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Abstract. This paper considers the issue of frequency consolidation in
lists of different length word n-grams (i.e. recurrent word sequences)
extracted from the same underlying corpus. A simple algorithm –
enhanced by a preparatory stage – is proposed which allows the con-
solidation of frequencies among lists of different length n-grams, from
2-grams to 6-grams and beyond. The consolidation adjusts the frequency
count of each n-gram to the number of its occurrences minus its occur-
rences as part of longer n-grams. Among other uses, such a procedure
aids linguistic analysis and allows the non-inflationary counting of word
tokens that are part of frequent n-grams of various lengths, which in
turn allows an assessment of the proportion of running text made up of
recurring chunks. The proposed procedure delivers frequency consolida-
tion and substring reduction among word n-grams and is independent
of any particular method of n-gram extraction and filtering, making it
applicable also in situations where full access to underlying corpora is
unavailable.

Keywords: Multiword expressions · Word n-grams · Corpus linguistics

1 Introduction

The present paper presents a procedure for frequency consolidation among lists of
recurrent word sequences (i.e. word n-grams) of various lengths, as implemented
in the software programme SubString [1]. Word sequences that occur again and
again in largely the same form are often referred to as multi-word expressions
(MWEs) and have been of considerable interest to corpus linguistics as well as
natural language processing (NLP). In corpus linguistics, the availability of large
language corpora and their machine-assisted processing led to the realisation that
recurrent sequences are far more widespread than would be predicted on the
basis of a model of linguistic knowledge that consists of a store of atomic items
(words in the lexicon) and combinatory rules (the grammar). This in turn led to
alternative models of linguistic knowledge and processing being proposed such as
Sinclair’s Idiom Principle [2], Pattern Grammar [3] or Lexical Priming [4]. The
existence of large quantities of MWEs in language also influences and supports
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constructionist approaches to grammar (e.g. [5–7], and research in the field of
formulaic language, which has attracted a great deal of recent research effort (for
a recent overview see [8]). In NLP, MWEs are key to the success of many tasks
including machine translation, speech synthesis or term extraction (e.g. [9–11]).

Methods of MWE extraction out of corpus material have therefore been an
area of very significant research activity (cf. overviews in [12–14]). The present
paper concerns a different but related task that has, by comparison, received
scant attention to date. It is a specialized task but one that is key to challenges
encountered in a number of situations as discussed below.

Frequency consolidation is applied where there are n-grams that are sub-
strings of other n-grams: the frequency of occurrence of a shorter string is then
reduced by the frequency of its longer superstring(s). Frequency consolidation
thus works on the basis of extracted and filtered lists of MWEs and provides
insight into the frequency structure of those MWEs. A simple case is illustrated
in Fig. 1, where the two 3-grams a nice day and have a nice have their frequen-
cies (in square brackets) consolidated with the 4-gram have a nice day. This
results in the substrings have a nice and a nice day appearing with consolidated
frequencies of 4 and 1 respectively since the six occurrences as part of the super-
string have a nice day are removed. Substring reduction additionally occurs if a
string receives a consolidated frequency count of zero (or below a certain cut-off
frequency), resulting in its deletion and consequently a reduction in the number
of substring types occurs.

have a nice day
[6]

a nice day

��[10] 4
have a nice

[7] 1

Fig. 1. A simple case of a frequency consolidation between word n-grams

An accurate frequency consolidation and substring reduction procedure is a
prerequisite for an empirical assessment of the degree to which running text con-
sists of MWEs; unless frequencies of different length MWEs are consolidated, no
accurate figures of the proportion of running words that form part of MWEs can
be derived. Although, as indicated above, this is a point of significant theoretical
weight and is furthermore thought to vary notably between text types [2, p. 114],
[15, p. 29-17], assessments of MWE-density (save for [18], see discussion below)
have either relied on estimates based on a single length of n-grams (e.g. [16, pp.
993–997], [19, p. 67ff]), or have had to limit the amount of source material consid-
ered to manually countable amounts of text [17,20,21], thus severely limiting the
empirical base on which conclusions are drawn. Clearly, neither of these options
is satisfactory. An automatic frequency consolidation addresses this problem by
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making it easy to determine (and contrast) MWE-density across large amounts
of language data. Further, in linguistic analyses of MWEs of various lengths it
is often useful to have access to consolidated frequencies of a cluster of MWEs
under investigation as this facilitates meaningful comparisons between MWEs
of different lengths – an automatic consolidation procedure delivers such results
quickly and accurately and in so doing simplifies and speeds up the task of lin-
guistic analysis. Beside these two principal uses, frequency consolidation also
reduces the number of n-grams that need to be managed or investigated in a
study by eliminating redundant substrings. A word n-gram frequency consoli-
dation procedure is therefore a useful tool when dealing with MWEs and their
analysis for linguistic purposes.

The remainder of this paper is structured as follows: in Sect. 2, we take a look
at earlier approaches to similar tasks. Then, in Sect. 3, a procedure to deal with
frequency consolidation is proposed and documented in detail. In Sect. 4, the
proposed procedure is evaluated using corpus data. Conclusions are presented
in a final section. Since the procedure is in principle applicable to any type of
word sequence (or indeed sequences of other elements) rather than specifically
to MWEs, which are more narrowly defined, the general term word n-gram will
be used to refer to sequences of words that make up the input to the procedure.

2 Related Work

In a pioneering early study, Altenberg and Eeg-Olofsson [22] used a frequency
consolidation procedure involving token-indexation as part of their MWE extrac-
tion procedure to ascertain the proportion of recurrent word n-grams in the
500,000 word London-Lund Corpus (results presented in [18]). Procedures using
indexation have been discussed since (e.g. [23,24, pp. 147–149]) and remain an
important approach to the task of frequency consolidation. A special case of
indexation are approaches based on suffix arrays [25] where n-gram extraction
and the picking out of interesting n-grams (and possibly the discarding of oth-
ers) are in effect queries to a corpus, converted to an indexed data structure.
As far as could be ascertained, no frequency consolidation procedure of the sort
outlined has been suggested for data stored in suffix arrays, although this would
certainly be a possibility. Further, a Serial Cascading Algorithm was proposed
by Smith (reported in [24, pp. 149–153]). It takes two passes over a corpus to
extract, filter and then consolidate n-grams of various lengths. This approach,
and indexation-based ones, are integral parts of MWE extraction procedures,
that is, they necessarily take as input a corpus of texts, rather than a list of
extracted n-grams and their frequencies. This has the advantage of producing
results that are maximally faithful to the original context in which n-grams
occur, resulting in high accuracy. The disadvantage is a loss of flexibility as
these procedures cannot be applied in situations where full access to the under-
lying corpus material is unavailable, as is frequently the case, for example with
the vast Google n-grams corpora [26], n-gram lists made available at the COCA
website [27], or with corpora accessible only through corpus portals like the
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Sketch Engine [28] or Wmatrix [29] which allow the creation of n-gram lists but
not a full frequency consolidation (cf. discussion below).

Among approaches that are independent of a particular extraction proce-
dure and can work with n-gram lists as input, Lü et al. [30] proposed a sta-
tistical substring reduction algorithm for fast and accurate ‘removal of equal
frequency n-gram substrings from an n-gram set’ [30, p. 1]. Wible and Tsao
[31, p. 29] proposed a similar procedure (referred to as horizontal pruning),
where, in addition to the deletion of substrings that match the frequencies of
their superstrings, substrings are also deleted if their frequencies are higher than
those of the superstring(s), up to a certain maximum ‘threshold proportion’ [31,
p. 29]; this results in a higher number of eliminated substrings. However, both
approaches leave unconsolidated the frequencies of substrings that are not elimi-
nated. Consequently, these procedures are suitable only for reducing the number
of redundant material in data.

Example 1. (rendering of substrings in Sketch Engine)
settlements in the West Bank 5
... settlements in the West 5
... ... in the West 21
... ... ... in the 6,348
... ... ... the West 70
... ... settlements in the 7
... ... ... in the 6,348
... ... ... settlements in 9

The n-gram extraction function of the Sketch Engine [28] offers the option to
‘hide/nest sub n-grams’ [32]. As illustrated using the output shown in Example 1
below, this option groups any sub- (and sub-sub, etc.) strings under the longest
extracted n-grams. Crucially, however, no adjustments to frequencies of substrings
are made, so even though in Example 1, the substring settlements in theWest does
not occur outside of settlements in the West Bank, the substring is still listed with
a frequency of 5. When hidden, all substrings (preceded by dots) are removed from
lists, even when substrings are much more frequent than the top-level superstring,
as illustrated by the string the West. Although this aids comparisons of MWEs of
different lengths to some degree, the hiding of all substrings, even if more frequent
than longer superstrings, and the lack of a consolidation of frequencies limits the
usefulness of this approach – its strength lies mainly in providing analysts with
a usefully re-arranged view of n-gram lists. The same appears to be case for the
option to produce ‘collapsed grams’ within Wmatrix [29]: although currently this
functionality is switched off, it is described as producing ‘a tree structure with the
longest n-grams on the left and shortest n-grams on the right’.

Other procedures approach the task of handling substrings from the point of
view of finding the ideal length of an MWE in a cluster of word sequences that
share a common core. Kita et al. [33] documented a procedure which assigns a
cost measure to different length word n-grams (cf. also [34,35]). This results in
the ideal (according to the measure) extent of an MWE receiving the highest
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score while leaving shorter or longer forms with lower scores. Sequences with
lower scores are potentially eliminated depending on the threshold value set. A
more recent proposal in this paradigm is put forward by Gries [36] and Gries
and Mukherjee [37]: first, collocation strength for n-grams of different lengths
is measured using Daudaravicius and Marcinkeviciene’s gravity measure G [38].
Subsequently, the G-value of each extracted n-gram, starting with 2-grams, is
compared to that of its immediate superstring(s) (i.e. n-grams that are one word
longer). If the G-values of the superstrings are higher than that of the substring,
the substring is removed, otherwise it is retained as a legitimate n-gram despite
the existence of larger superstrings. Gries and Wahl propose a procedure involv-
ing ‘the successive merging of bigrams to form word sequences of various lengths’
[39]; while results depend on the setting of a sensible threshold number of succes-
sive merges (and this is likely difficult to get right), Gries and Wahl demonstrate
using human ratings that MWEs resulting from early merges (vs. late merges)
are more often rated as good MWEs. Wible and Tsao [31] documented a similar
procedure making use of a normalized MI score. Approaches of this type are
useful for allowing ‘the length of each n-gram to emerge, as it were, from the
data’ [37, p. 522]. However, the output, while providing a filtered set of n-grams,
does not provide consolidated frequencies for remaining n-grams and is therefore
a slightly different task to the one discussed in this paper. Naturally, full access
to the underlying corpus data are also required.

In summary, previous research has identified ways of dealing with aspects
of substring reduction and frequency consolidation among word n-grams that
lead to reductions in redundant substrings and the identification of the ideal
length of an n-gram in a cluster as well as full frequency consolidations for
cases where full access to the input text corpora is available. However, as far as
could be ascertained, no procedure has been suggested to date that covers the
uses outlined at the beginning and is sufficiently flexible to cope with situations
where only n-gram lists are available as input. Such a procedure will be outlined
in the next section.

3 The Procedure

To illustrate how the proposed procedure handles frequency consolidation among
different length word n-grams, let us assume we have as input the n-grams given
in Example 2 below. These will have been extracted from a corpus and their
frequencies of occurrence in the corpus are indicated by the number following
each n-gram.

Example 2. (example input to a frequency consolidation):
have a lovely time 15
have a lovely 58
a lovely time 44
have a 37,491
a lovely 101
lovely time 44
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Example 3. (consolidated output):
have a lovely time 15
have a lovely 43
a lovely time 29
have a 37,433
a lovely 14

The 4-gram have a lovely time occurs with a frequency of 15. The 3-grams
have a lovely and a lovely time occur 58 and 44 times respectively. 15 of those
occurrences are, however, occurrences as part of the superstring have a lovely
time. To get the consolidated frequency of occurrence for have a lovely and a
lovely time (i.e. the occurrences of these 3-grams on their own, not counting
when they occur in the longer string), we therefore deduct the frequency of their
superstring (15) from their own frequency as shown as in Fig. 2, step 1. This
results in a consolidated frequency of 43 for have a lovely (i.e. 58 − 15) and 29
for a lovely time (i.e. 44 − 15). The 2-grams have a, a lovely and lovely time
are also substrings of have a lovely time and therefore also need to have their
frequency reduced by 15, resulting in a frequency of 37,476 for have a, 86 for a
lovely and 29 for lovely time (Fig. 2, step 2). In addition, have a and a lovely
are substrings of have a lovely and therefore the frequency of have a lovely,
which is now 43, needs to be deducted from their frequencies (Fig. 2, step 3).
This results in a new frequency of 37,433 for have a (37, 476 − 43) and 43 for a
lovely (86 − 43). a lovely and lovely time are furthermore substrings of a lovely
time and consequently need to have their frequencies reduced by that of a lovely
time (i.e. by 29): the consolidated frequency of a lovely is now 14 (i.e. 43− 29),
that of lovely time is now zero. The final output of the frequency consolidation
is given in Example 3. We note that lovely time is completely eliminated and
does not appear in Example 3 since it has a consolidated frequency of zero.
This type of substring reduction is an automatic consequence of the frequency
consolidation. The example of the ‘lovely time’-cluster also shows that the type
of data provided in Example 3 can usefully complement the bare frequencies in
Example 2 for purposes of a linguistic analysis. Although in this example the
consolidated frequencies could easily be worked out at the time of analysis, in
reality a cluster is not artificially isolated as in this example and the large net of
sub- and superstrings that need to be considered makes a consolidation extremely
laborious to work out manually.

The procedure as narrated above is expressed in pseudo code in Fig. 3. Itera-
tive loops enable the processing of any (reasonable) number of different n-gram
lengths, far beyond the three lengths of Fig. 2.

Assuming for a moment that Example 2 (above) represents the entire set of
n-grams extractable from the underlying source text, the accuracy of results in
Example 3 could be assessed by comparing the word count of the source text
with the number of words bound up in Example 3, that is, the length in words of
each n-gram, multiplied by its frequency and summed:

∑
(|n|1..n · f1..n). For

Example 3, the numbers would match and confirm the accuracy of the
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have a lovely time
[15]

have a lovely

��[58] 43
a lovely time

��[44] 29

a lovely

���[101] 14

have a
����[37, 491]
37,433

lovely time

��[44] 0

1 1

2

3 3

2 2

1 step 1

2 step 2

3 step 3

Fig. 2. Consolidation of n-grams in Example 2. Arrows indicate frequency subtractions:
the frequencies at their starting points are deducted from the frequencies at their end
points.

FUNCTION CONSOLIDATE(firstList, secondList)
accept 2 arguments: firstList, secondList
FOR each line IN firstList

cut off frequency at the end of the line
store frequency in Freq1
store the rest in SearchLine
search secondList for lines containing SearchLine
IF matching lines are found THEN

sum the n-gram frequencies of each matching line
store the result in Freq2
subtract Freq2 from Freq1 and store result in newFreq
IF newFreq > 0 THEN

replace frequency information in original line in
firstList with newFreq

ELSE
delete original line from firstList

END IF
END IF

END FOR
END FUNCTION

# the function is now applied to input lists
SET LongListIndex to the total number of input lists present
SET LongListMinusIndex to [LongListIndex - 1]
REPEAT

CONSOLIDATE(List[LongListMinusIndex], List[LongListIndex])
SET LongListIndex2 to [LongListIndex - 1]
REPEAT

CONSOLIDATE(List[LongListMinusIndex], List[LongListIndex2])
SUBSTRACT 1 from LongListIndex2

UNTIL LongListMinusIndex = LongListIndex2
SUBTRACT 1 from LongListMinusIndex

UNTIL 1 > LongListMinusIndex

Fig. 3. Frequency consolidation algorithm in pseudo code. Input consists of lists of
n-grams named List1, List2, . . . Listn, where List1 contains the shortest and Listn the
longest n-grams. Lists consist of n-grams of one length, one n-gram (followed by its
frequency) per line.
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consolidation. Summing the word tokens bound up in Example 2, on the other
hand, would result in the token inflation typical of unconsolidated n-gram lists.
This simple assessment only works if the frequency consolidation procedure is
applied to n-gram lists containing the complete set of extractable continuous
n-grams in the source text, barring n-grams across sentence boundaries, and n-
grams are extracted up to an n-gram length (|n|) where |n| equals the number
of words in the longest sentence. In applying the proposed procedure to real-life
uses, where these conditions do not hold, we are faced with three challenges:
(i) a reasonable maximum n-gram length must be set at which the procedure
is nevertheless able to resolve overlapping n-grams; (ii) the correct functioning
of the procedure must be maintained even if input n-gram lists were filtered
before the application of frequency consolidation (for example by the applica-
tion of frequency cut-offs, cut-offs based on statistical measures of association, or
other filters designed to remove uninteresting n-grams); (iii) the question of how
results can be verified when the source corpus word count can no longer be used
as a target word count. The exclusion of n-grams across sentence boundaries,
on the other hand, can be meaningful in many real-life contexts and is therefore
retained as a precondition for the application of the procedure. The possible
application of the proposed procedure to non-continuous n-grams is discussed
in Sect. 4.

In dealing with the three challenges identified, we consider two more exam-
ples. Figure 4 presents the same n-gram cluster as Fig. 2 except that the 4-gram
have a lovely time is absent. The absence of such resolving superstrings can be
due to a previous application of a filter or a maximum n-gram extraction length
of |n| = 3 (the resolving superstring in this case being of length |n| = 4). Consid-
ering the situation in Fig. 4, we observe that without the resolving superstring
have a lovely time (greyed out), the consolidation fails to yield accurate results,
producing a negative frequency for a lovely. The cause of this inaccuracy lies in
the inflation of n-gram frequencies created by the unresolved overlap of have a
lovely and a lovely time: there are fifteen extra, unwarranted, n-gram tokens in
the system which push a lovely into negative frequency.

However, as shown in Fig. 5, unresolved overlaps do not necessarily cause
negative frequencies. The consolidation here does not take the overlap resolving
superstring not at all certain (in grey) into account. While the incorporation
of the string in grey would lead to a somewhat different result (a result that
is more faithful to the conditions pertaining in the source text), the consoli-
dated frequencies in Fig. 5 nevertheless avoid n-gram frequency inflation (and
consequently negative frequencies) and are therefore considered accurate here.

Concerning the three challenges of maximum n-gram length, filtered source
lists and verification, we consequently note that, firstly, inaccuracies in consol-
idation manifest themselves as negative frequencies and hence the accuracy of
the procedure can be assessed via instances of negative frequencies. Secondly,
both filtering and maximum n-gram length determine the presence or absence of
overlap-resolving superstrings and thus influence the accuracy of any particular
frequency consolidation process. It is therefore important to retain the highest
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have a lovely time
[15]

have a lovely
[58]

a lovely time
[44]

a lovely

���[101] -1

have a
����[37, 491]
37,433

lovely time

��[44] 0

Fig. 4. Consolidation of a group of n-grams with missing resolving superstring (in grey)

not at all certain
[11]

not at all
[365]

at all certain
[14]

not at

���[505] 140
at all

���[577] 198
all certain

��[16] 2

Fig. 5. Overlap without negative frequency. The overlap resolving superstring (in grey)
is not considered in the consolidation shown.

number of overlap-resolving superstrings which would, if absent, cause negative
frequencies. Such superstrings are hereafter referred to as necessary superstrings.

To safeguard the extraction of such necessary superstrings, n-grams should
minimally be extracted up to length |n| = 6. In our test data set A (cf. Table 1
below), no missing superstrings longer than 6-grams were found to be the cause
of negative frequencies. Given the extreme rarity of frequent, long n-grams, how-
ever, employing a maximum n-gram length below this length is unlikely to have
a serious negative impact.

Further, the retention of necessary superstrings can be optimized by (tem-
porarily) re-importing necessary superstrings that were eliminated by filters prior
to frequency consolidation. This can be accomplished using an optional prepara-
tory stage to the core algorithm. The preparatory stage scans filtered n-gram lists
and constructs projected necessary superstrings. If these are not found among
the n-grams of the filtered lists, it searches for them in the unfiltered state of the
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lists (which need to be supplied) and, if found, imports them back into the fil-
tered lists. After the frequency consolidation and substring reduction process has
concluded, the imported n-grams are easily eliminated by the re-application of
the relevant filter(s), if desired. To avoid a situation where the imported n-grams
themselves create a need for yet more necessary superstrings, only n-grams of
length |n| > 4 (i.e. 5-grams and longer) are made available for re-import and
since extensive testing showed that no necessary superstrings had frequencies of
<1 per million tokens, no superstrings below that frequency are made available
for re-import as part of the procedure.

4 Evaluation and Limitations

The application of the procedure to test data using parameters shown in Table 1
produced the figures in Table 2. For comparison, figures resulting from the appli-
cation of Lü et al.’s SSR-algorithm [30] as implemented in Zhang’s NGramTool
[40] are also included. Looking at rows one and two of Table 2, the greater num-
ber of deleted substring types and tokens in row one compared to row two is
made possible by the consolidation of frequencies even if frequencies of substring
and superstring are not identical. This resulted in the deletion of additional
substrings that featured consolidated frequencies greater than zero but below
the minimum frequency (extraction parameters as per Table 1). The procedure
is therefore effective in reducing the number of redundant substrings among
extracted n-grams of various lengths as well as producing consolidated frequency
values for all n-grams. This in turn facilitates and assessment of MWE-density:
the number of word tokens that are part of the extracted word n-grams can
be calculated by multiplying frequency with length for each word n-gram and
summing the resulting figures. In case of the procedure in row one, this comes to
1,748,239. Given a corpus size of four million word tokens, this is a proportion
of 43.7% of running words.

The number of inaccuracies in row one as measured by the number of
n-grams with negative frequencies is modest compared to the overall number
of types. This number is further reduced by the application of the preparatory

Table 1. Extraction parameters for test data

Data set A Data set B

Size 4 million tokens 29 million tokens

Language German English

Source Swiss Text Corpus [41] Wikipedia

Extraction 2-grams to 7-grams 2-grams to 9-grams

Filters Additive stop list of the 200 most
frequent word forms of German;
min. freq. 4 per million words (16)

Additive stop list of the 200 most
frequent word forms of English;
min. freq. 2 per million words (58)
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Table 2. Figures resulting from various procedure variants

Data Proc Types Tokens

Before After neg-freq Before After neg-freq

A 1 21,953 19,696 84 1,085,102 788,839 −962

A 2 21,953 21,535 - 1,085,102 1,072,077 -

A 3 21,953 19,627 52 1,085,102 787,204 −644

A 4 44,297 39,607 708 2,220,699 1,455,015 −36, 639

A 5 22,116 19,961 106 1,569,771 1,163,707 −6, 228

B 2 63,680 60,958 - 12,702,769 12,277,406 -

B 3 63,680 45,297 4,893 12,702,769 6,663,964 −956, 542
Note. Procedure (Proc): 1 = without preparatory stage; 2 = SSR according to [30]; 3
= with preparatory stage; 4 = window of size n+1; 5 = window of size n+1, filtered
to remove n-grams that do not occur at all in continuous form. Numbers featuring
negative frequencies are not included in numbers after procedure.

stage which yielded the figures in row three of Table 2. Here, a total of 261
previously filtered-out n-gram types were re-imported. The frequency filter was
re-applied at the end of the process.

If we consider results from data set B (last two rows of Table 2), a similar
pattern to procedures 2 and 3 applied to data set A emerges. It is worth noting,
however, that n-grams with negative frequencies are proportionally higher in
data set B (procedure 3); roughly 7.5% of unconsolidated types and tokens are
given negative frequencies. This shows that, without recourse to the underlying
corpus, consolidation can only approximate the a consolidation that takes into
account the full context of n-grams within the source corpus and the accuracy
of the procedure varies depending on the data set. An analysis of types with
negative frequencies in set A furthermore showed that these were, with very few
exceptions, 2-grams and the negative frequency was caused by the absence of
resolving superstrings of length |n| = 4, which were not made available for re-
import by the preparatory stage. If n-grams of length |n| = 4 had been admitted
for re-import, the result would have been a higher number of types with negative
frequencies, since the larger number of re-imported n-grams would in turn have
created a need for yet more resolving superstrings.

To capture patterns with variable slots such as those shown in Examples 4
to 6, n-grams are often extracted within a window such that for n-gram length
|n|, the window size is n + 1, n + 2, . . . n + n, allowing intervening words to be
skipped. To test how the proposed frequency consolidation procedure fares with
discontinuous n-grams, lists with a window size of n + 1 (remaining parame-
ters as per Table 1) were also extracted and frequency-consolidated using both
the preparatory stage and the core algorithm. The result, shown in row four of
Table 2, indicates a much lower accuracy of the procedure compared to continu-
ous n-grams. However, applying a filter which only admits discontinuous n-gram
types that are also attested in continuous form (such as those in Examples 4 to 6
where the variable slot is optional) yielded the figures in row five of Table 2 and
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performed acceptably on our accuracy measure. The proposed procedure there-
fore cannot be recommended for a frequency consolidation among discontinuous
n-grams, although the inclusion of discontinuous n-grams that also appear in
continuous form does not pose difficulties for the procedure.

Example 4. With the [occasional / sole / possible / notable] exception of

Example 5. the [provisional] IRA

Example 6. on [false / supposed / fabricated / 11 / two / fresh] charges of

Finally, it was mentioned above that all negative frequencies indicate inaccu-
racies in the substring reduction process. Normally, the converse also applies (i.e.
all inaccuracies are indicated by negative frequencies), but there is one caveat:
where a string that would have received negative frequency (such as a lovely in
Fig. 4) is filtered out prior to the frequency consolidation process, the inaccuracy,
though present, is not flagged up. To assess the extent of this under-reporting,
test data set A was run through procedure 3 with one alteration: the 2-gram
list, from which the vast majority of negative-frequency types stem, had no stop
list applied and all n-grams with a minimum frequency of 2 were admitted. This
resulted in a 2-gram list of 244,611 types compared to 16,764 types in the pro-
cedure that produced the figures of row three. The substring reduction process
produced 53 types with negative frequencies, only one type more than the 52
types previously obtained in Table 2, row three. A further test applied a more
severe 2-gram stop list that produced a 2-gram list of merely 9,554 types. The
number of types with negative frequencies was only moderately affected, showing
a count of 33. We can conclude that all negative frequencies indicate inaccura-
cies and that, while all inaccuracies are not necessarily indicated by negative
frequencies, the figure is very close. The number of types with negative fre-
quencies therefore remains an excellent indicator of the accuracy of a particular
substring reduction process.

5 Conclusions

A frequency consolidation procedure was presented which is able to fully consol-
idate frequencies of word n-grams of various lengths to a high degree of accuracy.
The output of the procedure can be used to gain fast and easy access to con-
solidated frequencies for linguistic analysis, to calculate the proportion of text
that is part of recurring word n-grams and to reduce the number of redundant
substrings in a data set (substring reduction). A means of assessing the accuracy
of a particular substring-reduction process was also suggested. Preconditions for
the application of the suggested procedure are the non-extraction of n-grams
across sentence boundaries and the extraction of n-grams up to a reasonable
length (a length of 6 is minimally suggested). It was also found that the proce-
dure works best with continuous n-grams but can be used to consolidate n-grams
with optional slots. The suggested procedure has several advantages over other
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existing attempts at frequency consolidation which are either inextricably linked
to particular n-gram extraction procedures and therefore cannot be used where
full access to source texts is unavailable or only deal with substring reduction
or with the identification of an ideal n-gram length among a cluster of n-grams.
The proposed procedure therefore facilitates the addressing important theoreti-
cal questions and practical challenges in the area of corpus-based MWE research,
even in situations where existing other procedures are inapplicable. The proce-
dure is implemented and available for use as part of the open source software
programme SubString [1].
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