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Abstract	75 

Researchers	studying	plants	using	the	model	organism,	Arabidopsis	thaliana,	can	easily	generate	or	access	76 

massive	 datasets	 using	 modern	 technologies.	 	 However,	 in	 order	 to	 best	 analyze	 such	 datasets	 to	77 

elucidate	novel	biological	mechanisms,	many	individuals	face	critical	deficiencies	in	their	training.		Ideally,	78 

these	scientists	will	be	able	to,	individually	or	in	a	team,	integrate	foundational	concepts	from	biological	79 

science,	chemistry,	mathematics,	statistics,	computer	science,	bioinformatics	and	data	science.		Here,	we	80 

provide	 examples	 of	 guidelines,	 skill	 sets,	 and	 core	 competencies	 that	 should	 be	 considered	 when	81 

developing	 curricula	or	 training	efforts	at	 the	undergraduate,	 graduate,	postdoctoral	 and	 faculty	 levels.		82 

Discussion	of	specific	 training	needs	 from	the	perspective	of	 the	agricultural	biotechnology	 industry	are	83 

also	provided.		Critical	to	“large-scale	biology”	is	the	formation	of	productive	collaborations.		Methods	to	84 

identify	 the	 best	 collaborator,	 to	 define	 an	 effective	 collaboration	 on	 the	 part	 of	 all	 partners,	 and	85 

pedagogical	 methods	 to	 train	 students	 in	 the	 art	 of	 collaboration	 are	 also	 discussed.	 	 Finally,	 these	86 

challenges	 and	 potential	 solutions	 are	 addressed	 in	 a	 selected	 case	 study	 on	 high-throughput	87 

phenotyping. 88 

  89 
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Introduction 90 

It	 has	 been	 over	 50	 years	 since	 Arabidopsis	 thaliana	 was	 first	 introduced	 as	 a	 model	 organism	 to	91 

understand	 basic	 processes	 in	 plant	 biology.	 A	well-organized	 scientific	 community	 has	 used	 this	 small	92 

“reference”	plant	species	to	make	numerous	fundamental	plant	biology	discoveries	(Provart	et	al.,	2016).	93 

Due	 to	 an	 extremely	 well	 annotated	 genome	 and	 advances	 in	 high-throughput	 sequencing,	 our	94 

understanding	 of	 this	 organism	 and	 other	 plant	 species	 has	 become	 ever	more	 intricate	 and	 complex.		95 

Computational	 resources	 including	 CyVerse
1
,	 Araport

2
,	 TAIR

3
	 and	 BAR

4
	 have	 further	 facilitated	 novel	96 

findings	 with	 just	 the	 click	 of	 a	 mouse.	 	 As	 we	 move	 towards	 understanding	 biological	 systems,	97 

Arabidopsis	 researchers	will	 need	 to	 use	more	 quantitative	 and	 computational	 approaches	 in	 order	 to	98 

extract	 novel	 biological	 findings	 from	 these	 data.	 Here,	 we	 discuss	 guidelines,	 skill	 sets,	 and	 core	99 

competencies	 that	 should	 be	 considered	 when	 developing	 curricula	 or	 training	 undergraduate	 or	100 

graduate	students,	postdoctoral	researchers,	and	faculty.	A	selected	case	study	provides	more	specificity	101 

as	to	the	concrete	issues	that	plant	biologists	face	and	how	best	to	address	such	challenges. 102 

 103 

Transforming	Education	and	Training	–	from	Undergraduates	to	Faculty 104 

An	overhaul	 in	 training	 is	 necessary	 for	plant	biologists	 to	make	use	of	massive	data	 sets	 and	enabling	105 

technologies.	This	is	not	a	novel	idea	in	the	life	sciences.		In	fact,	Bialek	and	Botstein	(2004)	articulated	a	106 

concept	 for	an	 integrated	 introductory	quantitative	science	curriculum,	primarily	 for	undergraduates,	 in	107 

order	 to	 address	 this	 specific	 issue.	 Their	 publication	has	 been	highly	 cited	 and	used	 as	 a	 foundational	108 

resource.		They	noted	that	biologists	have	too	little	education	and	experience	in	quantitative	thinking	and	109 

computation	relative	to	what	is	needed	for	full	participation	in	this	new	era	of	genomics	research.		Both	110 

then,	 and	 still	 now,	many	 upper-level	 undergraduates	 in	 the	 life	 sciences	 versus	 quantitative	 sciences	111 

already	 speak	 “noticeably	 different	 languages”.	 Bialek	 and	 Botstein	 (2004)	 proposed	 that	 instead	 of	112 

prerequisite	courses	in	mathematics,	physics,	chemistry	and	computation,	the	fundamental	ideas	of	each	113 

of	these	disciplines	should	be	introduced	at	a	high	level	of	sophistication.	Their	point	is	that	these	ideas	114 

should	 be	 presented	 in	 context	 and	 with	 relevant	 biological	 problems	 for	 a	 “seamless”	 educational	115 

experience.	This	would	also	avoid	the	delivery	of	these	quantitative	science	courses	as	a	“service”	for	the	116 

life	sciences	students.	 	 In	a	“service	course”,	students	often	exhibit	a	 lack	of	enthusiasm	due	to	the	fact	117 

that	they	are	required	to	take	these	courses.	An	additional	issue	is	that	many	of	the	quantitative	concepts	118 

presented	 are	 devoid	 of	 a	 biological	 perspective.	 	 Training	 at	 the	 graduate	 level	must	 also	 necessarily	119 

                                                
1
	http://www.cyverse.org/	

2
	https://www.araport.org/	

3
	http://www.arabidopsis.org/	

4
	http://bar.utoronto.ca 
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integrate	 foundational	 concepts	 from	 biological	 science,	 chemistry,	 mathematics,	 statistics,	 computer	120 

science,	 bioinformatics	 and	 data	 science.	We	 stress	 that	 this	 is	more	 than	 simply	 an	 understanding	 of	121 

bioinformatics	 -	 that	 is,	 more	 than	 just	 using	 computation	 to	 extract	 knowledge	 from	 biological	 data.		122 

Instead,	 education	 in	 plant	 biology	 should	 be	 truly	 interdisciplinary,	 perhaps	 as	 exemplified	 by	 (i)	123 

theoretical	biology	whereby	theoretical	perspectives	 (often	mathematical)	are	used	to	give	 insights	 into	124 

biological	processes,	(ii)	quantitative	biology	whereby	quantitative	approaches	and	technologies	are	used	125 

to	 analyze	 and	 integrate	 biological	 systems	 or	 to	 construct	 and	model	 engineered	 life	 systems,	 or	 (iii)	126 

computational	biology	whereby	biological	data	are	used	to	develop	algorithms	or	models	to	understand	127 

relationships	amongst	various	biological	systems.	128 

 129 

Implementation	of	Quantitative	Training	in	the	Life	Sciences	130 

Significant	 administrative,	 content,	 and	 logistical	 challenges	 often	 exist	 to	 impede	 the	 creation	 of	 new	131 

academic	 programs.	 	Despite	 this,	 a	 growing	number	 of	 institutions	 are	 developing	 undergraduate	 and	132 

graduate	 curricula	 in	 bioinformatics	 and	 computational	 biology	 for	 the	 life	 sciences,	 many	 of	 which	133 

incorporate	the	vision	of	Bialek	and	Botstein
5
.		Practical	strategies	to	overcome	many	of	these	challenges	134 

have	 been	 described	 for	 an	 overhaul	 in	 the	 graduate	 training	 program	 at	 Harvard	 Medical	 School	135 

(Gutlerner	and	Van	Vactor,	2013).	Our	primary	recommendation	is	to	include		in	life	sciences	curricula	the	136 

teaching	 of	 the	 skills	 and	 competencies	 described	 above,	with	 the	 aim	 to	 develop	 students	 and	 future	137 

scientists	 that	 are	 adept	 at	 using	 transdisciplinary	 approaches	 to	 solve	 challenges	 in	 biology,	 and	 thus,	138 

well	adapted	to	addressing	current	and	future	needs	in	modern	plant	biology	research.		139 

	140 

Minimal	Skill	Sets	and	Core	Competencies	141 

Over	 the	 last	 15+	 years	 a	 variety	 of	 meetings	 and	 task	 forces	 have	 been	 convened	 to	 determine	 the	142 

nature,	 extent,	 content,	 and	 available	 delivery	 tools	 for	 degree	 and	 training	 programs	 utilizing	143 

bioinformatics	 or	 computational	 biology	 in	 life	 sciences	 programs.	 Tan	 et	 al.	 (2009)	 proposed	 a	144 

generalized	minimum	set	of	competencies	that	the	next	generation	of	biologists	will	need	to	effectively	145 

cope	 with	 ever-increasing	 amounts	 of	 information	 and	 datasets,	 and	 the	 growth	 of	 importance	 in	146 

informatics	in	this	genomics	era;	the	following	competencies	have	increased	in	relevance	since	they	were	147 

first	published,	and	thus	could	guide	curricula	development	(or	revisions	of	existing	curricula):			148 

1. Basic	 knowledge	 in	 the	 specific	 domains	 of	 computer	 science,	 statistics	 and	mathematics	 that	149 

intersect	with	modern	biology. 150 

                                                
5
	http://www.bioinformatics.org/wiki/education_in_the_united_states	
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2. Expertise	 in	 communicating	 and	 representing	 biological	 knowledge	 and	 processes	 in	151 

mathematical,	statistical	and	computing	terms	and	concepts. 152 

3. The	ability	to	use	or	develop	efficient	bioinformatics	and	biocomputational	tools	and	techniques	153 

for	the	acquisition,	interpretation,	analysis,	prediction,	modeling,	simulation	and	visualization	of	154 

experimental	and	other	biological	data. 155 

4. Proficiency	 in	 the	 search,	 retrieval,	 processing,	 curation,	 organization,	 classification,	156 

management	 and	 dissemination	 of	 biological	 data	 and	 information	 in	 databases	 for	 deriving	157 

biological	insights	and	knowledge	discovery. 158 

5. Critical	thinking	and	problem-solving	skills	in	quantitative	aspects	of	biology. 159 

As	 a	 community	 with	 expertise	 in	 quantitative	 and	 computational	 plant	 biology,	 and	 using	 these	160 

competencies	as	a	guideline,	we	further	propose	a	suite	of	minimal	skill	 sets	 [adapted	from	(Rubinstein	161 

and	 Chor,	 2014;	Welch	 et	 al.,	 2014)]	 which	will	 enable	 a	 plant	 biologist	 to	 generate	 and	 utilize	multi-162 

dimensional	and	scaled	plant	biology	data	in	order	to	answer	central	biological	questions	(Table	1).	 163 

Table	1:	Minimal	Skill	Sets	Recommended	for	Plant	Biology	Students	 164 

Category	 Specific	Skills	

Unix/Linux Comfort/familiarity	with	using	command	line 

Scripting	Language Perl	or	Python,	for	advanced	students	–	C++,	CUDA 

Database	creation	and	query Mongo	or	MySQL,	data	mining 

Software	carpentry Best	practices,	proper	commenting,	version	control 

Computation	 Machine	learning,	algorithm	design	and	analysis,	distributed	and	

high-performance	computing	

Statistical	methods Descriptive	 and	 inferential	 statistics,	 hypothesis	 testing,	

parameter	 estimation,	 power	 analysis,	 data	 transformations,	

meta-analysis,	hierarchical	clustering 

Mathematical	 Probability	 theory,	 differential	 equations,	 graph	 theory.	 Linear	

algebra,	information	theory	

Statistical	programming R/Bioconductor	 (particularly	 for	 analysis	 of	 next-generation	

sequencing	data) 

Biological	databases	and	resources	 NCBI,	EBI,	Araport,	TAIR,	MaizeGDB,	Gene	Ontology	etc.	

Network	Analysis	 Cytoscape	plugins	

Data	Visualization	 Could	 include	 ggplot,	 visualization	 of	 genome-scale	 data	 in	

genome	browsers,	volcano	plots,	heat	maps	etc.	

	165 

We	suggest	two	possibilities	to	implement	across	diverse	institutions	this	integrated	paradigm	for	training	166 

in	this	suite	of	minimal	skill	sets	and	core	competencies.		So	as	not	to	reinvent	the	wheel,	it	may	be	fairly	167 

straightforward	 for	 a	 plant	 biology	 program	 to	 participate	 in	 an	 extant	 integrative	 biology/quantitative	168 

sciences	 program	 within	 their	 respective	 institution,	 if	 those	 programs	 fulfill	 this	 suite	 of	 core	169 

recommended	 competencies/skill	 sets,	 simply	 by	 augmenting	 existing	 programs	 with	 elective	 plant	170 
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courses.	 	Alternatively,	a	program	could	 implement	course	curricula	(both	undergraduate	and	graduate)	171 

that	 have	 been	 described	 in	 the	 literature	 and	 for	 which	 resources	 are	 available.	 	 These	 include	 the	172 

Course	Source	Bioinformatics	Learning	framework,	which	has	been	developed	and	reviewed	by	members	173 

of	 the	 Genomics	 Education	 Partnership,	 the	 Network	 for	 Integrating	 Bioinformatics	 into	 Life	 Science	174 

Education,	the	Genome	Consortium	for	Active	Teaching	of	Next	Gen	Sequencing,	and	the	Howard	Hughes	175 

Medical	 Institute-sponsored	 Bioinformatics	Workshop	 for	 Student/Scientist	 Partnerships	 (Rosenwald	 et	176 

al.,	 2016).	 	 Other	 curricula	 include	 a	 basic	 bioinformatics	 curriculum	 offered	 at	 the	 Free	 University	 of	177 

Berlin	which	emphasizes	fundamentals	in	biology,	mathematics	and	computer	science	(Koch	et	al.,	2008),	178 

or	 a	 first-year	 graduate	 course	 in	 quantitative	 biology	 which	 emphasizes	 the	 integrated	 curriculum	179 

proposed	by	Bialek	and	Botstein	(2004).	The	latter	example	uses	breakthrough	papers	in	diverse	areas	of	180 

biology,	 and	 that	 emphasize	 quantitative	 reasoning,	 theory,	 and	 experimentation,	 to	 convey	 the	181 

importance	of	quantitative	knowledge	to	understand	basic	biological	processes	(Wingreen	and	Botstein,	182 

2006).	 	 	 Similar	 curricula	 have	 been	 implemented	 in	 the	 UK	 and	 are	 considered	 requisite	 training	 for	183 

graduate	 students	 in	plant	biology
6
	 .	 	A	 course	entitled	“Computational	Approaches	 for	 Life	Scientists

8
”	184 

has	also	been	described	which	focuses	on	enriching	the	curriculum	of	life	science	students	with	abstract,	185 

algorithmic	 and	 logical	 thinking	 and	 exposes	 them	 to	 “computational	 culture”	 (Rubinstein	 and	 Chor,	186 

2014).	Such	curricula	should	be	followed	by	a	more	focused	track	in	plant	biology,	again	emphasizing	the	187 

quantitative	premises	underlying	plant	biology.	Finally,	a	capstone	problem-solving	course	that	integrates	188 

teamwork	could	provide	practical	examples	of	how	to	integrate	these	diverse	and	interdisciplinary	subject	189 

materials	to	address	unsolved	questions	in	plant	biology.		190 

	191 

Bridge	 Programs,	 Bootcamps	 and	 Supportive	 Environments	 for	 Quantitative-Based	 Plant	 Biology	192 

Education	193 

	Even	without	creating	new	programs,	supportive	environments	 for	students	 interested	 in	both	194 

plant	 and	 computational	 biology	 could	 help	 lower	 the	 “intimidation”	 barrier.	 For	 example,	 this	 could	195 

involve	 creating	 quantitative	 biology	 interest	 groups.	 Additional	 vehicles	 to	 encourage	 peer-to-peer	196 

learning	could	include	hackathons	(events	that	bring	people	together	in	teams	for	collaborative	computer	197 

programming	 efforts	 to	 creatively	 solve	 a	 problem)	 that	 would	 provide	 training,	 while	 encouraging	198 

interactions	between	plant	biology	and	computational	students.	 199 

	 Recently,	organizations	such	as	Software	Carpentry
7
	and	Data	Carpentry

8
	(which	are	merging	into	200 

one	organization)	and	Amelieff
9
	have	been	created	to	fill	in	some	of	the	gaps	in	education	for	201 

                                                
6
 https://sysmic.ac.uk 

7
 http://ca4ls.wikidot.com 

8
 http://www.datacarpentry.org/ 
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programming	and	data	science	skills.	Since	2015,	these	organizations	have	held	workshops	at	institutions	202 

across	the	world.	Other	short	courses	also	exist	globally	which	focus	on	training	experimental	biologists	in	203 

bioinformatics,	statistical	genetics	and	mathematical	modeling	including	the	Summer	Institute	of	204 

Statistical	Genetics	(USA)
10
,	the	Summer	School	for	Statistical	Genetics	(Japan)

11
,	the	Santa	Barbara	205 

Advanced	Summer	School	of	Quantitative	Biology	(USA)
12
,		the	BioComp	training	series	(Austria),		the	206 

Summer	School	(Germany)
13
,	the	Saclay	Plant	Sciences	summer	schools	(France)

14
,	the	Integrative	207 

Database	training	course	(Japan)
15
,	the	Large	Biological	Data	Analysis	Course	(Japan)

16
,		and	the	Cold	208 

Spring	Harbor	Laboratory	courses
17
	(USA)		in	“Frontiers	and	Techniques	in	Plant	Science”	and	209 

“Programming	for	Biology”.	However,	access	to	these	courses	is	limited,	and	the	course	fees	and	travel	210 

necessary	to	participate	may	present	significant	barriers.		In	order	to	enhance	the	flexibility	and	to	211 

minimize	financial	input,	curricula	could	be	complemented	with	short-courses	or	with	certificates	from	212 

online	Massive	Open	Online	Courses	(MOOCs).	As	a	community,	developing	a	portal	that	provides	reviews	213 

and	ratings	of	these	programs	would	be	a	valuable	resource	(Searls,	2012).		It	should	be	noted,	however,	214 

that	a	recent	report	assessing	boot	camp	programs	(from	2	days	to	2	weeks	in	length)	typically	designed	215 

to	expose	graduate	students	to	data	analysis	techniques	(amongst	others)	found	a	null	difference	when	216 

assessing	research	skill	development,	despite	a	statistically	significant	increase	in	perceived	skill	217 

advancement	(Feldon	et	al.,	2017).	218 

 219 

Funding 220 

	 While	many	academic	institutions	recognize	the	importance	of	these	training	efforts,	they	need	221 

funding	 to	 come	 into	 existence.	 	 The	 United	 States	 National	 Science	 Foundation	 (NSF)	 Research	222 

Traineeship	 (NRT)	Program
18
	Traineeship	Track	specifically	 fosters	 interdisciplinary	training.	The	German	223 

Research	Foundation	provides	funding	for	International	Research	Training	Groups	dedicated	to	a	focused	224 

“study	 abroad”	 research	 program	 and	 a	 structured	 training	 strategy.	 In	 France,	 local	 funding	 agencies	225 

named	LABEX	(for	“Laboratoire	d’Excellence”)	fund	interdisciplinary	interactions	between	local	partners,	226 

                                                                                                                                            
9
 http://amelieff.jp/english/ 

10
 https://www.biostat.washington.edu/suminst/sisg	

11
 http://www.sg.med.osaka-u.ac.jp/school.html	 

12
 https://www.kitp.ucsb.edu/qbio 

13
 GCBN/de.NBI 

14
 https://www6.inra.fr/saclay-plant-sciences_eng/Teaching-and-training/Summer-schools/Summer-

School-2016 
15

 https://biosciencedbc.jp/en/ 
16

 https://biosciencedbc.jp/en/ 
17

 http://meetings.cshl.edu/courseshome.aspx 
18

 https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=505015 
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an	example	being	Numev
19
,	which	promote	interactions	between	computer	and	mathematical	scientists	227 

and	 biologists	 with	 strong	 support	 of	 plant	 scientists.	 The	 CNRS	 (Centre	 National	 de	 la	 Recherche	228 

Scientifique)	regularly	promotes	biology	and	math	interactions	through	specific	grant	calls	led	by	its	Office	229 

for	 Interdisciplinary	 Research	 (PEPS).	 In	many	 of	 these	 cases,	 however,	 proposals	 are	 granted	 only	 for	230 

specific	areas	deemed	to	be	a	‘high	priority’	to	each	funding	organization,	which	may	lower	the	success	of	231 

proposals	that	do	not	fit	easily	into	the	chosen	scope.	232 

	233 

Additional	Recommendations	for	Postdoctoral	Scholars	and	Faculty	234 

At	the	moment,	there	are	no	standardized	modes	of	quantitative	or	interdisciplinary	training	for	235 

postdoctoral	fellows	in	plant	biology.		Thus,	postdoctoral	scholars	often	need	to	identify	their	own	236 

opportunities	for	additional	training,	if	they	have	not	received	such	training	during	their	undergraduate	or	237 

graduate	training.		Many	competitive	postdoctoral	scholar	fellowships	offer	funds	for	additional	training	238 

including	NSF’s	Plant	Genome	Research	Program	Postdoctoral	Research	Fellowships	in	Biology	(PGRP	239 

PRFB)
20
,	the	USDA’s	AFRI	Food,	Agriculture,	Natural	Resources,	and	Human	Sciences	Education	and	240 

Literacy	Initiative	Fellowship	program	(AFRI	ELI)
21
	and	the	National	Institute	of	Health	K99	grant	241 

program
22
.	The	Human	Frontiers	Science	Program	offers	postdoctoral	fellowships	for	citizens	of	many	242 

countries	with	a	special	category	for	cross-disciplinary	fellowships	to	support	training	those	in	243 

quantitative	sciences	in	experimental	biology
23
.	Moreover,	the	European	Union’s	Marie	Skłodowska-Curie	244 

Actions	Individual	Fellowships	offer	funds	for	additional	training	and	for	short	3	to	6	month	visits.			The	245 

Plant	Biology	section	of	the	General	Program	and	the	Young	Scientists	Fund	of	the	National	Natural	246 

Science	Foundation	of	China	(NSFC)	encourages	interdisciplinary	research	that	combine	methods	from	247 

plant	biology	and	other	areas,	such	as	mathematics,	physics,	and	computer	sciences
24
.	 248 

However,	these	fellowships	are	quite	competitive	and	can	be	restricted	to	postdoctoral	scholars	249 

trained	in	certain	disciplines.	What	if	a	postdoctoral	scholar	is	unsuccessful	at	receiving	such	funds	but	still	250 

wishes	 to	 undergo	 interdisciplinary	 training?	 	 In	 Germany,	 there	 is	 a	 growing	 number	 of	 structured	251 

postdoctoral	 fellowship	 programs	 funded	 by	 individual	 research	 institutions	 that	 offer	 institutional	252 

support	in	identifying	interdisciplinary	training	opportunities.	The	Postdoctoral	Fellowship	Program	(PFP)	253 

by	 the	 HelmholtzZentrum	 Munich	 ensures	 that	 fellows	 are	 integrated	 into	 international	 and	254 

                                                
19

 http://www.lirmm.fr/numev/ 
20

 https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503622 
21

 https://nifa.usda.gov/program/afri-education-and-literacy-initiative 
22

 https://www.nhlbi.nih.gov/research/training/programs/postdoc/pathway-parent-k99-r00 
23

 http://www.hfsp.org/funding/postdoctoral-fellowships 
24

 http://www.nsfc.gov.cn/nsfc/cen/xmzn/2017xmzn/01/03sm/001.htm 
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interdisciplinary	 research	 groups,	while	 the	University	 Foundation	 Fellowship	 Program	by	 the	 Technical	255 

University	 of	 Munich	 assists	 with	 the	 identification	 of	 interdisciplinary	 and	 collaborative	 research	256 

programs.	 Additional	 institutional	 solutions	 could	 provide	 the	 resources	 for	 postdoctoral	 participation	257 

(and	 instruction)	 in	 short	 courses	 that	 provide	 training	 in	 a	 particular	 competency,	 or	 could	 integrate	258 

postdoctoral	 scholars	 in	 existing	 courses	 provided	 for	 graduate	 students.	 At	 the	 mid-	 and	 senior-259 

postdoctoral	 scholar	 level,	 perhaps	 the	 best	 way	 is	 to	 provide	 opportunities	 for	 senior	 “biologically-260 

oriented”	 postdoctoral	 scholars	 to	 engage	 in	 dedicated	 training	 via	 short-term	 “residencies”	 (3	 to	 6	261 

months)	 in	 a	 laboratory	 that	 specializes	 in	 quantitative,	 computational,	 or	 modeling	 analyses.	 	 Such	262 

longer-term	dedicated	learning	programs	would	have	the	advantage	of	carrying	out	a	distributed	practice	263 

of	learning,	which	has	proven	more	beneficial	in	long-term	retention	of	concepts,	relative	to	the	shorter	264 

mass	“boot-camp”-type	strategy.	(Feldon	et	al.,	2017).		 265 

	 Short-term	or	long-term	sabbaticals	in	a	computational	lab	are	also	a	good	solution	for	faculty	266 

members	to	acquire	computational	skills.	The	USA	National	Science	Foundation’s	Mid-Career	Investigator	267 

Awards	in	Integrative	Organismal	Biology	(MCA-IOS)
25
	could	be	a	source	of	funding	for	associated	travel	268 

costs.	The	German	Academic	Exchange	Service	(DAAD)	and	the	French	AGreskills	federal	programs,	as	well	269 

as	the	local	LabEx	programs	(mentioned	previously)	financially	support	sabbaticals	for	this	purpose.		270 

Alternatively,	it	may	be	better	for	faculty	to	focus	on	how	they	can	better	assess	and	support	research	271 

activities	in	their	own	lab	and	be	able	to	better	understand	how	to	review	papers	or	grants	that	contain	272 

research	of	an	interdisciplinary	nature.	Short	workshops	could	be	developed	to	provide	training	to	faculty	273 

on	quantitative	and	computational	methods	and	how	to	conduct	high-quality	computational/quantitative	274 

research.	275 

 276 

Computational	Training	for	Industry 277 

The	key	attributes	for	researchers	in	industry	with	respect	to	projects	involving	computational	approaches	278 

are	 strong	 interpersonal	 skills	 in	 teamwork,	 collaboration,	 communication,	 and	 project	 management.	279 

Industry	requires	 individuals	who	are	expert	 in	one	specific	area	but	have	the	breadth	of	understanding	280 

that	 allows	 them	 to	 appreciate	 and	 respect	 the	 input	 of	 other	 disciplines	 to	 the	 overall	 project.	 This	281 

includes	familiarity	with	biological	databases	and	quantitative	biology	approaches.	In	addition,	employees	282 

in	industry	benefit	from	training	programs	which	expose	workers	in	academia	and	industry	to	each	other’s	283 

ways	 of	 working.	 The	 European	 funding	 model	 encourages	 partnerships	 between	 researchers	 and	284 

industry	(e.g.,	the	bread	wheat	initiative	led	by	INRA
26
).	Another	model	is	to	embed	master's	or	doctoral	285 

students	 in	 industry	 placements	 for	 three	 to	 six	 months.	 Two	 UK-specific	 examples	 of	 this	 are	 the	286 

                                                
25

 https://www.nsf.gov/pubs/2017/nsf17508/nsf17508.htm 
26

 http://www.wheatinitiative.org 
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compulsory	 program	 of	 the	UK	 Biotechnology	 and	 Biological	 Sciences	 Research	 Council	 (BBSRC),	 called	287 

“PIPS”	(Professional	Internships	for	PhD	Students
27
),	and	the	Flexible	Interchange	Program	(FLIP

28
)	which	288 

operates	at	the	postdoctoral	scholar	and	faculty	level	to	promote	training	and	exchange	between	industry	289 

and	 academic	 partners.	 An	 additional	 twist	 on	 this	 theme	 is	 provided	 by	 the	 Chilean	 scientific	 funding	290 

agency	 CONICYT	 that	 offers	 a	 post-graduate	 thesis	 in	 industry
29
.	 	 At	 the	 institutional	 level,	 research	291 

institutions	 dedicated	 to	 applied	 sciences	 and	 industrial	 cooperation,	 like	 the	 Fraunhofer	 Institutes	 in	292 

Germany,	traditionally	work	in	close	cooperation	with	industry	including	master's	and	doctoral	students.		293 

	294 

Arabidopsis	Training	for	Plant-Curious	Data	Scientists	295 

A	 rapidly	growing	world	population	and	a	 changing	climate	demand	development	of	 improved	296 

crop	varieties	that	yield	more	with	fewer	inputs,	as	well	as	advances	in	renewable	fuels,	and	biomaterials.		297 

Moving	 forward,	 a	 community-wide	 effort	 to	 promote	 the	 value	 of	 plant	 science	 research	 to	 data	298 

scientists	 is	 needed.	 	 Arabidopsis	 training	 for	 “plant-curious”	 data	 scientists	 should	 emphasize	 1)	 how	299 

knowledge	 gained	 from	 Arabidopsis	 research	 is	 relevant	 to	 crop	 improvement,	 and	 2)	 how	 to	 utilize	300 

Arabidopsis	as	a	tool	to	rapidly	test	gene	function	and	optimize	emerging	technologies	prior	to	delivery	to	301 

a	 crop	 system.	 	 The	 advent	 of	 gene	 editing	 technologies,	 such	 as	 CRISPR/Cas9-based	 approaches	 to	302 

specifically	 target	 loci	 for	 site-directed	 mutagenesis	 or	 sequence	 replacement,	 introduces	 a	 new	303 

paradigm.	 While	 these	 technologies	 create	 opportunities	 for	 targeted	 mutagenesis	 directly	 in	 crop	304 

species,	significant	bottlenecks	in	the	transformation	process	limit	the	extent	to	which	these	experiments	305 

can	 be	 performed	 in	 crops.	 Therefore,	 Arabidopsis	 can	 be	 used	 to	 more	 quickly	 and	 efficiently	 test	306 

functional	hypotheses	and	prioritize	experiments	for	the	more	labor-,	cost-,	and	time-intensive	studies	in	307 

crops.		308 

The	outcome	of	an	active	community	of	Arabidopsis	researchers	is	the	detailed	curation	of	genes	309 

and	 pathways	 in	 the	 Arabidopsis	 genome,	 perfect	 for	mining	 by	 data	 scientists.	 This	 curation	 data	 has	310 

been	leveraged	for	annotating	orthologous	genetic	components	in	other	species,	and	thus	is	an	invaluable	311 

resource.	 It	 is	 likely	 that	 many	 fundamental	 biological	 processes	 are	 conserved	 across	 plant	 species	312 

(McGary	et	al.,	2010;	Oellrich	et	al.,	2015).	As	an	example,	agricultural	biotechnology	industries	make	use	313 

of	 this	 information	 through	 large-scale	 text	 mining	 algorithms	 combined	 with	 comparative	 genomics	314 

approaches	to	project	annotations	and	associations	onto	crop	models	(Holtan	et	al.,	2011;	Preuss	et	al.,	315 

2012).	 	 The	 depth	 and	 breadth	 of	 these	 resources	 in	 Arabidopsis	 also	 positions	 this	 organism	 at	 the	316 

                                                
27

 http://www.bbsrc.ac.uk/funding/filter/professional-internships/ 
28

 http://www.bbsrc.ac.uk/funding/filter/flexible-interchange-programme/ 
29

 http://www.conicyt.cl/wp-content/uploads/2012/07/Brochure-Institucional-2011-Inglés.pdf 
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forefront	of	predictive	modeling	in	plants	through	systems	biology	approaches.	Moving	forward,	there	is	317 

an	immediate	need	to	make	better	use	of	existing	data	from	Arabidopsis	studies	by	developing	new	data	318 

integration	 paradigms	 aimed	 at	 predictive	modeling	 and	 subsequent	 discovery.	 Using	 Arabidopsis	 as	 a	319 

framework	 for	 how	 to	 integrate	 diverse	 datasets	 should	 facilitate	 similar	 analyses	 in	 species	 with	 less	320 

developed	resources.	321 

On	 the	 other	 hand,	 Arabidopsis	may	 not	 be	 the	most	 appropriate	model	 to	 understand	 traits	322 

related	to	domestication,	physiology	such	as	C4	photosynthesis,	or	other	aspects	of	plant	biology	such	as	323 

secondary	metabolism.	To	address	such	questions	alternative	model	systems	are	being	established;	this	324 

includes	Setaria	viridis	and	Brachypodium	distachyon	as	model	grass	species	 (Brutnell,	2015;	Brutnell	et	325 

al.,	2015)	and	Camelina	sativa	for	metabolic	engineering	of	co-products	(Bansal	and	Durrett,	2016;	Zhu	et	326 

al.,	2016).	We	recommend	that	 the	communities	developing	these	new	systems	 leverage	best	practices	327 

from	the	Arabidopsis	community,	particularly	with	reference	to	genome	annotation	and	data	curation	for	328 

these	 species.	 Fostering	 such	 interactions	 between	 scientists	 could	 occur	 through	 cross-species	329 

conferences	in	plant	science;	for	example,	a	Keystone	Meeting	focused	on	“Translational	Plant	Biology”.	330 

Inclusion	of	data	scientists	in	these	forums	will	be	critical	to	ensure	maximal	usefulness	of	these	emerging	331 

model	systems.	332 

	333 

Collaborations	334 

Taking	advantage	of	large-scale	datasets	and	technologies	in	order	to	reveal	novel	biological	conclusions	335 

will	require	groups	of	people	with	diverse	expertise,	skill	sets,	and	at	different	career	levels	to	work	well	336 

together.	 Thus,	 in	 order	 to	 train	 the	 next	 generation	 of	 Arabidopsis	 biologists	 in	 quantitative	 and	337 

computational	biology,	we	also	need	to	train	scientists	on	how	to	 initiate,	define,	manage	and	maintain	338 

effective	collaborations.	339 

	340 

Identifying	collaborators	341 

It	is	often	difficult	for	biologists	to	develop	their	research	questions	to	include	tangible	opportunities	for	342 

quantitative	experts,	or	 to	effectively	articulate	their	specific	needs	 in	a	vocabulary	 that	 is	accessible	 to	343 

experts	 in	 those	 fields.	 Face-to-face	 communication	 is	 particularly	 important	 and	 thus	we	attribute	 the	344 

highest	priority	 to	 the	 identification	of	 regional	collaborators.	 Inclusive,	 regular,	cross-faculty	and	cross-345 

institute	 interactions	 at	 all	 career	 levels,	 with	 the	 clear	 objective	 to	 also	 empower	 early-career	346 

researchers	to	take	active	roles,	are	required	to	 initiate	 local	collaborations.	 In	order	to	 implement	role	347 

models	for	such	collaborative	efforts,	hiring	or	recruiting	researchers	who	already	work	across	biological	348 

science	and	statistical,	computational,	or	mathematical	departments	can	be	beneficial	due	to	their	ability	349 

to	 expose	 biological	 problems	 to	 theoreticians	 who	 might	 not	 typically	 see	 such	 data	 as	 valuable	 to	350 
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analyze.	 However,	 the	 infrastructure	 for	 promotion	 and	 merit	 within	 most	 academic	 institutions	 has	351 

generally	not	advanced	sufficiently	to	effectively	hire	and	maintain	theoreticians	at	the	tenure-track	level	352 

in	biology	departments.		353 

Collaborations	between	disciplinary	experts	 can	be	accelerated	 through	 intensive	 trainings	and	354 

activities	that	promote	networking	and	knowledge	sharing.	In-depth,	week-long	immersion	sessions	have	355 

proven	 effective	 at	 providing	 both	 the	 biologist	 and	 the	 quantitative	 expert	 with	 the	 proper,	 shared,	356 

vocabulary,	resulting	in	productive	collaborations.		For	example,	the	“Maths	in	the	Plant	Sciences”	Study	357 

Group	 in	 the	 United	 Kingdom
30
	 has	 been	 successful	 in	 generating	 in	 short	 timeframes	 both	 new	358 

collaborations	and	funded	grant	applications.	 359 

Co-supervision	of	graduate	students	by	a	biologist	and	theoretician	is	another	effective	strategy	360 

to	develop	a	collaboration.	Initiating	cross-disciplinary	cohorts	of	graduate	students	is	another	approach.		361 

Complementing	collaborative	interactions,	or	in	the	absence	of	local	cross-disciplinary	opportunities,	the	362 

availability	 of	 more	 high-quality	 online	 video	 material	 outlining	 advances	 in	 current	 plant	 biology,	 for	363 

example,	 in	 a	 jargon-free	 format	 would	 be	 useful	 for	 quantitative	 experts.	 In	 the	 long	 term,	 graduate	364 

students	and	postdoctoral	scholars	who	have	been	trained	in	an	interdisciplinary	environment	will	 likely	365 

generate	the	best	collaborations.	By	working	together	from	an	early	career	stage,	a	deep	appreciation	of	366 

diverse	 abilities	 will	 be	 engendered	 and	 the	 ability	 to	 communicate	 freely	 will	 enable	 new	 research	367 

avenues	to	be	pursued.		368 

	369 

Defining	collaborations	370 

An	 effective	 multi-disciplinary	 collaboration	 must	 go	 beyond	 the	 mere	 provision	 of	 a	 service	 by	 a	371 

collaborator.	 	As	such,	before	 initiating	a	project,	all	partners	should	 jointly	articulate	and	agree	on	 the	372 

scientifically	 interesting	 research	 questions	 and	 discuss	 experimental	 design	 and	 data	 analysis.	 A	373 

management	 plan	 should	 involve	 contributors	 at	 all	 career	 levels	 and	 consider	 the	 benefit	 for	 each	374 

contributing	 individual.	 It	 is	 important	 for	 collaborators	 to	 recognize	 differences	 in	 cost	 bases	 for	375 

biological	 versus	 theoretical	 research	 (e.g.	 experimental	 laboratory-associated	 costs	 are	 quite	 high	376 

whereas	 in	 the	 theoretical	 sciences,	 experts	 command	 higher	 salaries	 than	 experimental	 biologists).	 A	377 

realistic	 assessment	 of	 project	 timelines	 and	 deliverables	 is	 critical.	 Furthermore,	 a	 plan	 to	 include	378 

periodic	 assessment	 of	 progress	 with	 respect	 to	 the	 defined	 timelines	 and	 deliverables	 should	 be	379 

implemented	 to	 allow	 for	 adaptation,	 with	 the	 understanding	 that	 things	 do	 not	 always	 proceed	380 

expectedly.	Contingency	plans	are	also	ideal	to	establish	at	the	start,	as	are	plans	for	publications,	since	381 

biological	 and	 theoretical	 fields	 have	 fundamentally	 differing	 authorship	 rules	 and	 norms,	 publication	382 

strategies,	and	career	recognition	criteria.	 It	 is	 important	to	discuss	and	specify	the	timeframes	that	are	383 
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 https://www.cpib.ac.uk/outreach/mpssg/	 
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likely	 for	 the	publication	of	 biological	 data	 and	how	 the	development	 of	 novel	 theory	 or	 analysis	 tools	384 

could	be	published	prior	to	their	use	in	biological	data	analysis.	To	ensure	recognition,	CRedit
31
	(through	385 

ORCid)	 comprises	 structured	vocabulary	 for	assigning	author	credit.	 	 It	 is	also	critical	 to	put	 in	place	an	386 

explicit	plan	for	the	possibility	of	managing	disagreements	that	may	arise	as	well	as	the	conditions	under	387 

which	a	collaborator	might	exit	a	project.		388 

In	 practice,	 project	meetings	between	 collaborators	 should	be	held	 at	more	 frequent	 intervals	389 

than	may	normally	occur	in	within-discipline	collaborations.	This	is	especially	true	at	the	beginning	of	the	390 

project	where	the	development	of	mutual	understanding	and	the	building	of	close	working	relationships	391 

among	the	researchers	are	essential.	 If	 the	collaboration	 is	between	 local	groups,	 regular,	e.g.	monthly,	392 

joint	 meetings	 would	 be	 ideal.	 If	 the	 collaboration	 involves	 partners	 at	 a	 considerable	 geographic	393 

distance,	then	monthly	web-based	meetings	are	necessary	and	the	collaboration	would	benefit	from	face-394 

to-face	meetings	 with	 all	 team	members,	 ideally	 once	 every	 six	 months	 at	 a	 minimum.	 Budgeting	 for	395 

necessary	travel	should	be	considered	at	the	time	of	project	design.	Furthermore,	the	physical	movement	396 

of	 postdoctoral	 scholars	 or	 graduate	 students	 between	 groups	 for	 reciprocal	 training	 or	 joint	 work	397 

contributes	 highly	 to	 the	 effective	 integration	 of	 projects.	 Appreciation	 of	 differences	 in	 language	 or	398 

culture	should	be	conveyed,	as	should	reciprocal	trust	and	respect,	interest	in	the	mutual	fields,	and	the	399 

willingness	to	learn	from	the	expertise	of	a	partner.	400 

	401 

Case	Study:	Training	Arabidopsis	Biologists	for	High-Throughput	Phenotyping 402 

As	a	concrete	example	for	how	scientists	can	be	trained	and	educated	in	an	interdisciplinary,	collaborative	403 

fashion	using	experimental	biology	and	quantitative	approaches,	we	consider	phenomics	as	a	case	study.	404 

Phenomics	 is	 an	emerging	 field	 at	 the	 intersection	of	plant	biology,	 engineering,	 computer	 science	and	405 

mathematics	which	has	 led	to	a	deeper	understanding	of	mechanisms	for	acclimation	to	environmental	406 

variation	 (Miller	 et	 al.,	 2007;	 Slovak	 et	 al.,	 2014;	 Campbell	 et	 al.,	 2015;	 Fahlgren	 et	 al.,	 2015;	 Rellán-407 

Álvarez	et	al.,	2015).		These	studies	evolved	from	the	need	to	characterize	phenotypic	traits	across	large	408 

numbers	of	genotypes	(Chen	et	al.,	2014;	Cruz	et	al.,	2016;	Ge	et	al.,	2016).	 409 

A	project	using	phenomics	 can	be	 considered	as	a	pipeline	with	 three	 identifiable	 stages:	data	410 

acquisition,	 data	 analysis,	 and	 data	 modeling	 (Figure	 1),	 all	 to	 answer	 a	 clear	 biological	 question.		411 

Generally,	 this	 question	 is:	 what	 genes	 or	 genetic	 regulation	 underlie	 a	 trait	 of	 interest?	 Generally,	 a	412 

consortium	of	 scientists	 is	needed	 to	carry	out	a	phenomic-scale	project.	 	Consortium	members	 should	413 

have	diverse	skills,	be	able	to	interact	collaboratively,	and	each	researcher’s	role	should	be	well	defined.  414 

Prior	 to	data	acquisition,	 consortium	members	 should	collectively	discuss	and	agree	upon	experimental	415 
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design,	 biological	 replicates,	 statistical	 power,	 the	 type	 of	 data	 to	 be	 acquired	 and	 appropriate	models	416 

used	for	data	analysis.		The	data	acquisition	stage	includes	the	use	of	sensors	such	as	cameras,	fluorescent	417 

measurement	 devices,	 or	 any	 tool	 that	 can	 make	 a	 measurement	 when	 connected	 to	 a	 computer	 to	418 

measure	 a	 phenotype	 associated	 with	 a	 trait.	 This	 stage	 often	 leverages	 expertise	 in	 the	 engineering	419 

disciplines	 and	 may	 involve	 robotics.	 Input	 from	 biologists	 is	 needed	 in	 order	 to	 ensure	 that	 a	420 

physiologically	 relevant	aspect	of	plant	growth	or	 response	 to	 the	environment	 is	being	 captured.	 	 The	421 

output	of	 this	 stage	 is	 the	 generation	of	 raw	data	 files.	 The	 analysis	 stage	 includes	 the	 computer	 code	422 

needed	 to	 extract	 features	 from	 the	 raw	 data	 files	 -	 image	 analysis	 is	 a	 good	 example	 -	 to	 produce	423 

“measurements”.	 This	 stage	 also	 includes	 ‘workflow’	 software,	 which	 brings	 the	 raw	 data	 from	 the	424 

sensors	to	the	analysis	algorithms.	The	analysis	phase	passes	processed	data,	or	results,	to	the	next	stage.	425 

Again,	input	from	an	“experimental”	biologist	is	needed	to	ensure	that	these	data	are	within	the	expected	426 

range	 of	 values.	 	 The	 modeling	 stage	 involves	 synthesizing	 results	 for	 the	 purpose	 of	 generating	 new	427 

biological	 conclusions.	 A	 typical	 example	 would	 be	 integrating	 phenotype	 results	 with	 genotype	428 

information	 to	 complete	 a	 statistical	 genetic	 analysis.	 	 However,	 the	 modeling	 stage	 can	 also	 be	429 

conceptually	general	enough	to	include	any	sort	of	analysis	that	converts	phenotype	measurements	into	a	430 

new	biological	understanding.	 431 

	432 

 433 

 434 

 435 

Figure	1.	A	computation-based	phenotyping	project	 requires	a	software	continuum	that	 takes	 raw	data	436 
generated	 by	 acquisition	 activities,	 analyzes	 the	 raw	 data,	 integrates	 them	with	 different	 data	 such	 as	437 
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genotype	 or	 environmental	 information,	 and	 then	 produces	 new	 understanding	 through	 modeling	438 
activities	such	as	statistical	associations.	The	new	understanding	leads	to	new	questions. 439 

 440 

	 Phenomic	projects	using	Arabidopsis	are	 ideal	 for	training	students	 in	collaborative,	 innovative,	441 

and	 interdisciplinary	 approaches.	Outreach	and	 training	modules	on	plant	phenotyping	naturally	bridge	442 

multiple	disciplines	including	plant	biology,	computer	science,	mathematics,	and	engineering,	and	provide	443 

alternative	ways	of	 attracting	 students	 to	 the	plant	 sciences.	 Single-board	 computers	 like	Raspberry	Pi,	444 

Hummingboard,	or	Cubieboard	are	low-cost	microcomputers	originally	built	for	educators,	hobbyists	and	445 

researchers,	and	are	currently	being	incorporated	into	plant	phenotyping	research	and	teaching	modules.	446 

Online	 resources	 provide	 tutorials	 to	 set	 up	 imaging	 systems	 (Table	 2),	 however	 next-generation	447 

resources	should	be	designed	in	collaboration	with	educational	experts. 448 

 449 

Table	2:	Online	resources	providing	tutorials	to	setup	imaging	systems. 450 

Resource	 Description	 Website	 Reference	

Scikit-image	
examples	and	
tutorials	

Comprehensive	list	of	
imaging	tasks	with	
example	code.	Scikit-image	
is	an	imaging	library	for	
python	

http://scikit-
image.org/docs/dev/auto_ex
amples/	

(Van	der	Walt	et	al.,	2014)	

OpenCV	tutorial	 A	collection	of	turtorial	for	
openCV	in	C++.	Open	CV	is	
a	standard	computer	vision	
library	available	in	C++,	
python	and	other	
languages	

http://docs.opencv.org/2.4/d
oc/tutorials/tutorials.html	

(Bradski	and	Kaehler,	
2008)	

Mahotas	
documentation	

Mahotas	is	a	python	library	
written	in	C++.	The	
documentation	provides	
many	examples	for	
standard	imaging	tasks	

http://mahotas.readthedocs.
io/en/latest/	

(Coelho,	2013)	

DIRT	tutorials	
and	videos	

DIRT	(Digital	Imaging	of	
Root	Traits)	is	an	online	
root	phenotyping	platform	
that	allows	users	to	submit	
root	images	for	
phenotyping.	The	website	
contains	tutorial	and	
videos	for	non-technical	
users	as	well	as	
documentation	for	
developers.	It’s	source	
code	is	freely	available.	

Online	interface:	
http://dirt.iplantcollaborativ
e.org/get-started	
	
Source	Code:	
https://github.com/Computa
tional-Plant-Science/DIRT	
	
	
	
	

(Bucksch	et	al.,	2014)	
	
(Das	et	al.,	2015)	
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Phenotiki	 Hardware	(Raspberry	Pi)	
and	software	for	analyzing	
growth	chamber	collected	
phenotyping	data	

http://phenotiki.com/getting
_started.html	

(Minervini	et	al.,	2014)	
	
(Giuffrida	et	al.,	2015)	

 451 

Executive	Summary	452 

Historically,	 the	 Arabidopsis	 research	 community	 has	 been	 able	 to	 effectively	 combine	 efforts	453 

internationally	and	to	provide	a	collective	voice	regarding	our	needs	to	facilitate	fundamental	biological	454 

discoveries.	 	We	propose	 that	such	synergism	be	employed,	using	 the	specific	 recommendations	 in	 this	455 

commentary	as	a	guide,	 in	training	this	next	generation	of	plant	biologists	to	be	able	to	understand	and	456 

implement,	in	a	rigorous	manner,	quantitative	approaches	in	their	research.	457 

	 Specifically	–	for	undergraduate	and	graduate	training	we	recommend	an	overhaul	in	curriculum	458 

design	for	plant	biology	majors	or	plant	biology	graduate	students	that	involves	a	seamless	integration	of	459 

concepts	 in	math,	physics,	 statistics	and	computation	within	courses	 that	 illustrate	biological	processes.	460 

This	could	be	done	according	the	recommendations	of	Bialek	and	Botsein	(2004).	We	have	adapted	a	set	461 

of	core	competencies	and	minimal	skill	sets,	adapted	from	those	of	Tan	et	al.	(2009),	Rubinstein	and	Chor	462 

(2014),	and	Welch	et	al.	(2014),	and	we	strongly	recommend	that,	when	designing	or	revising	curricula	for	463 

this	 next	 generation	 of	 plant	 biologists,	 that	 these	 core	 competencies	 and	 skills	 are	 kept	 in	mind.	 	We	464 

have	highlighted	above	a	set	of	curricula	based	on	these	and	which	are	publicly	available	either	within	the	465 

US	or	internationally;	these	may	serve	as	a	further	resource.		While	there	is	no	existing	training	standard	466 

for	 postdoctoral	 scholars	 in	 plant	 biology,	we	have	 identified	 a	 suite	 of	 fellowships	 for	which	 postdocs	467 

may	 apply	 and	which	 facilitate	 independent	 interdisciplinary	 training.	 	We	 also	 advocate	 for	 programs	468 

which	offer	institutional	support	in	identifying	interdisciplinary	and	quantitative	training	for	postdocs	who	469 

wish	to	pursue	such	opportunities.	 	Additional	opportunities	are	outlined	for	faculty	members	who	wish	470 

to	undergo	this	training.				Collaborations	are	often	the	cornerstone	of	successful	quantitative	projects	and	471 

we	provide	concrete	recommendations	to	promote	effective	and	meaningful	collaborations	that	we	hope	472 

will	 guide	 institutional	 and	 cross-institutional	 interdisciplinary	 efforts.	 	We	 collectively	 advocate	 for	 the	473 

continued	 use	 of	 Arabidopsis	 as	 an	 ideal	 organism	 for	 use	 in	 quantitative	 training	 efforts.	 For	 cases	 in	474 

which	 other	 organisms	 are	 more	 appropriate,	 we	 recommend	 leveraging	 best	 practices	 from	 the	475 

Arabidopsis	 community	 (e.g.	 efforts	 in	 genome	annotation	and	data	 curation).	 	Our	 case	 study	 in	high-476 

throughput	Arabidopsis	phenotyping	provides	an	example	of	effective	 interdisciplinary	and	quantitative	477 

training	and	of	the	merging	of	quantitative	and	biological	science	integral	for	plant	breeding	in	the	future.					478 

479 
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