

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/106695/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Aldmairi, Abdul Hadi, Knight, David and Wirth, Thomas 2017. Acid-catalyzed tandem process for the onepot synthesis of oxazolidines. Synlett 28 (20) , pp. 2976-2978. 10.1055/s-0036-1591513

Publishers page: http://dx.doi.org/10.1055/s-0036-1591513

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Acid-catalyzed Tandem Process for the One-Pot **Synthesis** of Oxazolidines

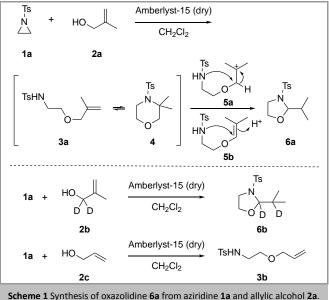
Abdul Hadi Aldmairi a Thomas Wirth a,*

^a School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK

wirth@cf.ac.uk

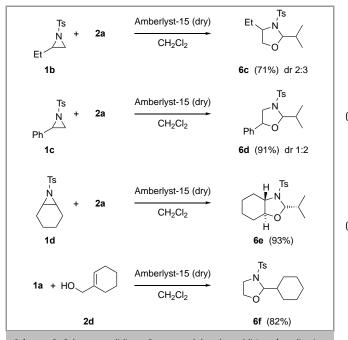
Dedicated to Prof. Victor Snieckus on the occasion of his 80th birthday

 $\overset{\text{Ts}}{\underset{N}{\overset{N}{\longrightarrow}}} + \underset{\text{HO}}{\overset{\text{HO}}{\overset{\text{Ts}}{\longrightarrow}}} \overset{\text{Amberlyst-15 (dry)}}{\underset{\text{CH}_2\text{Cl}_2}{\overset{\text{CH}_2\text{Cl}}{\longrightarrow}}}$


Abstract A simple protocol for the synthesis of oxazolidines from aziridines and allylic alcohols is reported. The solid-supported sulfonic acid catalyst can be easily removed after the reaction by a simple filtration leading to the oxazolidine reaction products in good to excellent yields.

Key words aziridines, cyclization, oxazolidines, rearrangement, ring-opening

Aziridines are important key intermediates in synthesis and many routes for their synthesis have been described. Aziridines can be ring-opened through different processes and allow the facile introduction of C₂N building blocks.¹ The ring opening with oxygen nucleophiles leads to 1,2-aminoalcohol derivatives which are valuable compounds. We describe herein the ring opening of aziridines with 2-methylallyl alcohol followed by a subsequent cyclization leading to oxazolidines.


Oxazolidines are heterocyclic motifs commonly used as protected aminoalcohols, but also embedded in various natural compounds such as quinocarcin,2 where the oxazolidine moiety is important for the biological activity. Acid-catalyzed aziridine ring opening reactions using alcohols as nucleophiles have already been reported and proven to be a useful tool for synthesizing aminoalcohol derivatives.³ The use of allylic alcohols for the ring opening reaction provides substrates which have been used for the preparation of six-membered Nheterocycles through oxidative palladium-catalyzed cyclizations.⁴ Condensation reactions of aziridines with aldehydes have been reported for the synthesis of oxazolidine derivatives.⁵ We have employed 2-substituted allylic alcohols for the ring opening reaction as this substitution pattern allows the formation of stabilized carbocationic intermediates and, hence, the direct formation of heterocyclic reaction products. Treatment of N-tosylaziridines 1 with allylic alcohols 2 in the presence of Amberlyst-15 as a sulfonic acid catalyst provided the oxazolidine derivatives 6 in good yields. The reaction between 1a and 2a in the presence of Amberlyst-15 led to

quantitative yield of oxazolidine 6a. In order to explore the course of the reaction in more detail, the reaction was carried out at lower temperatures (0 °C) and stopped after 1 h. In addition to oxazolidine 6a (~25%), also the addition product 3 $(\sim 25\%)$ and the morpholine derivative 4 $(\sim 50\%)$ were detected by ¹H NMR.⁶ If this reaction is continued for another 4 h at 0 ^oC, only the oxazolidine derivative 6a is obtained in quantitative yields. Amberlyst-15 does not only provide the reaction conditions for a facile acid-catalyzed aziridine opening which initially leads to compound 3a, the protonation of the double bond in 3a leads to a reversible formation of morpholine 4. Rearrangement of protonated 3a (or 4) is accompanied by a hydride transfer as shown in **5a** resulting in the formation of **6a** as the final product.

We recently have reported other cationic rearrangements which were accompanied by hydride transfer.⁷ Alternatively, a double bond isomerization in **3** would lead to an enol ether **5b** which can also cyclize to oxazolidines as has been shown before.⁸ The use of the deuterated allylic alcohol **2b** led exclusively to the reaction product **6b** indicating that a hydride / deuteride shift as shown in **5a** is operating in this reaction as otherwise only a partially deuterated product would have been obtained. The subsequent reaction to **6a** achieved with the substituted allylic alcohol **2a** and Amberlyst-15 catalyst is remarkable as allylic alcohol **2c** only forms ring-opened addition product **3b** under acid catalysis. Product **3b** is stable and does not further cyclize.^{3a}

Different aziridines can be used in a similar reaction catalyzed bv Amberlyst-15. Ethyl-substituted aziridine 1b is regioselectively ring-opened at the least substituted position providing oxazolidine 6c in a 2:3 ratio of diastereomers. Phenylsubstitued aziridine 1c is also regioslectively ring-opened, but exclusively in the benzylic position leading to oxazolidine 6d in 91% vield. The two diastereomers, obtained in a 1:2 ratio (trans:cis), could be separated. The configuration of the cisstereoisomer was confirmed by X-ray analysis.9 With the bicyclic aziridine 1d as starting material, oxazolidine 6e is formed as a single diastereomer as confirmed by NMR spectroscopy in 93% yield. The relative stereochemistry of the isopropyl substituent was determined by NOESY NMR experiments (see supporting information). Even substituted allylic alcohols such as 2d can react efficiently with 1a forming oxazoldine 6f as product in 82% yield.10,11 Amberlyst-15 is a solid-supported sulfonic acid which can be easily removed after the reactions by simple filtration. It is important that dry Amberlyst-15 is used in the process as traces of water can hydrolyze the oxazolidine products to the corresponding aminoalcohols.

 $\mbox{Scheme 2}$ Other oxazolidines $\mbox{6}$ prepared by the addition / cyclization sequence.

In summary, we have developed an operationally very simple protocol for the synthesis of oxazolidines from aziridines and allylic alcohols. The reaction is catalyzed by Amberlyst-15, a solid-supported sulfonic acid, which is removed by filtration after the reaction. The oxazolidine reaction products are obtained in good yields.

Acknowledgment

Support from the School of Chemistry, Cardiff University, is gratefully acknowledged. We thank the EPSRC UK National Crystallography Service at the University of Southampton for the collection of the crystallographic data and the EPSRC National Mass Spectrometry Facility, Swansea, for mass spectrometric data.

Supporting Information

Yes.

Primary Data

No.

References and Notes

- (1) Hu, X. E. Tetrahedron **2004**, 60, 2701.
- (2) (a) Williams, R. M.; Glinka, T.; Flanagan, M. E.; Gallegos, R.; Coffman, H.; Pei, D. J. Am. Chem. Soc. 1992, 114, 733. (b) Tomita, F.; Takahashi, K.; Tamaoki, T. J. Antibiot. 1984, 37, 1268.
- (3) (a) Yadav, J. S.; Reddy, B. V. S.; Balanarsaiah, E.; Raghavendra, S. *Tetrahedron Lett.* 2002, 43, 5105. (b) Ghorai, M. K.; Das, K.; Shukla, D. J. Org. Chem. 2007, 72, 5859.
- (4) Lu, Z.; Stahl, S. S. Org. Lett. **2012**, *14*, 1234.
- (5) Kang, B.; Miller, A. W.; Goyal, S.; Nguyen, S. T. Chem. Commun. 2009, 3928.
- (6) Compound 4: Yar, M.; McGarrigle, E. M.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2008, 47, 3784.
- (7) Singh, F. V.; Rehbein, J.; Wirth, T. *ChemistryOpen* **2012**, *1*, 245.
- (8) Javorskis, T.; Sriubaitė, S.; Bagdžiūnas, G.; Orentas, E. Chem. Eur. J. 2015, 21, 9157.
- (9) Coles, S. J.; Gale, P. A. Chem. Sci. 2012, 3, 683. CCDC-1576825 (cis-6d) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.
- (10) General procedure: A mixture of *N*-tosylaziridine (1 mmol), the allylic alcohol (1.1 mmol) in dry dichloromethane (20 mL) was stirred at 0 °C for 10 min, then dry Amberlyst-15 (0.5 g) was added. The mixture was left to warm up to room temperature for 2 hours. The reaction mixture was filtered and washed with dichloromethane (2 x 10 mL). The combined organic layers were concentrated in vacuo and purified by column chromatography on silica gel to afford the oxazolidine as a clear oil.
- (11) Synthesis of 1a and 1b: Ye, W.; Leow, D.; Goh, S. L. M.; Tan, C.; Chian, C.; Tan, C. *Tetrahedron Lett.* 2006, *47*, 1007. Synthesis of 1c: Ando, T.; Kano, D.; Minakata, S.; Ryu, I.; Komatsu, M. *Tetrahedron* 1998, *54*, 13485. Synthesis of 1d: Kano, D.; Minakata, S.; Komatsu, M. *J. Chem. Soc. Perkin Trans.* 1 2001, 3186. Synthesis of 2b: Trost, B. M.; King, S. A. *J. Am. Chem. Soc.* 1990, *112*, 408. Synthesis of 2d: Hazelden, I. R.; Ma, X.; Langer, T.; Bower, J. F. Angew. Chem. Int. Ed. 2016, *55*, 11198.