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Abstract

Due to the intensification and modernization of livestock farming practices, large
amounts of trace metals, veterinary pharmaceuticals and pesticide residues are released
to the soil along with animal feces. Hence, there is an increasing concern about the
effects of pollutants derived from livestock activities on soil organisms. The objective
of this study is to assess the ecotoxicity of soils from livestock production systems using
a set of validated tissue and cellular biomarkers of non-native earthworms (Amynthas
gracilis) exposed ex situ to real contaminated livestock soils.

Overall the results showed that livestock pollutants present clear environmental risks,
since the exposure during 14 days to soils from livestock systems triggered significant
sub-lethal effects in 4. gracilis, revealed by the increase of acetylcholinesterase activity
in earthworms’ tissues (from 34.15 = 0.79 to 62.74 = 2.10 nmol of acetylthiocholine
hydrolyzed min” mg" of protein), the decrease of antioxidant defense associated
enzymes (superoxide dismutase activity, from 2.76 + 0.11 to 1.90 + 0.04 U mg" of
protein) and of lysosomal integrity (neutral red uptake, from 113.00 + 4.81 to 83.73 +
2.25 %). Moreover, coelomocytes of earthworms exposed to the livestock soil displayed
significantly higher DNA damage values (comet assay, from 126.67 + 8.67 to 199.67 +
23.15 GDI).

This study validates the applicability of the tested biomarkers as early warning tools to
assess sub-lethal toxicity to organisms inhabiting soil impacted by livestock pollutants.
This study also highlights the relevance of A. gracilis as a suitable sentinel species to
provide an integrative and more ecologically relevant response of soil ecosystem health

in livestock production systems.

Keywords: Livestock pollutants; Soil ecotoxicity; Earthworms; Biomarkers;

Cytotoxicity; DNA damage.
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1. Introduction

One of the most pressing environmental risks associated with modern livestock
practices derives from the amount of manure produced in these systems. Despite the
major efforts developed to focus the positive effect of soil amendments with manure to
enhance soil fertility, little attention has been paid to their toxicological effects on soil
organisms (Ajorlo et al., 2010). Due to the relatively high cost of transportation, the
bulk amounts of manure produced in livestock production systems are frequently spread
on farm soils, bringing not only organic matter and nutrients to the ecosystem, but also
potentially toxic substances such as trace metals, veterinary pharmaceuticals and
pesticide residues (Moscuzza and Fernandez-Cirelli, 2009; Solliec et al., 2016).

Earthworms have been considered highly appropriate biological indicators to
assess the bioavailability and ecotoxicity of many soil pollutants (Asensio et al., 2013;
Calisi et al., 2013). These organisms are naturally in contact with the solid, aqueous and
gaseous soil phases and, consequently, are directly exposed to soil contaminants
(Schreck et al., 2012). Traditionally standard toxicity tests using earthworms evaluate
endpoints related to acute toxicity (e.g., mortality, growth and reproduction),
underestimating the effects at the molecular, biochemical and cellular levels that can
function as early-biomarkers of toxicity (Lourenco et al., 2011).

Over the past few years, increasing emphasis has been placed on the use of
biomarkers as early-warning tools to monitor environment quality. The neutral red
uptake (NRU) assay indicates cell integrity impairment and it has been applied in a
variety of organisms to determine the relative cytotoxicity of a wide spectrum of
pollutants (Gémez-Mendikute and Cajaraville, 2003). The acetylcholinesterase activity
(AChE) is a biomarker of exposure to neurotoxic compounds, widely used as an
carthworm biomarker for neurotoxic effects (Calisi et al., 2013). The superoxide
dismutase (SOD) is an essential enzyme in the antioxidant defense system of organisms,
playing an active role scavenging reactive oxygen species (ROS) produced during
exposure to various environmental stressors and protecting cells from damage during
biological oxidation (Lesser, 2006). The SOD activity is regarded as a fast and reliable
biomarker of exposure to environmental pollutants and oxidative stress effect
(Laszczyca et al., 2004). The comet assay (CA) is effective in measuring the DNA
damage caused by various genotoxins in earthworm coelomocytes (Lourenco et al.,

2011; Markad et al., 2012, 2015). However, despite the great efforts to assess the
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genotoxic effects of environmental pollutants, little is known about the risk of DNA
damage associated with exposure to livestock pollutants.

The novelty of the present study relies on the use of a non-native epi-endogeic
earthworm (Amynthas gracilis) as a potential sentinel organism to determine the
resulting ecotoxicity of soils from livestock production systems. Even though most of
the studies about earthworm biomarkers have been conducted on Eisenia spp., the
ecological relevance of this epigeic ecological group to soil ecotoxicity assessment has
been questioned (Sanchez-Hernandez, 2006). As litter-dwelling species, Eisenia spp.
inhabits the soil surface, forming no permanent burrows and feeding on decaying
organic matter. Considering that soil contaminants can occur at different depths, the
suitability of epigeic earthworms as bioindicators for ecotoxicity assessment in soil
ecosystems can be questionable. On the other hand, the use of species belonging to the
epi-endogeic group, such as A. gracilis, will provide a more realistic ecological
response since these earthworms not only inhabit the litter-soil interface, but are also
able to incorporate the fresh litter into the upper mineral layer. By displaying this
behavior, epi-endogeic earthworms are exposed to soil pollutants from both soil surface
and the deeper topsoil layers.

The main objective of this study is to assess the sub-lethal toxicity of livestock
soils to soil organisms, using earthworms (A. gracilis) as biological indicators. For that
purpose, a set of validated tissue and cellular biomarkers was tested: neutral red uptake
assay, neurotransmitter and antioxidant defense enzyme activities (AChE and SOD) and

DNA damage (CA).

2.  Material and methods
2.1. Study sites and soil sampling

In Sao Miguel Island (Azores archipelago, Portugal) the dairy cattle production
has been traditionally extensive, using pastures as a source of animal nutrition.
However, in the last decades, local farms have undergone significant transformations
and, nowadays, the cattle are often maintained at a high density in livestock systems
being fed in alternation with pasture and synthetic feeds.

To study the impacts of these livestock systems on soil ecotoxicity, soils from two
selected sites were used in this study: a soil from a reference site (RF) and a soil from a
pasture subjected to intensive dairy cattle production (LS) (Figure 1). The study sites are

located in the same geological complex (Picos Fissural Volcanic System), ensuring the
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same bedrock and pedological conditions, being soils only differentiated by the type of
land use. The agricultural practices experienced in the selected LS are representative of
the majority of livestock production systems in the island, where a variety of veterinary
pharmaceuticals and agrochemicals are used. A more detailed description of the studied
livestock system is presented in Supplementary Material — Table 1. The reference site
corresponds to a forest reserve of centennial Japanese cedar (Cryptomeria japonica), an
area with no historical records or evidence of farming activity.

Three composite soil samples (with three sub-samples each) from the top soil
layer (020 cm) were taken from the selected pasture (from the cattle trajectory to the

feeding operations) and reference site.

2.2. Soil physicochemical properties
Soil physicochemical properties [particle-size fractions, soil organic matter, pH
(H20) and electric conductivity] were analyzed following nationally recommended

procedures and the Portuguese official methods (LNEC, 1967 a,b).

2.3. Trace metal analysis

Soil trace metal (Li, Cr, Ni, Cu, Zn, Rb, Pb and Hg) contents were determined by
inductively coupled plasma mass spectrometry (ICP/MS) and inductively coupled
plasma optical emission spectrometry (ICP/OES; Activation Laboratories Ltd., Canada).
Quality control was assured by the analysis of duplicate samples, blanks and reference

materials (GXR-1, GXR-4, GXR-6 and USGS SAR-M).

2.4. Test organism

The earthworms used for the assay constitute a natural population from the
reference site. A group of 69 healthy adult A. gracilis earthworms (Kinberg, 1867;
Megascolecidae), with body mass above 1000 mg (fresh weight), was collected by
digging and hand-sorting during July 2015. Prior to the start of the exposure to the soils,
earthworms were allowed to acclimatize, during one week, to the experimental
conditions (20 = 1°C, in darkness) in tanks containing the RF soil. This species was
selected by virtue of ease of collection through digging and its easily-recognizable
morphology. To minimize a differential response bias due to genetic diversity,
specimens were initially identified by molecular methods using a DNA barcoding

approach based on the mitochondrial cytochrome oxidase subunit II (COII) (Novo et al.,
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2015). This assured that animals used in the exposure experiment belonged to the same

mitochondrial haplotype.

2.5. [Exposure procedure

For each experimental soil and exposure time [day (T1), 7 days (T7) and 14 days
(T14)], 9 earthworms were exposed inside plastic boxes (37 x 37 x 30 cm) covered with
perforated lids (1 mm diameter holes) to ~30 L of each soil, the equivalent to ~19 kg of
RF soil and 28 kg of LS soil. Before the beginning of the exposure procedure (no
exposure time: T0), 9 earthworms were analyzed to set the baseline values for each
biomarker.

A total of 30 earthworms was transferred directly from the acclimatization tank to
each experimental soil, to avoid differences in stress condition related to earthworm
relocation. The experiment was carried out for 14 days at 20 + 1°C, in full darkness.
Earthworms were processed for further biomarker analyses, after 1 day, 7 days and 14
days of exposure to each experimental soil. The soil exposure experimental design is
represented in Supplementary Material — Figure 1.

After exposure to the soil, earthworms were kept on moist filter paper for 24 h to
allow gut clearance before biomarker analyses, except for the NRU assay that was
processed differently. In this study, 3 earthworms per experimental group (LF and RF
soils) and exposure time (TO, T24, T7 and T14) were pooled together to analyze the
enzymes activities (SOD and AChE); a similar approach was used to carry NRU assay.
In the CA each earthworm was processed individually, being analyzed 3 individuals per

experimental soil and exposure time.

2.6. Earthworm sample preparation and enzyme activities (AChE and SOD)
Three gut-cleaned specimens were placed into a pre-chilled mortar and ground under
ice-cold conditions in phosphate buffer (1:5 w/v, 100 mM, pH 7.2). The homogenate
was centrifuged at 10400 g for 30 min at 4°C to obtain the post-mitochondrial fraction
(supernatant: S9). The sample (S9) was divided into several aliquots and stored at -80°
C for enzyme activity assays and determinations of protein concentration. The protein
concentration in S9 was determined using the dye-binding method according to
Bradford (1976), and bovine albumin was used as the standard.

The acetylcholinesterase (AChE: EC 3.1.1.7) activity was determined according to the
method of Ellman et al. (1961). The reaction medium included sodium phosphate buffer
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(0.1M, pH 7.2), DTNB (0.67 mM), acetylthiocholine iodide (1 mM) and sample (S9).
Kinetics was recorded at 412 nm for 3 min at 25°C, subtracting the absorbance increase
due to thiols present in each extract, quantified in a similar assay without
acetylthiocholine iodide. = The enzymatic activity was expressed as nmol of
acetylthiocholine hydrolyzed per min per mg of protein and for calculations the
absorption coefficient of 13.6 x 10° M™' cm™ was used.

The superoxide dismutase (SOD, EC 1.15.1.1) activity was determined as described by
Misra and Fridovich (1972). The reaction medium included carbonate buffer (0.05 M,
pH 10.2), EDTA (0.lmM), adrenaline (0.6 mM), and sample (S9). The rate of
adrenaline autoxidation at 30°C was monitored at 480 nm for 3 min. One unit of SOD
activity (U) was defined as the amount of enzyme required to cause 50% inhibition of
the oxidation of the epinephrine (SODs), and the result was expressed as U mg” of

protein.

2.7. Cell integrity in coelomocytes (NRU assay)

The specimens were cleaned with distilled water to remove any particle of soil
and gently massaged in Phosphate-buffered saline solution (PBS solution, pH 7.4) to
remove intestinal contents. Coelomocyte retrieval was performed using a non-invasive
technique (Engelmann et al., 2004). In order to allow extrusion of coelomocytes through
dorsal pores, each pool of earthworms was submerged in 3 ml of extrusion fluid (95%
PBS solution, 5% ethanol, 2.5 mg/ml EDTA, 10 mg/ml guaiacol glycerol ether) for 2
min. Coelomocyte suspension was cleaned by transferring it into tubes containing 5 ml
of cold PBS solution and then centrifuged (4°C; 10 min; 264 g). Pellets were
resuspended in PBS solution and the Trypan Blue exclusion test was performed in order
to adjust the number of cells to 10° cells/ml. Different coelomocytes suspensions were
used for the NRU and CA assay.

The neutral red dye taken up by the coelomocytes was spectrophotometrically
measured in microplates according to Gomez-Mendikute and Cajaraville (2003) and
Homa et al. (2003). Briefly, 6 replicates of 200 ul of coelomocyte suspension from each
earthworm pool (see section 2.5.) were added to the wells of 96-well microliter test
plates to perform the NRU in vitro assay. Cells were incubated for 1 h to allow their
attachment to the chamber walls, the non-adherent cells were removed by centrifuging
the place for 10 min at 117 g and adherent cells were once again incubated for 1 h with

neutral red (freshly made 0.05% dilution in PBS solution) to allow dye uptake by living
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cells. Wells without cell suspension were used as negative controls. Free neutral red and
any remaining non-adherent cells were removed by washing the microplate several
times until no color was visible in the negative control wells. Washing was performed
by centrifuging the plate at 117 g for 5 min, subtracting the liquid with a vacuum pump
and adding new PBS solution. Finally, neutral red was extracted from the cells with
acetic acid—ethanol solution (1% acetic acid, 50% ethanol) and incubated in the solution
for 20 min. Absorbance was determined at 540 nm in a microplate reader
(BioRad model 680, USA). Values recorded in the negative controls were subtracted
from sample values and results were expressed as percentage values relative to the

control group (100%).

2.8. DNA damage in coelomocytes (CA)

The conventional alkaline version of the CA was performed using the method described
by Collins (2004), with minor modifications. Two gel replicates, each containing
approximately 2x10* cells (coelomocytes suspension in PBS, the methodology
described in 2.7) in 70 uL of 1% low-melting-point agarose in PBS, were placed on a
glass microscope slide, pre-coated with 1% normal melting-point agarose. The gels
were covered with glass coverslips and left for + 5 min at 4 °C to let the agarose
solidify, and then immersed in a lysis solution (2.5 M NaCl, 0.1 M EDTA, 10 mM Tris,
1% Triton X-100, pH 10) at 4 °C, for one hour. Then, slides were gently placed in the
electrophoresis tank, immersed in electrophoresis solution (+20 min, 0.3 M NaOH, 1
mM EDTA, pH > 13) for alkaline treatment. Electrophoresis was performed at a fixed
voltage of 25 V and a current of 300 mA, which results in 0.7 V em™' (achieved by
adjusting the buffer volume in the electrophoresis tank). The slides were stained with
SYBR® Safe (10 uL/ml). One slide with two gels each (50 nucleoids per gel) was
observed per earthworm for each experimental group, with a Leica DMLS fluorescence
microscope (400 X magnification). DNA damage was quantified by visual classification
of nucleoids into five comet classes, according to the tail intensity and length, from 0
(no tail) to 4 (almost all DNA in the tail), as described by Garcia et al. (2004). The total
score expressed as a genetic damage indicator (GDI) was calculated multiplying the
mean percentage of nucleoids in each class by the corresponding factor, according to the

formula:
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GDI = [(% nucleoids class 0) x 0] + [(% nucleoids class 1) x 1]
+ [(% nucleoids class 2) x 2] + [(% nucleoids class 3) X 3]
+ [(% nucleoids class 4) x 4]

GDI results were expressed as arbitrary units on a scale of 0—400 per 100 scored
nucleoids (as an average value for the two gels). As positive controls, coelomocytes
were treated with 50 mM hydrogen peroxide for 5 min, according to Collins et al.

(1995), and the respective GDI values were scored.

2.9. Statistical analysis

Soil trace metal contents from both experimental soils (LS and RF) and DNA
damage class, were compared by Mann—Whitney U-tests. For each biomarker, the effect
of soil type (LS and RF) at each exposure time (TO, T1, T7 and T14) was compared
using Student’s t-tests (p < 0.05). Normality and homogeneity of the variances were
tested before Student’s #-tests and Mann—Whitney U-tests analysis, using the Shapiro-
Wilk and Levene tests, respectively. All statistical analyses were conducted using SPSS

21.0 for Windows.

3.  Results and Discussion

In this study, the soil from the livestock system was characterized by a higher
electrical conductivity and clay-silt content, and a lower organic matter content (Table
1). These soil properties promote a higher bioavailability of some soil pollutants,
particularly of trace metals (Sauvé et al., 2000; Seifi et al., 2010), increasing the
environmental risks associated with livestock production activities to the resident biota.
The tested soils (RF and LS) have a volcanic nature (classified as Andosols) (Parelho et
al., 2014). Under undisturbed conditions, these soils preserve their andic properties,
particularly their high organic matter content [on average 13% (Parelho et al., 2014;
Tadashi and Shoji, 2002)]. The results of this study indicate that, when Andosols are
intensively managed for agricultural purposes, the organic matter soil content declines,
even when subjected to animal effluents inputs. Paul et al. (1996), in a study using
agricultural soils from North America, also observed that the soil carbon content
declined with long-term agricultural land-use and intensive tillage practices.

The majority of the analyzed metals (Li, Cr, Ni, Cu, Zn, Rb) was found in

significantly higher concentrations in soil from the LS (Table 1). These metals are
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known as key potential toxic elements occurring in agricultural systems in the study
area (Parelho et al., 2014) being associated with the input of livestock pollutants (Bolan
et al., 2004). The major sources of metals in intensively managed pasture soils are
mineral lick blocks, natural and synthetic supplementary feed, animal manure, slurry
application, pesticides and mineral fertilizers (Franco-Uria et al., 2009; Qishlaqi and
Moore, 2007). All of these agrochemicals are used in the selected LS (Supplementary
Material — Table 1). Thus, the differences observed in soil trace metal loads between the
two experimental soils, reveal that intensive livestock activities are significant sources
of soil contamination with trace metals. Results also show that the soil from RF has
significantly higher concentrations of Pb and Hg (Table 1). This apparently
contradictory phenomenon has been also reported in unmanaged forest soils in the same
study area (Parelho et al., 2014), although no biological effects were recorded in the
resident soil microbial community and fauna (Parelho et al., 2016 a, b). Although the
discrimination between geogenic and agricultural contribution to the trace metal
contents in the experimental soils was outside the scope of this study, we hypothesize
that the concentrations of Pb and Hg in the RF soil are naturally inherited from the
volcanic parent rock. Due to particular RF soil properties, such as the elevated organic
soil matter content (4.22-fold higher than in LS soil), those contaminants are strongly
bound to the chemically reactive inner and outer soil surfaces, and thus a low
bioavailability is expected under these conditions.

In general, the observed differences in the biological endpoints between
earthworms exposed to the experimental soils (RF and LS), should be interpreted as the
net result of the joint-action of complex agrochemicals mixtures in variable amounts,
rather than the single effect of trace metal soil loads. In this sense, for this study, soil
trace metal loads were used as an indirect and partial measure of animal’s exposure to
livestock pollutants in the studied pasture. This approach has been previously validated
in recent studies for soils from agricultural volcanic areas (Parelho et al., 2014; Parelho
etal., 2016 a, b).

The results of this study reveal that the exposure during 1 and 14 days to the LS
triggers an increase of AChE activity (Table 2). Even though the quantification of
pesticide residues was not assessed in this study, organophosphate and carbamates
pesticides are applied in the selected pasture and widely used in the local agricultural
context; these compounds are known as specific inhibitors of AChE (Colovic et al.,

2013). The use of these pollutants in the studied livestock production system pasture is
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confirmed trough the higher soil loads of Li, a validated tracer in volcanic soils for
carbamate pesticides inputs (Parelho et al., 2014). The results show a time-dependent
increase of the AChE activity when earthworms are exposed during 1 and 14 days to the
LS soil, compared to the results obtained for the same times of exposure to the RF soil
(Table 2). Although most studies report a decrease in AChE activity as an acute effect
of exposure to anti-AChE molecules, others refer to its recovery as a time-dependent
effect, a consequence of the detoxification process that enables long-term recovery of
the target nervous tissue. The recovery of AChE activity after long-term exposure to
organophosphate and carbamates compounds was previously reported in other
earthworm species (Drawida willsi, Panda and Sahu, 2004; Eisenia andrei, Velki and
Hackenberger, 2013; Eisenia fetida, Gambi et al., 2007; Lumbricus terrestris, Vejares et
al., 2010) and was attributed to the capacity of the animal to detoxify and eliminate the
pesticide through an enhanced metabolism, such as an increased synthesis of
carboxylesterase. It is assumed that carboxylesterase provides protection against
pesticides intoxication via detoxification by hydrolysis of ester bonds and, by providing
alternative sites for binding so that one molecule of pesticide is scavenged by
stoichiometric phosphorylation, which reduces the amount of pesticide available for
ACHhE inhibition (Jokanovic, 2001). From our results it may be hypothesized that the
short-term exposure to livestock soils triggered parallel detoxification processes in A.
gracilis, causing a decrease of neurotoxins in earthworm tissues and, ultimately leading
to a recovery of the AChE catalytic activity after 14 days of exposure. Our results
clearly reveal that exposure of earthworms to LS triggered a different pattern of
response in comparison to the observed with RF soil, enlightening the presence of
neurotoxic compounds in LS soil.

Within the cell, SOD activity constitutes the first line of defense against ROS
(Alscher et al., 2002). Therefore, an increase in SOD activity would be expected in
earthworms exposed to LS soil as a short-term response against oxidative stress. Yet,
data from this study reveal that exposure to soils from livestock production systems
induces a significant decrease of SOD activity in earthworms at T7 and T14, with
activity values significantly lower (27-32%) to those observed in earthworms exposed
to the RF (Table 2). The excess of ROS molecules is a potential threat to normal cellular
function, disrupting the antioxidant defense mechanism that results in the decrease of
SOD activity and, consequently, causing oxidative stress (Markad et al., 2012).

Therefore, the observed decrease of SOD activity in A. gracilis exposed LS soil, can be
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explained by the presence of additional stressors in this soil that are associated with
oxidative damaging effects.

Alterations in the coelomocytes, such as specific responses of the lysosomal
system, provide a first answer to pollutant exposure, since injurious lysosomal reactions
frequently precede cell and tissue pathology (Spurgeon et al., 2000). The most
investigated coelomocyte alteration is represented by lysosomal membrane integrity
(measured trough NRU assay), an indicator of xenobiotic exposure and its associated
biological effects (cytotoxicity). A significant reduction in NRU was observed after 1
day in earthworms exposed to LS compared to the group exposed to RF soils (Table 2).
Moreover, in LS, the endocytic activity of coelomocytes was also decreased in T14,
being the recorded values significantly lower (~26%) than those observed in
earthworms exposed to the RF (Table 2). These results reveal not only the presence and
bioavailability of pollutants in soils from the livestock systems, but also that
earthworms are suffering from general stress. Although the mechanism causing
alterations in membrane stability of lysosomes is still not well understood, the
lysosomal membrane stability is regarded as a potential biomarker of various
environmental pollutants, particularly of metals. A reduced NRU has often been
reported in coelomocytes of earthworms exposed to soils contaminated with a variety of
metals (Asensio et al., 2013; Calisi et al., 2013). For example, in a recent study, Markad
et al. (2015) observed that earthworm Dichogaster curgensis exposed during 14 days to
fly ash contaminated soils (polluted with Pb, Zn, Ni, Cd, Cr, and Cu) was associated
with coelomocytes lysosomal membrane destabilization. Other studies suggest that ROS
produced in the cellular system due to exposure to metals, plays a major role in metal-
induced cellular responses and affects various cellular organelles and their repair
systems (e.g. Vallyathan et al, 1998). In the present study, the decreased lysosomal
stability in earthworms exposed to LS soil could be attributed to its higher loads of Li,
Cr, Ni, Cu, Zn, Rb.

In the present study, the increased DNA damage in the coelomocytes of
earthworms exposed to the livestock soil was time-related, being significantly affected
after 14 days of exposure (Table 2). Considering the results regarding DNA damage
classes (Table 3), after the exposure of earthworms for 1 day (T1) to both experimental
soils, the predominant DNA damage classes were 1 and 2, similar to the observed at the
beginning of the experiment (T0). After 14 days of exposure to LS soil, the significant

increase of DNA damage was associated with an increase in the frequency of classes 2,
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3 and 4. Meanwhile, for the earthworms exposed to the RF soil, both GDI values and
DNA damage classes showed a time-independent pattern of response, remaining similar
to the baseline values (T0). The level of DNA strand breaks in the organisms has been
regarded as a sensitive biomarker for genotoxic effects of xenobiotics and is widely
used for environmental biomonitoring and risk assessment (e.g. Lourenco et al., 2011).
Considering that DNA damage assessed by the CA is a result of a balance between
damage and repair activities, which are dependent on the type and concentration of
genotoxic chemicals in the environment (Qiao et al., 2007), the observed increase of
DNA damage in the coelomocytes of earthworms exposed to the LS, reveals not only
the presence of genotoxins in soils from livestock production systems, but also the time
dependent bioaccumulation of these pollutants and their genotoxic effects to soil
organism. These results also validate the applicability of CA on A. gracilis for field
assessment of soil genotoxicity.

The question of the identification and characterization of appropriate sentinel
earthworm species to be used as field-collected organisms, in order to provide a quick
assessment of soil pollutants effects, has already been raised by several authors (e.g.
Sanchez-Hernandez, 2006). Overall, the results of this study validate the applicability of
the studied biomarkers (AChE and SOD activities in earthworm tissues; NRU and CA
in coelomocytes) on 4. gracilis as a valuable early warning model to assess sub-lethal
toxicity on organisms inhabiting soil impacted by livestock pollutants, encompassing
evaluation of key processes (i.e. neurotransmission, antioxidant defense mechanisms,

cytotoxicity and DNA integrity).

4. Conclusion

The results of this study reveal that soils from livestock production systems
contain biological relevant doses of neurotoxic compounds (observed through the
pattern of response of AChE), as well as other pollutants (revealed by SOD, NRU and
CA biomarkers). Furthermore, earthworm exposure to soils impacted by livestock
pollutants was associated to sub-lethal toxicity effects encompassing key processes,
such as neurotransmission, oxidative stress, cytotoxicity and DNA damage.

This study also validates the use of the selected biomarkers on A. gracilis as a
valuable early warning model to assess the sub-lethal toxicity of livestock pollutants to
soil organisms. The use of this earthworm species provides a more realistic insight of

the link between laboratory exposure results and the toxic effects on soil organisms,
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since due to their epi-endogeic activity they are exposed to soil pollutants from both soil
surface and the deeper topsoil layers, enabling an integrated overview of the biological

effects of livestock soil pollutants to soil organisms.
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Figure

Figure 1 — Location of the Azores archipelago in the North-Atlantic Ocean. Inset: Sao

Miguel Island with study sites location. Adapted from Cordeiro et al., 2012.



Table

Table 1 — Mean values (£ SD) of soil physicochemical properties and concentration of
trace metals in topsoil samples (0-20 cm) from the livestock production (LS) and
reference site (RF). Means within each line followed by different letters are

significantly different at p < 0.05 (Mann—Whitney U-tests).

LS RF
pH (H,0) 6.80+0.18 6.72+0.35
Electric Conductivity (uS cm™)  119.67 +£2.08 a 101.00 £ 15.13 b
Organic Matter Content (%) 3,12+ 0,30 b 13.18+3.70 a
Clay-silt Content (%) 347+1.72 2.16£0.23
Trace Metals (mg kg™, d.w.)
Cr 45.00+3.24 a 17.67+1.54b
Cu 53.88 +2.65a 19.04+1.89b
Hg 0.03+ 0.00b 0.11+£0.01 a
Li 342+0.14a 239+0050
Ni 4488+3.44 a 1744 +£1.520b
Pb 6.88+1.75b 1095+ 044 a
Rb 1598 +£0.87 a 5.80+0.58b
Zn 112.33+3.75a 94.08+1.77b
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Table

Table 3 - Mean frequency (%) (£SD) of DNA damage classes in coelomocytes of A.

gracilis exposed (TO, T1, T7 and T14 days) to the experimental soils [livestock soil

(LS) and reference soil (RF)]. Means within each exposure time and between each

experimental soil, followed by different letters are significantly different at p < 0.05

(Mann—Whitney U-tests).

Exposure DNA damage classes™

time 0 1 2 3 4

T0 11.33 +10.69 65.67 +5.51 19.33 +13.20 3.33+3.05 0.00 +0.00
T1 day

LS 5.33+3.79 56.33+4.04 31.33£6.03 7.00 + 2.00 0.00 = 0.00
RF 8.00 £ 6.25 64 +6.56 24.00 + 8.54 3.67£3.51 0.33+£0.58
T 7 days

LS 0.33+0.58a 56.33 £ 8.33 26.67 +£0.58 14.00 = 4.00 2.66 +4.62
RF 9.00+794b 60.67 £ 12.01 24.00 = 13.00 6.33+5.03 0.00 + 0.00
T14 days

LS 1.33+1.53 3433+18.0la 36.00+7.00b 20.00£9.17b 833+643b
RF 2.67+4.62 71.00+3.61b 2333+3.06a 3.00+520a 0.00+0.00a

*DNA damage classes according to tail intensity and length, from 0 (no tail, less

damage) to 4 (almost all DNA in tail, highest damage).



Supplementary Material

Acclimatization tank conditions:
1 week in the Reference Soil at 20 + 1°C in darkness

Experimental conditions (T0, T1, T7 and T14):

Reference or Livestock Soil at 20 + 1°C in darkness

69 earthworms (Amynthas gracilis)

(from acclimatization tank)

TO

Reference Soil

9 earthworms

Exposure time
(days)

Supplementary Material

Tested biomarkers
(Number of individuals and replicates at each exposure

time)

T1

Reference Soil

9 earthworms

Livestock Soil

9 earthworms

T7

Reference Soil

9 earthworms

Livestock Soil

9 earthworms

Ti4

Reference Soil

9 earthworms

Livestock Soil

9 earthworms

* Acetylcholinesterase and superoxide
dismutase enzymes activities:

- pool of 3 earthworms, 3 replicates per pool

* Neutral Red Uptake assay:

- pool of 3 earthworms, 6 replicates per pool

* Comet assay:

- 3 earthworms, 2 replicates per individual

Figure 1 — Soil exposure experimental design.




Table 1 — Livestock system description with the specific veterinary pharmaceuticals

applied to animals and agrochemicals applied to soil.

Agrochemicals
Farming Pasture Cattle Veterinary Pharmaceuticals Pesticides
i h . -
System stze cads Inorganic Fertilizers . ] n o
Q Q o [}
= = 2 = =]
2 g £ g 2 |2
E < 5 S 2 |5
< = = o
Ceftiofur Carprofen Ornipural
. Danofloxacin Veteglan
Livestock
36724 100 Yes Penicillin and Yes Yes
System m .
streptomycin
Cloxacillin




