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Abstract

In this paper we describe how predictive models can be positively exploited in abstract

argumentation. In particular, we present two main sets of results. On one side, we show

that predictive models are effective for performing algorithm selection in order to determine

which approach is better to enumerate the preferred extensions of a given argumentation

framework. On the other side, we show that predictive models predict significant aspects of

the solution to the preferred extensions enumeration problem. By exploiting an extensive set of

argumentation framework features— i.e., values that summarise a potentially important property

of a framework—the proposed approach is able to provide an accurate prediction about which

algorithm would be faster on a given problem instance, as well as of the structure of the solution,

where the complete knowledge of such structure would require a computationally hard problem

to be solved. Improving the ability of existing argumentation-based systems to support human

sense-making and decision processes is just one of the possible exploitations of such knowledge

obtained in an inexpensive way.

1 Introduction

Dung’s theory of abstract argumentation (Dung, 1995) is a unifying framework able to encompass

a large variety of specific formalisms in the areas of nonmonotonic reasoning, logic programming

and computational argumentation. It is based on the notion of argumentation framework (AF),

that consists of a set of arguments and an attack relation between them. Different argumentation

semantics introduce in a declarative way the criteria to determine which arguments emerge as

“justified” from the conflict, by identifying a number of extensions, i.e. sets of arguments that

can “survive the conflict together”. In Dung (1995) three “traditional” semantics are introduced,

namely grounded, stable, and preferred semantics, as well as the auxiliary notion of complete

extension, to highlight the linkage between admissibility-based semantics. The investigation on

alternative argumentation semantics is an active research area since two decades (Baroni et al.,

2011).

Several problems are associated to each semantics, notably credulous and skeptical acceptance

of an argument with respect to a given argumentation framework —i.e. determining whether

an argument belongs to at least one (resp. every) extension—and enumeration of all or some

extensions given an argumentation framework.
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In this work we focus on preferred semantics. It represents one of the main contributions in

Dung’s theory and is widely adopted—among other areas—in decision support systems (Tamani

et al., 2015) and in critical thinking support systems (Toniolo et al., 2015), as it allows multiple

extensions (differently from grounded semantics), the existence of extensions is always guaranteed

(differently from stable semantics), and no extension is a proper subset of another extension. On

the other hand, grounded semantics prescribes a unique extension which can be computed in

polynomial time, thus all the problems related to grounded semantics are easy to solve. As to

stable semantics, enumerating stable extensions is known to be equivalent to solve a SAT problem,

and thus techniques known in the literature for SAT problems, e.g. (Gomes et al., 2009), can be

re-applied to this case.

Several problems associated to preferred semantics are computationally difficult. In particular,

(1) determining if there is at least one non-empty preferred extension is NP-complete; (2)

counting the number of preferred extensions is #P-complete; and (3) determining whether an

argument belongs to each preferred extension, i.e. skeptical acceptance, is Πp
2-complete (Dunne

and Wooldridge, 2009; Baroni et al., 2010; Kröll et al., 2017).

Despite the importance of preferred semantics, and the computational complexity of several

problems associated to it, few work has been done in argumentation for investigating the

exploitability of machine learning techniques—and particularly empirical predictive models

(EPMs)—for supporting computationally complex reasoning problems.

In order to fill this lack of studies in the context of computational models of argumentation, in

this work we provide an extensive investigation of the exploitability of automatically generated

predictions in dealing with high-complexity problems. Specifically, we analyse the ability of

predictive models in (i) given a set of solvers for the preferred extensions enumeration problem,

predicting the fastest one, as well as the amount of CPU-time each solver will need to solve

an instance of the problem; and (ii) predicting characteristics of the solution to the problem—

without the need to solve it. These characteristics include (1) whether the framework has a single

empty preferred extension; and (2) whether the framework has a number of extensions exceeding a

given threshold representing the limit for an acceptable burden on the user; or (3) the (estimated)

number of preferred extensions.

Our contribution encompasses previous works exploiting features in abstract argumentation,

notably (Cerutti et al., 2014a; Vallati et al., 2014). Specifically, in this paper:

1. we empirically demonstrate the usefulness of models for predicting solvers performance in

solving the enumeration problem associated to the preferred semantics;

2. we introduce a hierarchical predictive model for determining characteristics of the solution

of the enumeration problem associated to the preferred semantics;

3. we demonstrate that the proposed hierarchical model is able to provide very accurate

predictions, without solving the enumeration problem;

4. we expand the existing set of features used from 50 to 147. Specifically, we added 97 features

derived from a matrix representation of AFs;

5. we provide a new, sound, methodology for deriving structured AFs.

The importance of this contribution is twofold. From a theoretical point of view, it explains

the runtime variations between different approaches, and links AFs characteristics to the

solutions of abstract argumentation problems. From a practical perspective, the proposed analysis

provides tools for choosing among a set of available algorithms, in order to achieve the best

performance from them, and techniques to predict information that can have a significant impact

on argumentation applications. For instance, (1) and (2) can be exploited in cases where the

knowledge base changes frequently, the set of arguments needs to be frequently updated and

the extensions need to be frequently computed to evaluate the acceptability of each proposition

in the knowledge base. In such cases, the acceptability of propositions might have been already

changed by the time the answer is computed, thus the predictions can guide the decision on when
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the computation procedure should be triggered. Moreover, estimating the number of extensions

(3) may be useful to get a rough assessment of the uncertainty inherent to an argumentation

framework, to assess the proportion of acceptance of an argument with respect to the total

number of extensions, or to identify a bound for an enumeration algorithm (Baroni et al., 2010).

In order to provide predictions, models exploit features extracted from target AFs. Features are

real numbers that summarise potentially important properties of the AF, therefore a predictive

model can be seen as a mapping from instance features to predictions (solvers performance or

solutions structure). This work is based on prior well-received work, such as (Cerutti et al.,

2014a); here we establish the most extensive set of features for performing predictions in abstract

argumentation.

The paper is organised as follows. Section 2 discusses related work. In Section 3 we provide

the required background on abstract argumentation. Then, in Section 4, we provide the list of

the features of AFs that are exploited by predictive models. In Section 5 we present the machine

learning models to evaluate and select algorithms for enumerating preferred extension, and we

analyse them by providing some experimental results. Then, in Section 6, we turn to the models

that predict properties of extensions given the chosen set of features, and again we empirically

evaluate them. Finally, we provide conclusions and describe future developments in Section 7.

2 Related Work

In the field of automated reasoning, the idea of generating models that, according to the values of

some features, allow to identify the best algorithm(s) for an instance of a certain problem has been

investigated by several researchers. For example, EPMs have been extensively and successfully

applied in numerous areas of Artificial Intelligence, such as Satisfiability problem (SAT), Mixed

Integer Programming (MIP), Answer Set Programming (ASP), Quantified Boolean Formulae

(QBF), travelling salesman problem (TSP), and Automated Planning (Brewer, 1994; Leyton-

Brown et al., 2009; Nudelman et al., 2004; Gebser et al., 2011; Xu et al., 2008; Smith-Miles et al.,

2010; Fawcett et al., 2014).

The work described by Fawcett et al. (2014) is focused on generating models for accurately

predicting planners runtime. Such models exploit a large set of instance features, derived from

different representations of a given planning problem, and (short) runs of planners. Their

experimental results show that the generated performance models are able to produce very

accurate runtime predictions.

SATZilla is a prominent example of an algorithm portfolio designed for SAT (Xu et al., 2008).

It exploits regression techniques to build a predictor of the runtime of a number of provided SAT

solvers. For solving a new SAT problem, SATZilla computes the values of a large set of features,

predicts the performance of the considered SAT solvers. The solvers are then ordered according to

the predicted runtime, and executed for the predicted time, following the established ordering. It

should be noted that, for the sake of overall performance, SATZilla exploits also pre- and backup

solvers: the former is used before extracting features, in order to quickly solve trivial instances.

The latter is run when all the selected solvers failed.

Similarly, Claspfolio (Gebser et al., 2011) exploits regression-based EPMs for selecting, among

a range of predefined configurations of the well-known ASP solver Clasp (Gebser et al., 2007),

the best configuration to minimise the runtime on a given ASP instances. Predictions are made

according to a set of features that are extracted from the considered ASP problem. Claspfolio

2 (Hoos et al., 2014) is an improved version of Claspfolio, that provides a modular architecture

that allows for integrating several different approaches and techniques for extracting features,

predicting solvers’ performance, and combine solvers into a portfolio.

Matos et al. (2008) propose an algorithm portfolio solving the MaxSAT problem. According

to the values of several features, it estimates the runtime of each incorporated solver, and then

solves the instance with the estimated fastest solver. The estimation is done using a (linear)

model configured by performing ridge regression (Marquardt and Snee, 1975).
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Similarly, Pulina and Tacchella (2007) study an algorithm portfolio solving the QBF problem.

They identify some features of the QBF problem, and investigate the usage of four inductive

models to select the best solver to use according to the values of the identified features. Maratea

et al. (2014) applied a similar approach for solving ASP problems: given a set of easy-to-compute

features, extracted from the given instance, the authors propose a classification-based approach

for selecting the most promising solver to run in order to minimise the required runtime.

3 Background on Dung’s Argumentation Framework

An argumentation framework (Dung, 1995) consists of a set of arguments and a binary attack

relation between them.1

Definition 1 An argumentation framework (AF) is a pair Γ = 〈A,R〉 where A is a set of

arguments and R⊆A×A. We say that b attacks a iff 〈b, a〉 ∈ R, also denoted as b→ a.

The basic properties of conflict–freeness, acceptability, and admissibility of a set of arguments

are fundamental for the definition of argumentation semantics.

Definition 2 Given an AF Γ = 〈A,R〉:

• a set S ⊆A is a conflict–free set of Γ if @ a, b ∈ S s.t. a→ b;

• an argument a ∈ A is acceptable with respect to a set S ⊆A of Γ if ∀b ∈ A s.t. b→ a, ∃ c ∈ S
s.t. c→ b;

• a set S ⊆A is an admissible set of Γ if S is a conflict–free set of Γ and every element of S

is acceptable with respect to S of Γ.

An argumentation semantics σ prescribes for any AF Γ a set of extensions, denoted as Eσ(Γ),

namely a set of sets of arguments satisfying the conditions dictated by σ. Here we need to recall

the definition of preferred (denoted as PR) semantics only.

Definition 3 Given an AF Γ = 〈A,R〉: a set S ⊆A is a preferred extension of Γ, i.e. S ∈
EPR(Γ), iff S is a maximal (w.r.t. set inclusion) admissible set of Γ.

Problems considered For our purpose, given a semantics σ and an AF Γ, let us consider the

following problems:

1. Exσ: determining if Eσ(Γ) 6= ∅;
2. Neσ: determining if Eσ(Γ) /∈ {∅, {∅}};2
3. Countσ: determining |Eσ(Γ)|;
4. Enumσ: enumerating Eσ(Γ).

In the case of the preferred semantics, it is known (Dunne and Wooldridge, 2009; Baroni et al.,

2010; Kröll et al., 2017) that ExPR is trivial, i.e. the existence of at least a preferred extension is

always guaranteed; NePR is NP-complete; CountPR is #P-complete.3 We are not aware of

any study on the computational complexity of determining if |Eσ(Γ)| ≤ χ.

4 Features

In order to perform predictions, EPMs need to extract information from the considered AFs.

Such information are provided under the form of features. A feature is either a real number or a

boolean value, that summarises a potentially important property of an AF.

1In this paper we consider only finite sets of arguments: see (Baroni et al., 2013) for a discussion on
infinite sets of arguments.
2In the case of σ = PR, this is equivalent to write EPR(Γ) /∈ {{∅}}, because the existence of a preferred
extensions is always guaranteed, and thus it can not be the case that EPR(Γ) = ∅.
3This class of problems was introduced by (Valiant, 1979).
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Our feature set includes 147 values, which exploit the representation of AFs as a graph or as

a matrix.

4.1 Graph-related Features

We are able to extract 50 features by representing an AF both as directed and as undirected

(lossy) graphs— following the notation introduced in (Cerutti et al., 2014a).

26 features are extracted from the representation of AFs as direct graphs (DG). Each feature

belongs to one of the following four classes: graph size (5 features), degree (4), Strongly Connected

Components (SCC) (5), graph structure (5), CPU-times (7).

• Graph size features: number of vertices, number of edges, ratios vertices–edges and inverse,

and graph density.

• Degree features: average, standard deviation, maximum, minimum degree values across the

nodes in the graph.

• SCC features: number of Strongly Connected Components (SCCs), average, standard

deviation, maximum and minimum size of SCCs.

• Graph structure: presence of auto-loops, number of isolated vertices, flow hierarchy and results

of test on Eulerian and aperiodic structure of the graph.

• CPU-times: the needed CPU-time for extracting each class of features.

In our implementation, graph transitivity is computed as the fraction of all the possible triangles

which is present in the considered graph. Possible (potential) triangles are identified by the

number of “triads”, i.e. two edges with a shared vertex. A graph is Eulerian if there exists a

path (starting and ending at the same vertex) that allows to visit every edge exactly once. A

given graph is Aperiodic if there is no integer k > 1 that divides the length of every cycle. Flow

hierarchy is computed as the the fraction of edges not participating in cycles in a directed graph

(Luo and Magee, 2011).

The features (UG) extracted by the undirect graph representation of AFs —i.e. replacing each

directed attack with an undirected edge— and distinct from the DG features are 24, belonging to

six classes: graph size (4), degree (4), components (5), graph structure (1), triangles (5), CPU-times

(5).

• Graph size features: number of edges, ratios vertices–edges and inverse, and graph density.

• Degree features: average, standard deviation, maximum, minimum degree values across the

nodes in the graph.

• Components features: number of connected components, average, standard deviation, maxi-

mum and minimum size.

• Graph structure: transitivity of the graph.

• Triangles features: total number of triangles in the graph and average, standard deviation,

maximum, minimum number of triangles per vertex.

• CPU-times: the needed CPU-time for extracting each class of features.

4.2 Matrix-related Features

Any AF with N arguments can be encoded as an N ×N matrix as follows. The value of a cell

(a, b) is 1 if there exists an attack from argument a to argument b, 0 otherwise.4 Given this

encoding we are able to extract 97 features, divided in:

• basic matrix (9): includes information about rank, number of non zeros, norm, etc.;

• sum (14): includes statistics, like standard deviation, mean, etc., on vectors resulting from

sum of either columns or rows;

4For the sake of readability, the complete list of features is provided in Appendix A.
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c b a

a b c

a 0 1 0

b 1 0 0

c 0 1 0

Figure 1 The AF ΓM for the hypertension problem on the left, and its matrix encoding on the right.

• cumulative sum (21): includes statistics, like standard deviation, mean, etc., on vectors

resulting from cumulative sum of columns, rows, and diagonals;

• differences (21): includes statistics, like standard deviation, mean, etc., on vectors resulting

from differences of cells on either columns, rows, and diagonals;

• diagonals (7): includes general information extracted by considering the first and second

diagonal of the matrix;

• Gradient (21): includes statistics extracted by considering the the gradient of the vector

resulting by (i) the sum of the rows, (ii) the sum of the columns, and (iii) the sum of the

diagonals of the matrix;

• Correlation (4): includes the correlation values between the sum of columns, sum of rows,

sum of diagonals, and gradients.

4.3 Example of Extracted Features

To illustrate the process of features extraction, let us consider an intuitive example from Besnard

and Hunter (2014). Let a be the argument “Patient has hypertension so prescribe diuretics;”

b: “Patient has hypertension so prescribe betablockers;” and c: “Patient has emphysema

which is a contraindication for betablockers.” Intuitively, assuming that only one treatment

is possible at the very same time, a attacks b and vice versa, while c suggests that b should

not be the case (c attacks b). Therefore, let ΓM = 〈AM ,RM 〉 such that, AM = {a, b, c} and

RM = {〈c, b〉, 〈b, a〉, 〈a, b〉}. ΓM is depicted in Fig. 1.

Table 1 presents a subset of the extracted features, and their extracted value on the considered

example. For the sake of readability, we focus on less intuitive features. Features such as the

number of arguments or the number of attacks are trivial to identify and extract.

Table 1 A subset of the features extracted by considering the directed graph, undirected graph, and
matrix representation of the AF ΓM for the hypertension problem.

Directed Undirected Matrix

Feature Value Feature Value Feature Value

Degree Max, Min. 3, 1 Degree Max, Min. 2, 1 Column Sum Max 2

Isolated Vertices 0 Density 0.6 Rank 2

Eulerian False Transitivity 0.0 Sparse False

Flow Hierarchy 0.3 Triangles 0 Sum Diagonals 0

5 Exploiting Predictive Models for Performing Algorithm Selection

This section is devoted to investigate the use of predictive models for performing algorithm

selection, in order to combine different systems into a portfolio and improve the overall

performance in terms of both coverage (i.e. percentage of problem instances actually solved) and

runtime. For this analysis we considered only the problem of enumerating preferred extensions.
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5.1 Algorithms for Solving the Preferred Extensions Enumeration Problem

In this paper we consider four approaches for solving the problem of preferred extensions

enumeration: Aspartix, ArgTools, ArgSemSAT, and SCC-P. They have been chosen as

representative of the variety of approaches used to enumerate preferred extensions.

First, Aspartix (Dvořák et al., 2011) expresses argumentation semantics in Answer Set

Programming (ASP): a single program is used to encode a particular argumentation semantics,

and the instance of an argumentation framework is given as an input database. Tests for subset-

maximality exploit the metasp optimisation frontend for the ASP-package gringo/claspD.5

Instead, ArgTools (Nofal et al., 2014) is a depth-first backtracking procedure that traverses

a binary search tree. The root considers the case where all the arguments in the AF are blank,

i.e. not yet visited. At each step of the search process, a blank node is selected and assumed to

belong to the preferred extension, and a local evaluation on its neighbours is performed. Then

the procedure recursively calls itself on the assumption that the above arguments are respectively

in or out the extension. Any inconsistency leads to a backtrack.6

On the other hand, ArgSemSAT (Cerutti et al., 2013) performs a search in the space of

complete extensions to enumerate the maximal ones. In particular, ArgSemSAT encodes the

constraints corresponding to complete extensions into a propositional formula. A SAT-solver is

then used to determine an assignment of propositional variables satisfying the formula, thus

returning a complete extension. A depth-first technique is then applied in order to determine

a maximal complete extension containing the one already found—i.e. a preferred extension.

Previously explored search states are excluded from further exploration by adding specific

constraints to the encoding of complete extensions. ArgSemSAT is, together with Cegartix

(Dvorák et al., 2015)—a similar system exploiting a SAT solver as a NP-oracle—the best system

for addressing problems associated to preferred semantics as certified by the First International

Competition on Computational Models of Argumentation ICCMA2015 (Thimm et al., 2016).

Finally, SCC-P is an instantiation of the meta-algorithm proposed in (Cerutti et al., 2014c)

which exploits the SCC-recursiveness schema (Baroni et al., 2005): it recursively decomposes

a framework so as to compute extensions on restricted sub-frameworks, in order to reduce

the computational effort. At the beginning, the extensions of the framework restricted to the

initial Strongly Connected Components (SCCs), i.e. those not receiving attacks from others, are

computed and combined together. Then each SCC which is attacked only from initial SCCs is

considered, and for each extension already obtained, the extensions of such a SCC are locally

computed and merged with it. The process is then applied to all SCCs following their partial

order, until no remaining SCCs are left to process. Moreover, as the name suggests, the algorithm

exploits a recursive procedure for the local computation in every SCC, according to the following

steps. First, all arguments attacked by the extension selected in the previous SCCs are suppressed.

Then, the procedure is recursively applied to the remaining part of the SCC. When the base of the

recursion is reached, a specific “base algorithm” is called. Such base algorithm can be obtained

by generalizing existing algorithms that enumerate extensions so as to work on restricted sub-

frameworks, e.g. a variation of ArgSemSAT as proposed in (Cerutti et al., 2014c).

It should be noted that, while a larger number of solvers can be considered in the general

EPMs framework, the focus of our work is on identifying the exploitability of predictive models

for effectively estimating the runtime needed for solving a given AF and, as a side effect, how

such information can be used for selecting the most appropriate solver. For this reason, and for

allowing a more in-depth analysis of features, we selected a restricted number of solvers.
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Table 2 Characteristics of the considered AFs.

Average Minimum Maximum

# Attacks 58,487 35 270,118

# Arguments 1,941 16 5,000

Density 0.39 0.01 10.18

Degree 60 4 171

# SCC 50 0 100

SCC size 40 1 175

5.2 Experimental Protocol

We randomly generated a set of 10,000 AFs using the generator described in Cerutti et al.

(2014b), varying the number of SCCs between 0 and 100, the number of arguments between

10 and 5,000; and then considering four classes of AFs with uniform probability of attacks—i.e.

with the probability of having an attack between two arguments respectively of 0.25; 0.5; 0.75;

and completely random between 0 and 1—leading to AFs with a number of attacks between

35 and (approximately) 270,000. This was done in order to have, for each selected solver,

unsolved AFs as well as AFs solved quickly (few seconds) or in hundreds of seconds. Such a

wide distribution is extremely informative for effectively training EPMs. Table 2 lists some of the

relevant characteristics of the generated AFs.

The solvers and the feature extraction algorithms have been run on a cluster with computing

nodes equipped with 2.5 Ghz Intel Core 2 Quad ProcessorsTM, 8 GB of RAM and Linux operating

system. A cutoff of 900 seconds was imposed to compute the preferred extensions for each AF. For

each solver we recorded the overall result: success (if it finds each preferred extension), crashed,

timed-out or ran out of memory. Unsuccessful runs – crashed, timed-out or out of memory – were

assigned a runtime equal to the cutoff.

We observed that graph-related features are usually quick to compute: on average, the

extraction process takes around 3 CPU-time seconds on AFs considered in this experimental

analysis. However, extracting information about the aperiodicity of the graph can require up to

20 seconds –even though that happened only once. On the other hand, matrix-related features

require a higher CPU-time to be properly extracted: on average, 7 CPU-time seconds on the

considered AFs. Given the fact that enumerating the preferred extensions of an AF can require

between tens and hundreds of seconds, we decided to focus on the graph-related sets, as they are

much quicker to extract.

We considered EPMs for both classification and regression approaches. Classification

approaches classify the AF into a single category, corresponding to the algorithm which is

predicted to be the fastest. These approaches do not estimate the performance difference between

solvers, rather they only look for the best one. Regression techniques model the behaviour of each

algorithm in order to predict its runtime on a new AF.

We first assessed the performance of various classification and regression models, using the

WEKA tool (Hall et al., 2009). We considered well-known machine learning techniques: linear

regression, neural networks, Gaussian processes, decision trees and rule-based techniques. The

EPMs were evaluated using a 10-fold cross-validation approach on a uniform random permutation

of our instances—a standard method where nine slices are used for training and the tenth for

testing. According to this analysis, we observed that random forests perform best in classification,

5Aspartix has been executed with gringo version 3.0.3 and claspD version 1.1.4.
6ArgTools’s implementation is available at https://sourceforge.net/projects/argtools/files/

?source=navbar.
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Table 3 Best features selected for each solver, by the greedy approach, for predicting runtime.

Solver First feature (B1) Second feature (B2) Third feature (B3)

Aspartix number of nodes density of directed graph size of max. SCC

ArgSemSAT density of directed graph number of SCCs aperiodicity

ArgTools density of directed graph CPU-time for density CPU-time for Eulerian

SCC-P density of directed graph number of SCCs size of the max SCC

and M5-Rules in regression. For both classification and regression, the second best approach

is based on decision tables (Kohavi, 1995). In classification, decision tables achieve accuracy

performance that is 4% worse than random forest; in regression, the root mean square error

(RMSE) is increased, on average, by 0.09.

We then assessed the importance of features by means of a greedy forward search based on

the Correlation-based Feature Subset Selection (CFS) attribute evaluator (Hall, 1998), which

determines the most relevant subset of features for the task at hand. In short, the search starts

from an empty subset of features. At each iteration, the feature that increases the most the

evaluation of the current subset is added. The search stops when the addition of any attribute

results in a decrease of the subset evaluation. The evaluation of a subset of features considers

the predictive ability of each feature along with the degree of redundancy between them (Hall,

1998). Given the results shown in (Cerutti et al., 2014c), SCC-related information are believed

to be extremely informative, thus expected to play a significant role in the EPMs performance.

However, it has to be pointed out that the relation between the importance of the features

exploited by an EPM and its performance is not deterministic.

Finally, the EPMs have been generated considering 7 different sets of features:

• the set including the single best feature (B1), the sets including the best two and three

features (B2, B3),

• the set including the features extracted from the directed graph (DG),

• the set including those extracted from undirected graph (UG),

• the set with all the extracted features (All).

It turns out that B1, B2 and B3 include only features from the directed graph.

5.3 Runtime Prediction

As to the M5-rules model to predict solvers runtime, the three best features selected by the

greedy approach are summarised in Table 3. This analysis provides several insights on features

that are expected to affect solvers performance. First, the density of directed graphs—i.e. how

close it is to a complete graph—seems strongly related to the performance of all the solvers since

it is always among the best 3 features. Second, we observe that also SCC-related information,

mainly the number of SCCs and the size of the maximum one, are often selected.

Table 4 shows the results, in terms of RMSE, for regression with 10-fold cross validation on

a uniform random permutation of our full set of 10,000 AFs. Since solvers runtimes vary from

0.01 to 900 CPU seconds, we trained our regression models to predict log-runtime rather than

absolute runtime: this have been effective in similar circumstances (Hutter et al., 2014).

Results shown in Table 4 indicate that using all the extracted features leads to the best possible

results. Some solvers seem to have easier to predict behaviours, while others are somehow more

complex. It is interesting to note that DG and UG features lead to similar predictive performances,

which are usually close to those achieved by exploiting the B3 set. Moreover, DG features allow to
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Table 4 Cross-validated RMSE of log10(runtime) for M5-rules models using different features subsets.
B1, B2, B3 indicates the best 1, 2 and 3 features according to a greedy forward search; DG (UG)
indicates features extracted only from directed (undirected) representation; SCC only SCC-related ones;
All indicates all the extracted features. Values in bold indicate the best results, also considering hidden
decimals.

Regression (Lower is better)

B1 B2 B3 DG UG SCC All

Aspartix 0.66 0.49 0.49 0.48 0.49 0.52 0.48

ArgSemSAT 1.39 0.93 0.93 0.89 0.92 0.94 0.89

ArgTools 1.48 1.47 1.47 0.77 0.57 1.61 0.55

SCC-P 1.36 0.80 0.78 0.75 0.75 0.79 0.74

Table 5 Evaluation of classification EPMs for different features subsets. B1, B2, B3 indicates the best 1,
2 and 3 features according to a greedy forward search, namely: (1) the number of vertices, (2) the density
of the directed graph and (3) the minimum degree value of the directed graph; DG (UG) indicates features
extracted only from directed (undirected) representation; SCC only SCC-related ones; All indicates all
the extracted features. A precision value smaller than 50% indicates that most of the AFs have been
mistakenly classified as members of the class.

Classification (Higher is better)

B1 B2 B3 DG UG SCC All

Accuracy 48.5% 70.1% 69.9% 78.9% 79.0% 55.3% 79.5%

Precision Aspartix 35.0% 64.6% 63.7% 74.5% 74.9% 42.2% 76.1%

Precision ArgSemSAT 53.7% 67.8% 68.1% 79.6% 80.5% 60.4% 80.1%

Precision ArgTools 26.5% 69.2% 69.0% 81.7% 85.1% 35.3% 86.0%

Precision SCC-P 54.3% 73.0% 72.7% 76.6% 76.8% 57.8% 77.2%

achieve an RMSE which is very close to the one achievable by exploiting the All set for Aspartix,

SCC-P and ArgSemSAT. Interestingly, this is not true for ArgTools. In this case the UG set

of features provides more useful information for EPMS than DG. Moreover, SCC-related features

are not informative for predicting the performance of ArgTools, and this is confirmed also by

the selected three best features (Table 3). Finally, we noted that the behaviours of ArgSemSAT

and SCC-P appear to be hard to predict, when compared to the other considered solvers. A

possible explanation is due to the fact that ArgTools ran out of time on most of the AFs, and

Aspartix solved a significant number of them in 800-899 CPU-time seconds. ArgSemSAT and

SCC-P show different, and more variegated, CPU-time distributions.

5.4 Classification

Differently from the regression EPMS, which generate a predictive model for each considered

solver, the classification approach trains a single model that selects the most performant solver.

In this case, the three best features selected for the classification EPM are, in the order, (1)

the number of vertices, (2) the density of the directed graph and (3) the minimum degree value

of the directed graph.

Table 5 shows the results, in terms of overall accuracy and per-algorithm precision, of the

classification EPM, evaluated with 10-fold cross validation. From the set of 10,000 AFs, those

which were not solved by any solver were removed. In this approach, an AF is member of the

class corresponding to the solver which has been the fastest in enumerating preferred extensions.
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Figure 2 The number of time each solver has been the fastest one w.r.t. the cardinality of the set of
arguments.

Accuracy indicates the proportion of correctly predicted results in the whole data set, while

precision considers only a single class, and is the proportion of the elements correctly classified

as members of the class against all the actual members of the class.

Several considerations can be drawn from Table 5:

• the whole set of features usually allows the EPM to achieve the best predicting performance;

• using the best 2 features instead of the single best one guarantees better performance;

• SCC-related features are not as informative as we believed;

• features derived from undirected graphs are usually better than those generated by consid-

ering directed graphs. This counter-intuitive result (UG are lossy) is further addressed in

Section 5.6. However, no features from the UG set are included in the B3 set: this seems to

suggest that undirected graph features are useful when exploited all together, while DG ones

seem to be better when considered singularly.

As mentioned above, the greedy approach used for determining the most informative features

indicated the number of vertices as the best one. Figure 2 shows how the number of vertices of

AFs affect the performance of the considered solvers. Given the precision performance reported in

Table 5, and the shape of the graph in Figure 2, we can argue that this feature is quite informative

for selecting between SCC-P and ArgSemSAT, which are the fastest systems on most of the

considered AFs, but does not provide very reliable information about the other solvers.

5.5 Algorithm Selection

After evaluating the predicting performance of classification and regression EPMs, we compared

them in order to understand which is the most promising approach to be used for on-line algorithm

selection. Algorithm selection done by exploiting the classification EPM is straightforward: the

best predicted solver is used for solving the testing AF. Instead, regression EPMs require to

predict the runtime of each considered solver, and to select the one predicted to be the fastest.

Let us notice that the CPU-time required for generating the predictions, in both classification
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and regression EPMs, is extremely low. Such predictions are generated by solving easy case-based

formulas that test a feature value at a time. The most expensive step is the generation of the

predictive models, which requires also to solve the training problems and extract the features

from all of them; this is done offline, thus it does not affect the algorithm selection performance.

For this comparison we used the set of All the considered features, and divided the 10,000

AFs in separate training and testing instances. To achieve a more objective comparison between

the techniques, the testing instances have been randomly selected across all the different sizes,

resulting in 1,040 AFs. All the solvers failed to enumerate the preferred extensions before the

cutoff time on 33 AFs over the 1,040 test instances: these instances were thus excluded from the

following evaluation.

For each AF we considered (1) the fastest solver and (2) whether or not either the Regression or

the Classification EPMs successfully select such a solver, counting the times that this happened.

The result is shown in the left part of Table 6. There is not a great difference between classification

and regression-based algorithm selection; the former is able to select the best algorithm on 788

testing AFs (78%, clearly consistent with Table 5), while the latter on 755 (75%). In most of

the cases (834 times) both the EPMs select the same algorithm, and in 687 cases such selection

was right. It is worthy noting that there is a remarkable difference between the performance of

algorithm selection approaches and the single solvers, i.e. each single solver achieves the best

performance in a greatly lower number of AFs w.r.t. the solver predicted by any of the two

algorithm selection approaches.

It can be argued that the metric used, i.e. the number of time a system has been the fastest,

albeit good for evaluating the algorithm selection performance, might not be very informative

from the performance gain perspective. Thus, we analysed the IPC score, borrowed from the 2008

International Planning Competition.7 For each AF, each system gets a score of T ∗/T , where T is

its execution time and T ∗ the best execution time among the compared systems, or a score of 0 if

it fails in that case. Runtimes below 0.01 seconds get by default the maximal score of 1. The IPC

score is interesting because it considers, at the same time, the runtimes and the number of solved

instances. The maximum IPC score achievable on the testing AFs is 1007, which corresponds

to a system that always selects the best solver on the 1007 instances where at least a solver

succeeded. Clearly, on AFs where both the EPMs selected the same algorithm, they obtain the

same IPC score. According to IPC score, the classification-based algorithm selection approach

scores 928.1, followed by the regression EPMs with a score of 887.7. SCC-P and ArgSemSAT

score respectively 662.4 and 546.7; finally Aspartix scores 288.3 and ArgTools 210.1 (right part

of Table 6). Also by comparing the systems using the IPC score, a significant difference can be

found between algorithm selection methods and single solvers.

5.6 Discussion

Remarkably, the EPMs which consider features derived from undirected graphs—i.e. without

considering the directionality of attacks—are usually better than those generated by considering

directed graph ones (cf. Table 5). Since preferred semantics satisfies the directionality principle

(Baroni and Giacomin, 2007), one could see this as a counter-intuitive result. However, it is

worth mentioning that both Aspartix and ArgTools have some recurrent behaviours—the

former often ends the enumeration around 800− 900 seconds, the latter often do not end the

enumeration in the given time—that turn out to be easily predictable. It is possible that these

behaviours are affected just by the features of the undirected graphs.

Nevertheless, this fails to explain the behaviour of ArgSemSAT and SCC-P. As to

ArgSemSAT, it has to be remarked that its performance depends on the performance of

the SAT-solver used, in this case GLUCOSE (Audemard and Simon, 2014). Therefore, further

investigations on the translation into SAT problems and its dependency from the AF structure

7http://ipc.informatik.uni-freiburg.de/ .
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Table 6 Algorithm selection performance—w.r.t. single solvers (upper part)—using two metrics: the
number of times each solver and the selected solver has been the fastest one on the testing set of AFs
(Fastest); and the IPC value (IPC) achieved by each solver and selected solver. The approaches are
ordered from the worse to the best (according to each metric).

Metric Fastest

(max. 1007)

Aspartix 106

ArgTools 170

ArgSemSAT 278

SCC-P 453

EPMs Regression 755

EPMs Classification 788

Metric IPC

(max. 1007, log. scale)

ArgTools 210.1

Aspartix 288.3

ArgSemSAT 546.7

SCC-P 662.4

EPMs Regression 887.7

EPMs Classification 928.1

should be considered. Moreover, in (Cerutti et al., 2013) we show the dramatic performance

difference due to the different encoding of complete semantics in SAT problems: an additional

investigation on this topic is already envisaged. As to SCC-P, the (little) advantage exhibited by

the features derived from the undirected graph seems to be consistent with the meta-algorithm

based on the SCC-recursiveness schema (Baroni et al., 2005), which allows to apply the SAT-

solver just to strongly connected components.

6 Exploiting Predictive Models for Estimating the Number of Preferred
Extensions

The aim of this investigation is to exploit predictive models for providing in “almost real-

time” (i.e. without solving the enumeration problem) an estimation of the number of preferred

extensions of a given AF. Specifically, we are interested in determining (1) the solution to the non-

emptiness problem (a NP-complete problem), and (2) whether there is more than one preferred

extension, with an estimation of the relevant number. Moreover, we introduce an additional

theoretical problem, that is “does the preferred semantics identify less than χ extensions?” where

χ is a configurable, arbitrary, but fixed, parameter8.

6.1 Experimental Protocol

The first step of our experimental protocol consists in the generation of an initial dataset. To this

purpose, we first generated a large number of AFs by using an improved version of AFBenchGen

(Cerutti et al., 2014b). In this analysis, differently from experiments in Section 5, our focus is on

generating AFs with very different number of preferred extensions, in order to check if EPMs are

able to accurately predict the number of extensions of a given framework.

For the purpose of training the models, and maximising the diversity of AFs in terms of the

number of extensions, we randomly generated three sets of 4,000 AFs, each one corresponding to

a different graph model: (Erdös and Rényi, 1959), (Watts and Strogatz, 1998) and (Barabasi and

Albert, 1999). Notably, these graph topologies have been already exploited for testing abstract

argumentation techniques (Bistarelli et al., 2015a,b). In short, in Erdös-Rényi graphs the attacks

between arguments are randomly selected according to a uniform distribution. On the other

hand, Watts-Strogatz graphs are aimed at modelling many biological, technological and social

networks that are neither completely regular nor completely random. These graphs are obtained

by rewiring regular networks so as to introduce increasing amounts of disorder. As a result,

8Inspired by well-known results from psychological investigations (Miller, 1956), experimental results in
the following consider χ= 7.
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Table 7 Characteristics of the considered AFs.

Average Minimum Maximum

# Attacks 9,766 11 231,882

# Arguments 432 11 1,200

Density 0.76 0.01 4.24

Degree 43 2 609

# SCC 138 1 990

SCC size 212 1 1,200

they can be highly clustered, like regular lattices, yet have small characteristic path lengths,

like random graphs. Finally, in Barabasi-Albert graphs the node connectivities follow a scale-free

power-law distribution, with the aim of modelling many large networks that expand continuously

by the addition of new nodes that attach preferentially to sites that are already well connected.

In particular, as (Barabasi and Albert, 1999) and (Watts and Strogatz, 1998) produce acyclic

graphs—and thus a single extension (Dung, 1995)—we introduced a parameter, varying between

0 and 1, for selecting the probability of having mutual attacks instead of directed ones: if

the parameter is 0, then the produced graph is acyclic; if it is 1, each attack is mutual. The

number of arguments vary between 11 and 1,200, and the number of attacks range between

10 and (approximately) 230,000: further details are shown in Table 7. To give an intuition of

“how difficult” those AFs are to solve, the current state-of-the-art approaches, w.r.t. the last

competition –not restricted to the approaches we considered in previous sections–, managed to

solve 72% of them before the cut-off time of 900 seconds.

In order to generate our initial dataset, a pre-processing step has then been applied to the

obtained AFs. For each AF we (1) extracted its features; (2) computed the number of preferred

extensions; and (3) in the case of a single preferred extension, we checked whether it was empty

or not. We used various approaches, from ICCMA 2015 (Thimm et al., 2016), to compute the

preferred extensions to maximise the chances of obtaining a solution.

Similarly to the process described in Section 5, we computed various classification and

regression models included in WEKA (Hall et al., 2009) and assessed their performance in

predicting the solution to the non-emptiness problem, and the above mentioned properties of the

solution to the enumeration problem for preferred semantics. We considered linear regression,

neural networks, Gaussian processes, decision trees and rule-based techniques. As in Section

5, models have been evaluated using a 10-fold cross-validation approach on a uniform random

permutation of our instances.

On AFs considered in this experimental analysis, the overall features extraction process takes

around 1.5 CPU-time seconds. As it is apparent, AFs considered in this empirical analysis tends

to be smaller, in terms of number of arguments, than those considered in Section 5. Again, this is

due to the different focus of the investigation, and to the different final use of the trained EPMs.

It is worth reminding that features will be used for estimating the number of preferred extensions,

and no solver will be run afterwards: it is therefore reasonable to invest CPU-time in extracting

features, in order to maximise the potential accuracy of predictions.

6.2 Hierarchical Model Design

We observed that the direct use of regression models for predicting the actual number of preferred

extensions achieve a too low accuracy to make them useful. As a consequence, we decided to

design a hierarchical predictive model organised in two levels. Firstly, the model predicts if the

given AF has an empty (and thus unique) preferred extension, a unique non-empty preferred
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Figure 3 The 2-levels classifier of a AF Γ, according to the number / type of preferred extensions. The
first level is said to be higher in the hierarchy than the second level.

extension, or more than one preferred extension (and thus all extensions being non-empty). In

case the presence of many preferred extensions is predicted, a different classification model is used

for determining whether or not the number of preferred extensions is greater than χ. Moreover,

in order to investigate the generality of this approach, at the second level of the hierarchy we

consider also a regression model that will output the number of extensions. Figure 3 depicts the

2-levels system.

The exploited hierarchical approach is appropriate because the levels evaluate different aspects

of frameworks: the first focuses on the non-emptiness problem, while the second one counts the

number of extensions. Intuitively, when exploiting a hierarchical approach, models of higher levels

should have very good performance; otherwise subsequent levels will be negatively affected by

the poorly classified elements. Also, it has been observed that it is possible to achieve better

prediction accuracy and simpler models by using hierarchical approaches (Xu et al., 2008). Our

models use the random forests algorithm for the classification tasks, and the M5Rules (Holmes

et al., 1999) for regressions. These approaches showed best performance.

We trained both levels by considering the AFs in which at least a solver succeeded. In total

we considered 8,640 AFs: about 4,000 with empty preferred extensions, 1,700 with a single non-

empty preferred extension, while the others have more than one preferred extension. The training

set for the second level consists of about 2,800 AFs with more than one preferred extension. Since

the number of preferred extensions is on average 832.1 with a variance of 2310.9, we trained our

regression models to predict log-number of extensions (i.e. log10 |EPR(Γ)|) rather than absolute

number (i.e. |EPR(Γ)|): this has been effective in similar circumstances (Hutter et al., 2014).

6.3 Cross-Validated Results

Table 8 shows the results of the 2-levels EPMs in terms of accuracy—proportion of instances

correctly classified—and precision—the proportion of true positives within a class—.

As to the first level, the All set of features (including all the considered features) provide

the best model. According to the results shown, AFs which have a single non-empty preferred

extension are the hardest to identify. It should be noted that the UG set of features, which

correspond to information extracted from the undirected graph representation of AFs, usually

provide the worst predictive performance. Also, we observed that by removing the UG features

from the All set, accuracy performance increases to 91.7%. Undirected graph features act like

noise for the classification model. As expected from the principle-based analysis of argumentation

semantics in (Baroni and Giacomin, 2007), where the directionality principle is shown to
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Table 8 Cross-validation of the classification model: accuracy and precision w.r.t. each considered class
(percentages, higher is better). Graph is the union of DG and UG features.

Groups of Feature

DG UG Graph Matrix All

Level 1

Accuracy 90.2 84.6 90.1 91.1 91.4

Precision (EPR(Γ) = {∅}) 93.7 91.0 93.7 93.7 93.5

Precision (|EPR(Γ)|= 1, EPR(Γ) 6= {∅}) 79.4 63.3 79.4 84.9 85.6

Precision (|EPR(Γ)|> 1) 90.7 87.3 90.7 90.5 91.2

Level 2

Accuracy 85.4 64.9 85.3 86.7 86.3

Precision (|EPR(Γ)| ≤ χ) 89.1 71.5 88.9 90.0 90.0

Precision (|EPR(Γ)|> χ) 78.3 47.5 85.3 80.0 79.2

Table 9 RMSE of log10 |Eσ(Γ)| of the cross-validated regression model. Graph is the union of DG and
UG features.

Groups of Feature

DG UG Graph Matrix All

RMSE 1.18 2.45 1.18 1.24 1.81

characterise preferred semantics, information regarding the direction of the attacks is important

for predicting the structure of preferred extensions.

As to the second level classification, Matrix features reveal to be quite informative for accuracy

and also precision in the class |EPR(Γ)| ≤ χ (together with All). However, it is worth mentioning

that the precision for the class |EPR(Γ)|> χ is slightly lower (85.3%), thus suggesting that the

model is less accurate in classifying those AFs. Reasons for that are twofold. On one hand,

while graph structures are quite informative at level 1 (i.e. to discriminate between only one

empty extension, only one non empty extension, or more than one extension), they are slightly

less accurate in distinguishing between χ or χ− 1 or χ+ 1 extensions. In addition, the test set

is moderately unbalanced (60% of AFs has less than χ extensions), but given the good results

(accuracy and precision between 85% and 90%), we chose not to apply techniques of oversampling

to overcome this.

Table 9 shows the performance, in terms of root mean square error (RMSE), of regression

models predicting the log-number of preferred extensions (i.e. log10 |EPR(Γ)|). In this case, UG

features are significantly worse than others. On the other hand, either using only Matrix-related

or DG features allow to achieve better performance than the All set. This is probably due to the

noise added by considering the UG set.

6.4 Most Important Features

The importance of features has been assessed using the CFS attribute evaluator, as described in

Section 5. The most important features selected are:

• Classification, Level 1: number of SCCs (DG); average degree (DG); aperiodicity (DG);

• Classification, Level 2: ratio vertice-edges (DG); STDev degree (DG); size of maximal SCC

(DG); flow hierarchy (DG); average lines sum (Matrix); norm lines sum (Matrix);
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Figure 4 AF derived from r : ¬a, ¬b→ c.

• Regression: STDev degree (DG); aperiodicity (DG); density triangles (UG); average triangles

(UG); averages difference columns (Matrix).

As to the first level, by using the three obtained features it is possible to build a model with

a 91.0% of accuracy. This indicates that a small set of features is extremely informative, and

allows to achieve very good predictive performance. The remaining DG and Matrix performance

are probably helpful in complex cases only.

As to the classification task at the second level, with the six identified features it is possible

to build a model with 85.7% of accuracy, and with a great precision in the case of |EPR(Γ)| ≤ χ,

viz. 89.1%, although not exceptional for the other case (78.9%).

By using the five features the CFS techniques selects for the regression task, it is possible to

generate regression models with a RMSE of 2.36. This is better than using UG features only

(cf. Table 8), but worse than any other set. Interestingly, CFS included features from each of

the three considered sets. Intuitively, few of the UG features are informative with regards to the

regression task.

6.5 Validation of Models against AFs with Identifiable Clusters of Information

Frameworks generated using the AFBenchGen tool do not carry any sort of information: they

are random sets of arguments organised according to a predefined structure. However, as

demonstrated in other areas of AI such as SAT, instances that do carry information lead to

results that are very different from those observed on randomly generated instances. For instance,

in the case of SAT, information carried by CNFs usually relates to some manufacturing processes,

and the relevant impact needs to be verified. To prove the generality of our approach w.r.t. the

Argument Generation process —thus guaranteeing re-usability of our results in contexts not linked

to our investigation—, here we validate the proposed framework on AFs with identifiable clusters

of information. In the following, their generation process, starting from automated planning

problems, is detailed.

6.5.1 Deriving AFs with Identifiable Clusters of Information
Given a planning domain model and a problem, we:

1. encode the planning problem in SAT formulae (Sideris and Dimopoulos, 2010) in Conjunctive

Normal Form (CNF): six different encodings have been considered, for a total of 500 different

formulae;

2. transform each disjunction in a material implication: e.g. a ∨ b ∨ c becomes ¬a ∧ ¬b⊃ c;
3. evaluate each material implication as a named strict rule (e.g. r : ¬a, ¬b→ c) and apply the

transformation described in (Wyner et al., 2015) (see Figure 4).9

The advantage of using planning domain models relies on the small number of operators and

objects, which limits the size of resulting SAT formulae. We did not consider SAT instances from

9An interested reader can find in (Wyner et al., 2015) a discussion on the relations between preferred
extensions and models of the original logical formulae.
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Table 10 Classification model evaluated against AFs with identifiable clusters of information: accuracy
and precision w.r.t. each considered class (percentages, higher is better). Graph is the union of DG and
UG features.

Groups of Feature

DG UG Graph Matrix All

Level 1

Accuracy 100.0 92.4 100.0 100.0 100.0

Level 2

Accuracy 94.4 56.3 94.4 78.8 86.5

Precision (|EPR(Γ)| ≤ χ) 33.3 0.0 33.3 0.0 0.0

Precision (|EPR(Γ)|> χ) 96.8 92.8 96.8 94.7 95.2

SAT competitions due to their size and complexity: in total, the considered solvers were able to

analyse less than 10 instances. At the same time, we did not include the AFs proposed by (Cabrio

and Villata, 2014) because there are very few of them.

We chose to use the approach presented by (Wyner et al., 2015) because there is a one-to-one

syntactic correspondence between the SAT variables and the generated AF. Dealing with the

entire model of argumentation, and thus connecting the two processes of argument generation,

using for instance ASPIC+ from a propositional knowledge base, and of semantic evaluation of

the proposition in the knowledge base, is already envisaged as the main future work.

6.5.2 Performance of EPMs on AFs with Identifiable Clusters of Information
To evaluate the performance of the trained models we derived 500 AFs following the above

procedure and using two well-known benchmark planning domains: Blocksworld and Ferry. The

former deals with controlling a robot arm for re-assembling stackable blocks, the latter models

the use of a ferry boat for moving cars between different islands. Out of the 500 considered AFs

with identifiable clusters of information, the solvers successfully analysed 200 of them, which have

been included in our evaluation. The number of arguments range from 86 to approximately 2,000,

the number of attacks is between 136 and 4,255. Also in this case the number of extensions has a

great variance (1,989.8) across the considered testing set.10 We should remark that successfully

analysed AFs provide the ground truth for the correct evaluation of models.

Table 10 shows the results of classification and regression models against AFs with identifiable

clusters of information. It clearly indicates that the classification model is very accurate also

on AFs that are significantly different from the training ones. On the other hand, it is worth

noting that the considered AFs derived from SAT formulae always have more than one preferred

extension. Thus, they are all from the same class, according to the exploited classification model.

For this reason, we are not showing precision results. Nevertheless, the predictive model is able

to correctly identify all of them. Remarkably, the trend shown in Table 8 is confirmed by results

in Table 10: features derived from the undirected graph are not as informative as those from the

other sets for the classification task. Also a model based on the three features selected by using

the CFS technique only, is able to correctly classify 100% of AFs.

Although the set of AFs with identifiable clusters of information is very unbalanced—only 4.0%

of the frameworks has less than χ extensions—the classification models perform very well, with an

accuracy of 94.4% and an average recall of 96% from the features derived from the directed graph,

which appears to be dominating also in the set of Graph as the results are identical. Considering

only the 6 features selected by the greedy forward search on the CFS attribute selector, the

10Average number of extensions: 1,024.2; variance: 1,989.8.
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Table 11 RMSE of log10 |Eσ(Γ)| of the regression model evaluated against AFs with identifiable clusters
of information. Graph is the union of DG and UG features.

Groups of Feature

DG UG Graph Matrix All

RMSE 12.9 1.3 5.8 15.5 38.0

accuracy is still quite high, 91.9%. Results presented in Table 10 also highlight the hardness of

correctly identifying the (very few) frameworks that has less than χ extensions: UG, Matrix and

All sets of features show a 0.0 precision value, which indicates they are not able to correctly

identify any of such frameworks. This possibly indicates that the structure of frameworks from

this specific class is very different from the structure of those, from the same class, included in

the training set.

Table 11 shows the performance of the regression model aimed at predicting the log-number

of preferred extensions (i.e. log10 |EPR(Γ)|). Results are significantly different from those observed

in Table 8: the All set of features seems to include a lot of noise, and does not allow to make any

prediction. Given the results on the Matrix and DG sets, it is reasonable to derive that noise is

mainly from these two sets.

6.6 Discussion

In summary, according to the results in Tables 8 and 10, the proposed 2-levels approach shows

good overall performance. This demonstrates that the predictive hierarchical model built on the

considered training AFs (i.e. those described in Section 6.1) is able to address a testing set

including differently structured frameworks, although the relative importance of the considered

set of features changes, as will be shown below.

Interestingly, the classification models have generally better performance on this testing set

than on the training one. This is probably due to the different structure of the AFs in training

and testing sets. Moreover, the informativeness of the sets of features is similar in both the

considered sets of instances for the first level of the hierarchical model, but not for the second

level classifier, where it is evident that the features from the directed graph representation are

much more informative for the testing (structured) AFs (Table 10).

As to the regression task, features extracted by considering the undirected graph are very

informative, and lead to accurate regression model. The regression model relying on the five

features selected by the CFS method shows a root mean squared error of 2.9. This is better than

the performance achieved by considering the All set of features, but slightly worse than those

obtained by exploiting the UG features only. For confirming the importance of UG features, we

applied the CFS technique directly on the testing set. Four features have been selected, two from

the UG set, and two from the matrix encoding. Even though this selection might be affected

by overfitting, given the number of considered AFs, we believe that the importance of the UG

features for the regression task on testing frameworks is confirmed. Intuitively, in the regression

task structured AFs have a topology which can effectively be synthesised by considering the

undirected graph representation only. Moreover, information added by considering the directed

graph, or the matrix encoding, are misleading with regards to the task of predicting the number

of preferred extensions.

7 Conclusions

This work provides an extensive investigation of the exploitability of automatically generated

predictions in dealing with high-complexity problems. In order to perform such investigation, we
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introduced the largest set of features for AFs ever proposed in literature which analyses them

both from a graph and matrix perspective.

Results presented in Section 5 demonstrate that EPMs can be used to to determine the

“best” algorithm—relatively to the CPU-time—with an accuracy of about 80%. Moreover, via an

empirical investigation, we derive an algorithm selection approach, based on classification, which

can identify the fastest algorithm in about the double of the number of cases where the most

efficient algorithm outperforms the other ones (SCC-P), and about three times the number of

cases of the second most efficient algorithm (ArgSemSAT). It is worth mentioning that the

obtained results are consistent with previous empirical investigations (Cerutti et al., 2013). For

instance, according to Table 5, ArgSemSAT seems to be affected by the number of vertices

(feature B1) much more than Aspartix and ArgTools. In (Cerutti et al., 2013) we show that

both Aspartix and ArgTools show behaviours independent from the cardinality of the set of

arguments, while they depend on the percentage of attacks.

Results discussed in Section 6 confirms that we develop a model able to predict, with an overall

accuracy of 91.4%, whether or not an AF has a unique empty preferred extension, a problem which

is known to be NP-complete (Dunne and Wooldridge, 2009). Moreover, inspired by the work

of (Baumann and Strass, 2014), where an approach for computing the maximum and average

number of stable extensions is provided, using a hierarchical predictive model we can distinguish

when there is one or more preferred extensions. Finally, if more than one preferred extension is

predicted, predictive models are able to predict their log-number. Furthermore, we show how it

is possible to discriminate around a pivotal number of extension with an accuracy greater than

or equal to 90.0% both using our randomly-generated training set as well as the argumentation

frameworks with identifiable clusters of information.

This work opens the road to a large set of interesting future work and applications of the

developed techniques. Future work can be envisaged both from a theoretical point of view—

i.e. determining potential inter-dependencies between set of features and semantics for the tasks

identified in this paper—as well as from an “engineering” perspective. A natural extension to the

proposed algorithm selection investigation would be the analysis of portfolios: portfolio approaches

are more complex than algorithm selection ones, since they have to (i) select a subset of solvers;

(ii) order the solvers and; (iii) allocating CPU-time to each solver. Such increased complexity

can potentially lead to further performance improvements. We also envisage an analysis of the

exploitability of predictive models for supporting different, and notably less computationally

complex, reasoning problems. We are also interested in extending the set of considered features.

From a solvers’ perspective, it is important to assess the usefulness and impact of probing

features: features that are computed by briefly running an existing algorithm on the given AF and

extracting characteristics from that algorithm’s trajectory (Hutter et al., 2014). Also, different

aspects of the structure of AFs can be considered for extracting more features, such as: information

related to symmetric attacks, treewidth (Dunne, 2007; Dvořák et al., 2012), acyclicity. Moreover,

Dunne et al. (2015) provides characterisation theorems for realizing argumentation frameworks

given a set of extensions under different semantics, including preferred semantics. (Dunne et al.,

2015, Proposition 10) indeed shows that if two (maximal) sets of arguments are involved, preferred

semantics that satisfies incomparability of extensions is capable to deliver such extensions. Linking

the study of features with realizability of argumentation frameworks is an exiting interesting line

of future work.

Finally, we will further investigate regressive approaches in order to predict the number of

extensions: an investigation in the context of stable semantics in order to provide a comparison

with (Baumann and Strass, 2014) is already envisaged, as well as for other semantics.

Among the applications mentioned in Section 1, we point out that the investigated predictive

models can be exploited in existing argumentation-based decision support systems (Tamani et al.,

2015; Toniolo et al., 2015). For instance, CISpaces (Toniolo et al., 2015) is an argumentation-

based research-grade prototype for supporting intelligence analysts in their sense-making process,
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now under consideration for transitioning into a commercial product by the U.S. Army Research

Laboratory. It supports intelligence analysts in sense-making via compelling hypotheses, where

each hypothesis is a preferred extension. Being able to identify the best algorithm to compute

preferred extensions is clearly an important feature, especially when the probabilistic engine of

CISpaces is enabled, which requires to solve an argumentation problem—e.g. the enumeration of

preferred extensions—several times evaluating different probabilistic worlds. At the same time, if

each preferred extension is an hypothesis that an analyst needs to assess, the more the extensions

the more the cognitive burden on the analysts. In this respect, it becomes important to know in

advance the number of extensions, and in particular if such number exceeds a given threshold.

Moreover, this information can be exploited in environments where the structure of frameworks

change frequently, and operators need to quickly obtain an overview of the structure of the

solution, e.g.in order to know in advance what to change in the knowledge base to reduce the

expected number of extensions. We believe that it would be of extreme interest to evaluate how

analysts will leverage the proposed tools.
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Appendix A Matrix-related Features

Any AF with N arguments can be encoded as an N ×N matrix. Given this encoding we are

able to extract 98 features, divided in:

• Basic matrix (9):

1. Rank

2. Sparsity of the matrix

3. Number of non zero elements

4. Standard deviation of the matrix elements

5. Average of the matrix elements

6. Variance of the matrix elements

7. Norm

8. Determinant
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9. Sum of matrix diagonals.

• Sum the following statistics are computed on vectors resulting from sum of either columns

or rows (14):

1. Standard deviation

2. Minimum value

3. Maximum value

4. Average

5. Variance

6. Number of non zero elements

7. Norm.

• Cumulative sum the following statistics are computed on vectors resulting from cumulative

sum of columns, rows, and diagonals (21):

1. Standard deviation

2. Minimum value

3. Maximum value

4. Average

5. Variance

6. Number of non zero elements

7. Norm.

• Difference the following statistics are computed on vectors resulting from differences of cells

on columns, rows, and diagonals (21):

1. Standard deviation

2. Minimum value

3. Maximum value

4. Average

5. Variance

6. Number of non zero elements

7. Norm.

• Diagonals the following statistics are extracted by considering the first and second diagonal

of the matrix (7):

1. Standard deviation

2. Minimum value

3. Maximum value

4. Average

5. Variance

6. Number of non zero elements

7. Norm.

• Gradient the following statistics are extracted by considering the gradient of the vector

resulting by (i) the sum of the rows, (ii) the sum of the columns, and (iii) the sum of the

diagonals of the matrix (21):

1. Standard deviation

2. Minimum value

3. Maximum value

4. Average

5. Variance

6. Number of non zero elements

7. Norm.

• Correlation the correlation value of the following couple of vectors (4):
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1. Sum of columns, sum of rows

2. Sum of columns, first diagonal

3. Sum of rows, first diagonal

4. gradient of sum of columns, gradient of sum of rows.


