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Abstract 

A-type granites have been the focus of considerable research due to their distinctive 

major- and trace-element signatures and tectonic significance. However, their 

petrogenesis, magmatic source and tectonic setting remain controversial, particularly 

for aluminous A-type granites. The earliest Cretaceous (ca. 140 Ma) Comei granite in 

the eastern Tethyan Himalaya is associated with coeval oceanic island basalt 

(OIB)-type mafic lava, and has A-type granite geochemical characteristics including 

high 10000×Ga/Al (up to 6), FeO
total

/MgO (4.6–6.1) and (Na2O + K2O)/Al2O3 (0.50–

0.61) ratios but low CaO (0.6–1.6 wt.%) and Na2O (1.8–2.6 wt.%) contents. The 

Comei granite also has variable peraluminous compositions (A/CNK =1.00–1.36) 

along with zircon δ18
O, εNd(t) and initial 

87
Sr/

86
Sr values of 8.2‰ to 9.3‰, -13.0 to 

-12.4 and 0.7238 to 0.7295, respectively. This range of compositions can be 

interpreted as the interaction between high-temperature upwelling OIB type basaltic 

magmas and a shallow crustal (< 5 kbar) metapelitic source. The Comei granite and 

coeval OIB type basaltic rock could represent the earliest stage (145–140 Ma) of a 

large igneous event in eastern Tethyan Himalaya, which may well have been triggered 

by pre-breakup lithospheric extension prior to the arrival of the Kerguelen plume 

head. 

 

Key words: Early Cretaceous; Aluminous A-type granite; Crust-mantle interaction; 

Lithospheric extension; Large Igneous Province 
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1. Introduction 

A-type (alkaline, anhydrous and anorogenic) granites are defined as having high 

SiO2, Na2O+K2O, Zr, Nb, Ga, Y and Ce, and low CaO and Sr contents and high 

Fe/Mg, Ga/Al ratios (Loiselle and Wones, 1979; Whalen et al., 1987) and can provide 

significant information on intraplate extensional or post-collisional magmatic 

processes within the continental lithosphere (e.g., Eby, 1990, 1992; Turner et al., 1992; 

Kerr and Fryer, 1993; Wang et al., 2010). Most A-type granites are peralkaline to 

metaluminous and a variety of processes have been proposed for their formation, such 

as fractionation of variously contaminated mantle-derived alkali basalt (e.g., Loiselle 

and Wones, 1979; Pearce et al., 1984; Eby, 1990, 1992; Turner et al., 1992), remelting 

of extracted F-rich lower crustal granulitic residue (e.g., Collins et al., 1982; Clemens 

et al., 1986;Whalen et al., 1987), low pressure melting of calc-alkaline rocks at upper 

crustal levels (Skjerlie and Johnston, 1993; Patiño Douce, 1997), and hybridization 

between anatectic granitic and mantle-derived mafic magmas (Bédard, 1990; Kerr and 

Fryer, 1993; Yang et al., 2006).  

Aluminous A-type granites were identified by King et al. (1997) as a specific 

compositional type based on granites from the Lachlan Fold Belt (LFB) in 

southeastern Australia. These aluminous A-type granites have relatively high SiO2, 

Fe
total

/(Fe
total

+Mg), K2O, Ba, Al and low Sr, Ca with high temperatures of formation. 

Moreover, the common mafic minerals found in peralkaline A-type granites, 

including fayalite, hedenbergite, aegirine, ferrorichterite, riebeckite and arfvedsonite, 

have not been observed in the LFB aluminous A-type granites (King et al., 1997, 

2001). Thus aluminous A-type granite was thought to have ‘normal’ H2O contents 

that were similar to felsic I-type granite and, unlike the peralkaline A-type granite, did 
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not have an anhydrous origin (King et al., 1997). Aluminous A-type granite has 

higher zircon saturation temperatures than other granite types and is proposed to have 

formed by high temperature partial melting of an infracrustal source (King et al., 

1997). However, nature of such a felsic infracrustal source and the tectonic setting of 

aluminous A-type granites are controversial. For example, a study in the Yangtze 

Block of South China suggested that aluminous A-type granite is most probably 

derived from a charnockite source heated by large-scale magmatic underplating, 

rather than a tonalite source (Zhao et al., 2008). Whereas, high zircon δ18O (8.0‰–

9.8‰) and negative zircon εHf(t) (–6.2 to –2.3) for another A-type granite in South 

China indicates the reworking of old supracrustal rocks (Huang et al., 2011).  

Early Cretaceous (ca.133 Ma) aluminous A-type dacite has also been found near 

Nagarze (Fig. 1b) intruding the Sangxiu Formation in the eastern Tethyan Himalaya 

(Zhu et al., 2005, 2007). These dacites have been proposed to have been derived from 

anatexis of ensialic continental crust with the melting triggered by the Kerguelen 

Plume (Zhu et al., 2005, 2007). In this paper, we present detailed geochronology, 

major and trace element, along with Sr–Nd and zircon O isotopic data for newly 

discovered peraluminous A-type granites from Comei in the eastern Tethyan 

Himalaya, Tibet (Fig. 1b, c). These data provide us with an excellent opportunity to 

constrain the sources, petrogenesis and tectonic setting of aluminous A-type granites, 

particularly the role of crust-mantle interaction. Our new data indicate that the Comei 

A-type granites were possibly generated by the interaction between coeval basaltic 

magmas and a crustal metapelitic source, and represent an earliest Cretaceous (145–

140 Ma) large-scale igneous event triggered by the pre-breakup lithospheric extension 

prior to the arrival of the Kerguelen plume head below the region now occupied by 

the eastern Tethyan Himalaya.  
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2. Geological background and petrographic characteristics 

The Himalayan orogen resulted from Indian-Asian continental collision and 

represents the southernmost section of Tibetan Plateau (Yin and Harrison, 2000). The 

eastern and western syntaxis of the orogen are marked by the Namche Barwa and 

Nanga Parbat peaks, respectively (Yin, 2006), while the Indus-Yarlung Tsangpo 

Suture (IYTS) to the north and the Main Frontal Thrust (MFT) to the south define the 

extent of the orogen (Fig. 1a) (Yin and Harrison, 2000). From north to south, the 

Himalayan orogen comprises four broadly parallel east-trending geologic units (Fig. 

1a): (1) the Tethyan Himalayan sequence, composed of Proterozoic to Eocene 

siliciclastic and carbonate sedimentary and volcanic rocks (Yin, 2006; Guo and 

Wilson, 2012; Liu et al., 2014, 2016); (2) the Higher Himalayan crystalline complex, 

comprising Paleoproterozoic to Ordovician gneisses and aplitic granites (Yin, 2006; 

Guo and Wilson, 2012); (3) the Lesser Himalayan sequence, composed of 

Proterozoic–Cambrian low-grade metasedimentary rocks (Guo and Wilson, 2012); 

and (4) the sub-Himalaya sequence, of Miocene–Pliocene foreland basin deposits 

(Yin, 2006; Liu et al., 2014). These four tectonostratigraphic units are separated by 

three north-dipping tectonic boundaries from north to south (Yin, 2006; Guo and 

Wilson, 2012): (1) the South Tibetan Detachment system (STDS), which is a late 

Oligocene to Miocene (25–12 Ma) normal fault between the Tethyan Himalayan and 

Higher Himalayan sequences; (2) the Main Central Thrust (MCT), which is 

interpreted as a shear zone along which the Higher Himalayan sequence was 

emplaced southward over the Lesser Himalayan sequence; and (3) the Main Boundary 

Thrust (MBT), which is defined as a thrust emplacing the Lesser Himalayan sequence 
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over the sub-Himalaya sequence (Fig. 1a).  

The Himalayan orogen is characterised by two sub-parallel belts of Cenozoic 

leucogranites, namely the Higher Himalayan and Tethyan Himalayan leucogranites 

(e.g., Harrison et al., 1999; Wu et al., 2015) (Fig. 1a). The more southerly Higher 

Himalayan leucogranites form sheets, dykes, sills and laccolithic bodies that were 

emplaced along the South Tibetan Detachment System (Le Fort et al., 1987; Harrison 

et al., 1999; Guo and Wilson, 2012; Wu et al., 2015). The Tethyan Himalayan 

leucogranites to the north are typically exposed in the cores of the North Himalayan 

domes within the central Tethyan Himalayan physiographic region (~80 km north of 

the Higher Himalayan leucogranite belt) (King et al., 2011; Zeng et al., 2011; Liu et 

al., 2014, 2016; Wu et al., 2015). Previous research has shown that the Higher 

Himalayan leucogranites were generally emplaced in the latest Eocene–middle 

Miocene from 35 to 12 Ma (e.g., Coleman, 1998; Harrison et al., 1999; Guo and 

Wilson, 2012; Liu et al., 2014, 2016) while the Tethyan Himalayan leucogranites were 

primarily intruded between 45 and 7 Ma (e.g., Zhang et al., 2004; Ding et al., 2005; 

King et al., 2011; Zeng et al., 2011; Liu et al., 2014, 2016). Although most Himalayan 

leucogranites appear to have been generated by anatexis of the Higher Himalayan 

sequence (Harrison et al., 1999; Guo and Wilson, 2012), more recent research has 

indicated that some Eocene–Oligocene leucogranites with high Sr/Y in the Tethyan 

Himalaya were formed by melting of thickened lower crustal materials (amphibolite 

and eclogite) (Zeng et al., 2011; Hou et al., 2012; Liu et al., 2014). 

In addition to the Cenozoic leucogranite belts, a possible Early Cretaceous large 

igneous province (LIP) covering an area of ~50000 km
2 

has been identified in the 

eastern Tethyan Himalaya in southeastern Tibet (e.g., Zhu et al., 2009, 2013) (Fig. 1b). 
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This igneous province comprises basaltic lavas, mafic sills, dolerite dykes, gabbroic 

intrusions and granites together with subordinate layered ultramafic intrusions and 

silicic volcanic rocks (Zhong et al., 2005; Zhu et al., 2005, 2007, 2008, 2009, 2013; 

Jiang et al., 2006; Xia et al., 2014; Lv et al., 2016). Existing chronological data 

indicate that these igneous rocks were emplaced between 145–125 Ma with a possible 

peak of activity at 132 Ma (Zhong et al., 2005; Zhu et al., 2007, 2008, 2009; Jiang et 

al., 2006; Xia et al., 2014; Lv et al., 2016). U-Pb data of detrital zircons found in the 

Cretaceous to Paleocene sandstones also cluster between 142 Ma and 116 Ma in the 

Tethyan Himalayan unit (Hu et al., 2015).  

Several models have been proposed for the formation of Tethyan Himalayan LIP: a) 

interaction between melts from the Kerguelen mantle plume head and the lithosphere 

of the northeastern margin of Greater India (e.g., Zhu et al., 2005, 2007, 2008, 2009); 

b) mantle melting caused by lithospheric thinning and consequent decompression 

melting during extension of the Neo-Tethyan passive continental margin (e.g., Zhong 

et al., 2005; Jiang et al., 2006, 2007) or breakup of Eastern Gondwana (Hu et al., 

2010).  

The Comei granite has been discovered within the Tethyan Himalayan LIP 

intruding the Jurassic Weimei formation which comprises sandy slate and siltstone. 

The granites are generally porphyritic (Fig. 2) and have medium- to fine-grained (3–

20 mm) granular textures (Fig. 2). Like the A-type dacites reported in the Sangxiu 

Formation (Zhu et al., 2007), the Comei A-type granites are also shallow-level 

intrusions and this is evidenced by the presence of aplites, miarolitic cavities and 

some graphic intergrowths seen in thin section (Fig. 2). The phenocrysts in these 

granites mainly consist of quartz (30–35 vol.%), plagioclase (20–25 vol.%), 
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K-feldspar (25–30 vol.%) and muscovite (5 vol.%), with minor zircon, iron oxides 

and secondary chlorite (5–8 vol.%), calcite (3vol.%) and epidote (Fig. 2). The 

groundmass consists of fine quartz, plagioclase, K-feldspar, muscovite and secondary 

chlorite (Fig. 2). Plagioclase crystals in these granites are euhedral or subhedral (Fig. 

2b). The vast majority of feldspars in the Comei granite are albites (An0–8Ab91–99Or0–1) 

with minor alkali feldspar (An5Ab76Or20). The presence of abundant crystal holes (Fig. 

2f) suggests the presence of significant volatiles during magma crystallisation. Like 

the aluminous A-type granites in Lachlan Fold Belt (King et al., 1997) and 

northeastern China (Wu et al., 2002), the Comei granite lacks mafic minerals such as 

hedenbergite, aegirine, ferrorichterite that are commonly found in peralkaline A-type 

granites. In addition, the widespread occurrence of chlorite (Fig. 2d) indicates that the 

Comei granite experienced low grade greenschist facies metamorphism.  

 

3. Analytical methods  

The mineral compositions were analysed using a JXA‒8230 electron microprobe 

at Key Laboratory of Mineralogy and Metallogeny (KLMM), Guangzhou Institute of 

Geochemistry (GIG), Chinese Academy of Sciences (CAS). The accelerating voltage 

was 15 kV with a specimen current of 3.0 × 10
‒8

 A and a beam of 1 μm in diameter. 

See Huang et al. (2007) for more details. 

Cathodoluminescence (CL) imaging of zircon was performed using a Mono CL
3+

 

detector (Gatan, Pleasanton, CA, USA) attached to a field emission electron 

microscope (SUPRA 55 SAPPHIRE, ZEISS, Germany) at State Key Laboratory of 

Isotope Geochemistry (SKLaBIG) GIG CAS. Zircon U-Pb isotope dating of sample 

09TB116-1 was conducted by a Cameca IMS-1280 secondary ion mass spectrometry 
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(SIMS) at the Institute of Geology and Geophysics (IGG) CAS. The standard zircon 

Plešovice (Sláma et al., 2008) and Qinghu (Li et al., 2013) were used to correct U–

Th–Pb ratios and their absolute abundances, respectively. Concordia plots and 

weighted mean U–Pb ages with 2σ were processed using the Isoplot/Ex v.3.0 program 

(Ludwig, 2003). Four Qinghu zircon spots were analysed and yielded a mean age of 

158.5 ± 2.4 Ma, which is within error of the recommended value of 159.5 ± 0.2 Ma 

(Li et al., 2013). The Plešovice zircon yielded a weighted 
206

Pb/
238

U age of 338.1 ± 

3.1 Ma (2σ, MSWD = 0.2, n = 10), which is identical within error to the 

recommended 
206

Pb/
238

U age of 337.1 ± 0.4 Ma) (Sláma et al., 2008). The zircon U–

Pb age data are presented in Supplementary Table A2. 

U-Pb zircon dating (using LA-ICP-MS) of sample 11SN19-3 was performed using 

an Agilent 7500a ICPMS with a RESOlution M-50 laser-ablation system at KLMM 

GIG CAS. Laser ablation was set to a constant energy of 80 mJ and a pulse repetition 

rate of 8 Hz, with a spot size of 31 μm. Helium was used to carry ablated material to 

the Aglient 7500a ICP-MS. Element corrections were determined relative to standard 

glass NIST 610 (Pearce et al. 1997). During the study, the zircon standard Temora 

yielded a weighted mean 
206

Pb/
238U age of 417.0 ± 3.0 Ma (2σ, MSWD = 0.001, n = 

22), which is in within error of the recommended value of 416.8 ± 1.1 Ma (Black et al. 

2003)  

Rock samples were first examined by optical microscopy. Selected whole-rock 

samples were broken into small chips and cleaned ultrasonically in distilled water 

containing < 3% HNO3 and washed with distilled water before being dried and 

handpicked to remove visible contamination. The rocks were powdered before 

analysis of major and trace elements, and Sr-Nd isotopes at SKLaBIG GIG CAS. 
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Major-element oxides were determined by a Rigaku RIX 2000 X-ray fluorescence 

spectrometer on fused glass beads with analytical uncertainties < 5% at SKLaBIG 

GIG CAS (Li et al., 2005). Trace elements were analysed by a Perkin‒Elmer Sciex 

ELAN 6000 ICP-MS at SKLaBIG GIG CAS. Trace element data of reference 

materials (BHVO-2, GSR-1, GSR-2, GSR-3, SARM-4, AGV-2 and W-2a) and 

replicate samples are given in Supplementary Table A4. The relative standard 

deviations are < 3% for most element abundances in the reference materials. 

Sr and Nd isotope analysis were performed using a MC‒ICPMS at SKLaBIG, 

GIG‒CAS. Analytical procedures are identical to those described by Wei et al. (2002) 

and Li et al. (2004). The NBS987 and the Shin Etsu JNdi‒1 standard yielded a 

87
Sr/

86
Sr ratio of 0.710285 ± 15 (2σ) and a 

143
Nd/

144Nd ratio of 0.512085 ± 10 (2σ), 

respectively. All measured 
143

Nd/
144

Nd and 
86

Sr/
88

Sr ratios were corrected to 

146
Nd/

144
Nd = 0.7219 and 

86
Sr/

88
Sr = 0.1194, respectively. BCR-2 and JB-3 were 

analysed as unknown samples and yielded 
87

Sr/
86

Sr and 
143

Nd/
144

Nd ratios of 

0.705013 ± 18 (2σ, n=6), 0.703420 ± 23 (2σ, n=6), and 0.512628 ± 2 (2σ, n=6) and 

0.513049 ± 10 (2σ, n=6), respectively. All these data are in good agreement with the 

recommended 
87

Sr/
86

Sr and 
143

Nd/
144

Nd ratios of 0.705000 ± 11 (Jweda et al., 2015), 

0.703428 ± 10 (Okano et al., 1989), and 0.512637 ± 13 (Jweda et al., 2015) and 

0.513035 ± 9 (Lizumi et al., 1995). 

O isotopes in zircons were measured by a Cameca IMS-1280 SIMS at IGG CAS. 

Analytical procedures are similar to those described by Li et al. (2010). Twelve 

analyses of the Qinghu zircon standard yielded a weighted mean δ18
O of 5.38 ± 

0.27‰, which is identical within error to the value of 5.39± 0.22‰ reported by Li et 

al. (2013). 
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4. Results 

4.1 Zircon U–Pb geochronology 

Two Comei granite samples (09TB116-1 and 11SN19-3) were selected for zircon 

U-Pb dating. Zircons in these samples have crystal lengths of ~50–200 μm and 

length/width ratios from 2:1 to 3:1. Zircon U–Pb isotopic data are given in 

Supplementary Table A2. Well-developed oscillatory zoning and high Th/U ratios 

indicate a magmatic origin of these zircons (Hoskin and Black, 2000). With the 

exception of some inherited zircons with old ages of 354 to 2533 Ma, U–Pb analyses 

on samples 09TB116-1 and 11SN19-3, yield concordant 
207

Pb-corrected ages of 146–

136 Ma (SIMS), and 
206

Pb/
238

U ages of 143–136 Ma (LA-ICP-MS), with weighted 

mean ages of 139.7± 1.4 Ma (MSWD = 1.8, n = 22) and 139.6 ± 1.8 Ma (MSWD = 

0.06, n = 12), respectively (Fig. 3; Supplementary Table A2). These ages indicate that 

the Comei granite was likely emplaced in the Early Cretaceous (ca. 140 Ma).  

4.2 Major and trace element geochemistry 

The Comei granite samples all have high SiO2 (66.8–69.5 wt.%), K2O (4.9–5.4 

wt.%) and low CaO (0.6–1.6 wt.%), Na2O (1.8–2.6 wt.%) and MgO (0.7–1.1 wt.%) 

contents with high FeO
total

/MgO (4.6–6.1) ratios and variable peraluminous 

compositions (A/CNK = molecular Al2O3/(CaO+Na2O+K2O) = 1.00–1.36) (Fig. 4; 

Table 1). Relatively lower Al2O3, CaO and TiO2 and higher K2O and Fe2O3 contents 

of the Comei granite samples clearly distinguish them from the Eocene lower 

crust-derived high Sr/Y granites (Zeng et al., 2011) (Fig. 4). In addition, they also 

have lower SiO2, Al2O3 and Na2O and higher MgO and TiO2 contents than the 
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Oligocene–Miocene Himalayan leucogranites (e.g., Guo and Wilson, 2012). 

The Comei granite samples have relatively high total rare earth element (REE) 

contents (373–851 ppm) and are characterised by moderately enriched light REE 

([La/Sm]CN = 3.7‒4.1) and relatively flat heavy REE ([Gd/Yb]CN = 1.9‒2.4) 

chondrite-normalised patterns with moderately negative Eu anomalies (Eu/Eu* = 

EuCN/(SmCN×GdCN)
1/2

 = 0.51–0.65) (Fig. 5a, Table 1). All Comei granite samples 

show nearly parallel REE patterns (Fig. 5a), suggesting a similar magma source and 

fractionation process. Sample 11SN17-1 shows the highest total REE (851 ppm) 

contents (Fig. 5a).  

On primitive mantle normalised plots, the Comei granite samples are slightly 

enriched in many of the most incompatible elements including Th, U and Rb and are 

markedly depleted in Nb, Ta, Ti, Sr and Ba (Fig. 5a, Table 1). They possess 

significant negative Sr anomalies (Sr/Sr* = 2SrPM/(CePM+NdPM) = 0.04–0.09), 

negative Nb anomalies (Nb/Nb* = 2NbPM/(ThPM+LaPM) = 0.11–0.14) and negative Ti 

anomalies (Ti/Ti* = 2TiPM/(SmPM+TbPM) = 0.14–0.18) (Fig. 5b). Moreover, the 

Comei granite samples also have significantly higher REEs and most incompatible 

element abundances compared to the Himalayan leucogranites and high Sr/Y granites 

(Fig. 5). 

These geochemical characteristics, such as high Zr, Nb, Ce, Y and K2O and low 

CaO contents with high FeO
total

/MgO ratios, are consistent with the Early Cretaceous 

Comei granite being of A-type (e.g., Whalen et al., 1987; Eby, 1992; King et al, 1997). 

Furthermore, this granite is compositionally similar to the later (ca. 133 Ma) A-type 

dacites from the Sangxiu Formation in the Tethyan Himalaya (Zhu et al., 2005, 2007) 

(Fig. 6). The Early Cretaceous Comei granite samples also have relatively high 10000
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×Ga/Al ratios (2.4–6.0), again consistent with them being A-type granites (Fig. 6).  

4.3 Sr‒Nd isotope geochemistry 

In this study, initial isotopic ratios of the Comei granite and literature data were 

calculated based on a mean formation age of 140 Ma. The whole rock Sr–Nd isotopic 

composition data of the Comei granite samples are given in Table 2. Overall the 

Comei granite exhibits uniform initial 
87

Sr/
86

Sr ratios (0.7253–0.7295) and negative 

εNd(t) values (-12.8 to -12.0) with Nd-isotope model ages (TDM) ranging from 1.85 to 

1.78 Ga (Fig. 7; Table 2). The Comei granite samples are more enriched in 
87

Sr/
86

Sr 

than those of the Eocene lower crust-derived high Sr/Y granitoids in the Tethyan 

Himalaya (e.g., Zeng et al., 2011; Hou et al., 2012; Liu et al., 2014) (Fig.7). However, 

their εNd(t) values are slightly higher than those of the Oligocene–Miocene 

leucogranites in the High Himalaya and Tethyan Himalaya (e.g., Guo and Wilson, 

2012) (Fig.7).  

4.4 Zircon O isotope geochemistry 

In situ zircon O isotope data for sample 09TB116 are listed in Supplementary Table 

A2-1. Zircons from sample 09TB116 have high δ18O values (8.2‰ to 9.3‰), which 

are markedly higher than those (5.3 ± 0.3‰) of igneous zircons in equilibrium with 

mantle magmas (Valley et al., 2005).  

 

5. Discussion 

5.1 Petrogenesis of the Comei granite 

5.1.1 Effects of alteration and low-grade metamorphism 
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The widespread occurrence of secondary minerals (chlorite and epidote) and 

moderately high loss on ignition (LOI) values (1.98–3.27 wt.%) both suggest that the 

Comei granite underwent low grade metamorphism and alteration after emplacement. 

Hence, the potential effects of these processes on whole rock geochemistry need to be 

assessed before discussing their petrogenesis.  

On primitive mantle-normalised trace-element diagrams, the Comei granite 

samples are characterised by sub-parallel patterns and uniform contents of REE and 

HFSE concentrations (Fig. 5b). These features are consistent with research which 

shows that in igneous rocks the REEs and HFSEs are relatively immobile during 

alteration and low-grade metamorphism (e.g., Bienvenu et al., 1990; Staudigel et al., 

1996). Large ion lithophile elements (LILE: Rb, Ba, Sr, Th and U) are usually 

considered to be mobile during low-temperature alteration (Hawkesworth et al., 1997; 

Turner et al., 1997). However, in this study, with the exception of one sample 

(11SR17-1) with marked high trace element contents, nearly constant Rb, Th and U 

contents suggest that these elements were not significantly mobilised by sub-solidus 

processes (Fig. 8a, d, e).  

The Comei granite samples also have relatively variable but narrow ranges of Ba, 

Sr contents and Sr isotope ratios (Fig. 8b, c, f), again suggesting a limited effect of 

alteration. Additionally, sub-parallel patterns and uniform contents of most LILE, 

HFSE and REE further indicate that the LILE are immobile in these granites during 

alteration and low-grade metamorphism. Furthermore, the Sr isotope signatures of the 

Comei granite are not only consistent with their enriched Nd isotope ratios, but are 

also similar to those of the Sangxiu A-type dacite (Zhu et al., 2007) and Himalayan 

leucogranites (Guo and Wilson, 2012) (Fig. 7). Therefore, the low-grade 
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metamorphism appears to have had an insignificant effect on the distribution of most 

elements in this study.  

5.1.2 Hybrid source of the Comei granite 

As mentioned above, the Comei are characterised by features of typical A-type 

granite including high SiO2, Fe2O3, K2O, Zr, Nb and low CaO contents with high 

FeO
T
/MgO, (Na2O + K2O)/Al2O3 and Ga/Al ratios compared to calc-alkaline granites 

(Fig. 6). The high SiO2 and low MgO contents of the Comei porphyritic granite (Fig. 

4) suggests that it is unlikely to be derived directly from the mantle. Furthermore, the 

markedly high Zr, Nb, Ce, Y and Cr contents do not suggest that the Comei granite 

has undergone very significant fractionation (Fig. 6d, Table 1) since, during 

fractionation, granitic magma will decrease its concentrations of Cr, Ni, Co, Sr, Ba, Zr 

and other trace elements (Gelman et al., 2014; Lee and Morton, 2015; Wu et al., 

2017). 

In addition, the enrichment of the Comei porphyritic granite in K, Rb, and Th along 

with high initial 
87

Sr/
86

Sr ratios and low εNd(t) values strongly indicates an input from 

a crustal source (Fig. 5 and 7) as do the low Nb/U and high Ce/Y ratios that are 

similar to upper continental crust (Fig. 9). The low εNd(t) values and ancient Nd model 

ages (1.78–1.85 Ga) of the Comei porphyritic granite samples are also both similar to 

those of the metasediment-derived Himalayan leucogranites (e.g., Guo and Wilson, 

2012), which further supports a upper crustal source.  

The Comei granite samples have much higher zircon δ18O values (8.2‰–9.3‰) 

(Supplementary Table A2). Magmatic zircon is able to preserve the magmatic O 

isotope ratio (Peck et al., 2003). Thus, so high zircon δ18
O values in the Comei granite, 

equivalent to whole-rock values of 9.8 ‰–11.0 ‰ (based on the equation of Valley et 
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al., 2005), require a source contribution of supracrustal components (Valley et al., 

2005; Huang et al., 2011). The high δ18
O and evolved isotope compositions of the 

Comei granite samples most likely fingerprint the source from which the magmas 

were derived, indicating that it was principally of supracrustal origin. 

Altherr et al. (2000) and Altherr and Siebel (2002) summarised the experimental 

data for common crustal melts. Using this compilation, the Comei granite with its low 

CaO/(MgO+FeO
T
) and high A/CNK (1.02–1.36) ratios are consistent with a 

metapelitic (MP) source, but differ substantially from melts of metagraywacke 

(MGW), meta-andesite (MA) and metabasalt (MB) (Fig. 10). In addition, Nd model 

ages can be integrated with Sr isotope data to constrain the Rb/Sr ratio of the granite 

source (Inger and Harris, 1993). Rb/Sr ratios will be increased by intracrustal 

processes such as melting and sedimentary cycles (McDermott and Hawkesworth, 

1990), and so this value represents a minimum that is time-integrated over a possible 

series of fractionation events. For the Comei granite, such calculations constrain the 

Rb/Sr ratio in its source to be >3.5, consistent with migmatites of the Higher 

Himalayan slab (Inger and Harris, 1993) and typical pelite Rb/Sr ratios of 3–6 (Harris 

et al., 1992). Thus, it seems probable that the Early Cretaceous Comei porphyritic 

granite was mainly derived from a Himalayan metapelitic source.  

However, the Comei granite is unlikely to represent pure crustal melts. 

Experimental data indicate that such continental crustal melts are produced by 

incongruent dehydration-melting and are silica-rich, with SiO2 contents ≥70 wt.% 

(Patiño Douce, 1999). Thus, the relatively lower SiO2 contents (68.1–69.5 wt.%) and 

slightly higher εNd(t) (-12.0 to -12.8) values of the Comei granite compared to those 

(70.6–75.3 wt.% and -14.4 to -18.4) of the Himalaya leucogranites (Fig. 7; Guo and 
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Wilson, 2012) likely suggest that a small amount of mantle-derived melt contributed 

to the Early Cretaceous Comei granite magmas. The lower SiO2 contents (68.1–69.5 

wt.%) than those (72.2–73.9 wt.%) of the lower crust-derived Yardoi I-type granites 

with similar MgO contents in Tethyan Himalaya (Zeng et al., 2011) also suggest that 

the lower SiO2 contents of the Comei granite are not due to it having undergone less 

fractionation. In addition, the occurrence of coeval (145 Ma) oceanic island basalts 

(OIB) type basalts in Tethyan Himalaya (Zhu et al., 2008) and the relatively high 

MgO (0.70–1.07 wt.%) and Cr contents (77–218 ppm) of some of the Comei granite 

samples (Table 1) both support this inference. Therefore, it is likely that the Comei 

granite was derived from a hybrid source including mantle derived magmas and 

metapelite crustal melts. 

In this study, the metasediment-derived Lhozhag leucogranites located the eastern 

Tethyan Himalaya have been selected to represent a possible crustal end-member of 

the Comei granite, given their similar geographic distribution and that they are the 

likely source of the High Himalaya crystalline complex (Guo and Wilson, 2012). This 

High Himalaya crystalline complex is generally considered to represent the basement 

rocks of the Tethyan Himalaya (Yin, 2006). In contrast, an alternative crustal 

end-member, such as high Sr/Y lower crust-derived granite in Tethyan Himalaya, 

extends to higher εNd(t) values and lower initial 
87

Sr/
86

Sr ratios than the Comei granite 

(Fig. 7) (Zeng et al., 2011; Liu et al., 2014), and so cannot represent their crustal 

end-member. Thus, we propose the involvement of felsic metapelite-derived melts 

represented by the Lhozhag leucogranites in the Tethyan Himalaya in the formation of 

the Comei granite. 

Both the Early Cretaceous OIB- and normal mid-ocean ridge basalts 
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(N-MORB)-type basalt, dolerite and gabbro in the eastern Tethyan Himalaya are 

characterised by depleted LREE and incompatible elements (Zhu et al., 2008), which 

are clearly distinct from the compositions of the Comei granite. Furthermore, in order 

to model the observed Nd isotopic composition of the Comei granite, a contribution of 

~40% N-MORB type mafic magma would be required Involvement of such a high 

percentage of mantle-derived magma cannot be reconciled with high SiO2 and low 

MgO contents of the Comei granite. These indicate that N-MORB type mafic rocks 

are not suitable as a mafic end-member of the Early Cretaceous Comei granite, and 

the OIB type basalts are a more likely mantle-derived end-member. 

Modelling of Sr–Nd isotope systematics with a variety of Nd content ratios 

(Ndmantle/Ndcrust =1–40) between the Tethyan Himalayan OIB-type basalt and 

leucogranite, as respective mixing components, indicates that the involvement of 

approximately 5–15% OIB-type basalts can explain the isotopic characteristics of the 

Comei granite (Fig. 7a). A simple mass balance calculation of two end-members also 

yields similar major element compositions (e.g., SiO2 and MgO; Supplementary Table 

A3) to the Comei granite samples, further supporting crust-mantle interaction. In 

addition, zircon saturation temperatures (TZr) of the Comei A-type granite samples, 

calculated using the method proposed by Watson and Harrison (1983) yield 856 ˚C to 

910 ˚C (Table 1), which supports a high melting temperature and makes it almost 

certain that basaltic magmas were involved in their origin, both physically and 

chemically. 

5.1.3 Petrogenesis of the Comei A-type granites 

The Early Cretaceous Comei porphyritic granite has major element characteristics 

of A-type granites including lower CaO contents and higher Zr+Nb+Ce+Y and 

ACCEPTED MANUSCRIPT



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

 19 

FeO
T
/MgO and (Na2O + K2O)/Al2O3 ratios compared to calc-alkaline granitoids (e.g., 

Collins et al., 1982; Whalen et al., 1987; Eby, 1990; Kerr and Fryer, 1993) and 

metapelite-derived leucogranite (Guo and Wilson, 2012). Thus, a hybrid source, as 

discussed above, cannot be solely responsible for all these compositional 

characteristics of the Comei granite, particularly their A-type granite affinity. Previous 

experimental data indicates that shallow dehydration melting of hornblende- and 

biotite-bearing protoliths (gneiss or metapelites) can explain the composition of 

metaluminous A-type granites (Patiño Douce and Beard,1995; Patiño Douce, 1997), 

and this possibility for the peraluminous Comei porphyritic granite is explored below.  

Mineral assemblages in the crustal source of felsic rocks can be further constrained 

by their geochemical characteristics. Given that plagioclase is enriched in Sr, and 

garnet is depleted in LREEs and enriched in HREEs and Y, the markedly negative Sr 

(Sr*/Sr = 0.04–0.09) anomalies, and relatively high (La/Yb)CN (12.0–13.7) and low 

(Gd/Yb)CN (1.9–2.4) ratios of the Comei porphyritic granites, reflect a source 

containing residual plagioclase but no garnet. Given that garnet could be stable to 

pressures as low as 5 kbar during fluid-absent melting of metasedimentary rocks 

(Patiño Douce and Harris, 1998; García-Casco et al., 2003), the Early Cretaceous 

Comei granite was likely derived by partial melting of a predominantly metapelite 

source at shallow crust levels of less than 5 kbar.  

Based on experimental data, major element compositions (expressed as 

CIPW-norms) have been shown to have potential constraints on pressure and fluid 

activity during granite magma genesis (Inger and Harris, 1993). In the ternary 

haplogranite system of normative quartz, albite and orthoclase, most of the Comei 

granite samples plot in region of low pressure (< 2 kbar) and water activity (aH2O<0.3) 
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(Fig.12). If the initial melting reaction is fluid absent, K-feldspar will be generated as 

a restite phase. Subsequent higher-temperature melting will incorporate this 

K-feldspar into the melt, causing a shift to more potassic compositions (Inger and 

Harris, 1993). In addition, potassic Comei granite samples may also result from 

dehydration melting of micas (as opposed to fluid-saturated melting), consistent with 

their mica-rich metapelite source (Patiño Douce and Johnston, 1991; Inger and Harris, 

1993). 

The composition of the Comei granite is also consistent with the modelling 

reaction curves of melt compositions produced by hybridisation of mantle-derived 

magmas with minor metasediment-derived melts at low pressure (< 5 kbar) (Fig. 11, 

Patiño Douce, 1999). Dehydration melting experiments indicate significant amounts 

of calcic plagioclase and orthopyroxene would form a residual assemblage during low 

pressure (< 5 kbar) melting. Such a residual assemblage would result in low Ca, Mg, 

Sr, and Eu contents, and high Ga/Al and K/Na ratios in metaluminous A-type melts 

(Patiño Douce and Beard, 1995; Patiño Douce, 1997, 1999). However, unlike 

experimental calc-alkali melts, the Comei granite was derived from a hybrid source 

mainly composed of metapelites with minor (5–15%) basaltic melts. Metapelitic rocks 

rich in mica and aluminosilicate and low in plagioclase contain an excess of refractory 

minerals, thus metapelites are not conducive to the formation of a large volume of 

magma (Patiño Douce and Johnston, 1991). In addition, a hybrid source of the Comei 

granite, mainly composed of metapelites, would contain small amounts of calcic 

plagioclase and orthopyroxene in the residual assemblage leading to relatively low Fe, 

Mg and Ca contents in the magma. Conversely, the Comei metapelite-derived 

aluminous A-type granite melts would inherit more K and Al from their source to 

further distinguish them from typical metaluminous A-type melts.  
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The Comei granite samples have negative Ba, Sr, Nb and Ti anomalies on primitive 

mantle-normalised trace element plots (Fig. 5) and these patterns are consistent with 

the presence of residual plagioclase, K-feldspar and biotite in the source region. 

Additionally, the moderately negative Eu anomalies of the Comei granite samples are 

similar to the metasediment-derived leucogranites (e.g., Guo and Wilson, 2012) and 

Higher Himalayan metasediments (Inger and Harris, 1993) (Fig. 5a) and also indicate 

the presence of residual plagioclase in their source rather than reflecting fractional 

crystallisation of plagioclase and alkali feldspar. Moreover, the Comei granite also has 

enriched Th and U and depleted Nb, Ta and Ti contents, which could have been 

inherited from its metapelite source which is represented by the Lhozhag 

leucogranites (Fig. 5b). 

Despite this evidence, the Comei granite samples have markedly higher REE 

contents relative to the Lhozhag leucogranites that are also derived from metapelite in 

Tethyan Himalaya (Guo and Wilson, 2012) (Fig. 5a). Generally, REE patterns in 

granites are controlled by accessory minerals with high partition coefficients, such as 

apatite, titanite, zircon, allanite and monazite. The relatively constant 

chondrite-normalised La/Y ratios (Fig. 5a) in the Comei granite samples suggest the 

involvement of zircon, apatite and titanite, which all have high and nearly uniform 

partition coefficients for all REEs (Arth, 1976; Hanson, 1978) and would result in 

higher overall REE abundances without changing the concavity of REE patterns (Fig. 

5a). In contrast, allanite and monazite, that would enhance the skewedness of the 

concavity toward HREE, were unlikely to have been involved in generation of the 

Comei granite. Likewise, the negative Zr anomalies of the Lhozhag leucogranites in 

primitive mantle-normalised trace element patterns (Fig. 5b) imply the presence of 

residual zircon in their source region, which is supported by abundant ancient zircons 
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in the Higher Himalaya Series (Guo and Wilson, 2012). In contrast, positive Zr 

anomalies (Zr/Zr* = 2ZrPM/(SmPM+PPM) = 1.3–2.6) of the Comei granite samples, that 

are derived from a similar source, more likely result from melting of these zircons at 

higher temperatures. The higher zircon saturation temperatures (856–910 ˚C) of the 

Comei A-type granite compared to the temperatures (640–740 ˚C) of Himalaya 

leucogranites (Guo and Wilson, 2012) would facilitate the dissolution in the melt of 

refractory zircon, apatite and titanite. Sample 11SR17-1 with the highest calculated 

temperature of 1004 ˚C has the highest REE contents (Table 1) (Fig. 5), which also 

further confirms this inference. 

In summary, the peraluminous Comei A-type granite was emplaced in the Early 

Cretaceous (ca. 140 Ma) and was produced by interaction between high-temperature 

upwelling OIB type basaltic magmas and a metapelite source at shallow crustal levels 

(<16 km). The composition of peraluminous Comei A-type granite was controlled by 

source components and melting conditions, in particular high temperature and low 

pressure. 

5.2 Tectonic implications 

The Early Cretaceous Comei LIP covers an area of ~50000 km
2
 in the eastern 

Tethyan Himalaya of southeastern Tibet and was first proposed to be a LIP by Zhu et 

al. (2009) (Fig. 1b). U-Pb zircon ages initially indicated that the magmatism occurred 

between 136–130 Ma with peak age of ca. 132 Ma, coeval with the Bunbury basalts 

in southwestern Australia (Zhu et al., 2005, 2008, 2009, 2013). However, more-recent 

geochronological data for the Comei LIP including dates from picrites, basalts and 

granites yield a wider age range from 145 Ma to 125 Ma (Zhu et al., 2008; Xia et al., 

2014; Lv et al., 2016, and this study). U–Pb zircon ages of the Wölong volcaniclastics 
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in the Tethyan Himalaya also confirm that this volcanism continued from 140 Ma to 

119 Ma (Hu et al., 2010). In addition, U–Pb ages of Early Cretaceous detrital zircons 

from Cretaceous to the Paleocene sandstones in the region cluster mainly between 142 

Ma and 116 Ma in the Tethyan Himalaya (Hu et al., 2015), further indicating the 

occurrence of an Early Cretaceous (ca. 145 Ma to 125 Ma) large igneous event in the 

eastern Tethyan Himalaya (Fig. 1b). 

Various models for tectonic setting and dynamic evolution of the Early Cretaceous 

Comei LIP have been proposed, which can be summarised into two basic intra-plate 

models: 1) the Comei LIP was linked to the Kerguelen mantle plume, which may have 

played a role in the breakup of eastern Gondwana (Zhu et al., 2005, 2007, 2008, 2009, 

2013; Hu et al., 2015; Xia et al., 2014); 2) the LIP event resulted from decompression 

melting of upwelling mantle caused by intra-continental lithospheric thinning during 

extension of Neo-Tethyan passive continental margin (e.g., Zhong et al., 2005; Jiang 

et al., 2006, 2007) or breakup of eastern Gondwana (Hu et al., 2010). Detrital spinels 

in the Early Cretaceous basalts have an OIB-like composition (Hu et al., 2010) and 

coeval magmatic rocks lack arc and back-arc geochemical characteristics (such as 

depleted Nb-Ta and relatively low LREE) (Zhu et al., 2008). Both these features 

support Early Cretaceous intra-plate magmatism. In addition, the middle Early 

Jurassic to the earliest Cretaceous shallow water carbonate-platform sedimentation in 

the Tethyan Himalaya indicates a mature passive continental margin setting (Garzanti, 

1999; Sciunnach and Garzanti, 2012). 

The 145–140 Ma OIB type basalts and A-type granites may represent an earlier 

bimodal magmatic event in the eastern Tethyan Himalaya (Zhu et al., 2008 and this 

study). Given the occurrence of high temperature (up to 1570 ˚C) picritic rocks and 
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the large area over which the mafic rocks occur (likely more than 50000 km
2
), the 

later stage (136–125 Ma) magmatism of the LIP in eastern Tethyan Himalaya were 

proposed to have been the result of melting of a mantle plume (Zhu et al., 2005, 2007, 

2009, 2013; Xia et al., 2014). However, the tectono-magmatic settings of the newly 

identified early stage (145–140 Ma) magmatism are less clear. 

Magmatic bimodality, also known as the Bunsen–Daly Gap (Bunsen, 1851; Daly, 

1925), is recognised in a variety of tectonic settings and various potential explanations 

have been proposed (Meade et al., 2014). Previous studies support the derivation of 

felsic magmas by crustal melting during the emplacement of basalt (e.g., Patchett, 

1980; Annen et al., 2006). Large igneous provinces (LIPs) frequently include a 

significant component of silicic rocks, often in a bimodal (mafic–felsic) series (Bryan 

et al., 2002). The North Atlantic Igneous Province (NAIP) is one such LIP and formed 

in response to the opening of the North Atlantic Ocean (62–54 Ma) (Saunders et al., 

2007). The associated pre-breakup bimodal continental magmatism includes the 

British Tertiary Igneous Province (BTIP) (62–56 Ma), where mantle-derived magmas 

traversed relatively thick, fusible continental crust (e.g., Kerr et al., 1999; Meade et al., 

2014 and references therein). 

In this study, we propose a similar geodynamic model to explain origin of the 

earliest Cretaceous Comei bimodal continental magmatism in the eastern Tethyan 

Himalaya. The earliest Cretaceous bimodal magmatism was at least 10 to 15 Myr 

earlier than Kerguelen plume magmatism and break-up of eastern Gondwana (Powell 

et al., 1988; Coffin et al., 2002; Duncan et al., 2002; Kieffer et al., 2002; Ingle et al., 

2002; Müller, 2007). The high temperature (~900 ˚C) and A-type affinity of the 

Comei granite requires a high temperature shallow crustal source. High temperature 
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mantle-derived OIB type basalts upwelled through crust and triggered partial melting 

of metapelites that mixed with minor basaltic melts at shallow crustal levels (<16 

km). 

Lithospheric thickness is considered as an important physical control on the 

composition of asthenosphere-derived melts by restricting the minimum depth of 

decompression melting (e.g., Kerr, 1994; Mantle and Collins, 2008; Niu and O’Hara, 

2008; Niu et al., 2011). Based on high Ce/Y (up to 2.3) and moderate (Sm/Yb)CN 

(3.2–5.0) for the 145 Ma OIB type basalts in the eastern Tethyan Himalaya (Zhu et al., 

2008), their initial melting was predominantly in the spinel-garnet transition zone 

(~60–80 km) overlying typical continental crust (~30–35 km). This evidence is 

strongly suggestive of decompression melting triggered by lithospheric thinning, 

although the mechanism involved in thinning of the continental lithosphere remains 

unclear. A high stretching factor (up to 3) and the presence of continental flood basalts 

suggest a successful rift in the Tethyan Himalaya leading to continental break-up 

between northern Gondwana and peri-Gondwanian blocks and incipient sea-floor 

spreading of Neo-Tethyan Early Permian (Garzanti et al., 1999; Sciunnach and 

Garzanti, 2012). 

Subsequently, Tethyan Himalaya (or north margin of Greater India) underwent 

extension from the Late Triassic and gradually transformed into a stable passive 

continental margin by the mid-latest Jurassic (e.g., Dai et al., 2008; Garzanti, 1999; 

Sciunnach and Garzanti, 2012). In the earliest Cretaceous (~145–140 Ma), a rifting 

event prior to breakup of eastern Gondwana resulted in lithospheric thinning and 

generation of high-Ti OIB-type basalts and A-type granites in the eastern Tethyan 

Himalaya (Zhu et al., 2007, 2008 and this study). The Indian continent began to 
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separate from Australia and Antarctica in Early Cretaceous (ca. 132–130 Ma) (Powell 

et al., 1988; Patzelt et al., 1996; Li and Powell, 2001; Kumar et al., 2007), then drifted 

rapidly northward and collided with Asian continent (Yin and Harrison, 2000). The 

ca.132–123 Ma Bunbury basalt of western Australia (e.g., Frey et al., 1996) and the ca. 

120–110 Ma bimodal volcanism of the Kerguelen Plateau (Duncan et al., 2002; 

Kieffer et al., 2002) were then triggered by the Kerguelen Plume (Ingle et al., 2002), 

which also resulted in the opening of the eastern Indian Ocean at 130.9 Ma (e.g., 

Heine and Müller, 2005; Müller, 2007). 

In summary, the earliest Cretaceous OIB type basalt formed by decompression 

melting. This melt rose through the crust and interacted with shallow crustal 

metapelites resulting in bimodal continental magmatism during pre-breakup 

lithospheric thinning.  

 

6. Conclusions 

1. The Comei porphyritic granite was emplaced in the Early Cretaceous (ca. 140 Ma) 

and is characterised by peraluminous A-type granite affinities with high SiO2 and 

Ga/Al ratios and low CaO and Na2O contents along high FeO
total

/MgO, (Na2O + 

K2O)/Al2O3 and A/CNK (1.00–1.36) ratios. 

2. The Comei granite was derived from a hybrid source and formed by interaction 

between high-temperature upwelling OIB-type basaltic magmas and a metapelite 

source at shallow (<16 km) crustal levels. 

3. The composition of peraluminous Comei A-type granite was controlled by source 

components together with melting conditions, in particular high temperature and 

low pressure. 
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4. The earliest Cretaceous (ca. 140 Ma) Comei granite and coeval OIB type basaltic 

rocks could represent an earlier bimodal magmatic event in the eastern Tethyan 

Himalaya, which was trigged by pre-breakup lithospheric thinning prior to the 

arrival of the Kerguelen plume head. 
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Fig.1. (a) Geological map of the Himalaya Block (modified from Guo and Wilson (2012) and Liu 

et al. (2014)). Abbreviations: MBT= Main Boundary Thrust; MCT = Main Central Thrust; STDS 

= South Tibet Detachment System. (b) Detailed occurrences of the Early Cretaceous large igneous 

province in the eastern Tethyan Himalaya. Yellow boxes mark the locations of zircon U–Pb 

isotopic ages of the Early Cretaceous magmatic rocks (including published data and from this 

study) and further details are listed in Supplementary Table A1. (c) A geological map of the Comei 

area showing the sampling locations in this study. 

 

Fig.2. Petrography of the Comei granite porphyries in the eastern Tethyan Himalaya: (a) miarolitic 

cavities; (b) plagioclase phenocryst; (c) the quartz phenocryst; (d) widespread occurrence of 

chlorite; (e) carbonised plagioclase and (f) crystal holes. Abbreviations: Pl–plagioclase; Chl–
chlorite; Cal–calcite and Qtz–quartz. 

 

Fig.3. Zircon U–Pb Terra–Wasserburg diagram of the Comei granite samples (a) 11SN19-1 

(LA-ICP-MS) and 09TB116-1 (SIMS). 

 

Fig.4. (a) SiO2 vs. Na2O+K2O classification diagram (after Middlemost (1994)); (b) SiO2 vs. K2O 

plot (after Peccerillo and Taylor (1976)); (c) SiO2 versus FeO
T
/MgO diagrams (Miyashiro, 1974), 

and boundaries (greylines) between low-, medium-, and high-Fe suites are after Arculus (2003); (d) 

A/NK versus A/CNK diagram (Maniar and Piccoli, 1989). Data  sources: Early Cretaceous 

Tethyan Himalaya (TH) A-type granites (dacites) are from Zhu et al. (2007); Early Cretaceous 

Tethyan Himalaya (TH) basaltic rocks are from Zhu et al. (2007, 2008); Eocene TH high Sr/Y 

granites are from Zeng et al. (2011) and Liu et al. (2014); Miocene-Oligocene Himalaya (High 

Himalaya and Tethyan Himalaya) leucogranites are from Guo and Wilson (2012). 

 

Fig.5. (a) Chondrite-normalised REE and (b) primitive mantle-normalised trace element diagrams 

of the Comei granite. Data sources: Early Cretaceous Tethyan Himalaya (TH) A-type dacites are 

from Zhu et al. (2007); Eocene TH high Sr/Y granites are from Zeng et al. (2011); Oligocene 

Lhozhag leucogranites are from Guo and Wilson (2012). Chondrite and primitive mantle 

normalization values are from Sun and McDonough (1989). 

 

Fig.6. (a) Na2O+K2O, (b) Zr and (c) Nb vs. 10,000 Ga/Al and (d) (Na2O+K2O)/CaO vs. 

(Zr+Nb+Ce+Y) discrimination diagrams of Whalen et al. (1987), showing the A-type nature of the 

Comei granite. I and S: unfractionated I- and S-type granites; FG: fractionated felsic granites 

(after Yang et al., 2009). 

 

Fig.7. (a) εNd(t) vs. (
87

Sr/
86

Sr)t and (b) εNd(t) vs. age diagram for the Comei granite samples. Data 

sources are same as in figure 4. Additional data sources: Yarlung Zangbo ophiolites - Mahoney et 

al. (1998); Early Cretaceous N-MORB type and OIB type mafic rocks - Zhu et al. (2008); Higher 

Himalayan (HH) crystalline series and Tethyan Himalaya (TH) sedimentary series are from 

Richard et al. (2005). The mixing end-members are: TH Early Cretaceous OIB type basalt 

(CN23-1: εNd(t) = +4.3, (
87

Sr/
86

Sr)t = 0.7037, Nd = 40.7 ppm and Sr = 529 ppm) from Zhu et al. 

(2008); TH Lhozhag leucogranites (LG-17: εNd(t) = -16.9, (
87

Sr/
86

Sr)t = 0.7323, Nd = 12.8 ppm, Sr 

= 107 ppm and LG-02: εNd(t) = -16.6, (
87

Sr/
86

Sr)t = 0.7426, Nd = 28.5 ppm, Sr = 146 ppm) from 

Guo and Wilson (2012).The bivariate mixture calculation use mixing equation of Faure (1986) and 

indicate a hybrid source consist of metapelite and minor (5-15%) basaltic melt. Reference TDM age 

evolution for 1.4Ga, 1.7 Ga, 2.0 Ga and 2.5 Ga average continental crust were calculated 

assuming a typical 
147

Sm/
144

Nd ratio = 0.12. 

 

Fig.8. (a) Rb, (b) Ba, (c) Sr, (d) Th, (e) U contents and (f) initial 
87

Sr/
86

Sr ratios vs. loss on ignition 

(LOI) discrimination diagrams for the Comei granite. 

 

Fig.9. (a) Nb/U vs. Nb and (b) Ce/Y vs. 100Rb/Ba diagrams. The Comei granite has a similar 

composition to upper continental crust (UCC). Data sources: OIB and N-MORB from Sun and 

McDonough (1989); UCC and lower continental crust (LCC) from Taylor and McLennan (1985). 

 

Fig.10. (a) molar K2O/Na2O, (b) Na2O, (c) Mg
#
 and (d) molar Al2O3/(MgO+FeO

T
) vs. molar 
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CaO/(MgO+FeO
T
) diagrams and showing the composition of the Comei granite (symbols as in 

Fig. 4), compared to compositional ranges of crustal melts (meta-greywackes, meta-pelites, 

meta-andesite and meta-basalt after Altherr et al. (2000) and Altherr and Siebel (2002). 

 

Fig.11. Compositions of the Comei granite (symbols as in Fig. 4), compared to compositional 

ranges of experimental metasediment-derived melts (greywackes, felsic and mafic pelites, after 

Patiño Douce, 1999). The dash-dot lines and thick solid lines are reaction curves that model 

compositions of melt produced by hybridization of high-Al olivine tholeiite with metagreywacke 

at low pressure (LP, P < 5 kbar) and high pressure (HP, P = 12–15 kbar), respectively (Patifio 

Douce, 1999). Distribution trend indicate that the Comei granite was likely the product of crustal 

melting at low pressure of less than 5 kbar. 

 

Fig.12. CIPW normative Quartz-Albite-Orthoclase diagram (after Inger and Harris, 1993). 
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Table 1 Major (wt.%) and trace (ppm) elements data for the Comei granite porphyries 

09TB116-1 09TB116-4 09TB116-5 11SN17-1  11SN17-2  11SN18-1 11SN18-2 11SN19-1 11SN19-2  11SN19-3 11SN20-1 11SN20-2 11SN20-3 

SiO2 68.14 69.09 69.11 69.00 69.11 66.82 68.53 68.41 69.05 68.65 69.45 69.47 68.93 

TiO2 0.86 0.89 0.90 0.87 0.90 0.83 0.87 0.82 0.87 0.81 0.83 0.84 0.84 

Al2O3 13.15 13.44 13.35 13.38 13.65 13.47 13.31 13.28 12.91 13.15 12.97 12.81 12.90 

Fe2O3* 5.19 5.19 4.96 5.14 5.17 5.52 5.14 5.04 4.46 5.28 4.58 4.30 4.29 

MnO 0.13 0.05 0.06 0.10 0.07 0.10 0.07 0.11 0.09 0.08 0.08 0.09 0.10 

MgO 0.76 0.94 0.82 0.88 0.97 1.07 1.00 0.93 0.73 0.98 0.88 0.82 0.70 

CaO 1.26 0.55 0.87 0.99 0.66 1.55 1.12 1.28 1.55 1.00 1.06 1.53 1.63 

Na2O 1.86 2.11 1.82 2.37 2.08 2.41 2.47 2.42 2.55 2.32 2.32 2.09 2.62 

K2O 5.21 5.01 4.90 5.23 5.12 5.30 5.09 4.92 5.27 5.13 5.44 5.38 5.26 

P2O5 0.26 0.29 0.25 0.26 0.28 0.30 0.26 0.30 0.25 0.29 0.30 0.26 0.25 

L.O.I 2.79 2.06 2.58 1.98 2.20 2.70 2.31 2.45 2.52 2.37 2.14 2.64 2.69 

Total 99.60 99.63 99.62 100.19 100.22 100.07 100.17 99.95 100.23 100.06 100.05 100.23 100.22 

A/CNK 1.20 1.36 1.35 1.18 1.34 1.08 1.15 1.14 1.02 1.18 1.11 1.06 1.00 

Mg
#
 25.51 29.66 27.91 28.43 30.53 31.14 31.24 30.09 27.68 30.24 31.06 30.78 27.67 

Sc 14.2 13.8 12.8 25.4 12.8 12.8 11.8 12.0 12.8 12.2 11.0 12.4 13.0 

V 50.6 50.1 51.8 112 48.2 53.3 48.4 53.7 47.6 56.3 50.3 52.8 53.1 

Cr 18.7 17.8 19.2 218 76.5 19.2 86.9 18 96 18.5 18.2 114.5 108.3 

Co 32.0 29.9 30.9 14.2 7.93 9.35 7.75 5.74 7.39 6.87 6.45 7.91 7.27 

Ni 11.7 9.62 11.2 28.5 13.2 9.9 16.7 8.7 15.0 8.60 8.72 15.29 14.52 

Ga 18.6 20.2 18.9 42.5 18.9 19.9 18.9 19.6 18.4 18.8 18.2 16.3 16.6 

Rb 169 169 160 371 182 180 178 182 182 184 174 166 170 

Sr 131 136 134 200 91.6 97 113 133.3 111.8 118.2 69 94 96.9 

Y 52.8 53.2 48.9 105 48.4 52.2 46.2 53.2 47.6 53.7 51.5 46.8 47.5 

Table 1
Click here to download Table: Table 1.docx



Zr 368 408 341 1141 448 349 400 358 489 340 407 422 439 

Nb 23.6 23.7 22.7 45.6 21.9 26.0 21.7 25.2 21.0 25.0 25.5 21.1 21.3 

Cs 2.77 1.74 2.44 3.60 1.54 1.50 1.64 2.09 1.60 1.75 1.01 1.13 1.18 

Ba 1169 1200 1365 2332 895 867 853 954 1002 947 950 960 967 

La 85.7 88.1 83.1 176 83.0 78.0 78.6 85.1 82.2 84.7 82.6 76.9 77.7 

Ce 177 184 170 359 167 155 155 167 165 170 168 157 160 

Pr 22.1 23.0 20.5 42.2 20.1 18.6 18.9 20.0 19.6 20.7 20.4 18.6 18.8 

Nd 76.6 80.8 71.8 162.1 77.7 71.0 72.6 78.2 75.9 79.5 77.7 71.7 73.2 

Sm 14.1 15.2 13.0 29.3 14.3 13.1 13.3 13.8 13.6 14.3 13.9 13.1 13.0 

Eu 2.80 2.56 1.99 4.79 2.62 2.24 2.38 2.31 2.44 2.71 2.31 2.44 2.47 

Gd 12.2 13.1 10.9 25.9 12.5 11.7 11.5 12.0 12.2 12.7 12.2 11.7 11.9 

Tb 1.79 1.91 1.60 3.71 1.78 1.64 1.68 1.66 1.76 1.80 1.65 1.66 1.67 

Dy 9.61 10.11 8.66 20.2 9.59 9.47 9.18 9.25 9.69 9.64 9.32 9.02 9.06 

Ho 1.91 1.98 1.72 4.00 1.82 1.85 1.80 1.85 1.90 1.92 1.82 1.80 1.79 

Er 5.25 5.26 4.79 10.7 5.03 4.83 4.75 4.83 4.96 4.92 4.72 4.94 4.93 

Tm 0.75 0.80 0.69 1.56 0.74 0.70 0.69 0.70 0.74 0.71 0.68 0.70 0.71 

Yb 4.92 5.23 4.67 10.1 4.88 4.47 4.45 4.46 4.74 4.45 4.37 4.68 4.65 

Lu 0.74 0.78 0.70 1.56 0.77 0.67 0.69 0.68 0.73 0.67 0.66 0.75 0.73 

Hf 10.0 11.0 9.49 28.4 11.6 9.7 10.3 9.7 12.4 9.29 10.87 10.84 11.1 

Ta 2.07 2.16 2.04 3.74 1.82 1.84 1.75 1.84 1.74 1.81 1.81 1.70 1.74 

Pb 20.2 22.1 17.7 40.2 20.2 18.8 21.9 18.8 19.0 15.3 17.0 20.9 21.2 

Th 34.8 36.0 33.6 73.4 34.0 35.0 33.8 34.4 35.0 34.4 34.9 33.1 33.3 

U 4.72 5.00 4.81 10.3 4.72 4.81 4.79 4.80 4.68 4.63 4.34 4.55 4.57 

TZr (°C) 878  902  883  1004  910  856  880  868  887  867  880  879  873  

Ga/Al 2.67 2.84 2.67 6.00 2.61 2.80 2.68 2.79 2.70 2.71 2.65 2.41 2.43 

Fe2O3* = Total Fe2O3 content; Mg
#
 = Mg

2+
/(Mg

2+
+Fe

2+
)×100; A/CNK = molecular Al2O3/(CaO+Na2O+K2O); TZr are calculated after Watson and Harrison (1983). 

 



Table 2 Sr and Nd isotope data for the Comei granites 

Sample 
Rb 

(ppm) 

Sr 

(ppm) 

Sm 

(ppm) 

Nd 

(ppm) 

87
Rb/

86
Sr 

87
Sr/

86
Sr (

87
Sr/

86
Sr)i 

147
Sm/

144
Nd 

143
Nd/

144
Nd (

143
Nd/

144
Nd)i εNd(t) TNd

DM 
(Ma) fSm/Nd 

11SN16-1 77.4 68.1 12.6 67.6 3.29 0.730404±6 0.7238 0.113 0.511917±3 0.511814 -12.6 1870 -0.42 

11SN17-1 371 200 29.3 162 5.38 0.736446±6 0.7257 0.110 0.511904±3 0.511804 -12.8 1831 -0.44 

11SN18-2 178 113 13.3 72.6 4.57 0.735865±5 0.7268 0.111 0.511906±3 0.511805 -12.8 1851 -0.43 

11SN19-2 182 112 13.6 75.9 4.72 0.735519±6 0.7261 0.109 0.511910±4 0.511811 -12.6 1805 -0.45 

11SN20-2 166 94.3 13.1 71.7 5.10 0.735452±6 0.7253 0.111 0.511905±3 0.511803 -12.8 1856 -0.43 

09TB116-1 169 131 14.1 76.6 3.74 0.736342±16 0.7289 0.112 0.511930±8 0.511828 -12.3 1826 -0.43 

09TB116-4 169 136 15.2 80.8 3.62 0.736694±13 0.7295 0.114 0.511936±9 0.511832 -12.2 1856 -0.42 

09TB116-5 160 134 13.0 71.8 3.46 0.735685±15 0.7288 0.110 0.511943±8 0.511843 -12.0 1781 -0.44 

87Rb/86Sr and 147Sm/144Nd are calculated using whole-rock Rb, Sr, Sm and Nd contents in Table 1. 

εNd(t) = [(143Nd/144Nd)s/(143Nd/144Nd)CHUR-1]×10000. TDM = ln[143Nd/144Nd − (143Nd/144Nd)DM] / [143Sm/144Nd − (147Sm/144Nd)DM] / λ (DePaolo, 1988). 

In the calculation, (143Nd/144Nd)CHUR=0.512638, (147Sm/144Nd)CHUR=0.1967, (143Nd/144Nd)DM=0.513151, (147Sm/144Nd)DM=0.2135, (147Sm/144Nd)CC=0.12, λSm=6.54×10-12/yr and t=140 Ma. 
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