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Abstract 

Risk-taking behaviour is a key component of several psychiatric disorders and could influence 

lifestyle choices such as smoking, alcohol use and diet. As a phenotype, risk-taking behaviour 

therefore fits within a Research Domain Criteria (RDoC) approach, whereby identifying genetic 

determinants of this trait has the potential to improve our understanding across different psychiatric 

disorders. Here we report a genome wide association study in 116 255 UK Biobank participants who 

responded yes/no to the question �Would you consider yourself a risk-taker?� Risk-takers 

(compared to controls) were more likely to be men, smokers and have a history of psychiatric 

disorder. Genetic loci associated with risk-taking behaviour were identified on chromosomes 3 

(rs13084531) and 6 (rs9379971). The effects of both lead SNPs were comparable between men and 

women. The chromosome 3 locus highlights CADM2, previously implicated in cognitive and 

executive functions, but the chromosome 6 locus is challenging to interpret due to the complexity of 

the HLA region. Risk-taking behaviour shared significant genetic risk with schizophrenia, bipolar 

disorder, attention deficit hyperactivity disorder and post-traumatic stress disorder, as well as with 

smoking and total obesity. Despite being based on only a single question, this study furthers our 

understanding of the biology of risk-taking behaviour, a trait which has a major impact on a range of 

common physical and mental health disorders.  
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Introduction 

Risk-taking behaviour is an important aspect of several psychiatric disorders, including attention 

deficit hyperactivity disorder (ADHD) 1, 2 and bipolar disorder (BD) 3, as well as problem behaviours 

such as smoking and drug and alcohol misuse 4, 5.  The link between risk-taking behaviour and 

schizophrenia (SCZ) is more complex, with difficulties in conditional reasoning 6, problems with 

delayed gratification and poor impulse control occurring alongside more conservative risk 

assessment 7. Physical health problems such as obesity might also be considered to be related to 

increased propensity towards risk-taking: obesity includes aspects of aberrant reward processing, 

response inhibition and decision-making 8 .  The Research Domain Criteria (RDoC) approach suggests 

that studying dimensional psychopathological traits (rather than discrete diagnostic categories), as 

well as relevant traits across the whole spectrum (�normal� through to pathological) of the 

population may be a more useful strategy for identifying biology which cuts across psychiatric 

diagnoses 9.  In this respect, risk-taking behaviour is an important phenotype for investigation. It may 

also be useful for investigating the overlap between psychiatric disorders and conditions such as 

obesity and smoking. 

To date, an association between a locus on chromosome 3 and risk-taking behaviour has been 

published 10, 11, but no genome-wide genetic study with a primary focus on risk-taking behaviour has 

been conducted. GWAS of related phenotypes, such as impulsivity and behavioural disinhibition, 

have so far been underpowered for detecting associations at a genome-wide level.  Here we conduct 

a primary GWAS of self-reported risk-taking behaviour in 116 255 participants from the UK Biobank 

cohort. We use expression quantitative trait loci analysis to highlight plausible candidate genes and 

we assess the extent to which there is a genetic correlation between risk-taking and several mental 

and physical health disorders, including ADHD, SCZ, BD, major depressive disorder (MDD), anxiety, 

post-traumatic stress disorder (PTSD), smoking status (ever smoker), lifetime cannabis use, fluid 

intelligence, years of education,  obesity and alcohol use disorder.  
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Materials and methods 

Sample 

UK Biobank is a large population cohort which aims to investigate a diverse range of factors 

influencing risk of diseases which are common in middle and older age.  Between 2006 and 2010, 

more than 502 000 participants (age range from 40 and 69 years) were recruited from 22 centres 

across the UK 12.  Comprehensive baseline assessments included social circumstances, cognitive 

abilities, lifestyle and measures of physical health status.  The present study used the first release of 

genetic data on approximately one third of the UK Biobank cohort.  In order to maximise 

homogeneity, we included only participants of (self-reported) white United Kingdom (UK) ancestry. 

Informed consent was obtained by UK Biobank from all participants. This study was carried out 

under the generic approval from the NHS National Research Ethics Service (approval letter dated 13 

May 2016, Ref 16/NW/0274) and under UK Biobank approval for application #6553 �Genome-wide 

association studies of mental health� (PI Daniel Smith). 

Genotyping, imputation and quality control 

The first release of genotypic data from UK Biobank, in June 2015, included 152 729 UK Biobank 

participants.  Samples were genotyped with either the Affymetrix UK Biobank Axiom array (Santa 

Clara, CA, USA; approximately 67%) or the Affymetrix UK BiLEVE Axiom array (33%), which share at 

least 95% of content.  Autosomal data only were available. 

Imputation of the data has previously been described in the UK Biobank interim release 

documentation 13.  In brief, SNPs were excluded prior to imputation if they were multiallelic or had 

minor allele frequency (MAF) <1%.  A modified version of SHAPEIT2 was used for phasing and 

IMPUTE2 (implemented on a C++ platform) was used for the imputation 14, 15.  A merged reference 

panel of 87 696 888 biallelic variants on 12 570 haplotypes constituted from the 1000 Genomes 
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Phase 3 and UK10K haplotype panels 16 was used as the basis for the imputation.  Imputed variants 

with MAF <0.001% were filtered out of the dataset used for subsequent analysis. 

The Wellcome Trust Centre for Human Genetics applied stringent quality control, as described in UK 

Biobank documentation 17, before release of the genotypic data set.  UK Biobank genomic analysis 

exclusions were applied (Biobank Data Dictionary item #22010). Participants were excluded from 

analyses due to relatedness (#22012: genetic relatedness factor; one member of each set of 

individuals with KING-estimated kinship coefficient >0.0442 was removed at random), sex mismatch 

(reported compared to genetic) (#22001: genetic sex), non-Caucasian ancestry (#22006: ethnic 

grouping; self-reported and based on principal component (PC) analysis of genetic data), and quality 

control failure (#22050: UK BiLEVE Affymetrix quality control for samples and #22051: UK BiLEVE 

genotype quality control for samples). SNPs were removed due to deviation from Hardy�Weinberg 

equilibrium at P<1x106, MAF <0.01, imputation quality score <0.4 and >10% missingness in the 

sample after excluding genotype calls made with <90% posterior probability.  

The second release of genetic data from the UK Biobank (July 2017) included a further 349 935 

samples. Genotyping platforms, quality control and pre-imputation procedures were consistent with 

the first data release. Imputation of genotypes at additional SNP loci for all participants (n=502 664) 

was carried out using the Haplotype Reference Consortium reference panel, and post-imputation 

quality control was consistent with that of the first data release. 

Risk-taking phenotype 

The baseline assessment (2006-2010) of UK Biobank participants included the question �Would you 

describe yourself as someone who takes risks?" (data field #2040), to which participants replied yes 

or no. Individuals who responded �yes� to the risk-taking question are here referred to as �risk-takers� 

and those who responded �no� are here referred to as not risk-takers or controls. For a subset of 

participants, the same question (�Would you describe yourself as someone who takes risks?") was 

asked at follow-up (2012-2013), enabling an assessment of response consistency.  
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Discovery analyses 

A total of 116 255 individuals and 8 781 003 variants (first data release) were included in the 

discovery analysis. 29 703 participants were classed as risk-takers and 86 552 were controls.  

Association analysis was conducted in PLINK 18 using logistic regression, assuming a model of 

additive allelic effects and models were adjusted for sex, age, genotyping array, and the first 8 

genetic PCs (Biobank Data Dictionary items #22009.01 to #22009.08) to control for hidden 

population stratification. The threshold for GWAS significance was set at p<5x10-8. Demographics of 

the discovery sample set are presented in Table 1. For quality control purposes, a GWAS of the 

individuals included in the discovery analysis was run with the second release genetic data (HPC-

imputed) and using the updated genetic exclusions and covariates used. Using the updated 

exclusions resulted in a slight increase in the number of individuals included in the analysis: n= 117 

755, of whom n= 30 013 were risk-takers and n= 87 742 were non risk-takers. The sex distribution 

and demographics of this dataset were comparable with those included in the discovery analysis 

based on the first genetic release (Supplementary Table 1). 

Replication analysis 

Approximately half of the participants only present in the second data release were included in the 

replication analysis, thus after quality control and recommended exclusions, 139 474 white British 

participants were included. Demographics of the replication sample set are presented in Table 1 

The lead SNPs in the CADM2 and Chr6 loci were selected for replication. Consistent with the 

discovery analysis, replication analysis was conducted in PLINK 18 using logistic regression, assuming 

a model of additive allelic effects and models were adjusted for sex, age, genotyping array, and the 

first 8 genetic PCs (PCA1-8) to control for hidden population stratification. As two SNP were 

investigated, p<0.025 was considered significant. Results were meta-analysed using METAL 19. 

Polygenic risk scores 
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In order to assess the variance explained by the genetic loci identified here, polygenic risk scores 

(PRS) were calculated in the remaining 50% of the second genetic data release. Demographics of the 

PRS sample set are presented in Table 1. After quality control and recommended exclusions, 139 731 

white British participants were included in this analysis.  

PRS were calculated using p-value thresholds of p<1x10-5, p<0.001 and p<0.05. A score of only GWAS 

significant SNPs was not conducted, as a 2 SNP score (after linkage disequilibrium (LD)-based 

pruning) would be underpowered. LD pruning was performed via PLINK on a random sample of 

10,000 individuals using an r2>0.05 in a 250kb window. The SNP with the lowest p-value was 

selected from each of the LD-clumped SNP sets.  Where 2 or more SNPs from a set had the same p-

value, the SNP with the larger beta coefficient was used.  The scores were calculated in PLINK to 

produce a per-allele weighted score (without mean imputation). Using STATA, deciles of scores were 

computed and modelling the effect of the PRS on risk was adjusted for age, sex, chip and PCs 1-8.  

Data mining 

SNPs associated (at genome-wide significance) with risk-taking behaviour were further investigated 

for influence on nearby genes (Variant Effect Predictor, VEP 20) and for reported associations with 

relevant traits (GWAS catalogue 21).  Descriptions and known or predicted functions of implicated 

genes were compiled (GeneCards www.genecards.org and Entrez Gene 

www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene) and global patterns of tissue expression were 

assessed (GTEx 22).  Exploratory analyses of the impact of significant loci on the expression of nearby 

genes were carried out using the GTEx Portal �Test your own eQTL� function 22. In the 13 brain 

regions available in the GTEx dataset, we tested for associations between rs13084531 and CADM2

expression, and between rs9379971 and the expression of POM121L2, PRSS16, ZNF204P and 

VN1R10P.      

SNP heritability and genetic correlation analyses 

Linkage Disequilibrium Score Regression (LDSR) 23 was applied to the GWAS summary statistics to 

estimate the risk-taking SNP heritability (h2
SNP).  LDSR was also used to assess genetic correlations 
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between risk-taking behaviour and relevant psychiatric, cognitive and behavioural traits, namely: 

ADHD, schizophrenia, BD, MDD, anxiety, PTSD, smoking status (ever smoked), lifetime cannabis use, 

fluid intelligence, years of education, obesity and alcohol use disorder.   

The importance of the brain in regulation of obesity has been demonstrated 24, with reward circuits 

being implicated. The prevalence of obesity in psychiatric illness and the possibility of over-eating 

being a problem behaviour suggest that there might be a connection between obesity and risk-

taking behaviour.  Thus two measures of obesity were included: Body-Mass Index (BMI) as a 

measure of total obesity 24 and waist-to-hip ratio adjusted for BMI (WHRadjBMI), reflecting 

metabolically-detrimental central obesity 25.  

 For the ADHD, schizophrenia, BD, MDD, anxiety, PTSD, and smoking status, we used GWAS 

summary statistics provided by the Psychiatric Genomics Consortium 

(http://www.med.unc.edu/pgc/) 26-32.  For the two obesity phenotypes, GWAS summary statistics for 

BMI 24 and WHRadjBMI 25 were taken from the consortium for the Genetic Investigation of 

Anthropometric Traits (http://portals.broadinstitute.org/collaboration/giant). Summary statistics for 

years of education 33 and fluid intelligence 34 were downloaded as instructed in the respective 

publications. Summary statistics for the GWAS of lifetime cannabis use were provided by the 

International Cannabis Consortium 35. Summary statistics for GWAS of alcohol consumption 36 and 

brain structure volumes 37 were provided by the authors. Alcohol use disorder was defined using 

DSM-5 criteria 38. For this phenotype, a GWAS meta-analysis on genotypes imputed to 1000 

Genomes was run with five datasets: COGEND, COGEND2, COGEND-23andMe, COGA, and FSCD. In 

total there were N=2 983 cases with alcohol use disorder and N=1 169 controls. Descriptions of the 

datasets are in the Supplementary information. 
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Results 

Demographic characteristics 

A subset of 20 335 participants had repeated assessment of risk-taking behaviour. Reproducibility 

was good, with consistent responses in 81% of all participants (inconsistent 13%, missing 6%, 

Supplementary Table 2). Participants with probable mood disorders 39,40 showed comparable 

reproducibility compared to those without (consistent 80% vs 82%, inconsistent 15% vs 12%, missing 

5% vs 5%, respectively). 

For all analyses (discovery, replication and PGRS), small but consistent differences were observed 

between controls and risk-takers with regard to age and BMI (Table 1), but striking differences were 

observed for sex distribution, smoking and history of mood disorders: risk-takers (compared to non 

risk-takers) were more often men, more likely to be current or ever-smokers and more likely to 

suffer from depression, report an addiction or to have used cannabis. Risk-takers were also more 

likely to have a university/college degree.  

GWAS of risk-taking behaviour 

GWAS results for risk-taking are summarised in Figure 1 (Manhattan plot), Figure 1 inset (QQ plot) 

and Supplementary Table 3. The GWAS data test statistics showed modest deviation from the null 

(GC =1.13).  Considering the sample size, the deviation was negligible (GC 1000=1.002).  LDSR 

suggested that deviation from the null was due to a polygenic architecture in which h2
SNP accounted 

for approximately 4% of the population variance in risk-taking behaviour (observed scale h2
SNP=0.058 

(SE 0.006)), rather than inflation due to unconstrained population structure (LD regression 

intercept=1.003 (SE 0.008)).  
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Two loci were associated with risk-taking behaviour at genome-wide significance, on chromosome 3 

and chromosome 6 (Figure 1 and Supplementary Table 3).  The index SNP on chromosome (chr) 3, 

rs13084531, lies within the CADM2 gene, however linkage disequilibrium (LD) suggests that the 

signal also encompasses miR5688, and borders a CADM2 anti-sense transcript (CADM2-AS2, Figure 

2a).  The minor allele of rs13084531 was associated with increased risk-taking (G allele, MAF 0.23, 

Odds Ratio (OR) 1.07, Confidence interval (CI) 1.04-1.09, P 8.75x10-9).  Conditional analysis of the 

chr3 locus (including rs13084531 as a covariate) is suggestive of a second signal (index SNP 

rs62250716, MAF 0.36, OR 0.96, CI 0.94-0.98, P 8.53x10-5, LD r2=0.16 with rs13084531, Figure 2b and 

Supplementary Table 3).  The LD structure across the chr3 locus supports the possibility of two 

distinct signals (Supplementary Figure 1). 

The chr6 locus lies within the gene-rich HLA region (Figure 2c), where index SNP rs9379971 

demonstrated an association between the minor allele and decreased risk-taking (A allele, MAF 0.35, 

OR 0.95, CI 0.93-0.97, P 2.31x10-9).  Conditional analysis (including rs9379971 as a covariate) and 

assessment of the LD structure across this locus indicated that the associated region probably 

includes only one signal (Figure 2d, Supplementary Table 3 and Supplementary Figure 2). 

Rerunning the GWAS with the second genetic data release (Supplementary Figure 3) gave similar 

results, with a modest deviation from the null (GC =1.10, adjusted for sample size GC 1000= 1.002).  

Consistent with the 1000Genomes analysis, LDSR suggested that deviation from the null was due to 

a polygenic architecture with h2
SNP accounting for approximately 5% of the population variance in 

risk-taking behaviour (observed scale h2
SNP=0.055 (SE 0.006). The same CADM2 locus was GWAS 

significant (rs62250713, beta 0.0614, se 0.01, p= 8.289x10-10, minor allele A, MAF 0.36) but the locus 

on chromosome 6 did not meet the threshold for significance.  

Replication analysis 
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Both the CADM2 and chr6 loci demonstrated significant (p<0.025) associations with risk-taking 

behaviour in the replication analyses (Supplementary Table 4). The CADM2 locus demonstrated 

effect sizes comparable with those for the discovery analysis (rs13084531 beta 0.067 for discovery 

and beta 0.054 se 0.011 replication). In contrast, the Chr6 locus demonstrated 2 to 6-fold weaker 

effects (rs9379971, discovery beta -0.063, replication beta -0.010). The CADM2 locus met the 

threshold for GWAS significance in the meta-analysis (Supplementary Table 4) but the Chr6 locus did 

not. The significant p value for heterogeneity suggests that this association is a false-positive finding. 

PRS analysis 

The PRS were significant predictors of risk-taking behaviour, at all p thresholds and the variance 

explained by the model including the PRS was between 0.034 (PRS p<1x10-5) and 0.037 (PRS p<0.05) 

(Supplementary Table 5). 

Data  mining 

As with the majority of SNPs identified by GWAS, the genome-wide significant SNPs in both loci are 

non-coding. Current prediction models ascribe only non-coding modifier functions to the 81 

genome-wide significant SNPs (VEP 20, Supplementary Table 6). Expression quantitative trait analysis 

directly tests association of the index SNPs with expression of nearby transcripts. The chr3 index SNP 

(rs13084531) lies within the CADM2 gene and adjacent to miR5688 and CADM2-AS2 (Figure 2 and 

Supplementary Table 7).  Currently most miRs are predicted (but not reliably proven) to influence 

transcription of hundreds or thousands of genes. Furthermore, analysing transcription levels of miRs 

is challenging.  Similarly, the importance of antisense transcripts such as CADM2-AS2 is unclear and 

difficult to assess. CADM2, which encodes cell adhesion molecule 2 (also known as synaptic cell 

adhesion molecule, SynCAM2), is a plausible target gene as it is predominantly expressed in the 

brain (Supplementary Figure 4 A). The risk allele at rs13084531 was associated with increased 

CADM2 mRNA levels in several regions of the brain (including the caudate basal ganglia and 
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putamen basal ganglia, hippocampus and hypothalamus, Supplemental Figure 5). CADM1, a related 

cell adhesion molecule, demonstrates overlapping and co-regulated (albeit inversely) expression 

patterns 41. It is worth noting that CADM1 shows a similar, albeit less brain-specific, expression 

pattern (Supplementary Figure 4 B) and that genetic deletion of Cadm1 in mice results in 

behavioural abnormalities, including anxiety 42.  

Excitement-seeking is a behavioural trait closely related to risk-taking behaviour 43, however the 

locus reported for excitement-seeking was non-significant in this study (Chr2, rs11126769, LD R2

with the reported rs7600563= 0.862, major T allele, Beta 0.016, se 0.011, p=0.1167). Other 

potentially problematic behaviours which can be related to risk-taking propensity have identified the 

CADM2 locus (Supplemental Table 8): A recent GWAS of alcohol consumption 44 identified a 

significant signal in the CADM2 locus, where the G allele of rs9841829 was associated with increased 

alcohol consumption. The same SNP demonstrates genome-wide significance with increased risk-

taking behaviour in this study (G, Beta 0.0635, se 0.012 p=3.34x10-8, Supplemental Table 3), whilst 

conditional analysis (Supplemental Table 3) indicates that the signal for alcohol consumption and 

risk-taking is the same. A GWAS of lifetime cannabis use also highlighted the CADM2 locus (gene-

based rather than SNP-based) 35. Cognitive function plays a role in traits such as risk-taking, 

therefore it is worth noting that a GWAS of executive functioning and information processing speed 

in non-demented older adults from the CHARGE (Cohorts for Heart and Aging Research in Genomic 

Epidemiology) consortium found that genetic variation in the CADM2 gene was associated with 

individual differences in information processing speed 45. The allele of rs17518584 (LD r2=0.45 with 

rs13084531, LD r2=0.34 with rs62250716) associated with increased processing speed was 

associated with reduced (self-reported) risk-taking in the current study (Supplementary Table 8, 

p=1.17x10-7). Furthermore, a GWAS of educational attainment in the UK Biobank cohort 

demonstrated a significant signal in CADM2 46. The effect allele of rs56262138 (LD r2=0.00 with 

rs13084531, LD r2=0.00 with rs62250716) for increased educational attainment showed a negative 

effect on risk-taking behaviour (Supplementary Table 8, p=0.0210).  
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Day et al reported an association between the CADM2 locus and age of reproductive onset in UK 

Biobank . In a secondary analysis, they also report an association between the same locus, CADM2, 

and risk-taking behaviour (the same phenotype as was used here). However, differences in quality 

control procedures mean that  the lead SNP reported by Day et al was not available in our analysis. 

During the revision of this paper, Boutwell et al 10 replicated the association between the CADM2

locus and a number of personality traits including risk-taking (�do you feel comfortable or 

uncomfortable with taking risks?�), in an independent data set (n~140,000).

The CADM2 locus has also been tentatively associated with longevity 47 (Supplementary Table 8) 

rs9841144, LD r2=0.99 with rs13084531, LD r2=0.16 with rs62250716), but associations between 

CADM2 SNPs and longevity, survival and attaining 100 years of age in that study were inconsistent, 

limiting the interpretation of these signals in the context of risk-taking  behaviour. 

Genetic correlations 

Looking up the risk-taking SNPs in the GWAS results of psychiatric conditions demonstrated little or 

no effect of the CADM2 SNPs in ADHD, SCZ, PTSD, BPD or MDD (Supplementary Table 9). In contrast, 

when considering the entire genome we found significant positive genetic correlations between the 

risk-taking phenotype and ADHD (rg=0.31, SE=0.13, p=0.01), schizophrenia (rg=0.27, 

SE=0.04, p=4.54x10-11), BD (rg=0.26, SE=0.07, p=1.73x10-4), PTSD (rg=0.51, SE=0.17, p=0.0018), 

lifetime cannabis use (rg=0.41, SE=0.11, p=0.0001) and smoking (rg=0.17, SE=0.07, p=0.01) and a 

negative genetic correlation with fluid intelligence (rg=-0.15, SE=0.05, p=0.0013, Table 2). We found 

no significant genetic correlation between risk-taking and MDD, anxiety or years of education (Table 

2).  There was also a significant genetic correlation between risk-taking and BMI (rg=0.10, 

SE=0.03, p=0.003), but a similar correlation was not found for WHRadjBMI.  The non-significant 

genetic correlation with alcohol use disorder was interesting because of the strength of the 

coefficient (rg=0.22, SE0.31, p=0.47), however was likely underpowered due to the modest size of 

the GWAS (n=4 171) and we draw no conclusions about this correlation.  



15 

Discussion 

There is a growing emphasis on the importance of using phenotypic traits which cut across 

traditional diagnostic groups to investigate the biological basis of psychiatric disorders.  Risk-taking 

behaviour is one such trans-nosological characteristic, recognised clinically as a feature of several 

disorders, including ADHD, SCZ and BD.  In this study we identified two loci, on 3p12.1 and 6p22.1, 

that were associated with self-reported risk-taking behaviour. Replication in an independent set of 

samples and meta-analysis confirmed the association between risk-taking behaviour and the CADM2

locus on Chr3 but not the Chr6 locus. The PRS were significant predictors of risk-taking behaviour in 

a further independent sample set.  

The chr6 locus falls within the HLA region which encodes a large number of genes and is extremely 

complicated genetically. The false positive association detected could be because the first data 

release were selected based on (extremes of) lung function measurements 48. Considering the 

potential inflammatory component of lung function and the role of the HLA region in inflammatory 

responses, it is perhaps not surprising that the discovery analysis demonstrated stronger effect sizes 

for this locus than the randomly selected general population samples included in the replication 

analysis.  

A key finding of our study was the positive association between Chr3 SNP, rs13084531, and risk-

taking behaviour as well as CADM2 expression levels.  Here, the allele associated with increased self-

reported risk-taking behaviour was also associated with increased CADM2 expression.  It is of 

interest that lack of Cadm1 in mice was associated with anxiety-related behaviour 42 and that both 

CADM1 and CADM2 were identified as BMI-associated loci 24 suggesting that CADM2 and related 

family members may be involved in balancing appetitive and avoidant behaviours. 

Day and colleagues recently identified 38 genome-wide significant loci for age at first sexual 

intercourse within the UK Biobank cohort 2 and two of these loci were within the 3p12.1 region, 
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close to CADM2 (rs12714592 and rs57401290).  The association between rs57401290 (and SNPs in 

LD) and age at first sexual intercourse was also observed for a number of behavioural traits, 

including number of sexual partners, number of children and risk-taking propensity (the same 

phenotype as was used in this study).  In addition, CADM2 also showed association with information 

processing speed 45 and educational attainment 46, highlighting the complexity of relationships 

between cognitive performance and risk-taking. Taken together, this evidence suggests that CADM2

plays a fundamental role in risk-taking behaviours, and may be a gene involved in the nexus of 

cognitive and reward-related processes that underlie them.  

A perhaps surprising observation was the increased frequency of having a university degree in self-

reported risk-takers, compared to controls, despite the negative (albeit non-significant) association 

between years of education and risk-taking behaviour. It is important to note that risk-taking 

behaviour includes a number of different aspects, including delayed gratification, assessment of 

positive and negative consequences of risk, impulse control, reward signalling. It is possible that risk-

taking behaviour assessed in a clinical mental health setting could reflect a different aspect of these 

processes compared to self-reported risk-taking behaviour. Risk-taking behaviour assessed in a 

clinical mental health setting might demonstrate significantly different associations with education, 

compared to self-reported risk-taking behaviour. These observations underscore the complexity 

between risk-taking and educational attainment, and highlight differences between genetic and 

phenotypic relationships. They may also be indicative of selection bias within the UK Biobank cohort 

towards more highly educated individuals. 

Another key finding was genetic correlation between self-reported risk-taking and obesity.  Although 

there are likely to be a range of potential mechanisms linking risk-taking behaviour with obesity, 

evidence of a shared genetic component is in keeping with work that has highlighted the importance 

of the central nervous system in the regulation of obesity (BMI), particularly brain regions involved 

in cognition, learning and reward 24.  In contrast, central fat accumulation (WHRadjBMI) is primarily 



17 

regulated by adipose tissue 25 which fits with the lower, non-significant genetic correlation between 

risk-taking behaviour and this measure. Two SNPs (rs13078807 and rs13078960) in the CADM2 locus 

have previously been associated with BMI  24, 49, 50, but whilst these SNPs tag each other (LD r2=0.99), 

the LD between the risk-taking index SNP or possible secondary signal is low (LD r2=0.31 and 0.01 for 

rs13084531 and rs62250716 respectively), suggesting that these are distinct signals.  

It is perhaps unsurprising that we identified genetic correlations between risk-taking and smoking.  

Similarly, risk-taking and impulsive behaviour is a core feature of ADHD and BD, suggesting 

substantial genetic overlap between variants predisposing to risk-taking behaviour and these 

disorders.  The genetic correlation between risk-taking and schizophrenia is of interest because 

schizophrenia is commonly comorbid with substance abuse disorders 51.  The correlation between 

risk-taking and PTSD is perhaps plausible if we accept that risk-takers may be more likely to find 

themselves in high-risk situations with the potential to cause psychological trauma. Overall, these 

correlations suggest that studying dimensional traits such as risk-taking has the potential to inform  

the biology of complex psychiatric disorders. 

Strengths and limitations 

We acknowledge that Day et al have previously reported an association for risk-taking within the 

CADM2 locus. Strengths of our study include the use of a more conservative and standardised 

methodology and reporting of results across the entire genome. A risk-taking locus was identified in 

the CADM2 locus and we have shown that CADM2 may contain a second signal. Furthermore, we 

have investigated the possibility of a sex-specific effect of these loci, provided evidence highlighting 

possible candidate genes at both loci and confirmed the importance of this phenotype in relation to 

psychiatric illness. In short, our report provides a fuller understanding of the genetic basis of risk-

taking behaviour.  Despite this, we highlight some limitations.  The risk-taking phenotype used was a 

self-reported measure, based on response to a single question, and is therefore open to responder 

bias.  It is also plausible that there are distinct subtypes of risk-taking behaviour (for example 
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disinhibition, sensation-seeking and calculated risks). Whether the single question used in our 

analyses captures all, or only some, of these is not clear. Having identified genetic loci associated 

with other traits related to risk-taking and other problem behaviours (such as alcohol consumption 

and cannabis use) provides added support for the validity of this phenotype. It would be of interest 

to investigate whether the loci identified here are also associated with more quantitative and 

objective measures of risk taking; however, such measures were not available in the UK Biobank 

dataset. 

Conclusion 

In summary, we have identified a polygenic basis for self-reported risk-taking behaviour and the 

CADM2 locus which contains variants likely to play a role in predisposition to this complex but 

important phenotype.  The identification of significant genetic correlations between risk-taking and 

several psychiatric disorders, as well as with smoking and obesity, suggest that future work on this 

trait may clarify mechanisms underlying several common psychopathological and physical health 

conditions, which are important for public health and wellbeing. 
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Figures and Legends 

Figure 1: Results of a genome-wide association study of self-reported risk-taking behaviour (1000 

Genome imputation). SNPs are plotted along the X axis by chromosome and position, with strength 

of association with self-reported risk-taking behaviour plotted on the Y axis. The red line indicates 

the threshold for GWAS significance (P5e-8). Inset: QQ plot demonstrates deviation from null 

expectation (solid red line) of the GWAS results (black data points).  

Figure 2: Regional plots for risk-taking-associated loci. A) Chr3 main analysis results; B) results of 

analysis conditioned on Chr3 rs13084531; C) Chr6 main analysis results; D) results of analysis 

conditioned on Chr6 rs9379971. The index SNP is shown as a purple diamond.



Table 1.  Description of UK Biobank participants included in the discovery risk-taking GWAS, replication and PRS analyses. 
  Discovery (100Genomes) Replication (HPC) PRS (HPC) 

Not risk takers Risk takers� Not risk takers Risk takers� Not risk takers Risk takers� 
N 86 552 29 703 104 263 35 210 104 533 35 198
N men 36 679 (0.42) 18 554 (0.63) 41 988 (0.40) 21 453 (0.61) 42 161 (0.40) 21 427 (0.61)
Age (years) 57.2 (7.8) 56.1 (8.1) 57.2 (7.9) 55.9 (8.2) 57.3 (7.9) 56.0 (8.2)
BMI (kg/m2) 27.4 (4.9) 27.9 (4.7) 27.2 (4.7) 27.7 (4.7) 27.2 (4.7) 27.7 (4.6)
Current smoker 28 575 (0.33) 11 123 (0.38) 35 804 (0.34) 13 568 (0.39) 36 219 (0.35) 13 684 (0.39)
Ever smoker 37 782 (0.44) 16 052 (0.54) 43 929 (0.42) 18 265 (0.52) 44 316 (0.43) 18 221 (0.52)
Age completed education# 16.6 (2.1) 16.6 (2.3) 17.0 (2.1) 16.7 (2.4) 16.6 (2.1) 16.7 (2.4)
Has a degree 24 442 (0.29) 10 235 (0.35) 30 456 (0.29) 12 830 (0.37) 30 672 (0.30) 12 731 (0.36)
Townsend deprivation index -1.6 (2.9) -1.3 (3.1) -1.7 (2.8) -1.4 (3.0)  -1.7 (2.9) -1.4 (3.0)
Unstable mood¤ 37 429 (0.44) 14 258 (0.49) 44 659 (0.44) 16 852 (0.49) 44 697 (0.44) 16 722 (0.48)
Comparison group* 17 024 (0.74) 5 418 (0.69) 20 519 (0.74) 6350 (0.69) 20 844 (0.74) 62 11 (0.69)
BD* 190 (0.01) 177 (0.02) 215 (0.01) 177 (0.02) 206 (0.01) 189 (0.02)
single episode depression* 1 615 (0.08) 519 (0.07) 1 860 (0.07) 645 (0.07) 1 838 (0.07) 659 (0.07)
Moderate depression* 2 816 (0.12) 1 034 (0.13) 3 351 (0.12) 1 289 (0.14) 3 414 (0.12) 1 207 (0.13)
Severe depression* 1 486 (0.06) 678 (0.08) 1 727 (0.06) 797 (0.09) 1 733 (0.06) 796 (0.09)
any depression 5 917 (0.26) 2 231 (0.29) 6 938 (0.25) 2 731 (0.29) 6 985 (0.25) 2 662 (0.29)
Mental Health Questionnaire 27 494 9 479 34 011 11 654 34 060 11 574
BD 330 (0.01) 232 (0.02) 369 (0.01) 290 (0.03) 348 (0.01) 277 (0.02)
MDD 6 450 (0.28) 2 407 (0.30) 7 716 (0.27) 2 951 (0.30) 7 896 (0.28) 2 906 (0.30)
GAD 1 893 (0.10) 695 (0.11) 2 215 (0.09) 898 (0.11) 2 431 (0.10) 831 (0.10)
any addiction 1 491 (0.05) 918 (0.10) 1 521 (0.05) 919 (0.08) 1 543 (0.05) 955 (0.08)
alcoholism                           569 (0.02) 368 (0.04) 598 (0.02) 381 (0.03) 576 (0.02) 387 (0.03)
illicit drug addiction 93 (0.003) 101 (0.01) 70 (0.003) 70 (0.01) 78 (0.002) 92 (0.01)
OTC/prescr~t  addiction                   229 (0.01) 96 (0.01) 226 (0.01) 125 (0.01) 239 (0.01) 132 (0.01)
Ever cannabis 4 788 (0.17) 2 780 (0.29) 6 038 (0.18) 3 432 (0.29) 5 941 (0.17) 3 356 (0.29)



Where: � parcipants who answered "yes" to "do you consider yourself a risk taker?"; for continuous variables, data is presented as mean (standard 
deviation). For categorical variables data is presented as n (proportion of group (ie risk-takers or not risk-takers)); # based on a subset of 80 229 subjects; ¤ 
paticipants who answered yes to ""Does your mood often go up and down?"; * definitions as per Smith et al, Plos One, 2013, based on a subset of 29,929 
subjects; BD, bipolar disorder; MDD, major depressive disorder; GAD, general anxiety disorder. Addiction phenotypes based upon self-report. 



Table 2. Genetic correlation between risk-taking and traits relevant to psychiatric disorders 
Phenotype rg se p 
ADHD 0.378 0.054 1.80x10-12

SCZ 0.265 0.040 4.54x10-11

BD 0.261 0.070 1.73x10-4

MDD 0.069 0.084 0.4120 
PTSD 0.513 0.165 0.0018 
Anxiety (case control) -0.090 0.132 0.4963 
Anxiety (quantitative) -0.123 0.156 0.4289 
Ever smoker 0.174 0.068 0.0102 
Alcohol (heavy vs light) 0.249 0.234 0.2873 
Alcohol (quantitative) 0.248 0.082 0.0026 
Alcohol use disorder 0.221 0.306 0.4700 
Lifetime cannabis use 0.406 0.107 1.00x10-4

Caudate volume 0.049 0.078 0.5268 
Accumbens volumes 0.195 0.143 0.1710 
Fluid intelligence -0.151 0.047 0.0013 
Years of education -0.023 0.033 0.4873 
BMI 0.102 0.034 0.0028 
WHRadjBMI 0.087 0.047 0.0655 
Where: MDD, major depressive disorder; BD, bipolar disorder; SCZ, schizophrenia; ADHD, attention 
deficit hyperactivity disorder; BMI, body mass index; WHRadjBMI; waist:hip ratio adjusted for BMI; 
Alcohol dependence DSM 5 Criteria; rg, regression coefficient; se, standard error of the regression 
coefficient; p, pvalue for theregression analysis. 
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