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ABSTRACT: MoO3 and WO3 were supported on γ-Al2O3 and SiO2 with 

nominal loadings of 10 wt % via wet impregnation. The catalysts were 

characterized using XRD, TPR, Pulse TPD, Raman, TEM, and BET 

surface area. The alumina supported catalysts were found to contain 

higher Brønsted acidity compared to those supported on silica. These 

catalysts were evaluated in the hydrogenolysis of glycerol in a continuous 

flow fixed bed reactor in a temperature range of 250−325 °C and a H2 

pressure of 60 bar. All catalysts were active, with activity increasing with 

temperature as well as Brønsted acidity. The selectivity to ethylene glycol 

and 1,2-propanediol decreased with increase in temperature. In parallel, 

the selectivity to lower alcohols such as methanol, ethanol, 2-propanol, 

and 1-propanol increased with temperature as the ethylene glycol and 1,2-

propanediol reacted further to these products due to C−C bond cleavage. 

The total selectivity to  
lower alcohols was 34.6, 64.8, 70.6, and 54.6% over Mo/Al2O3, Mo/SiO2, W/Al2O3, and W/SiO2 respectively. The total 
selectivity to lower alcohols increased to 73.6, 72.8, 85.3, and 66.1% over Mo/Al2O3, Mo/SiO2, W/Al2O3, and W/SiO2 
respectively when the H2:glycerol ratio was doubled.  
KEYWORDS: Supported catalysts, Molybdenum, Tungsten, Glycerol, Hydrogenolysis, Lower alcohols  

■ INTRODUCTION 
 
The expansion of the biodiesel industry has led to an 
oversupply of glycerol, the major byproduct of biodiesel 
production. Glycerol is thus a cheap, large-volume feedstock, 
and the need for new applications for it has risen. The 
production of lower alcohols is of industrial interest since 
ethanol is a renewable fuel and fuel additive, and methanol and 
1-propanol are used as solvents in the paint and cosmetic 

industries.
1
 1,2-Propanediol (1,2-PDO) and ethylene glycol 

(EG) which are also formed during this process have an 
important use as antifreeze liquids and additives in liquid 

detergent.
2−4

 One of the processes that has potential in 

obtaining these lower alcohols from glycerol is hydro-

genolysis.
5−9

 Platinum group metals are the most eff ective 

catalysts in hydrogenolysis;
10−18

 however, they are very 

expensive and can only be used in small amounts. Therefore, 
the use of metals such as molybdenum and tungsten could 
provide a cost-eff ective hydrogenolysis process.  

Glycerol hydrogenolysis over tungsten catalysts has received 

much attention over the past few years.
4,10,11,19−30

 Kurosaka et 

al.
19

 reported the use of supported WO3 catalysts doped with 2 wt 

% Pt for the conversion of glycerol to 1,3-propanediol (1,3-PDO). 

The Pt/WO3/ZrO2 catalyst gave the highest yield of the  

 
 
diol at 24%. Gong et al.

20
 showed that the use of a Pt/WO3/ 

TiO2/SiO2 catalyst could convert glycerol to 1,3-PDO in water 

medium, with a glycerol conversion of 15% and selectivity to the 

diol of 50.5%. Lui et al.
11

 developed a mesoporous WO3 

supported Pt catalyst which showed a conversion of 18% and a 

selectivity to 1,3-PDO of 39%. Zhu et al.
21

 developed a 

bifunctional catalyst, Pt−H4SiW12O40/ZrO2, which displayed 

good performance with a glycerol conversion of 85% and 

selectivity to 1-propanol and 1,3-PDO of 62 and 22% 

respectively. When the weight hourly space velocity (WHSV) was 

doubled under the same conditions of temperature and pressure, 

the conversion dropped to 24% and selectivity to 1-propanol and 

1,3-PDO was 22 and 48% respectively.
22

 Under the same 

conditions previously reported,
22

 Zhu et al.
23

 showed that the 

addition of alkaline metals such as Li, K, Rb, and Cs could tune 

the acidic property of the tungsten heteropolyacid and control the 

activity in glycerol hydrogenolysis, giving a selectivity as high as 

54% to 1,3-PDO with Li. Silica modified Pt/WOx/ZrO2 catalysts 

for the selective hydrogenolysis of  
 
 

  



 
glycerol to 1,3-PDO have also been reported.

28
 

Incorporation of SiO2 led to an increase in activity and 
selectivity to 1,3-PDO reaching a maximum of 60.8% when 

the SiO2 loading was 5 wt %.  
Supported molybdenum catalysts in the hydrogenolysis of 

glycerol have also been reported.
12,13,30,31

 Koso et al.
12

 reported 

a Rh-MoOx/SiO2 catalyst of hydrogen pressure at 8.0 MPa and a 
reaction temperature of 393 K, to give 1,3-PDO, 1,2-PDO, 1-
propanol, and 2-propanol, with the selectivity to 1,2-PDO being 

the highest at 41%. Liao et al.,
13

 on the other hand, used Mo as a 

modifier for Ru/SiO2 catalysts in the hydrogenolysis of glycerol. 

The reactions were carried out in a continuous flow fixed bed 
reactor using an ambient hydrogen pressure and a molar ratio of 

H2:glycerol of 185:1. Using Mo drastically reduced the activity 

due to the strong interaction between Mo and Ru which 
suppressed the activity of Ru. The yield to C3 products (acetol, 
1,2-PDO, and 1-propanol) increased from 11.8%, when using bare 

Ru/SiO2, to 23.6% when Mo was added. Mo catalysts have also 

been used in the hydrogenolysis of 4-(1-

naphthylmethyl)bibenzyl,
32

 n-butane,
33,34

 and tetrahy-drofurfuryl 

alcohol.
35

 Here we report supported Mo and W catalysts in the 

hydrogenolysis of glycerol and the eff ect of temperature and H2 
content on the conversion of glycerol and selectivities to 
monoalcohols under continuous flow conditions. 

■ EXPERIMENTAL SECTION  
Catalyst Preparation. The supported MoO3 and WO3 catalysts 

were prepared by impregnating the supports (γ-Al2O3 and SiO2, Alfa-

Aesar) with an aqueous solution of (NH4)6Mo7O24·4H2O and 

(NH4)6H2W12O40·xH2O, respectively, to obtain a nominal loading 

amount of 10 wt % MoO3 and 10 wt % WO3. After impregnation, the 
catalysts were dried at 110 °C for 12 h, followed by calcination in air 
at 550 °C for 8 h.  

Catalyst Characterization. The BET surface area and pore 
volume measurements were carried out using a Micrometrics Tristar 
II Surface area and Porosity Analyzer. Prior to analysis, samples were 

weighed and degassed at 200 °C overnight under constant flow of 
nitrogen gas. In order to determine metal loading on the support, 
inductively coupled plasma analysis was performed using a 
PerkinElmer Optical Emission Spectrometer Optima 5300 DV. Prior 
to analysis, samples were digested in acid and then diluted 
accordingly. Standards were prepared from 1000 ppm metal stock 
solutions purchased from Fluka. Powder X-ray diff raction (XRD) 

studies were conducted on a Bruker D8 Advance diff ractometer with 

Cu (Kα, λ = 1.5406 Å) as the radiation source.  
Temperature-programmed reduction (TPR) analyses were carried 

out using a Micromeritics Autochem 2920 chemisorption analyzer. 

Prior to reduction approximately 50 mg of the sample was placed in a 
U-shaped quartz tube. The sample was dried by heating at 5 °C/min 

under helium flow (50 mL/min) to 120 °C and kept at this temperature 

for 10 min. The sample was then cooled to room temperature and 

subsequently heated again at 10 °C/min under 10% H2/Ar flow (50 

mL/min) to 1000 °C and kept at this temperature for 10 min. The 

water formed during reduction was trapped using a dry ice/isopropyl 
alcohol bath. The amount of hydrogen consumed during reduction 

was measured with the TCD. Pulse chemisorption-TPD-MS studies 
were carried out on a Micromeritics Autochem 2920 chemisorption 
analyzer coupled with Cirrus Mass Spectrometer to study the 

Brønsted acid sites on the prepared catalysts. Approximately 50 mg of 
sample was placed in a quartz U-tube containing quartz wool, fitted 

with a thermocouple for continuous temperature measurements. The 
sample was activated first by heating to 550 °C at 10 °C/min in an 

inert helium environment and then cooling to 100 °C, the adsorption 

temperature. The activation of the samples was followed by pulse 
chemisorption. During this step, 30 injections of propylamine vapor 

were dosed onto the catalyst by means of an inert gas, helium, flowing 

through a 1 cm
3
 loop. The last part of the analysis involved a  

 
temperature-programmed desorption (TPD). At this step in the 

analysis, the mass spectrometer (MS) began scanning for propylene, 

the product of interest. Data were collected during a temperature ramp 

from 100 to 550 °C. The mass spectrometer is calibrated using a 

standard propylene (5%) in He gas. The total acidity is calculated by 

using a deconvolution of propylamine pulse area.  
Raman spectroscopy was carried out using an Advantage 532 series 

spectrometer (NIR Spectrometer) utilizing Nuspec software. The 
surface morphology of the catalysts was observed using a Zeiss Ultra 

plus Field Emission Gun microscope. The images were captured using 

SmartSEM software. Prior to SEM analysis, the samples were 

mounted on aluminum stubs using double-sided carbon tape and 
subsequently gold spluttered using the Polaron SC500 coating unit. 

Transmission electron microscopy (TEM) images were viewed using 

a Jeol JEM-1010 Electron Microscope. The images were captured and 

analyzed using iTEM software. Prior to analysis, the samples were 

sonicated in ethanol after which they were placed on a copper grid. 

XPS data was acquired on a Thermo-Fisher Scientific K-Alpha
+

 X-

ray photoelectron spectrometer, utilizing monochromatic Al Kα 

radiation operating at a power of 72 W (6 mA × 12 kV). High 
resolution scans were performed at a pass energy of 40 eV, with a 0.1 
eV step, while survey spectra were acquired at a pass energy of 150 

eV and a step size of 1 eV. Charge neutralization was achieved using 

a combination of low energy electrons and argon ions which gave a 

reproducible C(1s) binding energy of 284.8 eV for all samples.  
Catalytic Testing. Catalytic testing was carried out using a 

continuous flow fixed-bed reactor comprising of a reactor tube with a 

length of 250 mm and an internal diameter of 20 mm. The catalysts 
were pelletized and sieved to a mesh size range of 300−600 μm. A 
catalyst volume of 3 mL was mixed with an equal amount of 24-grit 
carborundum and loaded in the reactor tube. The GHSV of hydrogen 

was maintained at 1860 h−
1
 and the LHSV of glycerol at 10 h−

1
 for 

all reactions. Reactions were carried out between 250−325 °C at a 

hydrogen pressure of 60 bar. Prior to testing, the catalysts were 
reduced under hydrogen, Mo catalysts at 450 °C and W catalysts at 
550 °C, after which the reactor was cooled to operating temperatures 

where Mo and W were in the metallic state. The liquid products and 
unreacted glycerol were collected in a catchpot cooled to −10 °C and 
analyzed on a PerkinElmer Clarus 500 GC equipped with an FID and 
a PONA column. The gas samples were collected and analyzed for 
methane and carbon oxides on a PerkinElmer Clarus 400 GC 
equipped with a TCD. Mass balances were 100 ± 5% on a carbon 

basis. Conversion and product selectivities were reported with a ±2% 

error. Only trace amounts of “heavy” products were observed.
36 

■ RESULTS AND DISCUSSION  
Catalyst Characterization. Physical Properties. The 

textural and physical properties are shown in Table 1. When 

the metal oxide is impregnated onto the support, the surface 

areas and pore volumes decrease. This is due to the metal 

oxide covering the surface of the support as well as blocking 

the pores of the support, reducing nitrogen accessibility. The 

surface area of the supports decreased by approximately 

40−50% when the metal oxides were incorporated.  
 

Table 1. Physical and Textural Properties of the Catalysts  
 

metal 
content/wt %  

     

BET surface area/ pore volume/      

 catalyst Mo W m2 g‑1 cm3 g‑1 

 Al2O3    216 0.65 

 SiO2    155 0.66 

 Mo/Al2O3 9.54   105 0.34 

 Mo/SiO2 9.34   71 0.25 

 W/Al2O3  9.32  92 0.25 

 W/SiO2  9.21  63 0.20 

      

       



X-ray Diff raction. The X-ray diff ractograms of the 

catalysts Table 2. Summary of TPR Data of the MoO3 and WO3 

are shown in Figure 1, and the sharp peaks show that they are Catalysts         
              

       catalyst  peak 1/°C peak 2/°C peak 3/°C degree of reducibility/%  

       Mo/Al2O3 488 613 781  81.3  

       Mo/SiO2 450 641 701  69.8  

       W/Al2O3 586 837   79.4  

       W/SiO2 574 790 905  60.8  
           

       a temperature range of 650−800 °C and is assigned to the 

       reduction of MoO2 to molybdenum metal.
42

 For the catalyst 
       Mo/Al2O3, due to the strong and weak interactions with the 

       support, the reduction profile showed three peaks and the 
       reduction  of  strongly  bound  MoO3  occurred  at  higher 
       temperatures when compared to the weakly bound MoO3. 

       The first peak at 488 °C exhibits the reduction of loosely bound 
       MoO3  on alumina and the first reduction of MoO3  on γ- 

       alumina usually occurs in the range 360−560 °C.
43,44

  The 
       presence of loosely bound molybdenum oxides might be due to 

Figure 1. X-ray diff ractograms of (a) Mo/Al2O3, (b) Mo/SiO2, (c) W/ 
the preparation method of the catalysts.

40
 The second peak at 

613 °C can be assigned to the reduction of strongly bound 

Al2O3, and (d) W/SiO2.     MoO3  to MoO2, and the third peak can be assigned to the 

crystalline. The peaks observed correspond to Mo (JCPDS 42- further reduction of MoO2  to molybdenum metal. A similar 

pattern is also observed for MoO3  supported on silica. Mo/ 1120)
37

  and W (JCPDS  04-0806)
38

  formed  via in  situ 

reduction in the reactor. The characteristic peaks for Al2O3 
SiO2 also showed three peaks in the TPR profile, indicating that 

the reduction of molybdenum oxide also occurred in three were also observed with the characteristic peak for SiO2  at 

steps. The reduction of loosely bound MoO3 can be assigned to 
∼22° overlapping with the metal oxide peaks for both Mo and 

the peak at 450 °C. The reduction of MoO3 to MoO2 and the 
W. For the W catalysts there are some oxide phases present 

further reduction of MoO2  to molybdenum metal can be since tungsten is difficult to reduce.
39 

   

Temperature-Programmed Reduction. Figure 2 shows the 
observed from peaks at temperatures of 641 and 701 °C 

respectively.  The  reduction  of MoO3 supported on  silica 
TPR profiles of the catalysts, and a summary of the results with 

occurred at lower temperatures in comparison to the MoO3 
reduction temperatures and degree of reducibility is shown in 

supported on alumina. This could be due to the weaker 
Table 2. The TPR profile of Mo/Al2O3 exhibits three reduction 

interaction of MoO3 with silica compared to the interaction of 
peaks at temperatures of 488, 613, and 781 °C. In general, the MoO3  supported on alumina.

45
  Mo/Al2O3  and Mo/SiO2 

reduction of molybdenum species follows the pathway below as 
showed a degree of reducibility of 81% and 70% respectively. reported:

40,41       

MoO3 + H 2 → MoO2 + H2O 
   Thus, it can be concluded that the MoO3 in both the catalysts is 

 (1)  not totally reduced to molybdenum metal.    

MoO2 + H 2 → Mo 
0
 + 2H2O 

   In general, the reduction of WO3 follows the pathway shown 
 (2)  by eqs 3 and 4 which is similar to the reduction profile of 

       MoO :46,47       

Reaction 1, the reduction process of MoO3 to MoO2, occurs 3         

WO3 + H 2 → WO2 + H2O 
   

(3) 

 

over a temperature range of 450−650 °C. Reaction 2 occurs at     
                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. TPR profiles of (a) Mo/SiO2, (b) Mo/Al2O3, (c) W/SiO2, and (d) W/Al2O3 catalysts. 
  



WO2 + H 2 → W + 2H2O   (4)  Brønsted acidity due to the reducible WOx domains which are 

Reaction 3 is the reduction of WO3 to WO2 which occurs over acting as redox sites required for the formation of H
+
 species 

from H2, and this also contributes to the total acidity even at 

a temperature range of 400−600 °C. Reaction 4 occurs at a low loadings of tungsten.
10,53       

temperature range of 600−800 °C and is assigned to the 

Raman Spectroscopy. Figure S2 shows the Raman spectra 
reduction of WO2 to tungsten metal. Due to the interaction of of the Mo and W catalysts. The Mo catalysts showed a band at 

WO3 with silica, the reduction of WO3 to tungsten metal occurs ∼1000 cm
−1

  which is  assigned to the Mo  O stretching 
in three reduction steps as seen in the TPR profile. The first 

vibration mode due to polymolybdate species. The bands at 
peak at 574 °C is generally attributed to the reduction of 

∼820 and ∼680 cm
−1  

are due to crystalline MoO3  and also loosely bounded WO species on silica.
40

 The second peak at  
   3      

indicate that part of the Mo is not well dispersed on the 
790 °C can be assigned to the reduction of strongly bounded 

support.
54−57

 The band at ∼320 cm
−1

 for both the Mo catalysts 
WO3 to WO2, and the third peak at 905 °C can be assigned to is assigned to the Mo−O−Mo bending mode.

58
 For Mo/Al2O3, 

the further reduction of WO2 to tungsten metal.   the bands at ∼380 cm
−1

 are assigned to bending modes of the 

In contrast, the reduction of WO3 on the alumina exhibited terminal Mo  O bond.
44

  The W catalysts showed bands at 
only two  peaks.  Similar  observation  were also  made  by 

∼800 and ∼700 cm
−1

 which are characteristic of the stretching 
Vermaire and Berge, 

48 
who observed the reduction of WO3  

and bending vibrations of W−O−W respectively. These two 
supported on titania and alumina. This could be due to two 

bands are also characteristic of crystalline WO3. 59−61 For the       47,48     

reasons: (a) weak interaction of WO3 with alumina and (b) W/SiO2  catalyst, a band at ∼273 cm
−1

  is indicative of the 
presence of W−O−W species as observed in Raman (Figure 

deformation mode of W−O−W, and a band at ∼326 cm
−1

 is 
S2). 49 The weak interaction of WO3 with alumina could be due  

due to crystalline WO3. 
60,61        

to the supporting of acidic WO3 on the amphoteric alumina.
46  

Spectroscopy. Figure S3 shows the Thus, due to the weak interaction, the reduction of WO3 occurs X-ray Photoelectron 

W(4f) and Mo(3d) core-level spectra for each catalyst. For the in only two reduction steps. The reduction of W−O−W occurs 
tungsten based catalysts, there is a clear diff erence 

 

in the at lower temperatures compared to the reduction of O  W  

distribution of tungsten oxidation states for each support. For O species which exist when WO3  is supported on silica and 

the  alumina  supported  tungsten  catalyst,  the  spectrum  is zirconia.
46,49

 In the reduction profile of WO3/Al2O3, the first 

peak at 586 °C can be attributed to the reduction of weakly dominated by WO3 species (35.9 eV), although WO2 (32.9 eV) 

bound WO3 to WO2, and the peak at 837 °C can be attributed and WOx (34.4 eV) are also present, together with a very small 

to the reduction of WO2 to tungsten metal.
49

 WO3/Al2O3 and percentage of metallic W (30.6 eV). These species are also in 

WO3/SiO2  showed degrees of reducibility of 80% and 61% agreement with observations made in TPR. The exact oxidation 

state of the species at 34.4 eV is unclear; although some respectively. It can be concluded that the WO3  in both the 
researchers assign this as W(5+), we  consider it  to be 

catalysts is not reduced totally to tungsten metal. Similar 
 

substoichiometric WO3.
62 

For WO3/SiO2, similar oxidation 
observations were also made with the MoO3 catalysts which 

states are found, but clearly there is a greater concentration of could be due to the low concentration of the reductant (5% H2 
the lower oxidation states. 

       

in Ar) used for the reduction.            
    

For the supported molybdenum catalysts the spectra are Temperature-Programmed Desorption. The TPD profiles 
found to be very similar and comprise of predominantly MoO2 can be seen in Figure S1, and the total acidity determined is 

species (Mo(3d5/2) 229.0 eV), which has a complex line shape 
shown in Table 3. The TPD profiles of the catalysts revealed 

due to screened states,
63

 together with Mo(5+) and Mo(6+)          

Table 3. Total Brønsted Acidity of the Mo and W Catalysts oxides; a greater percentage of the Mo(5+) is found for the 
alumina supported catalyst.        

Determined from Isopropyl Amine TPD           

   
Catalytic Testing. Effect of Temperature. Figure 3 shows          

  catalyst  total Brønsted acidity/μmol g‑1  ff              
         the e ect of temperature on the conversion of glycerol for each 

  Mo/Al2O3   10.15    of the catalysts. The conversion was found to increase with 
  Mo/SiO2   1.79    temperature for all catalysts, as expected, and this is also in 
  W/Al2O3   10.31    agreement with the calculated turnover frequencies in Table S1. 
  W/SiO2   2.47    The catalysts supported on alumina showed similar conversion 
         

due  to  similar  Brønsted  acidity.  The  alumina  supported          

the existence of weak (<300 °C) and strong acidic sites (>300 
catalysts  also  showed  higher  conversion  than  the  silica 
supported catalysts, likely due to higher Brønsted acidity, 

°C) on all the catalysts. In the case of the Mo catalysts, the their higher surface area, as well as them having a higher degree 
Brønsted acidity is likely due to the presence of Mo which has of reducibility (Tables 1 and 2). Importantly, the catalysts were 
been reported to exhibit maximum acidity at a loading of ∼11 stable, showing unchanged conversion and selectivity, at each 
wt %.

50,51
  The Brønsted acidity is caused by the hydroxyl temperature for 24 h.           

groups formed on the molybdenum oxide monolayer domain Figures 4a−d show the eff ect of temperature on the product 
and Mo; Mo−OH or Mo−(OH)−Mo function as Brønsted selectivities over the diff erent catalysts. The selectivity towards 

acidic sites.
51       1,2-PDO  and  ethylene  glycol  (EG)  decreased,  while  the 

For the W catalysts, W/Al2O3 had a higher Brønsted acidity selectivity to lower alcohols increased with increasing temper- 
than W/SiO2, and similar observations were made by Mitran et ature. This suggests that the lower alcohols are formed via 

al.
52

  It has been reported that for W/SiO2  catalysts, SiO2 hydrogenolysis of 1,2-PDO and EG. In support of this, lower 
possesses minimal acidity and W is responsible for the acid sites alcohols were obtained when 1,2-PDO and EG were used as 
due to the hydroxyl groups that are formed by protonating the feed in hydrogenolysis over supported Ni catalysts.

64
  Similar 

bridging Si−O−W or terminal W−O bonds on the surface observations were made by Ueda and co-workers who found 

http://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.6b01675/suppl_file/sc6b01675_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.6b01675/suppl_file/sc6b01675_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.6b01675/suppl_file/sc6b01675_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.6b01675/suppl_file/sc6b01675_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.6b01675/suppl_file/sc6b01675_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.6b01675/suppl_file/sc6b01675_si_001.pdf


which are evident in Raman (Figure S2). W/Al2O3 had higher the  selectivity  of  1,2-PDO  to  decrease  with increasing    

http://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.6b01675/suppl_file/sc6b01675_si_001.pdf


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Conversion of glycerol with temperature over the 

diff erent catalysts. Reaction conditions: 60 wt % glycerol/H2O, 3 

mL catalyst bed, 60 bar H2.  

 
formation of EG in the hydrogenolysis of glycerol over a 

Pt-promoted Ni/γ-Al2O3 catalyst.
65 

 
Figure 5 shows the selectivity of the products over the 

catalysts at 325 °C. This temperature was chosen as it gave the 

 
highest conversion and selectivity to lower alcohols for all the 

catalysts studied. The catalysts showed a higher selectivity to 

1,2-PDO than EG and 1,3-PDO, due to higher Brønsted 

acidity which facilitates the dehydration step which leads to 

the formation of 1,2-PDO.
6,66,67

 Hydrogenolysis of glycerol 

occurs via acid-catalyzed dehydration to form intermediates 

(acetol and 3-hydroxypropaldehyde (3-HPA)) and subsequent 

hydro-genation to form propanediols (1,2-PDO and 1,3-PDO) 

on metal sites.
5−7

 It is well established that metal and acid 

sites, along with active hydrogen species, enhance glycerol 

hydro-genolysis. Besides acid strength, the nature of the acidic 

sites, i.e. Brønsted and Lewis acidic sites, play a predominant 

role in determining product formation. It is evident that 

Brønsted acid sites are responsible for 1,3-PDO formation, 

while Lewis acid sites allow formation of 1,2-PDO.
68 

These observations are based on a reaction mechanism 

proposed by Priya et al.
68

 In this mechanism, the secondary 

carbocation intermediate to 3-HPA is more stable than the 

primary carbocation to acetol. Therefore, 3-HPA formation is 

kinetically more favorable than acetol production, although 

thermodynamically less stable. This pathway involves the 

protonation and dehydration of the secondary hydroxyl group 

of adsorbed glycerol on the Brønsted acid sites of the support 

by interacting with bridging OH groups of the support. The 

alkoxy species formed as a result of dehydration desorb,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. a) Eff ect of temperature on product selectivity over Mo/Al2O3. Reaction conditions: 60 wt % glycerol/H2O, 3 mL catalyst bed, 60 bar 

H2. 

Other products: acetol, methane, ethane, propane, CO, CO2, unknowns. b) Eff ect of temperature on product selectivity over Mo/SiO2. Reaction 

conditions: 60 wt % glycerol/H2O, 3 mL catalyst bed, 60 bar H2. Other products: acetol, methane, ethane, propane, CO, CO2, unknowns. c) Eff ect 

of temperature on product selectivity over W/Al2O3. Reaction conditions: 60 wt % glycerol/H2O, 3 mL catalyst bed, 60 bar H2. Other products: 

acetol, methane, ethane, propane, CO, CO2, unknowns. d) Eff ect of temperature on product selectivity over W/SiO2. Reaction conditions: 60 wt % 

glycerol/H2O, 3 mL catalyst bed, 60 bar H2. Other products: acetol, methane, ethane, propane, CO, CO2, unknowns. 
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Figure 5. Conversion of glycerol and selectivity to products over the catalysts at 325 °C. Reaction conditions: 60 wt % glycerol/H2O, 3 mL catalyst 

bed, 60 bar H2. Other products: acetol, methane, ethane, propane, CO, CO2, unknowns.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. a) Eff ect of H2:glycerol ratio on conversion and product selectivity over Mo/Al2O3 at 325 °C. Reaction conditions: 60 wt % glycerol/H2O,  
3 mL catalyst bed, 60 bar H2. Other products: acetol, methane, ethane, propane, CO, CO2, unknowns. b) Eff ect of H2:glycerol ratio on conversion 

and product selectivity over Mo/SiO2 at 325 °C. Reaction conditions: 60 wt % glycerol/H2O, 3 mL catalyst bed, 60 bar H2. Other products: acetol, 

methane, ethane, propane, CO, CO2, unknowns. c) Eff ect of H2:glycerol ratio on conversion and product selectivity over W/Al2O3 at 325 °C. 

Reaction conditions: 60 wt % glycerol/H2O, 3 mL catalyst bed, 60 bar H2. Other products: acetol, methane, ethane, propane, CO, CO2, unknowns. 

d) Eff ect of H2:glycerol ratio on conversion and product selectivity over W/SiO2 at 325 °C. Reaction conditions: 60 wt % glycerol/H2O, 3 mL 

catalyst bed, 60 bar H2. Other products: acetol, methane, ethane, propane, CO, CO2, unknowns.  
 
followed by readsorption onto the support via the primary 

hydroxyl groups of this intermediate to generate 3-hydrox-

ypropene. Subsequently 3-HPA is formed via keto−enol 

tautomerization and undergoes quick hydrogenation on the 

active metal sites under hydrogen to yield 1,3-PDO. The fast 

 
hydrogenation of 3-HPA is important to prevent further 
dehydration of 3-HPA to produce acrolein. The higher 

selectivity to 1,2-PDO over Mo/Al2O3 might be related to 

this catalyst being relatively less active in converting this 
intermediate as compared to the other catalysts presented in 
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this study. The longest recorded performance of these catalysts 

was for 24 h at 325 °C, and there was no observable change in 

glycerol conversion and product distribution.  
The total selectivity to monoalcohols (methanol, ethanol, 2-

propanol, 1-propanol) was 34.6, 64.8, 70.6 and 54.6% over 

Mo/ Al2O3, Mo/SiO2, W/Al2O3, and W/SiO2 respectively. 

The selectivity to lower alcohols over Mo/Al2O3 was the 
lowest, likely due to the poor conversion of 1,2-PDO, which 
was the lowest among the catalysts. The selectivity to 1-

propanol over Mo/SiO2 at the highest temperature is consistent 

with results obtained by Shinmi et al.
31

 and Koso et al.,
12

 who 
found the highest 1-propanol selectivity, among the 

monoalcohols, over Rh−Mo/SiO2 catalysts. Under similar 
reaction conditions, a glycerol conversion of 96.1 and 99.9% 

over Ni/Al2O3 and Ni/ SiO2 respectively has been reported.
7
 

The total selectivity to monoalcohols was 54.5 and 68.5% over 

Ni/Al2O3 and Ni/SiO2 respectively. Of other base metal 
catalysts that have been reported, Cu catalysts have been 
shown to give a high selectivity to 1,2-PDO (>90%), while Co 
and Ni tend to form EG and ethanol due to their affinity for 

C−C bond cleavage.
69

 
−71

 At lower temperature and pressure, 
some supported W catalysts have been reported to be selective 

to 1,3-PDO.
28

 
,
 

72
 Zhu et al.

27
 more recently reported a 

glycerol conversion of 66.1% and a selectivity to 1,3-PDO as 
high as 66.1%.  

Effect of H2:Glycerol Ratio. Figures 6a−6d show the 

eff ect of the H2:glycerol ratio on the conversion and product 

selectivity over the supported Mo and W catalysts at 325 °C. 
An increase in hydrogen content led to an increase in the 
conversion over all catalysts, and this is also in agreement with 
the calculated turnover frequencies in Table S1. It also led to 
an increase in selectivity to the lower alcohols, 73.6, 72.8, 

85.3, and 66.1% over Mo/Al2O3, Mo/SiO2, W/Al2O3, and 

W/SiO2 respectively, when the H2:glycerol ratio was 2:1. The 

total lower alcohol selectivity obtained over W/Al2O3 was 
remarkable, and, to our knowledge, such high selectivity has 
not been reported previously. The selectivity to 1,2-PDO was 
found to decrease due to the subsequent formation of lower 
alcohols such as ethanol (6−23%) and 1-propanol (15−33%). 
Due to the affinity of Mo catalysts to C−C bond cleavage, the 
selectivity to EG over these catalysts increased due to bond 
cleavage of glycerol. The selectivity to methanol was also 
much higher over both Mo and W catalysts due to 
simultaneous C−C bond cleavage of both EG and ethanol. 

■ CONCLUSIONS 
 
In conclusion, the activity of the catalysts was related to their 
Brønsted acidity, where an increase in acidity led to an 
increase in the glycerol conversion to as high as 73% over 

W/Al2O3. At 325 °C, the highest selectivity to the lower 
alcohols was also obtained; 34.6, 64.8, 70.6, and 54.6% over 

Mo/Al2O3, Mo/ SiO2, W/Al2O3, and W/SiO2 respectively. 

Doubling the H2:glycerol ratio enhanced the activity of all 

catalysts, with it being almost double over Mo/SiO2. The total 
selectivity to lower alcohols also increased to 73.6, 72.8, and 

66.1% over Mo/ Al2O3, Mo/SiO2, and W/SiO2 respectively 

and a remarkable 85.3% over W/Al2O3. 
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