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Imaging Dose in 
Radiation Therapy
Jonathan Sykes, Parham Alaei, and Emiliano Spezi

22.1 Introduction

Previous chapters in this book have concentrated on the instrumentation and 
measurement techniques for dosimetry of the therapeutic beams. In this chap-
ter, a variety of measurement and calculation techniques will be reviewed for 
characterizing the radiation dose from x-ray imaging systems used in radia-
tion therapy (RT). X-ray imaging systems are now used extensively through-
out a patient’s treatment for all complex RTs, and in many cases for simple 
palliative RTs as well. Nearly, all patients will undergo a multislice computed 
tomography (CT) examination for localizing the target volume and nearby 
organs at risk. In addition, a variety of x-ray imaging systems are available to 
image the patient at the point of treatment, either immediately prior to beam 
delivery (e.g., Korreman et al., 2010; Moore et al., 2014) to ensure accurate 
patient alignment, or during beam delivery to monitor intrafraction motion 
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562 22. Imaging Dose in Radiation Therapy

(e.g., Ng et al., 2012). The electronic portal imaging device is probably the 
most basic of these systems and can be used to locate and track anatomy with 
little or no additional radiation dose to the patient. However, poor image 
quality limits the device to applications where bony anatomy or radiographic 
markers are sufficient surrogates for the target anatomy. Megavoltage cone 
beam CT* (MV-CBCT) can be used to provide 3D visualization of soft tis-
sues with little additional hardware but at the cost of increased imaging dose. 
The addition of a kilovoltage (kV) x-ray system to the gantry has become 
the mainstay of x-ray image guidance, providing CBCT with superior image 
quality compared to MV-CBCT and the option of planar radiographic or 
f luoroscopic imaging (Jaffray et al., 1999; Jaffray and Siewerdsen, 2000). 
Other image guidance systems that utilize x-ray imaging include: Accuray 
CyberKnife® and the Brainlab ExacTrac system, both of which utilize dual/
stereoscopic kV x-ray imaging systems; Accuray TomoTherapy®, which uses 
helical megavoltage CT (MVCT); and the Mitsubishi VERO radiotherapy 
unit, which has a dual x-ray imaging system mounted on a rotating gantry 
capable of stereoscopic kV imaging, as well as CBCT. These systems have 
been discussed in detail in Chapter 10.

While all these systems can be used to perform image guidance and enable 
greater accuracy in the delivery of RT, they all lead to additional x-ray dose to 
the patient. In imaging intensive CBCT-based image-guided RT (IGRT) regimes 
this dose can be of the order of 1–2 Gy for a single CBCT (Spezi et al., 2012). It 
is therefore important to quantify this dose in order to justify the risks of using 
x-ray imaging against the benefits for a particular IGRT protocol.

In this chapter, the measurement of imaging dose is reviewed for the various 
imaging modalities with particular emphasis on kV-CBCT imaging.

22.2 Dose Measurement for CT

The established and standardized method for measuring fan beam CT dose, 
since 1981, has been to measure the computed tomography dose index (CTDI) 
(Shope et al., 1981). CTDI is measured using a 100-mm-long pencil ionization 
chamber in a cylindrical phantom. The phantom is made of polymethylmethac-
rylate (PMMA) and is either 32 cm diameter and 15 cm length for measurement 
of dose in the body or 16 cm diameter and 15 cm length for measuring dose in 
the head (Figure 22.1). The CTDI100, defined in Equation 22.1, was designed to 
measure the dose to air over a volume which encapsulates the slice width plus the 
tails of the fan beam profile on either side. The measurement is performed for a 
single axial (i.e., not helical) rotation of the x-ray tube without table shift. For a 
narrow slice (≤ 1 cm), a 100 mm long chamber is sufficient to capture enough of 
the profile without significant loss of accuracy.

 CTDI 1 ( )d100

50mm

50mm

nT
D z z∫=

−

  (22.1)

where n is the number of detector rows and T is the thickness of each row (mm).

* MV-CBCT was developed and commercialized by Siemens Medical Systems, but is no longer 
commercially available since Siemens stopped producing radiation therapy treatment machines.
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56322.2 Dose Measurement for CT

Capturing the entire profile, including the tails due to scatter, is equivalent to 
measuring the dose for a spiral acquisition. Although there are some variants of 
the CTDI measurement, the CTDI100 is generally accepted as a standard (Kim 
et al., 2011) and is the standard adopted by the International Electrotechnical 
Commission (IEC) (2009).

To estimate the average dose in the axial plane, CTDIw , defined in Equation 22.2, 
is calculated from the average of measurements at the center and the periphery of 
the phantom.

 = +CTDI 1
3

CTDI 2
3

CTDIcenter peripheryw   (22.2)

where CTDIcenter is the CTDI measured at the center of the phantom and 
CTDIperiphery is the average of the dose measured in at least four peripheral points 

Figure 22.1

Computed tomography dose index (CTDI) phantom with 100 mm long pencil 
chamber.
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564 22. Imaging Dose in Radiation Therapy

on the CTDI phantom. CTDIw alone tells us what average dose in a plane would 
be given by a series of contiguous axial scans (stepped table feed) or helical scans 
with a pitch of unity. For a helical scan with pitch not equal to unity, CTDIvol 
can be calculated using Equation 22.3. The CTDIvol, when multiplied by the scan 
length gives the dose length product (DLP), defined in Equation 22.4. If CTDIvol 
is expressed in mGy, DLP is generally given in mGy·mm. It is an estimate of the 
total absorbed dose in the scanned volume, which can then be related to the sto-
chastic effects of radiation exposure and used as a first-order estimate in public 
health monitoring (Smith-Bindman et al., 2009).

 =CTDI CTDI
Pitchvol

center   (22.3)

where pitch is the table increment per revolution as a fraction of the detector 
width (nT), and

 = ×DLP CTDIvol L  (22.4)

where L is the scan length.
The introduction of multislice detectors with typical detector widths up to 

4 cm and with some up to 16 cm has raised discussion about the validity of CTDI 
(Dixon, 2003; Mori et al., 2005; Boone, 2007). Boone showed that the loss in col-
lection efficiency using a 100 mm chamber with wider beam widths up to 4 cm 
was only a few percent (Boone, 2007). However, it was also shown that the collec-
tion efficiency of the 100 mm chamber for a 1 cm beam width was only 82% at the 
center of the CTDI head phantom. In other words, while CTDI100 may be a useful 
dose index, it is not an accurate measure of the equilibrium dose at the center of 
a long scan. The equilibrium dose is the dose that would be delivered for a long 
scan of length L, where L is considerably longer than 100 mm.

22.3  Dose Measurement for CBCT for 
Radiotherapy Applications

22.3.1 CTDI for CBCT
The CTDI concept starts to break down with increasing cone angle for a number 
of reasons:

1. The 100 mm chamber length is not long enough to cover the entire beam 
profile which is typically comparable to or longer than the beam width 
in radiotherapy applications.

2. The phantom size is not sufficient to capture the entire beam width and 
its scatter.

3. The weightings of central and peripheral dose in the calculation of 
CTDIw are not necessarily a good estimate of the average dose across 
the axial plane given the radiological shape of the bow-tie filters used by 
CBCT systems, and the partial arc scanning utilized by some protocols.

These problems were largely ignored in the studies published soon after 
the introduction of CBCT in radiotherapy practice (Sykes et al., 2005; Amer 
et al., 2007; Walter et al., 2007; Osei et al., 2009; Sawyer et al., 2009; Hyer and 
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56522.3 Dose Measurement for CBCT for Radiotherapy Applications

Hintenlang, 2010; Falco et al., 2011), and researchers employed “CTDI-like” tech-
niques to measure the CBCT dose. They continued to use a 100 mm chamber in 
a cylindrical PMMA phantom with the same diameters as the body and head 
CTDI phantoms, 32 and 16 cm, respectively, but lengthened. This method is still 
used by Varian Medical Systems for measuring CBCT dose for the OBI system 
(Varian Medical Systems, 2012). To account for the beam length being similar in 
length or longer than the standard 15 cm, CTDI phantom dose measurements 
have also been reported with additional scatter material (Amer et al., 2007). In 
some cases, this has been achieved using two or three CTDI phantoms placed 
end to end (Palm et al., 2010). In recognition that the CTDI100 only measures an 
average of the central 100 mm portion of the CT, some authors introduced the 
term cone beam dose index (CBDI) (Amer et al., 2007; Osei et al., 2009; Hyer and 
Hintenlang, 2010).

One method to ensure that the entire dose profile is acquired, at least for cone 
angles typical of diagnostic CT scanners, is to measure the dose at the center of 
a lengthened CTDI-type phantom using a 300 mm long cylindrical ion cham-
ber (Geleijns et al., 2009; Hu and Mclean, 2014) or radiochromic film (Hu and 
Mclean, 2014).

An alternative to measuring a CTDI-like quantity is to measure the point dose 
using a 0.6 cm3 Farmer-type chamber, as suggested by Fahrig et al. (2006), in 
cylindrical PMMA phantoms (Islam et al., 2006; Song et al., 2008; Sykes et al., 
2010). Song and collaborators measured the dose at the center of two CTDI phan-
toms placed end to end using a Farmer-type chamber, and termed this measure-
ment CBCTDI (Song et al., 2008). Sykes and colleagues used the same technique 
to measure the dose for both the Elekta XVI and Varian OBI systems (Sykes et al., 
2010). Typical doses for the two systems, taken from Sykes et al. (2010), are given 
in Table 22.1.

The equivalence of measuring DL (z = 0), the dose at the center of a helical scan 
of length L and CTDIL, the integral dose for a single static slice between –L/2 
and L/2, was demonstrated by Dixon (2003). Furthermore, the equivalence of DL 
(z = 0) was measured at the center of a helical scan (scan length = L and pitch = 1) 
and a CBCT scan (aperture a), where a = L. This was confirmed experimentally 
by Mori and colleagues who used a photodiode stepped through the beam to 
measure profiles of various beam widths (Mori et al., 2005). They showed that 
dose profiles acquired along the central axis of both helical CT and CBCT scans 
were equivalent. An alternative to the stepping diode, which would require many 
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Table 22.1 Cone Beam Dose Measurements (Similar to CTDIw) for Standard Imaging Protocols on the Varian 
OBI and Elekta Synergy CBCT Systems

Varian OBI Imaging 
Protocols

Exposure Parameters 
(kV/mAs/bt)

Doses  
(mGy)

Elekta Synergy  
Imaging Protocols

Exposure Parameters 
(kV/mAs/bt)

Dose 
(mGy)

Low dose head 100/72/bt  2.8 Low dose head 100/36  1.4
Standard dose head 100/145/bt  5.6 Medium dose head 100/144  5.4
High-quality head 100/720/bt 27.8 High dose head 100/288 10.7
Pelvis 125/655/bt 24.9 Pelvis M10 100/819/bt 12.7
Pelvis spotlight 125/360/bt 20.2 Pelvis M15 100/819/bt 14.0

Pelvis M20 100/819/bt 15.3

Note:  Manufacturer’s recommended protocol settings may change over time based on the introduction of new technology 
or feedback from customers. (bt signifies a bow-tie filter was used.)
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566 22. Imaging Dose in Radiation Therapy

repeat CBCT scans, is the use of a CT dose profiler (RTI Electronics AB, Mölndal, 
Sweden) as demonstrated by Palm et al. (2010). Based on their respective previous 
findings, Boone and Dixon proposed a unified and self-consistent approach to 
both multidetector helical (moving) and stationary CBCT systems by measuring 
a point dose for a single beam width (Dixon and Boone, 2010). Their theory sug-
gests that this single measurement is sufficient to calculate the dose for a station-
ary or moving scan of any other beam width. This theory eventually formed the 
basis of the American Association of Physicists in Medicine (AAPM) Task Group 
(TG) 111 report on the evaluation of radiation dose in x-ray CT (AAPM, 2010).

22.3.2 AAPM Recommendations on CBCT Dosimetry
AAPM TG-111 report (AAPM, 2010) presents the theoretical underpinnings of 
measuring dose in axial, helical fan beam or CBCT with table translation, as well 
as in stationary phantom CBCT. For axial or helical scanning, the report notes 
that there is an equilibrium dose constant which is independent of the collima-
tion or the pitch. The dose for any particular scan can then be determined as the 
product of the equilibrium dose constant and a factor (pnT/a) where p is the pitch, 
nT the total width of the detector, that is, n rows of width T, and a is the width of 
collimation. This considerably reduces the number of measurements that need to 
be made as long as a is known. The equilibrium dose constant is the dose mea-
sured at the central scan plane (z = 0) for a scan of length Leq and with pitch p = 
a/nT. Leq has to be sufficiently large to ensure that further increment of L does not 
significantly increase the measured dose.

For scan lengths shorter than Leq the dose DL, at the center of the scan on 
the rotation axis, asymptotically approaches Deq as described by Equations 22.5 
and 22.6:

 ( 0) ( ) eqD z h L DL = =   (22.5)

and

 ( ) 1 exp 4
eq

= − ∝ −





h L L
L

  (22.6)

where ∝, eqL , and eqD  can be determined experimentally by fitting the curve of 
dose versus the number of scan lengths.

For CBCT, where there is no table movement and typically only one rotation, 
the dose for a given scan with collimation width a is simply the dose measured at 
the center of the scan at the midpoint on the central axis. AAPM states that the 
CBCT dose would also reach an equilibrium for large collimation widths, but aeq 
would be greater than 400 mm. Because this is not possible, even on RT image 
guidance systems, measurement of the dose equilibrium is therefore not clini-
cally relevant. That said, measurement of the dose for a few collimation widths 
would allow a fit to Equation 22.6, which could then be used for the calculation 
of the dose for any collimation width used in clinical practice. Since the 100 mm 
long chamber does not cover the entire beam profile, it can underestimate the 
dose by 2%–5% for wide angle CBCT (Osei et al., 2009). This is one reason why 
the AAPM TG-111 methods are based on measuring the point dose (e.g., using 
a Farmer-type chamber) in a geometrical phantom (typically cylindrical) that is 
sufficiently long to provide full scatter conditions for the irradiated scan length.
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56722.3 Dose Measurement for CBCT for Radiotherapy Applications

AAPM TG-111 also introduces the concepts of integral dose (Etot) and planar 
average equilibrium dose )( eqD , and shows that = ρπtot

2
eqE R LD  where R is the 

radius of the volume, L is the scan length, and ρ is the mass density of the phan-
tom. According to this report, the integral dose serves as a simplified indicator of 
patient risk: the presumption is that cancer risk increases the larger the dose and 
irradiation volume containing radiosensitive tissue.

The practicalities of measuring eqD , the average dose over the scan plane are dis-
cussed briefly. Recognizing that when = +( )eq

2D r A Br , that is, ( )eqD r  has a para-
bolic form, the measurement of ( )eqD r  at two points, such as in the center and in the 
periphery of the phantom as conventionally measured for CTDIvol, would be rea-
sonable. Note, however, that this leads to = ⋅ = + ⋅ = −( 0) ( 1)tot

1
2

1
2E D r D r R  instead 

of more commonly used formula = ⋅ = + ⋅ = −CTDI CTDI( 0) CTDI( 1)vol
1

3
2

3r r R . 
Recognizing that ( )eqD r  does not always follow a parabolic form, AAPM TG-111 
notes that more detailed measurements or the use of Monte Carlo (MC) model-
ing might be required. This would be the case for the large fields of view of the 
Elekta XVI and Varian OBI CBCT systems, and for the medium field of view of 
the Elekta system where the detector panel is shifted laterally to extend the field of 
view. This creates a central cylinder which is exposed from all 360° while material 
in the remaining volume is only exposed from 180°. In addition, the very different 
bow-tie filter designs between the Elekta and Varian systems will lead to different 
radial dose profiles.

AAPM TG-111 notes that measuring the free-in-air dose equilibrium pitch 
product* is an important measurement to make at commissioning as it can be 
used for quality assurance purposes to assess constancy of exposure and to 
infer the equilibrium dose measured in a phantom given a scanner with the 
same phantom factor (ratio of dose equilibrium in phantom to free-in-air dose 
equilibrium).

While AAPM TG-111 presents the theoretical underpinnings of the mea-
surement of CBCT dose, it does not offer much in the way of standardization of 
CBCT dose measurement. The report suggests, but does not dictate, the use of a 
Farmer-type chamber. It also discusses various phantom designs with different 
dimensions and cross-sectional shapes (circle or ellipse) and different materials, 
but does not make any recommendations for a standard phantom and chamber 
as with the CTDI concept. The methods used by Islam et al. (2006), Song et al. 
(2008), and Sykes et al. (2010) are in many ways closely aligned with those of 
AAPM TG-111.

22.3.3 IAEA Recommendations for CBCT Dosimetry
The IAEA has published an update on the status of CT dosimetry for wide-cone 
beam scanners (IAEA, 2011) which includes recommendations on CT and CBCT 
dosimetry based on the IEC 60601-2-44 report (IEC, 2009). This is a more prag-
matic approach to dosimetry of CBCT scanners than the AAPM recommenda-
tions and can be performed with current dosimetry equipment. They noted that 
even for a 10 mm wide beam CTDI100, measured at the center of the phantom, 
only 82% and 63% of the dose is collected for the head and body phantoms, 
respectively (Boone, 2007). This illustrates that the CTDI100 was never as accurate 

* The product of the pitch with the free-in-air dose equilibrium corrects for variation in dose due to 
choice of pitch.
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568 22. Imaging Dose in Radiation Therapy

as one might desire with doses underestimated for long scan lengths and overes-
timated for short scan lengths. However, the CTDI100 accuracy stayed constant 
for beam widths between 10 and 40 mm, and only decreased significantly for 
beam widths greater than 40 mm. The IAEA recommends a two-tier approach to 
the CTDI100 with measurements for beam widths of less than 40 mm following 
the existing method, but for those greater than 40 mm they exploit Equation 22.7 
which states that the CTDI for a beam width greater than 40 mm is related to the 
CTDI for a beam width less than 40 mm by the ratio of the CTDIfree-in-air at the 
two beam widths.

 CTDI CTDI DTDI
CTDI100,( ) 40 100,ref

free-in-air ,

free-in-air,ref
= ×





× >

×
N T

N T   (22.7)

where CTDI100,ref  is the CTDI100 measured in a phantom for the reference beam 
of ×( )refN T  using an integration of 100 mm, N is the number of detector rows, 
T is the thickness of a single detector row and where ×( )refN T  is typically 
20 mm, ×DTDIfree-in-air ,N T  is the CTDIfree-in-air ,ref  for a beam width of ×N T , and 
CTDIfree-in-air ,ref  is the CTDIfree-in-air for the reference beam width.

The measurement of CTDIfree-in-air ,ref  is itself done in two tiers with a single 
chamber (100 mm length) position used for beam widths less than 60 mm; and 
two or three positions, each stepped by 100 mm to cover beam widths larger 
than 60 mm. Note that the IAEA formalism results in a dose index equivalent 
to the CTDI100 but for a wider beam width, and therefore, retains the fundamen-
tal problem that the collection efficiency of the 100 mm pencil chamber is con-
siderably less than 100% as described previously. The IAEA formulation is not 
equivalent to measuring the dose that would be given for a particular scan using, 
for example, a Farmer-type chamber at the center of a large phantom or using a 
300 mm pencil chamber (CTDI300) (Hu and Mclean, 2014).

22.3.4 Comparison of AAPM and IAEA Results
Hu and McLean measured CBCT dose using both the AAPM and IAEA methods 
of CT dosimetry and compared the results with those obtained with the previous 
CTDIw,100 method as used by Varian to measure CBCT dose for the OBI system 
(Hu and Mclean, 2014). They used three CTDI phantoms stacked end to end, and 
a variety of dosimeters including a PTW 30009 100 mm pencil chamber, a PTW 
30017 300 mm pencil chamber, an IBA Farmer-type chamber, and Gafchromic 
XR QA2 film. Taking a standard head protocol with a 184 mm beam width as 
an example they found that CTDIw,100 was 5.53 mGy in a 15 cm phantom with a 
100 mm pencil chamber and 4.28 mGy using the IAEA correction factor. In a 45 
cm phantom, CTDIw,300 was 5.48 mGy with a 300 mm pencil chamber. Using the 
AAPM formalism with a 0.6 cm3 Farmer-type chamber, the dose was 5.49 mGy. 
For a pelvis scan with a 206 mm beam width, the CTDIw,100 in a 15 cm phantom 
was 18.06 and 15.88 mGy with and without the IAEA correction, respectively, 
and in the 45 cm phantom CTDIw,300 was 22.37 mGy. The AAPM formalism gave 
22.7 mGy.

As Hu and McLean comment, there is good agreement between the CTDIw,300 
and the Farmer-type 0.6 cm3 chamber measurements, despite one measuring 
the combined central and peripheral integrated dose profiles, and the other the 
peak central dose. As expected, they showed a clear difference between CTDIw,300 
and CTDIw,100 measured in 45 and 15 cm phantoms due to the loss of collection 
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56922.4 Measurement (and Calculation) of Dose for Planar kV Imaging

efficiency of the 100 mm chamber and the lack of scatter material. No comment 
was made in the article about the IAEA corrected CTDIw,100 measurement, which 
seems to reduce the dose further from what could be considered the gold stan-
dard using the CTDIw,300 measurement.

22.4  Measurement (and Calculation) of 
Dose for Planar kV Imaging

In radiation oncology, kV x-ray imaging systems are used for IGRT in both 
radiographic and fluoroscopic modes (Yin et al., 2009). Radiographic modes are 
typically used to ensure correct placement of the isocenter and patient align-
ment using two orthogonal views, usually anterior–posterior and lateral. The 
use of implanted radiographic markers can make this a highly accurate method 
of aligning the target volume (Schiffner et al., 2007). Fluoroscopic modes can 
be used to monitor respiration prior to treatment, for example, to monitor dia-
phragm position, to ensure correct positioning for deep inspiration breath hold 
(DIBH) techniques in treatment of breast cancer (Borst et al., 2010), or to monitor 
target motion during treatment at sites such as prostate, lung, liver, and pancreas 
(Shirato et al., 2004; Ng et al., 2012). In this section, both radiographic and fluo-
roscopic modes will be considered equivalent for the purpose of measuring the 
radiation dose. The difference between the two is simply that in radiographic 
mode the x-ray tube is switched on once, while in fluoroscopic mode the tube 
is pulsed once per image frame acquired and can therefore be considered as a 
sequence of radiographic images.

In diagnostic radiology, there are two primary concerns: (1) the deter-
ministic effects of radiation exposure, for example, skin erythema from long 
exposures where the skin dose exceeds 2000 mGy, and (2) the stochastic risk 
of secondary induced cancer from radiation exposure. The first effect can be 
determined from a measurement using an ion chamber, thermoluminescent 
dosimeters (TLDs), or optically stimulated luminescent dosimeters (OSLDs). 
The second effect can be estimated from the effective dose. AAPM TG-75 
report (Murphy et al., 2007) provides an example of the estimation of effective 
dose for a particular radiographic exposure. This example uses the entrance 
dose given as dose area product (DAP) multiplied by a factor F, which is specific 
to a technique and is derived using MC calculations of dose in a mathematical 
phantom. The MC technique is described in NRPB Report 186 (Jones and Wall, 
1985) and the F-factors for a variety of radiographic procedures have been cal-
culated by Le Heron (1992).

It is not standard practice to characterize the 3D dose distribution in a homo-
geneous phantom in diagnostic radiology. Measuring the DAP is sufficient in the 
diagnostic community to estimate the effective dose for a procedure as described 
above.

In RT, there are two purposes of measuring the radiation dose from radio-
graphic/fluoroscopic procedures: (1) to calculate effective dose* from the imag-
ing to be combined with the effective dose from the treatment beam/source as 
recommended by AAPM TG-75 (Murphy et al., 2007), and (2) to calculate the 

* Effective dose, as defined by Jacobi (1975) is “the mean absorbed dose from a uniform whole-body 
irradiation that results in the same total radiation detriment as from the non-uniform, partial-
body irradiation in question” (Equation 22.10).
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570 22. Imaging Dose in Radiation Therapy

additional dose to critical organs which may already be receiving a threshold 
dose from the treatment beam/source.

For the calculation of effective dose, it is not necessary to calculate dose for 
an individual patient and therefore use of effective dose calculations based on 
the entrance dose are deemed to be sufficient. The calculation of dose to indi-
vidual organs ideally should be done based on the individual patient anatomy 
using either MC methods or other algorithms as proposed by several groups 
(Ding et al., 2008b; Spezi et al., 2009; Alaei et al., 2010; Pawlowski and Ding, 2014; 
Poirier et al., 2014) discussed in Section 22.8. Unfortunately, these techniques 
are not widely available. In the absence of such methods, it may be sufficient to 
estimate dose to organs based on knowledge of the basic depth dose distribution 
of kV x-rays in water. In order to measure the dose distribution of kV x-rays, 
the RT medical physicists can turn to techniques for characterizing the dose in 
superficial x-ray units. For the absolute dose calibration, there are a number of 
protocols to choose from, for example, the Institution of Physics and Engineering 
in Medicine and Biology (IPEMB) code of practice (IPEMB, 1996), the IAEA 
TRS-398 code of practice (IAEA, 2000), and AAPM Report 61 (Ma et al., 2001). 
Methods of relative dosimetry for kV x-ray beams have been reviewed compre-
hensively by Hill et al. (2014) in the context of superficial x-ray treatment systems, 
and include details of measurement using ion chambers, diamond detectors, 
diodes, metal–oxide–semiconductor field-effect transistors (MOSFETs), optical 
fibers, OSLDs, plastic scintillator detectors, TLDs, radiochromic film, and gel 
dosimeters.

Typical doses for radiographic and fluoroscopic systems vary widely depend-
ing on the technique and the anatomical site being imaged. In particular, flu-
oroscopic imaging doses will depend on the length of the procedure and the 
pulse-repetition frequency. Tien and colleagues compared the entrance skin 
exposure (ESE) for two centers treating brain, thorax, abdomen, and pelvic 
regions with the CyberKnife system. They found the average ESE to be 17, 53, 
41, and 68 cGy, respectively, for these regions (Tien et al., 2014). In a white paper 
published by Accuray (Accuray, n.d.), effective doses of 0.24, 3.56, and 16 mSv 
were reported for image guidance with intrafraction tracking of motion for the 
head, chest, and pelvis with a total number of projection images of 54, 138, and 
196, respectively.

Ding and Munro (2013) compared radiation dose values from an orthogonal 
pair of MV portal images, kV radiographs, and CBCT in the head, thorax, and 
pelvic regions. They performed MC simulations to determine the portal imaging 
doses and concluded that kV radiographs deliver the least dose among imaging 
modalities with typical doses in the order of a fraction of a cGy.

22.5 Dose Measurement for MV Portal Imaging

Portal imaging using the MV photon beam and an image receptor, for example, 
radiographic film, which was subsequently replaced by electronic portal imaging 
devices, was the principle imaging tool prior to development of CBCT, and is 
still being utilized heavily for patient position verification. This is often accom-
plished by taking AP and lateral radiographs to verify isocenter location, but 
may involve imaging individual beam portals, in which case the images are often 
double exposed by imaging both with the beam-limiting devices (blocks, multi-
leaf  collimators [MLCs]) in place and without them.

AU: Please 
confirm if 
the edits 
made to the 
sentence 
“The calcula-
tion of dose 
to…” convey 
the intended 
meaning.

9781482252217_C022.indd   570 21/07/17   5:53 PM

60016357
Sticky Note
I would preferIdeally, the calculation of dose to individual organs should be done based on the individual patient anatomy.

60016357
Highlight
I can no longer find this reference on the internet. Can I change the citation to ('no longer available online')



57122.6 Dose Measurement for MVCT and MV-CBCT

The portal imaging dose has traditionally been estimated by equating each 
monitor unit (MU) delivered for an image to one cGy, which is obviously not 
accurate as the patient dose varies depending on the imaging field size and patient 
size. Jones and Shrimpton (1991) measured the portal film dose for 100 patients 
and reported average doses of up to 150 cGy per course of linac-based treatment. 
More recently, Kudchadker et al. (2004) evaluated radiation exposure from por-
tal films in pediatric patients and reported mean total doses per course of RT to 
be between 17 and 46 cGy, with most of the dose due to open-field dose from the 
double-exposure technique. Additional in vivo studies provide further data for 
dose using electronic portal imaging systems both at the surface and internally. 
Walter et al. (2007) measured the electronic portal imaging dose to patients and 
reported a skin dose of 5.8–6.9 cGy and a rectal dose of approximately 3 cGy for 
a pair of portal images. Stock et al. (2012) measured the electronic portal imag-
ing dose in an anthropomorphic phantom and reported doses ranging between 
3 and 5 cGy. Ding and Munro (2013) reported MC calculated doses for MV elec-
tronic portal imaging to be in the order of 2–4 cGy per orthogonal pair.

The reduction of MV portal imaging dose is achievable by: (1) limiting the 
collimator size in double-exposure imaging and (2) using fewer MUs in imaging 
smaller volumes, such as in the head and neck region and for pediatric cases.

22.6 Dose Measurement for MVCT and MV-CBCT

MVCT scanning in RT is exclusive to TomoTherapy systems (Accuray, Sunnyvale, 
CA). The TomoTherapy Hi Art system utilizes a 3.5 MV x-ray beam and a row of 
xenon detectors to acquire fan beam CT images for patient position adjustments. 
During imaging, a 4 mm jaw width (as projected to isocenter) is used for all image 
acquisitions. The MVCT images are acquired at couch speeds of 4, 8, and 12 mm/
rotation, corresponding to pitch values of 1, 2, and 3, referred to as fine, normal, 
and coarse image acquisition, respectively. The images are then reconstructed 
as fine, normal, and coarse, corresponding to slice thicknesses of 1 or 2, 2 or 4, 
and 3 or 6 mm, respectively, the thinner of each set is obtained from interpola-
tion. Thus, the acquisition pitch determines the slice thickness, imaging dose, and 
duration of image acquisition (Shah et al., 2008). The imaging dose is also depen-
dent on the length of imaged volume and patient size. The reported measured 
doses range from less than 1 cGy to over 2 cGy in cylindrical and anthropomor-
phic phantoms (Shah et al., 2008) utilizing multiple scan average dose (MSAD) 
measurements. Similar types of measurements in a cylindrical acrylic phantom 
reported doses between 0.2 and 1 cGy for pitches between 4 and 1 (Meeks et al., 
2005). Another set of measurements using TLDs in an anthropomorphic phan-
tom indicated imaging doses of <1 cGy for coarse setting (Shah et al., 2012).

Imaging dose from MV-CBCT employed in Siemens linacs has been mea-
sured by several groups (Gayou et al., 2007; Morin et al., 2007a,b; Isambert et al., 
2009; Quinn et al., 2011; Halg et al., 2012). The dose from this imaging modal-
ity generally increases with higher MU protocol, which produces better quality 
images. Due to fixed gantry start/stop angles, there is also a steep dose gradi-
ent within the patient with higher dose on the anterior portions of the body, 
assuming supine position. This has been illustrated by Miften and colleagues 
using a treatment-planning system (Miften et al., 2007). The reported doses from 
MV-CBCT imaging range from a fraction of cGy up to 12 cGy, depending on the 
protocol used.
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572 22. Imaging Dose in Radiation Therapy

22.7 Dosimeters for All Modalities

Virtually any dosimeter used in RT can be used for imaging dose measurements 
provided it has been calibrated for the quality of the imaging beam and charac-
terized for its behavior in such a beam quality. Ion chambers can be used to mea-
sure dose from any imaging beam, regardless of beam quality, with the caveat 
that they need to be calibrated for the imaging beam quality if different than the 
therapeutic one. For example, to use an ion chamber in the kV energy range, the 
chamber must be calibrated for that beam quality with traceability to a dosim-
etry standard laboratory.

TLDs have been extensively used for dose measurements in anthropomorphic 
phantoms and kV-CBCT beams (Sykes et al., 2005; Amer et al., 2007; Saw et al., 
2007; Wen et al., 2007; Kan et al., 2008; Marinello et al., 2009; Osei et al., 2009; 
Palm et al., 2010; Cheng et al., 2011; Dufek et al., 2011; Halg et al., 2012). They 
have also been used for skin dose measurements from imaging beams. One of 
the limitations of TLDs is the energy dependence of their response; hence, to 
use them for measurements in kV beams they either have to be calibrated for the 
same beam quality or their response corrected using a correction factor (Kron 
et al., 1998; Nunn et al., 2008).

Among other dosimeters commonly available, OSLDs can also be used 
for imaging dose measurements. The use of OSLDs in kV x-ray beams has 
been studied by several groups (Winey et al., 2009; Ding and Malcolm, 2013; 
Giaddui et al., 2013).

Other dosimeters such as MOSFETs (Cheung et al., 2003; Ehringfeld et al., 
2005), radiographic, and radiochromic films have also been used for MV imaging 
dose measurements and could be used for kV measurements as well (Marinello 
et  al., 2009; Isambert et al., 2009; Alvarado et al., 2013; Giaddui et al., 2013; 
Nobah et al., 2014).

22.8 Dose Calculation Methods

22.8.1 Dose Calculation Algorithms for MV-CBCT
In case of MV-CBCT, all the current algorithms available in treatment-planning 
systems can be utilized to compute the imaging dose as the same 6 MV thera-
peutic beam is used for imaging. This has been done by several groups, indicating 
its feasibility and the ability of including MV-CBCT dose in treatment planning 
(Miften et al., 2007; Morin et al., 2007a,b). The Siemens units can also perform 
MV-CBCT using an “Imaging beam line” (IBL), which employs a degraded 4.2 
MeV beam and a carbon target to produce the imaging beam (Faddegon et al., 
2008). The IBL beam data has been collected and modeled in one commercial 
treatment-planning system utilizing a convolution/superposition algorithm 
(Flynn et al., 2009). Figure 22.2 shows a dose distribution from MV-CBCT using 
a treatment-planning system.

22.8.2 Dose Calculation Algorithms for kV-CBCT
Calculating kV-imaging dose using available algorithms poses greater chal-
lenges as these algorithms have been developed to calculate the dose from MV 
beams which predominantly interact with tissue through Compton interactions. 
Interactions in the kV range are predominantly through photoelectric effect, 
which is not modeled accurately with these algorithms, with the exception of 
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57322.8 Dose Calculation Methods

MC  methods. A common algorithm applied in treatment-planning systems, 
convolution/superposition, has been used for dose calculation from kV-CBCT by 
addition of kV energy deposition kernels (Alaei et al., 2010) producing reasonable 
results in soft tissue and lung but underestimating the dose in and around bone 
(Alaei et al., 2001, 2010). Convolution-based algorithms do not account for atomic 
number changes in the medium, which are needed for accurate dose calculations 
in the kV range. A proposed algorithm (Ding et al., 2008b) overcomes this prob-
lem by introducing a correction factor to account for atomic number changes. 
This algorithm is currently not available commercially. Figure 22.3 demonstrates 
such a dose calculation using the convolution-based algorithm implemented in 
the Pinnacle treatment-planning system (Philips, Milpitas, CA).

22.8.3 Dose Calculation Using MC Methods
Frequently used methods for estimating dose from CBCT are based on calcu-
lating the dose to either the CTDI phantoms or to simplified humanoid com-
putational phantoms. In the diagnostic world of radiation protection, it may be 
sufficient to relate the dose for CT scan protocols used by a particular hospi-
tal to the radiation risk for the purpose of justification and for reporting dose. 
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Figure 22.2

Distribution of dose deposited in the pelvis by a single fraction of MV-CBCT imaging 
for a prostate patient, with 10 cGy at isocenter. The isodose lines are labeled in cGy. 
(Reproduced from Miften M et al., Med. Phys., 34, 3760–3767, 2007. With permission.)

Figure 22.3

Isodose distribution showing the imaging dose from 25 fractions of pelvic imaging 
for one patient using the Elekta XVI pelvis imaging protocol (120 kVp, 1 mAs, 650 pro-
jections) calculated using the Pinnacle treatment-planning system. (Reproduced 
from Alaei P and Spezi E, Phys. Med., 31, 647–658, 2015. With permission.)
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574 22. Imaging Dose in Radiation Therapy

However, in radiotherapy where many CBCT scans might be performed dur-
ing the course of treatment, it may be necessary to calculate the dose to specific 
critical organs to ensure that the combined treatment and concomitant imaging 
dose does not exceed the dose criteria specified in the treatment protocol. In such 
cases, individualized patient dose calculations may be required. The MC method 
is regarded as the most accurate approach to model ionizing radiation transport 
for radiotherapy and imaging applications (Verhaegen and Seuntjens, 2003; Spezi 
and Lewis, 2008), and it is an ideal tool for CBCT patient dosimetry. The calcu-
lation of concomitant dose from both kV- and MV-CBCT units has been car-
ried out extensively with the EGSnrc code system (which includes the BEAMnrc 
and DOSXYZnrc codes) and, to a lesser extent, with other MC codes  such as 
MCNP and Geant4 (Chow et al., 2008; Ding et al., 2008a; Gu et al., 2008; Ding 
and Coffey, 2009, 2010; Downes et al., 2009; Spezi et al., 2009, 2011, 2012; Walters 
et al., 2009; Qiu et al., 2011, 2012; Deng et al., 2012a,b; Zhang et al., 2012; Ding 
and Munro, 2013; Son et al., 2014). As reported by Alaei and Spezi (2015), sev-
eral groups developed MC models for CBCT imaging systems and calculated 3D 
dose distributions using patient-specific CT scans or virtual phantoms. This is 
the result of several works aimed at improving particle transport models for x-ray 
photon beams in the diagnostic energy range (Kawrakow, 2013). The commis-
sioning of an MC model for a CBCT unit is in principle similar to the commis-
sioning of a treatment-planning system for external beam radiotherapy. First, the 
model of the unit’s head, including source, filters, and beam collimators, has to 
be built. Second, the model has to be calibrated for absolute dose calculation, and 
dose profiles obtained in reference conditions must be validated against experi-
mental measurements. The process for the absolute dose calibration of a CBCT 
MC model was described by Ding et al. (2008a) and Downes et al. (2009). The MC 
calibration factor, defined in Equation 22.8, is specific to each CBCT beam and 
is derived by measuring, in reference conditions, the absolute dose to a point in 
a phantom with known geometry, and by calculating the MC dose to the same 
point.

 =MCcal
exp

MCcal
F

D
D

  (22.8)

where Dexp is the measured dose in units of Gy and DMCcal is the MC dose, 
calculated in the same reference conditions, in units of Gy per incident particle.

Once the computational model is commissioned, 3D dose calculation can be 
carried out by sampling the photons incident on the patient with one of the fol-
lowing methods using: (1) full MC simulation of the beam line (Qiu et al., 2011, 
2012); (2) a phase space file representing the invariant parts of the unit or fixed 
field sizes (Chow et al., 2008; Ding et al., 2008a; Ding and Coffey, 2009, 2010; 
Downes et al., 2009; Walters et al., 2009; Spezi et al., 2012); (3) a source model 
representing the main sources of radiation (Spezi et al., 2011; Deng et al., 2012a,b; 
Zhang et al., 2012; Ding and Munro, 2013; Montanari et al., 2014); and (4) an x-ray 
spectrum (Gu et al., 2008; Ding et al., 2010). Several groups (Chow et al., 2008; 
Downes et  al., 2009; Spezi et al., 2009, 2011, 2012) have developed a computa-
tional model for the Elekta XVI CBCT unit using the EGSnrc/BEAMnrc code 
system and Beampp (a C++ implementation of the BEAMnrc MC code). A num-
ber of other groups have developed MC models of the Varian OBI CBCT scanner 
(Gu et al., 2008; Qiu et al., 2011, 2012; Zhang et al., 2012; Ding and Munro, 2013; 
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57522.8 Dose Calculation Methods

Montanari et al., 2014). All publications reported 3D dose data calculated on vox-
elized geometries representing human anatomy, based on patient CT scans or 
virtual phantoms, and present doses to various organs of interest. While it is not 
feasible to list all the organ dose data in this chapter, we summarize in Table 22.2 
the typical kV-CBCT doses for three anatomical sites. Note that the performance 
of the CBCT systems in Table 22.2 should not be judged on the basis of the data 
reported, since there is no reason to assume that the acquisition settings have been 
optimized to give the same trade-off between imaging dose and image quality.

The following observations are generally applicable to understanding patient 
dose from CBCT. As shown in Figure 22.4, MC simulations have demonstrated 
that bony structures can receive two to four times the dose delivered to the soft  tis-
sue (Ding et al., 2008a; Downes et al., 2009; Spezi et al., 2012). Furthermore, the 
use of computational phantoms based on micro-CT images pointed out that the 
average dose to bone surface cells can be up to 80% higher than the average dose 
to organs at risk in a typical head and neck CBCT scan (Walters et al., 2009). This 
is caused by the increased mass-energy absorption coefficient due to the pho-
toelectric interaction within the materials of higher atomic number. It has also 

Table 22.2 Typical MC Calculated Patient Doses, in cGy, for Three Anatomical Sites for 
the Elekta Synergy CBCT System and the Varian OBI CBCT System

Pelvis/Abdomen Head and Neck Chest

Elekta XVI (Spezi et al., 2012) 1.5–3.3 0.1–0.2 1.2–3.4
Varian OBI (Ding and Coffey, 2009; 

Montanari et al., 2014)
1–5 0.2–0.5 2–9

Note:  Doses reported are for the body, that is, not for a specific organ.
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Figure 22.4

Patient dose from XVI CBCT pelvis scan simulated using the M10 collimator and 
F1 bow-tie filter. (a) Transverse, (b) sagittal, and (c) coronal dose contours are 
shown. Absolute dose profiles in the transverse and sagittal plane are shown 
in (d). (Reproduced from Downes P et al., Med. Phys. 36, 4156–4167, 2009. With 
permission.)
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576 22. Imaging Dose in Radiation Therapy

been shown that the addition of the bow-tie filter significantly reduces the dose 
by 22% in the pelvis and 45% in the chest (Spezi et al., 2012). This is primarily 
due to the attenuation of the dose to the peripheral tissues but also to the beam 
hardening effect. Moreover, the bow-tie filter reduces the scattered dose from 
the periphery of the patient to the imager which has the additional advantage of 
increasing image quality.

Downes et al. (2009) also showed that the CBCT imaging dose has a left–right 
asymmetry due to the increased number of exposures at the start and stop gantry 
angles as the gantry rotation accelerates and decelerates at the beginning and end 
of each scan. Unlike CT imaging where the patient is normally central in the CT 
scanner, in radiotherapy the isocenter is typically set to the center of the target 
volume which may itself be offset from the center of the patient’s cross section. 
Chow (2009) studied this effect and found for the pelvis phantom variation in the 
mean dose of up to 20% for up to 10 cm anterior–posterior shifts. Dose variations 
for the chest and head and neck were typically between 7% and 17%. It has been 
found that kV-CBCT doses are highly (inversely) correlated with patient size, 
expressed in weight or body mass index (BMI) (Zhang et al., 2012; Alaei et al., 
2014). In particular, doses to pediatric patients were found to be of the order of 
two times that of an adult (Ding et al., 2008; Deng et al., 2012a).

22.9 Estimating Effective Dose and Risk

The CTDIvol measurement is an estimate of the average dose in the central axial 
plane of the scan and is typically calculated as one-third of the central dose and 
two-thirds of the peripheral dose, as discussed in Sections 22.2 and 22.3. This 
is independent of the scan length and therefore does not relate to the total dose 
to the patient and any risk of radiation-induced malignancy. A commonly used 
and very simple method to relate CTDIvol to total imaging dose is to multiply it 
by the length of the scan. This is known as the dose length product and has been 
discussed in Section 22.2. Unlike the above, the quantity referred to as integral 
dose (total energy absorbed in a volume) can be used as a surrogate to estimate 
patient risk, assuming that the risk increases with the dose and volume irradi-
ated. AAPM TG-111 (AAPM, 2010) presents the methodology to relate integral 
dose to scan length and other quantities as elucidated in Section 22.3.2.

For a more accurate assessment of radiation risk, the dose to individual organs 
and their respective organ sensitivities are needed. The effective dose, defined in 
Equation 22.10, measured in units of sievert (Sv), is a summation of tissue equiva-
lent doses, shown in Equation 22.9, and tissue-specific weighting factors defined 
in ICRP Report 103 (ICRP, 2007). The effective dose can be related to radiation risk 
using, for example, data presented in the Biological Effects of Ionizing Radiation 
(BEIR) Report published by the National Academies Concerning Radiation 
Health Risks (BEIR, 2006). The equivalent dose HT for tissue/organ T is given by

 ∑= ⋅T

R

R T,RH W D   (22.9)

where RW  is the weighting factor for radiation type R and T,RD  is the absorbed 
dose for tissue T by radiation type R. The effective dose E is then given by

 = ∑ ⋅
T

T TE W H   (22.10)
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57722.10 Combining Dose from RT and Imaging

where TW  is the weighting factor as given in ICRP Report 103 (ICRP, 2007) 
and TH  is the equivalent dose for tissue or organ type T.

One method of measuring organ dose to calculate effective dose is to use an 
anthropomorphic phantom for CBCT. This has been performed by a number of 
groups using small radiation dosimeters such as TLDs (Sykes et al., 2005; Amer 
et al., 2007; Wen et al., 2007; Osei et al., 2009; Sawyer et al., 2009; Palm et al., 
2010; Stock et al., 2012), fiber optic-coupled water-equivalent plastic scintilla-
tors (Hyer et al., 2010), silicon-photodiode dosimeters (Koyama et al., 2010), and 
MOSFETs (Perks et al., 2008; Kim et al., 2010).

An alternative method of estimating the effective dose is to use the ImPACT 
CT patient dose calculator (http://www.impactscan.org/ctdosimetry.htm). The 
ImPACT dose calculator, designed originally for fan beam CT, uses a library of 
MC calculated dose calculations (Jones and Shrimpton, 1991) for organ doses in a 
humanoid mathematical phantom. The library covers numerous commercial CT 
scanners each characterized by the ratio of peripheral to central CTDIw and cen-
tral to in-air CTDIw for both the head and body phantoms. To calculate the effec-
tive dose, the operator selects the scanner type and the start and stop positions of 
the scan. The software will provide individual organ doses with their weighting 
factors and equivalent doses, as well as the total effective dose. Ideally when using 
the ImPACT calculator, the CT scanner for which the dose is to be calculated 
will be one of the scanners in the ImPACT library. If not, the CT scanner can be 
matched to the closest one in the library using ImPACT factors derived from a 
linear combination of the ratios of the central and peripheral normalized CTDI100 
to CTDIair. This method has been employed by several authors to match a CBCT 
scanner with fan beam CT scanners in the ImPACT library (Amer et al., 2007; 
Sawyer et al., 2009). Hyer and Hintenlang (2010) compared organ doses from the 
ImPACT dose calculator with previously published MC calculated organ doses 
(Hyer et al., 2010). They found that many organs agreed within 40%, with gener-
ally better agreement for the pelvis scan. However, some discrepancies of more 
than 100% were also found. They concluded that the ImPACT dose calculator is 
not suitable for calculating CBCT dose.

Gu et al. have modeled both kV- and MV-CBCT systems using MCPNX 
(Gu et al., 2008) and applied these models to calculate organ doses to the VIP-
Man phantom that was developed from the National Library of Medicine’s 
Visible Human Project (Xu et al., 2000). They concluded that the effective dose 
for the head and neck and prostate was 8.53 and 6.25 mSv, respectively, for a 
125 kVp kV-CBCT exposure of 1350 mAs.

22.10 Combining Dose from RT and Imaging

For radiotherapy, the risk of concomitant imaging needs to be considered in the 
context of the existing risk of secondary cancer induction from radiotherapy 
treatment. In addition, the dose to critical organs already receiving high doses 
from the treatment needs to be assessed to ensure the additional imaging dose 
does not exceed organ dose limits. The imaging dose needs to be considered both 
within the treated volume and also peripheral to the volume.

Qiu et al. (2012) performed MC dose calculations for relatively large volume 
gynecological intensity-modulated RT (IMRT) treatments with field length of 
~15 cm, and for CBCT scans of length ~24 cm. They concentrated on model-
ing the in-field dose, discussing out-of-field dose only briefly. In-field doses for 
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578 22. Imaging Dose in Radiation Therapy

organs at risk were calculated using organ equivalent doses calculated using 
 linear, linear-exponential, and plateau radiobiological models. The greatest 
increment in dose, from imaging one CBCT per fraction, was 2.5% for the bowel 
with the linear model but this reduced to 1.3% for the plateau model. For dose 
in the peripheral region, the CBCT dose was compared with the linac scatter 
and leakage doses. In the peripheral low dose regions, where there is low risk of 
secondary malignancies, the incremental dose from CBCT was found to be an 
order of magnitude less than the IMRT scatter dose and less than or equal to the 
linac leakage dose.

Chow et al. (2008) concentrated on in-field dose and compared CBCT dose 
with the treatment dose for a prostate IMRT case. The planning target volume 
(PTV) dose rose by 0.6 Gy (0.8%) for a 78 Gy/39 fractions treatment, which sug-
gests the CBCT dose was ~1.5 cGy per scan. The femoral heads saw the largest 
increase in dose of 2.5 cGy (5%).

Perks et al. (2008) measured the peripheral dose at the center and on the sur-
face of an anthropomorphic phantom. They measured the dose for a prostate 
IMRT treatment using MOSFETs and kV-CBCT using TLDs. The dose from the 
IMRT dropped from the prescription dose of 2 Gy (per fraction) down to 1 cGy 
at 16 cm and 0.4 cGy at 21 cm distance from the field edge. In comparison, the 
CBCT dose was 0.5 and 0.2 cGy at the same positions, respectively (7 and 12 cm, 
respectively, from the imaged volume edge). They used an S20 collimator which 
arguably provides a longer field of view than necessary for prostate IGRT. The 
nominal dose per scan was 6 cGy which they acknowledge was twice that nor-
mally used in their clinic. To put this into context, 6 cGy is four times the United 
Kingdom’s diagnostic reference level for imaging the abdomen/pelvis, and is 
arguably three to five times higher than necessary for adequate image quality for 
CBCT image guidance (Sykes, 2010).

Harrison and colleagues published two articles on the subject of combined 
treatment and imaging doses covering anatomical sites of larynx, breast, and 
prostate (Harrison et al., 2006, 2007). They compared imaging dose from 2D 
portal imaging and 3D CT imaging with the treatment dose. While this work 
was not based on CBCT, the differences between CT and CBCT doses are likely 
to be minimal so the work provides a good perspective on the relative impact of 
kV imaging on the combined treatment and imaging dose. For the prostate, they 
measured dose using TLDs in the rando phantom. Neutron doses were also cal-
culated for the 15 MV beams. They calculated the dose to multiple organs both 
in-field and out-of-field for combinations for a 37 fraction two phase prostate 
treatment with 26 CT images and 4 portal images. The excess relative risk (ERR) 
was found to be <0.1 for most organs with bone surfaces, small intestine, and 
muscle having ERR < 0.3. Increases in total dose due to portal imaging of up 
to 20% were found for bone marrow and bone surfaces. They employed similar 
methods for the larynx and breast and concluded that the dose to critical organs 
increased by 5%–20% with increases of up to 30% for bone surfaces and bone 
marrow. They noted that by far the largest component of dose to these organs was 
from scatter and leakage from the MV beam.

Alaei et al. (2014) used a treatment-planning system to compute the imag-
ing dose for head and neck and pelvic treatments and added the imaging dose 
to the therapeutic one. They showed that high-dose imaging procedures add an 
appreciable dose to the therapeutic one received by patients. This could become 
an issue of concern if an organ at risk is proximal, but outside, the treated volume 
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but within the volume irradiated by the imaging beam. They also demonstrated 
the inverse relationship between imaging dose and BMI.

The studies above computed the imaging dose retrospectively. It is, however, 
beneficial to do so prospectively and account for imaging dose at the time of 
treatment planning. To this extent, both Alaei et al. (2014) and Grelewicz and 
Wiersma (2014) combined the kV imaging and MV therapy beams to perform 
inverse planning, hence accounting for imaging dose during optimization.

Previous work focused on the dose from kV-CBCT. Combining MV-CBCT 
imaging dose with the therapeutic one is more straightforward and can easily be 
accomplished using treatment-planning systems as shown by Miften et al. (2007), 
Morin et al. (2007a,b), and Akino et al. (2012). Whereas the combination of kV-
CBCT beams with therapeutic MV ones requires MC codes or other software not 
commonly available, combining MV-CBCT dose with the therapeutic one can be 
accomplished routinely in a clinical setting.

One issue with calculating the imaging dose prospectively is that it is not always 
known what imaging will be required for a particular patient. For instance, an 
IGRT protocol may have as its basis the use of imaging for a few initial fractions 
and then weekly thereafter, but if the weekly images show a change in patient 
setup or anatomy then this may trigger further imaging.

22.11 Clinical Consequences and Benefits

22.11.1 Detrimental Effects of Radiation Exposure
To date there have been no large-scale epidemiologic studies of the cancer risks 
associated with x-ray imaging. The evidence we have is derived from mea-
surement and calculation of organ doses and applying organ-specific cancer 
incidence or mortality data derived from studies of atomic-bomb survivors 
(Brenner and Hall, 2007). The estimated attributable lifetime risk of death from 
cancer due to a single, typical, CT scan is ~0.01% increasing to 0.1% for expo-
sures in early childhood (Brenner and Hall, 2007). However, these risks are 
calculated for the general population and not specifically for patients undergo-
ing treatment with radiotherapy. Therefore, the risk of imaging alone is small 
compared to the risk of treatment failure and other morbidities associated with 
radiotherapy treatment. It appears sensible, if possible, that the risk from the 
imaging dose should be incorporated into the overall risk calculation including 
the treatment dose.

The primary risk of radiation exposure from radiotherapy, including any con-
comitant imaging but excluding the risks of treatment failure and comorbidities, 
is the induction of a secondary primary malignancy (SPM). As Tubiana noted 
in his review (Tubiana, 2009), these rarely occur before 10 years after treatment. 
However, with increased long-term survival rates, the incidence of these malig-
nancies is likely to increase. Tubiana found from cancer registries that the inci-
dence could be as high as 20%. He also noted that SPMs tended to occur in tissues 
receiving more than 2 Gy. Data derived from the US Surveillance, Epidemiology, 
and End Results (SEER) cancer registry by Berrington de Gonzalez et al. (2011) 
found that 9% of 5-year survivors developed a solid tumor and that the relative 
risk was highest for tissues that typically received more than 5 Gy. From the pre-
vious section, we know that the imaging dose is typically small in comparison 
to the treatment dose. Nevertheless, it adds to the radiation dose burden and 
contributes to the increased risk of SPM induction.
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Very low doses are also associated with complications. Perks et al. (2008) 
 collected a number of such effects in their paper including prolonged azoosper-
mia at doses >2.5 Gy (Howell and Shalet, 1998), loss of ovarian function at doses 
<2 Gy (Wallace et al., 2003), and hypothyroidism or thyroid nodules with median 
dose equivalents as low as 0.09 Sv (Imaizumi et al., 2006). Cataract formation can 
also occur with ERR of 1.98 ERR/Gy with no lower threshold and with measur-
able hazard ratios for doses as low as 60 mGy (Chodick et al., 2008).

22.11.2 Clinical Benefits
Although there is little doubt of the clinical benefit of CBCT imaging for qual-
ity assurance (QA) of patient setup, there is, as yet, little published evidence on 
improved outcomes attributable to the use of CBCT imaging or other image-
guided modalities. Chow et al. (2008) calculated the normal tissue complication 
probability (NTCP) increase from CBCT imaging during IMRT treatment of the 
prostate to be 0.5%, although they recognized that the NTCP model used was 
relatively crude and did not take into account the relative biological effective-
ness (RBE) of kV imaging. Nevertheless, they found that NTCP decreased by 3% 
when the clinical target volume (CTV) to PTV margin was reduced from 10 to 
5 mm showing a net benefit of using CBCT imaging for every fraction of treat-
ment. Kron et al. (2010) showed that even when daily online IGRT (CBCT) was 
used with an adaptive strategy for bladder cancer, the integral dose to both the 
whole irradiated volume and the irradiated volume minus the CTV was less than 
the conventional treatment. This is because on average the irradiated volume is 
smaller in the adaptive strategy than that required otherwise to ensure the blad-
der is covered the majority of the time. The exception to this was for patients with 
smaller treatment volumes. Zelefsky et al. (2012) compared cohorts of patients in 
which one group received prostate IMRT with IGRT, and the other group received 
the same treatment but without IGRT. They found that biochemical tumor con-
trol was significantly better for patients with high-risk prostate carcinoma when 
IGRT was employed. In addition, late urinary toxicity was almost halved in the 
group with IGRT. While this study was performed using MV portal imaging 
and gold seed markers, Moseley et al. (2007) have demonstrated the equivalence 
of kV-CBCT and gold seed marker versus MV portal image-based IGRT. More 
recently, Bujold et al. (2012) reviewed the literature and concluded that IGRT has 
enabled treatments such as hypofractionated stereotactic ablative radiotherapy of 
the lung, spine, and liver. They also concluded that “an improvement in relapse 
rate in prostate cancer, Hodgkin disease, and head and neck cancers using IGRT 
has been consistently reported,” and that “there is a suggestion that prostate and 
head and neck cancer patients might have lower toxicity with IGRT, especially 
when combined with other technical advances like IMRT.”

22.12 Closing Remarks

There are several x-ray imaging options available for IGRT in modern clinical 
practices. There is a wide variation in the protocols used for these imaging options 
due to a number of factors. In some cases, requirements for high throughput of 
patients on machines and availability of suitably trained staff to interpret and act 
on these images limits the amount of imaging that can be performed. Variable 
perceptions of risk of imaging dose also contribute to the utilization of x-ray-
based IGRT. Many centers will use preset image acquisition protocols defined by 
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the manufactures. These protocols may well be based on the experiences of early 
adopters of the equipment; however, there is a lack of evidence and consensus on 
the minimum image quality required to perform IGRT specific to the particular 
anatomical site or size of patient. For this reason, the imaging dose may well 
be higher than necessary. Further work is required in order to optimize image 
acquisition protocols and the frequency of imaging to achieve the aims of IGRT. 
To achieve this, standardization of the way radiation dose for imaging is reported 
needs to be improved.

Further work is also required to understand the risks and benefits attributable 
to using x-ray-based imaging in RT. The use of dose calculation models to calcu-
late the imaging dose for individual patients may have immediate benefit in esti-
mating the total dose to critical organs/structures of concern, but if implemented 
for all patients would provide useful data for future analysis. To achieve this, dose 
calculation algorithms need to be made accessible and integrated efficiently into 
the clinical workflow so that there are minimal overheads. Ideally, imaging dose 
calculations would be automated, running in the background and storing the 
required dosimetric data in the patient record.
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