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A B S T R A C T

In this article we use machine activity metrics to automatically distinguish between ma-

licious and trusted portable executable software samples. The motivation stems from the

growth of cyber attacks using techniques that have been employed to surreptitiously deploy

Advanced Persistent Threats (APTs). APTs are becoming more sophisticated and able to ob-

fuscate much of their identifiable features through encryption, custom code bases and in-

memory execution. Our hypothesis is that we can produce a high degree of accuracy in

distinguishing malicious from trusted samples using Machine Learning with features derived

from the inescapable footprint left behind on a computer system during execution. This

includes CPU, RAM, Swap use and network traffic at a count level of bytes and packets. These

features are continuous and allow us to be more flexible with the classification of samples

than discrete features such as API calls (which can also be obfuscated) that form the main

feature of the extant literature. We use these continuous data and develop a novel classi-

fication method using Self Organizing Feature Maps to reduce over fitting during training

through the ability to create unsupervised clusters of similar “behaviour” that are subse-

quently used as features for classification, rather than using the raw data. We compare our

method to a set of machine classification methods that have been applied in previous re-

search and demonstrate an increase of between 7.24% and 25.68% in classification accuracy

using our method and an unseen dataset over the range of other machine classification

methods that have been applied in previous research.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The detection of malicious software that “deliberately fulfills
the harmful intent of an attacker” (Bayer et al., 2006) (malware)
is a persistently difficult challenge for network security ana-
lysts. Attackers are developing increasingly sophisticated
methods to avoid detection based on vulnerabilities in

software and weak configuration of technical security coun-
termeasures. Typical network security countermeasures
include Network Intrusion Detection Systems (NIDS) capable
of performing fine-grained network data and protocol-level
analysis to identify anomalous and malicious traffic; and
anti-virus tools that scan incoming software and attempt to
match code signatures to a list of known malicious code
bases.
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Examples of such malware at the extreme end of the so-
phistication scale are known as Advanced Persistent Threats
(APTs). An in-depth study of the “Big 4” APTs – Stuxnet, Flame,
Duqu and Red October – highlighted the factors that enabled
malware to evade detection from security solutions (Virvilis
and Gritzalis, 2013). The factors include (i) encrypted and/or
obfuscated network traffic, limiting the effectiveness of network
traffic analysis. Command and control servers received traffic
on ports 22/TCP, 80/TCP and 443/TCP, so egress traffic was
merged with other http packets (80/TCP) or encrypted in transit
(22/TCP and 443/TCP). For http traffic, Duqu transformed data
into JPEG image files before transmission avoiding packet-
level analysis; (ii) Stuxnet, Flame and Duqu scanned the target
for endpoint security products and customised the payload ac-
cordingly to evade detection, limiting the effectiveness of
signature based static analysis of executables; (iii) Red October
made use of in-memory execution to remain undetected
(Virvilis and Gritzalis, 2013). conclude that Anti-virus and
Network Intrusion Detection products face serious shortcom-
ings in the detection of APT and propose the analysis of “low
severity events” that malware will inevitably generate during
the attack’s life cycle’ as a future research direction. As such
this work generates a range of system-level activity metrics
by executing samples of malicious and trusted executables in
a Sandbox environment, and uses these metrics to train a
machine classifier to distinguish malicious from trusted
executables using “low severity events” that are inevitably gen-
erated while the executable is running – namely CPU User Use
(percentage), CPU System Use (percentage), RAM use (count), SWAP
use (count), received packets (count), received bytes (count), sent packets
(count), sent bytes (count), number of processes running (count) –
just 9 metrics in total.

An additional consideration for malware classification with
so many new instances appearing daily is the ability to detect
malware that exhibits previously unseen behaviour. McAfee
suggests tens of thousands of distinct samples that are seen
daily1, and VirusTotal provides statistics that show that 1.37
million distinct new samples were submitted on Feb 12 20172.
This is a non-trivial task but an important test is whether
a classification model can generalise from previously seen
features – those used to train the model – to unseen features.
One way to partially test this is to use a different set of
samples to test the classification. Not all previous work does
this – several existing research papers use k-fold cross vali-
dation which does split the dataset into iterative train/test
subsets but does not use an unseen dataset. Thus, this paper
also investigates the performance limitations of using cross
validation versus an unseen dataset when using various
machine learning methods.

Our main contributions are (i) using continuous machine
activity data (e.g. CPU use, RAM/SWAP use, Network I/O) to
classify malware – thus not depending on network traffic or
API calls that can presently be encrypted or obfuscated by
the malware itself. Malware can detect and avoid virtual
machines but it cannot avoid leaving a behavioural footprint,
so we use these data to classify malware. The introduction of

continuous data offers the opportunity to identify fuzzy
activity boundaries in unseen attacks; (ii) the identification
of over-fitting in some machine learning algorithms when
using cross validation, leading to a drop in performance on
unseen data (representing zero-day attacks), while other
algorithms that are outperformed on cross validation show
less evidence of overfitting when tested on unseen data; and
(iii) using Self Organising Feature Maps (SOFM) to process
machine activity data to capture fuzzy boundaries between
machine activity and classes (malicious or trusted). This
approach overcomes overfitting issues presented by other
machine learning methods such as decision trees and support
vector machines (for which we present performance results
as a baseline for the SOFM improvement). An additional
benefit of the SOFM data processing is the intuitive visual
representation of machine activity data. We present the node
activation frequencies of two competing SOFMs to develop
behavioural visualizations for malicious and benign behaviour
that have implications for use in Security Operation Centres
(SOCs) for human analysis and visual detection of malicious
behaviour.

2. Related work

Malware analysis falls into two main approaches: static and
dynamic. Static analysis examines software without execut-
ing it, detecting patterns in strings, byte sequences, library calls
and operation codes to determine if it is malicious (Gandotra
et al., 2014). Static approaches are widely considered inad-
equate on their own due to obfuscation techniques that make
the approach unreliable (Moser et al., 2007; Ranveer and Hiray,
2015). Furthermore, the approach depends on matching pat-
terns to known malicious signatures, which makes previously
unseen attacks, such as polymorphic malware and zero-day
exploits, difficult to detect. Dynamic analysis executes the soft-
ware and analyses its behaviour during execution in an isolated
environment known as a Sandbox. Behaviour monitoring tools
capture interactions between the software and the underly-
ing system such as process detail, file and registry changes,
and network traffic (Gandotra et al., 2014).This approach is also
imperfect as attackers are able to detect Sandbox environ-
ments and alter their behaviour to avoid detection. However,
for a successful attack to occur, interaction between malware
and the underlying system it is attempting to exploit must
occur, and dynamic analysis offers the potential to capture
metrics during this interaction that can be used to detect the
attack (Ranveer and Hiray, 2015).

Both static and dynamic approaches to malware analysis
produce data that can be transformed into a form that repre-
sents the characteristics of the software being used to fulfil
the harmful intent of an attacker, which has led to an inter-
est in automating the detection of patterns within these data
using machine learning. Ranveer and Hiray (2015) conducted
a survey in 2015 to collate and compare features used to
detect malware. While there is still some research support-
ing the value of static analysis (e.g. byte code ngram features,
opcode ngram features and strings), the majority of the lit-
erature suggests there are too many evasion techniques in
use for this to be practical. Nataraj et al. also support this

1 McAfee Threats Report: Second Quarter 2012.
2 https://www.virustotal.com/en/statistics.
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view, stating that binary obfuscation techniques that affect
static analysis are ‘near-universally adopted by today’s malware
publishers’ (Nataraj et al., 2011). As Ranveer and Hiary state,
any malicious software invokes some kernel level system
call to communicate with the underlying operating system,
thus capturing and analyzing kernel interactions can enable
the detection of malware (Ranveer and Hiray, 2015). Their
review provides a comparative table that collates and com-
pares performance metrics from a number of malware detection
systems. It also refers to a standard dataset used by some
research as a benchmark, though many research papers do
not use this dataset so it is difficult to make a true compari-
son. It is important to distinguish different forms of malware
classification when comparing related work. There is re-
search that attempts to classify executable files as malicious
or benign, and work that aims to categorize malware in fami-
lies using classification (e.g. David and Netanyahu, 2015;
Kolosnjaji et al., 2016; Nataraj et al., 2011; Saxe and Berlin,
2015; Shibahara et al., 2016). Our focus is on the detection of
malware as it executes, thus we focus on the former when
analysing related work.

Tian et al. use Support Vector Machines (SVM), Random
Forest (RF), Decision Table (DT) and IB1 + AdaBoost together with
frequency-based API calls with Windows XP as a base operat-
ing system to 97% malware classification accuracy using RF and
DT (Tian et al., 2010). This result was obtained using 10 fold
cross validation. Firdausi et al. used K-Nearest Neighbour, J48
Decision Trees, SVM and Multi-layer Perceptron using API calls
to produce 96.8% accuracy on a Windows XP base OS using J48
(Firdausi et al., 2010). They use a small sample of 250 malware
so we assume these results are also cross-validated. Damodaran
et al. used Hidden Markov Models (HMM) with API calls and a
hybrid static/dynamic model (Damodaran et al., 2017).They use
5-fold cross-validation to achieve a 0.98 AUC-PR score for family-
based malware classification. They demonstrate that dynamic
analysis outperforms static and hybrid classification. Further-
more, they inflate the benign class during testing to create a
more realistic balance of malicious and benign samples,
showing classifier performance drop-off as benign samples in-
crease – with the dynamic approach remaining more stable than
static or hybrid approaches. Tobiyama et al. performed feature
extraction from 81 malware logs and 69 benign logs using Long
Short Term Memory (LSTM) models (Tobiyama et al., 2016).They
achieved an AUC score of 0.96 using 5-fold cross validation.
Ahmed et al. studied the sequence of API calls using a dataset
of around 500 files. They showed a performance of 0.98 AUC
using 10-fold cross validation and a Naive Bayes classifier
(Ahmed et al., 2009).

Device activity metrics have previously been used on
mobile platforms such as Android to detect malware, sup-
ported by additional device-specific metrics such as SMS and
key-stroke data (Dini et al., 2012). On more traditional desktop
computing environments Scaife et al. studied RansomWare,
which is a specific type of malware that heavily uses read/
write calls to the file system to encrypt a user’s data. Using
rule-based indicators relating to modification of user data
and suspicious file activity, rather than machine learning,
they matched a sample of 492 RansomWare attacks with
100% accuracy (Scaife et al., 2016). Continella et al. also
studied RansomWare and used machine learning to detect

this type of attack using file system calls. Unlike much of the
existing literature, they tested their classifier using 305 unseen
samples and detected 97.7% of unseen RansomWare attacks
(Continella et al., 2016).

These results show significant promise for malware clas-
sification but using k-fold cross validation leaves questions as
to the generalizability of results to unseen samples in most
cases, and no research to date has attempted to test the suit-
ability of continuous machine activity data with a non-
discrete choice classification method as a way to avoid over-
fitting on unseen general malware samples that could exhibit
a broad range of observable actions. In our research we will
reproduce these results using an unseen test dataset on the
best performing classification methods to provide evidence for
a hypothesis that unseen data will cause a drop in perfor-
mance – especially on discrete-choice models such as RF and
DT where unseen data may exhibit a different range of
behaviours.

Pascanu et al. argue that more research was required to
handle reordered temporal patterns so proposed an ap-
proach to extract executed instructions using Echo State
Networks and Recurrent Neural Networks (RNN), then used
Logistic Regression to classify malicious files with a true posi-
tive rate of 71.71% and a false positive rate of 0.1% (Pascanu
et al., 2015). A key point here was the comparison between
the recurrent model and a bag-of-events model, where the
recurrent approach showed a factor of three improvement.
Extending work into Neural Networks, Dahl et al used 3.6
million files (from Microsoft) to train and test models using
Logistic Regression, shallow and deep Neural Networks (Dahl
et al., 2013). Using API calls they produced an error rate of
0.49% with an ensemble of 9 Neural Nets. It was notable that
the best performing model was a shallow Neural Network (1
layer). However, Huang and Stokes built on this research and
used a sample of 6 million (from Microsoft) to train and test
a Deep Neural Net (Huang and Stokes, 2016). They utilised
ReLU and Dropout to good effect, using 114 API events plus
parameters to achieve an error rate of 0.36%. Adding more
layers to the NN did not achieve significant gains in perfor-
mance (confirming the findings of Dahl et al.), neither did
increasing the sample size by almost double that of Dahl
et al. – but using Dropout did see improvements, suggesting
that optimizing the efficiency of the Neural model can improve
performance more than increasing the depth and dataset
size. Neither dataset is publicly available so it is difficult to
benchmark against this research. A key limitation of both
papers, which is not specific to this work, but Neural Network
models more generally, is the time taken to build a model. It
took nearly 3 hours to train the model used by Dahl et al.,
and 7 hours to build for Huang and Stokes. With the vast
amounts of new malware appearing daily it would seem
infeasible that either of these models could be built and
deployed to take into account new samples appearing in
“real time” as happens with existing signature-based anti-
virus systems. In our research we will investigate the use of
a neural competitive learning model that has the ability to
generalise across different datasets and is capable of online
learning so that new samples can be fed in as they become
available with minimal training time – a property exhibited
by Self Organizing Feature Maps (SOFMs).
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3. Methods

3.1. Self Organising Feature Maps

The Self Organising Feature Map (SOFM) of Kohonen (1982) is
an unsupervised learning technique that takes as input an
n-dimensional vector of real values and uses this to modify
the contents of randomly-seeded vectors (known as model or
reference vectors) stored in an m-dimensional array (usually a
two-dimensional grid, known as a map). Significantly, input
and model vectors can exist in a higher dimensional space
than that of the map itself and thus permits dimensionality
reduction. This means using a low-dimensional (e.g., 2D) map
allows convenient visualisation of data points in a higher-
dimensional space (e.g., 5D). It is important to note, however,
that the choice of attributes that make up the model vector,
together with the characteristics of the dataset, will deter-
mine an SOFM’s susceptibility to the problem of over-fitting.
The SOFM has found application as a data analysis tool in
industry, finance, natural sciences, linguistics (Kohonen, 2013),
and robotics (Smith, 2002). It has been used in a cyber secu-
rity context previously to visualize the effect on binary files
when infected with viruses (Yoo, 2004), but to the best of our
knowledge it is yet to be integrated into an algorithmic ap-
proach to malware classification.

For each input vector, the map is scanned for the best match-
ing model vector. This is known as the Best Matching Unit
(BMU). The BMU’s model vector is then adjusted by a small
amount to be closer to the input vector. Importantly, model
vectors surrounding the BMU (using a radius that defines its
neighbourhood) are adjusted by an amount inversely propor-
tional to their distance away from it. As learning progresses,
vectors in this vicinity of the grid represent points in space
similar to that of the BMU, thus the map preserves the topol-
ogy of the input vectors. As Kohonen puts it:

More similar models will be associated with nodes that are
closer in the grid, whereas less similar models will be situ-
ated gradually farther away in the grid.

It is this formation of topographic neighbourhoods, sepa-
rated by “fuzzy boundaries”, that allow the SOFM to respond
sensibly to new inputs that fall into an area of the map de-
veloped by previously presented inputs. It is for this reason that
we selected SOFMs as a method to process machine activity
data from potentially malicious executable files that may exhibit
different behavioural properties over time. The “fuzzy bound-
aries” enable us to map new samples onto existing maps and
determine that the behaviour may be different but similar
enough to previously observed behaviour to label it as mali-
cious – that is, to better generalize between samples over time.
Essentially what we have developed are representations of
behavioural ‘DNA’ in a malicious or trusted context that provide a
model to which potentially malicious executables can be compared
for similarity. Being inherently visual, this is not only appar-
ent to algorithms, but also to humans when reducing multiple
dimensions of machine activity to a 2D map.

Over time the radius of the neighbourhood surrounding a
BMU is reduced. This means the map has a critical period of de-

velopment (e.g. Wiesel and Hubel, 1963), after which modification
is limited without resetting the radius value. This is one way
of addressing the plasticity-stability dilemma, that is a learn-
ing system needs the ability to adapt to its environment, but it also
needs stability in order to maintain efficacy of function (e.g. Abraham
and Robins, 2005).

In this work we use the SOFM approach in two ways: Firstly
by taking advantage of the topographic neighbourhoods as a
simple method of generalization when evaluating previously
unseen machine activity. In this respect the SOFM is tested as
a standalone malware classification method. Secondly, by using
dimensionality reduction to transform machine activity to two
dimensions from a higher-dimensional dataset, we are able to
use SOFMs as a pre-processing stage to produce a new feature
set for use with machine classification algorithms that re-
flects topographical neighbourhoods as “fuzzy” feature sets that
have the potential to improve the generality of behaviour clas-
sification on unseen samples – for example, polymorphic viruses
or hand-modified malware.

3.2. Data and architecture

To develop a system capable of supporting the stated require-
ment of a behavioural-driven classification of malware, we
produced a dataset of “clean” and “malicious” files. Execut-
able files were collected from the VirusTotal API. VirusTotal is
owned by Google and provides a public service to upload sus-
picious files and obtain a report that can be used to determine
whether or not it is malicious based on the outcome of passing
it through up to 48 individual virus scanning tools – includ-
ing Kasperky, McCafee etc. The API is available for academic
research and includes a broad range of search parameters with
which queries can be created to produce a specific software
sample for analysis. Example parameters include: Type (e.g. por-
table executable, HTML, Email, PDF, DocX); Tag (e.g. FTP, SSH,
MySQL, SMTP); Type (suspicious-dns, hosts-modifier, create-
file, download, registry; Behaviour (http). The API also supports
the collection of “trusted” (no hits from the scanning tools) and
signed files, enabling a “clean” sample to be collected. This is
necessary for the task of training machine classifiers to dis-
tinguish between malicious and benign actions.

We collected an initial sample of 594 malicious files of the
Portable Executable (PE) 32-bit format where at least 10 indi-
vidual virus scanners labelled the file as malware. For the
purposes of developing a “clean” sample we collected a further
594 files that were labelled “trusted” – i.e. considered not to be
malware by all the individual scanners.This does have the limi-
tation of depending on the individual scanners of course. If the
file is a zero-day piece of malware with a code signature
unknown to existing anti-virus software, the “trusted” label is
misleading. However, we have to work on the assumption that
the vast majority of samples would not fall into this category
and proceed with the sample available. These 1188 files were
then passed into the Sandbox Architecture described in Fig. 1
for the purposes of observing and recording their behaviour
during execution.The number of files used is in line with many
existing research studies of this nature (Ahmed et al., 2009;
Damodaran et al., 2017; Firdausi et al., 2010; Tobiyama et al.,
2016; Yuan et al., 2016).
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To produce logs of behaviour we developed a bespoke
Sandbox environment based on an extension of Cuckoo
Sandbox. The architecture diagram in Fig. 1 illustrates the en-
vironment in which the sample files were executed for the
purposes of recording their behaviour and generating a dataset
for use in developing machine learning approaches to distin-
guish malicious files from benign ones. The figure depicts the
storage of sample files (top right) and a script that sequen-
tially pushed samples to Worker Nodes. Each Worker node
consisted of a Ubuntu 12.04 Operating System running minimal
services, with an installation of VirtualBox running Windows
7 in a virtual environment. The Windows configuration in-
cluded: Adobe Acrobat Reader; Microsoft Office Word, Excel and
Powerpoint, SQL Server and an active email account via Outlook.

Samples were submitted to Worker nodes with the Cuckoo
Sandbox API, wrapped by a script to provide the reliable in-
jection of large batches of samples and log failures. Cuckoo
operates as a malware analysis platform by accepting sample
files either via an HTML user interface or a command line
Python client. Once a sample is received it opens a virtual
machine and executes the file within the virtual environ-
ment, keeping the environment running for 5 minutes to allow
the file to execute its payload. The 5 minute window was ar-
bitrarily defined on the assumption that the payload would
execute immediately upon execution and would take no longer
than 5 minutes to complete. This presents the limitation of not
capturing delayed execution commands, but with a finite time
frame for experimentation, we needed to define a reasonable
time window. During and post execution Cuckoo generates

several reports, including Hashes of the executable binaries,
file accesses, registry keys accessed, processes executed and
a PCAP dump. Cuckoo also calls the VirusTotal API indepen-
dently and submits the file for analysis, which returns another
report with similar logs but without the detailed PCAP traffic
and with the addition of the names of various anti-virus soft-
ware solutions that have tagged the file as malware.

In addition to the default cuckoo analysis, we developed a
script that executed as a background service in the virtual en-
vironment while samples were being executed. The script was
designed to capture dynamic behaviour on the system, par-
ticularly system activity that could potentially be used to train
a machine to recognize the signals of malicious behaviour on
the system. The script collected CPU and memory/swap use,
remote connection established flags, open port numbers,
network interface types being used, bytes sent and received,
and packets sent and received.

One of the main objectives of this work was to better un-
derstand the utility of using machine behaviour to classify
sample files, thus each sample was executed in a Worker Node
on a single machine. This limits the speed of the analysis as
it prevents multiple virtual machines executing samples in par-
allel on the same machine, but it avoids contamination between
samples. With the addition of more physical machines, the
sample execution could be made much faster by replicating
the virtual environment on each physical node.

After each sample was executed, the virtual environment
was restored to its original “clean” state by reverting to a “Snap-
shot” taken before the experiments began. For persistence,

Fig. 1 – Malware analysis platform architecture.
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Cuckoo stored the reports in a local directory on the host
machine (not within the virtual environment). The dynamic
behaviour capture script took observations of the system
behaviour every second, producing 300 observations for each
sample in the 5 minutes (300 second) time window. Each ob-
servation was pushed to a network-hosted SQL database within
the local network. Naturally this produces an increase in
network traffic, which will contribute to the observed network
statistics. However, this is the case for every observation, and
for malicious and benign samples, so we were confident it
would not interfere with the experiments.

The approach described above is applicable for internal and
external threats based on the assumption that malware and
insider threats are executed via instructions codified into ex-
ecutable files. There also exists the possibility that internal and
external threats can be executed manually, through script modi-
fication, password changes/cracking etc. These have not been
considered at this stage because the focus of the work is
machine classification to distinguish between malicious and
benign activity. It is non-trivial to produce a sample of manual
behaviour of this kind, and the ethics of monitoring individu-
als at work is complex across international jurisdictions. This
can be investigated in future should it be deemed a viable
option.

To aid in the training and testing of our model, and to
prototype a deployable malware detection system, we created
a framework to automate the analysis, from sample submis-
sion through to classification. As described earlier in this
section, the first software element injects samples into Cuckoo
and logs those which did not process successfully. This is
important, as some of the samples received from VirusTotal
are not compatible with Windows 7 and their attempted ex-
ecution in the virtualised environment fails. The error log
files generated are subsequently parsed, and those samples
whose execution failed are excluded from processing. The
next program in the suite reads the data files created by
Cuckoo, along with the machine statistics in the database,
collates and generates metrics, and outputs an ARFF (Attribute-
Relation File Format) file of feature vectors; one for each
second snapshot of each software sample. For the results
used in this study, the machine statistics from the database
are simply transformed into feature vectors.

The malware analysis framework can be run in either of
two modes: training mode, for retraining the classification
model on a newly presented set of sample data; or online mode,
in which a single software sample is analysed by the trained
classifiers, and the classification result (the model’s belief as
to whether the sample is benign or malicious) is output. If being
run in training mode, the generated ARFF file is split into two
– one for training and another for validation – which are sent
onwards to the machine learning module over a socket con-
nection; else the ARFF file contains only a single sample, the
vectors of which are sent to the machine learning classifiers
one at a time. This sequence of processing is orchestrated by
the Malware Analysis Coordinator (Mack), and the framework
is designed as a distributed system capable of running many
such instances (regardless of the mode) simultaneously. A Mack
instance terminates once the classifiers have been trained suc-
cessfully (training mode) or have returned a classification result
(online mode).

The code for the SOFM module is wrapped in an agent
named Somantha (Self Organising MAp NeTworking Helper Agent)
which is responsible for coordinating training and online pro-
cessing requests from Mack clients, and facilitates the
concurrent analysis of online instances. The secondary clas-
sifier is also wrapped in an agent, Florense (Forwarding LOgistic
REgression Networking Server), to perform the same duties of han-
dling networking, coordinating training and online processing,
and facilitating concurrent analyses. When the system is run
in training mode, the SOFM generates files containing the BMUs
for the training vectors, which are sent on to Florense via Mack;
when run in online mode, the SOFM sends this data straight
to Florense, one BMU at a time as it is generated. Florense and
Somantha also contain various locking mechanisms to ensure
that online analysis cannot be conducted if training of the
model failed due to system malfunction, and to avoid dead-
lock between these servers and Mack instances. The final
component of the framework is a “PERmission SErvEr” (Persee),
which maintains a centralised repository of feature vector at-
tributes, and prevents race conditions between training and
online instances which could otherwise result in feature vectors
with an incorrect attribute structure being submitted to the
SOFM. To keep connections between the agents in the frame-
work organised, communications between Somantha and
Florense relating to a given Mack instance are routed through
said Mack instance.

Developing the system with a client-server architecture,
which permits multiple Mack instances running on different
hosts, but in which there is only a single instance of the
model(s) (managed by Somantha and Florense); fulfils require-
ments for scalability by facilitating concurrent analysis without
the limitation of “cross-contamination” inherent to perform-
ing this task on a single machine, while requiring only a single
copy of the model prevents the need for redistribution when-
ever the system is retrained. The software suite developed also
contains applications for running batch online analysis from
a single ARFF file (i.e. given the feature vectors for a set of
samples, classifying them all), and performing cross-validations
of the model.

3.3. Machine learning for malware classification

To develop an automated machine classification system that
is able to identify patterns of behaviour that distinguish between
malicious and trusted samples we began by developing a set
of baseline results using machine learning algorithms across
a range of classifier types that performed best in the existing
literature – decision trees, probabilistic Bayesian, support vector
machine and neural networks.

To produce experimental results the Java Weka machine
learning libraries were used to develop a number of super-
vised classifiers that were trained and tested using a set of
behavioural features – CPU User Use (percentage), CPU System Use
(percentage), RAM use (count), SWAP use (count), received packets
(count), received bytes (count), sent packets (count), sent bytes (count),
number of processes running (count). These observations were
transformed into a feature vector (represented as a comma
separated list of behaviour features), which included the actual
class label (malicious or benign). In Section 4 we provide results
for Bayesian Belief Nets, Decision Trees, Support Vector Ma-
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chines and Neural Networks. All of these algorithms make
classification decisions based on different underlying math-
ematics so provide the opportunity to investigate the utility
of static and dynamic behaviour.

3.3.1. Probabilistic models
Probabilistic classifiers identity statistical coefficients for each
feature in a vector based on the likelihood of that feature ap-
pearing in any of the classes available and uses this to predict
the classes of previously unseen samples. We implemented a
Bayesian Network model that considers conditional depen-
dencies between features, and a Naive Bayes model, which
assumes conditional independence between variables.We would
expect conditional dependence as, for example, more pro-
cesses running on the machine would be expected to push up
CPU and RAM use. We only report the best performing of these
as the optimum probabilistic model - which was, as ex-
pected, the Bayesian Network model.

3.3.2. Decision trees
Decision Tree methods recursively select features within the
vector and develop a set of rules based on minimizing classi-
fication error when using each feature, selecting the optimum
features and making a rule-based criteria for classification (e.g.
feature x with value greater than y will likely fall into class
z). Performing this step multiple times creates a hierarchical
set of rules that can be used to make classification decisions.
The Random Forest Decision Tree (RFDT) method was used as
a rule-based approach to classification. A Random Forest imple-
mentation of a decision tree was used because it iteratively
selects a random subsample of features in the training phase
and trains multiple decision trees before predicting the outputs
and averaging out the results, maximizing the reduction in clas-
sification error (Breiman, 2001). The approach combines the
results of a number of decision trees to identify the optimal
set of rules, which was appropriate in this case because of the
amount of noise and variance within the training and testing
data sets.

3.3.3. Support vector machines
Support Vector Machines (SVM) make classification decisions
by transforming feature vectors into high-dimensional space,
and identifying hyperplanes (lines that separate the data points)
to divide the space such that the behavioural features belong-
ing to different classes are separated. Multiple hyperplanes can
be used and the optimal hyperplane will be the line that maxi-
mizes the separation between classes and minimizes
classification error. In this case linear kernel and non-linear
kernels were used as hyperplanes and we report the best per-
forming SVM kernel method in Section 4.

3.3.4. Artificial neural networks
Artificial Neural Networks are inspired by biological neural
networks (in particular the human brain) and are comprised
of a range of functions that map input nodes to output nodes
through a series of hidden nodes that can be connected to
varying degrees and whose connections are weighted based
on a learning rule that reconfigures weightings based on
node activation in the training phase. The recent growth of
Deep Learning has brought ANNs to the forefront of modern

machine learning and in this phase we studied the perfor-
mance of ANNs by implementing a Multilayer Perceptron
with 9 hidden layers and a learning rate of 0.01, optimized
through experimentation.

3.4. Self organising feature maps

Early experiments using a single map for two class outcomes
(malicious and benign) led to confusion because of the com-
petitive nature of SOFM function. The single map found it
difficult to separate malicious and benign behaviour which led
to poor classification performance results. Hence, we trained
two maps with labelled examples from a training set. The
“Good” map was trained using the trusted samples, while the
“Bad” map was trained using the malicious samples. This is
shown in Fig. 2.

4. Results

4.1. Machine learning baseline results

To establish a baseline for the comparison of evaluation
metrics between k-fold cross validation metrics with those
achieved by testing on an unseen dataset we used a 10-fold
cross validation approach using the entire dataset of 345,000
observations. This approach iteratively trains the classifier on
90% of the training data and tests on the remaining 10%. After
10 iterations, the results are calculated by taking the mean ac-
curacy across all models. Evaluation metrics provided in Table 1
are the standard classification measures of Precision (an in-
dicative measure of false positives), Recall (an indicate measure
of false negatives), and F-measure (a harmonized mean of Pre-
cision and Recall). The maximum score for each is 1.0.

Fig. 2 – Training the SOFMs from labelled input vectors.

Table 1 – Summary of 10-fold cross validation
classification results.

Algorithm % Correct Precision Recall F-Measure

Random Forest 98.54 0.985 0.985 0.985
BayesNet 82.90 0.832 0.829 0.829
MLP 81.86 0.823 0.819 0.818
SVM 67.37 0.679 0.674 0.670

405c om pu t e r s & s e cu r i t y 7 3 ( 2 0 1 8 ) 3 9 9 – 4 1 0



The results show a very high performance for Random Forest
Decision Trees.This method derives a set of discrete choice rules
over the whole dataset with which to classify new instances.
This finding is in line with those of Tian et al. (2010) and Firdausi
et al. (2010) who both achieved high performance using
decision tree classifiers and cross validated results. Interest-
ingly we found the Bayesian Network to outperform a Naive
Bayes approach, confirming our initial thoughts that condi-
tional dependencies would exist between features derived from
machine activity. BayesNet and our ANN approach using a
multi-layer perceptron with 9 hidden layers both performed
similarly, but were significantly lower than a decision tree
approach.

To test the generalization potential of these models we next
tested them using behaviour observations from an unseen set
of samples. The sample set of 1188 files (594 malicious and 594
benign – see Section 3.2) was split equally so that half the ma-
licious samples and half the trusted samples were in a “training”
dataset, while the other half of each was stored in a “testing”
dataset. Our hypothesis now was that in doing this, models
based on data-driven rules and probability may struggle to
generalise beyond the training data and be unable to accu-
rately classify unseen behaviour from the testing dataset. This
is effectively a simulation of polymorphic malware or hand-
crafted malware behaviour, where the interaction with the
system on which it is run leaves a different footprint to pre-
vious samples.

Table 2 shows that the Random Forest approach drops by
more than 12% when the model is trained and tested using
different datasets. As expected, this is likely due to the set of
rules derived during training being overfit to the data, and suf-
fering from a lack of diverse behavioural data in the testing
phase. BayesNet performance is reduced by just over 5%, again
suffering from a lack of exposure to the volume of data it saw
in the k-fold cross validation method – but staying reason-
ably stable suggesting that the probability of behavioural
features occurring in both data sets is high, albeit with some
degradation of performance where differences occur. The MLP
model only dropped in performance by 2.45% – providing evi-
dence that a model based around weighting features through
an Artificial Neural Network provides stability between train-
ing and testing datasets.This is in line with other research that
found benefits in the ANN approach such as Dahl et al. (2013)
and Huang and Stokes (2016), but the decision tree approach
based on the Random Forest algorithm continued to outper-
form the other algorithms used in the existing literature on
the continuous machine activity data.

4.2. Using SOFM as a classification method

The next phase of results are based on our implementation
of a SOFM. In the first instance as a standalone classifier,

and secondly as a pre-processing method to transform
9-dimensional continuous machine activity data into a 2D new
feature set that reflects topographical neighbourhoods as fuzzy
feature sets representative of similar behaviour.

During training, a 9-dimensional input vector of normalised
values from the training set was directed to either the Good
map, used to represent the class of clean baseline data, or to
the Bad map, used to represent the class of data that in-
cludes “dangerous” values. Importantly, “Bad” data will likely
include “Good” examples. In such cases the Euclidean dis-
tance between Good and Bad map BMU model vectors will be
relatively low.3

Testing with unseen data is performed by comparing the
output activity of the BMU, from each map, for a given input
vector. The activity of a BMU is a function of the Euclidean
distance between its reference vector and the input vector,
where the smallest activation “wins” and the sample is asso-
ciated with “winning” map. We implemented a voting scheme
accumulating correct classifications during testing in a counter
for each sequence presented to the maps (i.e. every time a
new snapshot of machine activity was presented to the map),
giving a total of 300 “wins” per sample, where the highest
number of “wins” led a classification outcome of “Good” or
“Bad” depending on which map had the most. The accuracy
of this stage was determined by comparing the class labels
of each sample with the classification outcome. This is shown
in Fig. 3.

SOFMs are n by n matrices so in order to make an in-
formed choice regarding map size, we conducted a series of
experiments exploring how this parameter affected the dis-
tribution of classification accuracy when using the testing
dataset. Map sizes were varied from 5 × 5, in increments of 5,
through to maps of 100 × 100, with training limited to 10
presentations of the training set. Significantly, because a map
is initialised with a randomly-seeded set of model vectors,
each experiment with a particular size was repeated 100
times and was carried out in order to determine the distribu-
tion of results, with the peak of the distribution taken as the
optimum size.

The plot showing the relationship between the distribu-
tion of correct sample classification versus lattice size is given
in Fig. 4. Map size is plotted against the percentage of correct
sample classification, with the frequency axis showing the
number of times the map size achieved the level of accuracy
out of the 100 runs. This clearly shows a correspondence
between map size and a higher frequency of correct matches
for map sizes between 50 and 100 (top left corner). The
maximum accuracy achieved was 90% on an 80 × 80 map
size. This is an improvement of 3.48% over the best performing
algorithm in the previous phase. 89% was achieved on map
sizes of 60, 65, 70 and 75. The 50 × 50 map achieved 88%.
Thus, as a standalone classification method using machine
activity data as input, the SOFM approach has improved on
the Random Forest approach based on, we would posit, its
ability to generalize beyond discrete rules and support “fuzzy”
neighbourhood boundaries for similar behaviour. This allows

3 Assuming examples of good data include vectors similar to
benign samples labelled as bad data.

Table 2 – Summary of train/test classification results.

Algorithm % Correct Precision Recall F-Measure

Random Forest 86.52 0.867 0.865 0.865
BayesNet 77.70 0.791 0.777 0.775
MLP 79.40 0.798 0.794 0.794
SVM 68.08 0.683 0.681 0.679
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the model to distinguish between known malicious and trusted
machine activity footprints during training and subse-
quently map unseen and different but similar behaviour onto
a regional cluster.

4.3. Using SOFM output to produce a probabilistic model
for classification

Given the success of the SOFM as a standalone classifier, and
our assumption that this improvement over the state of the
art was due to the ability to capture regions of behaviour, the
final phase of our experimentation was to take the output of
the SOFM as a new feature set. For maximum accuracy we could
have used the 80 × 80 map for this, but given the difference
was only 2% we chose to use the 50 × 50 map to reduce com-
putational processing time for training. With the number of

new samples emerging daily training time is an important con-
sideration given that an ideal scenario would be to re-train the
model frequently to include new samples of malware – much
in the way signature-based anti-virus would update. Table 3
shows that the 50 × 50 map was more than 37% faster to train
than the 80 × 80 map.

In this experiment we pushed each sample onto the SOFM
and instead of the classification result we recorded the BMU
– a 2D representation of the node onto which the feature set
was closest in terms of Euclidean distance – effectively an x-y
coordinate on a 2D map. This produced a new feature vector
of up to 300 x-y coordinates for each sample which were sub-
sequently used to train and test an ensemble classifier
composed of a Logistic Regression module to transform the fea-
tures into a binary classification. This forms an end-to-end
workflow from sample, to Sandbox, to SOFM, to Logistic

Fig. 3 – Testing the SOFMs ability to classify labelled input vectors, and accumulating results with a counter.
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Fig. 4 – Distribution of correct matches vs map size.
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Regression and classification results. We refer to this work-
flow as the Malware Operational Plot Review, or MOPR.The same
training and testing datasets were used to evaluate the
performance of MOPR in comparison to the existing bench-
mark results, and the results are shown in Table 4.

The results show that using the SOFM with two 50 × 50 maps
as a pre-processing phase, where the results are then used an
input to an additional classifier improves the classification per-
formance by an additional 3.76% over the SOFM alone and by
7.24% over the best performing method currently used in the
state of the art literature when applied to continuous machine
activity data. Our explanation for this improvement is that,
while the SOFM improved over the Random Forest as a stand-
alone classifier, this was based on a majority vote decision
resulting from the number of times the “Good” and “Bad” maps
“won” the BMU for each sample.This approach does not enable

us to control for differences in statistical co-efficient likely to
be evident to a Logistic Regression model when making a binary
classification decision. That is, not all BMUs are equal and a
count-measure does not control for this.

4.4. Visualizing activity using SOFM

An added advantage of SOFM is the ability to represent BMU
activation frequencies as heat maps on a 2D visualization.
Fig. 5 shows the malicious and trusted system behaviour plotted
onto two SOFMs. The circles on the maps indicate regions of
high activation, denoted by brighter colour within each cell
(one cell = one BMU). The brighter the cell, the more it is ac-
tivated during the training phase. Thus, when mapping new
activity from an unseen sample onto these maps the BMUs
emerging in the brighter regions can be used for automated
classification (as they were in the standalone SOFM classifi-
cation task), but also have utility for inference by human
analysts – for instance Security Operations Centre analysts
who need to act on the result of machine classification. This
has significant implications for practical security applica-
tions. If an alert is raised through automated classification of
machine behaviour the visualization can be used to add further
weight to the confidence in the classification of the sample.
For instance, if the BMUs activated are mostly in the “bad”
map, and in a high activation region, the confidence that this
is correctly identified as malware can be higher than if the
BMUs are split between the maps and/or in areas of low ac-
tivation. This also enables human feedback to be integrated
in future to be able to improve the classification model through
human-in-the-loop confirmation or rebuttal of the auto-
mated classification output.

5. Conclusions

Cyber attacks are becoming increasingly complex with obfus-
cation of network traffic and system level interactions in recent

Table 3 – SOFM performance vs. train/test time.

Map Size Max %
Correct

Frequency Train
Time

Test
Time

50 88 21 45m7.846s 3m49.715s
55 88 22 57 m24.167s 4m39.516s
60 89 17 67m30.578s 5m31.670s
65 89 35 79m40.964s 6 m24.448s
70 89 17 93 m27.141s 7m19.671s
75 89 19 104m49.351s 8m13.109s
80 90 22 119m38.442s 9 m22.653s

Table 4 – Summary of train/test classification results.

Algorithm % Correct Precision Recall F-Measure

MOPR 93.76 0.946 0.930 0.938
Random Forest 86.52 0.867 0.865 0.865
BayesNet 77.70 0.791 0.777 0.775
MLP 79.40 0.798 0.794 0.794
SVM 68.08 0.683 0.681 0.679

Fig. 5 – Machine activity mapped onto SOFM.
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APTs, and polymorphic malware changing the measurable
behaviour of the executable. We aimed to use machine data
to classify malware using data that is presently more diffi-
cult to obfuscate – system level behaviour such as CPU, RAM,
process data and network bytes/packet count. We built machine
classifiers using state of the art methods from the extant lit-
erature as a baseline, with data that is continuous and
represents behaviour on the system without depending on
precise system level operations.

We then implemented a two-map SOFM with the aim of en-
abling ’fuzzy boundaries’ to be captured around system
behaviour and the hypothesis that this method would improve
classification accuracy over the state of the art methods. The
’fuzzy boundaries’ enable us to map new samples onto exist-
ing maps and determine that the behaviour may be different
but similar enough to previously observed behaviour to label
it as malicious - that is, to better generalize between samples
over time. Essentially what we have developed are represen-
tations of behavioural ‘DNA’ in a malicious or trusted context
that provide a model to which potentially malicious executables
can be compared for similarity - introducing a new way of think-
ing about malicious behaviour modeling. We found a 3.45%
increase in classification performance using an unseen testing
dataset.

We also investigated the impact on classifier performance
when using the unseen test dataset versus a k-fold cross
validation method, which is frequently used in malware
classification research. The rationale for this was to deter-
mine whether system behaviour that was not exposed to
the classification model during the training phase would
evade classification during testing. K-fold cross validation of
course leaves a sample out during training, but having a
separate dataset of samples allowed us to test beyond the
holdout approach. It is effectively a simulation of polymor-
phic malware or hand-crafted malware behaviour, where the
interaction with the system on which it is run leaves a
different footprint to previous samples. We found that there
was a significant drop in performance when the model was
exposed to an unseen dataset with an equal balance between
classes.

Finally we combined the SOFM with an ensemble classi-
fier based around a Logistic Regression model and used the Best
Matching Unit output from the SOFM – which represents “fuzzy
neighbourhoods” of system behaviour – as features, in place
of the continuous machine activity data used in the previous
experiments. We saw an increase of classifier performance of
between 7.24% and 24.68% over the state of the art when using
this novel approach to malware classification. The findings
suggest that the neural-type model for learning, combined with
an ability to provide flexible classification boundaries using the
SOFM shows promise as a method for the detection of APTs
and polymorphic malware where the activity carried out during
the attack may vary between samples.

Future work will include increasing samples size and
granularity of data to determine if other models can perform
better with increased behavioural context through more
fine-grained data. We will also look to try and model phases
of system behaviour with an aim to detect such attacks at an
early stage rather than waiting for full execution of the
malicious payload.
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