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Abstract Lifted graphical models provide a language for expressing depen-
dencies between different types of entities, their attributes, and their diverse re-
lations, as well as techniques for probabilistic reasoning in such multi-relational
domains. In this survey, we review a general form for a lifted graphical model,
a par-factor graph, and show how a number of existing statistical relational
representations map to this formalism. We discuss inference algorithms, in-
cluding lifted inference algorithms, that efficiently compute the answers to
probabilistic queries over such models. We also review work in learning lifted
graphical models from data. There is a growing need for statistical relational
models (whether they go by that name or another), as we are inundated with
data which is a mix of structured and unstructured, with entities and relations
extracted in a noisy manner from text, and with the need to reason effectively
with this data. We hope that this synthesis of ideas from many different re-
search groups will provide an accessible starting point for new researchers in
this expanding field.
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1 Motivation and Scope

Multi-relational data, in which entities of different types engage in a rich set of
relations, is ubiquitous in many domains of current interest. For example, in
social network analysis the entities are individuals who relate to one another
via friendships, family ties, or collaborations; in computational biology, one is
frequently interested in modeling how a set of chemical substances, the enti-
ties, interact with, inhibit, or catalyze one another; in web and social media
applications, a set of users interact with each other and with a set of web
pages or other online resources, which may themselves be related via hyper-
links; in natural language processing tasks, it is often necessary to reason about
the relationships between documents, or words within a sentence or a docu-
ment. There is thus a need for formalisms that can model such multi-relational
data and for corresponding reasoning algorithms that allow one to infer addi-
tional information. Furthermore, regularities in these domains are often hard
to identify manually, and methods that automatically learn them from data
are thus desirable. Indeed, by incorporating such relational information into
learning and reasoning, rather than relying solely on entity-specific attributes,
it is usually possible to achieve higher predictive accuracy for an unobserved
entity attribute. For example, exploiting hyperlinks between web pages can im-
prove webpage classification accuracy, and taking into account both individual
attributes of users and relationships between users can improve inference of
demographic attributes in social networks. Developing algorithms and repre-
sentations that can effectively deal with relational information is important
also because in many cases it is necessary to predict the existence of a relation
between the entities. For example, in an online social network application, one
may be interested in predicting friendship relations between people in order
to suggest new friends to the users; in molecular biology domains, researchers
may be interested in predicting how newly-developed substances interact.

While multi-relational data has long been considered in relational learn-
ing, multi-relational data mining and inductive logic programming (De Raedt,
2008; Muggleton and De Raedt, 1994; Muggleton, 1991, 1992; De Raedt, 1996;
Dz̆eroski and Lavrac̆, 2001; Lavrac̆ and Dz̆eroski, 1993), these techniques do
not address the inherent uncertainty present in many application domains.
This limitation is overcome by explicitly modeling both relational and proba-
bilistic aspects, an approach pursued by the field of statistical relational learn-
ing (SRL) (e.g., Dietterich et al, 2004; Fern et al, 2006; Getoor and Taskar,
2007; Domingos and Kersting, 2009; Kersting et al, 2010b; Kautz et al, 2012;
Gogate et al, 2013), which has recently experienced significant growth. A
closely related field that also relies on both relational data and probabilis-
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tic information is structured prediction (Bakir et al, 2007; Lafferty et al, 2001;
Tsochantaridis et al, 2004; Munoz et al, 2009; Weiss and Taskar, 2010), and
especially collective classification (Jensen et al, 2004; Macskassy and Provost,
2007; Wu and Schölkopf, 2007; Sen et al, 2008b; Kuwadekar and Neville, 2011;
London and Getoor, 2013).

This survey provides a detailed overview of developments in the field of
SRL. We limit our discussion to lifted graphical models (also referred to as
templated graphical models), that is, to formalisms that use relational lan-
guages to define graphical models, where we use Poole’s par-factors (Poole,
2003) as the unifying language. As their propositional counterparts, lifted
graphical models take advantage of independencies between random variables
to compactly represent probability distributions by factorizing them. In the
same way as first-order logic lifts propositional logic by making statements
about all members of groups of objects represented by logical variables, lifted
graphical models define random variables and their correlations on the level
of groups of objects of the same type rather than for each individual object.
Furthermore, all members of such a group use the same tied parameters in the
graphical model, making it possible to define probabilistic models over flexible
numbers of objects with a fixed number of parameters. Lifted graphical models
thus exploit the structure of both the relational domain and the probability
distribution when representing probabilistic models. Because of the great vari-
ety of existing SRL applications, we cannot do justice to all of them; therefore,
the focus is on representations and techniques, and applications are mentioned
in passing where they help illustrate our point.

By limiting the scope of the survey, we are able to provide a more fo-
cused and unified discussion of the representations that we do cover, but also
omit several important SRL representations, such as stochastic logic programs
(Muggleton, 1996) and ProbLog (De Raedt et al, 2007). These formalisms
are representatives of the second main stream of SRL research that focuses
on extending logic-based representations and techniques to take into account
uncertainty. For more information on this type of representations, we refer
the reader to De Raedt and Kersting (2003); De Raedt and Kersting (2004);
De Raedt et al (2008); De Raedt and Kersting (2010). An overview of the de-
velopment of first-order probabilistic models over time is provided by de Salvo
Braz et al (2008). Among the many other approaches in machine learning
and other fields that consider relational data and models and that we do not
consider here are lifted (PO)MDPs and relational reinforcement learning (van
Otterlo, 2009), probabilistic databases (Suciu et al, 2011), probabilistic pro-
gramming (Roy et al, 2008; Mansinghka et al, 2012), (multi-)relational Gaus-
sian processes (Chu et al, 2006; Xu et al, 2009), relational LDA (Chang and
Blei, 2009), mixed membership models (Airoldi et al, 2008), relational and
graph SVMs (Tsochantaridis et al, 2004; Gaudel et al, 2007) and relational
PCA (Li et al, 2009).

This survey is structured as follows. In Section 2, we define SRL and intro-
duce preliminaries. In Section 3, we describe several SRL representations that
are based on lifting a graphical model. Our goal in this section is to establish
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a unified view on the available representations by adopting a generic, or tem-
plate, SRL model – a par-factor graph – and discussing how particular models
implement its various aspects. In this way, we establish not just criteria for
comparisons of the models, but also a common framework in which to discuss
inference (Section 4), parameter learning (Section 5.1), and structure learning
(Section 5.2) algorithms.

2 Preliminaries

This section summarizes the key characteristics of SRL and provides back-
ground on both graphical models and relational representations as relevant
for the rest of the article.

2.1 What is SRL?

Statistical relational learning (SRL) studies knowledge representations and
their accompanying inference and learning techniques that allow for efficient
modeling and reasoning in noisy and uncertain multi-relational domains. In
classical machine learning settings, the data consists of a single table of fea-
ture vectors, one for each entity in the data. A crucial assumption made is
that the entities in the data represent independent and identically distributed
(i.i.d.) samples from the general population. In contrast, multi-relational do-
mains contain entities of potentially different types that engage in a variety
of relations. Thus, a multi-relational domain can be seen as consisting of sev-
eral tables: a set of attribute tables that contain feature-vector descriptions for
entities of a certain type, and a set of relationship tables that establish relation-
ships among two or more of the entities in the domain. Relations also allow one
to model complex, structured objects. As a consequence of the relationships
among the entities, they are no longer independent, and the i.i.d. assumption
is violated. Figure 1 shows a small example with two types of entities and one
relation in a publication domain. A further characteristic of multi-relational
domains is that they are typically noisy or uncertain. For example, there fre-
quently is uncertainty regarding the presence or absence of a relation between
a particular pair of entities. Finally, aggregation functions are a useful concept
in relational domains, as they allow one to consider properties of all entities
participating in a certain relation, e.g., all authors of a given paper, without
the need to make assumptions on the number of such entities.

To summarize, an effective SRL representation needs to support the fol-
lowing two essential aspects: a) it needs to provide a language for expressing
dependencies between different types of entities, their attributes, and their
diverse relations; and b) it needs to allow for probabilistic reasoning in a po-
tentially noisy environment.
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Publication
paper title venue year
p1 t1 v1 y1
p2 t2 v2 y1
p3 t3 v1 y2
p4 t4 v1 y2

Researcher
person name affiliation
r1 n1 a1
r2 n2 a1
r3 n3 a2
r4 n4 a3

Author
paper person
p1 r1
p1 r3
p2 r3
p3 r2
p3 r3
p4 r1
p4 r4

Fig. 1: Example database describing a publication domain, with attribute ta-
bles for publications and researchers, and a relationship table connecting the
two.

Table 1: Notation used throughout this survey

Concept Representation

Parameterized random variable (par-RV) Sans serif upper-case letters X, Y, . . .
Vector of par-RVs Bold sans serif upper-case letters X, Y, . . .
Random variable (RV) Upper-case letters X, Y , . . .
Vector of RVs Bold upper-case letters X, Y , . . .
Value assigned to RV Lower-case letters x, y, . . .
Vector of values assigned to RVs Bold lower-case letters x, y, . . .
Logical variable Typewriter upper-case letters X, Y, . . .
Entity/constant Typewriter lower-case letters x, y, . . .
Factor-graph 〈X,F 〉
Par-factor Φ = (A, φ,C)
Par-factor graph F = {Φ1, . . . , Φn}
Set of constraints C
Hypothesis space H
Training data / set of training examples D
Instances of par-factor Φ = (A, φ,C) I(Φ) = {A | A instance of A under C}
Set of integer linear program variables V

2.2 Background and Notation

Lifted graphical models combine ideas from graphical models and relational
languages. We first summarize key concepts of graphical models and establish
the notation and terminology to be used in the rest of this survey. Probability
theory and first-order logic sometimes use the same term to describe different
concepts. For example, the word “variable” could mean a random variable
(RV), or a logical variable. To avoid confusion, we distinguish between differ-
ent meanings using different fonts, as summarized in Table 1. Also, depending
on context, the word “model” may denote a specification of a probability dis-
tribution in a generic sense (e.g., when talking about directed and undirected
graphical models), a formalism to define such models (such as the languages
discussed in Sections 3.2 and 3.3), or a specific encoding of a distribution in
such a formalism.
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2.2.1 Probabilistic Graphical Models

As lifted graphical models extend probabilistic graphical models, we first sum-
marize basic concepts from that area. For a detailed introduction to graphical
models, we refer the reader to Koller and Friedman (2009). We discuss fac-
tor graphs, which are the propositional counterpart of the par-factor graphs
used as a unifying language in this survey, cf. Section 3.1, as well as Markov
networks and Bayesian networks as representatives of undirected and directed
graphical models, respectively, a distinction that will come back at the lifted
level, cf. Sections 3.2 and 3.3.

In general, to describe a probability distribution on n binary RVs, one
needs to store 2n − 1 parameters, one for each possible configuration of value
assignments to the RVs. However, sets of RVs are often conditionally inde-
pendent of one another, and thus, many of the parameters will be repeated.
To avoid such redundancy of representation, several graphical models have
been developed that explicitly represent conditional independencies. One of
the most general representations is the factor graph (Kschischang et al, 2001).
A factor graph consists of a tuple 〈X,F 〉, where X is a set of RVs, and F is a
set of factors, each of which is a function from the values of (a subset of) X to
the non-negative real numbers. It is typically drawn as an undirected bipartite
graph (cf. Figure 2b). The two partitions of vertices in the factor graph consist
of the RVs X in X (drawn as circular nodes) and the factors φ in F (drawn as
square nodes), respectively. There is an edge between an RV X and a factor
φ if and only if X is necessary for the computation of φ (cf. Figure 2c); i.e.,
each factor is connected to its arguments. As a result, the structure of a factor
graph defines conditional independencies between the variables. In particular,
a variable is conditionally independent of all variables with which it does not
share factors, given the variables with which it participates in common factors.

A factor graph 〈X,F 〉 defines a probability distribution over X as follows.
Let x be a particular assignment of values to X. Then,

P (X = x) =
1

Z

∏
φ∈F

φ(xφ). (1)

Above, xφ represents the values of those variables in X that are necessary for
computing φ’s value. Z is a normalizing constant that sums over all possible
value assignments x′ to X, and is given by:

Z =
∑
x′

∏
φ∈F

φ(x′φ). (2)

As before, x′φ represents the values of only those variables in X that are
necessary to compute φ.

Factor graphs are a general representation for graphical models that sub-
sumes both Markov networks and Bayesian networks, two very common types



Lifted Graphical Models: A Survey 7

C

A

B D

(a)

A

B

C

D

(b)

A B D φ1(A,B,D)
T T T 5
T T F 1
T F T 1
T F F 5
F T T 1
F T F 5
F F T 5
F F F 1

B C D φ2(B,C,D)
T T T 4
T T F 2
T F T 3
T F F 1
F T T 2
F T F 4
F F T 1
F F F 3

(c)

Fig. 2: Example of (a) Markov network structure, (b) corresponding factor
graph, and (c) potential functions (all random variables are Boolean). Circular
nodes correspond to variables, whereas square nodes correspond to factors.

of graphical models whose graphical representations use RVs as nodes only,
and implicitly provide the factors through the graph structure.

A Markov network (Pearl, 1988) is an undirected graphical model whose
nodes correspond to the random variables in X. It computes the probability
distribution overX as a product of strictly positive potential functions defined
over cliques in the graph, i.e., for any set of variables that are connected in a
maximal clique, there is a potential function that takes them as arguments.
For instance, the Markov network in Figure 2a has two cliques, and thus two
potential functions, one over variables A, B and D, the second over variables
B, C and D, which are given in tabular form in Figure 2c. Alternatively,
potential functions are often represented as a log-linear model, in which each
potential function φ(X1 . . . Xn) of n variables X1 . . . Xn is represented as an
exponentiated product exp(λ · f(X1 . . . Xn)). In this expression, λ ∈ R is a
learnable parameter, and f is a feature that captures characteristics of the
variables and can evaluate to any value in R. In general, there may be more
than one potential function defined over a clique. In this way, a variety of
feature functions, each with its own learnable parameter λ, can be defined for
the same set of variables. There is a direct mapping from Markov networks to
factor graphs. To convert a Markov network to a factor graph, for each maximal
clique in the Markov network, we include a factor that evaluates to the product
of potentials defined over that clique. The factor graph corresponding to the
Markov network in Figure 2a is shown in Figure 2b.
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C

A B

D E

(a)

C

A

B

D

E

(b)

A=T
0.8

B=T
0.4

A B C=T
T T 0.2
T F 0.3
F T 0.7
F F 0.1

C D=T
T 0.7
F 0.8

C E=T
T 0.3
F 0.9

(c)

Fig. 3: Example of (a) Bayesian network structure, (b) corresponding factor
graph, and (c) conditional probability tables defining potential functions (all
random variables are Boolean). Circular nodes correspond to random variables,
whereas square nodes correspond to factors.

A Bayesian network (Pearl, 1988) is represented as a directed acyclic graph,
whose vertices again are the RVs inX. Figure 3a shows an example. The prob-
ability distribution overX is specified by providing the conditional probability
distribution for each node given the values of its parents. The simplest way of
expressing these conditional probabilities is via conditional probability tables
(CPTs), which list the probability associated with each configuration of values
to the nodes, cf. Figure 3c. A Bayesian network can directly be converted to
a factor graph as follows. For each node X, we introduce a factor φX to rep-
resent the conditional probability distribution of X given its parents. Thus,
φX is computed as a function of only X and its parents. In this case, the
product is automatically normalized, i.e., the normalization constant Z sums
to 1. Figure 3b shows the factor graph corresponding to the Bayesian network
of Figure 3a.

While factor graphs provide a general framework, it is often useful to re-
strict the discussion to either directed or undirected models. More specifically,
directed models are appropriate when one needs to express a causal depen-
dence, while undirected models are better suited to domains containing cyclic
dependencies. On the other hand, by describing algorithms for factor graphs,
they become immediately available to representations that can be viewed as
specializations of factor graphs, such as Markov and Bayesian networks. In this
survey, we therefore keep the discussion on the general level of factor graphs
(or their lifted counterpart as introduced in Section 3.1) whenever possible,
and only consider special cases where necessary.
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2.2.2 Inference in Graphical Models

The two most common inference tasks in graphical models are computing
marginals and most probable explanation (MPE) inference. The former com-
putes the marginal probability distributions for a subset X′ ⊆ X of the ran-
dom variables from the full joint distribution defined by the graphical model,
cf. Equation (1). Setting Y = X \X′, this probability has the following form:

P (X′ = x′) =
∑
Y =y

1

Z

∏
φ∈F

φ(x′
φ,yφ). (3)

Computing the marginal probability thus corresponds to summing out the
random variables Y . It also is an important step in computing conditional
probabilities P (X′ = x′|Y ′ = y′) = P (X′ = x′,Y ′ = y′)/P (Y ′ = y′), where
values y′ for some random variables Y ′ ⊆ Y are given as evidence.

MPE inference computes the most likely joint assignment to a subset
X′ ⊆ X of the random variables (sometimes also called MAP (maximum
a posteriori) state), given values y of all remaining RVs Y = X \X′, that is

MPE(X′ = x′|Y = y) = argmaxX′=x′P (X′ = x′,Y = y) (4)

Even though the complexity of solving these tasks is exponential in the worst
case and thus intractable in general, cf. Koller and Friedman (2009), many
instances occurring in practice can be solved efficiently. We next summarize
two common inference techniques for graphical models, whose extensions to
the lifted case will be discussed in Section 4.

2.2.3 Variable Elimination

One of the earliest and simplest algorithms for exact inference in factor graphs
is variable elimination (VE) (Zhang and Poole, 1994; Poole and Zhang, 2003).
Suppose we would like to compute the marginal probability distribution of
a particular random variable X, as given in Equation (3). VE proceeds in
iterations summing out all other random variables Y one by one, exploiting the
fact that multiplication distributes over summation and ignoring the constant
normalization factor 1/Z during computations. An ordering over the variables
in Y is established, and in each iteration the next Y ∈ Y is selected, and the
set of factors is split into two groups—the ones that contain Y and the ones
that do not. The latter can be pulled out of the sum over the current variable Y .
All factors containing Y are multiplied together and the results are summed,
thus effectively eliminating (or summing out) Y from Y . The efficiency of
the algorithm is affected by the ordering over Y that was used; heuristics for
selecting good orderings are available. In the end, the normalization constant
Z is obtained by simply summing the results for all values x of X and results
are normalized.

This algorithm can be adapted to find the MAP state, cf. Equation (4).
This requires an argmax computation over the variables of interest X′ rather
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than a summation over all other variables Y , but the structure of the problem
is similar otherwise. As before, the algorithm imposes an ordering over the
variables X′ to be processed, and proceeds in iterations, this time, however,
eliminating each variable X ∈ X′ by maximizing the product of all factors
that contain X and remembering which value of X gave the maximum value.

2.2.4 Belief Propagation

Pearl’s belief propagation (BP) (Pearl, 1988) is another algorithm for comput-
ing marginals in Bayesian networks. As the closely related forward-backward
algorithm for hidden Markov models (Rabiner, 1989), BP is an instance of the
sum-product algorithm for factor graphs (Kschischang et al, 2001), which owes
its name to the fact that it consists of a series of summations and products.
We adopt the latter view of operating on factor graphs for our discussion of
BP, and refer to Kschischang et al (2001) for full details. The key idea behind
BP is that each node in the factor graph sends “messages” to all of its neigh-
bors, based on the ones received from the other neighbors. As the messages
ultimately serve to compute marginals at the variable nodes, each message is
a function of the respective variable node X involved in the exchange. Given
the bipartite nature of the factor graph, there are two types of messages. The
first type is sent from a variable node X to a neighboring factor node φ. Such
a message provides a multiplicative summary of the messages from all other
factors the variable participates in:

µX→φ(X) =
∏

φ′∈n(X)\{φ}

µφ′→X(X). (5)

Here, n(X) is the set of neighboring nodes of X in the factor graph. These
messages are initially set to 1. The second type of message is sent from a factor
node φ to a neighboring variable node X:

µφ→X(X) =
∑

X\{X}

φ(Xφ)
∏

Y ∈Xφ\{X}

µY→φ(Y )

 (6)

Here, X denotes all random variables in the factor graph, Xφ those that are
arguments of factor φ (and thus φ’s neighbors in the factor graph). The mes-
sage thus (a) multiplies for each variable assignment the value of the factor φ
and the corresponding messages received from all its participating variables
except X, and (b) sums these products for all assignments to all RVs except X.
These messages are initially set to

∑
X\{X} φ(Xφ).

During BP, a node sends a message to a specific neighbor once it has
gotten messages from all its other neighbors. If the factor graph is a tree, this
process terminates once a message has been sent for both directions of each
edge, at which point the marginal of variable X is exactly the product of all
messages µφ→X(X) directed towards it. If the factor graph contains cycles,
marginals can be approximated by running BP for a sequence of iterations or
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with damped updates, which is known as loopy BP. Although loopy BP is not
guaranteed to output correct results, in practice it frequently converges and,
when this happens, the values obtained are typically correct (Murphy et al,
1999; Yedidia et al, 2001).

As variable elimination, BP can be easily adapted to compute the MAP
state by replacing the summation operator in Equation (6) with a maximiza-
tion operator. This is called the max-product algorithm, or, if the underlying
graph is a chain, the Viterbi algorithm.

2.2.5 Terminology of Relational Languages

We now briefly introduce the relational languages most popular to define lifted
graphical models. We focus on the key language elements required in this con-
text, which are (1) how to define random variables, that is, language elements
whose values are governed by random processes; (2) how to define parame-
terized random variables (par-RVs) (Poole, 2003), whose instances are RVs;
and (3) how to define arguments of potential functions, that is, vectors of par-
RVs whose instances share the same factor structure and potential function.
We refer to Section 3.1 for a formal treatment of par-RVs and par-factors,
and to Section 3 for a detailed discussion of lifted graphical model formalisms
including additional examples.

Structured Query Language (SQL). When using SQL, one of the most popular
query languages for relational databases, to define graphical models, random
variables typically correspond to attributes of tuples in the database that take
values from the corresponding range of values. Defining vectors of random
variables can therefore be done by means of select statements of the following
type, which return a set of tuples that all have the same attribute structure
and will share the same potential function:

SELECT <column names>

FROM <table names>

WHERE <selection constraints>

For instance, in the example of Figure 1, we can obtain the affiliations of all
pairs of co-authors via

SELECT r1.affiliation, r2.affiliation

FROM Researcher r1, Researcher r2, Author a1, Author a2

WHERE r1.person = a1.person and a1.paper = a2.paper

and a2.person = r2.person

which could be used for a potential function expressing that co-authors are
more likely to have the same affiliation. SQL is used for instance in relational
Markov networks, cf. Section 3.2.1.
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First-order Logic. Another flexible and expressive representation of relational
data frequently used in SRL is first-order logic (FOL). FOL distinguishes
among four kinds of symbols: constants, variables, predicates, and functions.
Constants, which we denote by typewriter lower-case letters such as x and
y in abstract discussions, and by typewriter strings starting with lower-case
letters in examples, e.g., p1 and r3 in the example of Figure 1, describe
the objects in the domain of interest, which we will alternatively call en-
tities. In this survey, we assume that entities are typed. Logical variables,
denoted by typewriter upper-case letters such as X and Y, refer to arbitrary
rather than concrete entities in the domain. Predicates, denoted by strings
starting with an upper-case letter such as Publication and Author, rep-
resent attributes or relationships between entities. We assume predicates to
be typed, e.g., the predicate Author only applies to pairs of entities of type
paper and person, respectively. Functions, denoted by strings starting with
an upper-case letter such as AuthorOf, evaluate to an entity in the domain
when applied to one or more entities, e.g., AuthorOf(x) = y. The number of
arguments of a predicate or a function is called its arity. A term is a con-
stant, a variable, or a function on terms. A predicate applied to terms is
called an atom, e.g., Author(X, Y). Terms and atoms are ground if they do
not contain variables, e.g., Author(p1, r1). Ground atoms evaluate to true

or false. Atoms are also called positive literals, and atoms preceded by the
negation operator ¬ are called negative literals. A formula consists of a set
of (positive or negative) literals connected by conjunction (∧) or disjunction
(∨) operators, e.g., ¬Publication(W, X, Y, Z) ∨ Author(W, AuthorOf(W)). The
variables in formulas are quantified, either by an existential quantifier (∃) or
by a universal quantifier (∀). Here we follow the common assumption that
when no quantifier is specified for a variable, ∀ is understood by default. A
formula expressed as a disjunction with at most one positive literal is called
a Horn clause; if a Horn clause contains exactly one positive literal, then
it is a definite clause. Using the laws of first-order logic, a definite clause
¬b1 ∨ . . . ∨ ¬bn ∨ h can also be written as an implication b1 ∧ . . . ∧ bn ⇒ h,
e.g., Publication(W, X, Y, Z)⇒ Author(W, AuthorOf(W)) for the formula above.
The conjunction b1 ∧ . . . ∧ bn is called the body, the single atom h the head
of the clause. Grounding or instantiating a formula is done by replacing all
variables with ground terms. Formulas containing functions of arity at least
one have infinitely many groundings, which is often undesirable when using
FOL to specify SRL models. One way to avoid this is to only consider ground-
ings where variables are replaced with constants in all possible type-consistent
ways, e.g., Author(p1, X) can be grounded to Author(p1, r1), Author(p1, r2),
Author(p1, r3) and Author(p1, r4) in our example.

When using FOL to define graphical models, random variables typically
correspond to ground atoms with values in the set {true, false}. For example,
for publication p3 and person r1, the ground atom Author(p3, r1) represents
the assertion that r1 is an author of p3. Non-ground atoms correspond to
par-RVs, which become instantiated to RVs by grounding. For example, if X
and Y are logical variables, Author(X, Y) is a par-RV because once we ground
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it by replacing the parameters X and Y with actual entities, we obtain RVs.
We note that the use of FOL in this context does not necessarily imply a FOL
characterization of graphical models, and also that such models often do not
employ the full expressive power of FOL.

Lifted graphical models using elements of FOL include Markov logic net-
works (cf. Section 3.2.2), probabilistic soft logic (Section 3.2.3), Bayesian logic
programs (Section 3.3.1), relational Bayesian networks (Section 3.3.2) and
BLOG (Section 3.3.4).

Object-Oriented Representations. As an alternative to FOL, the attributes and
relations of entities can be described using an object-oriented representation.
Here again, x and y represent specific entities in the domain, whereas X and Y

are variables, or entity placeholders. We again assume that entities are typed,
which allows us to use chains of attributes and relations, expressed in a nota-
tion analogous to that commonly used in object-oriented languages, to identify
sets of entities of a certain type starting from a given entity. For example, using
the notation of Getoor et al (2007), x.Venue refers to the (typically singleton)
set of venues of paper x, whereas x.Author refers to the set of its authors.
Inverse relations are also allowed, e.g., y.Author−1 refers to the set of papers
of which y is an author. Longer chains are followed for all elements of interme-
diate sets, e.g., x.Author.Author−1.Venue gives the set of venues of all papers
written by any author of x. Such chains can be used to specify par-RVs, which
are instantiated by replacing variables with entities from the domain. Random
variables thus correspond to attributes of relations, and aggregation functions,
such as mean, mode, max, or sum, are used to deal with sets of such variables.
For example, we can write mode(x.Author.Author−1.Venue).

Lifted graphical models using object-oriented aspects include relational
Markov networks (Section 3.2.1), probabilistic soft logic (Section 3.2.3), FAC-
TORIE (Section 3.2.4), and probabilistic relational models (Section 3.3.3).

3 Overview of SRL models

Existing SRL representations can be split into two major groups. The first
group consists of lifted graphical models, that is, representations that use a
structured language to define a probabilistic graphical model. Representations
in the second group impose a probabilistic interpretation on logical inference.
As discussed in the introduction, to allow for greater depth, here we limit
ourselves to the first group of languages. To provide a convenient representa-
tion that describes the common core of lifted graphical models, we start with
par-factor graphs, short for parameterized factor graphs, defining them in the
terminology of Poole (2003). A par-factor graph is analogous to a factor graph
(Kschischang et al, 2001), cf. Section 2.2.1, in that it is a general representa-
tion for a large class of lifted graphical models, including both directed and
undirected representations. Using the language of par-factor graphs, we can
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Person(X) Movie(Y)

(a)

Movie(godFather)

Person(carl)

Person(ann)

Person(bob) Movie(rainMaker)

(b)

Fig. 4: Example of a par-factor graph and the corresponding factor
graph obtained by instantiating par-RVs Person(X) and Movie(Y) for
X ∈ {ann, bob, carl} and Y ∈ {godFather, rainMaker}.

discuss how different models specialize them, while keeping the discussion of
inference and learning techniques on the general level as much as possible.

3.1 Par-Factor Graphs

Parametrized factors, or par-factors for short, provide a relational language to
compactly specify sets of factors in a graphical model that only differ in their
vector of RVs, but share the same structure and potential function. Such a set
of par-factors defines a family of probability distributions based on a set of
relations, which can be combined with different instances of the corresponding
database to obtain specific distributions from that family. To emphasize the
connection to factor graphs, we refer to a set of par-factors F = {(Ai, φi,Ci)}
as a par-factor graph. Par-factor graphs lift factor graphs analogously to how
first-order logic lifts propositional logic. For instance, Figure 4a shows a par-
factor graph with a single par-factor over par-RVs Person(X) and Movie(Y),
which could express a prior probability that any person likes any movie, and
Figure 4b shows the corresponding factor graph instantiating the par-RVs for
X ∈ {ann, bob, carl} and Y ∈ {godFather, rainMaker}. Formally, a par-factor
is a triple Φ = (A, φ,C), where A is a vector of parameterized random variables
(par-RVs), φ is a function from the values of RVs instantiating these par-RVs
to the non-negative real numbers, and C is a set of constraints on how the par-
RVs may be instantiated. For typed relational languages, type constraints are
included in C by default. Let I(Φi) denote the set of random variable vectors
A that are instantiations of Ai under constraints Ci. For any A ∈ I(Φi), we
denote the value assignment x restricted to the RVs A by xA. The par-factor
graph F defines a probability distribution as follows, where X is the vector
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of all RVs that instantiate par-RVs in F :

P (X = x) = F(x)

=
1

Z

∏
Φi∈F

∏
A∈I(Φi)

φi(xA) (7)

That is, the probability distribution is the normalized product of the factors
corresponding to all instances of par-factors in the par-factor graph, and as
such directly corresponds to the one defined by the underlying factor graph,
cf. Equation (1). However, here, all the factors that are instantiations of the
same par-factor share common structure and parameters. Especially in the
context of parameter learning (cf. Section 5.1), those shared parameters are
also called tied parameters. Parameter tying allows for better generalization,
as it combines a flexible number of random variables with a fixed number of
parameters. Par-factor graphs thus exploit both probabilistic and relational
structure to compactly represent probability distributions.

As in the propositional case, cf. Section 2.2.1, even though par-factor
graphs provide a very general language to specify probabilistic models, it is
often useful to restrict the discussion to a specific subclass of such models, and
indeed, most research has focused on either directed or undirected models. In
the remainder of this section, we discuss how several popular SRL represen-
tations can be viewed as special cases of par-factor graphs, that is, how they
express the specific Ai-s, the φi-s, and the Ci-s they consider. This is not meant
to be an exhaustive list; rather, our goal is to highlight some of the different
flavors of representations.

3.2 Undirected SRL Representations

This subsection discusses undirected lifted graphical models, which all define
Markov networks when instantiated. The key differences of these represen-
tations lie in the way par-factors are specified, namely using SQL (relational
Markov networks), different subsets of first-order logic (Markov logic networks
and probabilistic soft logic), or imperative programming (FACTORIE).

3.2.1 Relational Markov Networks

As their name suggests, relational Markov networks (RMNs) (Taskar et al,
2002) define Markov networks through a relational representation, more specif-
ically, an object-oriented language and SQL. We illustrate the key principles
using an example from collective classification of hyperlinked documents, as
presented by Taskar et al (2002). In an RMN, each par-factor Φ = (A, φ,C)
is given by an SQL select statement defining A and C and a potential func-
tion φ over instantiations of A in log-linear form. More specifically, the vector
A of par-RVs corresponding to attributes is established by the select...from
part, and the constraints C over instantiations by the where part. Par-RVs are
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doc1
doc2

doc4
doc3

(a)

doc1.cat

doc4.cat

doc2.cat

doc3.cat

(b)

Fig. 5: RMN example: (a) hyperlink structure, (b) Markov network.

instantiated to multinomial RVs, that is, RVs corresponding to attributes of
specific tuples that take one of multiple discrete values, and the Markov net-
work contains a clique for each such RV vector. For instance, the following
par-factor sets up a clique between the category assignments of any two hy-
perlinked documents in order to capture the intuition that documents on the
web that link to one another typically have correlated categories:

SELECT D1.Category, D2.Category

FROM Document D1, Document D2, Link L

WHERE L.From = D1.Key and L.To = D2.Key

Figure 5a shows a small example network, Figure 5b the corresponding Markov
network set up by the par-factor above. The log-linear potential function φ is
defined separately via a parameter λ and a feature function f , that is, for any
instantiation A of the par-RVs in A and specific values a, we have φ(A =
a) = exp(λ · f(a)). The definition of φ can be used to incorporate further
domain knowledge. For example, if we know that most pages tend to link
to pages of the same category, we can define φ(D1.Category, D2.Category) =
exp(λ · 1[D1.Category = D2.Category]), where the feature function takes the
form of the indicator function 1[x] that returns 1 if the proposition x is true
and 0 otherwise. A positive λ encourages hyperlinked pages to be assigned the
same category, while a negative λ discourages this.

3.2.2 Markov Logic Networks

Markov logic networks (MLNs) (Richardson and Domingos, 2006; Domingos
and Lowd, 2009) also define a Markov network when instantiated. As an il-
lustration, we present an example from (Richardson and Domingos, 2006),
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Friends(a,a) Friends(b,b)Friends(a,b)

Friends(b,a)

Smokes(a) Smokes(b)

Fig. 6: Markov network of MLN example.

in which the patterns of human interactions and smoking habits are consid-
ered. Par-factors in MLNs are specified using first-order logic. Each par-factor
Φ = (A, φ,C) is represented by a first-order logic formula FΦ with an attached
weight wΦ. Each atom in the formula specifies one of the par-RVs in A. In
the instantiated Markov network, each instantiation, or grounding, of FΦ es-
tablishes a clique among Boolean-valued RVs corresponding to the ground
atoms that appear in that instantiation. For instance, the following formula
with weight w encodes that friends have similar smoking habits, i.e., that if
two people are friends, then they tend to either both be smokers or both be
non-smokers.

w : Friends(X, Y)⇒ (Smokes(X)⇔ Smokes(Y))

The par-RVs in the par-factor defined by this rule are

A = 〈Friends(X, Y), Smokes(X), Smokes(Y)〉,

and every possible instantiation of these par-RVs establishes a clique in the
instantiated Markov network, e.g., if there are only two entities, a and b, then
the instantiated Markov network is the one shown in Figure 6.1

The potential function φ is implicit in the formula, as we describe next.
Let A be the set of RVs in a particular instantiation or grounding fΦ of the
formula FΦ, and a be a particular assignment of truth values to A; then,
φ(A = a) = exp(λΦ · FΦ(a)), where λΦ = wΦ, and FΦ(a) = 1 if fΦ is true for
the given truth assignment a and FΦ(a) = 0 otherwise. In other words, clique
potentials in MLNs are represented using log-linear functions in which the
first-order logic formula itself acts as a feature function, whereas the weight
associated with the formula provides the parameter.

So far, we have not discussed how MLNs specify the constraints C of a par-
factor. MLNs do not have a special mechanism for describing constraints, but
constraints can be implicit in the formula structure. Two ways of doing this
are as follows. First, we can constrain groundings by providing constants as
arguments of par-RVs. For example, writing Friends(a, Y) ⇒ (Smokes(a) ⇔
Smokes(Y)) results in the subset of groundings of the formula above where

1 When grounding the par-RV vector results in a vector with repeated RVs, e.g.,
〈Friends(a, a), Smokes(a), Smokes(a)〉 for X = Y = a, those repetitions are not depicted in
the graphical representation, but the potential function is still evaluated on the full vector.
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X = a. Second, when computing conditional probabilities, we can treat some
predicates as background knowledge that is given at inference time rather than
as definitions of random variables, similarly to the use of the Link relation in
the RMN example above. For example, suppose we know that at inference
time we will observe as evidence the truth values of all groundings of Friends
atoms, and the goal will be to infer people’s smoking habits. Then, the formula
Friends(X, Y)⇒ (Smokes(X)⇔ Smokes(Y)) can be seen as setting up a clique
between the Smokes values only of entities that are friends. If Friends(x, y) is
false for a particular pair of entities x and y, then the corresponding instantia-
tion of the formula is trivially satisfied, regardless of assignments to groundings
of Smokes. Such an instantiation thus contributes the same constant factor
exp(λ ·1) to the probability of each truth value assignment consistent with the
evidence, and can therefore be ignored when instantiating the MLN.

A variant of MLNs are Hybrid MLNs (Wang and Domingos, 2008), which
extend MLNs to allow for real-valued random variables. In Hybrid MLNs,
the same formula can contain both binary-valued and real-valued atoms. Such
formulas are evaluated by interpreting conjunction as a multiplication of val-
ues. Another related formalism are the relational continuous models of Choi
et al (2010), which allow for par-factors with continuous valued variables, but
restricting φ to Gaussian potentials.

3.2.3 Probabilistic Soft Logic

Probabilistic soft logic (PSL) (Broecheler et al, 2010) is another lifted Markov
network model. As in MLNs, par-RVs in PSL correspond to logical atoms
and RVs to ground atoms. In contrast to MLNs, where RVs take Boolean
variables, and to hybrid MLNs, where some RVs take Boolean values while
others take real values, all RVs in PSL take soft truth values from the interval
[0, 1]. This allows for easy integration of similarity functions. To define par-
factors, PSL uses a mixture of first-order logic and object-oriented languages,
where the latter provides convenient syntax for specifying sets. Each par-factor
Φ = (A, φ,C) over a set of atoms A is specified via a rule RΦ = l1 ∧ . . .∧ lm ⇒
lm+1 ∨ . . . ∨ ln with weight wΦ, where each li is either an atom in A or the
negation of such an atom. The potential function φ is defined based on RΦ as
discussed below. Constraints in C can be specified in a similar manner as in
MLNs. To illustrate, consider an example by Broecheler et al (2010) in which
the task is to infer document similarities in Wikipedia based on document
attributes and user interactions with the document. One potentially useful rule
states that two documents are similar if the sets of their editors are similar
and their text is similar:

({A.editor} ≈s1 {B.editor}) ∧ (A.text ≈s2 B.text)⇒ (A ≈s3 B)

Above, ≈si represent similarity functions, and a term enclosed in curly braces,
as in {A.editor}, refers to the set of all entities related to the variable through
the relation. This rule uses the par-RVs A = {({A.editor} ≈s1 {B.editor}) ,
(A.text ≈s2 B.text) , (A ≈s3 B)}. Each grounding of such a rule introduces a
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s1(d1.eds,d2.eds) s3(d1,d2)

s2(d1.txt,d2.txt)

s1(d1.eds,d1.eds) s3(d1,d1)

s2(d1.txt,d1.txt)

s1(d2.eds,d2.eds) s3(d2,d2)

s2(d2.txt,d2.txt)

s1(d2.eds,d1.eds) s3(d2,d1)

s2(d2.txt,d1.txt)

Fig. 7: Markov network of PSL example for two documents.

clique between its random variables in the Markov network, as illustrated in
Figure 7. The clique potential φ is again implicitly given by the rule. The
evaluation RΦ(a) of a rule RΦ on an assignment a to an instantiation A of
the par-RVs is obtained by interpreting conjunction and disjunction using the
Lukasiewicz t-(co)norms as follows:

x ∧ y = max{0, x+ y − 1}
x ∨ y = min{x+ y, 1}
¬x = 1− x

For instance, when assigning 1.0 to RV ({a.editor} ≈s1 {b.editor}), 0.9
to (a.text ≈s2 b.text), and 0.3 to (a ≈s3 b), the value of the above rule is
min{min{(1− 1.0) + (1− 0.9), 1}+ 0.3, 1} = 0.4. The distance to satisfaction
of a rule instantiation is then defined as d(RΦ(a)) = 1 − RΦ(a), and the po-
tential of the corresponding clique as φ(A = a) = exp(−wΦ · (d(RΦ(a)))p),
where p ∈ {1, 2} provides a choice of the type of penalty imposed on violated
rules.

3.2.4 Imperatively Defined Factor Graphs

Par-factor graphs can also be specified using programming languages, as il-
lustrated by FACTORIE, an implementation of imperatively defined factor
graphs (McCallum et al, 2009). FACTORIE uses Scala (Odersky et al, 2004),
a strongly-typed programming language that combines object-oriented and
functional elements. Both par-RVs and par-factors correspond to classes pro-
grammed by the user, and RVs to objects instantiating their par-RV’s class.
Each par-factor Φ = (A, φ,C) is defined as a factor template class that takes the
par-RVs A as arguments. The instantiation constraints C are provided as a set
of unroll methods in the class, one for each par-RV, which construct the RVs
instantiating the par-RV vector and their connections, and thus build (or “un-
roll”) the instantiated factor graph. Random variables can have arbitrary do-
mains. The potential function φ is defined as φ(A = a) = exp(

∑
i∈I λifi(a)),

where λi are parameters and fi are sufficient statistics which are implemented
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e1 e2

m1 m2 m3

(a)

e1 e2

m1 m2 m3

(b)

Fig. 8: FACTORIE example with three mentions and two entities: (a)
full factor graph, and (b) factor graph as constructed by the unroll

methods for assignment m1.entity = e1, m2.entity = e1, m3.entity = e2,
e1.mentions = {m1, m2}, e2.mentions = {m3}.

via a statistics method in the factor template class and thus can have arbi-
trary form. Consider a simplified version of an example from (McCallum et al,
2009). We are given a set of mentions of objects in the form of strings, and a set
of entities, i.e., actual objects. The task is to determine for each mention which
entity it refers to (and conversely, for each entity, the set of its mentions). The
idea is to set up a factor graph with one factor for each pair of a mention m
and an entity e (as shown in Figure 8a), where the statistics fi(e,m) are 1 if
m is assigned to e and m and e are similar (see below), and 0 otherwise. The
definition of this factor graph uses two par-RV classes Entity and Mention.
An instance m of a Mention par-RV is identified by a string m.string, e.g.,
“Elizabeth Smith” or “Liz S.”, and takes an Entity as its value m.entity.
An instance e of an Entity par-RV corresponds to an actual entity in the
domain of interest, e.g., a person. Its value e.mentions is a set of Mentions,
and it additionally contains a canonical representation e.canonical, which
is a unique string computed from the set e.mentions. Given an assignment
to all instances of these par-RVs, the following factor template generates the
factor graph.

val corefTemplate = new Template[Mention, Entity]{

def unroll1(m:Mention) = Factor(m, m.entity)

def unroll2(e:Entity) = for (mention <- e.mentions)

yield Factor(mention, e)

def statistics(m:Mention,e:Entity) =

Bool(distance(m.string,e.canonical)<0.5)

}

More specifically, it sets up a pairwise factor for each mention and its assigned
entity (via the unroll1 method) as well as for each entity and every mention
in its set (via the unroll2 method), as in the example in Figure 8b. This
template is programmed to take advantage of the fact that the factor graph is
always evaluated for a given assignment during inference, and that all factors
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not related to this assignment evaluate to one and thus can be omitted. For
each factor in the unrolled graph, the statistics method produces sufficient
statistics by comparing the distance between the mention and the canonical
representation of the entity to a threshold.

3.2.5 Discussion

The SRL representations discussed so far all define undirected graphical mod-
els with log-linear potential functions, but differ in the type of modeling free-
dom they provide. In MLNs and PSL, the feature function takes a fixed form
based on the logical structure of a par-factor, whereas RMNs and FACTO-
RIE let the user define the feature function. The probabilistic interpretation
is centered on different aspects of the domain in different models, with RMNs
focusing on values of attributes, MLNs and PSL on relations between objects,
and FACTORIE on objects themselves. MLNs and PSL further differ in the
logical structure of par-factors they allow, with PSL’s more restricted language
allowing for more efficient inference, as we will discuss in Section 4.

3.3 Directed SRL Representations

This subsection describes directed lifted graphical models, which all define
Bayesian networks when instantiated. We again cover representations using
different relational languages: definite clauses and logic programming (Bayesian
logic programs), formulas expressing functions (relational Bayesian networks),
a relational database representation with object-oriented elements (PRMs),
and a generative model in a language close to first-order logic (BLOG).

As all these models define Bayesian networks, a par-factor Φ = (A, φ,C)
always has the following form. The par-RVs A can be split into a child par-
RV C and a vector of parent par-RVs Pa(C), and the potential function φ
represents a conditional probability distribution (CPD) for any instance C of
C given instances Pa(C) of Pa(C), that is,

φ(C = c,Pa(C) = pa) = P (C = c | Pa(C) = pa).

As a consequence, the expression in Equation (7) is automatically normalized,
i.e., Z = 1. When specifying directed SRL models, care must be taken to
ensure that their instantiations result in cycle-free directed graphs. However,
as discussed by Jaeger (2002, Section 3.2.1), this problem is undecidable in
general, and guarantees exist only for restricted cases.

Furthermore, when specifying directed models at the par-factor level, the
number of parents of a node in an instantiated factor graph might depend
on the particular grounding. Consider for instance a conditional probability
P (X|Y1, Z1, . . . , Yn, Zn), where X depends on all instances of Y and Z re-
lated to X in a specific way, and n will thus depend on the grounding. We
therefore need a way to specify this distribution for arbitrary n. Two com-
mon ways to do this are aggregates (Perlich and Provost, 2003) and combining
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rules (e.g., Jaeger, 1997). Aggregates first aggregate the values of all parent
variables of the same type into a single value, and provide the conditional
probability of the child variable given these aggregated values. That is, in the
example, one would use two aggregate functions aggY and aggZ , together with
a conditional probability distribution P ′, to define P (X|Y1, Z1, . . . , Yn, Zn) =
P ′(X|aggY (Y1, . . . , Yn), aggZ(Z1, . . . , Zn)). An approach based on combining
rules, on the other hand, would specify the conditional probability distribution
for the child variable for n = 1 as well as a function that computes a single
conditional distribution from n conditional distributions. In the example, one
would thus use a distribution P ′′(X|Y,Z) and a combining function f , and
define P (X|Y1, Z1, . . . , Yn, Zn) = f(P ′′(X|Y1, Z1), . . . , P ′′(X|Yn, Zn)). For ex-
ample, one commonly used combining function is the noisy-or:

P (X = x|Y1 = y1, . . . , Yn = yn) = 1−
∏

1≤i≤n

(1− P (X = x|Yi = yi))

The idea behind noisy-or is that each of the Yi = yi can independently cause
X = x with a certain probability, and X thus takes value x if at least one such
causation happens.

3.3.1 Bayesian Logic Programs

In Bayesian logic programs (BLPs) (Kersting and De Raedt, 2001), par-RVs
are expressed as logical atoms. The dependency structure of a par-RV C on
its parents Pa(C) is represented as a definite clause, called a Bayesian clause,
in which the head consists of C, the body consists of the conjunction of the
atoms in Pa(C), and the implication is replaced by a | to indicate probabilistic
dependency. Kersting and De Raedt (2001) give an example from genetics
(originally by Friedman et al (1999a)), in which the blood type bt(X) of person
X depends on inheritance of a single gene, one copy of which, mc(X) is inherited
from X’s mother, while the other copy pc(X) is inherited from her father. In
BLPs, this dependency is expressed as

bt(X)|mc(X), pc(X)

Random variables correspond to ground atoms and are not restricted to eval-
uating to just true or false, but can have arbitrary finite domains. In the
example, the RVs obtained by grounding mc(X) and pc(X) can take on values
from {a, b, 0}, whereas those for bt(X) can take on values from {a, b, ab, 0}.
Par-factors are formed by coupling a Bayesian clause with a potential func-
tion φ in the form of a CPD over values for an instance of C given values for
instances of Pa(C), e.g., as a conditional probability table. The constraints C
on instantiations can be modelled via logical predicates. For instance,

mc(X)|mother(Y, X), mc(Y), pc(Y)

models the dependency of the gene inherited from the mother on the mother’s
own genes, where mother is a logical predicate. When instantiating this par-
factor, only groundings for which mother(Y, X) holds are considered. In BLPs,
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the full power of the logic programming language Prolog can be used to define
logical predicates.

Using BLPs, we next give an example of the use of combining rules. Fol-
lowing the example from (Kersting and De Raedt, 2001), suppose that in the
genetics domain we have the following two rules:

bt(X)|mc(X)

bt(X)|pc(X)

Each of these rules comes with a CPD, the first one giving P (bt(X)|mc(X)),
and the second one P (bt(X)|pc(X)). However, what we need is a single CPD
for predicting bt(X) given both of these quantities. Using noisy-or as the com-
bining rule, we get P (bt(X)|mc(X), pc(X)) = 1 − (1 − P (bt(X)|mc(X))) · (1 −
P (bt(X)|pc(X))).

3.3.2 Relational Bayesian Networks

Relational Bayesian networks (RBNs) (Jaeger, 2002) also represent par-RVs
as logical atoms, whose groundings take values from finite domains. In the
most basic form, an RBN contains one par-factor ΦR for each predicate R in
its vocabulary, where the child par-RV C is an atom of R with variables as
arguments. Recursive dependencies between par-RVs with the same predicate
are possible if acyclicity of the resulting Bayesian network is ensured. The po-
tential φR is represented as a probability formula in a syntax that bears a close
correspondence to first-order logic and is evaluated as a function of the values
of the instances of Pa(C). The par-RVs A are implicitly given through these
probability formulas, which are recursively defined to consist of (i) constants
in [0, 1], which in the extreme cases of 1 and 0 correspond to true and false

respectively; (ii) indicator functions, which take tuples of logical variables as
arguments and correspond to relational atoms; (iii) convex combinations of
formulas, which correspond to Boolean operations on formulas; and, finally,
(iv) combination functions, such as mean, that combine the values of several
formulas.

To illustrate, consider a slight adaptation of an example by Jaeger (2002),
where the task is, given the pedigree of an individual x, to reason about the
values of two relations, FA(x) and MA(x), which indicate whether x has inherited
a dominant allele A from its father and mother respectively. The probability
formula for FA(X) may be:

φFA(X) = φknownFather(X) · φA−from−father(X) + (1− φknownFather(X)) · θ

Here, φknownFather(X) evaluates to 1 if the father of X is included in the pedigree
and to 0 otherwise; φA−from−father(X) is defined as the mean over the FA and MA

values of X’s father: φA−from−father(X) = mean{FA(Y), MA(Y)|father(Y, X)}; and
θ is a learnable parameter that can take values in the range [0, 1]. Sub-formulas
in the form of indicator functions can be used to specify the instantiation
constraints C, as is the case with the φknownFather(X) sub-formula above, and
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Fig. 9: PRM example

through selection formulas in combination functions, as father(Y, X) for mean
above.

3.3.3 Probabilistic Relational Models

Probabilistic relational models (PRMs) (Koller and Pfeffer, 1998; Getoor et al,
2007) take a relational database perspective and use an object-oriented lan-
guage, akin to that described in Section 2.2.5, to specify the schema of a
relational domain. Both entities and relations are represented as classes, each
of which comes with a set of descriptive attributes and a set of reference slots
through which classes refer to one another. Internally, each reference slot is
defined by an arbitrary SQL query. Using an example by Getoor et al (2007),
consider a document citation domain that consists of two classes (illustrated
in Figure 9), the Paper class with attributes Paper.Topic and Paper.Words,
and the Cites class, which establishes a citation relation between two papers
via reference slots Cites.Cited and Cites.Citing. In the most basic form of
PRMs, the values of reference slots are assumed given, and the par-RVs cor-
respond to descriptive attributes of objects, either of the object itself, or of
objects related to it through chains of reference slots. Constraints C on par-RV
instantiations can be expressed with the SQL queries defining the reference
slots. By starting from specific objects, par-RVs are grounded to RVs that take
values from the finite domain of the corresponding attribute. Each par-factor
is defined by specifying the par-RVs corresponding to the child node C and
the parent nodes Pa(C) respectively, and providing a conditional probability
distribution for C given Pa(C). For example, to express that a paper P’s
topic probabilistically depends on the topics of the papers P cites as well as
those that cite P, one could construct a par-factor where C = P.Topic, and
Pa(C) = {P.Citing−1.Cited.Topic, P.Cited−1.Citing.Topic}. Thus, in Fig-
ure 9, the first parent par-RV starts from the paper P, first follows all Citing
arrows backwards to find all instances of Cites where P is the citing paper,
and then for all those follows the Cited arrow forwards to find all cited papers,
whose Topic attributes provide the RVs instantiating the par-RV. Clearly, the
number of these instantiations can vary across different papers. Like many
other directed SRL models, PRMs use aggregation functions to combine the
values of such sets of RVs into a single value.
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While we have focused here on uncertainty over the attributes of relations,
more general forms of PRMs that allow for uncertainty over the values of
reference slots have been considered as well, focusing on two situations: when
the number of links is known, but not the specific objects that are linked
(reference uncertainty), as well as when neither the number of links nor the
linked objects are known (existence uncertainty). In the above example, this
makes it possible to express uncertainty over the values of reference slots, e.g.,
the paper appearing as Cites.Citing in a given instance of Cites, or over
the existence of entire tuples of the Cites relation. We refer to Getoor et al
(2007) for the technical details on these extensions.

3.3.4 BLOG

BLOG, short for Bayesian LOGic, is a typed relational language for specifying
generative models (Milch et al, 2005). Par-RVs in BLOG are represented as
first-order logic atoms, RVs as ground atoms. Par-factors are given by depen-
dency statements of the form

C if C then ∼ φ(Pa(C)),

where the if C then part can be omitted if there are no constraints and φ
is implemented as a Java class. Such a statement expresses that the value
of an instantiation of the child par-RV C, respecting C, is drawn from the
probability distribution φ given the values of the corresponding instances of
the parent par-RVs Pa(C). For example, Milch et al (2005) model the task of
entity resolution in BLOG. They view the set of citations of a given paper as
being drawn uniformly at random from the set of known publications. This is
captured by the following BLOG statement:

PubCited(C) ∼ Uniform({Publication P}).

Similarly, the citation string is viewed as being generated by a string corruption
model CitDistrib as a function of the authors and title of the paper being
cited:

CitString(C) ∼ CitDistrib(TitleString(C), AuthorString(C)).

A unique characteristic of BLOG is that it does not assume that the set of
entities in a domain is known in advance and instead allows reasoning over
variable numbers of entities. This functionality is supported by allowing num-
ber statements, in which the number of entities of a given type is drawn from
a given distribution. For example, in the entity resolution task, the number of
researchers #Researcher is not known in advance and is instead drawn from
a user-defined prior distribution:

#Researcher ∼ NumResearchersPrior().
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3.3.5 Discussion

The directed SRL representations discussed here all define par-factor graphs
whose potential functions correspond to conditional distributions of one child
par-RV given a set of parent par-RVs. PRMs take an object-oriented view,
where par-RVs correspond to attributes of objects. BLPs, RBNs and BLOG
all use logical atoms as par-RVs, but differ in how they specify connections
between these: logic programming (BLPs), probability formulas with a syntax
close to first-order logic (RBNs), or a relational language for generative models
that allows uncertainty over the number of objects (BLOG). To deal with
flexible numbers of parents, BLPs and RBNs use combining functions, PRMs
use aggregates, and BLOG allows arbitrary code to define the CPD.

3.4 Directed versus Undirected Models

The SRL representations discussed so far define either a directed or an undi-
rected graphical model when instantiated. These representations have relative
advantages and disadvantages, analogous to those of directed and undirected
graphical models, cf. (Koller and Friedman, 2009). In terms of representation,
directed models are appropriate when one needs to express a causal dependence
or a generative process as in BLOG. On the other hand, undirected models are
better suited to domains containing cyclic dependencies on the ground level,
such as a person’s smoking habits depending on the smoking habits of his
or her friends (and vice versa). In undirected models, the par-factors shared
by a single par-RV can naturally be combined by simply multiplying them,
though this might not be the best combining rule for the problem at hand,
and can actually make the distribution dependent on the domain size (Jain,
2011). Directed models, on the other hand, rely on separately defined combin-
ing functions, such as noisy-or, or aggregation functions, such as count, mode,
max, and average. The use of combining functions in directed models allows
for multiple independent causes of a given par-RV to be learned separately
and then combined at prediction time (Heckerman and Breese, 1994), whereas
this kind of causal independence cannot be exploited in undirected models.
Finally, because factors in directed models represent conditional probability
distributions, they are automatically normalized, which simplifies inference. In
contrast, in undirected models one needs to find efficient ways of computing,
or estimating, the normalization constant Z (in Equation (7)). We will discuss
issues pertaining to learning directed and undirected SRL models from data
in Section 5.

Hybrid SRL representations combine the positive aspects of directed and
undirected models. One such model is relational dependency networks (RDNs)
(Neville and Jensen, 2007), which can be viewed as a lifted dependency network
model. Dependency networks (Heckerman et al, 2000) are similar to Bayesian
networks in that, for each variable X, they contain a factor φX that represents
the conditional probability distribution of X given its parents, or immediate
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neighbors, Pa(X). Unlike Bayesian networks, however, dependency networks
can contain cycles and do not necessarily represent a coherent joint probability
distribution. As in Markov networks, the set of parents Pa(X) of a variable X
render it independent of all other variables in the network. Marginals are recov-
ered via sampling, e.g., Gibbs sampling (see Section 4). RDNs lift dependency
networks to relational domains. Par-factors in RDNs are similar to those in
PRMs and are represented as conditional probability distributions over values
for a child par-RV C and the set of its parents Pa(C). Analogous to dependency
networks, however, cycles are allowed and thus, as in dependency networks,
RDNs do not always represent a consistent joint probability distribution.

There has also been an effort to unify directed and undirected models by
providing an algorithm that converts a given directed model to an equivalent
MLN (Natarajan et al, 2010). In this way, one can model multiple causes
of the same variable independently while taking advantage of the variety of
inference algorithms that have been implemented for MLNs. Bridging directed
and undirected models is important also as a step towards representations that
combine both directed and undirected sub-components.

4 Inference

As in graphical models, the two key inference tasks in lifted graphical models
are marginal inference, cf. Equation (3), and MPE inference, cf. Equation (4).
The former computes the probability of an assignment to a subset of the
random variables, marginalizing out the remaining ones, and thus summarizes
all states corresponding to that assignment; the latter finds the most likely
joint assignment to a set of unknowns, given a set of observations, and thus
focuses on a single strong explanation for the observations (the MAP state).

We first describe lifted inference, that is, inference approaches that op-
erate on the first-order level (Section 4.1), followed by a brief overview of
techniques that ground the model and perform propositional inference (Sec-
tion 4.2). While most techniques use one specific probabilistic language, often
with Boolean random variables, the par-factor view taken here suggests that
much of the existing work could be generalized and applied in other settings as
well. In Section 4.3, we conclude with pointers to a variety of recent approaches
in the field.

4.1 Lifted Inference

Lifted graphical models compactly specify graphical models by grouping fac-
tors with identical structure and parameters into par-factors. Grounding such
models to perform inference on a propositional model (cf. Section 4.2) therefore
results in potentially large amounts of repeated computations. Lifted inference
avoids this undesired blow-up by taking advantage of these groups during infer-
ence. The literature often distinguishes between top-down approaches, which
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start from a lifted model and avoid grounding par-factors as much as possible,
and bottom-up approaches, which start from a propositional model and detect
repeated structure. The earliest lifted techniques are based on recognizing
identical structure that requires the same computations, and performing the
computation only the first time, caching the results and subsequently reusing
them (Koller and Pfeffer, 1997; Pfeffer et al, 1999). Lifted inference is receiv-
ing much attention recently, and a detailed account of all developments is
beyond the scope of this survey. In the following, we therefore illustrate key
ideas focusing on two prominent lines of work that lift popular propositional
techniques, namely variable elimination (cf. Sec. 2.2.3) and belief propagation
(cf. Sec. 2.2.4). We provide further pointers to the literature in Section 4.3.

4.1.1 Lifted Variable Elimination

First-order variable elimination (FOVE) was introduced by Poole (2003) and
later significantly extended in a series of works (de Salvo Braz et al, 2005, 2006;
Milch et al, 2008; Apsel and Brafman, 2011; Taghipour et al, 2012, 2013b).
As in ordinary variable elimination (VE), cf. Section 2.2.3, the goal of FOVE
is to obtain the marginal distribution over a set of random variables X by
summing out the values of the remaining variables Y , that is, to compute

P (X = x) =
∑
Y =y

∏
Φi∈F

∏
A∈I(Φi)

φi(yA,xA).

However, where VE sums out or eliminates one random variable at a time,
FOVE sums out an entire group of random variables (grounding the same
par-RV) simultaneously. We briefly discuss the main elimination operators
below. For more details, we refer the reader to the above papers; de Salvo
Braz et al (2007) provide a unified treatment, and Kisyński and Poole (2009a)
an excellent basic introduction with examples.

FOVE makes two assumptions on the form of the par-factor graph, each
of which can be achieved by using a corresponding auxiliary operation first.
The splitting operation (Poole, 2003) ensures that the par-factors in the model
are shattered (de Salvo Braz et al, 2005). Two par-factors Φ1 and Φ2 are shat-
tered if the corresponding ground factors are either over the same sets of
random variables or over completely disjoint ones, that is, I(Φ1) = I(Φ2) or
I(Φ1) ∩ I(Φ2) = ∅, where I(Φ) = {A | A instance of A under C}. For in-
stance, ({p(a, X), q(X)}, φ1, ∅) and ({p(b, X), q(X)}, φ2, ∅) are shattered, as they
do not share any grounding of their par-RVs; but ({p(X, a), q(a)}, φ3, ∅) and
({p(b, X), q(X)}, φ2, ∅) are not, as {p(b, a), q(a)} instantiates both. Intuitively,
this condition ensures that the same reasoning steps will apply to all of the
factors resulting from grounding a given par-factor. The fusion operation (de
Salvo Braz et al, 2005) ensures that the par-RV Y to be eliminated only par-
ticipates in one par-factor in the model. It essentially multiplies together all
par-factors that depend on Y. To facilitate the remainder of this discussion, let
Y be the par-RV to be eliminated, and Φ = (A, φ,C) the single par-factor that
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depends on Y, that is, Y ∈ A. Thus, we have to compute a sum of products,
where the sum is over all value assignments y to all random variables Yj ob-
tained from Y, and the products are over the instantiations of this par-factor:∑

Y1=y1

· · ·
∑

Ym=ym

∏
A∈I(Φ)

φ(y,xA\{Y })

The first elimination operation, inversion elimination (Poole, 2003; de
Salvo Braz et al, 2005), simplifies this sum of products to a product of sums.
It only applies if there is a one-to-one correspondence between the groundings
of Y and those of A, in which case the sum is∑

Y1=y1

· · ·
∑

Ym=ym

m∏
i=1

φ(yi,xAi\{Y }).

This condition is violated when the logical variables that appear in Y are
different from the logical variables in A. For example, inversion elimination
would not work for Y = q(X) and A = {q(X), p(X, Y)}, because Y does not
depend on the logical variable Y, while A does and thus can have multiple
groundings for each grounding of X. If the condition is satisfied, each random
variable Yi only appears once in the product, and the sum is thus equal to the
product of sums

m∏
i=1

∑
Yi=yi

φ(yi,xAi\{Y }).

Each sum now only ranges over the possible truth assignments to a single Yi
(e.g., true or false), rather than over full truth assignments to all instances
of Y.

Another elimination operation is counting elimination (de Salvo Braz et al,
2005), which is based on the insight that frequently the factors (Ai, φ) result-
ing from grounding Φ form a few large groups with identical members. These
groups can be easily identified by considering the possible truth assignments
a to the random variables Ai. For each such truth assignment, counting elim-
ination counts the number of Ais that would have that truth assignment.
Then only one factor from each group needs to be evaluated and the result
exponentiated to the total number of factors in that group. For instance, with
Boolean values ai, we have φ(x, a1) · . . . · φ(x, an) = φ(x, true)ct · φ(x, false)cf ,
where ct and cf are the numbers of ais that are true and false, respectively.
Thus, instead of computing the product for exponentially many assignments
a1, . . . , an, it suffices to consider linearly many cases (ct, cf ). For counting
elimination to be efficient, the choice of grounding substitutions for any of the
par-RVs in A may not constrain the choice of substitutions for the other ones.
Although we have described counting elimination in the context of eliminating
the groundings of just one par-RV Y, in fact it can be used to eliminate a set
of par-RVs.

Elimination with counting formulas (Milch et al, 2008) extends this idea
to par-RVs within a par-factor. Such par-RVs are exchangeable if φ(A) is a
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function of the number of random variables A ∈ A with a particular value
rather than the precise identity of these variables. The extended algorithm
is called C-FOVE. Apsel and Brafman (2011) consider counting formulas for
joins of atoms, whereas Taghipour et al (2012, 2013b) generalize C-FOVE by
decoupling its operators from the language used to specify the constraints on
par-RV groundings, resulting in an algorithm, GC-FOVE, that provides more
flexibility in grouping computations.

As we discussed in Section 3.4, directed models may require aggregation
over a set of values. This may happen, for example, when there is a par-factor
in which the parent par-RVs contain logical variables that do not appear in
the child par-RV. In order to aggregate over such variables in a lifted fashion,
Kisyński and Poole (2009b) introduced aggregation par-factors and defined a
procedure via which an aggregation par-factor is converted to a product of
two par-factors, one of which involves a counting formula. In this way, they
are able to handle aggregation using C-FOVE.

FOVE and its extensions are examples of top-down approaches that start
from a par-factor graph. The ideas underlying lifted variable elimination can
also be exploited bottom-up, that is, starting from a factor graph. Such an
approach has been proposed by Sen et al (2008a), who first discover shared
factors using bisimulation, and then only perform shared computations once.
Bisimulation simulates the operation of VE without actually computing factor
values. Larger groups and thus additional speedup can be achieved by approx-
imate inference, where factors are grouped based on similar computations or
similar values rather than based on equality (Sen et al, 2009). Another exam-
ple of a bottom-up approach is the BAM algorithm (Mihalkova and Richard-
son, 2009), which clusters RVs in the factor graph based on the similarity of
their neighborhoods and performs computations only for one representative
per cluster.

4.1.2 Lifted Belief Propagation

Lifted BP algorithms (Jaimovich et al, 2007; Singla and Domingos, 2008; Ker-
sting et al, 2009; de Salvo Braz et al, 2009) proceed in two stages. In the first
stage, the grounded factor graph F is compressed into a so-called template
graph T , in which super-nodes represent groups of variable or factor nodes
that send and receive the same messages during BP, similarly to what hap-
pens in the approach of Sen et al (2008a) discussed above. Two super-nodes
are connected by a super-edge if any of their respective members in F are
connected by an edge, and the weight of the super-edge equals the number of
ordinary edges it represents. In the second step, a modified version version of
BP is performed on the template graph T . For the sake of understanding, we
discuss a simplified version of this algorithm here. The message sent from a
variable super-node X to a factor super-node φ is given by

µX→φ(X) = µφ→X(X)w(X,φ)−1 ·
∏

φ′∈n(X)\{φ}

µφ′→X(X)w(X,φ′) (8)
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In the above expression, w(X, φ) is the weight of the super-edge between
X and φ, and n(X) is the set of neighbors of X in the template graph.
This message thus simulates the one sent from a variable to a factor in the
ground case, as given in Equation (5), in that it summarizes the messages
received from all factors except the receiving one. Messages from factor super-
nodes to variable super-nodes are identical to those in the ground case, and
the (unnormalized) result for each variable X is obtained by multiplying all
incoming messages exponentiated with the weight of the corresponding super-
edge.

Next, we describe how the template factor graph is constructed. The first
algorithm was given by Jaimovich et al (2007). This algorithm targets the
scenario when no evidence is provided and is based on the insight that in
this case, factor nodes and variable nodes can be grouped into types such
that two factor/variable nodes are of the same type if they are groundings of
the same par-factor/parameterized variable. The lack of evidence ensures that
the grounded factor graph is completely symmetrical and any two nodes of the
same type have identical local neighborhoods, i.e., they have the same numbers
of neighbors of each type. As a result, using induction on the iterations of
loopy BP, it can be seen that all nodes of the same type send and receive
identical messages. As pointed out by Jaimovich et al, the main limitation
of this algorithm is that it requires that no evidence be provided, and so it
is mostly useful during learning when the data likelihood in the absence of
evidence is computed.

Singla and Domingos (2008) built upon the algorithm of Jaimovich et al
(2007) and introduced lifted BP for the general case when evidence is provided.
In the absence of evidence, their algorithm reduces to that of Jaimovich et al.
In this case, the construction of the template graph is a bit more complex
and proceeds in stages that simulate BP to determine how the propagation
of the evidence affects the types of messages that get sent. Initially, there are
three variable super-nodes containing the true, false, and unknown variables
respectively. In subsequent iterations, super-nodes are continually refined as
follows. First, factor super-nodes are further separated into types such that the
factor nodes of each type are functions of the same set of variable super-nodes.
Then the variable super-nodes are refined such that variable nodes have the
same types if they participate in the same numbers of factor super-nodes of
each type. This process is guaranteed to converge, at which point the minimal
(i.e., least granular) template factor graph is obtained.

Kersting et al (2009) provide a generalized and simplified description of
Singla and Domingos (2008)’s algorithm, casting it in terms of general factor
graphs, rather than factor graphs defined by probabilistic logical languages,
as was done by Singla and Domingos. Finally, de Salvo Braz et al (2009) have
extended lifted BP for the any-time case, combining the approach of Singla
and Domingos (2008) with that of Mooij and Kappen (2008).
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4.2 Inference on the Instantiated Model

Much of today’s work on inference in lifted graphical models focuses on lifted
inference. However, especially in the presence of evidence which breaks the
symmetries in the model, how to efficiently perform propositional inference in
the graphical model obtained by instantiating a lifted graphical model is still
of interest. In this section, we discuss ways to reduce the size of the ground
model in the first step, which can be combined with any existing inference
technique for graphical models, as well as a number of techniques that operate
on representations different from a factor graph for the instantiated model, and
potentially interleave instantiation and inference to further improve efficiency.

4.2.1 Knowledge-Based Model Construction

Knowledge-based model construction (KBMC) is one of the earliest techniques
used to efficiently instantiate a given SRL model (Wellman et al, 1992). It dy-
namically instantiates the model only to the extent necessary to answer a
particular query of interest. KBMC has been adapted to both directed (e.g.,
Koller and Pfeffer, 1997; Pfeffer et al, 1999; Getoor et al, 2002) and undi-
rected models (e.g., Richardson and Domingos, 2006). Application of KBMC
in these and other frameworks exploits the conditional independence properties
implied by the factor graph structure of the instantiated model; in particular,
the fact that in answering a query about a set of random variables X, one only
needs to reason about variables that are not rendered conditionally indepen-
dent of X given the values of observed variables. KBMC can also exploit the
structure of par-factor definitions and the evidence, as done in the FROG al-
gorithm (Shavlik and Natarajan, 2009) for MLNs. FROG discards groundings
of clauses that are always satisfied because one of their atoms is true according
to the evidence, which often results in significantly smaller ground models.

4.2.2 MPE Inference

MPE inference essentially is an optimization task, which, if represented suit-
ably, can be solved using existing methods (e.g., Taskar, 2004; Wainwright
et al, 2005; Yanover et al, 2006; Koller and Friedman, 2009). For instance,
given evidence Y = y, the MPE inference task

argmaxX=x

∏
φ∈F

φ(xφ,yφ)

on a graphical model with discrete random variables can be represented as an
integer linear program with a variable vxφ for each factor φ and each assignment
x to the non-evidence random variables X. These vxφ are restricted to take
values 0 or 1, and the program contains constraints requiring that (1) for each
factor φ exactly one of the vxφ is set to 1 at any given time and (2) the values of
vxφ1

and vxφ2
where φ1 and φ2 share variables are consistent. Intuitively, those
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variables “choose” a consistent assignment to the random variables across
all factors. Let V be the set of all such variables vxφ . MPE inference is then
equivalent to solving

argmaxV
∑
φ∈F ,x

vxφ · log φ(xφ,yφ)

subject to those constraints. While solving this integer linear program is still
NP-hard in general, it is tractable for certain classes of Markov networks. For
instance, Taskar et al (2004) have shown that for associative Markov networks
– that is, Markov networks whose par-factors favor the same values for RVs
in the same clique – it is tractable for binary random variables, and can be
closely approximated for the non-binary case.

This view of MPE inference as optimization has been applied for both
MLNs (Riedel, 2008) and PSL (Broecheler et al, 2010), but using language-
specific representations that take advantage of the structure of the potential
functions. For both languages, MPE inference maximizes a weighted sum of
feature functions that are defined in terms of logical formulas over ground
atoms; namely, the truth value in case of MLNs, and the distance to satisfac-
tion for PSL. The optimization problem contains a variable for each ground
atom with unknown truth value, and a variable for each feature function, that
is, each ground formula. Its objective function replaces the feature functions
in the weighted sum by the corresponding variables, and its constraints relate
the values of feature function variables to the value of the underlying formula
in terms of the atom variables and the truth values of evidence atoms.

In the case of MLNs, all variables take values 0 or 1, and the constraints
express that the value of feature variables has to be equal to the value of
the underlying logical formula. Noessner et al (2013) introduce an improved
formulation that aims at simplifying inference in the integer linear program
by decreasing the size of the program and better exposing its symmetries.
Mladenov et al (2012) exploit the link between MPE inference and linear pro-
gramming on the lifted level and apply the resulting lifted linear programming
approach to MLNs.

For Boolean random variables, an alternative way to view the optimization
is that of finding a joint assignment to the par-RV instantiations that maxi-
mizes the weight of a set of logical formulas, such as the ground instantiations
of the clauses in an MLN. In other words, performing MPE inference in such
models is equivalent to solving a weighted satisfiability problem using, e.g, the
MaxWalkSat algorithm (Kautz et al, 1997), as discussed by Richardson and
Domingos (2006). The memory efficiency of this approach can be improved
using the general technique of lazy inference, that is, by only maintaining ac-
tive RVs and active formula instantiations in memory, as done in the LazySAT
algorithm (Singla and Domingos, 2006). Initially, all RVs are set to false, and
the set of active RVs consists of all RVs participating in formula instantiations
that are not satisfied by the initial assignment of false values. A formula
instantiation is activated if it can be made unsatisfied by flipping the value of
zero or more active RVs. Thus the initial set of active formula instantiations
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consists of those activated by the initially active RVs. The algorithm then car-
ries on with the iterations of MaxWalkSat, activating RVs when their value
gets flipped and then activating the relevant rule instantiations.

In the case of PSL, variables take values from [0, 1] and the weights are
constrained to be nonnegative. The inference objective is to minimize the
negative of the weighted sum of feature functions, which measure the distance
to satisfaction of the underlying logical rules. Since the features are convex and
the weights are nonnegative, we thus obtain a convex, rather than discrete,
optimization task for inference, which is more efficient to solve. Bach et al
(2012, 2013) introduce efficient consensus-optimization algorithms to perform
inference in this setting.

In practice, in addition to using lazy inference (as discussed above), these
approaches do not construct the program for the entire instantiated model up
front, but instead interleave program construction and solving, an approach
also known as cutting plane inference due to its relation to cutting plane algo-
rithms developed in the operations research community. The key observation
here is that many formula instantiations are satisfied by setting par-RV in-
stantiations to a default value of false (for MLNs) or 0 (for PSL), and that
constraints corresponding to such satisfied formulas do not influence the so-
lution of the optimization task. Inference therefore starts from an assignment
of default values to all variables, and then iterates between adding constraints
for all formulas not satisfied by the current assignment, and solving the re-
sulting extended task to obtain the next assignment. This process continues
until a solution that satisfies all constraints is found. In the worst case, it may
be necessary to consider the full set of constraints; however, in practice, it is
often possible to find a solution based on a small subset only.

4.2.3 Approximate Inference by Sampling

As mentioned in Section 2.2.2, exact inference in graphical models is in-
tractable in general. An alternative approach is to perform approximate in-
ference, based on sampling. Sampling uses the probabilistic model to inde-
pendently draw a large number of value assignments (samples) to all random
variables. It estimates marginal distributions as the relative frequencies of the
values occurring among those samples. Sampling from a Bayesian network
respecting the order of random variables from parents to children is straight-
forward; sampling from a Markov network is much more difficult. Furthermore,
the presence of evidence imposes additional constraints on the form of useful
samples. Markov chain Monte Carlo (MCMC) sampling algorithms form a
popular class of approaches addressing these issues. Rather than generating
each sample from scratch directly using the graphical model, MCMC algo-
rithms draw a sequence of samples by making random modifications to the
current sample based on a so-called proposal distribution, which is typically
easier to evaluate than the actual distribution of interest. We refer to Bishop
(2006, Ch. 11) for a general introduction to sampling and MCMC, and to
Koller and Friedman (2009, Ch. 12) for one focused on graphical models.
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Gibbs sampling is an example of an MCMC algorithm that has been
used with both directed and undirected lifted graphical models, e.g., FACTO-
RIE (McCallum et al, 2009), BLOG (Arora et al, 2010) and MLNs (Richardson
and Domingos, 2006). Gibbs sampling repeatedly iterates over all random vari-
ables whose values are not fixed by the given evidence, in each step sampling
a new value for the current variable V conditioned on the values of all other
random variables in the current sample. Due to the independencies encoded
by the factor graph, this is equivalent to sampling the value of V conditioned
on its Markov blanket, that is, all random variables co-occurring with V in
a factor. For many types of graphical models, this distribution can effectively
be computed from the neighborhood of V in the factor graph. While Gibbs
sampling converges to the target distribution under fairly general conditions
(Tierney, 1994), those do not always hold in lifted graphical models. One case
where Gibbs sampling can converge to incorrect results is in the presence of
deterministic or near-deterministic dependencies, as these can prevent sam-
pling from leaving a certain region in the space of all variable assignments.
This problem can be avoided for instance by jointly sampling new values for
blocks, or groups, of variables with closely coordinated assignments. An alter-
native solution is slice sampling (Damien et al, 1999). Slice sampling introduces
auxiliary variables to identify “slices” that “cut” across the modes of the dis-
tribution. It then alternates between sampling the auxiliary variables given
the current values of the original ones, thus identifying a slice, and sampling
the original random variables uniformly from the current slice. The MC-SAT
algorithm for MLNs is based on slice sampling (Poon and Domingos, 2006).
It introduces an auxiliary random variable for each ground clause, and thus
each factor, in the MLN. A slice corresponds to a set of ground clauses that
have to be satisfied by the next sampled truth value assignment, where clauses
with larger weights are more likely to be included in this set. MC-SAT samples
(nearly) uniformly from this slice using the SampleSAT algorithm (Wei et al,
2004). Again, lazy inference can be used to restrict the set of random variables
that need to be considered explicitly (Poon et al, 2008).

An orthogonal concern is the efficiency of sampling. One approach to speed-
ing up sampling is to use memoization (Pfeffer, 2007), in which values of past
samples are stored and reused, instead of generating a new sample. If care is
taken to keep reuses independent of one another, the accuracy of sampling can
be improved by allowing the sampler to draw a larger number of samples in
the allotted time.

A variety of other approaches to and aspects of sampling for lifted graph-
ical models have been discussed in the literature, e.g., a Metropolis-Hastings
algorithm for BLOG (Milch and Russell, 2006), an MCMC scheme to compute
marginals in PSL (Broecheler and Getoor, 2010), or FACTORIE’s support for
user-defined MCMC proposal distributions (McCallum et al, 2009). A number
of recent works combine lifted inference and sampling (Niepert, 2012; Venu-
gopal and Gogate, 2012; Gogate et al, 2012; Niepert, 2013).
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4.3 Discussion

This section has surveyed inference techniques on the instantiated model as
well as some of the basic approaches to lifted inference. An overview of lifted
inference from the perspective of top-down vs bottom-up inference is given by
Kersting (2012), and an in-depth tutorial by Kersting et al (2011). Lifted infer-
ence is a very active area of research, and there are many recent publications
that have not been discussed here, including work on knowledge compilation
(Van den Broeck et al, 2011; Van den Broeck and Davis, 2012; Van den Broeck
et al, 2014), message passing (Ahmadi et al, 2011; Hadiji et al, 2011; Kerst-
ing et al, 2010a), online inference (Nath and Domingos, 2010), lifted inference
for models with continuous variables and Kalman filtering (Choi et al, 2010,
2011a), variational inference (Choi and Amir, 2012; Bui et al, 2013), lifted
inference with evidence (Bui et al, 2012; Van den Broeck and Davis, 2012;
Van den Broeck and Darwiche, 2013), work that examines the completeness
of lifted inference formalisms (Van den Broeck, 2011; Taghipour et al, 2013c;
Jaeger and Van den Broeck, 2012; Jaeger, 2014), and many other advanced
topics, e.g., (Kiddon and Domingos, 2011; Gogate and Domingos, 2011; Choi
et al, 2011b; Gomes and Santos Costa, 2012; Jha et al, 2010; Van den Broeck
et al, 2012; Hadiji and Kersting, 2013; Taghipour et al, 2013a; Sarkhel et al,
2014).

5 Learning

The task of learning a lifted graphical model in the form of a par-factor graph
can be formalized as follows: given a set of training examples D, that is, as-
signments x to random variables X, a hypothesis space H in the form of a
set of par-factor graphs over X, and a scoring function score(h,D) for h ∈H
(typically based on the probability of the training examples), find a hypoth-
esis h∗ ∈ H that maximizes the score, i.e., h∗ = arg maxh∈H score(h,D).
Analogous to learning of graphical models, learning of par-factor graphs can
be decomposed into parameter learning and structure learning. In parameter
learning, the hypothesis space consists of different parameters for a par-factor
graph with given dependency structure, i.e., where all sets of par-RVs Ai par-
ticipating together in par-factors, their instantiation constraints Ci, and the
general form of potential functions φi are known, but values for the param-
eters of these φi have to be learned. The goal of structure learning, on the
other hand, is to discover both the dependency structure of the model and
the parameters of the potential functions, that is, the hypothesis space H no
longer uniquely determines the Ai and Ci. As we will discuss in more detail
below, structure learning is often cast as a heuristic search through the space
of possible structures, cf. (De Raedt and Kersting, 2010).

Directed and undirected models pose different challenges to learning al-
gorithms. In the case of fully observed data, parameter learning has a closed
form solution for directed models, but requires optimization in the undirected
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case. When learning the structure of directed models, care has to be taken to
ensure acyclicity. Furthermore, structure learning approaches typically learn
parameters for many structures with only small local differences, in which case
high efficiency gains can be achieved by adapting the parameters of previous
structures locally instead of re-learning all parameters from scratch. However,
this is only possible if the scoring function is decomposable. This is often the
case for directed models, where only the CPDs of nodes whose sets of par-
ents have changed need to be updated. In undirected graphical models, on the
other hand, all parameters are connected via the normalization constant Z,
and even local changes therefore require adjusting the parameters of the entire
model.

5.1 Parameter Learning

Algorithms for parameter learning of graphical models can directly be ex-
tended for parameter learning of lifted graphical models. This extension is
based on the fact that, as discussed in Section 3.1, an instantiated par-factor
graph is simply a factor graph in which subsets of the factors, namely the ones
that are instantiations of the same par-factor, have tied parameters. Thus, in
its most basic form, parameter learning in par-factor graphs can be reduced to
parameter learning in factor graphs by forcing factors that are instantiations
of the same par-factor to have their parameters tied.

We now provide a brief overview of basic approaches to parameter learn-
ing in graphical models (see Koller and Friedman (2009) for more details) and
discuss how they can be easily extended to allow for learning with tied pa-
rameters. We follow the common distinction between generative approaches
such as maximum likelihood or Bayesian parameter estimation, whose aim is
to approximate the joint distribution well, and discriminative approaches such
as max-margin methods, whose aim is to optimize the conditional probability
P (X|Y ) used to predict values of X given evidence Y .

For generative models, the simplest case is that of fully observed training
data D. In this case, each training example in D is a complete assignment x
to all random variables X in the factor graph 〈X,F 〉, where examples are
assumed to be independent and identically distributed (i.i.d.). We denote the
vector of learnable parameters in the factors of F by λ. Maximum likelihood
parameter estimation (MLE) uses the likelihood of observing the training data
D as the scoring function score(h,D), i.e., we are interested in finding param-
eter values λ∗ such that

λ∗ = arg max
λ

∏
x∈D

Pλ(X = x). (9)

We use subscript λ here to emphasize the dependency of P on the parameter
values. For directed models, e.g., Bayesian networks, parameter learning means
learning a conditional probability distribution (CPD) for each node given its
parents. Thus, in the simplest scenario, λ consists of the parameters of a set
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of conditional probability tables, one for each node. The maximum likelihood
estimate for the entry of a node C taking on a value c, given that its parents
Pa(C) have values pa, is found simply by calculating the proportion of time
that configuration of values is observed in D:

PMLE
D (C = c|Pa(C) = pa) =

countD(C = c,Pa(C) = pa)∑
c′ countD(C = c′,Pa(C) = pa)

(10)

In undirected models, the MLE parameters cannot be calculated in closed
form, and one needs to use gradient ascent or some other optimization pro-
cedure. Supposing that, as introduced in Section 2.2.1, our representation is
a log-linear model with one parameter per factor, then the gradient of the
data log-likelihood with respect to the parameter λi of a potential function
φi(X) = exp(λi · fi(X)) is given by:

∂ log
∏
x∈D Pλ(X = x)

∂λi
=

∑
x∈D

(fi(xi)− Eλ[fi(yi)]) (11)

Here, xi are the values in x for the variables participating in φi, and Eλ[fi(yi)]
is the expected value of fi according to the current estimate for all parame-
ters λ.

In the case where the data is not fully observed, that is, each example
in D assigns values to a subset of the random variables X only, the stan-
dard approach is to resort to an expectation-maximization (EM) algorithm,
which requires to perform inference during parameter learning to estimate
unobserved values.

We next describe how Equations (10) and (11) are extended to work with
tied parameters coming from par-factors. This is done by computing counts
and function values on the level of par-factors rather than factors, that is,
by aggregating them over all factors that instantiate the same par-factor. In
the relational setting, the training data D often consists of a single “mega-
example” that assigns values x to the random variables X in a factor graph
〈X,F 〉 grounding the par-factor graph of interest for a specific domain. Be-
cause of parameter tying, such an example typically contains many, often inter-
dependent, instances of each par-factor, which parameter learning approaches
treat as i.i.d. data.

In directed models, factors with tied parameters share their CPDs. Thus,
in this case, in Equation (10) counts are computed not just for a single node,
or instantiation of a par-factor, but for all nodes that are instantiations of
that par-factor and thus share their CPD. Let C be that set of nodes, and let
Pa(C) be the set of parents of node C. Then for all C ∈ C, Equation (10)
becomes:

PMLE
D (C = c|Pa(C) = pa) =

∑
C∈C countD(C = c,Pa(C) = pa)∑

C∈C
∑
c′ countD(C = c′,Pa(C) = pa)

(12)
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In the undirected case, instead of a separate instance of Equation (11) for
each factor, we now get one gradient for each par-factor Φi’s parameter λi,
summarizing the ones for all its instantiations:

∂ log
∏
x∈D Pλ(X = x)

∂λi
=

∑
A∈I(Φi)

∑
x∈D

(fi(xA)− Eλ[fi(yA)]) (13)

As before, I(Φi) is the set of factors that are instantiations of Φi, and xA are
the values for the random variables A in an instantiation of par-factor Φi.

While the above discussion focused on one particular scoring function, that
of maximum likelihood estimation, in practice other scoring functions exist.
For example, rather than optimizing the data likelihood, one can significantly
improve efficiency by instead optimizing the pseudo-likelihood (Besag, 1975).
To do so, the joint probability Pλ(X = x) in Equation (9) is replaced by∏
X∈X Pλ(X = x|XMB = xMB), the product of the conditional probability

of each RV X given the variables XMB in its Markov blanket, that is, all RVs
appearing together with X in some factor. While using the pseudo-likelihood
avoids the computational complexity of dealing with the partition function,
the price to be paid for the increased efficiency is that it may no longer be
possible to learn a model that covers all dependencies. Again, in the case of
lifted models, all instantiations of the ith par-factor contribute to the sufficient
statistics used to estimate λi.

An alternative to maximum (pseudo-)likelihood that is used, for instance,
to reduce overfitting, is Bayesian learning, where one imposes a prior probabil-
ity distribution over the parameters that are learned, thus defining a joint dis-
tribution over parameters and data (e.g., Heckerman, 1999; Koller and Fried-
man, 2009).

Generative approaches to parameter learning in lifted graphical models
have been developed for instance for PRMs, both with respect to a maxi-
mum likelihood criterion and a Bayesian criterion (Getoor, 2002), for PSL
(Broecheler et al, 2010; Bach et al, 2013), and for MLNs, where several ap-
proaches to improve efficiency of gradient descent parameter learning methods
have been considered (Lowd and Domingos, 2007).

Discriminative approaches to parameter learning are motivated by the fact
that probabilistic models are often used to predict the values of one set of
random variables X given the values of the remaining variables Y , in which
case it is sufficient to optimize the conditional probability P (X|Y ) rather
than the joint probability P (X,Y ). Specifically, max-margin approaches as
introduced by Taskar et al (2003) learn parameters that maximize the margin
between the probability of the correct assignment x given y and that of other
assignments x′. For lifted graphical models, discriminative parameter learning
has been considered e.g., for MLNs (Singla and Domingos, 2005; Huynh and
Mooney, 2009, 2011) and PSL (Bach et al, 2013).

One issue that arises when learning the parameters of an SRL model as
described above is computing the sufficient statistics, e.g., the counts in Equa-
tion (12) and the sums in Equation (13). Models that are based on a database
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Algorithm 1 Structure Learning Algorithm (instantiation of procedures in
lines 2, 3, 5 and 8 determines exact behavior)

Input: Hypothesis space H (describing par-factor graphs), training data D (assignments
to random variables), scoring function score(·,D)

Output: A par-factor graph h ∈H
Procedure:
1: G ← ∅; h← ∅;
2: while continue(G, h,H, score(·,D)) do
3: R←refineCandidates(G,H)
4: for each r ∈R do
5: r ←learnParameters(r, score(·,D))
6: end for
7: h← arg maxh′∈R∪{h} score(h′,D)
8: G ←select(R, score(·,D))
9: end while

10: return h

representation can take advantage of database operations to compute suffi-
cient statistics efficiently. For example, in PRMs, the computation of sufficient
statistics is cast as the construction of an appropriate view of the data, on
which simple database queries are run to obtain the statistics (Getoor, 2002).
Caching is used to achieve further speed-ups.

Another issue for parameter learning in undirected SRL models is com-
puting the expectations in Equation (13), which is intractable in general. This
issue has been addressed for instance by using sampling to approximate the ex-
pectations (Richardson and Domingos, 2006), by using the values in the MAP
state as expectations (Singla and Domingos, 2005; Broecheler et al, 2010), or
by using the pseudo-likelihood as discussed above.

Using lifted inference for parameter learning is challenging, as evidence
often breaks the symmetries in the model and makes lifted techniques fall
back on propositional techniques. Ahmadi et al (2012) address this problem
by decomposing the factor graph into possibly overlapping pieces, exploiting
symmetries for lifted inference locally on the level of pieces rather than glob-
ally. Their online learning method then iterates over these pieces to update
parameters. Ahmadi et al (2013) further scale up this approach by extending
it to a MapReduce setting.

5.2 Structure Learning

The goal of structure learning is to find the skeleton of dependencies and
regularities that make up the set of par-factors. Structure learning in SRL
builds heavily on corresponding work in graphical models and inductive logic
programming (ILP). Algorithm 1 shows a schematic structure learning proce-
dure that realizes a search for the best par-factor graph h in the space H of
possible par-factor graphs according to the scoring function score(·,D) on the
training data set D. As for parameter learning, the data D often consists of a
single, interconnected “mega-example” containing many ground instances of
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the par-RVs of interest and their relations. The schematic algorithm relies on a
number of procedures (names in Caps) that need to be instantiated to obtain
a concrete algorithm. The algorithm proceeds in iterations until a stopping
criterion is met (line 2, procedure continue). In each iteration, a set R of
new candidate par-factor graph structures is derived from the current set of
par-factor graphs G (line 3, procedure refineCandidates), and for each of
those candidate structures, parameters are learned (line 5, procedure learn-
Parameters). Then, the current best hypothesis h is determined (line 7), and
a subset of R is selected to be passed on to the next round (line 8, procedure
select). Finally, the best scoring model is returned. In principle, this algo-
rithm could be instantiated to perform a complete search of the hypothesis
space H, but typically, some form of greedy heuristic search will be realized.
refineCandidates specifies how new par-factor graph structures are derived
from a given one. Initially, this will typically produce trivial par-factors, e.g.,
ones consisting of single par-RVs, while later on, it will perform several kinds
of simple incremental changes, such as the addition or removal of a par-RV
in a par-factor. Algorithm 1 is directly analogous to approaches for learning
in graphical models, such as those by Della Pietra et al (1997) and Heck-
erman (1999), as well as to approaches developed in ILP, such as the foil
algorithm (Quinlan, 1990). Variants of this algorithm, adapted to the partic-
ular SRL representation, have been used by several authors. We will illustrate
such techniques for both directed and undirected models below, focusing on
PRMs and MLNs as representatives of the two classes, respectively. One of
the difficulties of learning the structure of par-factor graphs via search, as per-
formed in Algorithm 1, is that the space over possible structures is very large
and contains many local maxima and plateaus. Two ways to address these
challenges are to modify the type of search performed (roughly, the select
procedure), or to restrict the hypothesis space H to be searched using some
form of pre-processing.

Directed models An instantiation of the general algorithm that learns PRMs
is described by Getoor (2002). In this case, the refineCandidates method
checks for acyclicity in the resulting structure and employs classic revision
operators for directed graphical models, such as adding, deleting, or reversing
an edge. In addition to a greedy hill-climbing algorithm that always prefers
high-scoring structures over lower-scoring ones, Getoor (2002) presents a ran-
domized technique with a simulated annealing flavor where at the beginning
of learning the structure search procedure takes random steps with some prob-
ability p and greedy steps with probability 1− p. As learning progresses, p is
decreased, gradually steering learning away from random choices.

One approach to reduce the hypothesis space, used for PRM learning, is
to constrain the set of potential parents of each par-RV X (Friedman et al,
1999a). This algorithm proceeds in stages, in each stage k forming the set of
potential parents of X as those par-RVs that can be reached from X through
a chain of relations of length at most k. Structure learning at stage k is then
constrained to search only over those potential parent sets. The algorithm
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further constrains potential parent candidates by requiring that they “add
value” beyond what is already captured in the currently learned set of parents.
More specifically, the set of potential parents of par-RV X at stage k consists
of the parents in the learned structure from stage k − 1, and any par-RVs
reachable through relation chains of length at most k that lead to a higher
value in a specially designed score measure. This algorithm directly ports
scoring functions that were developed for an analogous learning technique
for Bayesian networks (Friedman et al, 1999b).

Undirected models For the case of undirected models, Kok and Domingos
(2005) introduced a version of the search-based structure learning algorithm
for MLNs. Their algorithm proceeds in iterations, each time searching for the
best clause to add to the model. Searching can be performed using one of
two possible strategies. The first one, beam search, keeps the best k clause
candidates at each step of the search. On the other hand, with the second
one, shortest-first search, the algorithm tries to find the best clauses of length
i before it moves on to length i + 1. Candidate clauses in this algorithm are
scored using the weighted pseudo log-likelihood measure, an adaptation of the
pseudo log-likelihood that weighs the pseudo likelihood of each grounded atom
by 1 over the number of groundings of its predicate to prevent predicates with
larger arity from dominating the expression.

Iterative local search techniques (Lourenço et al, 2003) alternate between
two types of search steps, either moving towards a locally optimal solution,
or perturbing the current solution in order to escape from local optima. This
approach has been used to avoid local maxima when learning MLNs in a dis-
criminative setting, where the focus is on predicting a specific target predicate
given evidence on all other predicates (Biba et al, 2008).

An alternative approach is to search for structures of increasing complex-
ity, at each stage using the structures found at the previous stage to constrain
the search space. Such a strategy was employed by Khosravi et al (2010) for
learning MLN structure in domains that contain many descriptive attributes.
Their approach, which is similar to the technique employed to constrain the
search space in PRMs (Friedman et al, 1999a) described above, distinguishes
between two types of tables – attribute tables that describe a single entity
type, and relationship tables that describe relationships between entities. The
algorithm, called MBN, then proceeds in three stages. In the first stage depen-
dencies local to attribute tables are learned. In the second stage, dependencies
over a join of an attribute table and a relationship table are learned, but the
search space is constrained by requiring that all dependencies local to the at-
tribute table found in the first stage remain the same. Finally, in the third
stage dependencies over a join of two relationship tables, joined with relevant
attribute tables, are learned, and the search space is similarly constrained. An
orthogonal characteristic of MBN is that, although the goal is to learn an undi-
rected SRL model, dependencies are learned using a Bayesian network learner.
The directed structures are then converted to undirected ones by “moralizing”
the graphs (i.e., by adding edges between all pairs of parents of the same node
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and dropping edge directions). The advantage of this approach is that struc-
ture learning in directed models is significantly faster than structure learning
in undirected models due to the decomposability of the score, which allows it
to be updated locally, only in parts of the structure that have been modified,
and thus scoring of candidate structures is more efficient. Schulte (2011) intro-
duces a pseudo-likelihood measure for directed par-factor graphs and shows
that the algorithm of Khosravi et al (2010) can be seen as optimizing this
measure. This algorithm has also been combined with a decision tree learner
to obtain more compact models (Khosravi et al, 2012), and generalized into a
learning framework that organizes the search space as a lattice (Schulte and
Khosravi, 2012). The latter also incorporates learning recursive dependencies
in the directed model as introduced by Schulte et al (2012).

A series of algorithms have been developed to restrict the hypothesis space
for MLN structure learning. The first in the series was BUSL (Mihalkova
and Mooney, 2007), which is based on the observation that, once an MLN is
instantiated into a Markov network, the instantiations of each clause of the
MLN define a set of identically structured cliques in the Markov network.
BUSL inverts this process of instantiation and constrains the search space by
first inducing lifted templates for such cliques by learning a so-called Markov
network template, an undirected graph of dependencies whose nodes are not
ordinary variables but par-RVs. Then clause search is constrained to the cliques
of this Markov network template. Markov network templates are learned by
constructing, from the perspective of each predicate, a table in which there is
a row for each possible instantiation of the predicate and a column for possible
par-RVs, with the value of a cell i, j being set to 1 if the data contains a true
instantiation of the jth par-RV such that variable substitutions are consistent
with the ith predicate instantiation. The Markov network template is learned
from this table by any Markov network learner.

A further MLN learner that is based on constraining the search space is
the LHL algorithm (Kok and Domingos, 2009). LHL limits the set of clause
candidates that are considered by using relational pathfinding (Richards and
Mooney, 1992) to focus on more promising ones. Developed in the ILP com-
munity, relational pathfinding searches for clauses by tracing paths across the
true instantiations of relations in the data. Figure 10 gives an example in
which the clause Credits(C, A) ∧ Credits(C, B) ⇒ WorkedFor(A, B) is learned
by tracing the thick-lined path between brando and coppola and variablizing
appropriately. However, because in real-world relational domains the search
space over relational paths may be very large, a crucial aspect of LHL is that
it does not perform relational pathfinding over the original relational graph
of the data but over a so-called lifted hypergraph, which is formed by clus-
tering the entities in the domain via an agglomerative clustering procedure,
itself implemented as an MLN. Intuitively, entities are clustered together if
they tend to participate in the same kinds of relations with entities from other
clusters. Structure search is then limited only to clauses that can be derived
as relational paths in the lifted hypergraph.
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brando coppola

godFather rainMaker

WorkedFor

CreditsCreditsCredits

Fig. 10: Example of relational pathfinding.

Kok and Domingos (2010) have proposed constraining the search space
by identifying so-called structural motifs, which capture commonly occurring
patterns among densely connected entities in the domain. The resulting algo-
rithm, called LSM, proceeds by first identifying motifs and then searching for
clauses by performing relational pathfinding within them. To discover motifs,
LSM starts from an entity i in the relational graph and performs a series of
random walks. Entities that are reachable within a thresholded hitting time
and the hyperedges among them are included in the motif and the paths via
which they are reachable from i are recorded. Next, the entities included in
the motif are clustered by their hitting times into groups of potentially sym-
metrical nodes. The nodes within each group are then further clustered in an
agglomerative manner by the similarity of distributions over paths via which
they are reachable from i. This process results in a lifted hypergraph, anal-
ogous to the one produced by LHL; however, whereas in LHL nodes were
clustered based on their close neighborhood in the relational graph, here they
are clustered based on their longer-range connections to other nodes. Motifs
are extracted from the lifted hypergraphs via depth-first search.

Structure learning techniques that do not follow the search-based pattern
of Algorithm 1 have been developed as well. One technique developed in the
graphical models community that has been extended to par-factor graphs is
that of structure selection through appropriate regularization. In this approach
(Lee et al, 2006; Lowd and Davis, 2010), a large number of factors of a Markov
network are evaluated at once by training parameters over them and using the
L1 norm as a regularizer (as opposed to the typically used L2 norm). Since
the L1 norm imposes a strong penalty on smaller parameters, its effect is that
it forces more parameters to 0, which are then pruned from the model. Huynh
and Mooney (2008) extended this technique for structure learning of MLNs by
first using Aleph (Srinivasan, 2001), an off-the-shelf ILP learner, to generate
a large set of potential par-factors (in this case, first-order clauses), and then
performed L1-regularized parameter learning over this set.

Khot et al (2011) have extended the functional gradient boosting approach
to learning relational dependency networks of Natarajan et al (2012) to MLNs.
In contrast to previous approaches, they learn structure and parameters simul-
taneously, thus avoiding the cost of repeated parameter estimation. Essentially,
for each par-RV to be queried, the approach learns a set of non-recursive Horn
clauses with that par-RV in the head. This is done through a sequence of
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functional gradient steps, each of which adds clauses based on the point-wise
gradients of the training examples, that is, the ground instances of the respec-
tive par-RV, in the current model.

5.2.1 Structure Revision and Transfer Learning

Our discussion so far has focused on learning structure from scratch. While
approaches based on search, such as Algorithm 1, can be easily adapted to
perform revision by initializing them with a given structure, some work in the
area has also focused on approaches specifically designed for structure revision
and transfer learning. For example, Paes et al (2005) introduced an approach
for revision of BLPs based on work in theory revision in the ILP community,
where the goal is, given an initial theory, to minimally modify it such that
it becomes consistent with a set of examples. The BLP revision algorithm
follows the methodology of the FORTE theory revision system (Richards and
Mooney, 1995), first generating revision points in places where the given set
of rules fails and next focusing the search for revisions to ones that could
address the discovered revision points. The FORTE methodology was also
followed in TAMAR, an MLN transfer learning system (Mihalkova et al, 2007),
which generates revision points on MLN clauses by performing inference and
observing the ways in which the given clauses fail. TAMAR was designed for
transfer learning (e.g., Banerjee et al, 2006), where the goal is to first map,
or translate, the given structure from the representation of a source domain
to that of a target and then to revise it. Thus, in addition to the revision
module, it also contains a mapping module, which discovers the best mapping
of the source predicates to the target ones. The problem of mapping a source
structure to a target domain was also considered in the constrained setting
where data in the target domain is extremely scarce (Mihalkova and Mooney,
2009).

Rather than taking a structure learned specifically for a source domain and
trying to adapt it to a target domain of interest, an alternative approach to
transfer learning is to extract general knowledge in the source domain that
can then be applied to a variety of target domains. This is the approach taken
in DTM (Davis and Domingos, 2009), which uses the source data to learn
general clique templates expressed as second-order Markov logic clauses, i.e.,
with quantification both over the predicates and the variables. During this
step, care is taken to ensure that the learned clique templates capture general
regularities and are not likely to be specific to the source domain. Then, in
the target domain DTM allows for several possible mechanisms for using the
clique templates to define the hypothesis space.

5.2.2 Learning Causal Models

Learning the causal structure in a domain is an important type of structure
learning task that is receiving growing attention (Pearl, 2009), but is notori-
ously difficult given observational data only. As many have argued, there are
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advantages to building models that are causal, which, assuming that one has
the right set of variables, tend to be simpler models (e.g., Pearl, 1988; Heck-
erman, 1999; Koller and Friedman, 2009). Many SRL models are based on
rules, which makes it tempting to interpret the direction of these rules as the
direction of causal influence. However, as in the propositional case, structure
learning approaches are typically based on correlation rather than causation
between variables, and therefore do not necessarily justify this interpretation.
Specifically, knowing the joint distribution, or correlations, between random
variables is often not sufficient to make decisions or take actions that result in
changes to other variables of interest in the domain. This additionally requires
knowledge about the underlying mechanisms of the domain, that is, about
which variable values, if changed, will change the values of which other vari-
ables. More generally, if one wishes to make scientific discoveries, this requires
discovering and understanding the underlying causal processes in the domain.

Despite its growing importance, learning causal models has so far received
little attention in the SRL community. Recent examples are the algorithms of
Maier et al (2010, 2013), who build upon principles that infer the directionality
of rules used for causal discovery in propositional domains by Spirtes et al
(2001), and the work by Rattigan et al (2011), who introduce a strategy to
factor out common causes by grouping entities with a common neighbor in a
relational structure.

5.3 Discussion

This section has surveyed learning for lifted graphical models. While there are
important differences in approaches to learning in directed versus undirected
models, there are many important commonalities as well. Parameter learning
often requires the ability to perform inference, as such, it relies on methods
for inference in lifted graphical models. Structure learning often involves some
form of search over potential rules or factors in some systematic yet tractable
manner. Beyond the work described here, examples of recent work in structure
learning include (Lowd, 2012; Nath and Richardson, 2012; Khot et al, 2013).

6 Conclusion

Multi-relational data, in which entities of different types engage in a rich set
of relations, is ubiquitous in many domains of current interest, such as social
networks, computational biology, web and social media applications, natural
language processing, automatic knowledge acquisition, and many more. Fur-
thermore, for applications to be successful, modeling and reasoning needs to
simultaneously address the inherent uncertainty often present in such domains
as well as their relational structure. Learning in such settings is much more
challenging as well, as the classical assumption of i.i.d. data no longer applies.
Instead, we face highly structured but noisy data, often in the form of a single,
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large, interconnected example or network. While SRL provides powerful tools
to address this challenge, it is still a young field with many open questions,
concerning specific inference and learning settings as discussed throughout this
paper, but also fundamental questions on the theory of learning in this set-
ting and the guarantees that can or cannot be achieved. In this survey, we
have provided a synthesis of the current state of the field by outlining the
main ideas underlying representation, inference and learning of lifted graph-
ical models. We have reviewed a general form for a lifted graphical model, a
par-factor graph, and shown how a number of existing statistical relational rep-
resentations map to this formalism. We have discussed inference algorithms,
including lifted inference algorithms, that efficiently compute the answers to
probabilistic queries. We have also reviewed work in learning lifted graphical
models from data. It is our belief that the need for statistical relational models
(whether they go by that name or another) will grow in the coming decades,
as we are inundated with structured and unstructured data, including noisy
relational data automatically extracted from text and noisy information from
sensor networks, and with the need to reason effectively with this data. We ex-
pect to see further applications of SRL methods in such domains, and we hope
that this synthesis of ideas from many different research groups will provide
an accessible starting point for new researchers in this expanding field.
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Kisyński J, Poole D (2009a) Constraint processing in lifted probabilistic in-
ference. In: Proceedings of the 25th Conference on Uncertainty in Artificial
Intelligence (UAI-09)
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