revealed a reasonable good stability of AuPt/AC 

against deactivation and leaching, whereas structural modification and subsequent changes in the 

catalytic reactivity were envisaged for Bi-AuPt/AC catalyst. 
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1. Introduction 

 

The transformation of glycerol into valuable chemicals and fuels has attracted significant attention 

in recent years from both academia and industry research groups because of its high potential as a 

promising bio renewable sustainable chemical building block [1-4]. The annual production of 

glycerol has been estimated to be higher than 2 million tonnes per year [5] and the main process of 

production is via the synthesis of biodiesel by the transesterification process using oils and fats 

with methanol [6]. A range of significant chemical processes have been studied and proposed for 

the effective transformation of glycerol to a variety of valuable chemicals, such as 

dihydroxyacetone, glyceraldehyde, glyceric acid, glycolic acid, tartronic acid, hydroxypyruvic 

acid, lactic acid, acrylic acid using oxidation/dehydration processes (Scheme 1) [7-10]. Due to the 

diverse range of products one of the main challenges is to control activity, selectivity and stability 

during the chemical process. Several strategies have been employed to control product selectivity 

and activity based on the use of bimetallic and trimetallic nanoparticles [11]. Bimetallic Au-Pd, 

Au-Pt and trimetallic (Au-Pd-Pt) catalysts have shown to be more active than their monometallic 

counterparts, and achieving high selectivity for the selective production of glyceric and tartronic 

acids with improved stability in particular under mild base-free conditions [12-19]. One of the 

most desired and challenging intermediates of the glycerol oxidation process is the selective 

production of dihydroxyacetone, which is a primary product of the glycerol oxidation process [20]. 

Dihydroxyacetone is a valuable product extensively used in cosmetic, chemical and pharmaceutical 

industries and the industrial production of dihydroxyacetone is based on utilization of biocatalytic 

approaches with yields reaching 90% [21-23]. However, biocatalytic systems are working at 

specific reaction conditions and are sensitive to variation of experimental conditions, such as, pH, 

temperature and scale-up production. On the contrary, chemical heterogeneous catalysts and 

especially Pt- based ones offer the possibility to selectively oxidise glycerol at a range of broader 

experimental conditions but with lower yield to the desired products due to deactivation issues. 

Catalytic performance can be also affected from deactivation, poisoning and leaching of active 
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sites even the separation of products is easier than from an enzymatic broth. Previous reports have 

shown that Pt-based catalysts with the addition of Bi or Sb as promoters are promising approaches 

to produce dihydroxyacetone with significant levels of conversion and selectivity [24-29]. Recently 

we have reported the successful utilization of Bi-AuPd/C and Bi-AuPt/C catalysts synthesized by 

colloidal methods [30,31] for improving the selectivity in a range of alcohol and polyol oxidation 

reactions. In the case of glycerol oxidation and using a batch reactor configuration system and 

base-free conditions, we demonstrated the enhanced production of dihydroxyacetone as the main 

product with selectivity of 63% at 80% conversion. The synthesized Bi-AuPt/C catalysts showed 

improved catalytic stability than the Au-free Bi-Pt/C catalyst. Taking into account these promising 

results we extend our studies using continuous flow processes for exploring further the catalytic 

performance in terms of selectivity, activity and especially long-term stability of Au-Pt and Bi-

AuPt catalysts. A range of experimental parameters have been varied such as contact time (Liquid 

Hourly Space Velocity: LHSV), temperature and O2 flow to evaluate the catalytic performance and 

permit structure-activity investigations for getting insight into reaction pathways and possible role 

of Bi. Herein, we compared the activity of AuPt/AC and Bi-AuPt/AC catalysts. We demonstrate 

that the selectivity to glyceraldehyde or glyceric acid using AuPt/AC and to dihydroxyacetone 

using Bi-AuPt/C could be improved considerably by tuning particular experimental parameters of a 

continuous flow reactor. Finally, we report and discuss the long term catalytic performance of the 

AuPt/AC and Bi-AuPt/C, in terms of activity, selectivity, stability taking into account metal 

leaching and restructuring of active sites. 
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2. Experimental Section 

 

2.1 Materials 

 

NaAuCl4 ·2H2O, K2PtCl4 and BiO(NO)3 were from Aldrich (99.99% purity) and granular activated 

carbon (grain diameter 2-3 mm) ZM 85 W from Camel Chemicals. Before use the carbon was 

suspended in HNO3 6 M to remove all metal impurities and ashes and left under stirring for 12 h, then 

washed several times with distilled water by decantation until the pH of the solution reached values of 

6–6.5. Finally, the carbon was filtered off and dried for 5–6 h at 150 °C in static air. NaBH4 of purity > 

96% from Fluka, was used. Gaseous oxygen from SIAD was 99.99% pure. 

 

 

2.2 Catalyst preparation 

 

AuPt/AC 

 

Solid NaAuCl4·2H2O (0.031 mmol) and K2PtCl4 (0.020 mmol) were dissolved in 100 mL of distilled 

 

H2O. Granular activated carbon (1g) was added to the solution under stirring.  The amount of support 

 

was calculated as having a metal nominal loading of 5 wt% with Au/Pt molar ratio of 8/2. The 

 

mixture was  continuously stirred  at room temperature for 2h till  the  solution  turned from  pale 

 

yellowed to colorless indicating full adsorption of the metal precursors on the support. The carbon 

 

was filtered and the solution was studied by AAS to determine the real metal loading. The solid was 

 

redispersed in 100 ml of distilled water and a 0.1 M fresh solution of NaBH4  (metal/NaBH4= 1:4 

 

mol/mol) was added under stirring for a period of 30 minutes. The catalyst was filtered, thoroughly 

 

washed with distilled water (2 L) and dried at 100 °C in static air for 2h. The catalyst has been labeled 

 

as AuPt/AC. 

 

Bi-AuPt/AC 

 

Bismuth  was  added  to  a  portion  of  AuPt/AC  prepared  with  the  methodology  reported  above. 

 

BiO(NO)3  (0.012 mmol) was dissolved in 100 ml of distilled water at pH=2 (pH modified using 

 

concentrated H2SO4). Bi amount was calculated in order to have a final nominal loading of 0.5%. 

 

AuPt/AC was added to the solution and left under stirring for 2h. The slurry was filtered and the 

 

solution was studied by AAS to determine the real metal loading. The solid was redispersed in 100 ml 
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of distilled water and a 0.1 M fresh solution of NaBH4 (metal/NaBH4= 1:1 mol/mol) was added under 

stirring. The catalyst was filtered, thoroughly washed with distilled water (2L) and dried at 100 °C in 

static air for 2h. The catalyst has been labeled as Bi-AuPt/AC. 

 
2.3 Catalytic test 

 

Fixed bed reactor design: a reactor made by Pyrex with an inner diameter of 10 mm and a height of 

100 mm, equipped with feed lines for supplying aqueous solution of glycerol (5 wt %) and molecular 

oxygen, an output line and a water jacket for heating was used. Dioxygen flow was regulated by mass 

flow and set at in 5, 10 and 15 mL/min. The reaction temperature was set at 30, 50 and 60 °C. The 

glycerol flow was set to have a Liquid Hourly Space Velocity (LHSV) of 0.023, 0.046, 0.092, 0.183, 

0.368 h
-1

. The catalyst (5g) was packed in the reactor and glycerol solution and oxygen fed at a 

constant flow rate concurrently from the top of the reactor at a controlled temperature. The reactor was 

fixed vertically to avoid channeling. The grain size was in the range of 2-3 mm. 

 

Samples of 0.2 ml were taken periodically and analyzed by high-performance chromatography 

(HPLC) using a column (Alltech OA-10308, 300 mm x 7.8 mm) with UV and refractive index (RI) 

detection in order to analyze the mixture of the samples. H3PO4 0.1 wt % solution was used as eluent. 

The identification of the possible products was done by comparison with the original samples. 

 
2.4 Catalyst characterisation 

 

X-ray photoelectron spectra (XPS) was recorded on a Kratos Axis Ultra DLD spectrometer using a 

 

monochromatic Al Kα X-ray source. X-ray source (75-150W) and analyser pass energies of 160 eV 

 

(for survey scans) or 40 eV (for detailed scans). Samples for examination by transmission electron 

 

microscopy (TEM) were prepared by dispersing the catalyst powder in high purity ethanol using ultra- 

 

sonication. 40 µL of the suspension was dropped on to a holey carbon film supported by a 300 mesh 

 

copper TEM grid before the solvent was evaporated. The samples for TEM were then examined using 

 

a JEOL JEM 2100 TEM model operating at 200 kV. The actual metal content and metal leaching (Au, 

 

Pt, Bi) were checked by Atomic Absorption Spectroscopy (AAS) analysis of the filtrate, on a Perkin 

 

Elmer 3100 instrument. 
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3. Results and discussion 

 

5 wt % AuPt/AC with Au/Pt 8/2 nominal molar ratio catalyst was prepared by impregnation method 

using NaBH4 as reducing agent using granular activated carbon as support. Bi-AuPt/AC was prepared 

by adding 0.5 wt % Bi to AuPt/AC via impregnation of BiO(NO)3 and followed by chemical reduction 

using NaBH4. The exact metal loading was verified by AAS and the results presented in Table 1. 

Particle sizes and particle size distributions were determined from the TEM micrographs (Table 1, 

Figure 1b and 2b). AuPt/AC showed a mean size of 5.6 nm with a broad particle size distribution 

(Figure 1b). After the addition of Bi the mean size decreased to 3.9 nm and quite narrow particle 

distribution was observed (Figure 2b). This unexpected result could be explained as follow. Examining 

the particle size histograms (Figure 1 b and 2b), a higher fraction of nanoparticles smaller than 2 nm 

was observed after the addition of Bi. Such an unexpected evidence might be ascribed to the presence 

of small Au, Pt clusters in AuPt samples. These clusters are too small to be detected with the current 

TEM microscope used, but they coalesce after the addition of Bi at low pH (2) leading to the formation 

of few nanometer metal particles and to the apparent decrease in mean particle size. This trend was 

already observed after the washing of Au PVA nanoparticles deposited on carbon with acidic water 

[32]. XPS data and spectra performed on the catalysts are presented in Table 1 and Figure 3 

respectively. The Atomic percentage at the surface of Au and Pt species is similar in both catalysts, 

9.3% and 0.7%, respectively in the AuPt catalysts, and 9.6% and 0.7%, respectively in the Bi-AuPt 

one. It is evident that the AuPt atomic composition at the surface is different from the bulk, with the 

surface enriched in Au (Table 1). These results point out that Au and Pt are not present only as 

homogenous alloy nanoparticles and probably segregation of Au also occurred. It has not been 

possible to quantify any Bi content of both the fresh and used catalyst, this is probably because the low 

Bi content on the surface of the catalysts is below the detection limit of the instrument (Table 1). XPS 

spectra demonstrated that both Au and Pt are present in the metallic state (Figure 3) (BE of 84.2 and 

71.5, for Au and Pt, respectively). Moreover, the Au 4f region has been scanned before and after the 
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total survey of the sample to compare for possible reduction of the AuClx species due to the exposure 

to X-ray beam. These scans do not exhibit any discernible variation on the spectra of Au 4f, therefore 

these results are in agreement with the absence of Cl on the surface validating the full reduction of 

Au
3+

 to Au
0
. 

 
The catalytic performance of the synthesized materials was evaluated in the liquid phase oxidation of 

glycerol in a continuous flow fixed bed reactor with the same reactor design previously used by our 

group to investigate the same reaction using monometallic Au catalysts [33]. A scheme of the reactor 

is illustrated in Scheme 2. 

 
A range of experimental parameters have been varied such as contact time (LHSV), temperature and 

O2 flow to evaluate the catalytic performance of the materials in terms of activity, selectivity and long-

term stability (Table 2-7). 

 
3.1 Catalytic performance of AuPt/AC 

 

Table 2 shows the effect of the contact time (LHSV) on the activity and selectivity using AuPt/AC, 

keeping the O2 flow and temperature constant (5 mL/min and 60°C, respectively). As expected by 

decreasing the contact time (increasing of LHSV), the conversion decreased from 34.5% (LHSV of 

0.023 h
-1

) to 8.6 (LHSV of 0.366 h
-1

). At the lowest contact time (LHSV of 0.366 h
-1

) the main 

products were glyceraldehyde (58.3%) and glyceric acid (34.1) (Table 2). By increasing the contact 

time, consecutive oxidation reactions were promoted (Scheme 2). At LHSV of 0.023 h
-1

 the majority 

of glyceraldehyde was oxidized to glyceric acid (51.4%) and sequentially to tartronic acid (23.1%). 

The highest selectivity to glyceric acid was obtained at LHSV of 0.046 h
-1

 (53.4%). With the aim to 

increase the productivity to glyceric acid, O2 flow, was varied keeping constant LHSV (0.046 h
-1

) and 

temperature (60 °C). Increasing O2 flow from 5 to 15 mL/min the conversion did not significantly 

varied (from 24.2 to 29.2%) (Table 3). However, in presence of a higher amount of O2 (15 ml/min) 

glyceraldehyde was mainly oxidized to glyceric acid, and a maximum of selectivity of 68% was 

reached. Finally, the effect of the temperature was evaluated (Table 4). Increasing the reaction 

temperature from 30 °C to 60 °C, an increase from 8.5 to 24.2 % conversion was obtained. A lower 
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temperature has a significant impact in the selectivity, limiting the consecutive oxidation of 

glyceraldehyde to glyceric acid. It is important to note that under all the reactions conditions tested 

AuPt/AC limits the formation of C1 and C2 products deriving from C-C cleavage. Indeed, the sum of 

C3 products (glyceraldehyde+glyceric acid + tartronic acid) was always >90%. 

 
One of the main challenges for industrial applications of supported metal nanoparticles is the long-

term catalytic performance and stability. Therefore, we investigated the stability of AuPt/AC catalyst 

against deactivation at reasonably long reaction times, following conversion and selectivity for 80 h of 

continuous flow reaction (Figure 4). We choose the reaction conditions were the highest selectivity to 

glyceric acid was obtained (LHSV=0.046 h
-1

) T= 60 °C, O2= 15 ml/min). The catalyst maintained 

similar levels of conversion and selectivity over a period of 80 h of reaction (Figure 4). At the end of 

the reaction the catalyst was removed from the reaction media and studied by means of AAS, TEM 

and XPS. The morphology of the used AuPt catalyst showed moderate structural modifications 

compared to the fresh one. AAS revealed a leaching of 2.6% of Au in the catalyst used after 80 h, 

whereas Pt content was the same (Table 1). TEM analysis showed that AuPt mean particle size did not 

change during the reaction (5.6 and 5.5 nm for AuPt nanoparticles before and after reaction, 

respectively) (Table 1). However, a small variation in the particle distribution were observed for the 

fresh and used catalysts(Figure 1b and 1d). Indeed, the particles smaller than 2nm observed in the fresh 

samples disappeared in the used one and a higher quantity of particles larger than 10 nm were present 

after reaction, although still was a minor fraction. XPS showed an increase of Au% at the surface after 

reaction (9.3 and 12.3% for fresh and used AuPt, respectively). A possible explanation is that part of 

Au present in Au pores is diffused from inside the pores of granular carbon and redeposited on the 

carbon surface and as consequence possible leaching was occurred and detected by AA analysis. XPS 

confirmed that also on the surface the content of Pt did not vary during the reaction. This result 

confirmed previous study showing that the addition of Au to Pt significantly enhance the stability of Pt 

in the liquid phase oxidation avoiding the leaching of the metal into the solution and the passivation 

[14]. 
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3.2 Catalytic performance of Bi-AuPt/AC 

 

As we stated previously the modification and addition of Bi is a well-known method to tune activity and 

especially block specific sites for tuning selectivity to desired products. The addition of Bi was carried out 

to study the possible role of Bi as a promoter and if this strategy as has been reported previously can 

facilitate the formation of primary products, such as, dihydroxyacetone. Comparing the activity and 

selectivity of AuPt/AC (Tables 2-4) and Bi-AuPtAC catalysts (Tables 5-7) it is evident that the addition of 

Bi significantly modified the reactivity of AuPt nanoparticles as already demonstrated in experiments 

performed previously in batch reactors [31]. The presence of a small amount of Bi (0.5wt %) increased the 

activity due most probably to the decrease of mean particle size and favored the oxidation of the secondary 

alcohol, with dihydroxyacetone (DHA) as main product (Tables 5-6). This observation could be attribute to 

the alteration of geometrical properties and blocking of active sites that Bi may introduce with a 

consequence the enhancement of desorption of dihydroxyacetone from the surface of the catalyst which 

results in the avoidance of consecutive oxidation to secondary products. In terms of activity the variation of 

contact time, conversion and temperature has a similar effect in both AuPt/AC and Bi-AuPt/AC. Indeed, 

also for Bi-AuPt/AC, an increase in the contact time and temperature resulted in a higher conversion, 

where the variation of O2 flow did not significantly influenced the activity (Tables 5-7). In terms of 

selectivity, the highest one (48.1 %) to DHA at 24.5 % conversion was obtained at the lower contact times 

(LSHV 0.183 h
-1

), with glyceric acid and glyceraldehyde (selectivity of 25.2% and 18.2 %, respectively) as 

main by-products (Table 5). Increasing the contact time the selectivity to DHA and glyceraldehyde 

decreased with the formation of formic and glycolic acid, deriving from C-C cleavage and hydroxypyruvic 

acid, produced by sequential oxidation of DHA (Scheme 1). Table 6 shows that higher O2 flow had a 

detrimental effect on the selectivity to DHA. Indeed, increasing O2 flow from 5 to 15 mL/min the 

selectivity to DHA decreased from 47.8% to 38.3 % due to the degradation of DHA to formic and glycolic 

acid and to its oxidation to hydroxypyruvic acid. At last, we observed an unexpected effect of the 

temperature. Indeed, the highest selectivity to DHA (47.8%) was obtained at 60°C, whereas at lower 

temperatures 
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(50°C and 30°C) DHA is prone to degrade to C1 and C2 products. This result is probably due to a 

lower desorption rate of DHA from the Bi-AuPt active sites at lower temperature, resulting in the 

sequential C-C cleavage. 

 
The stability of Bi-AuPt was investigated under the reaction conditions giving the best selectivity to 

DHA (48.1%) (LHSV=0.183 h
-1

) T= 60°C, O2= 5 ml/min) (Figure 5) after 80 h of reaction. Both 

activity and selectivity to DHA decreased during the first 20 h, after which steady state conditions 

were obtained. The activity decreased from 24.5 to 18%, whereas the selectivity to DHA dropped from 

48.1 to 40%) (figure 5). To better understand this observed catalytic behavior the used catalyst was 

thoroughly investigated. Both AAS and XPS confirmed that part of Bi was leached into the solution 

(Table 1). In particular, XPS showed that no Bi was present on the surface after 80 h of reaction. 

However, conversely to AuPt/AC catalyst, DHA remained the main product. We addressed this result 

to the fact that Bi is still partially present on the catalyst surface but under the detection limits of XPS 

apparatus used for this study could identified. TEM investigation on the used catalyst (Table 1, Figure 

2c, 2d) showed a significant growth of metal particles from 3.9 to 8.1 nm. This result is unexpected 

due to the high stability of AuPt/AC catalyst presented above. We address this observation to a weaker 

metal -support interaction induced by the Bi presence with a consequent lower stability of AuPt 

nanoparticles than in the case of AuPt/AC. 

 

 

4. Conclusions 

 

AuPt/AC and Bi modified AuPt/AC catalysts were synthesized and tested in the base-free liquid phase 

oxidation of glycerol in a continuous flow fixed bed reactor. Reaction parameters (contact time, 

temperature and O2 flow) were varied to evaluate the catalytic performance in terms of activity, 

selectivity and stability. Under optimized reaction conditions AuPt/AC showed a high selectivity to 

glyceric acid (68.3%) whereas Bi-AuPt/AC promoted the oxidation of the secondary alcohol resulting 

in a maximum of selectivity to DHA (48.1%). Stability tests performed for 80 h got new insight on the 

stability and structure of the two catalysts. Indeed, both catalytic results and characterization (AAS, 
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TEM, XPS) of AuPt/AC demonstrated the high stability of the catalyst. On the contrary, after 

modification of AuPt/AC with Bi, the catalyst showed significant structural modification after 80 h of 

time on stream. This result was addressed mainly due to a lower metal-support interaction induced by 

Bi addition. In subsequent studies we will focus on studying how the experimental conditions for the 

preparation if Bi-AuPt catalysts affect stability, metal composition of individual bimetallic 

nanoparticles and especially the location of Bi nanoparticles by means of HAADF and XAFS/XANES 

analysis. The presented studies address to a certain extent the issue of Bi stability, leaching and 

restructuring on preformed supported AuPt nanoparticles on an important biomass-derived molecule 

like glycerol and inspire future studies for the use of promoters like Bi and Sn. 
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Table 1. Characteristics of AuPt based catalysts 
 
 
 
 

 

 Catalyst Metal loading (wt %) TEM  XPS   

      % at   
         

  Nominal Determined Mean Standard Au Pt Bi 

  Au-Pt-Bi by AAS size deviation    

   Au-Pt-Bi (nm) σ    
         

 AuPt/AC 4.0-1.0-0.0 3.8-0.8-0.0 5.6 2.2 9.3 0.7 - 

 fresh        

 AuPt/AC 4.0-1.0-0.0 3.7-0.8-0.0 5.5 1.9 12.3 0.7 - 

 used        

 Bi-AuPt/AC 4.0-1.0-0.5 3.7-0.8-0.4 3.9 1.5 9.6 0.7 - 

 fresh        

 Bi-AuPt/AC 4.0-1.0-0.5 3.6-0.7-0.2 8.1 3.6 10.9 0.9 - 

 used        
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Table 2. Effect of glycerol flow for AuPt/AC 
 

LHSV Conversion   Selectivity   

(h
-1

) (%) Dihydroxy- Glyceric Glyceral Glycolic Tartronic Formic 

  acetone acid dehyde acid acid acid 

0.023 34.5 0.7 51.4 14.3 5.2 23.1 0.8 
0.046 24.2 0.6 53.4 23.6 3.9 16.8 0.9 

0.092 15.9 1.2 47.1 35.8 1.3 9.4 0.8 

0.183 14.1 1.2 38.2 53.3 1.2 4.1 1.0 

0.366 8.6 1.4 34.1 58.3 0.9 1.3 0.9 

 

Reaction conditions: glycerol 5 wt%, O2 flow 5mL/min, T=60°C 
 
 
 
 

 

Table 3. Effect of O2 flow for AuPt/AC  
 

O2 flow Conversion Selectivity  
(%) Dihydroxy-GlycericGlyceral   Glycolic   Tartronic   Formic 

  acetone acid dehyde acid acid acid 

5 24.2 0.6 53.4 23.6 3.9 16.8 0.9 
10 27.3 0.3 64.2 10.3 4.1 18.2 1.2 

15 29.2 0.1 68.3 5.2 5.9 19.4 0.8 

Reaction conditions: glycerol 5 wt%, T=60°C,  LHSV= 0.046    

Table 4. Effect of temperature for AuPt/AC     

       

Reaction Conversion   Selectivity   

temperature (%) Dihydroxy- Glyceric Glyceral Glycolic Tartronic Formic 

°C  acetone acid dehyde acid acid acid 

30 8.5 1.2 55.3 33.1 1.5 6.7 0.8 
50 20.3 0.5 50.2 29.3 2.5 14.3 0.5 

60 24.2 0.6 53.4 23.6 3.9 16.8 0.9 

 

Reaction conditions: glycerol 5 wt%, O2 flow 5mL/min, LHSV 0.046 
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Table 5. Effect of glycerol flow for Bi-AuPt/AC 
 

LHSV Conversion   Selectivity   

(h
-1

) (%) Dihydroxy- Glyceric Glyceral Glycolic Formic Hydroxy 
  acetone acid dehyde acid acid pyruvic 

       acid 

0.023 36.9 40.2 27.6 7.3 10.3 5.4 7.8 
0.046 31.2 43.2 29.4 8.9 5.8 3.9 6.7 

0.092 28.5 47.8 26.3 14.1 3.2 2.3 4.2 

0.183 24.5 48.1 25.2 18.2 2.2 1.8 3.1 

0.368 21.3 46.9 22.4 24.3 1.8 0.6 2.4 

 

Reaction conditions: glycerol 5 wt%, O2 flow 5mL/min, T=60°C 
 
 
 
 

 

Table 6. Effect of O2 flow for Bi-AuPt/AC 
 

O2 flow Conversion   Selectivity   

 (%) Dihydroxy- Glyceric Glyceral Glycolic Formic Hydroxy 
  acetone acid dehyde acid acid pyruvic 

       acid 

5 28.5 47.8 26.3 14.1 3.2 2.3 4.2 
10 29.4 42.5 25.4 7.8 8.9 8.2 5.8 

15 31.5 38.3 23.1 3.4 14.3 12.2 7.1 

 

Reaction conditions: glycerol 5 wt%, O2 flow 5mL/min, T=60°C 
 
 
 
 

Table 7. Effect of temperature for Bi-AuPt/AC 
 

Reaction Conversion   Selectivity   

temperature (%) Dihydroxy- Glyceric Glyceral Glycolic Formic Hydroxy 

°C  acetone acid dehyde acid acid pyruvic 

       acid 

30 9.3 31.2 20.3 17.8 12.2 7.9 8.1 
50 20.7 37.5 24.4 16.8 5.4 6.8 7.9 

60 28.5 47.8 26.3 14.1 3.2 2.3 4.2 

 

Reaction conditions: glycerol 5 wt%, O2 flow 5mL/min, LHSV 
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Figure 1 a) Representative TEM images and b) particle distribution of fresh AuPt/AC. c) 
Representative TEM images and d) particle distribution of AuPt/AC after reaction  
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Figure 2 a) Representative TEM images and b) particle distribution of fresh Bi-AuPt/AC. 
c) Representative TEM images and d) particle distribution of Bi-AuPt/AC after reaction  
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Figure 3 XPS spectra of a) AuPt/AC and b) Bi-AuPt/AC  
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Figure 4 Long term stability test in the glycerol oxidation using AuPt/AC 
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Figure 5 Long term stability test in the glycerol oxidation using Bi-AuPt/AC  
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Scheme 1  
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Scheme 2  
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