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Recently, the combination of probability, logic and learning has received consid-

erable attention in the artificial intelligence and machine learning communities; see

e.g., Getoor and Taskar (2007); De Raedt et al. (2008). Computational logic often

plays a major role in these developments since it forms the theoretical backbone

for much of the work in probabilistic programming and logical and relational learn-

ing. Contemporary work in this area is often application and experiment driven,

but is also concerned with the theoretical foundations of formalisms and inference

procedures and with advanced implementation technology that scales well.

Many probabilistic logic programming languages, including PRISM (Sato and

Kameya 2001), Logic Programs with Annotated Disjunctions (LPADs) (Vennekens

et al. 2004), ProbLog (De Raedt et al. 2007), and ICL (Poole 2008), are proba-

bilistic extensions of Prolog based on Sato’s distribution semantics (Sato 1995).

Specifically, such languages introduce probabilistic truth values into Prolog, such

as probabilistic facts, which are true (or false) with a certain probability, or prob-

abilistic choices, that is, groups of facts only one of which is true at any point.

Key computational tasks in such languages include probabilistic inference, that is,

calculating the probability that a query follows from such a probabilistic program,

parameter learning, that is, determining the best parameters (probabilities of the

probabilistic elements) given observed data, and structure learning, that is, deter-

mining the logical structure of the program (as well as its parameters) from data.

This special issue presents recent developments on both parameter and structure

learning, as well as an application and results on the complexity of inference.

In their article “Viterbi training in PRISM”, Sato and Kubota introduce Viterbi

training for PRISM, which provides an efficient means to learn parameters of
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PRISM programs with hidden variables, that is, probabilistic choices whose val-

ues are not provided in the training data.

Bellodi and Riguzzi’s article “Structure learning of probabilistic logic programs

by searching the clause space” presents a new algorithm to learn the structure of

LPADs, which improves on its predecessor by first determining a promising subset

of clauses, and then selecting the final set of clauses among those.

In their article “A probabilistic logic programming event calculus”, Skarlatidis et

al. apply probabilistic logic programming to human activity recognition in video,

adapting a dialect of the Event Calculus to ProbLog to obtain a system that recog-

nizes long-term activities as temporal combinations of short-term activities, taking

into account the uncertainty naturally occurring in this task.

While many existing inference algorithms for probabilistic logic languages rely on

some form of grounding to a propositional level, lifted inference techniques (e.g.,

(Kersting 2012)) avoid the blowup associated with such approaches by reasoning

directly on the first order level, thus exploiting symmetry and repetition, similarly

to resolution in first-order logic. In his article “Lower complexity bounds for lifted

inference”, Jaeger provides lower bounds on the complexity of inference in another

popular class of probabilistic logic models, namely undirected probabilistic models

based on quantifier- and function-free fragments of first-order logic, such as Markov

Logic Networks (Richardson and Domingos 2006).
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