Predicting Daylight Autonomy Metrics Using Machine Learning
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Abstract: This study analyses the efficacy of using machine learning though artificial neural networks (ANN) to
predict daylight autonomy metrics in typical office spaces. Based on a literature review of the use of ANN for
non-linear problems, the chosen approach was deemed promising for its use in predicting daylight
performance with the assumption that previous training data can be provided. The ANN approach, while
empirical, has advantages when compared to conducting full simulations in the areas of speed and computing
resources. In this study, several network architectures were analysed against several test cases. The accuracy
of the obtained results mirror those in other studies when applied to daylight autonomy metrics. In addition,
accuracy improved with the addition of a larger set of training data as well as the enhancement of the network
architecture itself.
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Introduction

In the field of sustainable building design, daylighting is an emerging design factor improving
the performance of a building (Bodart and De Herde, 2002; Pollock et al., 2009). Good
daylight design has been shown to have a positive impact on human health and
performance (Heschong, Wright and Okura, 2002) and the potential to create visually
pleasing indoor environments (Galasiu and Veitch, 2006) To date, however, predicting
daylight performance required computationally expensive simulations that may not be
feasible in a highly iterative design process (Hu et al., 2014). This paper introduces an
alternative approach to predicting daylighting performance using machine learning and
artificial neural networks (ANN) that have been previously shown to be suitable for complex
non-linear problems (Suykens et al., 2012).

The assessment of daylight using climate-based metrics is increasingly gaining
recognition as a design tool improving occupant comfort and reducing energy consumption.
This paper focuses on daylight autonomy (DA300lux) as a suitable metric for daylight
performance due to its increasing adoption (Reinhart and Fitz, 2006). The definition of
Daylight Autonomy (DA) was first given by the Association Suisse des Electriciens in 1989
(Reinhart et al., 2013) and further developed as a measure for the percentage of occupied
hours in which a minimum illuminance threshold at a sensor point can be maintained by
daylight alone (Reinhart and Walkenhorst, 2001). The target used depends on the
determined use of the space — typically 300 lux or 500 lux for office work.

Briefly, artificial neural networks (ANN) are computer models made of units called
neurons, arranged in an input layer (that accepts input parameters), an output layer (which
provides the actual prediction) and a varying number of hidden layers in the middle (Figure
1). Using varying strengths, the connections between neurons transmit an activation signal
from one neuron to another (Jain et al., 1996). Backpropagation is a typical method to train
neural networks. The backpropagation algorithm uses gradient descent to adjust the
connection weights and to find the minimum value of the error function (Rojas, 1996).

The next section of the paper briefly reports on previous research in the areas of
predicting building thermal and daylighting performance using backpropagation neural



networks. Following that, the methodology used in this study is described, including the
design setup of the model and the various network architectures and settings. Consecutively,
the obtained results are reported. The last section of this paper reflects on the overall

approach and findings and outlines recommendations for future work.
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Figure 1. Neural network architecture (Simbrain, 2017) with five neurons in the input and hidden layer (Layer 1,
Layer 2) and one neuron in the output layer (Layer 3)
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Predicting building performance using neural networks

Several researchers have studied the application of neural networks for predicting building
energy performance including heating and cooling loads and the overall energy
consumption of buildings with successful results (Wong et al., 2010; Zhao and Magouleés,
2012). Studies show that the accuracy of these predictions does not fall behind that of other
thermal simulation tools (Neto and Fiorelli, 2008), making neural networks a possible
alternative approach to time-consuming and computationally expensive simulations. This
can be feasible only if the required data is within a set design scope and previous
measurements are available for training the neural network. The successful application of
neural networks in thermal building performance and their ability to address non-linear
problems suggest that they may be applicable for daylight analysis. Thus, this paper sets out
to experiment with using back-propagation neural networks to predict daylight
performance and the Daylight Autonomy metric.

Compared to the implementation of neural networks for thermal predictions,
research is rather sparse on the implementation of neural networks for daylighting and
illuminance predictions. However, the few results that are available are promising: In a
study by (Lopez and Gueymard, 2007), a neural network was used to predict the luminous
efficacy under cloudless conditions, suggesting a possibility to predict the illuminances on
surfaces based on measurements of solar irradiance. In another study, Janjai and Plaon
were able to predict sky luminance for a year, giving more accurate results than the CIE
model for clear and overcast skies, but not for cloudy skies (Janjai and Plaon, 2011).
Comparisons have also been made between different models for predicting sky irradiance
and illuminance and neural networks showed superior performance (Pattanasethanon et al.,
2008).



Neural network-based modeling has also been successfully applied to predicting the
horizontal illuminance in an office building (Kazanasmaz et al., 2009). The results had a low
average error of 3% when compared to measured illuminances. In a classification problem, a
similar study was able to determine the category of climate-based metric UDI (classification
problem) for various ranges of lux levels (<100 lux, 100 — 2000 lux, >2000 lux) with a high
accuracy of 96% when combining a neural network with principal component analysis (Zhou
and Liu 2015). These studies suggest neural networks can be used as a computational tool
with potentially very accurate prediction capabilities given appropriate model selection and
well-defined parameters.

Achieving accurate results was a key point in the above studies. Nonetheless, it
should be noted that some of the studies also faced challenges and occasional failures. This
seems to be the case especially when the input parameters are complex and have a wider
range of values (e.g. Janjai and Plaon, 2011; Conraud-bianchi, 2008) and is consistent with
findings in the application of neural networks for thermal comfort predictions (Magnier and
Haghighat, 2010) and those aiming to include occupant behavioural patterns (Neto and
Fiorelli, 2008). Therefore, it becomes evident that there is a necessity to accurately retrace
input parameters that impact any variations in the results, and empirically search for a
neural network architecture that is capable of reconstructing more complex and dynamic
relationships.

There is not yet sufficient research that explores the range of application possibilities
for ANNs to measure daylight performance within buildings. The lack of studies undertaken
in this field also points to a need for validation and a more thorough investigation of the
advantages and limitations of this approach. Regarding daylighting predictions, the need for
training data to include various climate and sky conditions as well as sun positions has made
generating the training data for neural networks a tedious task, albeit one that can be used
to generate instantaneous results thereafter.

This study uses a backpropagation neural network to measure Daylight Autonomy
over the course of a year, thereby bypassing the need to use sky conditions and sun
positions as input parameters as well as conducting intensive simulations or recording
measurements associated with collecting the data.

Methodology
Design setup

A generic typology for the ground floor of an office building was developed to investigate
the performance of neural networks for the prediction of daylight autonomy (Figure 2). As
part of the process of generating the target data required for training the neural network,
the daylight autonomy calculations were done using Diva for Rhino. Diva is a radiance-based
and validated tool (McNeil and Lee, 2012) that uses the daylight coefficient approach to
determine the daylight contributions for all sensor points within a building (Bourgeois et al.,
2008). The daylight autonomy was determined for a horizontal illuminance of 300 lux for
300 sensor points that were generated at a work plane height of 85 cm. The internal
reflectance values within the building were set to 20%, 50% and 70% for floor, walls and
ceiling, respectively. The daylight autonomy results for all sensor points were then extracted
for further application in the neural network.



Figure 2. Layout A: lllustration of basic building model geometry and the location of sensor points

The design variables affecting the daylight autonomy results were identified as follows:

* The X-Y coordinates of the sensor locations to identify the different points

* A unique room ID was assigned to specify the rooms in which the sensor points were
located as seen in (Kazanasmaz et al., 2009)

* The average distance of the sensor points to the center of the windows to describe
proximity of the sensor points to the light source.

* The overall dimensions, window dimensions, number of windows and their
respective orientation. Window orientation was represented using four input
parameters, one each describing the north, south, east and west orientations as a
binary value.

The input parameters were treated as continuous variables and normalized between
the range 0 and 1 with 0 indicating the minimum value of the variable and 1 its maximum.

Automated data generation using Grasshopper

The building design was parametrically built in Grasshopper for Rhino (Figure 3). The above
identified input parameters were extracted within Grasshopper and assigned to each of the
sensor points in the building. The data was then exported as an excel sheet to convert it into
the training data for the neural network.
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Figure 3. Layout A: lllustration of basic building model geometry and the location of sensor points



Neural network training and testing

A feed-forward neural network was chosen as a baseline for training and this application.
The neural network was trained using the backpropagation method (Hecht-Nielsen, 1989)
using the software tool Simbrain (Simbrain, 2017). A sigmoidal activation function was
chosen in the hidden as well as output layers and all weights were randomized before
training. The training and testing of the neural network was carried out in four parts as
outlined below.

1) Neural network training with one and two hidden layers: In an experiment, several
neural network architectures were trained by changing the number of hidden layers and the
number of neurons they contain. Although a rule of thumb suggests that the number of
neurons from input to output layer should follow a pyramidal rule - for example 7 neurons
in the first layer, 5 neurons in the second layer and 1 neuron in the third layer (Joe, 2009),
other studies have more successfully implemented a higher number of neurons in the
hidden layer than the number of neurons in the input layer (Chow et al., 2002; Conraud-
bianchi, 2008; Zhou and Haghighat, 2009).

For the above outlined building, 300 sets of data were generated for each sensor point.
10% of the data was withheld for validation of the neural network. The network was then
trained with a momentum of 0.7 and a learning rate of 0.25. No maximum number of
epochs was selected, although training was halted when either the mean square error (MSE)
did not go down any further or when the results deteriorated with further training. In this
way, the MSE was calculated for several neural networks with a varying number of neurons
in architectures with both one and two hidden layers. The set up of the network
architecture and the corresponding results are listed in Table 2.

2) Neural network training and validation using different input parameters: Having
established the MSE results for different neural network architectures, the prediction power
for the DA300lux metrics was tested using four different sets of input parameters (Table 1).
The first set maintained all parameters as described above while the second set removed
the coordinates as identifiers of the sensor points. In the third set, the coordinates were
added back as input parameters, but the distances of sensor points to windows were
removed. The fourth set omitted the room ID as an input parameter. This input parameter
was considered a duplicate, as the attributes of the rooms were already described through
the remaining input parameters.

Table 1. Input data used for neural network training

Input Parameter Set
A

Input Parameter Set
B

Input Parameter Set
C

Input Parameter Set
D

Room dimension

Room dimension

Room dimension

Room dimension

Window dimension

Window dimension

Window dimension

Window dimension

North orientation

North orientation

North orientation

North orientation

South orientation

South orientation

South orientation

South orientation

East orientation

East orientation

East orientation

East orientation

West orientation

West orientation

West orientation

West orientation

No. of windows

No. of windows

No. of windows

No. of windows

Average distance to
windows

Average distance to
windows

Average distance to
windows




- Coordinates of Coordinates of Coordinates of
sensor points sensor points sensor points

Room ID Room ID Room ID -

3) Daylight Autonomy predictions for an alternative layout: The validation of the
neural network in the above outlined part was done for sensor points set within the design
scope from which the training data was taken. To stress test neural network predictions, an
alternative layout (Layout B) was developed, for which the DA values were then calculated.
Alongside the location of sensor points, the room dimensions as well as the location of
windows were changed. The alternative layout is illustrated in Figure 4. The test used input
parameter set C as it had previously yielded the best results. Additionally, an ANN
constituting of 15 neurons in the hidden layer was used for training as preliminary results
gave a low MSE of 0.006 for said architecture when trained with 300 data points. Although
it was expected that there would be a larger error margin based on the numerous design
changes affecting daylight performance, this case was chosen as an initial assessment to
gauge the performance of neural network predictions in a changing design scope.

Layout A Layout B
Figure 4. Basic building layout used for training (Layout A - left) and an alternative layout developed for
validation (Layout B - right)

4) Daylight Autonomy predictions for a single room with varying depth: In a fourth test,
the above experiment was simplified. Under the assumption that neural networks function
as a model mimicking the behaviour of a building, with an innate potential to adjust to a
changing design scope based on the training data provided to the neural network, DA
predictions were made for a singular south facing room, where the design was varied only
by changing room depth and sensor point location (Figure 5). Predictions were made with
an increasing number of training data sets and results were compared using neural
networks with one and two hidden layers.
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Figure 5. Rooms used for progressive network training




Results
Neural network training results for networks with one and two hidden layers

Several neural network architectures were tested to determine the impact of the number of
neurons and number of hidden layers on the ability of the neural network to fit the input data
to the provided target data (prediction results). The achieved MSE results for each of the
tested ANN architectures are shown in Table 2.

The ANNs with one hidden layer yielded a lower MSE than ones with two hidden
layers. The three-layered ANNs also seemed to reach convergence at an MSE of 0.0011
when implementing both a higher and lower number of neurons in the hidden layer than
number of neurons in the input layer, confirming the above outlined assumption that the
ANN architecture does not need to be formed of a pyramidal structure.

Table 2. MSE results for varying neural network architectures

No. of hidden layers No. of neurons within hidden MSE
layers

1 5 0.0017
1 9 0.0011
1 12 0.0011
1 15 0.0011
2 5-5 0.0022
2 7-5 0.0019
2 9-5 0.0028

Neural network training and validation using different input parameters

Following the initial testing of neural network architectures, the architecture with twelve
neurons in one hidden layer was selected to predict the DA results using the four different
sets of input parameters outlined in Table 1 above. The MSE for the data sets is shown in
Table 3. The results reveal that both coordinates of sensor points and average distance of
sensor points to the windows lower the MSE. The neural network results could further be
improved by removing room ID as an input parameter, achieving an overall improvement of
the MSE from 0.0013 to 0.0007. This impact of the MSE results becomes clearer in the error
analysis of the input sets (Figure 6). A lower MSE led to better DA predictions and an
average prediction error ranging between 3.5% to 2.3% for the different input parameters,
thereby providing results comparable to those from validation studies done for daylight
analysis using Daysim and Radiance (Reinhart and Walkenhorst, 2001).

Table 3. MSE results for varying input parameter sets

MSE
Set A 0.0011
Set B 0.0013
Set C 0.0007
Set D 0.0008
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Figure 6. Prediction errors obtained for the varying input parameter sets

Additionally, the errors obtained for each of the sensor points are presented in Figure 7. The
error rates of the predictions are of a volatile nature and show no apparent consistency
between implemented input parameter set and error, meaning errors can be lower for a
specific sensor point using one input set, but higher for another sensor point. Further
analysis of the data shows that the errors using input parameter sets C and D are less erratic,
suggesting a more robust neural network.
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Figure 7. Prediction errors obtained for each sensor point

Daylight Autonomy predictions for an alternative layout

The overall error for the DA predictions for building layout (B) with new room dimensions,
window positions and sensor point locations increased from 2.3% to 7.66%. The error for
each of the sensor points is shown in Figure 8. A noticeably lower error was achieved for
rooms with smaller changes in dimensions and the corner rooms with windows facing two
orientations. A further analysis of the results revealed that the error gradually increased
towards the rear for each room with one orientation.
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Figure 8. Prediction errors obtained for each sensor point on an alternative layout

Daylight Autonomy predictions for a single room with varying depth

Neural network training and testing results for DA predictions for rooms C, G and D are
given in Tables 4, 5 and 6, respectively. As shown in these tables, as the number of training
data increased (by adding more rooms) the error margins decreased. Additionally, neural
network architectures with one as opposed to two hidden layers generally better fit the
training data, as indicated by lower mean square errors (MSE). Nonetheless, when
considering average error rates, neural network architectures with two hidden layers on
average showed much better results than networks with one hidden layer. Analyses did
however reveal one peculiar result: neural network training for DA predictions for room G
(Table 5) led to an unexpectedly strong increase in average error when including room D
into the analysis. This increase in error rate from 4.46% to 28.96% for one hidden layer and
an increase from 1.96% to 2.07% for two hidden layers might hint towards over-fitting.

Table 4. Neural network training and testing results for DAzggux predictions of Room C

Training Data MSE Average Error
One hidden Two hidden One hidden Two hidden

Layer Layers Layer Layers
Room A 0.0006 0.0011 41.54% 41.54%
Room A+E 0.0007 0.0014 25.18% 6.93%
Room A+E+G 0.0005* 0.0013 15.64% 6.93%
Room A+B+E+G 0.0009 0.0013 4.68% 3.10%
Room A+B+E+F+G 0.0007 0.0012 3.21% 3.32%
Room A+B+D+E+F+G 0.0008 0.0012 3.25% 3.30%

*A neural network architecture of 4-25-1 neurons was chosen for this training data set as it had provided a
lower MSE in preliminary testing. All other results were compiled using a network architecture of 4-20-1 and 4-




20-4-1 neurons in the layers.

Table 5. Neural network training and testing results for DA3ggux predictions of Room G

Training Data MSE Average Error
One hidden Two hidden One hidden Two hidden

Layer Layers Layer Layers
Room A 0.0006 0.0011 78.76% 79.17%
Room A+E 0.0007 0.0014 21.11% 3.11%
Room A+C+E 0.0008 0.0012 14.52% 2.92%
Room A+B+C+E 0.0008 0.0012 13.16% 2.78%
Room A+B+C+E+F 0.0007 0.0012 4.46% 1.96%
Room A+B+C+D+E+F 0.0007 0.0012 28.96% 2.07%

Table 6. Neural network training and testing results for DAzgq.

« predictions of Room G

Training Data MSE Average Error
One hidden Two hidden One hidden Two hidden
Layer Layers Layer Layers
Room A+B+E+F+G 0.0006 0.0012 1.81% 2.53%
Conclusion

One of the limitations of using ANNs is their empirical nature. Researchers often develop an
intuition about the suitability of various network architectures and settings that best fit a
given problem. Yet, once these issues are overcome, ANNs provides an excellent alternative
to solving complex and non-linear problems. Promising initial results in this study point to
the efficacy of using artificial neural networks for predicting daylighting performance in
simple office spaces. As predicted, an increase in training data generally yielded better
accuracy in the predicted results. Additionally, the use of two hidden layers improved the
results in most cases. Overall, the error margins were within an acceptable range using less
time and computational resources than computer simulations. The suitability of this
approach, however, is dependent on a cost-benefit analysis regarding the ratio between the
needed input training data and the required number of predictions since generating the
training data continues to depend on conducting full computer simulations or real-world
measurements. An intriguing possibility, that is yet to be explored, is the use of predicted
data as training input for subsequent predictions. This heavily depends on the robustness of
the process and the accuracy of the predictions. Data drift and thus accuracy deterioration
could prove a limiting factor. Additional planned future work includes experimentation with
more complex design scenarios, fine tuning the validation process and increasing the
robustness of the overall research methodology.
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