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I. Abstract 

Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by the 

progressive loss of dopaminergic neurons of the substantia nigra pars compacta (SNpc) in the 

brain with an unknown cause. Current pharmacological treatments for PD are only 

symptomatic and there is still no cure for this disease nowadays. In fact, transplantation of 

human fetal ventral midbrain cells into PD brains have provided a proof of concept that cell 

replacement therapy can be used for some PD patients, beneficial for improving their 

symptoms. However, the ethical and practical issues of human fetal tissue will inevitably 

limit its widespread clinical use. Therefore, it is essential to find alternative cell sources for 

the future cell transplantation for PD patients. With recent development in stem cell 

technology, here we review the different types of stem cells and their main properties 

currently explored, which could be developed as a possible cell therapy for PD treatment. 

 

II. Introduction 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, which 

affects about 1% of the population over the age of 60 [1]. One of the central pathological 

features of PD is the progressive loss of nigrostriatal dopamine (DA), which is accompanied 

by the presence of α-synuclein containing cytoplasmic inclusions known as Lewy bodies. The 

loss of DA neurons results in the characteristic motor symptoms of PD such as muscle 

rigidity, tremors and bradykinesia along with some of the cognitive deficits. Although the 

familial forms of the disorder are associated with some genetic defects, the aetiology of PD 

remains unknown in the vast majority of sporadic cases. 

To date, there is no cure for this debilitating, neurological condition. Currently, the main 

clinical treatment for PD is dopamine replacement therapy using L-dihydroxyphenylalanine 

(L-DOPA) and/or dopamine receptor agonists. Pharmacotherapy can improve parkinsonian 

symptoms during the initial stage of PD, but the efficacy of pharmacotherapy is gradually lost 

and long-term treatment with L-DOPA consequently produces grave side effects, such as on–

off fluctuations and drug-induced dyskinesias [2,3]. 

In addition, pharmacotherapy cannot delay the progression of the loss of DA neurons, and 

also cannot recover the lost DA neurons. As a result, there is a need for the development of 

regenerative therapies for PD. 

Parkinson’s disease (PD) is one of the candidate diseases suitable for cell transplantation 

therapy since successful clinical experiments have accumulated using human fetal tissue 

grafting for PD patients.  

In pioneering work about three decades ago, it was shown that DA neuroblasts from the fetal 

ventral mesencephalon (VM) could survive long term in the adult brain and re-innervate the 

striatum of 6-hydroxydopamine (6-OHDA)-induced parkinsonian animal models, with a 

consequent improvement in most but not all of their behavioral responses [4-6]. 

Later the first clinical trial of cell transplantation therapy for PD patients was reported in 

1987 using aborted human fetal VM tissue [7]. 

So far, several hundreds of PD patients have been treated as part of this type clinical trial. 

Some grafted PD patients have exhibited drastic improvements in their symptoms, but only 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCUQFjABahUKEwjk0NT8yeLIAhWI8RQKHczyDl8&url=https%3A%2F%2Fmedicine.tcd.ie%2Fphysiology%2Fstaff%2Fcaldwelm%2F&usg=AFQjCNEPXhUw_jXw4_sIdE-K8KEuVNeDBw&sig2=ygBl9HTjksg_CRRJpAZ5XQ
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modest changes in others. These initial studies led on to bigger studies which then reported 

side effects in some patients in receipt of such grafts in the form of involuntary graft induced 

movements [8]. 

In addition, not enough fetal tissue is available to treat the large numbers of people with 

Parkinson’s, and the use of fetuses also raises ethical concerns, which along with logistic and 

technical issues will significantly restrict extensive use of fetal tissue for the treatment of 

Parkinson’s disease. Therefore, it is necessary to develop efficient methods to generate 

midbrain DA neurons from other possible sources such as stem cells instead of human VM 

tissue for the treatment of Parkinson’s patients. 

In this review, we highlight the recent advances in different DA induction protocols and 

characterization of various types of stem cells such as neural stem cells (NSCs), embryonic 

stem cells (ESCs) and induced pluripotent stem cells (iPSCs), and will also discuss their 

prospects to replace lost midbrain DA neurons for the cell transplantation therapy for PD 

(Figure 1). 

 

 

 
 
Figure 1. Schematic diagram of developing stem cells-derived Dopamine (DA) neurons for the 

treatment of Parkinson’s disease (PD). ESCs: embryonic stem cells; iPSCs: induced pluripotent stem 

cells; NSCs: neural stem/progenitor cells; MSCs: mesenchymal stem cells; DPSCs: dental pulp stem 

cells. 

 

 

 

 

 

 

 

 

 

III. Stem cell sources for PD therapy 

In order to move to clinical applications, a readily available and renewable source of cells 

with the potential to differentiate into fully functional DA neurons after transplantation is 

essential. If DA neurons can be generated from non-dopaminergic cell sources in vitro 

through the differentiation of stem cells, and subsequently transplanted into the brain with the 
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primary aim of providing appropriate, regulated levels of DA release in the striatum, then 

there is promise of constricting the disease process and recovering motor function in PD 

patients. Research has demonstrated that transplanted DA neurons generated from stem cells 

are capable of interconnecting with the host and these transplanted neurons can form 

neuronal circuitry, enabling directed DA release and the restoration of normal movements.  

1. Neural stem cells(NSCs) 

Neural stem cells (NSCs) or progenitor cells (NPCs) can be derived from embryonic stem 

cell sources, and they have also been shown to exist in the adult brain [9]. Transplantation of 

NSCs in the brain attenuates physical or functional deficits associated with injury or disease 

in the CNS via cell replacement, the release of specific neurotransmitters, and the production 

of neurotrophic factors that protect injured neurons and promote neuronal growth.  

Adult neural stem cells are mainly in the hippocampus and subventricular zone (SVZ) near 

the lateral. Madhavan and colleagues reported stimulation of endogenous cells after 

transplantation and hypothesized that there exists a synergism between the actions of 

endogenous and grafted NPCs after transplantation that would lead to neuroprotection in a 6-

OHDA rat model of PD [10]. However, controversy regarding neurogenesis in the SVZ in PD 

models persists [11]. 

Neural stem cells (NSCs) obtained from human fetal tissue were the pioneered cell type 

studied for PD therapy following the isolation and propagation of NSCs [12]. Since then, 

researchers have employed varying methods to generate DA neurons from NSCs, including 

treating the cells with cytokines and neurotrophic factors such as GDNF in vitro [13]. It has 

also been demonstrated the transplanted NPCs derived DA cells illustrated high survival rates 

which improved the symptoms of PD [14], and human fetal neural stem cells survive long 

term in the midbrain of dopamine-depleted monkeys after GDNF overexpression and project 

neurites toward an appropriate target [15]. Consistently, intrastriatal GDNF gene transfer by 

inducible lentivirus vectors can protect dopaminergic neurons in a rat model of parkinsonism 

and intrastriatal transplantation of adult human neural crest-derived stem cells improves 

functional recovery in parkinsonian rats [16, 17]. 

The important role of Bcl-xL has been revealed in the generation of DA neurons from NSCs. 

Transcription factors associated with the production of DA neurons such as Nurr1, Pitx3, 

Lmx1b, and DAT are induced by Bcl-xL establishing a high yield of DA neurons 

characteristic of the lost cells in the SNpc [18]. We have demonstrated when Pitx3 was 

overexpressed in NSCs, there was an increase in the differential potential of the generated 

DA neurons and a substantial improvement in motor function was observed following the 

transplantation of the grafts containing VM and NSCs overexpressed with Pitx3 in a 6-

OHDA animal model [19].  Whereas co-expression of Nurr1 and Brn4 promoted NSCs to 

differentiate into dopaminergic neurons in vivo, increased the level of DA neurotransmitter in 

the striatum, resulting in behavioral improvement of PD rats. Brn4 and tyrosine hydroxylase 

(TH) synergistically promote the differentiation of neural stem cells into dopaminergic 

neurons and increase cell survival and DA release of dopaminergic neurons [20,21]. 

Recently, it has been found that induced neural stem cells (iNSCs) that over-expressed 

Lmx1a (iNSC-Lmx1a) gave rise to an increased yield of dopaminergic neurons and secreted 

a higher level of dopamine in vitro and mice that received iNSC-Lmx1a vs. iNSC-GFP 

exhibited better recovery [22]. 

However, major hurdles in relation to the use of NSCs for the generation of DA neurons need 

to be overcome before they can be clinically applied for the treatment of PD. Tt is essential 

that transplants of NSC/progenitor cells justify their capability to improve the refined motor 

problems of PD, and long-term culturing of NSC/progenitors and their stable differentiation 

potential can be guaranteed [13].   

http://www.sciencedirect.com/science/article/pii/S030439401400322X#200001901
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Therefore, it has been proposed that the governed differentiation of induced pluripotent stem 

cells (iPSs) or ESC-human derived cells may be better employed for the future generation of 

DA neuronal cell types, although one advantage of NSCs is that they have yet to be shown to 

form the same type of tumours after transplantation. 

2. Embryonic stem cells (ESCs) 

Embryonic stem cells (ESCs) have the ability to develop into any cell type of the body. 

Research has revealed that ESCs may generate DA neurons at a specific developmental stage; 

that is prior to or during the cells’ fate to a neural phenotype, therefore influencing the 

application of sonic hedgehog (Shh) and fibroblast growth factor 8 (FGF8) at the height of 

the production of neural Nestin+ and Sox1+ progenitors. At the ESC differentiation stage, 

factors such as Shh and FGF8 can be induced to provide a ~30% TH+ neuronal population 

observed in culture [23]. Another study has shown that differentiation of human ES cells into 

VM dopaminergic neurons requires a high activity form of Shh, FGF8a and specific 

regionalization by retinoic acid (RA) [24]. 

In addition, when NPCs derived from ESCs are exposed in vitro to both FGF8 and Shh, they 

are capable of differentiating into Lmx1a-DA neurons [25]. Another study illustrated the 

usefulness of FGF20 and FGF2 involved in the differentiation of DA neurons from human 

ESCs. These findings will aid the efficient generation of DA neurons from ESC required for 

cell replacement therapies for PD [26]. Hong and associates have established that 

overexpression of each factors, Nurr1, Pitx3, and Lmx1a robustly promoted the dopaminergic 

differentiation of ESC-NP cells exposed to SHH and FGF8 and demonstrated that key 

midbrain DA (mDA) regulators (Nurr1, Pitx3, and Lmx1a) play overlapping as well as 

distinct roles during neurogenesis and neurotransmitter phenotype determination of mDA 

neurons. This further proved the link of generation of DA neurons from ESCs with the 

overexpression of genes and transcription factors, such as Nurr1, Pitx3 and Lmx1a [27,28]. 

Human ESCs also display electrophysiological features of DA neurons and most importantly 

are capable of DA release in vitro whilst demonstrating gene expression. Several studies have 

illustrated methods to enhance the generation of DA neurons from human ESCs [28,29].  

These findings highlight the necessity for the identification of differentiation and survival 

mechanisms and the eradication of factors responsible for excessive proliferation, required 

for protocols for cell replacement therapies today. Scientists have also illustrated that a high 

percentage of ESCs do not undergo differentiation into the desired cell type when those 

differentiation protocols are applied [8,29]. 

Using protocols entirely based on extrinsic patterning cues that mimic fetal midbrain 

development, it is now possible to generate DA neurons with a midbrain phenotype from 

human embryonic stem cells that survive transplantation and that can restore motor deficits in 

animal models of PD [30-33].  More remarkably, Grealish and colleagues have shown long-

term survival and functionality using clinically relevant MRI and PET imaging techniques 

and demonstrate efficacy in restoration of motor function with a potency comparable to that 

seen with human fetal dopamine neurons. Furthermore, hESC-derived dopamine neurons can 

project sufficiently long distances for use in humans, fully regenerate midbrain-to-forebrain 

projections, and innervate correct target structures. This provides strong preclinical support 

for clinical translation of hESC-derived dopamine neurons using approaches similar to those 

established with fetal cells for the treatment of Parkinson’s disease [34]. 

Among the different stem cell sources available, human ES cells have advanced a great deal. 

However, a number of crucial issues still need to be addressed in preclinical studies before 

these cells can be considered for clinical use: it is important to verify that their functional 

efficacy is robust and stable over significantly long time periods; The incomplete 

differentiation of all ESCs is a major challenge for the development of an effective PD 

therapy and the risk associated with tumourigenesis may hinder the applications of ESCs [8]. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Grealish%20S%5Bauth%5D
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3. Induced pluripotent stem cells (iPSCs)  

Induced pluripotent stem cells (iPSCs) are an advantageous cell replacement source for PD as 

these autologous stem cells can be derived from the patient eliminating the risk of immune 

rejection and the requirement of immunosuppressive therapy. Unlike human ESCs, iPS cells 

are not hindered by ethical issues [35]. 

Research studies carried out using animal models displayed promising results for iPS cells in 

the generation of DA neurons. An experimental study was carried out using mouse fibroblasts 

to produce iPS cells. It was observed that the generated iPS cells could be differentiated into 

DA neurons of the midbrain which subsequently diminished motor asymmetry in 6-OHDA 

rodent models induced with lesions [36]. 

Shh, FGF8, FGF2 and retinoic acid (RA) together successfully pre-differentiated iPS cells 

into functional midbrain DA neurons. This led to the integration of the DA neurons into the 

host striatum of rodent models induced with PD, resulting in an enhancement of behavior 

[24,37]. However, like ESC grafts, the development of neural outgrowths was observed as a 

result of the transplanted cells [38]. 

It has also revealed that DA neurons can be generated from human iPS cells, as well as from 

mouse iPS cells. Human fibroblasts have been used to generate iPS cells which subsequently 

resulted in the generation of TH+ neurons [39]. The iPS cell–derived NSCs were also found 

to survive and integrate into the brain and differentiated into neurons, including DA neurons 

in vivo and improved functional recovery of PD rats up to 16 weeks after transplantation. 

[40].  

Work by Hallett and colleagues showed pre-clinical test of transplantation of autologous 

iPSC-derived dopamine neurons in a cynomolgus monkey model of Parkinson’s disease 

provides proof of principle for long-term innervation and functional benefit without a 

requirement for immunosuppression [41]. 

It has also been shown that human iPSC-derived DA progenitor cells can be efficiently 

isolated by cell sorting using a floor plate marker, CORIN. After induction, the sorted 

CORIN(+) cells expressed the midbrain DA progenitor markers, FOXA2 and LMX1A. When 

transplanted into 6-OHDA-lesioned rats, the CORIN(+) cells survived and differentiated into 

midbrain DA neurons in vivo, resulting in significant improvement of the motor behavior, 

without tumor formation [42]. 

As we know, a frequent cause of familial PD arises from mutations in LRRK2. Dopamine 

neurons derived from mutated LRRK2 iPSCs showed increased expression of α-synuclein, 

suggesting a connection between these two risk genes in a pathogenic pathway, as had been 

previously hypothesized [43]. A subsequent study also indicated phenotypic differences 

between LRRK2 mutant cells and control cells [44]. PD iPSCs from Parkin patients also 

showed evidence of increased oxidative stress and enhanced activity of the related NRF2 

pathway [45]. 

In the meantime, PD iPSCs differentiated into dopamine neurons could be transplanted into 

the adult rodent striatum, and developed axons projecting into the striatum. 6-OHDA-

lesioned rats transplanted with the neurons showed reduced amphetamine-induced rotational 

asymmetry [46]. Similarly, transplantation of human protein-based iPSCs into rats with 

striatal lesions could rescue motor deficits [47]. 

In this context, the ability to reprogram somatic cells to pluripotency represents a promising 

new tool in disease modelling and drug discovery for neurodegenerative diseases, such as PD 

as iPSCs contain the entire genome of the patient and thus have potential utility in studying 

early disease initiating events and developmental progression of the disease, as well as the 

disease pathology [48]. 

However, a number of issues need to be addressed as this cell type derived from PD sufferers 

are associated with mutations, polymorphisms or epigenetic marks, making them exposed to 
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the occurrence of PD-like characteristics [38]. Additionally some reprogramming factors 

and/or viral vectors integrated into the genome increases the risk of mutations and 

tumourigenesis [49]. 

In brief, human induced pluripotent stem cells (iPSCs) can provide a promising source of 

midbrain dopaminergic (DA) neurons for cell replacement therapy for Parkinson's disease. 

One of the studies has highlighted their ability to generate 20-40% of neurons derived from 

iPS cells into a DA phenotype [13]. Nevertheless, iPSC-derived donor cells may contain 

tumorigenic or inappropriate cells. 

4. Mesenchymal stem cells (MSCs) 

Mesenchymal stem cells (MSCs) possess several attractive properties for use as a novel 

therapeutic for neurodegenerative disorders, including PD as they can be easily extracted, 

cultured and expanded. Many studies in PD animal models have verified that bone marrow-

derived MSCs (BMSCs) have the capacity to protect and regenerate damaged DA neurons. 

[50]. 

 It was first demonstrated that behavioral recovery after BMSCs transplantation in MPTP-

induced mouse model of PD [51]. Later, increased viability and migration of transplanted 

BMSCs were observed after 6-OHDA-induced loss of DA neurons [52]. In addition, BMSCs 

grafted into the striatum [53] intranasally [54] or intravenously [55] delivered BMSCs were 

also evident to exert neuroprotective effects against nigrostriatal degeneration and to improve 

motor function in 6-OHDA lesioned rats. Human BMSCs also have a protective effect on the 

progressive loss of DA neurons in vitro and in vivo in rat [56]. 

When neuralized BMSCs were transplanted in a 6-OHDA mouse model of PD, most of the 

transplanted cells survived in striatum, expressed TH and behavioral recovery was observed 

[57]. In addition, micrografted bone marrow derived neuroprogenitor-like cells were shown 

to induce rejuvenation of host DA neurons in 6-OHDA partially lesioned rat brain [58].  

MSCs isolated from other sources, such as adipose tissue and umbilical cord, have also 

shown beneficial effects in PD models as well. Furthermore, the naive and neurally-induced 

adipose derived MSCs have neuroprotective effects against 6-OHDA-induced DA neuron 

death through secretion of neurotrophic factors [59]. Interestedly, MSCs isolated from 

umbilical cord exhibit neuroprotective and neuroregenerative effects in 6-OHDA [60,61] and 

in vitro-generated first trimester placental MSCs-derived neural progenitors are capable of 

terminal differentiation in vivo and can attenuate motor defects associated with PD [62]. 

MSCs are unique compared to other stem cells in that they could theoretically be utilized for 

personalized medicine in which MSCs for brain engraftment would be collected from the 

individual to receive grafted cells in order to avoid immune responses and graft rejection 

[50]. 

5. Other stem cells 

The Oral and/or dental stem cells, including  dental pulp stem cells (DPSCs) and oral mucosa 

stem cells, have recently been explored for the use beyond dentistry as they have attractive 

virtues of easy access and autografting possibility. Some of these oral/dental stem cells have 

shown the abilities of neural differentiation and neuroprotection, hence have great potential 

for treating neurodegenerative diseases [63]. 

For example, Nesti and colleagues have found the co-culture with DPSCs significantly 

attenuated MPP+ or rotenone-induced toxicity in primary cultures of mesencephalic neurons, 

presumably due to soluble factors such as BDNF and NGF released by DPSCs [64]. Later, it 

has been demonstrated that some soluble factors involved in the development of DA neurons 

induced a DA phenotype in human oral mucosa stem cells (hOMSCs) in vitro that 

significantly improved the motor function of hemiparkinsonian rats. Immunofluorescence 

analysis of specific DA marker of naive and differentiated hOMSCs showed that 35% and 

82% were positive for TH respectively [65]. 
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More recently, a study showed engrafted DAergic neuron-like SHEDs (stem cells derived 

from human exfoliated deciduous teeth)  survived in the striatum of Parkinsonian rats, 

improved the DA level more efficiently than engrafted undifferentiated SHEDs, and also 

promoted the recovery from neurological deficits, which suggests that stem cells derived 

from dental pulp have therapeutic benefits for PD [66]. 

Studies have also illustrated that the bone marrow, skin, muscles and adipose tissue can 

generate cells staining positive for neuronal markers.  However, this group of cells is not an 

advantageous source for the generation of DA neurons for PD [67]. More research is needed 

for the enhancement of adult stem cell isolation, culture procedures and differentiation 

protocols if there is any hope for them to be used for PD treatment.  

 

IV. Perspectives 

As discussed above many types of stem cells, such as ESCs, iPSCs and NSCs, can be induced 

into dopaminergic or dopaminergic-like neurons for the treatment of Parkinsonian models. 

Understandably each type of stem cells has pros and cons in terms of their efficacy, safety 

and availability. At this point, it looks still an open race which cell type will be the best 

solution for the future cell replacement treatment of PD although some people may believe 

that ESCs and iPSCs are the front runners at the moment. 

So far human fetal VM cells are the only one clinically proved functional for some 

Parkinson’s patients, thus can serve as a gold standard for stem cell-derived DA 

transplantation for the moment at least.   

Besides the important focus on cell sources and differentiation protocols, the optimal 

transplantation strategies should also need to be further studied before any clinical 

applications of these stem cells.  

One of the issues is how to find a better and more reliable delivery system for stem cell 

transplantation in future. With the advances in biomaterials and nanomaterials, ideal scaffolds 

could be developed soon for clinical stem cell replacement, particularly when it is necessary 

to combine with growth factors and/or gene therapy. These materials should be 

biocompatible as well as biodegradable so that they can accommodate implanted cells with 

physical support/protection in a 3D environment, and also help the cells access to nutrients 

and integrate into neural network in vivo.  

Another concern is the identity and/or characteristics of the stem cells and the derived 

progeny, i.e. do they proliferate in a controlled manner and not differentiate into non- 

dopaminergic or even tumor cells? 

Other issues such as transplantation locations and timing also need to be further explored 

before clinical use of stem cells-derived dopaminergic neurons for the transplantation into 

Parkinson’s patients. 

All in all, although cell replacement therapy for PD is in sight, maybe we still need to wait 

until the time is right [8]. 
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