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Abstract  

 The ready availability of image-editing software makes it important to 

ensure the authenticity of images. This thesis concerns the detection and 

localization of cloning, or Copy-Move Forgery (CMF), which is the most 

common type of image tampering, in which part(s) of the image are copied 

and pasted back somewhere else in the same image. Post-processing can be 

used to produce more realistic doctored images and thus can increase the 

difficulty of detecting forgery. 

 This thesis presents three novel methods for CMF detection, using 

feature extraction, surface fitting and segmentation. The Dense Scale 

Invariant Feature Transform (DSIFT) has been improved by using a different 

method to estimate the canonical orientation of each circular block. The 

Fitting Function Rotation Invariant Descriptor (FFRID) has been developed 

by using the least squares method to fit the parameters of a quadratic function 

on each block curvatures. In the segmentation approach, three different 

methods were tested: the SLIC superpixels, the Bag of Words Image and the 

Rolling Guidance filter with the multi-thresholding method. We also 

developed the Segment Gradient Orientation Histogram (SGOH) to describe 

the gradient of irregularly shaped blocks (segments).  

 The experimental results illustrate that our proposed algorithms can 

detect forgery in images containing copy-move objects with different types 

of transformation (translation, rotation, scaling, distortion and combined 

transformation). Moreover, the proposed methods are robust to post-

processing (i.e. blurring, brightness change, colour reduction, JPEG 

compression, variations in contrast and added noise) and can detect multiple 

duplicated objects. In addition, we developed a new method to estimate the 
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similarity threshold for each image by optimizing a cost function based 

probability distribution. This method can detect CMF better than using a 

fixed threshold for all the test images, because our proposed method reduces 

the false positive and the time required to estimate one threshold for different 

images in the dataset. Finally, we used the hysteresis to decrease the number 

of false matches and produce the best possible result. 

 

 

 

 

 

 

 

       



IV 
 

Acknowledgements 

 I am grateful to Allah, the Prophet Muhammad and Ahl al-Bayt (the 

peace and blessings of Allah be upon them) for giving me the strength and 

ability to attain this goal.  

 My sincere appreciation and gratitude go to my supervisors Dr. 

Xianfang Sun and Professor Paul L. Rosin for their continuous valuable 

advice and guidance, and their constructive feedback on my thesis. Thank 

you for all the skills I learned from you and thank you for being great 

supervisors. 

 I dedicate this work to my wonderful family. My lovely wife, my 

beautiful daughter, my mother, my amazing brothers and my aunt. It is a 

blessing to have you in my life. 

 

 I would like also to thank all the members of the School of Computer 

Science and Informatics at Cardiff University for their kind assistance.  

 

 

 

 

 

 

 



V 
 

List of Acronyms 

ANMS  Adaptive Non-Maximal Suppression  

ANN   Approximate Nearest Neighbour  

AWGN Additive White Gaussian Noise 

BoWImage  Bag of Words Image  

BRIEF  Binary Robust Independent Elementary Features 

CHT    Circular Harmonic Transforms  

CMF   Copy-Move Forgery  

CMFD  Copy-Move Forgery Detection 

CRMF  Copy-Rotate-Move Forgery  

DCT   Discrete Cosine Transform 

DLT    Direct Linear Transformation  

DSIFT   Dense Scale-Invariant Feature Transform 

DWT   Discrete Wavelet Transform 

FAST   Features from Accelerated Segment Test 

FFRID  Fitting Function Rotation Invariant Descriptor  

FLANN  Fast Library for Approximate Nearest Neighbours 

HOG    Histogram of Oriented Gradients  

HOGM  Histogram of Oriented Gabor Magnitude  

HSV   Hue, Saturation, Value 

IMD    Image Manipulation Dataset  

JPEG   Joint Photographic Experts Group 

LBP   Local Binary Pattern     

LBPFV  LBP Feature Vector 



VI 
 

LSH    Locality-Sensitive Hashing  

MAD    Median Absolute Deviation  

MIFT   Mirror Reflection Invariant Feature 

MLBP  Multiresolution Local Binary Patterns  

MSER   Maximally Stable Extremal Regions 

ORB   Oriented FAST and Rotated BRIEF 

PCA    Principal Component Analysis   

PCET    Polar Complex Exponential Transform  

PCT    Polar Cosine Transform  

PFP    Pixel False Positives  

PHT    Polar Harmonic Transform 

PNG   Portable Network Graphics 

PST    Polar Sine Transform  

RANSAC RANdom SAmple Consensus 

RGB   Red, Green, Blue   

RIDSIFT  Rotation Invariant DSIFT  

SATS   Same Affine Transformation Selection  

SGOH  Segment Gradient Orientation Histogram  

SIFT   Scale-Invariant Feature Transform   

SLIC    Simple Linear Iterative Clustering  

SURF    Speeded Up Robust Features  

SVM    Support Vector Machine  

TIFF   Tagged Image File Format 

UCID    Uncompressed Colour Image Database  

 



VII 
 

Colour key 

 In this thesis, the matched blocks in the primary detection image have 

been highlighted by red line. The matched blocks in RANSAC image have 

been highlighted by a yellow line. The final detected images are highlighted 

with different colours for visualisation purposes and to show the correctness 

of CMF detection, see the table below.     
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1.1 Introduction 

 An image can more strongly influence viewers than millions of words; 

images are used as evidence in courts, scientific research, political 

campaigns and celebrity magazines. Images represent a more natural and 

efficient way to communicate with humans than text does. For example, 

there is no need to translate images from one language to another. The rapid 

availability, ease of use and wealth of inexpensive devices to capture, store 

and send images (mobile devices, digital cameras and scanners) have helped 

to spread them. Simultaneously, the wide availability of software packages 

to edit images makes it very simple even for novice users to modify the 

image or create a new one. This increases the possibility of counterfeiting 

and tampering of visual data, which is no longer restricted to experts. As a 

result, the confidence and integrity that images once had is eroded by the 

advancement of digital technology. For instance, 100% of images in fashion 

magazines are retouched [1]. The topic of this research is about  detecting 

one type of image tampering, the copy-move forgery.                 

   

Figure 1-1: An example of copy-move forgery image; (left) the original image, (right) 

the tampered image [2]. 
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1.2 Copy-Move Forgery  

 It is straightforward to create a copy-move forgery by cloning parts of 

the image to cover element(s) in the same image, but it is very hard to detect 

Copy-Move Forgery (CMF) by eyes when it is done by care, see Figure 1-1. 

The general CMF detection system consists of several main steps, see 

Figure 1-2. The first step is to pre-process the image, for example, by 

converting the RGB colour image to a greyscale image. The second step is 

to extract features from the image. There are two different methods of 

extracting them: dividing the image into blocks (densely); or detecting 

interest points in the image (sparsely). With the first method, the image can 

be divided into overlapping or non-overlapping blocks, which can be either 

square or circular in shape. The features are extracted from the blocks. In the 

second, the numbers and the locations of the interest points vary, depending 

on the method itself (e.g. Scale-Invariant Feature Transform (SIFT) [3], 

Speeded Up Robust Features (SURF) [4], etc.). The features are then 

extracted in the neighbourhood of the interest points. The third step is to find 

the matches (similarity) between the extracted features. Many methods can 

be used to locate these similarities. The most common method is either to 

sort the feature vectors lexicographically and compute the Euclidean 

distance between adjacent stored vectors [5]; or build a k-d tree containing 

all the feature vectors and find the 2nd  Approximate Nearest Neighbour 

(2ANN) for each feature [6]. 
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Figure 1-2: the general block diagram of the CMF detection system. 

 

 The pixel values/feature vector of the copied and rotated, scaled, or 

sheared part(s) are different from the original parts because of the 

interpolation, and these changes should be considered in the matching 

process. In the filtering, false matches should be removed to refine the 

primary result, followed by post-processing the result; for example, filling 

the holes in the large object and/or removing the small objects which are less 

than a threshold.  

 There is a big difference in the computational cost and amount of 

detected details between block-based methods and keypoint-based methods. 

Keypoint-based methods have the advantage of low computational 

complexity (they consume very little memory and are much faster than 

block-based methods). At the same time, keypoint-based methods cannot 

produce highly accurate results (because of detecting only parts of the Copy-

Move objects or producing a false negative in flat regions). 
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1.3 Research Hypotheses 

 Keypoint-based methods (e.g. SIFT, SURF) perform best in 

detecting image forgery with scaling and rotation. But to detect 

image forgery with Gaussian noise and JPEG compression, we 

have to use block-based methods such as DCT, DWT, and PCA. 

Therefore combining the elements of both methods into one 

system has a better chance of overcoming the problems of other 

suggested systems and being more accurate. 

 There are major problems in the standard approaches to detect 

CMF (i.e. the block-based methods usually need a long time to 

extract from the image, while the keypoint-based methods can 

only detect part(s) of the duplicated objects). To overcome these 

problems, we propose to apply a segmentation-based approach. 

We hypothesise that over-segmentation methods (e.g. superpixel 

[7]) will be more appropriate than under-segmentation methods 

[8], because they allow a larger range of features (e.g. statistics) to 

be considered to describe each segment. The segmentation will 

divide the image much better than a block-based approach because 

it will exhibit boundary adherence, which can improve the 

accuracy of CMFD and reduce the required computation time.  

 The greyscale image can be treated as a 2D surface, and it is 

possible to find clone regions by comparing the similarities over 

this surface. Consider that fitting surface method can be used to 

describe the properties of each block. Since the detection of Copy-

Rotate-Move objects requires a rotation-invariant descriptor, we 

have to consider a rotation-invariant method in the description of 

each surface (e.g. by rotating the parameters of the fitted surface 

so as to be parallel to the principal axes). 
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1.4 Publications 

1.4.1 Journal paper  

 

 A journal paper will re-submit soon to IEEE Transactions on 

Information Forensics and Security. 

Khayeat, Ali Retha Hasoon, Xianfang Sun, and Paul L. Rosin. "Copy-Move 

Forgery Detection with Improved DSIFT Descriptor."  

1.4.2 Conference Papers 

 

 A. R. H. Khayeat, X. Sun, and P. L. Rosin, “Improved DSIFT 

Descriptor Based Copy-Rotate-Move Forgery Detection,” in 

Image and Video Technology, vol. 8334, no. November, F. Huang 

and A. Sugimoto, Eds. Berlin, Heidelberg: Springer International 

Publishing, 2016, pp. 642–655. 

 

  A. R. H. Khayeat, P. L. Rosin, and X. Sun, “Copy-Move 

Forgery Detection Using the Segment Gradient Orientation 

Histogram,” vol. 10270, P. Sharma and F. M. Bianchi, Eds. 

Cham: Springer International Publishing, 2017, pp. 209–220. 
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1.5 Structure of the Thesis 

 The thesis is organized into six chapters describing the investigations 

of the research together with the main objectives of this doctoral study. 

 

Chapter 1: a general introduction about the research subject, the 

problems and scope. 

Chapter 2: a detailed description of the different types of doctored 

images and reviews in some depth the related methods and research. 

Chapter 3: describes in detail our improved DSIFT descriptor and its 

use to detect CMF with different types of transformation and post-

processing. It also presents the proposed method to estimate threshold 

automatically and our application of the hysteresis technique. 

Chapter 4: describes in detail our novel method of using fitting surfaces 

of image blocks in CMFD with different types of transformation and 

post-processing.   

Chapter 5: describes in detail three proposed methods (SLIC 

Superpixels, Bag of Word Image and Rolling Guidance Filter with Multi-

thresholding) of detecting CMF using a segmentation approach. This 

chapter discusses the differences between our segmentation approach 

and those in other related studies.     

Chapter 6: contains the conclusions, suggestions for future research and 

a comparison of our proposed methods. 
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Chapter 2                                                          

Review of the Literature in Image 

Forgery Detection 
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2.1 Introduction 

 Figure 2-1 is one of the earliest doctored images in the history, 

Abraham Lincoln’s head was copied and pasted on to another politician’s 

body (splicing). In Figure 2-2, Stalin’s political enemy was removed from 

the image, which is another type of forgery (copy-move forgery). In the past, 

the task of doctoring images was extremely difficult and time-consuming as 

limited tools and devices were available at that time. 

 

Figure 2-1: The portrait of Abraham Lincoln is composite of  Lincoln’s head and 

Southern politician John Calhoun’s body [9]. 

 

 

Figure 2-2: Stalin’s political enemy was removed [10]. 
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 On the contrary, nowadays, little effort is needed to implement such 

task. Hence, the numerous affordable, easy-to-use and powerful digital 

image acquisition, processing, and editing devices and tools which are 

available to the end users. Therefore, both professional and amateurs can, 

easily and rapidly, alter images without leaving any visible trace. Moreover, 

the Internet makes the transmission of doctored images much easier and 

faster than before. The confidence in digital images have been lost, 

especially in sensitive data such as news items, medical records and evidence 

in court, etc. Particularly, the field of digital image forensics arose with the 

primary goal of developing efficient and reliable image forgery detection 

methods.  

2.2 Digital Image Forensics   

 

The digital image forensics, which is part of multimedia forensics, deals 

with: 

 Image source identification. 

 Detection of computer generated images. 

 Digital image forgery detection. 

 The digital forgery detection methods can be classified into Active 

methods and Passive (blind) methods. Digital watermarking and digital 

signature are considered as active methods as they need to embed some 

information in the images before storing or transmitting. On the other hand, 

blind methods try to find whether the image is authentic or not without any 

previous embedded information [11]. 
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2.2.1 Types of Digital Image Forgery   

 There are six main types of image forgery: Cloning, Splicing, 

Retouching, Morphing, Enhancing, and Computer Generating. 

 

1. Cloning: Cloning or Copy-Move Forgery (CMF) is the most 

common type of image forgery, which is easy to implement and 

difficult to detect. In CMF, the forger copies part(s) of the image 

and pastes them back into the same image, see Figure 2-3. If CMF 

is done with care, its visual detection is difficult. Moreover, 

because the cloned regions can be in any location or can have any 

shape, searching all the possible image portions of different sizes 

and in different locations is computationally infeasible [11]. Many 

possible kinds of transformation (rotation, scaling, shearing and 

combining of several types) can be observed in forgery. For 

example in using rotation, the parts are Copied-Rotated-Moved 

(CRM) in the same image and a rotation-invariant feature must to 

be used to detect this type of forgery. Moreover, many possible 

post-processing manipulations can be suggested (e.g. adding noise, 

blurring, colour reduction, etc.) for making the doctored image 

look more realistic. Since the copied-pasted region is from the 

same image and the post-processing operation is done on the whole 

image, the characteristics of the copy-move region(s) (e.g. colour 

and noise) are compatible with that image. This type of forgery is 

harder to detect than other types, such as splicing and retouching. 

This is because the usual methods of detecting incompatibilities, 

using statistical measurements to compare different parts of the 

image, are useless for CMF detection [12]. 
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 Figure 2-3: An example of copy-move forgery that appeared in the press in July, 

 2008.The original image (on the left) shows the original images and the 

 tampered image (on the right) shows four Iranian missiles; two different sections 

 (one encircled in red and the other in purple) replicate other image  sections by    

 applying a copy-move attack [12]. 

 

2. Splicing: Using a composite of two or more images to create a new 

one is a common type of photographic manipulation. When 

splicing is done carefully, the border between the spliced regions 

is sometimes visually imperceptible, see Figure 2-4. Such 

photomontages can be seen in several infamous news reports which 

include the use of faked images [11]. 

 

 Figure 2-4 Examples of image splicing; all the images in the top row are 

 authentic and those in the lower row are spliced [13]. 
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3. Retouching: In the past, a film was retouched by painting over it 

with a very finely-pointed brush, using special dyes. Nowadays, 

digital retouching is much easier and quicker. As seen on 

Figure 2-5, an original image of an actor has been digitally 

retouched to make him look younger. This tampering involved 

copy-moving small patches to lower the hairline, remove wrinkles 

and remove the dark shadows under the eyes [14].  

 

 Figure 2-5: an original image of an actor (left), and a digitally re-touched image 

to make him seem younger (right) [14]. 

Retouching can also be used to repair damaged images, see 

Figure 2-6.   

   

   Figure 2-6: an example of image repairing [15]. 
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4. Morphing: Image morphing is a digital technique that gradually 

converts one image into another. Shown in Figure 2-7, the image 

of a person (source image) is morphed into the image of an alien 

doll (target image). As shown, the shape and appearance of the 

source slowly change into the shape and appearance of the target. 

The intermediate images have features from both the source and 

target images, and have an aspect that is “part human, part alien” 

[14]. 

  

Figure 2-7: Example of a sequence of morphed images: a human face (the  source) is 

slowly changed into that of an alien doll (the target) [14]. 

 

5. Enhancing: This type of tampering does not alter the content of 

the image but it includes contrast/colour adjustment, blurring and 

sharpening. Yet this type of tampering can still have an indirect 

effect on the interpretation of an image, such as altering the time 

of the day when the image appears to have been taken, see 

Figure 2-8  [14].  
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Figure 2-8: (left to right) an original image, the image enhanced to alter the  colour, 

contrast, and blur of the background cars[14]. 

 

6. Computer Generating: a computer generated image can be 

defined as an image created by a skilled artist/programmer using a 

computer, whereas other types of image forgery (splicing, cloning, 

retouching, morphing, enhancing) alter the appearance of a 

photograph (either from a digital camera or a digitally scanned 

picture), see Figure 2-9  [14].       

 

  

Figure 2-9: A computer generated model (left) and the resulting rendered image (right) [14]. 
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2.2.2 Image Forensic Tools  

 According to [11], the image forensic tools are divided into five 

categories: Format-based techniques, Camera-based techniques, Physically-

based techniques, Geometric-based techniques and Pixel-based techniques.  

1. Format-based techniques: using statistical correlations in 

specific lossy compression algorithms to detect tampering in the 

images with JPEG format.  

2. Camera-based techniques: using the camera lens, sensor or 

hardware (on-chip) postprocessing to detect tampering.  

3. Physically-based techniques: these techniques use physical 

objects, the source(s) of light and the camera to create a 3-

dimensional model for detecting anomalies [16].  

4. Geometric-based techniques: measuring the objects in the world 

and their positions relative to the camera.  

5. Pixel-based techniques: working at pixel level to detect statistical 

anomalies which relate to the scope of our work.  

2.3 Image Forgery Datasets and Evaluation Methods   

2.3.1 Image Forgery Datasets   

1. Columbia Image Splicing Detection Evaluation Dataset: Ng 

and Chang [17] generated automatically spliced grayscale images 

dataset which contain 1845 image blocks. They copied part of the 

(128×128) image and pasted it randomly in a different image. 

Because they automatically created their images and did not 

consider post-processing, their images have sharp edges and are 

not semantically meaningful, see Figure 2-10. 
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  Figure 2-10: examples of the Columbia Image Splicing Dataset [17]. 

2. The CASIA database: There are two versions of the CASIA 

dataset [18].  CASIA v1.0 focuses on the detection of splicing; it 

consists of 800 authentic and 921 spliced colour images 384×256 

pixels in size with a JPEG format. This dataset is divided into 

several categories (scene, animal, architecture, character, plant, 

article, nature and texture). CASIA V2.0 contains larger images 

than CASIA V1.0, and is more realistic because the tampered 

regions have been post-processed. It contains 7491 genuine images 

and 5123 tampered colour images. CASIA v2.0 has images of 

various sizes, from 240×160 to 900×600 pixels. It has 

uncompressed images and also JPEG images of different quality. 

In CASIA v2.0 the “indoor” category has been added to previous 

groups of images. The copied regions have been scaled and rotated 

before pasting. These images contain limited post-processing 

methods, only JPEG compression and blurring and most of the 

images are small (384×256). 

   

Figure 2-11: examples from CASIA images showing tampering very  clearly [18]. 
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3. Databases MICC F220 and MICC F2000: These datasets consist 

of 220 and 2000 images respectively. They build their forged 

images by randomly copying the location and the dimension of a 

square or rectangular area from the image and pasting the shape 

over the same image. Different types of transformation have been 

applied to the forged images, such as translation, rotation, scaling 

or combination [19].   

   

 Figure 2-12: examples from MICC F220 images in which tampering is very 

clearly shown [19]. 

 

 

4. CMFD benchmark Dataset: Christlein et al.[20] created CMFD 

dataset in two steps:  

Step one: They selected 48 source images and manually prepared 

semantically meaningful regions from each image (snippets). They 

constructed 87 snippets with different content (e.g. smooth (sky), 

rough (rocks) or structured (man-made buildings)). 

Step two: They developed a software framework to produce copy-

move images using these snippets. JPEG compression, noise 

adding, scaling or rotation are automatically included in the 

generated images.   
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Figure 2-13: examples from the CMFD benchmark dataset with tampering shown 

 very clearly [20]. 

 

 Unfortunately, the tampering in some images of the CASIA, 

MICC and CMFD benchmarks is very obvious, making it needless 

to develop a system to detect it, see Figure 2-11, Figure 2-12 and 

Figure 2-13. 

 

5. CMFD database GRIP: Cozzolino et al. [21] presented a CMFD 

database with 80 images, 768×1024 pixels in size. They built the 

copy-moved regions with arbitrary shapes, see Figure: 2-14. 

Moreover, noise adding, JPEG compression, scaling and rotation 

were considered in generating the forged images.  

         

   Figure: 2-14: examples from GRIP dataset [21]. 

 

6.  COpy-moVe forgery dAtabase with similar but Genuine 

objEcts(COVERAGE) : Wen et al. [22] have recently published 

a new dataset with 100 original-forged image pairs. Each original 

image contains Similar-but-Genuine Objects (SGBs), and 

illumination changes have been made at region level. Most of the 

images have been taken from store shelves which have a limited 



Copy-Move Forgery Detection in Digital Images 

20 
 

relationship to the CMF subject, see Figure 2-15. The two 

researchers stored their original and forged images in TIFF format, 

and did not consider JPEG compression or blurred images in their 

work.  

    

Figure 2-15: examples from the COVERAGE dataset.  

 

7.  CoMoFoD - New Database for Copy-Move Forgery Detection: 

CoMoFoD [23] consists of 260 forged images falling into two 

categories (small, 512 × 512, and large, 3000 × 2000). The small 

category consists of 200 original images demonstrating different 

types of forgery. In this category, images are divided into 5 

different groups according to the manipulations applied, as 

follows: translation, rotation, scaling, distortion and a combination 

of all the previous manipulations. Moreover, various post-

processing methods (e.g. blurring, brightness change, colour 

reduction, JPEG compression, contrast adjustments and added 

noise), are applied to all the forged and original images in each 

group. The total number of images in the small group is 10400, 

showing different types of manipulation. We consider this dataset 

(small images) in order to evaluate our algorithms because it allows 

more varied transformations and types of post-processing than 

other available datasets do.  
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2.3.2 Evaluation Methods  

The F-measure is the most common method of evaluating the accuracy 

of the CMFD. There are two different types of F-measure: either at the 

image level or the pixel level. We used the F-measure [24] at the pixel 

level to evaluate the accuracy of our results. 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆  

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 +𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆
                          (2-1) 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆  

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆
                               (2-2) 

𝑭 − 𝑴𝒆𝒂𝒔𝒖𝒓𝒆(𝑭𝟏) = 2 ∙
(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏∙ 𝑹𝒆𝒄𝒂𝒍𝒍)

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
                       (2-3) 

 

 

       

2.4 Copy-Move Forgery Detection Techniques Overview  

 A great many methods of CMF detection have been proposed, and 

they can be divided into three main types of techniques: block-based 

techniques [25] which performs very well but they need more time than the 

other methods. Keypoint-based methods [26]  which have the advantage of 

low computational complexity, but they cannot produce highly accurate 

results. Segmentation-based methods [27] which cannot segment the 

identical objects consistently and depend on keypoint-based method to find 

the duplicated objects.      

2.4.1 Block Based Techniques 

 To detect CMF in an image, an exhaustive search is the simplest 

approach. In this approach, the tested image and its circularly shifted version 

are overlaid to find the matched image parts, see Figure 2-16.  
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In this method, the equation (2-4) is used to examine the difference. Assume 

a grayscale image of size M×N and 𝑥𝑖𝑗 is the pixel value at the position 𝑖, 𝑗 

in that image.  

| 𝑥𝑖𝑗 − 𝑥𝑖+𝑘 𝑚𝑜𝑑(𝑀) 𝑗+𝑙 𝑚𝑜𝑑(𝑁)|              (2-4) 

Where  𝑘 = 0,1, … ,𝑀 − 1, 𝑙 = 0,1, … ,𝑁 − 1   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗.  

 This approach is quite computationally expensive, taking (𝑀𝑁)2 steps 

for an image of size M×N. Moreover, it cannot detect geometric transformed 

(e.g. rotated) copy-moved objects [25]. 

  

Figure 2-16: Test image “Lenna” and its circular shift[25]. 

a) DCT-based methods 
 

     The first method of detecting CMF was suggested by Fridrich et 

al. [25]. They divided the image into overlapping blocks and quantised 

the Discrete Cosine Transform (DCT) coefficients of each block; they 

then sorted them lexicographically and checked the similarity between 

adjacent blocks. 

    Hu et al. [70] divided the image into (8×8) overlapping blocks and 

computed the DCT coefficients from each block. In zigzag ordering, 8 

coefficients are selected, according to frequency, from the array 

constituted by the quantized coefficients. The method is robust to 
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blurring and noise contamination. However, in this work these 

researchers did not consider more complex transformation (e.g. rotation 

or scaling). 

b) Statistical-based methods 

     Popescu and Farid  [28] divided the colour image into overlapping 

(64×64) blocks and applied Principal Component Analysis (PCA) [29] 

on each channel. A matrix of quantized coefficients was constructed 

and sorted lexicographically. The offsets of the adjacent rows in the 

sorted matrix were computed. Then the coordinates of pairs with an 

offset frequency less than a certain threshold were removed. The 

coordinates of pairs with a distance of less than a threshold were also 

removed. The remaining pairs of blocks were used to build the 

duplication map. The authors used 100 colour images of size 512×512 

pixels to test their algorithm. In each image, a random square region of 

32× 32, 64× 64, 96× 96 or 128× 128 was duplicated. Each image was 

either JPEG compressed or corrupted with additive noise. They 

experimentally illustrated the robustness of their algorithm. However, 

they did not consider blurred images or more complex transformations 

(e.g. rotation, scaling) in their work. 

     Weiqi et al. [30] resized the images generated by Popescu and 

Farid [28] into 300×400 before using them. They converted the colour 

images into grayscale and used both representations in their work. They 

divided the colour/grayscale images into overlapping blocks 16×16 in 

size and extracted seven characteristics from each block. The first three 

characteristics are the average of the red, green and blue components 

of the block in the colour image. As shown in Figure 2-17, they divided 

each grayscale block into two equal parts (horizontally, vertically and 

diagonally) and computed the ratio between the sums of the two parts. 
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Figure 2-17: Division of the grayscale block [30] 

      

     The four generated values from each grayscale block are 

concatenated with the three features from the colour block. All feature 

vectors are sorted lexicographically and the similarity between block 

pairs is found using the difference between the characteristics of each 

block. They calculated the shift vector between each matched blocks.  

A histogram for the shift vectors was built to identify the highest 

frequency of occurrence and removed the other matched blocks. The 

indexes of the highest frequency are used to build a binary image which 

followed by applying morphological operations to remove the small 

areas and fill holes. They tested their algorithm with translation and 

different types of post-processing (e.g. JPEG compression, AWGN and 

Gaussian blurring). Their method is more robust against various post-

postprocessing operations than Popescu and Farid [28].  However, they 

did not consider more complex transformations (e.g. rotation, scaling) 

in their work.  

     Lin et al.[31]  used the green channel of the RGB image.  They 

divided the image into 16×16 pixel overlapping blocks (𝐵) and divided 

each block into four sub-blocks(𝑆1, 𝑆2 , 𝑆3 , 𝑆4). The average intensity 

for each block (𝑓1) and its sub-block (𝑓2, 𝑓3, 𝑓4, 𝑓5) were computed. 

They then calculated the differences between the average of each sub-

block (𝑓6, 𝑓7, 𝑓8, 𝑓8) and the average of the main block(𝑓1) and 

normalized the nine numbers (𝑓1, . . , 𝑓9) into integers between 0 and 

255. The radix sort algorithm [32] was used to sort the list of the feature 
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vectors. The shift vector, which is the difference between each adjacent 

feature vector in the sorted list and the cumulative number of shift 

vectors which are greater than a certain threshold were used to detect 

the duplicated regions, as they describe in their report. They then dealt 

with the CRMF with no interpolation, considering 90°, 180° and 270° 

in their work. The shift vectors could not detect forgery, see 

Figure 2-18. To overcome this problem, they combined three rotated 

versions of the tested image with the original one and tested the 

generated image.    

 

Figure 2-18: A region copied, rotated through 90° and pasted to another region [31] 

 

     They used their images to test their method. It should be noted that 

their method cannot detect forgery on rotated arbitrary angles, but this 

is a common problem in CMF.  

      Xu et al. [33] converted the colour image into grayscale and 

circularly shifted the image. For each circle shift, they divided the 

image horizontally, computed phase correlation for it and recorded any 

result that was higher than a threshold. Then, they divided the image 

vertically and repeated the same steps as before. Any sharp peak in the 

phase correlation that was higher than a particular threshold was used 
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to detect forgery. They tested the performance of their method on some 

images from two data sets. Their method can detect forgery on images 

with translation and some postprocessing methods (e.g. blurring, JPEG 

compression and adding noise.) They did not consider multiple 

duplicated objects, rotation and the scaling in this work. 

     Lynch et al. [34] divided the image into overlapping 16×16 blocks. 

For each block, they computed the average grey value as the dominant 

feature. The blocks were sorted on the basis of the dominant feature 

into different groups. For each group, they constructed the connection 

matrix which denotes the blocks which are matched each other. Then, 

all the groups below a certain threshold in size were removed. The rows 

with zeros on the connection matrix were removed. Finally, they 

computed all the areas for the remaining connected blocks in each 

connection matrix and removed the small ones. According to their 

algorithm, the remaining blocks in the connection matrix represented 

the duplicated regions. They used 100 grayscale images 256×256 in 

size to test their algorithm. Their algorithm can detect forgery in images 

with translation, blurring and up to a 0.8 JPEG compression ratio. They 

computed their detection at an image level, and they did not consider 

rotation or the scaling in this work. 

c) Transformation-based methods 

     Li et al.[35] converted the colour image into grayscale and filtered 

it using a Gaussian low pass filter. The filtered image was divided into 

overlapping circular blocks with a diameter equal to 16. The Polar Sine 

Transform (PST) [36], from Polar Harmonic Transform (PHT) [37], 

was employed to extract features from each block. The feature vectors 

were lexicographically sorted and each block feature compared with its 

adjacent 20 rows to find matches.  Finally, morphological processing 
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was employed to produce the final detection map. They tested the 

performance of their algorithm on images collected from the internet. 

Their method is robust to translation, rotation and some postprocessing 

methods (e.g. JPEG compression and adding noise). They did not 

consider scaling, blurring images, or the case of multiple copy-move 

forgeries in this work. Moreover, in their experiments they used images 

with a simple scene; the detection of the forgery in such images is much 

easier than in more complicated images, see Figure 2-19. 

 

 

 Figure 2-19: An example of forgery detection when the region is rotated by 90 

and 180 degrees[35]. 

 

     Shao et al. [38]  divided the colour image into an overlapping 

circular block with a radius equal to 16. They used bi-linear 

interpolation to expand the circular block into a normalized rectangle 

block 16×128 in size. A Fourier transform was computed for each block 

and the researchers used an adaptive band limitation to obtain a 

correlation matrix with a suitable peak. They regarded the two circular 

blocks as being matched when the peak value calculated by band 
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limitation phase correlation exceeded a specified threshold. A phase 

correlation method with no band limitation was implemented to 

estimate the rotation angle by the position of the peak in the correlation 

matrix. They then implanted a seed filling searching method to locate 

all the regions of forgery. They used 60 images from the image stitching 

database of the DVMM lab in Columbia University [17] and produced 

their forgery images using Photoshop. The method is robust to rotation, 

blurring, illumination changes, and JPEG compression. However, it is 

a time-consuming method owing to the point-by-point scanning in the 

circular block matching. The seed filling algorithm cannot detect some 

areas near a forgery boundary, and their proposed method is not robust 

against scaling. 

 

     Li [6] divided the image into overlapping circular blocks and 

extracted the Polar Cosine Transform (PCT) [37] from each block. 

Locality-Sensitive Hashing (LSH) [39] to find the approximate nearest 

neighbour patch was used to locate any matching between the feature 

vectors. A pair of patches is considered to be a possible forgery when 

its hash collides with high probability and the displacement vector 

between its coordinates is above a certain threshold. Finally, a 

duplication map is constructed to visualise the forgery detection result. 

The performance of their method was evaluated over 100 images with 

a squared duplicated area. Their method is robust to rotation, JPEG 

compression, blurred images and adding noise. It is considered that 

using forged images with a squared duplicated area makes forgery 

much easier to detect than irregular shapes do. These researchers did 

not consider scaling in their work.  
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     Xiuli et al. [40] used a Multi-Level Dense Descriptor and 

Hierarchical Feature Matching to find the CMF. They converted the 

RGB colour into YCbCr colour space. Then, for each pixel, a colour 

texture feature and PCET moments [37] were computed. The PCET is 

one of the Polar Harmonic Transforms (PHTs) and is used in many 

applications, e.g. texture analysis and image registration. They grouped 

together all pixels with similar colour textures into specific neighbour 

pixel sets. They then used the PCET moments to match each pixel with 

its corresponding neighbouring pixel set. Finally, they set a threshold 

for the result and applied morphological operations to detect the forged 

regions.  In their experiments, they scaled down by 50% the size of the 

tested images from two datasets. Consider that even after resizing the 

image, their proposed method takes about 37 mins to process one 

image. Moreover, the reason for converting the image from RGB space 

into YCbCr is not clear and nor what its effect on the CMFD is. Their 

method is robust to moderate rotation - rotating the duplicated object 

by 10° reduces the performance of their method by more than 25%, see 

Figure 10 in their paper. Finally, they did not consider blurred images 

in this work.  

     Wo et al. [41] extracted the Polar Complex Exponential Transform 

(PCET) [6] from the image. As the PCET is rotation invariant but not 

scale invariant, the authors extracted multi-radius PCET from each 

pixel, to generate multi-scale features. They used an improved 

lexicographical order matching method to find the copy-moved objects. 

They then filtered the mismatched points using SATS [42] and spatial 

information. They used the Image Manipulation Dataset (IMD) [12] to 

test their algorithm on images with plain CMF. They considered JPEG 

compression, blurring and adding noise in their experiments. Since the 



Copy-Move Forgery Detection in Digital Images 

30 
 

IMD does not contain large-scale scaling and large-angle rotation 

forgeries, they used the Kodak lossless true colour suite (Kodak) [12] 

to duplicate a 100×100-sized patch in each image. They used multiples 

of 30° to rotate the square duplicated patch, and their method was 

dramatically affected by interpolation, see Figure: 2-20.  Moreover, the 

performance of their method of detecting duplicated scaled objects 

depends on the consistency between the PCET radius in the multi-scale 

and the scaling factor.  

 

  

 

Figure: 2-20 Detection results against rotation operation and the F-measure [41] 

 

 

     Ketenci and Ulutas [43] smoothed the colour image by a mean filter 

and divided it into overlapping blocks. This feature extracted by applying 

the 2D-Fourier Transform on each block. The resulting feature vector 

was quantized and its dimensions reduced to 4 elements. The matrix of 

the features was lexicographically sorted. Each vector was compared, 
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element by element, with its neighbours to find matching. This method 

is robust to translation, JPEG compression and image blurring, but it does 

not consider multiple duplicated objects or more complex transformation 

types (e.g. rotation or scaling). 

 

d) Moments-based methods  

     Ryu et al. [44] divided the image into overlapping 24×24 blocks 

and calculated the Zernike moments for each block. They sorted the 

Zernike feature vectors lexicographically and computed the Euclidean 

distance between adjacent stored blocks. If the distance was below a 

certain threshold, they considered these blocks cloned. They conducted 

their experiments with 12 TIFF images from their personal collection 

and other papers. They considered copy-rotate move forgery with 

rotations in the range of 0°-90° in 10° steps. In their follow-up 

paper[45], they computed 5th order Zernike moments from overlapping 

blocks to generate their feature vectors. Locality sensitive hashing with 

Euclidean distances was used to find similar feature vectors. The 

authors applied RANSAC at the feature level to remove false matches. 

They then tested their work on their forged images, which were rotated 

between 0°and 90°, in 10° steps. They built their forged images by 

duplicating random square patches of different sizes on original 

images. This makes CMF/CRMF detection much easier but produces 

unrealistic forged images. Moreover, their method generates 

considerable Pixel False Positives (PFP). 

     Zhong and Xu [46] used Gaussian pyramid transform to extract 

the low frequency information from the image and divided it into 

overlapping blocks 8×8 in size. For each block, they used exponential-
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Fourier moments and histogram invariant moments to build a 7-

element feature vector. Dictionary sort was used to sort their features 

matrix. The duplicated regions were by thresholding the Euclidean 

distance between adjacent features. They did not consider 

postprocessing methods in their experiments (e.g. JPEG compression, 

blurred images or noisy images).   

     Cozzolino et al. [41] proposed a CMF detection algorithm based 

on a modified PatchMatch algorithm [42], for rotation-invariant and 

scale-invariant forgery detection. The Zernike moments and the RGB 

values extracted from 16×16 overlapping blocks were used as features. 

They evaluated the performance of their algorithm on 80 images from 

GRIP – the Image Processing Research Group [21]. Their method can 

detect forgery with rotation, scaling JPEG compression, and adding 

noise. They claimed that using Zernike moments increased the 

performance of detecting rotated duplicated objects by 30%. 

Unfortunately, they did not publish in their paper any images which 

show detected forgery. Moreover, they did not consider blurred images 

or the case of multiple copy-move forgeries in their work. 

     In their follow-up paper [21], focusing on Circular Harmonic 

Transforms (CHT) features[47] they replaced the use of pixel values in 

the modified Patch-Match algorithm [48] by scale and rotation features. 

They used Zernike Moments [49], Polar Cosine Transform (PCT) [37] 

and Fourier-Mellin Transform [50] instead of pixel values. They then 

applied a post-processing procedure to remove instances of false 

matching. They tested the performance of their method on two datasets 

[20] and a dataset which they had generated (GRIP) [21]. Although 

their method is robust to translation, rotation, moderate scaling and post 

processing methods (e.g. adding noise and JPEG compression), they 
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did not consider blurring images in their work, which may reduce the 

efficiency of their algorithm.  

e) Histogram-based  methods  

 

  Lee [51] converted the colour image into grayscale. He 

divided the image into overlapped blocks (16×16) and applied Gabor 

filtering to each block. For each block, he computed a 12 bin 

Histogram of Oriented Gabor Magnitude (HOGM) descriptor. The 

feature vectors were lexicographically sorted. The matching blocks 

were found using the Euclidean distance between adjacent features. 

To reduce false matching, he removed the detected areas which were 

below a threshold size. He evaluated the performance of his method 

on two datasets, the CoMoFoD [2] and the Image Manipulation 

Dataset [20]. He considered rotation, scaling, JPEG compression, 

blurring, brightness adjustment and combination. His method can 

detect forgery with small angles of rotation and small scaling. 

Moreover, his work did not extend to noisy images. 

 

  Lee et al. [73] converted the colour image into grayscale and 

divided the image into overlapping blocks. They used blocks of three 

different sizes (16×16), (32×32) and (48×48), to discover the 

relationship between the block size and the forgery detection ratio. 

They then extracted the Histogram of Oriented Gradients (HOG) 

[12] from each block and sorted the generated feature vectors 

lexicographically. For each 5 neighbouring feature vectors, they 

computed the Euclidean distances to find the matched blocks. 

Finally, they removed the small detected areas which were less than 

64 pixels in size. They used the CoMoFoD [12] to test their 
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algorithm. Even though the HOG is not rotation invariant nor 

scaling, according to their paper they could detect forgery with very 

high correction results by translating small rotated objects and 

scaling. Moreover, they used lexicographical sorting which we 

found to produce errors in detecting CRMF because of the 

interpolation between the copy and rotated moved objects. 

 

f) LBP and clustering methods  

 

     Davarzani et al. [74] created a database composed of 100 images 

from Columbia University dataset [65] and their personal collection. 

They resized the image into 260×260 pixels, converted the coloured 

image into grayscale and divided the image into overlapping blocks 

10×10 in size. They filtered each block with Wiener filtering [13] to 

preserve the edges. They then extracted Multiresolution Local Binary 

Patterns (MLBP) [52] from each block. They used the k-d tree to find 

the 2ANN for each feature vector and refined their result using 

RANSAC. Their images were forged by copying a square region which 

makes the detection much easier than using irregular shapes and has a 

high detection ratio.  The average run time of their method is greater 

than of any other block-based methods. Moreover, their method can 

detect forgery with rotation through limited angles especially when the 

angle is less than 20° or a multiple of 90°.  

     Hussain et al. [53] transformed the RGB image into YCbCr colour. 

They used the chrominance space to extract two local texture descriptors 

from the image: the multi-scale Weber’s law descriptor (multi-WLD) 

[77] and the multi-scale Local Binary Pattern (LBP) [37]. They then used 

the Locally Learning Based (LLB) algorithm to remove the redundant 



Copy-Move Forgery Detection in Digital Images 

35 
 

features and reduce the dimension of the feature space. They used the 

Support Vector Machine (SVM) to find forgery at image level. Three 

data sets (CASIA v1.0, CASIA v2.0 [13], and Columbia colour [12]) 

were used to test the performance of their algorithm. The main drawback 

of their method, is that it cannot locate the forged objects on the image.  

 

     Akbarpour et al. [54] proposed a block matching method to avoid 

the feature matching of blocks belonging to the same area i.e. (sky, sea 

or grass). They focused on improving the time complexity of the block 

matching. They proposed a coarse-to fine block-matching model using a 

block clustering technique and local block matching. Their idea was to 

group similar blocks into a single cluster and then find matches by 

comparing the features of the blocks with each cluster, see Figure 2-21. 

They tested the performance of their method on MICC-F220 and other 

personal collected images. Their method can detect forgery better than 

lexicographical sorting on plain CMF but they did not consider rotation, 

scaling or postprocessing in this work. Moreover, they did not compare 

their method with the use of a k-d tree to find the nearest neighbour 

which, produces a better result with complex transformations than 

lexicographical sorting [55]. 
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 Figure 2-21: In the coarse-match step, all the image blocks are clustered on the 

basis of low accuracy features [54]. 

 

2.4.2 Keypoints Based Techniques 

     Huang et al. [26] extract SIFT keypoints from the image, and stored 

them in a k-d tree to ensure the efficient retrieval of the 2ANN. In their work, 

they used images from the internet. This method can partially detect CMF 

(one clone only), but they gave no consideration to post-processing methods, 

and the accuracy of their method is not reported. 

     Ardizzone et al. [56] extracted SIFT features, used a hierarchical 

tree to cluster keypoints and merged similar clusters. The SIFT feature 

descriptors of each cluster were used to match clusters. RANSAC was 

applied to remove the outliers and produce better matching results. They 

compared the content of the two matching clusters using the texture analysis 

and then thresholded their results. The algorithm gives acceptable results; 

the main weakness is that their method can detect copy-moved objects only 
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partially.  Moreover, they did not consider blurred images in this work and 

their method produced a false positive with translation, see Figure 2-22.         

  

Figure 2-22: an example of using [56]  to detect CMF, (left); an example of  cluster 

matching (right) showing final result with false positive. 

 

     Pan and Lyu [57] detected sparse SIFT keypoints, and used the best-

bin-first algorithm followed by RANSAC [58] to estimate possible 

geometric transformations. They built a correlation coefficient map between 

pixels in the same region and applied Gaussian filtering (7×7) to reduce 

noise, with a threshold imposed on the results. While using their own forged 

images, their method failed to detect forgery in some images with translation. 

Moreover, they falsely declared forgery in some original (untampered) 

images. 

     Amerini et al. [19] extracted SIFT features and used 2ANN to find 

multiple matches between feature vectors. They applied hierarchical 

clustering to their matched points and used RANSAC to estimate the 

geometric transform. The authors employed the Columbia photographic 

image repository [59] and personal collections of images. This method can 

partially detect multiple cloned regions, but it misses some objects and 

sometimes falsely detects forgery. Their algorithm cannot detect copied 

patches which have maximum uniform texture, such as the salient keypoints 

that are not covered by SIFT. 
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     Shivakumar and Baboo [12] used a Harris corner detector to detect 

keypoints, which works faster than SIFT. They then used a SIFT descriptor 

to represent the extracted keypoints. The k-d tree algorithm was used to find 

matching and to detect duplicated regions. Their algorithm is weak when 

faced with Gaussian noise, scaling, and rotation.  

     Chen et al. [60] detected the Harris corner interest points [61] in the 

image. To detect enough feature points, this method has to increase the 

threshold which controls the number of Harris points for each single image. 

Then for each Harris point, a sector mask must be created with a radius of 

20 pixels which is rotated by 10° every time. The mean and the standard 

deviation are computed for each sector and thus generated a 72-feature 

vector. Then the sector with the largest mean is taken as the direction mark 

of the circle block. The detected Harris points were matched on the basis of 

their feature vectors using the best-bin-first algorithm [62], with the distance 

between them necessarily greater than a certain threshold. Finally, all the 

matched points were displayed by circles of radius 20. To generate their 

forged images the authors used Adobe Photoshop with 24 uncompressed 

PNG images from the Kodak image database [63]. Squared regions of 

different sizes (60×60, 90×90 and 120×120) were copied and pasted on each 

image in their database. Their method can detect forgery on CMF and CRMF 

and is robust to JPEG compression and adding noise. However, for some 

images which contain flat regions, simply tuning for a global threshold will 

result in a many feature points leading to unnecessary computational cost, 

and unfortunately, the flat regions may still be not covered. Moreover, their 

method cannot detect scaled duplicated objects and can partially detect the 

copy-moved region, since the matched points are not clustered. 

     Insufficient SIFT keypoints, or even none, are found when the 

textures of some cloned regions are almost uniform (a flat region). To 
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overcome this problem, Guo et al. [64] used the Adaptive Non-Maximal 

Suppression (ANMS) [65] to detect Harris interest points on the image. They 

then used an improved rotation DAISY [66] descriptor to represent each 

keypoint. To find the matching between two feature vectors, they used the 

ratio between the distance of the closest neighbour and the second-closest 

one and compared it with the threshold. To test their method, they randomly 

duplicated a square or rectangular area on 800 images from the 

Uncompressed Colour Image Database (UCID) [67]. Their use of a key-

point based method made their method robust to rotation, scaling, JPEG 

compression and adding noise. Nonetheless, their method can partially detect 

the copy-moved region, because the matched points are not clustered. The 

use of ANMS to some extent solves the problem of detection keypoints in 

the flat regions. The ANMS was designed to obtain a fixed number of 

roughly uniform feature points according to the corner strength measure of 

each pixel location. Therefore, when an area is no more than roughly uniform 

(a flat region), the corner strength values are suppressed by the larger values 

around them, which produce a few or even no feature points. Moreover, these 

researchers did not consider blurred images in this work.   

     Jaberi et al. [68] used hysteresis thresholding to detect CMF. They 

determined the primary detection regions by finding the matches between 

sparsely extracted MIFT [69] features from the image. They then used 

RANSAC to remove outliers, and densely extracted MIFT features from 

each region. They used a fixed threshold (0.2) to find the primary matching 

between feature vectors. Next they tested the number of matches: if it was 

less than 10, they increased the threshold in steps of 0.05 until they had found 

10 matches or reached a limit of 0.3. To perform primary detection, they 

chose the first threshold of hysteresis, depending on the number of matches. 

In addition, they centred windows (15×15) at keypoints and densely 
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extracted the MIFT features from each window. They used the second 

threshold of hysteresis to test the similarity between corresponding feature 

vectors in each window. Their method could not detect forgery in flat regions 

because no interest point could be detected.  

     Amerini et al. [70] extracted SIFT features from the image and 

computed the Euclidean distance between each point. They used an adaptive 

version of the 2nd ANN to find the matching for each keypoint. The J-

Linkage method [71] was used to merge the overlapping points with similar 

affine transformation into one cluster. They used normalised Direct Linear 

Transformation (DLT) [72] to estimate the affine transformation for each of 

the matched keypoints. The block-wise correlation was used to locate the 

duplicated regions, followed by applying morphological operations to fill 

holes in the results. They tested their work on three datasets (MICC-F2000, 

MICC-F600[19] and  SATS-130[42]). Their method relies on SIFT which 

affects their detection on flat regions. Moreover, they did not consider any 

postprocessing methods in their work (JPEG compression, noisy images or 

blurred images).    

     Sliva et al. [73] converted the colour space of the tested image from 

RGB to HSV to decrease the generated false positives. The keypoints were 

detected on the V channel using SURF [4] and described with Haar Wavelet 

[74]. The Nearest Neighbour Distance Ratio was used to find matching 

points. They clustered the matched points according to their correspondence 

angles. A Gaussian pyramid decomposition was applied on the generated 

image to produce a partial detection map for each scale. Their method cannot 

detect the interest points on the flat regions and they did not consider 

postprocessing (e.g. blurring, adding noise, etc.) in their work.  

     Ardizzone et al. [75] used SIFT, SURF [4] and Harris [61] to find 

interest points on each image. A Delaunay triangulation [76] was built on the 
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extracted points, which subdivided the image into triangles. For each 

triangle, each colour channel was quantized into 8 bins to make a 3D 

histogram. The most frequent values of the histogram were considered the 

dominant colours of the triangle. Starting from the maximum angles, these 

researchers computed the triangle areas and inner angles in a counter-

clockwise direction. They segmented the image into triangles and described 

each triangle by its dominant colours, areas and ordered sequence of angles. 

The triangles were sorted according to colour and the primary matching 

triangles were found using the Sum of the Absolute Deviation between 

colour features. Then the centroids for matched tringles were computed and 

RANSAC was applied to remove outliners.  

The authors used their own dataset for their major evaluation; their method 

can detect parts of copy-move objects as shown in Figure 2-23. However, 

they cannot detect forgery on homogenous areas and the performance of their 

method deteriorates on images with complex scenes.  

 

 

 

 

 

 

 

 

Figure 2-23: (top to button, left to right) Original image, Forged Image, Ground truth, 

Detected copy-moved areas [75]. 
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     Xhu et al. [77] established a Gaussian scale space [3] and extracted 

the oriented FAST keypoints [78]  and the ORB [79]  feature from each scale. 

The Hamming distance was used to find the matching between the 

descriptors, before RANSAC was applied to remove the false matches. 

These researchers evaluated their method on images from Columbia 

University natural images collection [59] and from the internet. They did not 

cluster their detected objects and therefore their method can detect only parts 

of copy-moved objects.  

     Many methods of detecting CMF have been suggested. Christlein 

et al. [80] tested the 15 most prominent feature sets by creating a real-world 

copy-move dataset and a software framework for systematic image 

manipulation. They analysed the performance of the detection on a per-pixel 

basis and a per-image basis. In their experiments, SIFT and SURF keypoint-

based features work very well, and so do block-based DCT, DWT, kernel 

PCA, PCA and Zernike moments. 

     There is a great difference in computational cost and the number of 

detected details between block-based methods and keypoint-based methods. 

Keypoint-based methods have the advantage of low computational 

complexity (consuming very little amount of memory and much faster than 

block-based methods). Such methods, however, cannot produce highly 

accurate results (detecting only parts of copy-move objects or producing 

false negatives in flat regions).  

2.4.3 Segmentation Based Techniques 

     The authors of [81] tested four different image segmentation 

methods and used superpixels Simple Linear Iterative Clustering (SLIC) 

algorithm [7], to over-segment the images. They then extracted the SIFT 

features from each segment, built a k-d tree for them and used the KNN to 

find the matching between patches. They computed the number of matched 
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feature points and determined the suspicious pairs of patches which had 

many similar keypoints, applying RANSAC to estimate the transformation 

matrix between each pair of patches. They then used the dense SIFT 

descriptor to represent each pixel in all the matched patches and found the 

matching between the descriptors. Next they applied RANSAC to remove 

the outliers. Depending on their approach, they found that the method of 

segmentation does not greatly influence copy-move forgery detection. Their 

approach is similar to that taken for locating the matching between different 

images using SIFT features, considering that each segment as a different 

image. They used the segmentation method to divide the original image into 

various patches (small images). Their approach depends on extracting SIFT 

features at the level of segment instead of the image as a whole. Their method 

generated a high level of false positives with plain copy-move forgery.  

     Li et al. [27] also used the SLIC method to segment the images. 

They used different sizes of segmentation depending on the image content 

itself. They began by setting a large size for superpixels, with smooth 

images, and a small initial size with detailed images. Discrete Wavelet 

Transformation (DWT) was used to analyse the frequency distribution of the 

image. They found with this approach that the image is smooth when low-

frequency is detected in most of the frequency energy of the host image; 

otherwise, the image is detailed when the low-frequency energy accounts for 

a minority of the frequency energy of the host image. They then extracted 

the SIFT features from each segment and computed the Euclidean distance 

between features. The number of matched points were calculated and 

generated the correlation coefficient map to find the matched patches. They 

used the SLIC to segment each matched patch to a smaller size and measure 

the local color feature for each sub-patch. They merged the neighbouring 

sub-regions (patches) when the color features were similar and applied 
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morphological close operation to generate the regions where forgery could 

be detected. 

     Bhanu and Kumar [82] used SLIC to segment the image into more 

than 100 patches, and extracted the SURF [4]  from each patch. They then 

compared the feature vectors of each patch with the rest using Approximate 

Nearest Neighbours and thresholded their result. They used RANSAC to 

estimate the transformation matrix for the copy-moved patches and removed 

the outliers. They then used Adobe Photoshop and some images from a 

benchmark dataset with the MICC-F600 dataset to create their forged 

images. It was found that the benchmark dataset and the MICC-F600 dataset 

have their forged images and there was no need to used Adobe Photoshop to 

create others. In spite of the SURF is rotation and scaling invariant, their 

method could not detect rotated copy-move objects or scaled ones. They did 

not explain the JPEG compression ratio or specify the amount of noise that 

had been added to their tested images. Moreover, they did not consider 

blurred images in their work.  

     Sekhar and Shaji [83] presented a study taking a segmentation based 

approach and rotation invariant DAISY descriptors to detect copy-move 

forgery. In their study, they used three existing methods; they followed the 

same approach as [27] to segment the image. They proposed to use Adaptive 

Non-Maximal Suppression (ANMS) feature detection and DAISY 

descriptors [64] instead of SIFT. Finally, they found the matching between 

features using the g2NN approach [19]. Since they did not implement their 

proposed method, there is no evidence whether or not their method would 

work. 
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2.4.4 Open research issues   

     As far as we know, none of the previous work has considered 

possible distortion (vertical elongation, horizontal elongation, vertical skew 

and horizontal skew) or post-processing (Colour reduction, Contrast 

adjustments) in image manipulation. This highlighted research ideas that are 

developed in the following chapters which considered CMF detection in 

images with distortion and postprocessing. 
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Chapter 3                                           

Improved Dense Scale-Invariant 

Feature Transform for Copy-Move 

Forgery Detection 
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3.1 Introduction 

 As noted above, many methods of detecting CMF have been 

suggested. Christlein et al. [80] tested the 15 most prominent feature sets by 

creating a real-world copy-move dataset and a software framework for 

systematic image manipulation. They analysed the performance of the 

detection on a per-pixel basis and a per-image basis. In their experiments, 

SIFT and SURF keypoint-based features worked very well in detection 

CMF, and so did block-based DCT, DWT, kernel PCA, PCA and Zernike 

moments. 

 According to Christlein et al. [80], the Zernike moments achieved the 

most precise detection results (state of the art). Therefore, we compared our 

improved DSIFT with Zernike moments to see which produced better 

results. 

 One of our contributions is to have combined ideas derived from the 

keypoint and block-based methods. We chose the Scale Invariant Feature 

Transform (SIFT) method and applied it densely to make block-based 

matching possible. SIFT is the most widely used descriptor; it is distinctive 

and relatively fast. However, in some cases, the high dimensionality of the 

descriptor is considered a drawback in the matching step [26]. The other 

main contributions are improved the DSIFT and developed the automatic 

similarity thresholding.   

3.2 Related Techniques  

The techniques that were used in the proposed algorithm are as follows:  
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3.2.1 Scale Invariant Features Transform (SIFT) 

 In 2004 David Lowe presented a new algorithm, Scale Invariant 

Feature Transform (SIFT) [3], to extract keypoints and compute its 

descriptors. Four main steps are involved in the SIFT algorithm: 

I. Scale-Space Extrema Detection:  

 SIFT uses Difference of Gaussians as a scale-space filter to make the 

SIFT scale invariant. The Difference of Gaussian, 𝐷(𝑥, 𝑦, ϭ), is found as the 

difference of Gaussian blurring of an image with two different standard 

deviations; let them be ϭ and kϭ. This method was applied for different 

octaves of the image in the Gaussian Pyramid.  

 Once the DoG is computed, images are searched over scale and space 

to find local extrema. Each pixel in an image is compared with its 8 

neighbours as well as 9 pixels in the previous scale and 9 pixels in the next 

scales. If it is a local extrema, it is a potential keypoint. This basically means 

that the keypoint is best represented in that scale.  

 

II. Keypoint Localization 

 Once the locations of potential keypoints are found, they must be 

refined to produce more accurate results. SIFT uses a Taylor series 

expansion of scale space to produce more accurate locations of extrema. 

If the intensity at this extrema is below a specific threshold value, it is 

rejected.  

 The edges also need to be removed because the DoG has higher 

responses on edges. For this, a 2×2 Hessian matrix is used to compute 

the principal curvature at the location and scale of the keypoint. If the 

DoG is below the ratio of the largest to the smallest eigenvalue, from the 

2×2 Hessian matrix at the location and scale of the keypoint, the keypoint 
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is rejected. This step eliminates any low-contrast keypoints and edge 

keypoints, leaving only strong interest points [3]. 

III. Orientation Assignment 

 The orientation is assigned to each keypoint to achieve invariance to 

image rotation [3], this approach will explain in details in Section 3.3.1. 

IV. Keypoint Descriptor 

 In this step, the keypoint descriptor is created. A 16×16 

neighbourhood around the keypoint is taken. Each block is divided into 

16 sub-blocks of 4x4 size. For each sub-block, an 8-bin orientation 

histogram is created thus generating a 128-element feature vector for 

each block [3]. 

 Finally, the vector is normalized to set the maximum value of its 

elements to 255 and quantized to an 8-bit integer [84]. The SIFT 

descriptor is invariant to translations, rotations and scaling 

transformations in the image domain. Moreover the SIFT descriptor is 

robust to moderate perspective transformations and illumination 

variations. This descriptor has been used in many applications, e.g. in 

image matching and object recognition in real-world conditions.  

3.2.2 Dense Invariant Features Transform (DSIFT) 

 

 Bosch et al. [85] and Dalal [86] suggest computing the SIFT descriptor 

on dense grids (Dense SIFT). The DSIFT has been shown to produce better 

performance than SIFT for tasks such as object categorization and texture 

classification. A basic explanation for this is that a larger set of local image 

descriptors computed over a dense grid usually provides more information 

than the corresponding descriptors evaluated over a much sparser set of 

image points [85].  
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 The available implementation of DSIFT (e.g. VLFeat Dense SIFT) is 

not rotation or scale invariant; it is equivalent to applying SIFT on a dense 

gird of locations at a fixed scale and orientation.  

3.2.3  Zernike moments 

 The regular moments can be defined as the projection of the 𝑓(𝑥, 𝑦) 

function onto the monomial 𝑥𝑝𝑦𝑞. Consider that the basis set 𝑥𝑝𝑦𝑞 is not 

orthogonal. Therefore, the recovery of an image from these moments is 

difficult and computationally expensive. Furthermore, the 𝑚𝑝𝑞 holds a 

certain amount of redundant information.  

 Zernike moments can be used as rotation invariant features, since 

rotating the image does not change the magnitude of its Zernike moments. 

In addition, it is easy to reconstruct an image from Zernike moments because 

the orthogonality property allows the individual contribution of each order 

moment (information content) to be separated. These individual information 

items of content can be used to reconstruct the image.         

 Consider that Zernike moments are rotation invariant only; to make 

them scale and translation invariant, the image must be first normalized using 

regular moments.  

 In image processing, Zernike moments carry out a mapping function 

of an image onto a set of complex Zernike polynomials [87]. Since these 

Zernike polynomials are orthogonal to each other, Zernike moments can 

characterize the features of an image with no redundancy or overlap of 

information between the moments [88][49]. With these characteristics, 

Zernike moments have been used as feature sets in applications such as 

content-based image retrieval [89], pattern recognition [88], and other image 

analysis systems [90][91].  
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As noted above (Chapter 2 several papers have used Zernike moments in 

CMF detection  [44] [45][21]) .  

3.3 Improved Dense Invariant Features Transform (DSIFT) 

3.3.1 Steps to Improve DSIFT 

 On the basis of local image properties, SIFT assigns a dominant 

orientation for each keypoint. When building the descriptor, each patch 

is rotated according to this orientation so that the subsequent descriptor 

is robust to rotation [3]. CRMF detection requires a rotation-invariant 

descriptor; thus, we improved the DSIFT descriptor to make it rotation 

invariant. We improved two aspects of the DSIFT descriptor: first, we 

used a different method to compute the dominant orientation, and, 

second, we used circular blocks instead of square ones. 

Dominant Orientation 

  SIFT uses the following approach to detect the dominant orientation 

for each patch. For each keypoint, compute the gradient orientations in 

its 16×16 neighbourhood. An orientation histogram containing 36 bins 

covering 360° is built. Each value added to the histogram is weighted by 

its gradient magnitude. Peaks in the orientation histogram represent the 

dominant directions of the keypoint. The highest peak in the histogram 

and any other local peak within 80% of the highest peak are used to 

represent the dominant orientation for the keypoint. Thus with multiple 

peaks of similar magnitude, multiple keypoints with different directions 

are created at the same location. 

 As Lowe explains [3], only about 15% of the keypoints are assigned 

multiple orientations, and this step significantly increases the stability of 

matching. Finally, to produce a more accurate result the peak in the 

orientation histogram is interpolated with the closest bins.  
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 The standard setting of SIFT assigns multiple orientations with 

multiple peaks of similar magnitude, which causes problems at the CMF 

stage. It is possible to choose one orientation for each patch, but this can 

significantly reduce the stability of matching. Obviously, there is a trade-

off between robustness and the multiple orientations approach.  

We used two methods to detect the dominant orientation.  

1. Detect the canonical orientation using the central moments 

  We used the second order and third order central moments to detect 

the canonical orientation. This method is more accurate and faster than 

the SIFT’s method for detecting the dominant orientation. The second 

order central moment (moment of inertia) can be used to detect the 

principle axes of the patch, the region around the keypoint. The angle of 

the principle axis of the least inertia is used to describe the object 

orientation. This angle has a 180° ambiguity; the third central moment 

(projection skewness) is used to resolve this ambiguity. The rotation of 

an object by 180° changes the sign of the projection’s skewness on either 

axis. In other words, the sign of μ30was used to differentiate between the 

possible orientations [92]. This method works very well and is much 

faster than the SIFT method, but it still takes a long time and many 

computations to find the canonical orientation for all the patches in the 

image. 

The formulae to find the angle of the principle axis of least inertia is 

𝜃 =
1

2
 arctan (

2 𝜇11

𝜇20−𝜇02
)                  (3-1) 

Every patch is rotated by the estimated angle θ and 180° is added to θ  

when μ30 is less than zero. 

Where   𝜇30 = 𝑚30 − 3𝑥̅𝑚20 + 2𝑥̅2𝑚10             (3-2) 
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2. Detect the canonical orientation using intensity centroid measure 

 Instead of the third order central moments, standard moments 

(intensity centroid measure) [93], were used to find the canonical 

orientation for each patch in the image.  

The moment can be defined as follows: 

𝜇𝑝𝑞 =  ∑ 𝑥𝑝 𝑦𝑞 𝑥,𝑦 𝐼(𝑥, 𝑦)            (3-3) 

The centroid can be determined as: 

𝐶 = (
𝑚10

𝑚00
,
𝑚01

𝑚00
)                           (3-4) 

Consider that O is the origin and the canonical orientation is the angle of 

the vector 𝑜𝑐⃗⃗⃗⃗ .       

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝜇01

𝜇10
)                  (3-5) 

 This method (intensity centroid measure) [93] is much faster than the  

third order central moment and gives the similar results. It reduces the 

computing time needed to find the canonical orientation and gives an 

accurate estimation of the orientation for all patches in the image. The 

proposed method has no quantization error or problem of multiple 

orientations. Moreover, Xu et al. [94] have found that centroid based 

orientation can estimate orientation more accurately and with better noise 

resistance ability than gradient based orientation. 

Circular Blocks 

 SIFT considers a square region around the keypoint, which increases 

the border effects on this region. In spite of using a circular shaped 

Gaussian weighting in the standard SIFT can reduce the edge effects of 

square blocks, but it cannot totally eliminate the edge effects as circular 
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blocks do. Our experimental results showed that the performance in 

forgery detection is sensitive to the edge effects. The simple explanation 

is that the multiple orientations approach makes the detection of CRM 

forgery more difficult and increases the number of false matches. This is 

simply because the bigger the interpolation change, the bigger the 

threshold value needed to distinguish similarities between feature 

vectors, and the higher the false matching ratio.   

 Instead of square area, we considered a circular area to reduce the 

border effects. Each block within a radius of 7.5 was divided into 4×4 

sub-regions. A comparison between circular and square neighbourhoods 

is described in Section 3.3.3. 

3.3.2 High-level description of the proposed algorithm to compute 

improved DSIFT 

 The steps in building our improved DSIFT descriptor are summarized 

 as follows: 

1. Transform a colour image into greyscale it is a colour image.  

2. For each pixel in the image, consider its 16×16 neighbourhood.  

3. Mask each neighbourhood to use only the central disk with a 

radius equal to 7.5.  

4. Use the method based on the intensity centroid measure to find 

the canonical orientation for each circular patch.  

5. Rotate each circular patch according to its canonical orientation.  

6. Compute the gradient magnitude and orientation for each circular 

patch. 

7. Use the Gaussian function to weight the gradient magnitude.  

8. For each 4×4 sub-region in the circular patch, build an 8-bin 

gradient magnitude of orientation histogram.  
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9. Accumulate each bin according to its gradient magnitude of 

orientation.  

10.  Concatenate the 16 histograms to build a 128-element feature 

vector.    

11.  Normalize the feature vector between 0 and 1. 

3.3.3 An Experiment to Test the Rotation Invariance of the improved 

DSIFT: 

 In Section3.3.1, we described how the level of rotational invariance of 

the DSIFT descriptor was improved. We also conducted an experiment to 

test our descriptor.  For 40 different forgery images, we randomly selected 

100 blocks from each image and computed our improved DSIFT descriptors 

for these blocks. Next, we randomly rotated these blocks, considering all the 

possible rotation angles (0°–360°), and computed our improved DSIFT 

descriptors for these rotated blocks. Then we computed the Euclidean 

distance between the descriptors of the original and the rotated blocks. The 

average Euclidean distance between 4000 pairs of improved DSIFT 

descriptors, built from 4000 different blocks before and after rotation, was 

0.0487, see Figure 3-1.  

 

Figure 3-1: Histogram of the Euclidean distance between 4000 improved DSIFT 

descriptors. 
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 The standard DSIFT is not rotation or scale invariant, see 

Section 3.2.2. We built a rotation invariant DSIFT using the standard SIFT 

method to estimate the dominant orientation and we called it Rotation 

Invariant DSIFT (RIDSIFT). To compare the robustness of our improved 

DSIFT rotation with the RIDSIFT, we repeated the previous experiment 

using the RIDSIFT. The average Euclidean distance between 4000 pairs of 

descriptors (square block), built from 4000 different blocks before and after 

rotation, was 0.8787, see Figure 3-2. 

 

Figure 3-2: Histogram of the Euclidean distance between 4000 RIDSIFT 

descriptors with square blocks. 

 We then repeated the same experiment using the RIDSIFT with 

circular blocks instead of square ones; this time the value of the average 

Euclidean distance was 0.3396, see Figure 3-3. It was obvious that our 

version of DSIFT (improved DSIFT) was more robust to rotation than 

RIDSIFT.    
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Figure 3-3: Histogram of the Euclidean distance between 4000 RIDSIFT 

descriptors with circular blocks. 

3.4 Automatic Similarity Thresholding  

 The similarity threshold between feature vectors is one of the most 

important parameters in detecting CMF. This threshold depends on the 

image itself and is different from one image to another. The image 

characteristics (e.g. the texture, the colour distribution, and the edges) 

influence the similarity threshold.  

 The most common scenario in selecting the similarity threshold is as 

follows:  Set a primary threshold to test all images in the training dataset, 

and then change (decrease, increase) this threshold, depending on the initial 

result of using it. Choose the single threshold which produces the best results, 

e.g. the highest F-measure, for all the images in the dataset. The major 

drawbacks of this approach are that it is time-consuming, and that it gives 

one fixed threshold for many different images. Obviously, various datasets 

need different thresholds and therefore it is necessary to repeat the 

optimization scenario. This substantially increases the evaluation time. 

 It is useful to have a new fast method of estimating the similarity 

threshold for each image separately.  
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 Here, we propose to find the threshold by optimizing a cost function 

based on two probability distributions: one corresponds to the correct 

matching of a patch with its rotated and scaled counterpart, and the other is 

related to the false matching of different patches. 

 Suppose R(t) and V(t) are respectively the correct and false matching 

distributions related to threshold t. Then the cost function is defined as the 

estimated probability H(t) of correct classification in forgery detection for a 

given threshold t, 

𝐻(𝑡) = ∫ 𝑅(𝑡)𝑑𝑡 + ∫ 𝑉(𝑡)𝑑𝑡
∞

𝑡

𝑡

0
      (3-6) 

The optimal threshold T corresponds to the maximum value of  H(t), i.e., 

𝑇 = 𝑎𝑟𝑔𝑚𝑎𝑥 
𝑡

𝐻(𝑡)                        (3-7) 

Figure 3-4 shows an example of the R(t) and V(t) distributions, and the 

corresponding optimal threshold. 

 

Figure 3-4: an example of plotting histograms R and V. 

 

R(t) 

V(t) 
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 In principle, R(t) and V(t) should be continuous functions. However, 

we can get only a few discrete points to represent the distributions, so the 

optimal threshold T will be computed on the basis of the discrete numbers.  

 The first distribution, R(t), represents the distribution of the errors 

caused by interpolation during rotation and scaling. To estimate this 

distribution, we conducted the following experiment. Consider that the 

image size is (M×N); the block size is (B×B) and K = ((M-B)×(N-B) /10). 

For each image in the dataset, we randomly selected K patches, and 

computed the improved DSIFT descriptor for each patch. We randomly 

rotated each patch by a value in the range (0°-360°) and computed the 

improved DSIFT descriptor for the rotated patch. 

 Then we randomly scaled each patch by factor (0.5-1.5) and computed 

the improved DSIFT descriptor for the scaled patch. We computed the 

Euclidean distance between the feature vector of the original patch and the 

feature vector of the rotated/scaled patch and saved it in list {R}. 

 The second distribution V(t) is the distribution of mismatching blocks, 

and to estimate this distribution we randomly selected K pairs of patches 

from the image. We computed the improved DSIFT descriptor for each 

patch, and then computed the Euclidean distance between the two feature 

vectors and saved it in list {V}. 

 The two lists of distances {R} and {V} were binned to build 

histograms R and V, respectively. The optimal threshold was then simply 

computed on the basis of the histograms. That is, H(t) was computed as the 

sum of the cumulative histograms of R(t) from 0 to t and of V(t) from t to 

the maximum of t.  

 To determine the number of bins in the histograms, we use Scott's rule 

[95]. We wanted the two histograms to have the same bin width. The bin 
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width was calculated by means of the following formula: h=3.49σ/∛n, where 

h is the bin width, n is the number of elements in each list (here, equalling 

K), and  is the average value of the standard deviations of lists {R} and 

{V}.   

 The proposed method is fast. It required only ~9 seconds to find the 

optimal threshold for an image of size 512×512. 

3.5 The proposed algorithm for detecting CMF using 

improved DSIFT 

 Bosch et al. [85] illustrated the DSIFT can perform better than SIFT 

in texture classfication. Using dense SIFT, instead of standard SIFT, 

increases the running time but provides robust features which are 

systematically distributed over the whole image. For example, computing 

DSIFT for a 512×512 image with a block size of 16×16 generates 247009 

feature vectors. Computing sparse SIFT for the same image size typically 

generates about 750 to 1350 keypoints/feature vectors.  

3.5.1 High-level description of the proposed algorithm to detect CMF 

using Improved DSIFT 

 The algorithm for copy-move forgery detection is as follows:  

 We converted the colour image to grayscale. Flat regions increase 

false matches. Such flat regions occur where the pixel intensity values are 

similar to each other and change smoothly over comparatively large regions 

(e.g. sky, sea, etc.). The similarity between pixel intensity values in a large 

region produces a large number of similar feature vectors, which are 

considered to be copy-move regions in the matching step. We used the 

Median Absolute Deviation (MAD) to reduce the effect of flat regions. If a 

block’s MAD value was larger than the threshold, we built the improved 

DSIFT descriptor to the tested block; otherwise, we rejected it. This 
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threshold had been optimized experimentally on the tested dataset. The 

proposed method reduced the number of false matches in the flat region(s) 

and cut the run time significantly.  

 We built the k-d tree for all feature vectors and used the Fast Library 

for Approximate Nearest Neighbours (FLANN) [96] to find the 2nd 

Approximate Nearest Neighbour for each feature vector.  

 The Approximate Nearest Neighbour is used since the interpolation 

and postprocessing operations add some changes to the copy-moved 

blocks/feature vectors. Consider the 1st Approximate Nearest Neighbour 

refers to the feature vector itself, the 2nd Approximate Nearest Neighbour is 

the coped-moved one within a specific threshold.   

 We computed the Euclidean distance between each vector and its 2nd 

Nearest Neighbour and saved feature coordinates when their distance was 

less than the weak threshold. We applied Neighbourhood Clustering to 

reduce the false matches and called the RANSAC to remove the outliers. We 

employed hysteresis to grow the primary detection and recoloured the 

matched blocks.   

 The proposed algorithm to detect CMF using improved DSIFT is 

described in full detail as follows: 

1) Convert the image to grayscale if it is a colour image. 

2) Use the proposed method in section 3.4 to compute the 

OptimumThreshold. 

3) Divide the image into overlapping blocks (16 × 16) 

If the Median Absolute Deviation (MAD) of the tested 

block is greater than Threshold0 = 0.09.    

i. Compute the feature vector of the improved DSIFT 

descriptor of the tested block. 



Copy-Move Forgery Detection in Digital Images 

62 
 

ii. Save the feature vector and the coordinates of the 

tested block. 

End  

4) Build a k-d tree for the feature vectors and find the 2nd 

Approximate Nearest Neighbours for each element in the tree. 

5) Find the matched feature vectors (blocks) which satisfy: 

a. The Euclidean distance between feature vectors is less 

than Threshold1 = (OptimumThreshold/2). 

b. The distance between the centres of the two matched 

blocks is less than Threshold2 = 16√2.  

6) Save the coordinators of the two matched blocks in a List.     

7) Use the neighbourhood clustering method, proposed in 

Section 3.7, to remove the false matching from the List. 

8) Call RANSAC to estimate the transformation of the List. 

9) Use the hysteresis technique, proposed in Section 3.8, to grow 

regions of the List. 

10) Remove small areas which less than (Threshold3=320 pixels) 

in size. 

11) Mark the blocks as matching. 

12) Morphologically close the image.  

 

3.6 False Matching Removal 

We tested the following three methods to remove potential false matches: 

1) Counting shift vectors: This method involved creating a list of 

coordinates for each potential cloned patch and sorting it. Then we 

computed the shift vector (spatial distance) between each related 

point. If the number of each of the shift vectors was greater than 
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the threshold, the patches were considered to be a forgery. This 

method is appropriate in the case of translation but not that of 

CRMF detection. 

 

2) Neighbourhood Clustering: The copied and pasted blocks each 

had to comprise at least three neighbouring blocks within a radius. 

This method produced a very good result; details of the 

neighbourhood clustering are given in Section 3.7. 

 

3) RANSAC: This is an iterative method of estimating the 

parameters of a mathematical model from a set of observed data 

which contains outliers. In the initial stage. RANSAC uses a 

dataset which is as small as possible; it consistently enlarges this 

dataset whenever possible. RANSAC can be used to robustly 

estimate the geometric transformation between matched points 

and remove outlier blocks [58]. It can cope with more than 50% 

of the outliers, making it more robust than many other parameter 

estimation technique (such as the least median of squares [97]). 

Figure 3-5 shows an example of using RANSAC for CMF 

detection to remove false matching. 

 

Figure 3-5: from the left: the forged input image; forgery detection with false 

matches; the result of RANSAC; the masks that were generated (final result). 

 



Copy-Move Forgery Detection in Digital Images 

64 
 

3.7 Neighbourhood Clustering 

 Christlein et.al [98] suggest Same Affine Transformation Selection 

(SATS) to estimate the affine transformation parameters of the copy-moved 

areas. To increase stability they iteratively refine their basic transformation 

estimation.  

 We found that there is no need to include this step and used RANSAC 

to remove the outliers. We propose a simple version of SATS to remove false 

matches by analysing the neighbourhood of a possible match. The copied 

and moved blocks each had to comprise at least three neighbouring blocks 

within a radius (r=32), see Figure 3-6.  

 We considered neighbourhood clustering to reduce the false matches 

and the number of outliers. Without neighbourhood clustering, RANSAC 

may fail to estimate the transformation accurately because of the large 

number of outliers in some images.  

 

 

Figure 3-6: an example of matching two blocks using neighbourhood clustering; 

right: a block diagram of two matched blocks using neighbourhood clustering 

within a radius [99]. 
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3.8  Hysteresis Technique  

 To produce the best possible result in the CMF detection, we used a 

hysteresis technique. Hysteresis thresholding is based on using two 

thresholds, one low and one high; it considers spatial information to improve 

the result. This technique has been employed in edge detection [100]. 

 Recently, the hysteresis technique has been used in forgery detection 

[68]; the “strong” features have been detected using the low threshold, and 

the high threshold has been used to find the “weak” features. From our 

experiment, we found the performance of the automatic thresholding to be 

good, although it may overestimate the required threshold. Therefore, we 

need some post-processing technique to remove the false matching.   

 To use hysteresis thresholding in CMF detection, we used the 

OptimumThreshold, which is estimated using our proposed method in 

Section 3.4, and developed the following approach.  

 Find the 2ANN for each feature vector within the low threshold 

(OptimumThreshold/2) [100] [101] and this will reduce the number of false 

matches. The low threshold is used to detect similar “strong” features, which 

represent the pixels from the original and from the duplicated regions. 

RANSAC is applied to remove the outliers and find the transformation 

(coordinates) of the matched features.  

 For each coordinate in the transformation list, use the block 

dimensions to recolour the surrounding area. In the next step, dilate each 

region using a disk with a one-pixel radius. For each of the newly added 

pixels, use the original list of the feature vector to retrieve the corresponding 

information. Find the 2ANN for each new feature vector. If the Euclidean 

distance between the matched features is less than the high threshold 

(OptimumThreshold), store the coordinates of these features. 
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 RANSAC is applied to remove any new outliers and keep the new 

coordinates within the previously found transformation. Add the new pixels 

to the matching list and update the transformation matrix. Grow the detection 

regions by adding a new block located at the centre of the new matched pixel. 

Repeat this process until no more pixels can be added to the primary 

detection. This region growing technique depends on the primary detection 

of the strong features matching the spatial information, to add one block each 

time to the edges of the primary detection [102].  

 The high level description of the proposed method to use hysteresis 

technique with CMF detection is as follows: 

 

 Input: List A, List B of coordinates, where Ai match Bi , The whole 

 Feature Vectors(FV) list.     

 Output: List C and List D, where Cj match Dj.  

1. Use List A, List B and the block dimensions to build a binary 

mask.  

2. While Boolean ==true 

a) Dilate each region using a disk has a one-pixel radius. 

b) Use the coordinates of each newly added pixels to find 

the corresponding feature vector in the (FV) list.  

c) Build a k-d tree for the new feature vectors and find the 

2nd Approximate Nearest Neighbours for each element in 

the tree. 

d) Find the matched feature vectors (blocks) which satisfy: 
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i. The Euclidean distance between feature vectors is 

less than Threshold1 = (OptimumThreshold). 

ii. The distance between the centres of the two 

matched blocks is less than Threshold2 = 16√2.  

Save the coordinates of new matched blocks/features in 

List E, List F.     

e) If (List E) neighbour to (List A)  

 List C= concatenate (List A, List E) 

 List D= concatenate (List B, List F) 

else 

     List C= concatenate (List A, List F) 

 List D= concatenate (List B, List E) 

end 

f) Call RANSAC to estimate the transformation of the List C 

and List D.    

g) If the size of (List A == List C and List B == List D) 

  Boolean = false 

      End 

3. End 

  

Figure 3-7 shows an example of growing the detection regions which 

increases the F-measure from 0.89 to 0.93.  
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Figure 3-7: An example of growing the detection regions with hysteresis 

thresholding. 
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Figure 3-8: An example of growing the detection regions with hysteresis 

thresholding. 

 

 As illustrated in Figure 3-8, the detection regions were grown, and the 

F-measure increased from 0.69 to 0.97. 
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3.9  The Experiments 

As previously explained in Section 2.3.1, we consider CoMoFoD dataset 

(small images) [2]  in order to evaluate our algorithms.  

3.9.1  The Difference between Matching Points Algorithms in CMF 

Detection 

 Previous works suggested two major methods for finding similar 

blocks in CMF Detection. The first method is sorting the feature vectors 

lexicographically and computing the similarity value between blocks (the 

Euclidean distance). The second method is building the k-d tree and finding 

the 2ANN. We tested both methods and found them to have similar 

effectiveness for translation CMFD, but the first method failed with rotation 

and we could not detect forgery with it. 

 To understand the reason for the failure of the first method, we carried 

out the following experiment: We computed the descriptors for two cloned 

blocks and saved them. Then we built the descriptors of the whole image, 

sorted them lexicographically and searched for the two saved descriptors. If 

lexicographic sorting worked properly with our method, the two saved 

descriptors would have been adjacent. We found that there were 189 

descriptors between the two saved descriptors. The reason for this is that 

lexicographic sorting works like a dictionary. Consider that the interpolation 

generates changes between the descriptors of the original and the rotated 

patches. In that case, lexicographically sorting obviously cannot be used to 

detect forgery with rotation. 
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3.9.2  CMF detection with translation and Original Genuine Images 

 The CoMoFoD contains 40 different images with plan CMF, we tested 

all available images and could detect forgery in all images, but also incurred 

some false detections, see Figure 3-5. To remove the false matching, we 

tested three different methods; RANSAC produced the best results with a 

very short run time, as shown in Table 3-1.  

Table 3-1 The results of experiments with translation. 

 

 

 

 

 Then we used the same pipeline with Zernike moments to test the same 

images. The improved SIFT produced similar or better results than the 

Zernike moments, see Figures 3-9, 3-10, 3-11 and 3-12. 

 We conducted an experiment on 40 different CoMoFoD original 

genuine images (without forgery), and the algorithm produced an excellent 

result as the F-measure = 0.994 and detected no forgery on 37 images out of 

40. 

 

 

 

 

 

 

 

Post-processing Method to 

Remove False Matching 

F-Measure Total Running Time 

For 40 images 

Without Post-processing 0.87 155 sec 

Shift Vector 0.87 45 min 

Neighbourhood Clustering 0.91 210 sec 

RANSAC 0.93 170 sec 
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Figure 3-9: An example of improved DSIFT (left to right, top to bottom) input 

image A, primary detection RANSAC result, final result after hysteresis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10: An example of Improved DSIFT (left to right, top to bottom) input 

image B, primary detection RANSAC result, final result after hysteresis. 
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Figure 3-11: An example of improved DSIFT (left to right, top to bottom) input 

image C, primary detection RANSAC result, final result after hysteresis. 
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Figure 3-12: Using Zernike moment to detect forgery, (left to right) primary 

detection, RANSAC result, final result after hysteresis. 

3.9.3  CMF detection with translation and post-processing (attacks) 

 To create more realistic CMF images and to hide the traces of forgery, 

the forger may use post-processing methods. In our work, we considered 

different types of attack (image blurring, brightness change, colour 

reduction, JPEG compression, contrast adjustments and added noise). We 

used our suggested method to test 200 images with different types of post-

processing. Then we used the same pipeline with Zernike moments to test 

the same images. In most cases, our improved DSIFT produced better results 

than the Zernike moments did. Our method detected the forgery in 198 
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images out of 200, see Figure 3-13, Figure 3-14, Figure 3-15 and 

Figure 3-16. 

 Table 3-2 Comparison between improved DSIFT and Zernike moments for CMF 

detection with different types of post-processing (Avg. of F-Measure). 

 

 

Post-processing 

 

Improved 

DSIFT 

Detected 

images using 

improved 

DSIFT 

 

Zernike 

moments 

Detected 

images using 

Zernike 

moments 

Image Blurring, 

(5×5 average filter) 

 

0.78 

 

38 

 

0.56 

 

34 

Brightness Change 

Range (0.01, 0.8) 

 

0.87 

 

40 

 

0.45 

 

33 

Colour Reduction 

(32 intensity levels) 

 

0.90 

 

40 

 

0.49 

 

33 

JPEG Compression 

(quality factor=40) 

 

0.78 

 

40 

 

0.60 

 

33 

Contrast 

Adjustment 

Range (0.01,0.8) 

 

0.90 

 

40 

 

0.48 

 

32 

 

 We used our improved DSIFT to detect CMF with different levels of 

added noise. We also used Zernike moments to detect CMF with the same 

noisy images. 

 We achieved satisfactory results, and got better results than we did 

with Zernike moments, see Table 3-3. 

Table 3-3 Comparison between improved DSIFT and Zernike moments on detection 

CMF with different levels of noise (Avg. of F-Measure). 

 

 

 

Value of White 

Gaussian 

Noise (AWGN) 

 

Improved 

DSIFT 

Detected 

images with 

improved 

DSIFT 

 

Zernike 

moments 

Detected 

images with 

Zernike 

moments 

0.001 0.68 36 0.63 36 

0.005 0.54 32 0.51 31 

0.01 0.48 32 0.41 26 
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Figure 3-13: An example of using improved DSIFT to detect forgery in post 

processed images (1st row) the steps of detection in image with brightness change, 

(2nd row) the steps of detection in image with Contrast Adjustment, (3rd row) the 

steps of detection in image with Colour Reduction, (4th row) the steps of detection 

in image with Image Blurring. 
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Figure 3-14: An example of using improved DSIFT to detect forgery in post 

processed images: 1st row, left to right, primary detection in a JPEG image; 

RANSAC result; final result after hysteresis. 2nd row, left to right, primary detection 

in noisy image; RANSAC result; final result after hysteresis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-15: An example of using Zernike moments to detect forgery in post 

processed images: 1st row, the steps of detection in an image with Colour Reduction; 

2nd row, the steps of detection in an image with Image Blurring. 
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Figure 3-16: An example of using Zernike moments to detect forgery in post 

processed images: 1st row, the steps of detection in an image with JPEG compressed 

image; 2nd row, the steps of detection in an image with noisy image; 3rd row the 

steps of detection in an image with brightness change; 4th row) the steps of detection 

in an image with Contrast Adjustment. 
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3.9.4  Copy-Rotate-Move Forgery (CRMF) detection  

 An experiment was conducted on 40 different images with CRMF. 

These forged images had object(s) rotated by angles of different degrees (e.g. 

180°, 90°, 10°, 2°, 4°, −4°, 5°, −7°, −3°, 1°...etc.). We successfully detected 

forgery on all the tested images where the F-measure was 0.85, see Table 3-4.  

 
Table 3-4 Comparison between improved DSIFT, Zernike moments and RIDSIFT in 40 images 

with CRMF (Avg. of F-Measure) 

 

 Table 3-4 shows the results of using our improved DSIFT, Zernike 

moments and RIDSIFT on 40 images with CRM objects. The table shows 

the effect of using the following: 

1. The fixed threshold and automatic thresholding, see Section 3.4 

2.  The post-processing method to remove false matches, see 

Section 3.6.  

3. The hysteresis technique to grow the initial matches, see 

Section 3.8 

 

 

 

Methods to remove false 

matches 

Improved 

DSIFT 

Zernike 

moments 
RIDSIFT 

Without  post-processing 0.40 0.28 0.32 

Fixed threshold, 

Postprocessing 
0.76 0.68 0.54 

Automatic thresholding,                   

post-processing 
0.78 0.71 0.55 

Post-processing, 

fixed threshold & hysteresis 
0.79 0.72 0.56 

Post-processing, automatic 

thresholding & hysteresis 
0.85 0.73 0.58 



Copy-Move Forgery Detection in Digital Images 

80 
 

 Below, some examples with different image properties are shown. 

Figure 3-17 shows the detection of multiple CRMF regions. Figure 3-18 and 

Figure 3-19 show images with homogeneous textures in which it is very hard 

to detect forgery with the naked eye. In Figure 3-20, the size of CMF region 

is very small and it is hard to detect duplicated regions. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-17: An example of detecting multiple duplicated objects using Improved 

DSIFT, (top to bottom, left to right) Forged image, copied object rotated by 5° and -

7°, primary detection, RANSAC result, RANSAC result, final result after hysteresis. 
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Figure 3-18: An example of detecting duplicated objects using improved DSIFT (top 

to bottom, left to right) Forged image, copied object rotated by 40°, primary 

detection, RANSAC result, final result after hysteresis.  

 
 

 

 

 

 

 

 

 

 

 

Figure 3-19: An example of detection duplicated objects using improved DSIFT, (top 

to bottom, left to right)  Forged image, copied object rotated by 50°, primary 

detection, RANSAC result, final result after hysteresis. 
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Figure 3-20: An example of detecting duplicated objects using improved DSIFT (top 

to bottom, left to right)  Forged image, copied object rotated by -1°, primary 

detection, RANSAC result, final result after hysteresis. 

 As illustrated in Figure 3-21 and Figure 3-22, the Zernike moments 

are less efficient than improved DSIFT in forgery detection.  

 

   

 

 

 

 

 

 

 

 

Figure 3-21: An example of detecting multiple duplicated objects using Zernike 

moments: (top to bottom, left to right) primary detection, RANSAC result, RANSAC 

result, final result after hysteresis. 
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Figure 3-22: An example of detecting duplicated objects using Zernike moments: 

(left) Forged image, (right) final result after hysteresis. 

 

 Then, we considered CRMF detection with different types of post-

processing (image blurring, brightness change, colour reduction, JPEG 

compression, contrast adjustments and added noise), the results are shown in 

Table 3-5. 
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Table 3-5 Using Improved DSIFT for CRMF detection with different types of post-

processing (Avg. of F-Measure). 

Post-processing F measure 

Detected images  

using improved DSIFT 

Rotation 0.85 40 

Image Blurring,(5x5 average filter) 0.67 36 

Brightness Change Range (0.01, 0.8) 0.70 36 

Colour Reduction (32 intensity levels) 0.70 36 

Contrast Adjustment Range (0.01,0.8) 0.70 36 

White Gaussian Noise 

(AWGN) =0.001 
0.65 31 

JPEG (40%) 0.65 31 

 

3.9.5  Copy-Move Forgery with Scaling  

 Since the standard SIFT [3] determines the characteristic scale of an 

interest point, it is invariant to scale (as well as rotation). Our improved 

DSIFT is also rotation invariant, but not scale invariant; yet it is robust to 

small changes in scale.  

 We conducted an experiment to test the robustness to scale of our 

improved DSIFT. The overall F-measure is 0.43 for 40 different images with 

different scale factors (40%-150%). Moreover, the improved DSIFT with the 

proposed algorithm detected forgery on 30 images out of 40 with various 

scaled duplicated regions, see Figure 3-23.  
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Figure 3-23: Average F-measure for 80 images with different scaling factors and 

the radius of each disk represents the square root of the number of images. 

 

    Here the radius of each disk represents the square root of the number of 

images. It can be seen that the graph is noisy, since the dataset [23] provides 

only a small number of test images for each scale factor. The low F-measure 

values with scaling factors close to 100% are generated from a small number 

of samples, as indicated by the small disks. Therefore, the 

descriptor/algorithm succeeds in detecting forgery on many different images 

with moderate scale factors. Below are some examples of detecting 

duplicated regions with different scales, see Figure 3-24, Figure 3-25 and 

Figure 3-26. Figure 3-27 shows an example of the failure of detection 

duplicated scaled objects where the CMF object has been scaled up by 50%. 



Copy-Move Forgery Detection in Digital Images 

86 
 

 

 

 

 

 

 

 

 

 

 

Figure 3-24 example of detecting duplicated scaled objects using improved DSIFT: 

(top to bottom, left to right) Forged image, copied object scaled down by 15%, 

primary detection, RANSAC result, final result after hysteresis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-25 An example of detecting multiple duplicated objects using improved 

DSIFT: (top to bottom, left to right) Forged image, copied object scaled down by 

13% and scaled up by 5%, primary detection, RANSAC result RANSAC result, final 

result after hysteresis. 
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Figure 3-26: An example of detecting duplicated scaled objects using improved 

DSIFT: (top to bottom, left to right)  Forged image, copied object scaled up by 10%, 

primary detection, RANSAC result, final result after hysteresis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-27 An example of failure of detecting duplicated scaled objects using improved 

DSIFT: (top to bottom, left to right)  Forged image, copied object scaled up by 50%, 

primary detection, RANSAC result, final result after hysteresis. 
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3.9.6  Copy-Move Forgery with Distortion  

 There are many types of image distortion (e.g. radial distortion, 

projection distortion, scale error, etc.) The dataset CoMoFoD contains CMF 

images with four different types of distortion (vertical elongation, horizontal 

elongation, vertical skew and horizontal skew).  

 We conducted an experiment to test the robustness of the improved 

DSIFT to distortion, and achieved good results. The overall F-measure is 

0.60 for 40 different images with different distortion factors. Moreover, the 

improved DSIFT with the proposed algorithm detected forgery on 36 images 

out of 40 with various distorted duplicated regions, see  

Figure 3-28, Figure 3-29 and Figure 3-30. Figure 3-31 shows an example of 

the failure of detection duplicated scaled objects where the CMF object has 

been horizontally elongated by 10%. The proposed method can detect 

forgery but it cannot remove the false matches, and we considered this result 

as failure of detection. Table 3-6 shows the details of the detection with more 

information on each type of distortion.   

Table 3-6 the F-measure for each type of distortion. 

Distortion type F-measure Number of detected 

 images out of 10 

Vertical scale (80%- 125%) 0.52 9 

Horizontal scale (80%-115%) 0.50 8 

Vertical skew (1%-8%) 0.73 10 

Horizontal skew (1%-7%) 0.65 9 

 Tralic et al. [23] used the DCT to test 5 groups of images with 40 

images in each group. They showed only the results where the F-measure 

value was greater than 0.5, that is, 2 images with scaling, 5 images with 

distortion, 3 images with the combination of these, 40 images with 

translation and 40 images with rotation. We do not compare our results with 

theirs, because we consider all the images in our test.  
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Figure 3-28: An example of detecting duplicated scaled objects using improved 

DSIFT: (top to bottom, left to right) Forged image, copied object with a vertical skew 

factor of 8%,  primary detection, RANSAC result, final result after hysteresis. 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 3-29: An example of detecting duplicated scaled objects using Improved 

DSIFT: (top to bottom, left to right) Forged image, copied object with vertical 

elongation by 15%, primary detection, RANSAC result, final result after hysteresis. 
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Figure 3-30: An example of detecting multiple duplicated objects using improved 

DSIFT: (top to bottom, left to right) Forged image, copied object vertically elongated 

by 5% and  by -10%, primary detection, RANSAC result, RANSAC result, final 

result after hysteresis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-31 An example of failure of detecting duplicated objects using improved DSIFT: 

(top to bottom, left to right) Forged image, copied object horizontally elongated by 10%, 

primary detection, RANSAC result, final result after hysteresis. 
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3.9.7  Copy-Move Forgery with Combined Transformation  

 This is the most challenging set of forged images because it shows two 

or more transformations being applied to copied region(s) before moving to 

a new location (e.g. the images have been scaled and rotated with different 

scaling factors or the images skewed horizontally and enlarged vertically). 

An experiment was conducted to test the robustness of the improved 

DSIFT/our algorithm to the combined transformation, and we achieved good 

results. The overall F-measure is 0.57 for 40 different images with different 

combination factors. Moreover, the improved DSIFT with the proposed 

algorithm detected forgery on 34 images out of 40 with various combined 

transformed duplicated regions, see Figure 3-32, Figure 3-33 Figure 3-34 

and Figure 3-35. 

 Here, we cannot compare our results with the others because no 

equivalent results using the same dataset have been published.  

 

 

 

 

 

 

 

 

 

 

Figure 3-32: An example of detecting duplicated scaled objects using improved 

DSIFT: (top to bottom, left to right) Forged image, copied object scaled down by 

15%  and rotated by 45°, primary detection, RANSAC, final result after hysteresis. 

 

   

  
  

   



Copy-Move Forgery Detection in Digital Images 

92 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-33: An example of detecting duplicated scaled objects using improved 

DSIFT: (top to bottom, left to right) Forged image, copied object scaled up by 5%  

and vertically skewed by 1%, primary detection, RANSAC result, final result after 

hysteresis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-34: An example of detecting multiple duplicated objects using improved 

DSIFT: (top to bottom, left to right) Forged image, copied objects (horizontally 

elongated by 3% and vertically skewed by 2%, vertically elongation by -5% and 

horizontally skewed by 3%), primary detection, RANSAC result, RANSAC result, 

final result after hysteresis. 
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Figure 3-35 An example of failure of detecting duplicated scaled objects using improved 

DSIFT: (top to bottom, left to right) Forged image, copied object scaled up by 70%  and 

rotated by -1%, primary detection, RANSAC result, final result after hysteresis. 

3.10  Analysis of the proposed algorithm   

 To understand the improved DSIFT, we need to explain the 

differences between the standard SIFT and improved DSIFT. David Lowe 

has developed a Scale-Invariant Feature Transform algorithm [103] to detect 

and describe local features in images. The SIFT descriptor is invariant to 

translation, rotation and scaling transformations in the image domain, and it 

is robust to moderate perspective transformations and illumination variations 

[104]. SIFT keypoints (local extremas) are distributed sparsely on the image, 

and their location depends on the characteristics of the image itself.  

 The SIFT works very well with object recognition applications (e.g. 

Panorama stitching [105], 3D scene modelling[106], human action 

recognition [107], etc.).     
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 Many papers use SIFT to detect copy-move forgery (e.g.[26] [56] [57] 

[19][70] ); in general, these papers follow the same approach. They detect 

SIFT keypoints on the image, find the matched keypoints then clustering all 

spatially neighboured pixels in one group. Consider that, the standard 

evaluation method in the copy-move forgery detection is the F-measure on 

pixel level, as it is not enough to detect part of the duplicated objects. 

Although this approach worked well and can detect duplicated objects or part 

of it successfully, it has three main drawbacks which have a significant 

influence on its reliability:  

 

 

 

 

 

 

 

 

Figure 3-36: SIFT Keypoint Localization process, (left to right) the potential 

keypoints which have been detected by local extrema, eliminate low-contrast 

keypoints, eliminate edge keypoints and final result. 

 

  

1. SIFT rejects keypoints in flat regions:  

 Flat regions occur where the pixel intensity values are similar to each 

other and change smoothly over comparatively large regions (e.g. sky, 

sea, sand, grass, etc.)[108]. The locations of potential keypoints, which 

have found by local extrema, refine in the SIFT Keypoint Localization 

step. As previously explained in section 3.2.1, the SIFT Keypoint 

Localization step eliminates any low-contrast keypoints and edge 

keypoints and remains the strong interest points, see Figure 3-36. 
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 Since the SIFT reject keypoints in flat regions thus mean it fails to 

detect object forgery on such regions. Although using keypoints 

matching based approach (SIFT) can guarantee geometric invariance, but 

there is no keypoints on flat regions, which means it may fail to detect 

duplicated objects. As shown in Figure 3-37, where the black boxes are 

the copy-moved forgery regions, SIFT cannot detect keypoints on the flat 

regions (the wall). 

 

 

 

 

 

 

 

 

 

 

Figure 3-37: Using standard SIFT to find keypoints on image with flat region(s). 

(left) The input image (forged image), (right) SIFT keypoints with refinement 

step.  

 

 We performed an experiment to understand the effect on CMF 

detection of rejecting the unstable  keypoints in SIFT, located in the 

low-contrast area(s) and edge(s). 

 We used SIFT in a different way to detect keypoints on the images 

with a flat region. All the detected local extrema points were used and 

the keypoint localization step was ignored. In other words, we kept the 
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unstable  keypoints on the flat regions. In such regions, the SIFT can 

detect some unstable keypoints, as shown on the top, right-hand image 

of Figure 3-38. Then we gradually increased the threshold to find the 

matched keypoints. But even when we increased the matching threshold 

to 100 times that of the initial threshold, it could find no match with other 

duplicated unstable keypoints. Moreover, no clustering technique has so 

far been proposed that can segment these flat CMF areas successfully. 

 

 

 

 

 

 

 

 

 

 

Figure 3-38: detection multiple duplicated objects using Improved SIFT on flat 

region (top to bottom, left to right) SIFT keypoints with refinement step, SIFT 

keypoints with refinement step, primary detection, Final result. 

 In contrast, the improved DSIFT can detect forgery on the same image 

with an excellent F-measure (0.99), see Figure 3-39. 
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Figure 3-39: detecting multiple duplicated objects using Improved DSIFT on flat 

region: (top to bottom, left to right) primary detection, RANSAC result, RANSAC 

result, final result. 

 

2. SIFT’s ability to partially detect Copy-Move objects  

 As noted above, the keypoints of the SIFT are distributed sparsely on 

the image and do not cover every one of its pixels. Thus matching of these 

keypoints may not cover all the duplicated objects, see Figure 3-40. 
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Figure 3-40: detecting multiple duplicated objects using improved SIFT on flat region 

(top to bottom, left to right), SIFT keypoints with refinement step, SIFT keypoints with 

refinement step, primary detection, Final result. 

 

3. SIFT estimates two dominant orientations for 15% of 

keypoints: 

 As previously claimed in section 3.3.1, if SIFT estimated two 

dominant orientations for 15% of the keypoints it would mean that the 

number of generated feature vectors increased by 15%. If the same 

approach was used in DSIFT, it would considerably increase the 

computation time spent on the features extraction and matching. 

 We used the standard moments (intensity centroid measure) [93] to 

estimate the canonical orientation for each patch in the image and thus 

obtained results which are more accurate and have better noise resistance 

ability than those which are gradient based orientation. 
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3.11  Conclusions 

 SIFT is the most widely used descriptor; it is discriminative and 

relatively fast.  As previously discussed in Section 3.10, using SIFT for 

detecting CMF has three main drawbacks (SIFT rejects keypoints in flat 

regions, SIFT’s ability to only partially detect copy-move objects, SIFT 

estimates two dominant orientations for 15% of keypoints). To overcome 

these drawbacks, we have combined ideas derived from the keypoint and 

block-based methods.  We applied SIFT densely to make block-based 

matching possible and cover all the pixels of the image.  Also, we used the 

intensity centroid measure method, to estimate patch orientation, instead of 

standard SIFT method, which makes our improved DSIFT rotation invariant 

without multiple orientation assignment for the same patch. Our proposed 

improved DSIFT is more robust to rotation than RIDSIFT and Zernike 

moments, see Sections 3.3.3 and 3.9.4.  

 SIFT considers a square region (16×16) around the keypoint, which 

introduces border.  We eliminate the border effect by using a circular block 

of radius 7.5 in the improved DSIFT.  In comparison, using a circular shaped 

Gaussian weighting in the standard SIFT can only reduce the effects of 

square blocks, see Section 3.3.3. 

 Moreover, experimentally we found that the improved DSIFT is 

highly discriminative and can detect forgery in flat regions and complex 

structured images.  

 The similarity threshold between feature vectors is one of the most 

important parameters in detecting CMF. Consider that this threshold depends 

on the image characteristics (e.g. the texture, the colour distribution, and the 

edges) and varies from one image to another.  Using a single threshold for 

many images in the dataset either produces a high false positive when 
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choosing a large value, or high false negative when using a small value. Our 

proposed method to compute the automatic thresholding reduces the false 

positive and decreases the required time to estimate one threshold for 

different images in the dataset.  Also, the hysteresis technique was used to 

grow the detection regions and improve the primary detection result which 

reduces the false negative.  The use of the automatic thresholding with the 

hysteresis technique can produce the best possible result, see Table 3-4.   
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Chapter 4                                                 

Copy-Move Forgery Detection with a 

Surface Fitting Method 
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4.1 Introduction 

 As previously discussed in Section 2.4.1, an exhaustive search is the 

simplest approach for detecting copy-move forgery in an image, but it is 

time-consuming and cannot detect complex transformed copy-moved 

objects [25].  

 The standard CMF detection approach first extracts features from the 

image, then compares the features to find the copy-move parts. There are two 

possible methods of extracting features from an image: either a sparse 

keypoint-based method or a dense block-based method. Keypoint-based 

methods consume very little memory and are much faster than block-based 

methods. However, keypoint-based methods can detect only parts of the 

copy-moved objects or produce a false negative in flat regions. Conversely, 

block-based methods require high computational time for extracting and 

matching the features. 

 If we consider the image as a surface, then theoretically the surfaces 

of the copy-moved objects have similar curvatures. In many geometry 

processing applications, finding matches between two surfaces is a standard 

task. Still, the existing approaches to this task, such as matching two meshes 

directly in 3D space, exact a high computational cost [109]. To overcome the 

problem of high computation, we propose here a novel method for finding 

matching between the image blocks; it uses the least squares method to fit a 

quadratic function on each block, and uses the parameters of the fitted 

function to represent the shape of the surface on each block. Then we find 

the matches between these feature vectors (parameters).  
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4.2 Surface Fitting for Copy-Moved Block Detection  

 An image can be represented by a continuous function of two 

variables 𝑓(𝑥, 𝑦), where (𝑥, 𝑦) are the coordinates of the image plane [110]. 

Copy-moved blocks can be represented by a similar function. Theoretically, 

the surfaces (curvatures) of the copy-moved objects are similar (see 

Figure 4-1), and fitting a function on the surfaces of these blocks will 

generate similar parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: (left to right, top to bottom) the input forged image, the Copy-Moved 

 objects and the image as surface. 

 

 

 
 
 
 



Copy-Move Forgery Detection in Digital Images 

104 
 

 Let 𝐵1 and 𝐵2 be a copy-move pair of blocks with centres (𝑥1, 𝑦1) 

and (𝑥2, 𝑦2), respectively. The difference between the fitted function of these 

two blocks is very small and less than a specific threshold; 

|𝑓1(𝐵1) − 𝑓2(𝐵2)|  ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑       (4-1) 

 

 For simplicity, we use a bivariate quadratic function to represent the 

surfaces of the blocks, and compare the parameters of the fitted functions to 

find the copy-moved blocks. These parameters can be estimated by using the 

least squares method, it determines the straight-line/curve that best fits the 

observed data points [111].  

4.3 Fitting Quadratic Function using the Least Squares 

Method  

 To extract the features (parameters) of an image block, we first convert 

the colour image into grayscale and then divide it into (17×17) overlapping 

blocks, see Figure 4-2. The least squares method is used to fit the parameters 

of the bivariate quadratic function representing the surface of each block. 

Suppose 𝐼 is a grayscale image and (𝑖, 𝑗) is the centre of an image block. The 

gray level values of the block can be represented by a matrix 𝑀. 

𝑀 = [

𝐼𝑖−8,𝑗−8 ⋯ 𝐼𝑖+8,𝑗−8

⋮ ⋱ ⋮
𝐼𝑖−8,𝑗+8 ⋯ 𝐼𝑖+8,𝑗+8

] 

 As previously established, a 2D quadratic function can be used to 

represent each block. Let (𝑢, v) represent the coordinates in the block’s 

coordinate system with its origin being the block centre; then a 2D quadratic 

function can be represented by  

𝑓(𝑢, v) = a + 𝑏𝑢 + 𝑐𝑣 + 𝑑𝑢2 + 𝑒𝑢𝑣 + 𝑓𝑣2        (4-2) 
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and the matrix 𝑀 can be formed as follows 

𝑀 = 𝑎 ∙ 𝟏 + 𝑏 ∙ 𝑈 + 𝑐 ∙ 𝑉 + 𝑑 ∙ 𝑈2 + 𝑒 ∙ 𝑃 + 𝑓 ∙ 𝑉2     (4-3) 

  where  

𝟏 = [
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

]  

𝑈 = [
−8 ⋯ 8
⋮ ⋱ ⋮

−8 ⋯ 8
]  

𝑉 = [
−8 ⋯ −8
⋮ ⋱ ⋮
8 ⋯ 8

]   

𝑈2 =

[
 
 
 
 
64 49
64 49

⋯
49 64
49 64

⋮ ⋱ ⋮
64
64

49
49

⋯
49
49

64
64]

 
 
 
 

   

𝑃 =

[
 
 
 
    

  64     56
56      49

⋯
−56 −64
−49 −56

⋮ ⋱ ⋮

  
−55
−64

  
−49
−56

⋯   
49
56

   56
   64 ]

 
 
 
 

  

𝑉2 =

[
 
 
 
 
64 64
49 49

⋯
64 64
49 49

⋮ ⋱ ⋮
49
64

49
64

⋯
49
64

49
64]

 
 
 
 

   

 Rearranging the seven matrices (𝑀, 1, 𝑈, 𝑉, 𝑈2, 𝑃, 𝑉2) as vectors by 

concatenating the columns of each matrix, Equation (4-2) can be 

rewritten as 𝑌 = 𝑋𝜃, where 𝑌 ∈ 𝑅289 is the rearrangement of 𝑀, 𝑋 ∈

𝑅289×6 consists of the rearrangement of (1, 𝑈, 𝑉, 𝑈2, 𝑃, 𝑉2), and 𝜃 ∈ 𝑅6 

where  𝜃 = [𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓]𝑇 is the parameter vector. 

 The least squares method gives the estimate of parameter vector  𝜃 as 
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𝜃   = (𝑋𝑇𝑋)−1 𝑋𝑇 𝑌           (4-4) 

 We can thus use 𝜃 as the block features and match these features to 

find the copy-moved parts.   

 To detect copy-rotate-move objects, we need to make the features 

rotation invariant before feature matching.  

The method we use to make the feature rotation invariant is to rotate the 

block surface so that the principal axes of the quadric surface are parallel to 

the image coordinate axes; i.e. the parameter 𝑒 of the cross-axis term 𝑢 𝑣 is 

zero.        

Using matrices and vectors to represent Equation (4-2), we have   

𝑓(𝑢, 𝑣) = 𝑎 + 𝜃1
𝑇 ∙ 𝒙 + 𝒙𝑇  𝛩2 𝒙              (4-5) 

where  𝒙 = [
𝑢
𝑣
] ,𝜃1 = [

𝑏
𝑐
],   𝛩2 = [

𝑑 𝑒
2⁄

𝑒
2⁄ 𝑓

] 

Suppose a point (𝑢, 𝑣) is rotated by angle 𝜃,  then the new position (𝑢́, 𝑣́) can 

be represented by  

[
𝑢́
𝑣́
] =  [

𝑐𝑜𝑠 𝜃 −𝑠𝑖𝑛 𝜃
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

] [
𝑢
𝑣
]   

So, we have  

[
𝑢
𝑣
] = [

𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃
−𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

] [
𝑢́
𝑣́
]  

For simplicity, we will refer to [
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃
−𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

]  as 𝑅  

We substitute [
𝑢
𝑣
] by [

𝑢́
𝑣́
], which generates the following:  

𝑓(𝑢́, 𝑣́) = 𝑎 + 𝜃1
𝑇 𝑅 [

𝑢́
𝑣́
] + [

𝑢́
𝑣́
]
𝑇

𝑅𝑇𝛩2 𝑅 [
𝑢́
𝑣́
] = 𝑎 + 𝜃1

𝑇́  [
𝑢́
𝑣́
] +

[𝑢́ 𝑣́ ]  𝛩́2  [
𝑢́
𝑣́
]                    (4-6) 

where 𝜃1́ = 𝑅𝑇𝜃1, and  𝛩2
́ =  𝑅𝑇𝛩2 𝑅  
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To eliminate cross-axis terms in the new representation (4-6), we need 𝛩́2 to 

be a diagonal matrix.   

We can get a diagonal 𝛩2 ́ by Eigen decomposition of 𝛩2  

𝛩2 = 𝑅 [
𝜆1 0
0 𝜆2

] 𝑅𝑇 where ( 𝜆1 𝜆2 ) are eigenvalues and R is the matrix 

consisting of the eigenvectors. 

𝑅𝑇𝑅 =  𝑅 𝑅𝑇 = 1 

Thus, we get  𝛩́2 = 𝑅𝑇𝛩2 𝑅 =  𝑅𝑇𝑅 [
𝜆1 0
0 𝜆2

] 𝑅𝑇𝑅 = [
𝜆1 0
0 𝜆2

].   

Now, we can use the parameters  𝑎, 𝜃1
𝑇́ = [𝑏́, 𝑐́], 𝑎𝑛𝑑 𝜆1 𝜆2    to form a feature 

vector  Ɵ𝑇́ = [𝑎, 𝑏́, 𝑐́, 𝜆1 𝜆2] . 

 Because we do not want brightness changes to affect the detection of 

CMF, we remove parameter a from the parameter vector Ɵ́ and the remaining 

4-dimensional parameter vector  [𝑏́, 𝑐́, 𝜆1 𝜆2]  is taken as the feature vector. 

We call this feature the Fitting Function Rotation Invariant Descriptor 

(FFRID) and use it for CMF detection.   

  

 

 

 

 

 

 

 

Figure 4-2: an example of a (17x17) block surface. 
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4.4 High-level description of the proposed algorithm to detect 

CMF using Fitting Function 

 This is a full description of the suggested algorithm for detecting CMF 

using the Fitting Function which is essentially the same as the improved 

DSIFT version (section 3.5.1), but replacing improved DSIFT with FFRID. 

1) Convert the image to grayscale if it is a colour image. 

2) FFRID, instead of improved DSIFT, is used to compute the 

OptimumThreshold using our proposed method as described in 

Section 3.4.   

3) Divide the image into overlapping blocks (17 × 17) 

If the Median Absolute Deviation (MAD) of the tested block is 

bigger than Threshold0=0.09.    

i. Compute the Fitting Function Rotation Invariant 

Descriptor for the tested block. 

ii. Save the feature vector and the coordinates of the 

tested block. 

End if 

4) Build a k-d tree for the feature vectors and find the 2nd 

Approximate Nearest Neighbours for each element in the tree. 

5) Find the matched feature vectors (blocks) which satisfy: 

a. The Euclidean distance between feature vectors is less 

than Threshold1 = (OptimumThreshold/2). 

b. The distance between the centres of the two matched 

blocks being bigger than Threshold2 =17√2 .  

6) Save the coordinators of the two matched blocks in a List.     

7) Use the neighbourhood clustering method, proposed in 

Section 3.7    to remove the false matching from List. 
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8) Call RANSAC to estimate the transformation of the List. 

9)  Use hysteresis technique, proposed in Section 3.8, to grow 

regions of the List. 

10) Remove small areas with less than (Threshold3=320 pixels) 

in size. 

11) Mark the blocks as matching. 

12) Morphologically close the image.  

4.5 The Experiments 

We used CoMoFoD dataset (small images) [23]  to evaluate our algorithms. 

4.5.1  CMF detection with Translation and postprocessing 

 We tested 40 different images with plain CMF and successfully 

detected forgery in all of them. Then we used our suggested method to test 

240 images with different types of post-processing (image blurring, 

brightness change, colour reduction, JPEG compression, contrast 

adjustments and added noise), see Table 4-1. 

Table 4-1 CMF detection with different types of post-processing (Avg. of F-Measure). 

Post-processing F measure 

Detected images 

using FFRID 

Translation (without post-processing) 0.93 40 

Image Blurring,(5x5 average filter) 0.84 39 

Brightness Change Range (0.01, 0.8) 0.92 40 

Colour Reduction (32 intensity levels) 0.93 40 

Contrast Adjustment Range (0.01,0.8) 0.93 40 

White Gaussian Noise(AWGN) =0.001 0.82 38 

JPEG (40%) 0.90 40 

 

 Figure 4-3 shows an example of detecting CMF on complex texture 

image, Figure 4-4 shows the CMF detection on flat regions and Figure 4-5 

on homogeneous regions. Figure 4-6 and 4-7 show the detection of CMF on 

post-processed images. 
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Figure 4-3: An example of using FFRID: (top to bottom, left to right) input forged 

image, primary detection, RANSAC result, final result after hysteresis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4-4: An example of detecting multiple duplicated objects using FFRID on a 

flat image: (top to bottom, left to right) input forged image, primary detection, 

RANSAC, RANSAC result, final result after hysteresis. 
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Figure 4-5: An example of detecting multiple duplicated objects using FFRID on a 

homogeneous image: (top to bottom, left to right) input forged image, primary 

detection, RANSAC result, RANSAC result, final result after hysteresis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6: An example of using FFRID to detect forgery in post processed images: 

(1st row) the steps of detection in noisy image, (2nd row) the steps of detection in 

image with JPEG compressed image. 
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Figure 4-7: An example of using FFRID to detect forgery in post processed images: 

(1st row) the steps of detection in image with brightness change, (2nd row) the steps 

of detection in image with Contrast Adjustment, (3rd row) the steps of detection in 

image with Colour Reduction, (4th row) the steps of detection in image with Image 

Blurring.  
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4.5.2 Copy-Rotate-Move Forgery (CRMF) detection 

 An experiment was conducted on 40 different images with CRMF. We 

were able to detect forgery on all the tested images where the F-measure was 

0.76, see Table 4-2. Below, some examples with different image properties 

are shown. Figure 4-8 shows an image with homogeneous textures in which 

it is very hard to detect forgery with the naked eye. In Figure 4-9, the size of 

the CMF region is very small and it is hard to detect duplicated regions. 

Figure 4-10 and Figure 4-11 show the detection of CRMF with post-

processed images.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8: An example of detecting duplicated objects using FFRID: (top to bottom, 

left to right) input forged image, copied object rotated by 40°, primary detection, 

RANSAC result, final result after hysteresis. 
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Figure 4-9: An example of detecting duplicated objects using FFRID: (top to bottom, 

left to right) input forged image, copied object rotated by -1°, primary detection, 

RANSAC result, final result after hysteresis. 

 

 

Table 4-2 CRMF detection with different types of post-processing (Avg. of F-Measure). 

Post-processing F measure 

Detected images 

using FFRID 

Rotation (without post-processing)  0.76 40 

Image Blurring,(5x5 average filter) 0.67 36 

Brightness Change Range (0.01, 0.8) 0.66 36 

Colour Reduction (32 intensity levels) 0.65 35 

Contrast Adjustment Range (0.01,0.8) 0.63 35 

White Gaussian Noise(AWGN) =0.001 0.61 28 

JPEG (40%) 0.72 40 
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Figure 4-10: An example of using FFRID to detect forgery in post processed images: 

the copy move objects rotated by 2°, (1st row) the steps of detection in image with 

brightness change, (2nd row) the steps of detection in image with Contrast 

Adjustment, (3rd row) the steps of detection in image with Colour Reduction, (4th 

row) the steps of detection in image with Image Blurring. 

 

 

 

   

   

   

   
   

  



Copy-Move Forgery Detection in Digital Images 

116 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-11: An example of using FFRID to detect forgery in post processed images: 

the copy move objects rotated by 2°, (1st row) the steps of detection in noisy image, 

(2nd row) the steps of detection in image with JPEG compressed image. 

 

 

4.5.3 Copy-Move Forgery with Scaling 

 

 The FFRID is rotation invariant, and is not designed to be scale 

invariant. We conducted an experiment to test the robustness of FFRID to 

scale. The overall F-measure is 0.35 for 40 different images with different 

scale factors (40%-150%). The FFRID with the proposed algorithm detected 

forgery on 24 images out of 40 with various scaled duplicated regions, see 

Figure 4-12 where the radius of each disk represents the square root of the 

number of images. 
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Figure 4-12: Average F-measure for 80 images with different scaling factors. 

 

 Experimentally, we illustrate that the FFRID is robust to small 

changes in scale. The descriptor/the algorithm succeeded in detecting forgery 

on many different images with moderate scale factors. Below are some 

examples of detecting duplicated regions with different scales, see 

Figure 4-13, 4-14 and 4-15. Figure 4-16 shows an example of a failure of 

detection CMF. Consider that our proposed method can detect forgery on the 

tested image (primary detection) with high false matches, but it cannot 

remove the outliers. 
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Figure 4-13: An example of detecting duplicated scaled objects using FFRID: (top to 

bottom, left to right) input forged image, copied object scaled down by 15%, primary 

detection, RANSAC result, final result after hysteresis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-14: An example of detecting multiple duplicated objects by FFRID: (top to 

bottom, left to right) input forged image, copied object scaled down by 13% and 

scaled up by 5%, primary detection, RANSAC result, RANSAC result, final result 

after hysteresis. 
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Figure 4-15: An example of detecting duplicated scaled objects using FFRID: (top to 

bottom, left to right) input forged image, copied object scaled down by 20%, primary 

detection, RANSAC result, final result after hysteresis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-16 An example of failure of detecting duplicated scaled objects using FFRID: 

(top to bottom, left to right) input forged image, copied object scaled down by 15%, 

primary detection, RANSAC result, final result after hysteresis. 

   

   

 

   

  

 



Copy-Move Forgery Detection in Digital Images 

120 
 

4.5.4 Copy-Move Forgery with Distortion 

 We conducted an experiment to test the robustness of FFRID to 

distortion, and we achieved good results. The overall F-measure was 0.70 

for 40 different images with different distortion factors, see Table 4-3.

 Moreover, the FFRID with the proposed algorithm detected forgery 

on 38 images out of 40 with various distorted duplicated regions, see 

Figure 4-17  Figure 4-18 and Figure 4-19. Consider that our proposed 

method can detect forgery on some images (primary detection) but it cannot 

remove the false matches, e.g. see Figure 4-20.      

Table 4-3 CMF detection with different types of distortion (Avg. of F-Measure). 

Distortion type F-measure Number of detected 

 images out of 10 

Vertical scale (80%- 125%) 0.62 10 

Horizontal scale (80%-115%) 0.65 9 

Vertical skew (1%-8%) 0.73 9 

Horizontal skew (1%-7%) 0.82 10 

 

 

 

 

 

 

 

 

 

 

Figure 4-17: An example of detecting duplicated scaled objects using FFRID: (top to 

bottom, left to right) input forged image, copied object with a vertical skew factor of 

8%, primary detection, RANSAC result, final result after hysteresis. 

  

   



Copy-Move Forgery Detection in Digital Images 

121 
 

 

 

 

 

 

 

 

 

 

 

Figure 4-18: An example of detecting duplicated scaled objects using FFRID: (top to 

bottom, left to right) input forged image, copied object is vertically elongated by 

15%, primary detection, RANSAC result, final result after hysteresis. 

 

 

 

 

 

 

 

 

 

Figure 4-19: An example of detecting multiple duplicated objects using FFRID: (top 

to bottom, left to right) input forged image, copied object vertically elongated by 5% 

and  by -10 %, primary detection, RANSAC result, RANSAC result, final result after 

hysteresis.  
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Figure 4-20 An example of failure of detecting duplicated scaled objects using FFRID: 

(top to bottom, left to right) input forged image, copied object is horizontally elongated 

by 10%, primary detection, RANSAC result, final result after hysteresis. 

4.5.5 Copy-Move Forgery with Combined Transformation  

 An experiment was conducted to test the robustness of the proposed 

algorithm to combined transformations, and we achieved acceptable results. 

The overall F-measure was 0.45 for 40 different images with different 

combination factors. Moreover, the proposed algorithm detected forgery on 

26 images out of 40 with various combined transformations of duplicated 

regions, see Figure 4-21, Figure 4-22, Figure 4-23 and Figure 4-24.  
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Figure 4-21: An example of detecting duplicated scaled objects using FFRID: (top to 

bottom, left to right) input forged image, copied object scaled down by 15%  and 

rotated by 45°, primary detection, RANSAC result, final result after hysteresis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-22: An example of detecting duplicated scaled objects using FFRID: (top to 

bottom, left to right) input forged image, copied object scaled up by 5%  and 

vertically skewed by 1%, primary detection, RANSAC result, final result after 

hysteresis. 
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Figure 4-23: An example of detecting multiple duplicated objects using FFRID: (top 

to bottom, left to right) input forged image, copied objects (horizontally elongated 

by 3% and vertically skewed by 2%, vertically elongated by -5% and horizontally 

skewed by 3%), primary detection, RANSAC result, RANSAC result, final result 

after hysteresis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-24 An example of failure of detecting duplicated scaled objects using FFRID: 

(top to bottom, left to right) input forged image, copied object scaled down by 20% and 

rotated by 45°,, primary detection, RANSAC result, final result after hysteresis. 

    

    
 

 

  

  



Copy-Move Forgery Detection in Digital Images 

125 
 

4.6 Conclusions  

 As previously mentioned, extracting the features from the image and 

finding the matches between these features are the most important steps in 

detecting copy-move forgery. The keypoint method takes a short time to find 

the interest points in the image, but it cannot cover all the pixels of the image; 

consequently matching these keypoints may not cover all the duplicated 

objects.     

 Conversely, the block-based method covers all the pixels in the image 

and thus may detect forgery more accurately than the keypoint method. But 

it has the main drawback of computational cost, which increases 

significantly with block-based CMF detection. Increasing the number of 

keypoints/the feature vectors, when they are extracted densely in the block-

based method, increases the time required to find the similarities (matches) 

between these keypoints/feature vectors.      

 Moreover, the longer the feature vector, the more processing time 

required to find the similarities; e.g. the high dimensionality of the SIFT 

descriptor (128 elements) increases the time needed to compute the 

Euclidean distances between a set of SIFT descriptors.  

To overcome these problems we proposed a novel method to describe the 

shape of the surface of each block in the image. The least squares method 

was used to fit the six coefficients of the quadratic function on the surface of 

each block in the image.  

 CRMF detection requires a rotation-invariant descriptor; thus, we 

have made the descriptor rotation-invariant. One of the possible methods is 

rotating the six parameters of the fitted function to be parallel to the principal 

axes. Therefore, the Eigenvalues and Eigenvectors were computed for the 

parameters (𝑑𝑥2, 𝑒𝑥𝑦 and 𝑓𝑦2) which represent the shape of the surface in 
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each block. The parameters (𝑏𝑥, 𝑐𝑦) were multiplied by the eigenvectors, to 

project these parameters around the principal axes, and concatenate them 

with the eigenvalues. The generated descriptor, which has 4-element feature 

vector, is rotation-invariant. 

 The Fitting Function Rotation Invariant Descriptor (FFRID) is faster 

than the improved DSIFT or Zernike moments; computing the FFRID for an 

image with of 512×512 pixels takes about 65 seconds. The major loops in 

the code were vectorised using the array operation in MATLAB, which 

reduced the time required to compute the descriptors [112]. Moreover, 

because the FFRID is a 4-element feature vector, finding the potential copy-

move objects in the matching step can be done faster than using longer 

feature descriptors (e.g. DSIFT, HOG). 

 The proposed descriptor produces excellent results in plain copy-move 

forgery detection (translation). Different postprocessing methods were used 

to test the robustness of the descriptor, and in most cases the descriptor 

maintained its excellent performance. 240 images with plain CMF and with 

different postprocessing were tested and the proposed method detected 

forgery on 237 of them.    

 The FFRID can detect copy-rotate-move forgery with good results, 

having been designed to be rotation-invariant. Moreover, the FFRID 

successfully detected forgery on 210 image out of 240 with different 

postprocessing methods. The FFRID showed an excellent robustness to 

JPEG compression even in the detection of CRMF objects.  

 Moreover, our proposed method can detect forgery on many images 

with complex transformations with high false matches, but it cannot remove 

those outliers (false matches) on some cases, see Figure 4-16, Figure 4-20 

and Figure 4-24.       
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Chapter 5                                                       

Image Segmentation Based Copy-Move 

Forgery Detection 
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5.1 Introduction 

 The most common approach to detecting copy-move forgery takes 

many steps, the most important being feature extraction. There are two 

different methods of extracting features, either by tiling the image into blocks 

and extracting the feature from each block, or extracting it from interest 

points which are distributed in different ways over the image (e.g. SIFT, 

MSER, FAST, etc.). The block-based methods usually take a long time to 

extract the image. The keypoint-based methods are much faster, but they can 

only detect some part(s) of the duplicated region(s) because it is distributed 

sparsely over the image.  

 We consider the segmentation approach as a potential solution to 

overcome the problems of block-based and keypoint-based methods. We 

have suggested a new approach to detecting copy-move forgery, in which 

the detection depends on image segmentation and feature extraction from 

each segment. The main challenge with this proposed approach is: “There is 

no reliable method of segmenting identical objects consistently.”  

 Even with a state-of-art segmentation method, there is no guarantee 

that all the copy-move objects will be segmented in the same manner. This 

suggests that we should favour over-segmentation as a more uniform method 

in copy-move forgery detection. Over-segmentation divides the image into 

non-overlapping and irregular blocks (segments) and we have proposed 

using the Superpixel method to segment the image and extract some features 

from each segment.  

 In this chapter, we tested an existing over-segmentation (SLIC 

superpixel) based CMF detection method and analysed its performance, see 

Section 5.2. We further developed two over-segmentation CMF detection 

methods and analysed their performance, see Sections 5.3 and 5.4.       
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5.2 Using SLIC superpixel segmentation to detect CMF 

     Superpixel algorithms cluster pixels into perceptually meaningful 

regions. SLIC superpixel is the best superpixel algorithm with boundary 

adherence, computation speed, and performance when used as a pre-

processing step in a segmentation framework. Therefore, we used SLIC to 

segment the images.  

 The main challenging with this method is the copy-move objects are 

different in size from one image to another. To overcome this challenging, 

we used SLIC with 6 different required number of approximately similar-

sized superpixels (K) to segment the colour image.  

     First, we converted the coloured image into grayscale and computed the 

Local Binary Pattern (LBP) for each pixel to produce the LBP image. Then 

we built a 256-elements histogram for each 16×16 patch in the LBP image. 

The K-means++ was used to find 64 centres in the list of LBP feature vector. 

Then for each different segment in each different scale, we build a 3D RGB 

colour histogram to describe the colour distribution for each segment. The 

segment coordinates were used to find the LBP feature vectors which belong 

to each segment and the Euclidean distance was computed between these 

feature vectors and each centre. We found the minimum distance between 

the LBP feature vectors and each centre and built a 64-element Bag of Words 

Feature Vector (BoWFV). In other words, we used the Bag of Words to 

quantize the 256-elements histogram into 64 feature vector. We built a K-d 

tree for the BoWFVs and found the 2nd Approximate Nearest Neighbours 

within a specific threshold. We built a binary mask for the result of each 

scale. Then we summed the six binary masks and considered any pixel has 

value >= 2 as a potential CMF. 
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5.2.1 High-level description of the proposed algorithm to detect CMF 

using SLIC superpixel segmentation 

 

1) Convert the image to grayscale if it is coloured. 

2) Compute the Local Binary Pattern (LBP) for each pixel in the 

grayscale image. 

3) Build a 256-element LBP Feature Vector (LBPFV) from the 

histogram of each 16×16 patch in the LBP image. 

4) Build the codebook by using the K-means++ to find 64 centres 

(K=64) in the set of LBP Feature Vectors. 

5) Use the SLIC superpixel to segment the coloured image into a 

different number of segmentations (different scales).  

 Number of segmentations = [30, 55, 100, 300, 550, 800], this 

will generate 6 different segmented images with different scales. 

6) Repeat the following steps for each of the 6 segmented images. 

a. Repeat the following steps for each segment.  

i. Build a 3D colour histogram (3DRGB) for the 

segment and normalize the (4×4×4 = 64) feature 

vector. 

ii. Find the LBP feature vectors which belong to the 

segment and compute the Euclidean distance 

between these feature vectors and each centre. 

iii. Find the minimum distance between the LBP 

feature vectors and each centre.    
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iv. Build the 64-element Bag of Words Feature Vector 

(BoWFV) by counting the frequencies of the best 

matching code-word (the minimum distances).  

b. Build a K-d tree for the BoWFVs  of all segments and find 

the 2nd Approximate Nearest Neighbours for each element 

in the tree. 

c. Find the neighbouring BoWFV which satisfy: 

i. The Euclidean distances between the BoWFVs is less 

thanThreshold1. 

ii. The Euclidean distance between the 3DRGB 

histograms is less thanThreshold2. 

d. Build a binary image (MaskImage) for all neighbouring 

segments that satisfy i & ii above. 

7) To produce a more robust result, sum the six binary images and 

recolour all the pixels which have a value >= 2. These pixels 

have been detected as a potential CMF in two different 

superpixel scales. 
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5.2.2 The Experiment to detect CMF using SLIC superpixel 

segmentation 

 The SLIC algorithm [7] divides the image into irregular blocks which 

exhibit state-of-the-art boundary adherence. Therefore, we used SLIC to 

segment the copy-move objects and maintain its boundaries synchronously.  

     The size of duplicated objects can vary from one image to another, and 

appear as small or large parts of the image. The required number of 

approximately similar-sized superpixels (K), is the parameter that controls 

the SLIC [7] algorithm. Experimentally, we found that K has a significant 

influence on segmenting the copy-move objects, because selecting the 

correct K will segment the duplicated objects in approximately the same 

way. Six possible numbers of similar-sized superpixels have been 

determined experimentally; K= [30, 55, 100, 300, 550, 800]. 

 The Local Binary Pattern [113] has been used to describe each 

segment texture, and a 3D colour histogram has been used to describe the 

colour distribution of each segment.      

 The LBP is one of the popular methods of describing the image texture 

and we have used it to describe the texture of the segment. We built the LBP 

image, where each LBP label value is represented as a pixel, and computed 

the 16×16 LBP histogram for each pixel in that image. 

  The LBP feature vectors which belong to each segment have been 

found and we want to define each segment by one feature vector only. We 

used the Bag of Visual Words [114] technique and the LBP operator to 

describe the texture of each segment. We determined 64 centres in the LBP 

feature vectors as a whole and computed the distance between each feature 

vector belonging to a segment and the centres. Then we bin the minimum 

distance to build the Bag of Visual Words LBP feature vector for each 

segment. 
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 The colour distribution was found for each segment using a 3 

Dimension RGB histogram (4×4×4=64 feature elements). 

We built the K-d tree [115] for the Bag of Visual Words LBP feature vectors 

and found the 2nd Approximate Nearest Neighbours for each feature vector. 

We used the Fast Library for Approximate Nearest Neighbour (FLANN) 

[96], which can significantly reduce the time required for searching. We 

determined the neighbouring vectors (segments) that had a Euclidean 

distance less than Threshold1 (0.1) and had a difference between its colour 

distribution that was less than Threshold2 (0.05). We generated a black and 

white mask for the primary matched segments and then summed the 6 

generated masks since one mask is generated for each of the different scales 

of the segments. Then recoloured the pixels which had a value equal to or 

greater than two.   

 Below are two examples of the proposed algorithm in use and the 

results that were generated, see Figure 5-1 and Figure 5-2. 
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Figure 5-1:  (top to bottom, left to right) Input Forged Image, segment image A using 

six different scales and the matched areas, the ground truth and final result. 
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Figure 5-2: (top to bottom, left to right) Input Forged Image, segment image B using 

six different scales and the matched areas, the ground truth and the final result. 
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5.2.3 Analysis of the proposed algorithm to detect CMF using SLIC 

superpixel segmentation 

 

 The duplicated object is moved from one location to another in the 

same image. Therefore, the pixels adjoining the copy-move object are 

different from the pixels that were neighbours of the original object.  

 Experimentally, we found that the SLIC [7] cannot segment the copy-

move objects exactly consistently, but it can segment the copy-move objects 

in a similar way, depending on the required size of the segment itself. The 

number of required segments (K), which controls the size of the segment in 

the SLIC, the colour and the spatial proximity is used in SLIC segmentation. 

Our experiments found this approach to be unreliable (F-measure = 0.146). 

The main reasons for the algorithm failure are as follows: 

a) The SLIC cannot segment the copy-move objects exactly 

consistently, see Figure 5-3 and Figure 5-4. 

b) The LBP histogram and 3DRGB histogram are densely 

extracted from each segment. In consequence, the segmentation 

result has a significant influence on the feature vectors that are 

produced. Experimentally, we found that the discriminability of 

these features is too sensitive to the inconsistency in the 

segmentation of the copy-move objects.  

     Although the suggested method can partially detect the forgery in 

some images, the final detected image contains a high percentage of 

false matches. Moreover, in many images the suggested method 

cannot detect forgery at all. The proposed method is also time-

consuming: the average time required to process one image is about 

27 minutes. 
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Figure 5-3: Segment an image using six different scales. 

 

 

 

 

 

 

 

 

 

 

Figure 5-4:  Zoomed CMF areas on segmented image using six different scales. 
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Other methods [81][27] have used segmentation to divide the image 

into small irregular regions and sparsely extract the SIFT features 

from each segment. As discussed above, this approach is similar to 

locating matching features between different images using SIFT, since 

each segment can be treated as a different image. Given that the 

segmentation methods have been to divide the original image into 

various patches (small images), the approach above depends on 

extracting SIFT features at the level of segments rather than from the 

whole image. 

5.3 Using Bag of Words Image (BoWImage) to detect Copy-

 Move Forgery  

  We proposed a new segmentation method using the LBP and the Bag 

of Visual Words. First, we generated the LBP image by computing the LBP 

label for each pixel in the image and assigned this label to the centre pixel. 

We described each 16×16 overlapped patch in the LBP image using a 256-

histogram feature vector. The K-means++ was used to find 16 centres in the 

feature vectors. The number of required centres has been optimized 

experimentally, and we found using 16 centres can segment the CMF objects 

in the most acceptable way. 

 We computed the Euclidean distances between each feature vector and 

the K centres and found the minimum distance. The minimum distance 

indicates which centre the feature belongs to and we used this centre number 

to label the centre pixel of each block. 

 For each different value of K (16), we remove the small segments.  

Then the HOG [86] and the Hu Moments [116] have been used to describe 

the shape and the appearance of each segment. We extracted the HOG from 

each pixel belonging to a particular segment and computed the mean for 
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these features. Also, we extracted the Hu moments from each segment and 

concatenated the HOG, the Hu moments and the size of the segments in one 

feature vector. We found the matched segments/feature vectors within 

specific thresholds. Finally, cascade methods were used to remove the 

outliers.    

5.3.1 High-level description of the proposed algorithm for detecting 

Copy-Move Forgery using Bag of Words Image (BoWImage) 

 This is a high-level description of our proposed algorithm for detecting 

CMF using BoWImage segmentation: 

1) Convert the image to grayscale if it is coloured. 

2) Compute the Local Binary Pattern (LBP) for each pixel in the 

grayscale image. 

3) Histogram each 16×16 patch in the LBP image to build a 256-

element LBP Feature Vector (LBPFV) and save the coordinates of 

the centre pixel. 

4) Use the K-means++ to find 16 centres (K=16) in the LBP feature 

vectors. 

5) Generate a blank Bag of Words Image (BoWImage). 

6) Repeat the following steps for each LBP Feature Vector.  

a. Compute the Euclidean distances between the LBP Feature 

Vector and each centre and find the minimum distance. 

b. Assign the centre label with the minimum distance to the 

Bag of Words image (BoWimage) in the corresponding 

coordinates. 

7) Repeat the following steps for each label:  
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Find all the segments (i.e. the connected components with the 

same label) and compute the size of each segment.   

Repeat the following for each segment  

a. Remove small segments less than Threshold1 in size. 

b. Compute the (16×16) Histogram of Oriented Gradients 

(HOG) for each pixel in the segment. 

c. Compute the mean of HOG feature vectors to generate a 

single feature vector for each segment (HOGFV).    

d. Compute the Hu moments for each segment and normalize 

the seven-element feature vectors (HuFV). 

e. Concatenate the HuFV, HOGFV and the area of each 

segment. 

f. Save the centroid and the bounding-box for each                                         

segment. 

g. Build a K-d tree for the concatenated feature vectors and 

find the 2nd Approximate Nearest Neighbours for each 

element in the tree. 

h. Find the neighbouring segments which satisfy: 

I. The Euclidean distance between the concatenated 

feature vectors is less than Threshold2. 

II. The difference in size of the neighbouring segments 

is less than Threshold3. 

i. Save the centroid and the bounding-box for the two 

matched segments. 
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  This method generates a good deal of false matching, which we 

eliminate by using the cascade approach: 

1) Remove the false matching using the centroids and HOG  

Input: List A, List B, where Ai and Bi are the centroids for two 

matched segments. 

Output: List C and D, where Cj matches Dj,  

Repeat the following for each element in the list. 

If the Euclidean distance between HOGs for each 

centroid in Lists A and B is less than Threshold4 

a. Mark the centroids of  Ai, and Bi as matched.  

b. Find the index of (Ai, Bi) in the list of centroids and 

use this index to save the bounding-box in Cj and 

Dj respectively. 

End if 

End repeat 

 

2) Remove the false matching using the Bounding-Box and HOG 

(pixel level) 

Input: List C of Bounding-Box, List D of Bounding-Box, where 

Cj matches Dj. 

Output: List1 and List2, where List1i matches List2i. 

1) Read the Bounding-Box for each matched segment 

where its centroids have also been matched. 

2) If the size of the two Bounding-Boxes is not equal, 

randomly select pixels from the larger box equal to the 
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size of the smaller box. This will make the size of the two 

bounding-boxes similar. 

a. Build a K-d tree for the HOG feature vectors which 

extracted from the bounding-boxes. 

b. Find the 2nd Approximate Nearest Neighbours for 

each element in the K-d tree. 

c. Find the matched pixels which have the Euclidean 

distance between their HOG feature vectors less 

than Threshold5. 

3) Apply RANSAC on List1 and List2. 

 

5.3.2 Experiment to detect Copy-Move Forgery using Bag of Words 

Image (BoWImage) 

 

 The LBP value (label) was computed for each pixel in the image and 

assigned to the centre pixel to produce the LBP image. Then each 16×16 

overlapped patch in the LBP image was described by a histogram which 

produces a 256-feature vector for each patch. K-means++ clustering [117] 

has been used to find K centres in the feature vectors. We tested different 

numbers of clusters (8, 16, 24 and 32) and found that K=16 produces better 

results than any other. Then the Euclidean distances were computed between 

each feature vector and the K centres. 

 Each cluster was considered as a visual word that represented a 

particular local pattern common to the feature vectors in the cluster. Then, 

similar feature vectors were clustered together, such that the minimum 

Euclidean distance between each feature vector and the K centres indicated 
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which centre the feature belonged to. Then we used this centre number to 

label the centre pixel of each block. 

The generated Bag of Words image has the number of values equal to the 

number of centres (K=16), for it will be recalled that this number was 

optimized experimentally. We found that the Bag of Words Image can 

cluster (segment) the copy-move objects in an almost similar way. This 

inspired us to use this method to detect copy-move forgery.  

Therefore, we inferred that the potential copy-move objects, or part of them, 

belonged to the same value and were clustered in almost the same way.  

 For each different value, the Connected Component Labelling method 

[118] was used to extract a set of geometric properties (e.g. area, centroid, 

bounding-box, etc.) from each segment. Then all the segments less than a 

particular threshold in size were removed.  

 The HOG [86] and the Hu Moments [116] have been used in many 

applications of object detection to describe the shape and the appearance of 

the objects. Therefore we used the HOG and Hu moments in our suggested 

algorithm to describe the shapes of each segment in their different values.  

 The HOG was extracted from each pixel belonging to a particular 

segment. Then, to represent each segment by one feature vector, the mean 

was computed for all the HOG features that were extracted from a particular 

segment.  The Hu moments were also used to describe the shape of each 

segment as its translation, rotation and scaling invariant. Then the HOG, Hu 

moments and the area of each segment were concatenated to produce the 

(44=36+7+1)-element feature vector.   

 A K-d tree has been built to all the feature vectors of a specific value, 

and the 2nd Approximate Nearest Neighbour has been found for each segment 

(feature vector). We determined which of the neighbouring segments had a 
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Euclidean distance between the concatenated feature vectors of less than a 

threshold (Threshold2=7) and where the difference between the size of a 

segment and that of its neighbours was less than a threshold 

(Threshold3=2000). The colour of the two matched segments has been 

changed to green, and the centroids and the bounding box also have been 

saved. 

 The proposed algorithm produces a number of false matches, which 

we reduced as far as possible by cascading false match removal algorithms. 

First, the HOG was extracted from the centroid of each matched segment. 

The Bounding-Boxes of the matched segments were saved when the 

Euclidean distance between the HOG of the centroids was less than a 

threshold (Threshold4= 0.07). 

 Second, the saved Bounding-Box for each two matched segments was 

used to reduce the false matches. When the sizes of the Bounding-Boxes of 

the two matched segments were not equal, the smaller one was stretched to 

equal the size of the larger one of the matched segment. Then the HOG was 

extracted from each pixel of the two matched Bounding-Boxes (segments). 

A K-d tree was built for the feature vectors of the two segments and the 2nd 

ANN was found for each element in the binary tree. The coordinates of the 

two neighbours were saved whenever the Euclidean distance between its 

feature vectors was less than a threshold (Threshold5= 0.03). All thresholds 

were experimentally optimized to produce the best possible results.  

Then RANSAC was applied on the two generated lists to eliminate any 

possible false matches.  

 The experimental results illustrate that the performance of this 

suggested algorithm (F-measure = 0.467) is better than that of our previous 

proposed algorithm, which used SLIC superpixel (F-measure = 0.146). 
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Below are two examples of using the proposed algorithm and the generated 

results, see Figure 5-3 and Figure 5-4. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5: (top to bottom, left to right): Input forged image , LBP code image, Bag 

of Words Image (BoWImage), Ground truth-BoWImage, Initial matched segments, 

Matched centroid Image, Matched Bounding-Box image, RANSAC image and final 

result. 
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Figure 5-6:  (top to bottom, left to right): Input forged image, LBP code image, Bag 

of Words Image (BoWImage), Ground truth-BoWImage, Initial matched segments, 

Matched centroid Image, Matched Bounding-Box image, RANSAC image and final 

result. 
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5.3.3 Analysis of the proposed algorithm to detect CMF using Bag of 

Words Image (BoWImage) 

 The main reasons for the failure of this algorithm are as follows: 

a. The Bag of Words cannot segment the copy-move objects 

consistently, because the surrounding area of the copy-move objects 

sometimes affects the result of the clustering.   

b. The segmentation errors have a significant influence on the generated 

feature vectors because the features are extracted densely from each 

segment. These changes between the feature vectors of the duplicated 

objects produce the mismatches (False Negative), see Figure 5-8. 

c. Alternatively, the segmentation errors produces wrong matches (False 

Positive), especially in the flat regions and similar textures. The 

proposed cascade algorithms to remove the false matches can 

partially reduce the FP areas, but it cannot eliminate them, see Figure 

5-7.  

 

 

 

 

 

 

 

 

 

 

Figure 5-7: Bag of Words Image (BoWImage) of image, Ground truth-BoWImage, 

Initial matched segments and final result. 
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 The F-measure is quite low, illustrating the unreliability of the 

BoWImage algorithm. Moreover, this method is time consuming: the 

average time required to process one image is about 15 minutes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-8: (top to bottom, left to right): Input forged image, LBP code image, Bag 

of Words Image (BoWImage), Ground truth-BoWImage, Initial matched segments, 

Matched centroid Image, Matched Bounding-Box image, RANSAC image and final 

result. 
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5.4 Using Rolling Guidance Filter and Multi-thresholding to 

 Detect Copy-Move Forgery 

5.4.1 A Threshold Selection Method using Gray-Level Histograms 

 The most common and simplest method of segmenting an image is to 

use thresholding. Otsu [119] suggested a method to find the best threshold 

to binarize the grayscale image, see Figure 5-9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-9:  an example of using Otsu’s method to convert a grayscale image to a 

binary image. 

 

 As shown in Figure 5-9, the binary images which are generated from 

applying a single Otsu threshold on the grayscale images contain many small 

segments, and these would be unstable for matching in CMF detection. 

Moreover, using the multi-level thresholding version of Otsu [120] does not 

produce a better result, see Figure 5-10 and Figure 5-11. 
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Figure 5-10: (each row, left to right) Segmented image using 2 thresholds, Segmented 

image using 2 thresholds with RGB labelling, Segmented image using 7 thresholds, 

Segmented image using 7 thresholds with RGB labelling . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-11: Zoomed CMF areas. 
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5.4.2 Rolling Guidance Filter 

 In order to produce more meaningful segments, we filtered the image 

to remove noise and unnecessary details. The images contain significant 

structures and edges over a range of scales [121]. The structure scale can be 

defined as the smallest Gaussian standard deviation ϭs, so that when this ϭs 

Gaussian deviation is applied to an image the corresponding structure 

disappears.  

 However, it is not possible to use the Gaussian filter as a scale-aware 

filter because it blurs all edges and cannot distinguish between strong and 

weak edges. In other words, the Gaussian average mechanism removes the 

edges of structures smaller than the smoothing scale, but it also blurs large-

scale structures instead of removing them. 

 However, many filtering techniques have been proposed to smooth the 

image while maintaining these structures. Edge-aware filters have been used 

to remove the low-contrast edges (gradual changes) and preserve the high-

contrast edges, e.g. the bilateral filter [122], guided filter [123] and weighted 

median filter [121]. 

 We used the Rolling Guidance Filter [121] because it has been shown 

to be effective for removing small-scale structures while preserving large-

scale structures by the use of scale-aware local operations. It can cope with 

irregular shapes and furthermore has low computation cost, see Figure 5-12. 
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The two main steps in the rolling guidance method: 

1. Remove small structures: In this step, the Gaussian filter is used. 

However, as well as removing the edges of structures smaller than 

the smoothing scale, it also blurs large-scale structures instead of 

preserving them. 

2. Edge recovery: A joint bilateral filtering of the given input image 

and the image from the previous iteration is used to recover the 

edges. This can be understood as a filter that smooths the input 

image, guided by the structure of the previous iteration image. 

 

 

 

 

 

 

 

 

 

 

Figure 5-12: Flow chart of the guiding rolling method [121].  

 

 

  The binary image which is generated from applying the single Otsu 

threshold on the Rolling Guidance filtered image (smoothed image) 

produces a reasonably segmented image. As shown in the binary image of 

Figure 5-13, the detrimental or unwanted content has been removed and the 

pixels have been clustered appropriately. However, this does not adequately 

segment the copy-move objects in the image. Under-segmentation has 

caused the objects to become merged with the background.  
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 Therefore, we used the multi-level thresholding version of Otsu 

applied after the Rolling Guidance filtering, Figure 5-14 and 5-15. 

 

 

 

 

 

 

 

 

 

 

Figure 5-13: an example of using the Otsu method on the Rolling Guidance filtered 

image to convert a grayscale image to a binary image. 
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Figure 5-14: (each row, left to right) Segmented RGImage using 2 thresholds, 

Segmented RGImage using 2 thresholds with RGB labelling, Segmented RGImage 

using 7 thresholds, Segmented RGImage using 7 thresholds with RGB labelling . 

 

 

 

 

 

 

Figure 5-15: Zoomed CMF areas in RGImage. 
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5.4.3 High-level description of the proposed algorithm to detect CMF 

using the Rolling Guidance Filter and Multi-thresholding  

 

 We used the Rolling Guidance filter [121] to smooth the image and 

preserve the strong edges, then we used the Otsu method [119] to find 7 

different thresholds on the filtered image. The 7 thresholds were used to 

quantize the Rolling Guidance filtered image into 8 different labels and the 

small segments were removed. Then for each segment, we built the 3DRGB 

histogram and the Segment Gradient Orientation Histogram (SGOH), which 

is described in section 5.4.4. 

 We built a K-d tree to all the feature vectors (segment) of a specific 

label and found the 2ANN. We determined the potential CMF segments 

(neighbouring segments) whose Euclidean distance between their 

concatenated feature vectors was less than a specifics threshold and the 

difference between their sizes was not significant. Finally, we used 

RANSAC to remove the outliers and the hysteresis technique to grow the 

detected copy move regions.  

 This is the high-level description of our algorithm for detecting CMF 

using Rolling Guidance filtering and multi-threshold segmentation: 

 

1) Filter the coloured image using the Rolling Guidance method to 

generate a Rolling Guidance Image (RGImage).   

2) Use the Otsu method to find 7 different thresholds on the 

RGImage.   

3)  Quantize the RGImage using the 7 thresholds. 

4) Repeat the following steps for each different label (colour).   
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a. Compute a set of properties for each connected component 

object (segment). 

b. Remove small segments which are less than Threshold1 in 

size. 

c. Repeat the following for each segment  

i. Find the pixels’ coordinates and the area of each 

segment.  

ii. Build a 3D colour histogram (3DRGB) for each 

segment and normalize the (4×4×4 = 64)-feature 

vector. 

iii. Build the SGOH feature vector, see Section 5.4.4.  

d. Build a K-d tree for the concatenated feature vectors and 

find the 2nd Approximate Nearest Neighbours for each 

element in the tree. 

e. Find the matched segments (a binary image of the primary 

detection) which satisfy: 

I. The Euclidean distance between the concatenated 

feature vectors less than Threshold2. 

II. The difference in the size of the matched segments is 

less than Threshold3. 

f. Save the coordinates of the matched segments in ListA and 

ListB. 

5) Make the size of ListA equal to the size of ListB: 

 For each matched segment 
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 If size (ListA(i)) is not equal to size (ListB(i)) 

Find the larger segment and randomly select 

pixels from it equal to the size of the smaller 

segment. 

 End if  

 End for 

6) Apply RANSAC on ListA and ListB. 

7) Use hysteresis to grow regions of ListA and ListB. 

8) Mark all matched segments. 

 

5.4.4 The algorithm proposed for building a Segment Gradient 

Orientation Histogram (SGOH)  

 

 This algorithm is inspired by the SIFT context [3], but SIFT uses a 

fixed block size (16×16), and we cannot use it to describe irregular shapes 

(segments). 

 To make the SGOH rotation invariant, we used the moment method to 

find the canonical orientation for each segments. Then we rotated each 

segment to the estimated ordination and build an 18 bins gradient magnitude 

weighted orientation histogram. Finally, the feature vector was normalised 

between one and zero.         

 

1. Use the moment method (intensity centroid measure) [93] to 

find the canonical orientation for each segment. 

2. Rotate each segment according to its canonical orientation to 

make the descriptor rotation invariant. 
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3. Construct a gradient magnitude weighted orientation 

histogram containing 18= 360°/20° bins. 

4. Normalize the generated Segment Gradient Orientation 

Histogram (SGOH) feature vector between zero and one [102]. 

 

5.4.5 Experiment to detect Copy-Move Forgery using a Rolling 

Guidance Filter and Multi-thresholding 

 The Rolling Guidance filter [121] was used to smooth the image and 

maintain the strong edges, then the Otsu method [119] was used to find 7 

different thresholds on the filtered image. We tried different numbers of 

thresholds (5, 7, 9, 11 and 13), and experimentally found that using 7 

thresholds can consistently segment the copy-move objects much better than 

using any other number of thresholds. These 7 thresholds were then used to 

quantize the Rolling Guidance filtered image into 8 different labels. Next, 

connected component labelling was used to find the number of objects 

(segments) in each different value (thresholds) and to compute a set of 

properties (e.g. area, pixel list, etc.) for each object. Then all the segments 

smaller than 50 pixels (Threshold1=50) were removed, recalling that this 

threshold had been optimized experimentally.  

 A 3D colour (3DRGB) histogram was used to describe the colour 

distribution of each segment and a Segment Gradient Orientation Histogram 

(SGOH) was built to represent the gradient of each segment. The steps for 

building our SGOH descriptor were described in Section 5.4.4. 

 A K-d tree was built to all the feature vectors of a specific label and 

the 2nd Approximate Nearest Neighbour was found for each segment (feature 

vector). The neighbouring segments were determined whose Euclidean 

distance between their concatenated feature vectors was less than a threshold 

(Threshold2= 0.012) and the difference between their sizes was less than a 
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threshold (Threshold3=1.5). We evaluated the effect by varying 

Threshold2 in the range 0.001 to 0.05 in increasing powers of 0.003 on a 

20% sample of the images. Below 0.005 we found too few matches and 

above 0.01 too many, in the range 0.01 to 0.02 there was little impact on the 

results, so we selected the value 0.012.  

 The size of the two matched segments was made equal, save their 

coordinates in two separate lists and RANSAC applied to remove the 

outliers. Finally, use the hysteresis technique to grow the detected copy move 

regions and re-colour them green. 

5.4.5.1 CMF detection with translation  

 

 The experimental work illustrates that the performance of the 

suggested algorithm is much better than our previous proposed segmentation 

algorithms, as the F-measure=0.79. The proposed algorithm successfully 

detected plain duplication (translation) on 36 out of 40 images, see 

Figure 5-16, Figure 5-17 and Figure 5-18 . Moreover, this method is less 

complicated and much faster than the previous suggested methods; one 

image can be processed in about 50 seconds.  
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Figure 5-16: (top to bottom, left to right) input forged image, Rolling Guidance 

image, primary detection, RANSAC result and final result after hysteresis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-17: (top to bottom, left to right) input forged image, Rolling Guidance 

image, primary detection, RANSAC result and final result after hysteresis. 

  

    

  

   



Copy-Move Forgery Detection in Digital Images 

161 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-18: (top to bottom, left to right) input forged image, Rolling Guidance 

image, Quantized image primary detection, RANSAC result and final result after 

hysteresis. 
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5.4.5.2 CMF detection with translation and post-Processing (attacks) 

 In our work, we considered different types of attack (image blurring, 

brightness change, colour reduction, JPEG compression, contrast 

adjustments and added noise), see Figure 5-19 – Figure 5-24 and Table 5-1.  

 

 

 

 

 

 

 

 

 

Figure 5-19: (top to bottom, left to right) Input forged image, Forged image after 

Brightness Change, Rolling Guidance image, Quantized image, Primary detection, 

RANSAC result and final result after hysteresis. 

 

 

 

 

 

 

 

 

 

Figure 5-20: (top to bottom, left to right) Input forged image, Forged image after 

Contrast Adjustment, Rolling Guidance image, Quantized image, Primary detection, 

RANSAC result and final result after hysteresis. 
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Figure 5-21: (top to bottom, left to right) Input forged image, Forged image after 

Colour Reduction, Rolling Guidance image, Quantized image, Primary detection, 

RANSAC result and final result after hysteresis. 

 

 

 

 

 

 

 

 

 

 

Figure 5-22: (top to bottom, left to right) Input forged image, Forged image after 

image blurring, Rolling Guidance image, Quantized image, Primary detection, 

RANSAC result,  and final result after hysteresis. 
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Figure 5-23: (top to bottom, left to right) Input forged image, Forged image after 

adding noise, Rolling Guidance image, Quantized image, Primary detection, 

RANSAC result, Hysteresis 5th iteration and final result after hysteresis. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-24: (top to bottom, left to right) Input forged image, Forged image after 

JPEG Compression, Rolling Guidance image, Quantized image, Primary detection, 

RANSAC result and final result after hysteresis. 
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Table 5-1 CMF detection with translation and post-processing (Attacks) 

Post-processing F-measure 
Number of Detected 

images out of 40 

Translation without attack 0.79 36 

Brightness Change Range(0.01, 0.8) 0.78 36 

Contrast Adjustment Range (0.01,0.8) 0.78 36 

Colour Reduction (32 intensity levels) 0.78 36 

Image Blurring (5×5 average filter) 0.79 36 

Adding Noise (μ=0,ϭ2=0.0005) 0.69 28 

JPG Compression (quality factor=40) 0.78 36 

5.4.5.3 CRMF detection (rotation) 

  Using rotation invariant features is the primary requirement of copy-

rotate-move forgery detection. The Segment Gradient Orientation Histogram 

(SGOH) is rotation invariant, as each segment is rotated to its canonical 

orientation before computing the weighted histogram, see Section 5.4.4. The 

experimental work illustrates that the suggested algorithm can detect rotated 

duplicated objects to an acceptable standard. The algorithm detected forgery 

on 35 images out of 40 with F-measure=0.71, see Figure 5-25, Figure 5-26, 

Figure 5-27 and Table 5-2. 

 

 

 

 

 

 

 

 

Figure 5-25: (top to bottom, left to right) Input forged image with copied object 

rotated by 180°, Rolling Guidance image, Quantized image, Primary detection, 

RANSAC result and final result after hysteresis. 
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Figure 5-26: (top to bottom, left to right) Input forged image with copied object 

rotated by 5°, Rolling Guidance image, Quantized image, Primary detection, 

RANSAC result and final result after hysteresis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-27: (top to bottom, left to right) Input forged image with copied object 

rotated by -3°, Rolling Guidance image, Quantized image, Primary detection, 

RANSAC result and final result after hysteresis. 
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5.4.5.4 CRMF detection with post-Processing (attacks) 

 Different types of attack (image blurring, brightness change, colour 

reduction, JPEG compression, contrast adjustments and added noise) were 

considered in our work, see the figures below and Table 5-2. 

 

 

 

 

 

 

 

 

 

 

Figure 5-28: (top to bottom, left to right) Input forged image with copied object 

rotated by 5°, Forged image after Brightness changing, Rolling Guidance image, 

Quantized image, Primary detection, RANSAC result, Hysteresis 22nd iteration and 

final result after hysteresis. 

 

 

 

 

 

 

 

 

 

Figure 5-29: (top to bottom, left to right) Input forged image with copied object 

rotated by 5°, Forged image after Contrast Adjustment, Rolling Guidance image, 

Quantized image, Primary detection, RANSAC result and final result after hysteresis. 
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Figure 5-30: (top to bottom, left to right) Input forged image with copied object 

rotated by 5°, Forged image after Colour Reduction, Rolling Guidance image, 

Quantized image, Primary detection, RANSAC result and final result after hysteresis. 

 

 

 

 

 

 

 

 

 

 

Figure 5-31: (top to bottom, left to right) Input forged image with copied object 

rotated by 5°, Forged image after Image Blurring, Rolling Guidance image, 

Quantized image, Primary detection, RANSAC result and final result after hysteresis. 
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Figure 5-32: (top to bottom, left to right) Input forged image with copied object 

rotated by 5°, Forged image after Adding Noise, Rolling Guidance image, Quantized 

image, Primary detection, RANSAC result and final result after hysteresis. 

 

 

 

 

 

 

 

 

 

 

Figure 5-33: (top to bottom, left to right) Input forged image with copied object 

rotated by 5°, Forged image after JPEG Compression, Rolling Guidance image, 

Quantized image, Primary detection, RANSAC result and final result after hysteresis. 
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Table 5-2 CMF detection with Rotation and post-processing (Attacks) 

Post-processing F-measure 

Number of 

Detected 

images out of 40 

Rotation without attack 0.71 35 

Brightness Change Range(0.01, 0.8) 0.7 35 

Contrast Adjustment Range (0.01,0.8) 0.7 35 

Colour Reduction (32 intensity levels) 0.7 35 

Image Blurring (5×5 average filter) 0.7 35 

Adding Noise (μ=0,ϭ2=0.0005) 0.64 31 

JPEG Compression (quality factor=40) 0.69 33 

 

5.4.6 Analysis of the proposed algorithm to detect CMF using the 

Rolling Guidance Filter and Multi-thresholding 

 

 It is not possible to use the SIFT/DSIFT to describe the irregular 

blocks (segments). We used the Segment Gradient Orientation Histogram 

(SGOH), inspired by SIFT, to describe each segment (irregular block)[102]. 

The experimental work illustrates that the performance of this suggested 

algorithm (F-measure = 0.79) is much better than that of our previously 

proposed algorithms, in detecting plain duplication (translation), which 

detected on 36 out of 40 image. The under-segmentation is the main reason 

that the proposed algorithm cannot detect forgery on some images, see 

Figure 5-34. 

 The suggested method was designed to detect copy-rotate-move 

forgery in images, because each segment is rotated to its canonical 

orientation before computing the Segment Gradient Orientation Histogram 

(SGOH).  

 The interpolation adds changes to the Copy-Rotate-Move (CRM) 

objects (segments) which makes the detection of the CRM forgery much 

harder on the segment level than the block level. The reason is that the bigger 

the block, the more interpolation changes can be added, and the more the 
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differences between the copy-rotate-move objects. The algorithm 

successfully detected CRM forgery on 35 out of 40 images and the F-

measure = 0.71. 

 Still, this method is less complicated and much faster than the previous 

suggested methods. It takes about 50 seconds to process one image, see 

Table 5-3.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-34: (top to bottom, left to right) Input forged image, Rolling Guidance 

image, Quantized image, Primary detection, RANSAC result and final result after 

hysteresis. 

 

 

Table 5-3 Comparison between different segmenation methods 

Method 
F-measure 

Number of Detected 

images out of 40 

Run time for 

one image 

Superpixel 

(translation) 
0.14 21 ~ 27 min. 

Bag of Words Image 

(translation) 

0.46 25 ~ 15 min. 

Rolling Guidance 

(translation) 
0.79 36 

~ 50 sec. 

Rolling Guidance 

(rotation) 
0.71 35 ~ 50 sec. 
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5.5 Conclusions 

 This chapter has described an approach to describe image segments by 

dense descriptors. Experimentally, we found when features extracted 

densely from the segment, the segmentation result has a significant influence 

on the feature vectors that are produced. Therefore, the main challenge with 

the segmentation based CMF detection is to segment the copy-move objects 

consistently. 

 Three different methods have been used to detect CMF. The SLIC 

superpixels method and Bag of Words Image method cannot segment the 

copy-move objects consistently and produced weak results, see 

sections 5.2.3 and 5.3.3. Moreover, these methods take long time to process 

single 512×512 image, see Table 5-3. On the other hand, Rolling Guidance 

filter and multi-thresholding method segments the copy-move objects in a 

more consistent way than SLIC or BoWImage can do. Combining this 

proposed method with the SGOH and 3DRGB produces very good results 

with a short time to process a single image, see Table 5-3.       
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Chapter 6                                            

Summary, Conclusions & Future 

Work 
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6.1 Summary 

 We have suggested three different methods to detect and localize 

CMF. The improved DSIFT and FFRID are block-based methods and can 

detect CMF very well. The SGOH is a segmentation-based method, and it 

detects CMF forgery very good. 

 The FFRID requires 65 sec. to process an image of size 512×512 while 

the improved DSIFT needs 220 sec. to process the same image. The FFRID 

has low computation cost and produces similar results to improved DSIFT 

on plain CMF. While the improved DSIFT is more robust to complex 

transformations (rotation, scaling and combined transformation) than 

FFRID. The SGOH is faster to compute than FFRID, but it has the under-

segmentation problem on flat regions. Overall, we have found that the 

FFRID works better than other suggested methods, see Table 6-1. 
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Table 6-1 A comparison between three developed methods in CMF, CMF and post-

Processing (Avg. of F-Measure and Number of Detected Images). 

 

 

 

Transformation 

 

 

Post-processing 

 

improved 

DSIFT 

 

FFRID 

 

SGOH 

 

improved 

DSIFT 

NoDI 

 

FFRID 

NoDI 

 

SGOH 

NoDI 

Translation 

No-Post processing 0.93 0.93 0.79 40 40 37 

Image Blurring, 

(5×5 average filter) 

 

0.78 
0.84 0.79 38 39 37 

Brightness Change 

Range 

(0.01, 0.8) 

 

0.87 
0.92 0.78 40 40 37 

Colour Reduction 

(32 intensity levels) 

 

0.90 
0.93 0.78 40 40 37 

JPEG Compression 

(quality factor=40) 

 

0.78 
0.90 0.78 40 40 37 

Contrast Adjustment 

Range (0.01,0.8) 
0.90 0.93 0.78 40 40 37 

White Gaussian 

Noise 
0.68 0.82 0.69 36 38 32 

Rotation 

No-Post processing 0.85 0.76 0.71 40 40 34 

Image Blurring, 

(5×5 average filter) 
0.71 0.67 0.70 36 36 34 

Brightness Change 

Range 

(0.01, 0.8) 
0.70 0.66 0.70 36 36 34 

Colour Reduction 

(32 intensity levels) 
0.70 0.65 0.70 36 35 34 

JPEG Compression 

(quality factor=40) 
0.68 0.63 0.69 32 35 34 

Contrast Adjustment 

Range (0.01,0.8) 
0.70 0.72 0.70 36 40 34 

White Gaussian 

Noise 
0.65 0.61 0.64 31 28 29 

Scaling No-Post processing 0.40 0.35 - 28 24 - 

Distortion No-Post processing 0.6 0.7 - 36 38 - 

Combination No-Post processing 0.57 0.45 - 34 26 - 
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6.2  Conclusions 

 In this thesis, three different methods were developed for detecting 

and localizing copy-move forgery. We also developed a method to estimate 

the similarity threshold between feature vectors and optimize the generated 

results using hysteresis thresholding.  

 In the first CMF method, we improved the DSIFT by using the 

intensity centroid measure method to estimate patch orientation, instead of 

the standard SIFT method. This made our improved DSIFT rotation invariant 

without multiple orientation assignment for the same patch. In the improved 

DSIFT, we used circular blocks instead of square ones to eliminate the 

border effect; using circular shaped Gaussian weighting in the standard SIFT 

can reduce the effects of square blocks, but cannot totally eliminate the edge 

effects as circular blocks do. Experimentally, we found that the improved 

DSIFT is more robust to rotation than the Zernike moments (see 

section 3.3.3), and is highly discriminative. It can detect forgery in flat 

regions and structurally complex images. 

 In the second CMF method, we considered the image as a surface, and 

used the least-squares method to fit the parameters of a quadratic function 

that represents the surface of each block in the image. The generated 4-

element Fitting Function Rotation Invariant Descriptor (FFRID) is rotation-

invariant, because we used the intensity centroid measure method to rotate 

each block to its canonical orientation. The experimental results show that 

although the FFRID is only a four element feature vector it is discriminative 

and can detect forgery in flat regions and structurally complex images. The 

FFRID is more robust to post-processing operations and requires less 

computational time than the improved DSIFT or Zernike moments. Finally, 
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we found that the feature descriptors with fewer elements speed up the 

matching to find potential copy-move objects. 

 In the third CMF method, we tested three different segmentation 

methods for CMF detection.  

 We first tried to use the SLIC superpixels in CMF detection. The size 

of copy-move objects can occupy small or large parts of the image; therefore 

the required number of approximately similar-sized superpixels (K) differs 

from one image to another. To overcome this problem, we tested differrent 

K and found that in different cases we should use different K. The Bag of 

Visual Words with the LBP and a 3D colour histogram were used to describe 

each segment. The 2ANN in a K-d tree have been found for each BoWFV to 

determine the potential CMF, but experimentally we found that the SLIC 

cannot segment the copy-move objects consistently. The experimental 

results illustrate the unreliability of this method, due to the significant 

influence that the segmentation result/error has on the generated feature 

vectors when the features are extracted densely from each segment.  

 In the second segmentation method, we developed the Bag of Words 

Image segmentation as a potential solution for CMF detection. We produced 

the LBP image by computing the LBP for each pixel in the image and 

assigned the LBP value to the centre pixel. A 256-histogram feature vector 

was used to describe each 16×16 overlapping block in the LBP image. We 

used the K-means++ clustering to find 16 centres in the feature vectors. 

Similar feature vectors were clustered together, such that the minimum 

Euclidean distance between each feature vector and the K centres indicated 

which centre the feature belonged to. Then we used this centre number to 

label the centre pixel of each block. 
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 The generated Bag of Words Image clustered (segmented) the copy-

move objects in an almost similar way. To describe each segment, we used 

the HOG, the Hu moments and the size of each segment. The 2ANN in a K-

d tree were found for each concatenated feature vector. The experimental 

results illustrate that the performance of this suggested algorithm is better 

than that of our previous proposed algorithm (SLIC superpixel). But the 

BoWImage cannot segment the copy-move objects consistently; it produces 

segmentation errors especially in flat regions and similar textures. 

 In the third segmentation method, we used the Rolling Guidance filter 

to smooth the image and the Otsu method to find 7 different thresholds on 

the filtered image. Then we used these 7 thresholds to quantize the Rolling 

Guidance filtered image into 8 different labels. We developed the Segment 

Gradient Orientation Histogram (SGOH) to describe the gradient and used 

the 3D colour histogram to describe the colour distribution of each segment. 

Then we built a K-d tree to all the concatenated feature vectors to find 2ANN 

which showed Euclidean distance of less than a threshold.   

 The experimental work illustrates the very good performance of this 

method. The Rolling Guidance filter and multi-thresholding segmentation 

method can segment the copy-move objects in more consistent way than 

SLIC segmentation for CMF/CRMF. The SGOH which was inspired by 

SIFT can describe each segment (irregular block) effectively. But this 

method still has the limitation of under-segmentation; it cannot detect 

forgery on flat regions.  

 We found that the similarity threshold between feature vectors is one 

of the most important parameters in detecting CMF. Consider that this 

threshold differs from one image to another. We developed a new method to 

detect the optimal threshold for each image by optimizing a cost function 

based on probability distributions of the correct matching of a patch with its 
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rotated and scaled counterpart and the false matching of different patches. 

The experimental work illustrated the performance of this proposed method. 

We used the optimal threshold with the hysteresis to decrease the number of 

false matches and produce the best possible result.    

6.3 Future work 

 In the following, we present some of the ideas we intend to pursue for 

future works. 

1. The improved DSIFT and FFRID used the moment method (intensity 

centroid measure) to find the canonical orientation of each block. Then 

each block rotated to the estimated orientation which produced a 

rotation invariant descriptors. Unfortunately, these descriptors are 

only robust to moderate scaling and not scale invariant. One possible 

approach is to use Difference of Gaussians as a scale-space filtering 

to achieve the scale invariance. 

2. This thesis considered one type of image forgery, the copy-move 

forgery. We will adapt the two developed algorithms in Chapter 3 

and Chapter 4 to tackle the splicing by finding the dissimilarity 

between the extracted features.  

3. We will use the developed descriptors (improved DSIFT, FFRID and 

SHOG) in other applications of object detection and localization, e.g. 

medical image analysis, face detection, etc.   

4. Study the effect of using HSV colour space instead of RGB colour 

space on CMF with the segmentation method which described in 

Section 5.4. 

5. Deep learning uses neural networks to learn useful representations of 

features directly from data. Perform supervised learning with series 
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and Directed Acyclic Graph (DAG) Convolutional Neural Networks 

(CNNs or ConvNets) for classification and regression. Recent 

advances in deep learning have improved to the point where deep 

learning outperforms humans in some tasks like classifying objects in 

images. We will use deep learning (semantic segmentation) to detect 

and localize CMF. Semantic segmentation describes the process of 

associating each pixel of an image with a class label, (such as CMF 

parts, unforged part). 



Copy-Move Forgery Detection in Digital Images 

181 
 

REFERENCES 

[1] A. Piva, “An Overview on Image Forensics,” ISRN Signal Processing, 

Vol. 2013, PP. 1–22, 2013. 

[2] M. Tralic, Dijana and Zupancic, Ivan and Grgic, Sonja and Grgic, 

“CoMoFoD - New Database for Copy-Move Forgery Detection,” in 

ELMAR, 55th international symposium, 2013, PP. 49–54. 

[3] D. G. Lowe, “Distinctive Image Features from Scale-Invariant 

Keypoints,” International Journal of Computer Vision, Vol. 60, No. 2, 

PP. 91–110, Nov. 2004. 

[4] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust 

Features,” in Lecture Notes in Computer Science (including subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics), Vol. 3951 LNCS, 2006, PP. 404–417. 

[5] J. Fridrich , D. Soukal, J. Lukáš, “Detection of copy-move forgery in 

digital images,” in Digital Forensic Research Workshop, 2003, Vol. 3, 

PP. 272–276. 

[6] Y. Li, “Image copy-move forgery detection based on polar cosine 

transform and approximate nearest neighbor searching,” Forensic 

Science International, Vol. 224, No. 1–3, PP. 59–67, Jan. 2013. 

[7] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, 
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