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Abstract 

Nonallelic homologous recombination (NAHR) is the major mutational mechanism 

underlying recurrent copy number variants in humans. The pPrecise characterization of the 

associated breakpoints is key to identifying those features that influence NAHR frequency. 

Until now, high-resolution breakpoint analysis of NAHR-mediated rearrangements has 

generally been performed by comparison of the breakpoint-spanning sequences with the 

human genome reference sequence. However, we show here that the haplotype diversity of 

individual NAHR hotspots may interfere with breakpoint-mapping. We studied the 

transmitting parents of individuals with germline type-1 NF1 deletions mediated by NAHR 

within the PRS1 or PRS2 hotspots. Several parental wildtype PRS1 and PRS2 haplotypes 

were identified that exhibited considerable sequence diversity with respect to the reference 

sequence, and these haplotypes also affected the number of predicted PRDM9-binding sites. 

Sequence comparisons between the parental wildtype PRS1 or PRS2 haplotypes and the 

deletion breakpoint-spanning sequences from the patients turned out to be an accurate means 

to assign NF1 deletion breakpoints and proved superior to crude reference sequence 

comparisons that neglect to consider haplotype diversity. Our findings imply that both 

paralog-specific haplotype diversity patterns of NAHR hotspots (such as PRS2) and 

population-specific haplotype diversity must be taken into account in order to accurately 

ascertain NAHR-mediated rearrangement breakpoints. 

 



Introduction 
Nonallelic homologous recombination with crossover (NAHR) gives rise to numerous (and 

sometimes recurrent) disease-associated copy number variants (CNVs) [Mefford and Eichler, 

2009; Stankiewicz and Lupski, 2010; Watson et al., 2014; Carvalho and Lupski, 2016]. The 

sequence substrates for NAHR include segmental duplications, low-copy repeats (LCRs) or 

L1- and HERV-elements that all exhibit high inter-paralogous sequence similarity (>97% 

identity) [Kamp et al., 2000; Sun et al., 2000; Sharp et al., 2005; Liu et al., 2011; Shuvarikov 

et al., 2013; Campbell et al., 2014; Startek et al., 2015]. Meiotic NAHR between 

intrachromosomal paralogs is thought to be very similar mechanistically to allelic 

homologous recombination (AHR) during meiosis, a process that is also associated with 

crossover but which does not generate CNVs [Lopes et al., 1999; Lupski, 2004; Sasaki et al., 

2010]. As with AHR, NAHR also occurs within recombination hotspots of a few kilobases 

(kb) as determined by high resolution breakpoint analysis of CNVs [Reiter et al., 1996, 1998; 

Lopez-Correa et al., 2001; Bi et al., 2003; Bayés et al., 2003; Bosch and Jobling, 2003; Visser 

et al., 2005; De Raedt et al., 2006; Lindsay et al., 2006; Turner et al., 2008; Shinawi et al., 

2009; Szafranski et al., 2010; Koscinski et al., 2011; Elinati et al., 2012; Coutton et al., 2013; 

Dittwald et al., 2013; Bengesser et al., 2014]. In these studies, NAHR breakpoints were 

identified by sequence analysis of breakpoint-spanning PCR products (BSPs) followed by 

comparison of these BSP sequences with the human genome reference sequence. By these 

means were determined the strand exchange regions (SERs) between the recombining 

paralogs, which constitute the rearrangement breakpoints. This method that was used to 

identify NAHR-mediated breakpoints is however dependent upon the presence of non-

polymorphic sequence differences (termed cis-morphisms or paralogous sequence variants, 

PSVs) that serve to distinguish the recombining paralogs. The accurate determination of the 

SERs of NAHR-mediated rearrangements is important in terms of being able to identify 

possible correlations between certain DNA sequence features, such as PRDM9-binding sites, 

and NAHR frequency. PRDM9, a DNA-binding histone methyltransferase, regulates the 

initiation of AHR (and probably NAHR as well) by ensuring the proper an appropriate 

[HILDE: suitable?] chromatin and spatial environment for subsequent recombination events 

[Berg et al., 2010; Paranov et al., 2017]. 

As mentioned above, in most studies performed to date, high-resolution breakpoint analysis of 

CNVs has involved the direct comparison of BSP sequences with the reference sequence of 

the human genome (henceforth termed method #1). Previously, we also employed this method 

to identify the SERs of 68 germline type-1 NF1 deletions at 17q11.2 which were mediated by 

NAHR between the LCRs NF1-REPa and NF1-REPc and exhibited breakpoints located 

within the NAHR hotspots PRS1 and PRS2 [Hillmer et al., 2016]. Large NF1 deletions can be 

of different types (types 13 or atypical) and together are responsibleunderlie for 

chromosome 17q11.2 deletion syndrome (MIM# 613675) [reviewed by Kehrer-Sawatzki et 

al., 2017]. Type-1 NF1 deletions are predominantly of meiotic origin and occur in the 

germlines of healthy parents who then transmit the deletions to their offspring [Lopez-Correa 

et al., 2000; Messiaen et al., 2011]. In our previous study, we analysed the wildtype (non-

recombinant) PRS1 and PRS2 sequences of the transmitting parents in the case of 8 of the 68 

type-1 NF1 deletions to investigate NAHR-associated gene conversion [Hillmer et al., 2016]. 

During this earlier analysis, we observed differences between some of the parental haplotypes 

(defined here as segments of DNA of specific length harbouring multiple variants that serve 

to distinguish between the DNA segments) and the reference sequences of NF1-REPa and 

NF1-REPc. In the present study presented here, we have investigated the haplotype diversity 

of non-recombinant PRS1 and PRS2 sequences in great detail in order to ascertain whether 

haplotype-specific sequence diversity might influence SER determination within these NAHR 

hotspots. Accurate SER determination is important for any attempt to correlate the breakpoint 

location with specific DNA sequence features and toin the hope of obtaining novel insights 



into the sequence determinants of NAHR. To do sothis end, we fully sequenced the wildtype 

PRS1 and PRS2 sequences of the transmitting parents of 25 type-1 NF1 deletions. 

Subsequently, we compared the non-recombinant parental haplotypes with the BSP sequences 

in their children, the NF1 deletion patients, in order to determine the SERs of the respective 

deletions. Our aim was to investigate whether this SER identification method (henceforth 

termed method #2) was more accurate than method #1 which relies upon the a crude 

comparison of BSP and reference sequence without taking potential haplotype sequence 

diversity into account. By contrast, method #2 is personalized by virtue of a direct comparison 

with the non-recombinant parental haplotypes rather than with the standard human genome 

reference sequence which was assembled from multiple individuals and hence represents a 

mosaic haploid genome. Further, we investigated whether there might be a correlation 

between the number of nucleotide differences exhibited by the PRS1 and PRS2 haplotypes of 

the transmitting parents and whether these haplotypes were involved in the deletion-causing 

NAHR events. We also compared the BSP sequences from the patients with the parental 

haplotypes involved in the deletion-causing NAHR events in order to investigate the 

occurrence of NAHR-associated mutations of single nucleotides within the breakpoint-

flanking sequences.  

Materials and Methods  

Patients and transmitting parents 

We analysed the breakpoint-spanning PCR products (BSPs) of 25 patients with type-1 NF1 

deletions who were all of White European origin. Nineteen patients exhibited breakpoints 

(strand exchange regions; SERs) within the NAHR hotspot PRS2 and six patients had 

deletion breakpoints located within PRS1. The SERs of 19 of the 25 NF1 deletions have been 

previously analysed by means of method #1 [Hillmer et al., 2016] and were reinvestigated by 

method #2 during the course of the present study presented here (Supp. Table S1). In addition, 

the SERs of six patients were newly analysed by both methods #1 and #2 during the course of 

this study. The 25 type-1 NF1 deletions were initially identified by FISH of blood-derived 

cells and MLPA using DNA samples prepared from blood (P122 NF1 area probemix, version 

C2, MRC Holland, The Netherlands). Somatic mosaicism with normal cells was not detected 

using these methods. The parental origin of the NF1 deletions was determined by 

microsatellite marker analysis using blood-derived DNA from the parents (data available 

upon request).  

African DNA samples 

The African DNA samples investigated in this study, in order to ascertain PRS2 haplotype 

diversity, are listed in Supp. Table S2. 

PCR amplification and sequence analysis of BSPs and wildtype PRS1 and PRS2 fragments 

Breakpoint-spanning PCR products (BSPs) from the patients, and PCR products from the 

wildtype (non-recombinant) PRS1 and PRS2 fragments spanning the PRS1 and PRS2 NAHR 

hotspots of the transmitting parents, were amplified from blood-derived DNA samples using 

the primers listed in Supp. Tables S3 and S4. PCR products from the wildtype PRS2 

fragments were amplified from the African DNA samples using the primers listed in Supp. 

Table S4. PCRs were performed by means of the Expand Long Range dNTPack (Roche, 

Sigma Aldrich, Munich, Germany) and 400 ng genomic DNA as template. The PCR products 

were sequenced by Sanger sequencing with the primers listed in Supp. Table S5. 



Phase determination of the PRS1 and PRS2 haplotypes 

The phase of heterozygous SNPs was determined in all 25 transmitting parents by cloning the 

wildtype PRS1 and PRS2 PCR fragments using the StrataClone PCR Cloning Kit (Agilent 

Technologies, Santa Clara, CA, USA) followed by sequence analysis of at least three cloned 

PCR products. Additionally, nested PCRs were performed in order to determine the wildtype 

PRS1 and PRS2 haplotypes, employing the paralog-specific and allele-specific primers listed 

in Supp. Table S6. The nested PCRs were performed using the wildtype PRS1 and PRS2 PCR 

fragments amplified with the primers listed in Supp. Table S4 as PCR template. Sequence 

analysis of the nested PCR products using the primers given in Supp. Table S5 revealed the 

phase of the heterozygous sequence variants. 

SER determination of type-1 NF1 deletions according to method #1 and method #2 

The assignment of the strand exchange regions (SERs) of type-1 NF1 deletions by means of 

method #1 comprised involved the sequence analysis of BSPs amplified from blood-derived 

DNA samples of the patients with subsequent comparison of the BSP sequences with the 

reference sequences of PRS1 or PRS2 in NF1-REPa and NF1-REPc according to the human 

genome assembly 19 (GRCh 37; hg19). During this analysis, we considered only those 

sequence differences between the BSPs and the reference sequence could be considered that 

occurred at sites of (i) paralogous sequence variants (PSVs), which are non-polymorphic 

sequence differences between NF1-REPa and NF1-REPc, and (ii) SNPs [HILDE: rare 

variants!] with a minor allele frequency (MAF) ≤1%. Method #2 involved precisely the same 

analysis but additionally, the wildtype (non-recombinant) PRS1 or PRS2 sequences of the 

transmitting parents of the NF1 deletion patients were compared with the BSP sequences 

derived from their offspring, i.e. the patients with germline type-1 NF1 deletions. By means 

of method #2, all nucleotide differences between the aligned sequences could be evaluated, 

including SNPs [HILDE: rare variants!] with an MAF >1%.   

Predicted PRDM9 binding sites and recombination- as well as replication-associated sequence 

motifs 

All PRS1 and PRS2 haplotypes identified in the transmitting parents of patients with type-1 

NF1 deletions, and also in the African DNA samples, were investigated for the presence of 

potential PRDM9 A-variant binding sites with the consensus sequence 5'-

CCNCCNTNNCCNC-3' [Myers et al., 2008] by means of the sequence motif search tool 

‘Find Individual Motif Occurrences’ (FIMO) (http://meme-suite.org/tools/fimo). This 

software was also used to search for recombination- and replication-associated sequence 

motifs as described by Abeysinghe et al. [2003], Badge et al. [2000] and Visser et al. [2005]. 

Statistical analysis 

A potential correlation between the numbers of nucleotide differences exhibited by the PRS1 

or PRS2 haplotypes and whether the haplotypes were involved in the deletion-causing NAHR 

event was evaluated by employing the Kendall's tau-b correlation coefficient as well as the 

Wilcoxon rank-sum test using the SAS 9.3 software. The same statistical methods were used 

to ascertain assess thea potential correlation between the number of nucleotide differences per 

PRS2 haplotype and the presence of PRDM9-binding motif A4. 

Results 

The transmitting parents of the 25 patients with germline type-1 NF1 deletions were 

determined by microsatellite marker analysis. Twenty-two of the 25 deletions analysed were 

of maternal origin. The analysis of siblings of the deletion patients was possible in five cases 

and suggested that the deletions occurred by interchromosomal NAHR during maternal 

meiosis (data not shown).  

http://meme-suite.org/tools/fimo


SER determination by means of methods #1 and #2 

The strand exchange regions (SERs) of 25 type-1 NF1 deletions were comparatively analysed 

by both methods #1 and #2. Whereas method #1 relies upon the comparison between the 

breakpoint-spanning PCR product (BSP) sequence and the human genome reference 

sequence, method #2 is individualized in that it also compares the BSPs with the wildtype 

(non-recombinant) PRS1 or PRS2 sequences from the transmitting parents of the patients with 

type-1 NF1 deletions. Employing method #2, all nucleotide differences could be evaluated; 

not only PSVs and rare variants [HILDE: you have changed this here but not elsewhere in the 

manuscript!] with a minor allele frequency (MAF) ≤1%, but also informative SNPs and indels 

with an MAF >1%. The latter are in most instances ‘shared SNPs’ that exhibit the same 

alternative alleles at paralogous sites in NF1-REPa and NF1-REPc. The evaluation of shared 

SNPs in order to localize SERs within the BSP sequences is only made possible through 

comparison with the wildtype PRS1 or PRS2 sequences of the transmitting parents amplified 

from either NF1-REPa or NF1-REPc. These paralog-specific PRS1 or PRS2 haplotypes 

indicate the origin of nucleotides within the BSP sequences, i.e. whether they were derived 

from NF1-REPa or NF1-REPc.  

Since all sequence differences can be evaluated by method #2, higher resolution and greater 

accuracy of SER mapping was were to be expected. Indeed, method #2 proved to be more 

accurate in detecting SERs than method #1. The results of the SER demarcation for the 25 

type-1 NF1 deletions (19 PRS2-mediated and 6 PRS1-mediated) by means of method #2 are 

summarized in Supp. Tables S7 and S8. Only in one deletion case (patient ID 1598; Table 1) 

was the ascertained SER location was the same when applying both method #1 and method 

#2. By contrast, in 22 of the 25 NF1 deletions analysed, the SERs assigned by method #2 

were more precise and shorter that the SERs determined by method #1. In these 22 deletions, 

the mean SER length was 502-bp according to method #1 and 269-bp according to method 

#2. Thus, a substantial refinement reduction in SER length (of 233-bp) [HILDE: Worth also 

expressing as a percentage improvement?] was achieved using method #2 (Table 1). The 

superiority of method #2 as compared with method #1 in terms of the precision of SER 

mapping became particularly apparent during the analysis of the deletions of patients LL-

2476 and 1547. In these patients, the SER location was incorrectly assigned by method #1 

since the transmitting parents harboured PRS2 haplotypes which exhibited several nucleotide 

differences as compared to the reference sequence. Hence, only method #2 enabled the correct 

assignment of the NF1 deletion-associated SERs in patients LL-2476 and 1547 (Figure 1).  

NAHR-associated mutations and gene conversion in BSPs 

The comparison of the patient-derived BSP sequence with the parental PRS1 or PRS2 

haplotypes involved in the NAHR events did not reveal any sequence variants that were 

present exclusively in the BSP and hence absent from the parental haplotypes. Thus, no 

NAHR-associated de novo mutations were detected in the breakpoint-flanking sequences of 

the patients. In the BSP of patient 3662, we observed a single nucleotide difference by 

comparison with the PRS1 haplotype from the transmitting parent. However, this nucleotide 

difference was most likely caused by NAHR-associated gene conversion templated by its 

paralogue (Supp. Table S8). 

Diversity of parental PRS1 and PRS2 haplotypes and NAHGC 

None of the wildtype PRS2 haplotypes of the transmitting parents were identical to the 

reference sequence of PRS2. Indeed, some of the PRS2 haplotypes exhibited very 

considerable sequence diversity by comparison with the reference sequence (Supp. Tables S9-

S14). Thus, of the 38 PRS2 haplotypes derived from NF1-REPa, ten exhibited 14-19 

nucleotide differences compared to the reference sequence within a region of 3663-bp. In 

similar vein, 36 of the 38 PRS2 haplotypes derived from NF1-REPc exhibited ≥ 5 nucleotide 



differences compared to the reference sequence within a stretch of 3663-bp (Supp. Table S9). 

Nonallelic homologous gene conversion without crossover (NAHGC) is known to be 

responsible for frequent sequence exchange between recombinationally-active paralogous 

sequences and for the occurrence of shared SNPs [Fredman et al., 2004; Hallast et al., 2005; 

Pavlicek et al., 2005; Dumont, 2015]. In the study presented here, 75% of all SNPs within 

PRS1 and 88% of all SNPs within PRS2 were shared between NF1-REPa and NF1-REPc 

(Supp. Table S15). The high numbers of shared SNPs as well as the pattern of nucleotide 

differences between the haplotypes, indicate that NAHGC between NF1-REPa and NF1-

REPc must have contributed strongly to the haplotype diversity evident in both PRS1 and 

PRS2 (Supp. Table S16).  

The reference PRS2 haplotypes from NF1 REPa and NF1-REPc exhibit 98.75% sequence 

identity. Pairwise comparisons between the parental PRS2 haplotypes from NF1 REPa and 

NF1-REPc involved in the deletion-causing NAHR events are indicative of 98.57%−98.93% 

sequence identity (Supp. Table S17). Thus, the sequence diversity of the parental PRS2 

haplotypes observed did not reduce their overall sequence homology by more than 0.18%. 

These pairwise comparisons between parental PRS2 haplotypes from NF1-REPa and NF1-

REPc indicated that in five of the 11 pairs, the identity between the paralogs was even higher 

than between the reference PRS2 haplotypes of NF1-REPa and NF1-REPc (Supp. Table S17). 

PRS1 and PRS2 haplotypes involved in NAHR with crossover 

In 14 of the 19 deletions analysed, the comparison of the parental haplotypes with the BSP 

sequences of their offspring (i.e. the patients harbouring the type-1 NF1 deletions) yielded 

unambiguously the parental haplotypes that had been involved in the NAHR events causing 

the NF1 deletions (Supp. Tables S18-S21). However, no correlation was observed between 

the numbers of nucleotide differences exhibited by the parental PRS1 and PRS2 haplotypes 

relative to the reference sequences and whether the parental haplotypes had been involved in 

the deletion-causing NAHR events. In other words, haplotypes with both high or and low 

sequence diversity as compared with the reference sequence were involved in the deletion-

causing NAHR events (Supp. Tables S22-S25). Moreover, no nucleotide differences were 

detected that were present exclusively in all haplotypes involved in the deletion-causing 

NAHR events while being absent from those haplotypes that were not involved in the NAHR 

events causing the NF1 deletions in the parental germlines.  

PRS2 haplotype diversity in Europeans and Africans 

Two distinct groups of PRS2 haplotypes from NF1-REPa were identified in the transmitting 

parents. These groups were distinguishable by virtue of their harbouring either high or low 

numbers of nucleotide differences as compared with the reference sequence. Whilst 22 of the 

38 parental PRS2 haplotypes from NF1-REPa exhibited only two or three nucleotide 

differences by comparison with the NF1-REPa reference sequence, ten of the 38 parental 

PRS2 haplotypes harboured 14-19 nucleotide differences (Supp. Table S13). By contrast, the 

PRS2 haplotypes from NF1-REPc did not exhibit a comparable bimodal distribution of 

haplotypes into two distinct groups characterized by low and high sequence diversity (Figure 

2).  

All the parents of patients investigated during the course of this study were of white European 

descent. In order to investigate the haplotype diversity of PRS2 in another population, we 

analysed the PRS2 haplotypes from NF1-REPa and NF1-REPc in 11 black Africans (Supp. 

Tables S26 and S27). Those PRS2 haplotypes from NF1-REPa that were characterized by low 

numbers of nucleotide differences in Europeans were rare in Africans whereas those 

haplotypes exhibiting high numbers of nucleotide differences in Europeans were much more 

prevalent in Africans (Supp. Table S26). The NF1-REPa-derived PRS2 haplotype with the 

highest number of nucleotide differences as compared with the human genome reference 



sequence was detected in the African DNA sample YRI 11 (haplotype HP2; Supp. Table 

S26). The nucleotide differences characteristic of this haplotype affect the binding site of 

primer 2290for which is paralog-specific for NF1-REPa and used for PRS2 breakpoint-

spanning PCRs. Even if the PRS2 haplotype of individual YRI 11 is not frequent (it was 

observed in only one of the 11 Africans investigated), it should be appreciated that haplotype 

diversity may also affect paralog-specific primer binding sites thereby interfering with 

breakpoint-spanning PCRs. The haplotype HP2 observed in African individual YRI 11 was 

also detected in two patients of white European descent with type-1 NF1 deletions exhibiting 

deletion breakpoints located proximal to PRS2 (unpublished results). 

PRDM9-binding sites  

PRDM9 is an important regulator of meiotic allelic recombination and is probably also 

involved in regulating NAHR [Berg et al., 2010]. Studies in mice imply have suggested that 

PRDM9 initiates meiotic recombination in a haplotype-specific manner, organizes hotspot 

nucleosomes and limits Holliday junction migration [Baker et al., 2014, 2015]. The presence 

of predicted PRDM9-binding sites within NAHR hotspots is instructive since it suggests that 

PRDM9 may indeed be involved in this mutational mechanism [Dittwald et al., 2013]. The 

PRDM9 A-allele has been shown to be the most frequent PRDM9 allele in Europeans [Berg et 

al., 2010] and also in the parents of patients with type-1 NF1 deletions [Hillmer et al., 2016]. 

The PRDM9 A-allele encodes the PRDM9 protein A-variant which binds to a specific DNA 

motif with the consensus sequence 5'-CCNCCNTNNCCNC-3' [Myers et al., 2008]. We 

investigated the parental wildtype PRS1 and PRS2 haplotypes with regard to the number of 

predicted PRDM9 A-variant binding sites. In total, 76 PRS2 haplotypes (38 from NF1-REPa 

and 38 from NF1-REPc) and 24 PRS1 haplotypes (12 from NF1-REPa and 12 NF1-REPc) 

were analysed. Comparing the various parental PRS1 haplotypes identified in our study, we 

did not detect any differences in terms of the numbers of predicted PRDM9 A-variant binding 

sites. By contrast, eight of the 38 parental PRS2 haplotypes derived from NF1-REPa exhibited 

two additional PRDM9 A-variant binding sites as compared with the PRS2 reference 

haplotype from NF1-REPa which is characterized by only two such binding sites. In the other 

30 parental PRS2 haplotypes from NF1-REPa, two PRDM9 A-variant binding sites were 

predicted as in the reference sequence of NF1-REPa (Supp. Tables S28 and S29).  

Differences in the number of predicted PRDM9 A-variant binding sites were also detected 

when comparing the PRS2 haplotypes from NF1-REPc (Supp. Table S30). Whereas three 

PRDM9 A-variant binding motifs are predicted in the reference sequence of PRS2 from NF1-

REPc, two parental PRS2 haplotypes from NF1-REPc were identified that had lost the perfect 

match to two binding motifs (motifs A2 and A4, Supp. Table S30). By contrast, four parental 

NF1-REPc PRS2 haplotypes were found to possess an additional PRDM9 A-variant binding 

motif as compared with the reference sequence. However, no correlation was observed 

between the number of predicted PRDM9 A-variant binding motifs per PRS2 haplotype and 

whether the haplotype had been involved in the deletion-causing NAHR event (Supp. Table 

S31 and S32). 

Differences in the number of PRDM9 A-variant binding motifs were also observed between 

the African PRS2 haplotypes (Supp. Tables S29, S30, S33). In the Africans, 13 of the 22 

PRS2 haplotypes from NF-REPa and four of the 22 PRS2 haplotypes from NF1-REPc did not 

exhibit the same number of predicted PRDM9 A-variant binding motifs as observed in the 

reference sequence. Hence, PRS2 haplotype diversity can be seen to impact upon the number 

of predicted PRDM9 A-variant binding sites.  

Differences in PRS2 haplotype diversity patterns between NF1-REPa and NF1-REPc 

The proportions of low-diversity and high-diversity PRS2 haplotypes were markedly different 

between NF1-REPa and NF1-REPc in the European parents (Figure 2). Indeed, 22 of 38 



PRS2 haplotypes (57%) from NF-REPa exhibited low diversity as defined by only two or 

three nucleotide differences compared with the reference sequence (Supp. Tables S9 and 

S13). By contrast, PRS2 haplotypes from NF1-REPc exhibiting only two or three nucleotide 

differences as compared with the reference sequence were not observed. Instead, PRS2 

haplotypes from NF1-REPc exhibited 4-14 nucleotide difference relative to the reference 

sequence (Supp. Table S10 and S13). The predominance of PRS2 haplotypes with low- 

diversity characteristic for of NF1-REPa is linked to the absence of the PRDM9-binding motif 

A4 since a strong correlation between the absence of this motif and a low number of 

nucleotide differences per haplotype was observed (Kendall’s Tau-b correlation coefficient: 

0.618, p = <.0001; Wilcoxon rank-sum test, two-sided, p = 0.0002; Supp. Table S34). The 

absence of PRDM9-binding site A4 from the low-diversity PRS2 haplotypes from NF1-REPa 

may reduce the number of NAHGC-mediated nucleotide changes in this paralog. According 

to the two current models of homologous recombination without crossover, namely synthesis-

dependent strand annealing (SDSA) and the double Holliday junction (dHj) model, 

mismatched nucleotides within heteroduplex regions of the recombining sequences are 

corrected by mismatch repair systems using the unbroken DNA strand as template [McMahill 

et al., 2007]. In the context of NAHGC between NF1-REPa and NF1-REPc within PRS2, the 

recombination-associated DNA double strand breaks should be initiated by PRDM9 binding 

to NF1-REPc which is repaired by the unbroken paralogous sequence from NF1-REPa. Hence 

NF1-REPa serves as a template and its sequence remains unchanged by NAHGC (Supp. 

Figure S1).  

Recombination- and replication-associated sequence motifs and haplotype diversity 

PRS2 haplotype diversity not only affects the number of predicted PRDM9 A-variant binding 

sites but also the number of other predicted recombination- and replication-associated 

sequence motifs (Supp. Table S35) with potential consequences for NAHR.  

Discussion 

Haplotype diversity and SER determination  

The high resolution sequence analysis of NAHR-mediated rearrangement breakpoints has 

been reported in several studies in order to identify the sequence determinants of NAHR 

[Conrad et al., 2010; Liu et al., 2011, 2012; Luo et al., 2011; Dittwald et al., 2013]. These 

high resolution breakpoint studies were performed by comparative analysis of long-range 

breakpoint-spanning PCR product (BSP) sequences and the reference sequence of the human 

genome, originally derived from the pooled DNA of several individuals [International Human 

Genome Sequencing Consortium, 2004]. Employing this approach (method #1), the NAHR-

associated strand exchange regions (SERs) between the recombining paralogs were narrowed 

down. However, this approach fails to take into account differences between the reference 

sequence and the parental non-recombinant sequences that were involved in the original 

rearrangement-causing NAHR events. NAHR hotspots are known to exhibit complex patterns 

of sequence variation but NAHR hotspot haplotype diversity has not yet been systematically 

analysed. Failure to take the parental non-recombinant sequences into consideration may 

result in the loss of important information that could be used to further refine the locations of 

the NAHR breakpoints. In order to assess the haplotype diversity of the two NAHR hotspots 

PRS1 and PRS2 which mediate the type-1 NF1 deletions, we sequenced the wildtype (non-

recombinant) PRS1 or PRS2 sequences of 25 transmitting parents of patients with type-1 NF1 

deletions. Haplotypes with considerable sequence diversity as compared with the reference 

sequence of the human genome were identified (Supp. Tables S9-S12). In order to ascertain 

whether the observed haplotype diversity can influence SER determination of type-1 NF1 

deletions, we performed sequence comparison between the wildtype PRS1 or PRS2 



haplotypes from the transmitting parents and the deletion breakpoint-spanning sequences 

from the patients. This approach, which we termed method #2, turned out to be much more 

accurate than method #1 in terms of SER determination. In 22 of the 25 NF1 deletions 

analysed, the SERs assigned by method #2 were shorter and more precise and shorter thant 

the SERs determined by method #1. In these 22 deletions, the mean SER length was 502-bp 

as determined by method #1 and 269-bp according to method #2. Consequently, a very 

significant refinement in the mean SER length of 233-bp was achieved using method #2 

(Table 1). The SERs of two deletions could not be determined correctly by method #1 

because the transmitting parents harboured haplotypes with several nucleotide differences, as 

compared with the reference sequence, in breakpoint-flanking regions (Figure 1). Our 

findings imply that the haplotype diversity of the recombination hotspots PRS1 and PRS2 

must be taken into account in order to precisely map type-1 NF1 deletion breakpoints. 

SERs and sequence features influencing NAHR frequency 

The SER of an NAHR-mediated rearrangement indicates the location of the double Holliday 

junction (dHj) resolution by an endonuclease according to the DNA double-strand break 

(DSB) repair model [Szostak et al., 1983]. This model implies that the SER demarcates one 

end of the dHj migration and the site of dHj resolution (Supp. Figure S2). However, the 

location of the NAHR-initiating DSB remains unknown since it cannot be inferred from the 

analysis of breakpoint-spanning sequences. Hence, the SER of an NAHR-mediated 

rearrangement is the only indication available as to the actual region of crossover between the 

recombining paralogous sequences. The precise assignment of SERs is therefore of critical 

importance if we are to confidently assess the relevance of specific DNA sequence features 

within recombination hotspots to the regulation of NAHR frequency. These sequence features 

may include the distance between the recombining paralogs, the extent of DNA sequence 

identity between the paralogs, GC content, and the frequency of the PRDM9-binding motifs 

within NAHR hotspots [Myers et al., 2008; Dittwald et al., 2013; Pratto et al., 2014; Peng et 

al., 2015; Guo et al., 2016]. PRDM9 is a meiosis-specific histone methyltransferase with a 

zinc-finger protein domain that binds to the sequence motif 5' CCNCCNTNNCCNC 3' 

thereby regulating the genome-wide positioning of AHR hotspots in humans via sequence-

specific DNA binding of its zinc finger array [Baudat et al., 2010; Berg et al., 2010; Myers et 

al., 2008; Parvanov et al., 2010]. In view of the similarities between AHR and NAHR 

[Lupski, 2004; De Raedt et al., 2006; Lindsay et al., 2006], it is not unreasonable to assume 

that NAHR may also be induced by PRDM9 binding to NAHR hotspots and hence PRDM9 

may regulate NAHR frequency. Our findings indicate that the haplotype diversity of the PRS1 

and PRS2 NAHR hotspots not only impacts upon the accuracy of SER determination but also 

affects the number of predicted PRDM9-binding sites per haplotype (Supp. Tables S29, S30, 

S33). Differences in the numbers of other recombination- and replication-associated sequence 

motifs known to cause recurrent DNA double strand breaks were also detected between PRS2 

haplotypes as a consequence of nucleotide diversity (Supp. Table S35) and it is conceivable 

that these could also influence NAHR frequency. 

The majority (70-80%) of type-1 NF1 deletions exhibit breakpoints within PRS2, which is 

thus a much more active NAHR hotspot than PRS1 [De Raedt et al., 2006; Hillmer et al., 

2016]. A correlation between the number of predicted PRDM9 A-variant binding motifs per 

PRS2 haplotype and whether the haplotype was involved (or not) in the deletion causing 

NAHR event was not however observed (Supp. Table S31 and S32). It is reasonable to 

assume that features present in addition to PRDM9-binding sites, such as structural variants 

(CNVs) of the recombining paralogs or chromatin accessibility, can also influence NAHR 

frequency [Carvalho and Lupski, 2008; Cuscó et al., 2008; Antonacci et al., 2010; Vergés et 

al., 2014, 2017]. Polymorphic large inversions present in the transmitting parents have been 

identified that predispose to NAHR-mediated rearrangements involving a number of different 



human genes [Small et al., 1997; Osborne et al., 2001; Bayés et al., 2003; Gimelli et al., 2003; 

Scherer et al., 2005; Visser et al., 2005; Koolen et al., 2006; Sharp et al., 2008; Antonacci et 

al., 2009; Hobart et al., 2010; Molina et al., 2012]. Further studies will be required to 

investigate whether polymorphic CNVs within the paralogs or inversions of the regions 

located between the paralogs involved in NAHR occur disproportionately more often in the 

transmitting parents of patients with type-1 NF1 deletions. In conjunction with such structural 

features, it may be that specific PRS2 haplotypes could have predisposed to recurrent NAHR 

events in the germlines of the transmitting parents of patients with type-1 NF1 deletions.   

Paralog-specific differences in PRS2 haplotype diversity  

NAHR hotspots are known to exhibit complex patterns of sequence variation involving large 

numbers of shared SNPs that have been generated by frequent historical sequence exchanges 

between the recombining paralogs mediated by nonallelic homologous gene conversion 

without crossover (NAHGC) [Rozen et al., 2003; Pavlicek et al., 2005; De Raedt et al., 2006; 

Lindsay et al., 2006; Guo et al., 2016]. Our findings indicate that frequent NAHGC is also 

responsible for the haplotype diversity at the NAHR hotspots PRS1 and PRS2 (Supp. Tables 

S15 and S16). Further, our results also imply NAHGC-mediated differences in the haplotype 

diversity patterns of the recombining paralogs, NF1-REPa and NF1-REPc. In the transmitting 

parents of patients with type-1 NF1 deletions investigated here, who were all of white 

European descent, PRS2 haplotypes from NF1-REPa could be clearly separated into two 

groups: haplotypes exhibiting either low or high sequence diversity as compared with the 

reference sequence. By contrast, African individuals exhibited predominantly PRS2 

haplotypes from NF1-REPa with high numbers of nucleotide differences relative to the 

reference (Supp. Table S26). This finding is in accordance with the genome-wide higher 

sequence diversity in Africans as compared with non-African populations [reviewed by 

Campbell and Tishkoff, 2008]. However, the haplotype diversity of PRS2 from NF1-REPc 

was similar in Africans to that in Europeans (Supp. Table S27). The predominance of low-

diversity PRS2 haplotypes from NF1-REPa but not from NF1-REPc was found to be 

correlated with the absence of a predicted PRDM9-binding motif (A4) (Supp. Table S34, 

Figure S3). The absence of binding motif A4 from the majority of NF1-REPa haplotypes but 

its presence in most NF1-REPc-derived PRS2 haplotypes may affect the direction of sequence 

exchange by NAHGC between the paralogs. According to this hypothesispostulate, binding of 

PRDM9 to motif A4 within NF1-REPc promotes sequence transfer from NF1-REPa to NF1-

REPc because the NF1-REPa-derived sequence serves as a template to repair mismatches in 

heteroduplex regions while NF1-REPc is the recipient strand as explained in the model 

depicted in Supp. Figure S1. Polarity in the direction of sequence exchange between 

recombination intermediates has been observed in yeast and human recombination studies. 

During the repair of mismatches within heteroduplex DNA regions of recombinants, the 

unbroken DNA strand has been found to be preferentially used as a donor template to repair 

the broken strand [Mancera et al., 2008; Webb et al., 2008]. 

Alternative explanations for the paralog-specific predominance of PRS2 low-diversity 

haplotypes in the European parents, which was not observed in Africans, may include positive 

selection or genetic drift. In any case, our findings indicate paralog-specific haplotype 

diversity patterns at the NAHR hotspot PRS2, as well as population-specific haplotype 

diversity patterns; both should be taken into account in order to accurately demarcate the 

SERs of NAHR-mediated rearrangements. 

NAHR-associated mutations in breakpoint-flanking regions   

Comparison of BSP sequences from the patients with the PRS1 or PRS2 haplotypes from the 

transmitting parents, performed in order to determine the SERs as precisely as possible, also 

enabled us to investigate the occurrence of NAHR-associated mutations in the breakpoint-



flanking regions. We did not identify any sequence variants present exclusively in the deletion 

breakpoint-flanking sequences from the patient but absent from the parental PRS1 or PRS2 

haplotypes. Consequently, no evidence for de novo NAHR-associated mutations in the 

breakpoint-flanking sequences of the patients was detected. Arbeithuber et al. [2015] reported 

that AHR in human sperm is associated with an increased mutation rate. These authors 

analysed 5796 crossover products (13,221,000 nucleotides evaluated) and observed 17 

crossover-associated mutations translating into a mutation rate of 1.29 × 10−6/bp, some 3.6-

fold higher than the mutation rate observed in non-recombinant PCR products amplified from 

recombination hotspots HSI and HSII [Arbeithuber et al., 2015]. Since in this study we only 

analysed 25 NAHR-associated crossover products (100-kb evaluated), precise conclusions 

regarding the NAHR-associated mutation rate at the PRS1 and PRS2 hotspots cannot be 

drawn from our data. This notwithstanding, our findings nevertheless imply that NAHR-

mediated type-1 NF1 deletions with breakpoints in PRS1 and PRS2 do not exhibit a mutation 

rate that would be as high as that observed in regions flanking complex rearrangements on 

different chromosomes caused by replicative mechanisms [Carvalho et al., 2013; Wang et al., 

2015] or microhomology-mediated end joining [Sinha et al., 2017]. Carvalho et al. (2013) 

observed five single nucleotide variants in a total of 23-kb of breakpoint-flanking sequences 

analysed, which corresponds to a de novo point mutation rate of ~ 2.1 × 10−4 mutations/bp. 

Although we were unable to obtain any accurate measure of the NAHR-associated mutation 

rate in the breakpoint-flanking sequences of type-1 NF1 deletions, our findings do not 

indicate that NAHR-associated mutations would occur frequently enough to interfere strongly 

with SER determination. 

Conclusion 

NAHR breakpoints are known to be characterized by complex sequence patterns mediated by 

NAHGC. Our findings indicated that frequent NAHGC is responsible for the haplotype 

diversity at the NAHR hotspots PRS1 and PRS2 which in turn influences the identification of 

NAHR-mediated breakpoints. However, the novel method employed here, which compares 

breakpoint-spanning sequences with the wildtype non-recombinant haplotypes at the NAHR 

hotspot from the transmitting parent, proved itself to be a valuable tool to identify the SER 

within the NAHR hotspot with a much higher degree of accuracy than has hitherto been 

possible.  
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Figure Legend 

Figure 1: Comparative assignment of the type-1 NF1 deletion-associated strand exchange 

regions (SERs) in patients 1547 and LL-2476 using either method #1 or method #2. The 

reference sequence of PRS2 from NF1-REPa and NF1-REPc according to hg19 is indicated 

on the left. Analytical method #1 entails the comparison of breakpoint-spanning PCR product 

(BSP) sequences from the patients with the reference sequence of PRS2 at sites of SNPs rare 

variants (with an MAF ≤ 1%) and PSVs. Method #2 also includes the comparison of the BSP 

sequences with the wildtype PRS2 haplotypes from the transmitting parents. By these means, 

shared SNPs with an MAF > 1% can also be evaluated. Green bars indicate the borders of the 

SERs assigned by method #1 whereas the borders of the SERs determined by method #2 are 

marked by red lines. Since the haplotypes of the transmitting parents exhibited nucleotide 

differences compared with the reference sequence of PRS2, an accurate assignment of the 

SERs of the deletions in patients 1547 and LL-2476 was only possible by means of method 

#2. 

 

Figure 2: Paralog-specific differences in PRS2 haplotype diversity. The columns indicate the 

number of PRS2 haplotypes exhibiting two to 19 nucleotide differences compared with the 

reference sequence of the human genome (hg19). PRS2 haplotypes derived from NF1-REPa 

are represented as red columns whereas haplotypes from NF1-REPc are shown as blue 

columns.  


