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Abstract  

The present study investigates the usage of rotating cylinders to generate gas circulation 

inside high-temperature coil annealing furnaces during the annealing treatment of grain-

oriented electrical steel. This technique has been investigated to reduce temperature 

differentials (hotspots) within the furnace space, a phenomenon that occurs due to extremely 

high temperatures, the static nature of the gas inside of the furnace and long operation 

conditions. Finite volume numerical simulation using ANSYS Fluent was performed to test the 

validity of the proposed technique. The numerical results showed fluctuations in velocity 

magnitude of the fluid in comparison with a case when the technique was not employed. This 

is because of the vortex generation under the effect of the cylinder rotation. The generation of 

turbulence enhances gas-mixing quality, and thus it would save a great amount of energy 

required for the process, producing a product with desired magnetic properties at lower cost.  
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1. Introduction 

In the steel industry, grain oriented GO electrical steel is a speciality steel tailored to produce 
excellent magnetic properties including high permeability and low energy loss when 
magnetised under AC conditions in devices such as transformers, reactor and inductor cores 
[1]. The main metallurgical feature is the abnormal grain growth texture developed by 
secondary recrystallization during the high-temperature coil annealing (HTCA) process [2]. 
The production of GO steel is highly complicated and requires a careful multi-step to achieve 
steel with favourable magnetic properties. In general, GO steel production starts from 
conventional steelmaking, then follows continuous casting, slab reheating at 1,400˚C, hot 
rolling to 2-3 mm, annealing of the hot-rolled sheet for a short period and a two-step cold rolling 
with intermediate annealing or a single cold rolling with large sheet thickness reduction. The 
last stage of the process starts with a primary annealing re-crystallization in a wet hydrogen 
atmosphere for decarburizing purposes. The superior grain structure develops during the 
HTCA where the secondary recrystallization occurs [3] in a dry hydrogen atmosphere.   
During the HTCA process, the steel coils are first heated up slowly using a gas mixture of 

hydrogen and nitrogen (heating up stage). Then the charge is held in a 100% hydrogen 

atmosphere at high temperature for several hours (soaking). Finally, cooling is carried out in 

an atmospheric gas of NHx mixtures; the whole HTCA process (i.e. heating-up, soaking and 

cooling) lasts up to one week [4].  

At Cogent Power Orb Electrical Steels, part of the TATA Steel group, the HTCA process is 

performed in electrical multi-stack annealing furnaces. The process starts by stacking steel 

coils and separator plates onto an empty base. Protective covers are placed over the stacks 

and settled in a sand seal, which helps in enclosing the circulating of the protective 

atmosphere. A furnace bell is then lowered on the base. Then a flow of deoxidizing gas starts 

to purge the air from the space under the inner covers and the furnace bell. Fig.1 shows a 

schematic diagram of the furnace with the steel coils charge and inner covers. The furnace 

bell is equipped with four zones of heating elements attached to the side walls, Fig.1, which 

deliver heat to the charge via radiation and some convection.  



Due to space limitations and long operation conditions as well as the extreme high annealing 

temperature (~1,200˚C), some issues result such as the formation of hotspots. Hotspots can 

occur in the event of electrical failure (i.e. open circuit) in one of the heating elements. Thus, 

the remaining zones will need to work harder to try to deliver the requested thermal cycle. 

Because of the lack of fluid recirculation, to re-distribute the excess heat away, the areas close 

to the active heating elements receive a great amount of energy by radiation and become 

hotter than those near to the inactive heating zone that is relying only on some convection 

induced by buoyancy forces from the vicinity areas. The situation gives rise to forming the 

hotspots and further issues.  

 

Fig.1. A schematic drawing of HTCA annealing furnace.  

The issue escalates as the process duration becomes longer. Zone with a deficit of heat or 
hotspots leads the steel coils to experience high temperature gradients, thus not receiving the 
correct heat treatment for a long time, which affects, dramatically, the quality of the final 
product and the cycle time. Other issues associated with the thermal inefficiency that is 
represented by the formation of the hotspots, are the deformation of inner covers and the 
increase in energy consumption to accomplish the annealing requirement.   
To overcome the thermal inefficiency (hotspot) issues, gas recirculation needs to be 

introduced during the annealing process to enhance gas mixing quality and to redistribute heat 

inside the furnace cavity. A recirculating gas flow can produce almost uniform temperatures 

on the surface of the charge and other process equipment. Gas mixing is obtained by 

generating turbulence within the fluid domain via using an agitator device. Using (super-alloy) 

fan to cope with the high annealing temperature has always been prohibitively expensive not 

to mention the engineering work required to convert a base to be able to power and seal the 

fan perfectly, bearing in mind that the (HTCAs) furnaces operate using a hydrogen 

atmosphere. Therefore, the present study was devoted to investigating the usage of another 

form of mechanical device capable of producing fluid circulation within the fluid domain inside 

furnace cavities, thus enhancing convection to reduce hotspots and minimising energy 

consumption.   

1.1 Proposed technique   
A great deal of attention was given to the rotating cylinder technique, owing to its importance 

in a variety of engineering applications such as rotating heat exchangers and reactors for 

seawater distillation [5]. Flow around a rotating circular cylinder has been investigated widely, 

because of its simple geometry, which facilitates understanding the wake dynamics [6], and 

the phenomena associated with the interaction of a fluid with a moving solid surface. For 

instance, the mechanisms of the near wake formation and the development of the von Karman 

vortex street behind a rotating cylinder were analysed by Bader et al. [7] and Ingham et al. [8]. 

The vortex generation concept associated with similar mechanical devices and its role in 

improving mixing quality and energy transfer was the driven force for investigating the rotating 

cylinder technique [9]. Results provided a better understanding of vortex shedding phenomena 

and vortex interaction in downstream flows [10]. The capability of the technique on controlling 



the flow structure behind them was addressed in many other investigations. Stojkovic et al. 

[11] showed that cylinder rotation in cross flows influences significantly the flow pattern around 

the cylinder. In the case of cross flow bluff bodies, the phenomenon of vortex generation is 

governed by two main parameters namely Reynolds number and rotational rate. A study by 

Kumar et al. [12] found that vortices are suppressed at larger rotational speeds at the same 

Re number. Lang et al. [13] reveal in their numerical investigation of a two-dimensional flow 

around a stationary cylinder that vortex-shedding activity starts at a critical Reynolds number 

of 45.9. The vortex shedding activity is characterised by the turbulent flow occur in the 

downstream flow. Park et al. [14] and Chen et al. [15] experimentally examined the turbulent 

flow parameters in the wake region such as the turbulence intensity. They defined the vortex 

formation region as a region that has the maximum amount of velocity fluctuations.  

A rotating cylinder in a quiescent fluid domain was addressed by Dierich [16]. The study states 

the turbulence flow nature around the cylinder due to its rotation. Most recently, the rotating 

cylinder technique was investigated by Escamilla-Ruiz et al. [17], as a fluid agitator in steering 

tank. Their findings revealed the formation of recirculation loops induced by inertial forces 

produced by the agitator. Thus, preceding published studies have confirmed the capability of 

the rotating cylinders on controlling fluid structures around them. However, the technique has 

only been a scientific curiosity rather than a real application, especially in high temperature 

processing applications. Therefore, in the current study, rotating cylinders are explored as an 

option to generate gas recirculation inside Cogent’s annealing furnaces. The rationale behind 

the proposed concept is that during cylinder rotation there is a continuous layer of fluid thrown 

off from the surface in an irregular manner, owing to the centrifugal force, which is then 

replaced by a new layer drawn inwards. The continuous growth of the fluid around the cylinder 

and within the fluid domain generates eddies, which are the main mechanisms of the 

turbulence, and in turn recirculation. 

Due to the big furnace size, more than one cylinder at high rotational rates would be used to 

ensure the propagation of the turbulence to a large domain inside the furnace. Six different 

layouts with cylinders of various diameters and lengths installed vertically and horizontally 

inside the furnace were suggested, Fig. 2.  

 

 
Layout 1  

 
Layout 2 

 
Layout 3 

 

 
Layout 4 

 
Layout 5 

 
Layout 6 

Fig.2. Schematic diagrams of the cylinder arrangements. 



The internal furnace size, the process equipment layout and the limited space available were 

all considered when selecting the cylinders geometry and location. All arrangements were 

investigated numerically to select the optimal design that can enhance flow mixing, thus heat 

transfer distribution. Simple modifications on furnace geometry were made in layout 5 and 6 

to fit the cylinders on their selected positions.   

To obtain a qualitative and quantitative assessment of any alternative technique, an energy 
analysis will be conducted on several annealing furnaces at Cogent Power Orb Works. The 
energy benchmarking study would also help in identifying possibilities of energy saving by 
minimising energy losses and improving energy usage through the system. The study will be 
focusing on the energy losses during the full annealing process of the grain oriented material. 
Using some available data collected from the HTCA’s operating records at Cogent Power, a 
preliminary analysis of energy performance of a HTCA furnace, as it stands now, was 
performed and an estimation of the energy losses is described in Sankey diagram shown in 
Fig.3. It illustrates the energy enters the furnace, energy that is mainly derived from electrical 
power inputs of about (~95%). The furnace bell is tailored to minimise heat losses through the 
furnace walls. However, during the annealing process, an amount of the heat supplied is 
wasted via radiation from the furnace wall to the surroundings, which is characterised by the 
shell loss (~8%). Another energy loss occurs through the cooling medium (~28%) and the 
reheat of the inert gases (~15%). The remaining energy portion is exchanged to achieve 
chemical changes for secondary recrystallization, purification and glass film formation within 
the steel coils.   

 

Fig.3. Sankey diagram for HTCA furnace. 
 

2. Calibration 

Prior to the current study, an experimental and numerical investigation of a flow passing a 
rotating cylinder was performed [18], Reynolds Stress Model (RSM) was used in the numerical 
approach, and showed good performance when applying it in modelling of rotating bodies. It 
also showed good agreement with previously published studies such as Paramane et al. [19]. 
Since the turbulent model was calibrated in previous work with cases of rotating bodies, it was 
used in the present study to test the validity of the proposed technique. A model such as 
Reynolds Stress Model (RSM) describes the solution that comprises the behaviour of eddies 
in a time-averaged fashion. In this approach, the solution passes through a statistical filtering 
procedure that aims at omitting the small-scale fluctuations and describes the average state 
of the flow.  Moreover, Reynolds stress model has shown superior predictive performance in 
rotating fluids and buoyant flow [20]. Therefore, this model was determined as the best to 
capture the changes in fluid structure resulting from cylinder rotation. 
 



3. Numerical setup 

The simulation was designed to test the validity of the rotating cylinder technique inside high 

temperature coil annealing furnaces during operating conditions. It was focused on modelling 

the fluid domain inside the furnace cavity. The 100% H2 atmospheric gas that occupies the 

gap between the heating elements and the inner covers was the target of the CFD work. Thus 

internal features including the inner covers and the cylinders were introduced as boundary 

conditions to the fluid domain. The CFD modelling considered the soaking cycle of the 

annealing process because this process has the longest duration usually takes approximately 

one day. Additionally, at this crucial stage, the furnace reaches the maximum and fixed 

annealing temperature (not disclosed due to industrial secrecy). This allowed a numerical 

study focused on the fluid behaviour rather than on the temperature variations with time.  

The mesh was created using ANSYS mesh generator. A structured hexagonal grid was 

created as it gives accurate results and drives the solution to converge more quickly.  

Fig.3 shows the grid of the fluid-domain for layout 4. A great deal of attention was given to the 

mesh quality to capture all the changes in the fluid structure. Three meshes were examined 

to perform a mesh independence analysis, Table 1. After carrying out the analyses, it was 

decided to use a medium size mesh that consists of ~773,780 nodes and 773,780 elements 

and that provided mesh-independent results when compared to the high size mesh. The mesh 

was created with structured grid creating a higher node density near the cylinders. Elements 

size was kept the same for all layouts. For further checking, mesh quality was also tested 

using ANSYS criteria such as skewness and orthogonal quality. The hexagonal elements with 

orthogonal of 0.99 were found very good to achieve a converged solution.   

Table 2  

Various mesh densities for independence analysis 

 

 

 

 

 

Cylinders with diameters of 100, 150 and 200 mm and lengths of 550 and 800 mm were 

examined. The cylinders with small diameter (100 & 150) were used in the horizontal 

arrangements to fit in narrow spaces inside the furnace, while the bigger cylinders of 

dimensions 200 in diameter and 800 height were used in vertical arrangements.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Mesh generation for layout 4 

 

Mesh density   Number of elements  

High  870,004 

Medium  773,780 
Low 431,223 



The velocity of fluid leaving the cylinder surface must be high enough to distribute the gas into 

the most remote parts of the furnace to obtain mixing. Therefore, the rotational speed was set 

at 100, 150 and 200 rad/s for all the suggested layouts.   

All calculations were performed using ANSYS Fluent. Reynolds stress model (RSM) was used 

for turbulence modelling. SIMPLE algorithm was utilised to couple velocity and pressure terms. 

Constant wall temperature boundary condition was applied to the furnace and the inner covers 

walls. The thermal and physical properties of the H2 are varied through the furnace due to the 

variation in temperature. To facilitate the numerical modelling the properties were assumed 

as constant and were taken from the literature [21], and no reactions were assumed [22]. The 

flow is governed by the unsteady Navier-Stokes equations for an incompressible viscous flow, 

which expressed in the following form for continuity and momentum.  
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4. Results and discussion  

Results were obtained for a number of locations across the furnace geometry. Fig. 5 shows 

plane locations in the absence of the cylinders. The distance between every two planes is the 

same for all the layouts to achieve appropriate comparison. 

 

 

Fig.5. Lines and planes locations in the absence of the cylinders, (all dimensions are in mm).  

The results presented in this study include temperature contours for the six different layouts 

at plane 3 (P3), which is in the middle of the geometry. The velocity charts were taken at the 

five different locations along the furnace geometry.  

 

4.1 Conditions without using the rotating cylinder technique  

During the early stages of the soaking cycle, the hydrogen enters in a turbulent state, i.e. Re 
>10,000, as a consequence of the high flow rate (not disclose due to confidentiality) at which 
the flow is injected through the pipe, Fig 1. However, the flow quickly becomes transitional as 
its temperature increases, density starts falling, and its velocity decreases as it exits the pipe 
and expands into the spaces under the inner covers and the furnace bell. The gas velocity 
continues to fall as it moves through the fluid domain inside the furnace cavity. The low gas 



velocity, high temperature and high concentration of hydrogen produce a laminar flow for the 
majority of the annealing cycle. The temperature contour and the velocity profile shown in 
figure 6 (A and B), demonstrate the static nature of the atmospheric gas inside the furnace 
cavity. 

 

A 

 

B 

Fig.6. A, Temperature contour at plane 3 (shown in Kelvin). B, Velocity profile at the five 

different locations across the geometry. 

It can be observed from the temperature contour the temperature gradients between the 
furnace centre and the heating elements on the wall is high, due to the static nature of the 
process and the lack of fluid motion. The absence of the fluctuations and the zero velocity 
magnitude indicates the lack of turbulence in the fluid domain, Fig. 6B, which contributes in 
increasing in hotspots formation especially during long operation conditions and the failure in 
one of the heating elements.  

4.2 Conditions using the rotating cylinder technique  

Turbulence in fluid mechanics is irregular and characterised by velocity fluctuations [23]. 

These fluctuations mix the fluid and enhance convection. Velocity charts, Fig. 7 (A, B and C), 

show fluctuations in velocity magnitude at five different locations across the geometry when 

using the rotating cylinders technique. This is due to the continuous growth of the fluid around 

the cylinder due to its rotation, which generates vortices. The vortices at various scales, 

developed continuously within the fluid domain and travel to the surrounding areas [24], thus 

generating turbulence that enhances the energy transfer. The changes in velocity charts are 

associated with vortex boundaries. The zone in which the fluid flow is emanating from the 

stirrer displays the maximum values of turbulence. Fig.7 confirms that turbulence is introduced 

into the bulk of the furnace via cylinder rotation. 

The resultant velocity increases with increasing the rotational speeds due to higher tangential 
velocity. At the highest rotational rate, inertial forces become dominant to viscous forces, and 
hydrodynamic turbulence is evident. Although using the high rotational velocity rate, the 
velocity magnitudes seem low. This is due to the big furnace size ~ (6.6 * 1.96 * 2) m and the 
flow constraints imposed by the furnace wall and other process equipment, which slow down 
the gas velocity. However, from a practical standpoint, the minimum value of 0.4 m/s seems 
acceptable in the presence of fluctuations all around the steel charge.   
It was noticed that for those layouts where the cylinders are located vertically on the furnace 
base, the velocity is higher than those cases where the cylinders are installed horizontally on 
the furnace bell. This can be attributed to the cylinder locations near the inner covers and 
furnace walls, which hinder the development and the distribution of the vortices and the 
turbulence, even at high rotational rates. 
Density fluctuations across the profile also affect this phenomenon, with lower density at the 
top of the confinement, hence less fluid mass movement around the cylinders. Due to the 
adapted feature in layout 5 and cylinders location, gas recirculation was poor near the walls 



at locations P1 & P5 when using those profiles. Therefore, layout 4 seems to be the best 
regarding convection enhancement, although layout 2 has a friendlier technical 
implementation. 
 

 
 

            Layout 1 Layout 2 

  
Layout 3            Layout 4 

   

Layout 5 Layout 6 

Fig.7. A, Velocity charts at rotational rate 100 rad/sec. 
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Fig.7. B, Velocity charts at rotational rate 150 rad/sec. 

 



 
 

       Layout 1         Layout 2 

  
      Layout 3        Layout 4 

  
       Layout 5          Layout 6 

Fig.7. C, Velocity charts at rotational rate 200 rad/sec. 

A typical furnace is designed to deliver an appropriate thermal cycle to the steel charge. 
However, thermal inefficiencies sometimes occur due to the failure in one of the heating zones, 
leading to less energy transfers by radiation to the charge and the need for the enhanced 
convection becomes indispensable.      
Fig.8 (A and B) shows the temperature distribution contours for the six different layouts at 
plane 3 when using the technique. The temperature profile was affected noticeably by the 
rotational flow induced by cylinder rotation, in comparison with the same temperature profile 
for a case when the technique was not involved, Fig. 6. A.  
The convective heat transfer and fluid mechanics are strongly connected. Fig. 8 shows that 

the hot gas is going towards the cylinders owing to the action of inertial forces produced by 

the stirring device movement. Cylinders rotation creates an enhanced thermal profile             



(i.e. continuously re-distributed) inside the furnace. The redistribution of the heat is sustained 

by the rotation technique even under the long operation conditions of the soaking cycle. Thus, 

the technique would help in preventing the formation of hotspots.  

It can also be observed that for a particular layout the temperature gradients between the 

furnace wall and the furnace centre decrease with increasing the rotational speed.  Because 

of the generation of fluid mixing and the increase in fluid velocity, which enhances the 

convection heat transfer coefficient and energy transfer quality [21] by means of promoting 

forced convection.  

 

 

 

Fig.8. A, Temperature distribution contours (shown in Kelvin) for layouts 1, 2 and 3 at 100, 

150 and 200 rad/sec, respectively. 

However, vortex formation in layout 6 is confined at the top of the furnace, due to cylinders 

proximity of the inner cover and the furnace top wall, Fig. 2, which restrains the vortex 

development and propagation. Consequently, the rotation had a poor effect on the fluid 

structure in this layout.  



 

 

 

Fig.8. B, Temperature distribution contours (shown in Kelvin) for layouts 4, 5 and 6 at 100, 

150 and 200 rad/sec, respectively. 

 

5. Conclusion  

This study presents a numerical investigation of using rotating cylinders to produce gas 

recirculation inside high-temperature coil annealing furnaces to eliminate thermal 

inefficiencies that occur in the event of heating element failures.  

The technique was suggested as an alternative to the conventional circulation devices such 

as fan, whose manufacturing and installation would be dramatically expensive. The usage 

of this technique in high-temperature processing applications such as the HTCA has not 

been investigated yet.  



The production of gas recirculation was achieved by generating turbulence through the 

vortex generation concept. Turbulence, in fluid dynamics, is characterised by velocity 

fluctuations.  

The study conducted two numerical cases, with and without using the proposed technique. 

The results show fluctuations in velocity magnitudes of the fluid particles across the furnace 

cavity when using the proposed technique, because of the effect of cylinders rotation. In 

contrast, no fluctuations in velocity magnitude were observed in the case where the rotating 

cylinders were not employed. Moreover, results show that velocity magnitude of the 

atmospheric gas was 0 m/s, whereas it reaches ~ 1 m/s when using the technique. Producing 

gas recirculation would eliminate the thermal inefficiencies and enhance the annealing 

performance as well as the final product quality.  

The fluctuations and fluid velocity increase with increasing the rotational speed because of 

the high tangential velocity. Temperature contours show noticeable changes in the thermal 

profile when using the rotating cylinder technique. Generating turbulence enhances gas 

mixing and heat distribution quality. With increasing fluid velocity, convective coefficient 

increases and heat transfer rate between furnace wall and the atmosphere gas increase, 

thus the high-temperature gradients (hotspots) decrease with increasing cylinders rotational 

speed.      

In the six different suggested arrangements, the greatest improvement was observed in 

vertical configurations, with emphasis on layout 4 that has rotating cylinders in the corners, 

a technical challenge for implementation purposes. 

The next step of this project is to build a prototype to test the validity of the concept of rotating 

cylinders to improve heat convection inside of an enclosed cavity.   
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