Hydrogenolysis of Glycerol to Monoalcohols over Supported Mo and W Catalysts

Mzamo L. Shozii, † Venkata D. B. C. Dasireddy, † Sooboo Singh, † Pheladi Mohlala, ‡ David J. Morgan, § and Holger B. Friedrich*†

†School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
‡Sasol South Africa (Pty) Ltd, Group Technology R&T, 1 Klasie Havenga Street, Sasolburg 7497, South Africa
§Cardiff Catalysis Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
* Supporting Information

ABSTRACT: MoO3 and WO3 were supported on γ-Al2O3 and SiO2 with nominal loadings of 10 wt % via wet impregnation. The catalysts were characterized using XRD, TPR, Pulse TPD, Raman, TEM, and BET surface area. The alumina supported catalysts were found to contain higher Brønsted acidity compared to those supported on silica. These catalysts were evaluated in the hydrogenolysis of glycerol in a continuous flow fixed bed reactor in a temperature range of 250–325 °C and a H2 pressure of 60 bar. All catalysts were active, with activity increasing with temperature as well as Brønsted acidity. The selectivity to ethylene glycol and 1,2-propanediol decreased with increase in temperature. In parallel, the selectivity to lower alcohols such as methanol, ethanol, 2-propanol, and 1-propanol increased with temperature as the ethylene glycol and 1,2-propanediol reacted further to these products due to C–C bond cleavage. The total selectivity to lower alcohols was 34.6, 64.8, 70.6, and 54.6% over Mo/Al2O3, Mo/SiO2, W/Al2O3, and W/SiO2 respectively. The total selectivity to lower alcohols increased to 73.6, 72.8, 85.3, and 66.1% over Mo/Al2O3, Mo/SiO2, W/Al2O3, and W/SiO2 respectively when the H2:glycerol ratio was doubled.

KEYWORDS: Supported catalysts, Molybdenum, Tungsten, Glycerol, Hydrogenolysis, Lower alcohols

INTRODUCTION

The expansion of the biodiesel industry has led to an oversupply of glycerol, the major byproduct of biodiesel production. Glycerol is thus a cheap, large-volume feedstock, and the need for new applications for it has risen. The production of lower alcohols is of industrial interest since ethanol is a renewable fuel and fuel additive, and methanol and 1-propanol are used as solvents in the paint and cosmetic industries. One of the processes that has potential in obtaining these lower alcohols from glycerol is hydrogenolysis. Platinum group metals are the most effective catalysts in hydrogenolysis; however, they are very expensive and can only be used in small amounts. Therefore, the use of metals such as molybdenum and tungsten could provide a cost-effective hydrogenolysis process.

Glycerol hydrogenolysis over tungsten catalysts has received much attention over the past few years. Kurosaka et al. reported the use of supported WO3 catalysts doped with 2 wt % Pt for the conversion of glycerol to 1,3-propanediol (1,3-PDO). The Pt/WO3/ZrO2 catalyst gave the highest yield of the diol at 24%. Gong et al. showed that the use of a Pt/WO3/TiO2/SiO2 catalyst could convert glycerol to 1,3-PDO in water medium, with a glycerol conversion of 15% and selectivity to the diol of 50.5%. Lui et al. developed a mesoporous WO3 supported Pt catalyst which showed a conversion of 18% and a selectivity to 1,3-PDO of 39%. Zhu et al. developed a bifunctional catalyst, Pt=H2SiW12O40/ZrO2, which displayed good performance with a glycerol conversion of 85% and selectivity to 1-propanol and 1,3-PDO of 62 and 22% respectively. When the weight hourly space velocity (WHSV) was doubled under the same conditions of temperature and pressure, the conversion dropped to 24% and selectivity to 1-propanol and 1,3-PDO was 22 and 48% respectively. Under the same conditions previously reported, Zhu et al. showed that the addition of alkaline metals such as Li, K, Rb, and Cs could tune the acidic property of the tungsten heteropolyacid and control the activity in glycerol hydrogenolysis, giving a selectivity as high as 54% to 1,3-PDO with Li. Silica modified Pt/WO3/ZrO2 catalysts for the selective hydrogenolysis of...
glycerol to 1,3-PDO have also been reported. Incorporation of SiO2 led to an increase in activity and selectivity to 1,3-PDO reaching a maximum of 60.8% when the SiO2 loading was 5 wt %.

Supported molybdenum catalysts in the hydrogenolysis of glycerol have also been reported.12,13,30,31 Kosco et al.12 reported a Rh-MoO3/SiO2 catalyst of hydrogen pressure at 8.0 MPa and a reaction temperature of 393 K, to give 1,3-PDO, 1,2-PDO, 1-propanol, and 2-propanol, with the selectivity to 1,2-PDO being the highest at 41%. Liao et al.13 on the other hand, used Mo as a modifier for Ru/SiO2 catalysts in the hydrogenolysis of glycerol. The reactions were carried out in a continuous flow fixed bed reactor using an ambient hydrogen pressure and a molar ratio of H2:glycerol of 185:1. Using Mo drastically reduced the activity due to the strong interaction between Mo and Ru which suppressed the activity of Ru. The yield to C3 products (acetol, 1,2-PDO, and 1-propanol, and 2-propanol, with the selectivity to 1,2-PDO being suppressed the activity of Ru. The yield to C3 products (acetol, 1,2-PDO, and 1-propanol, and 2-propanol, with the selectivity to 1,2-PDO being 23.6% when Mo was added. Mo catalysts have also been used in the hydrogenolysis of 4-(1-naphthylmethyl)bibenzyl, n-butane,32,33 and tetrahydrofurfuryl alcohol.35 Here we report supported Mo and W catalysts in the hydrogenolysis of glycerol and the effect of temperature and H2 content on the conversion of glycerol and selectivities to monoalcohols under continuous flow conditions.

Experimental Section

Catalyst Preparation. The supported MoO3 and WO3 catalysts were prepared by impregnating the supports (γ-Al2O3 and SiO2, Alfa-Aesar) with an aqueous solution of (NH4)6Mo7O24·4H2O and (NH4)6H2W12O40·xH2O, respectively, to obtain a nominal loading amount of 10 wt % MoO3 and 10 wt % WO3. After impregnation, the catalysts were dried at 110 °C for 12 h, followed by calcination in air at 550 °C for 8 h.

Catalyst Characterization. The BET surface area and pore volume measurements were carried out using a Micrometers Tristar II Surface area and Porosity Analyzer. Prior to analysis, samples were weighed and degassed at 200 °C overnight under constant flow of nitrogen gas. In order to determine metal loading on the support, inductively coupled plasma analysis was performed using a PerkinElmer Optical Emission Spectrometer Optima 5300 DV. Prior to analysis, samples were digested in acid and then diluted accordingly. Standards were prepared from 1000 ppm metal stock solutions purchased from Fluka. Powder X-ray diffraction (XRD) studies were conducted on a Bruker D8 Advance X-ray diffractometer with Cu (Kα, λ = 1.5406 Å) as the radiation source.

Temperature-programmed reduction (TPR) analyses were carried out using a Micromeritics Autochem 2920 chemisorption analyzer. Prior to reduction approximately 50 mg of the sample was placed in a U-shaped quartz tube. The sample was dried by heating at 5 °C/min under helium flow (50 mL/min) to 120 °C and kept at this temperature for 10 min. The sample was then cooled to room temperature and subsequently heated again at 10 °C/min under 10% H2/Ar flow (50 mL/min) to 1000 °C and kept at this temperature for 10 min. The water formed during reduction was trapped using a dry ice/isopropanol alcohol bath. The amount of hydrogen consumed during reduction was measured with the TCD. Pulse chemisorption-TPD studies were performed on a Micromeritics Autochem 2920 chemisorption analyzer coupled with a Micromeritics Autochem 2920 chemisorption analyzer coupled with Cirrus Mass Spectrometer to study the Brousted acid sites on the prepared catalysts. Approximately 50 mg of sample was placed in a quartz U-tube containing quartz wool, fitted with a thermocouple for continuous temperature measurements. The sample was activated first by heating to 550 °C at 10 °C/min in an inert helium environment and then cooling to 100 °C, the adsorption temperature. The activation of the samples was followed by pulse chemisorption. During this step, 30 injections of propylamine vapor were dosed onto the catalysts by means of an inert gas, helium, flowing through a 1 cm3 loop. The last part of the analysis involved a temperature-programmed desorption (TPD). At this step in the analysis, the mass spectrometer (MS) began scanning for propylene, the product of interest. Data were collected during a temperature ramp from 100 to 550 °C. The mass spectrometer is calibrated using a standard propylene (5%) in He gas. The total acidity is calculated using a deconvolution of propylamine pulse area.

Raman spectroscopy was carried out using a Horiba Fluorescence Spectrometer (NIR Spectrometer) utilizing Nuspec software. The surface morphology of the catalysts was observed using a Zeiss Ultra plus Field Emission Gun microscope. The images were captured using SmartSEM software. Prior to SEM analysis, the catalysts were mounted on aluminum stubs using double-sided carbon tape and subsequently gold sputtered using the Polaron SC500 coating unit. Transmission electron microscopy (TEM) images were viewed using a Jeol JEM-1010 Electron Microscope. The images were captured and analyzed using iTEM software. Prior to analysis, the samples were sonicated in ethanol after which they were placed on a copper grid.

XPS data was acquired on a Thermo-Fisher Scientific K-Alpha+ X-ray photoelectron spectrometer, utilizing monochromatic Al Kα radiation operating at a power of 72 W (6 mA × 12 kV). High resolution scans were performed at a pass energy of 40 eV, with a 0.1 eV step, while survey spectra were acquired at a pass energy of 150 eV and a step size of 1 eV. Charge neutralization was achieved using a combination of low energy electrons and argon ions which gave a reproducible C(1s) binding energy of 284.8 eV for all samples.

Catalytic Testing. Catalytic testing was carried out using a continuous flow fixed-bed reactor comprising of a reactor tube with a length of 250 mm and an internal diameter of 20 mm. The catalysts were pelletized and sieved to a mesh size range of 300–600 µm. A catalyst volume of 3 mL was mixed with an equal amount of 24-grit carborundum and loaded in the reactor tube. The GHSV of hydrogen was maintained at 1860 h⁻¹ and the LHSV of glycerol at 10 h⁻¹ for all reactions. Reactions were carried out between 250–325 °C at a hydrogen pressure of 60 bar. Prior to testing, the catalysts were reduced under hydrogen, Mo catalysts at 450 °C and W catalysts at 550 °C, after which the reactor was cooled to operating temperatures where Mo and W were in the metallic state. The liquid products and unreacted glycerol were collected in a catchpot cooled to −10 °C and analyzed on a PerkinElmer Clarus 680 gas chromatograph equipped with a PONA column. The gas samples were collected and analyzed for methane and carbon oxides on a PerkinElmer Clarus 680 gas chromatograph equipped with a PONA column. The gas samples were collected and analyzed for methane and carbon oxides on a PerkinElmer Clarus 400 GC equipped with a TCD. Mass balances were 100 ± 5% on a carbon basis. Conversion and product selectivities were reported with a ±2% error. Only trace amounts of “heavy” products were observed.

Results and Discussion

Catalyst Characterization. Physical Properties. The textural and physical properties are shown in Table 1. When the metal oxide is impregnated onto the support, the surface areas and pore volumes decrease. This is due to the metal oxide covering the surface of the support as well as blocking the pores of the support, reducing nitrogen accessibility. The surface area of the supports decreased by approximately 40–50% when the metal oxides were incorporated.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Mo wt %</th>
<th>W wt %</th>
<th>BET surface area/ cm² g⁻¹</th>
<th>Pore volume/ cm³ g⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>9.32</td>
<td>105</td>
<td>216</td>
<td>0.25</td>
</tr>
<tr>
<td>SiO₂</td>
<td>9.34</td>
<td>105</td>
<td>155</td>
<td>0.66</td>
</tr>
<tr>
<td>Mo/Al₂O₃</td>
<td>9.54</td>
<td></td>
<td>105</td>
<td>0.34</td>
</tr>
<tr>
<td>Mo/SiO₂</td>
<td>9.34</td>
<td>71</td>
<td>155</td>
<td>0.66</td>
</tr>
<tr>
<td>W/Al₂O₃</td>
<td>9.32</td>
<td></td>
<td>105</td>
<td>0.25</td>
</tr>
<tr>
<td>W/SiO₂</td>
<td>9.21</td>
<td>63</td>
<td>105</td>
<td>0.20</td>
</tr>
</tbody>
</table>
X-ray Diffraction. The X-ray diffraction patterns of the catalysts are shown in Figure 1, and the sharp peaks show that they are crystalline. The peaks observed correspond to Mo (JCPDS 42-1120) and W (JCPDS 04-0806) formed via in situ reduction in the reactor. The characteristic peaks for Al2O3 were also observed with the characteristic peak for SiO2 at ~22° overlapping with the metal oxide peaks for both Mo and W. For the W catalysts there are some oxide phases present since tungsten is difficult to reduce.

Temperature-Programmed Reduction. Figure 2 shows the TPR profiles of the catalysts, and a summary of the results with reduction temperatures and degree of reducibility is shown in Table 2. The TPR profile of Mo/Al2O3 exhibits three reduction peaks at temperatures of 488, 613, and 781 °C. In general, the reduction of molybdenum species follows the pathway below as reported:

\[
\begin{align*}
\text{MoO}_3 + H_2 & \rightarrow \text{MoO}_2 + H_2O \\
\text{MoO}_2 + H_2 & \rightarrow \text{Mo}^{0} + 2H_2O
\end{align*}
\]

Reaction 1, the reduction process of MoO3 to MoO2, occurs over a temperature range of 450–650 °C. Reaction 2 occurs at a temperature range of 650–800 °C and is assigned to the reduction of MoO2 to molybdenum metal. For the catalyst Mo/Al2O3, due to the strong and weak interactions with the support, the reduction profile showed three peaks and the reduction of strongly bound MoO3 occurred at higher temperatures when compared to the weakly bound MoO3. The first peak at 488 °C exhibits the reduction of loosely bound MoO3 on alumina and the first reduction of MoO3 on γ-alumina usually occurs in the range 360–560 °C. The presence of loosely bound molybdenum oxides might be due to the preparation method of the catalysts. The second peak at 613 °C can be assigned to the reduction of strongly bound MoO3 to MoO2, and the third peak can be assigned to the further reduction of MoO2 to molybdenum metal. A similar pattern is also observed for MoO3 supported on silica. Mo/SiO2 also showed three peaks in the TPR profile, indicating that the reduction of molybdenum oxide also occurred in three steps. The reduction of loosely bound MoO3 can be assigned to the peak at 450 °C. The reduction of MoO3 to MoO2 and the further reduction of MoO2 to molybdenum metal can be observed from peaks at temperatures of 641 and 701 °C respectively. The reduction of MoO3 supported on silica occurred at lower temperatures in comparison to the MoO3 supported on alumina. This could be due to the weaker interaction of MoO3 with silica compared to the interaction of MoO3 supported on alumina. Mo/Al2O3 and Mo/SiO2 showed a degree of reducibility of 81% and 70% respectively. Thus, it can be concluded that the MoO3 in both the catalysts is not totally reduced to molybdenum metal.

In general, the reduction of WO3 follows the pathway shown by eqs 3 and 4 which is similar to the reduction profile of MoO3:

\[
\text{WO}_3 + H_2 \rightarrow \text{WO}_2 + H_2O
\]

Table 2. Summary of TPR Data of the MoO3 and WO3 Catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>peak 1/°C</th>
<th>peak 2/°C</th>
<th>peak 3/°C</th>
<th>degree of reducibility/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo/Al2O3</td>
<td>488</td>
<td>613</td>
<td>781</td>
<td>81.3</td>
</tr>
<tr>
<td>Mo/SiO2</td>
<td>450</td>
<td>641</td>
<td>701</td>
<td>69.8</td>
</tr>
<tr>
<td>W/Al2O3</td>
<td>586</td>
<td>837</td>
<td></td>
<td>79.4</td>
</tr>
<tr>
<td>W/SiO2</td>
<td>574</td>
<td>790</td>
<td>905</td>
<td>60.8</td>
</tr>
</tbody>
</table>

Figure 2. TPR profiles of (a) Mo/SiO2, (b) Mo/Al2O3, (c) W/SiO2, and (d) W/Al2O3 catalysts.
\[
\text{WO}_2 + \text{H}_2 \rightarrow \text{W} + 2\text{H}_2\text{O}
\]

Reaction 3 is the reduction of \(\text{WO}_3 \) to \(\text{WO}_2 \) which occurs over a temperature range of 400–600 °C. *Reaction 4* occurs at a temperature range of 600–800 °C and is assigned to the reduction of \(\text{WO}_2 \) to tungsten metal. Due to the interaction of \(\text{WO}_3 \) with silica, the reduction of \(\text{WO}_3 \) to tungsten metal occurs in three reduction steps as seen in the TPR profile. The first peak at 574 °C is generally attributed to the reduction of loosely bounded \(\text{WO}_3 \) species on silica.\(^{40,41}\) The second peak at 790 °C can be assigned to the reduction of strongly bounded \(\text{WO}_3 \) to \(\text{WO}_2 \), and the third peak at 905 °C can be assigned to the further reduction of \(\text{WO}_2 \) to tungsten metal.

In contrast, the reduction of \(\text{WO}_3 \) on the alumina exhibited only two peaks. Similar observation were also made by Vermaire and Berge,\(^{42,43}\) who observed the reduction of \(\text{WO}_3 \) supported on titania and alumina. This could be due to two reasons: (a) weak interaction of \(\text{WO}_3 \) with alumina and (b) presence of \(\text{W}^4+\text{O}^− \) species as observed in Raman (Figure S2).\(^{43,44}\) The weak interaction of \(\text{WO}_3 \) with alumina could be due to the supporting of acidic \(\text{WO}_3 \) on the amphoteric alumina.\(^{45,46}\) Thus, due to the weak interaction, the reduction of \(\text{WO}_3 \) occurs in only two reduction steps. The reduction of \(\text{W}^4+\text{O}^− \) occurs at lower temperatures compared to the reduction of \(\text{W}^5+\text{O}^− \) species which exist when \(\text{WO}_3 \) is supported on silica and zirconia.\(^{47,48}\) In the reduction profile of \(\text{WO}_3/\text{Al}_2\text{O}_3 \), the first peak at 586 °C can be attributed to the reduction of weakly bound \(\text{WO}_3 \) to \(\text{WO}_2 \), and the peak at 837 °C can be attributed to the reduction of \(\text{WO}_2 \) to tungsten metal.\(^{49}\) \(\text{WO}_3/\text{Al}_2\text{O}_3 \) and \(\text{WO}_3/\text{SiO}_2 \) showed degrees of reducibility of 80% and 61% respectively. It can be concluded that \(\text{WO}_3 \) in both the catalysts is not reduced totally to tungsten metal. Similar observations were also made with the \(\text{MoO}_3 \) catalysts which could be due to the low concentration of the reducible (5% \(\text{H}_2 \) in Ar) used for the reduction.

Temperature-Programmed Desorption. The TPD profiles can be seen in Figure S1, and the total acidity determined is shown in Table 3. The TPD profiles of the catalysts revealed the existence of weak (<300 °C) and strong acidic sites (>300 °C) on all the catalysts. In the case of the Mo catalysts, the Brønsted acidity is likely due to the presence of Mo which has been reported to exhibit maximum acidity at a loading of ∼11 wt%.\(^{50,51}\) The Brønsted acidity is caused by the hydroxyl groups formed on the molybdenum oxide monolayer domain and Mo; Mo–OH or Mo–(OH)–Mo function as Brønsted acidic sites.\(^{51}\)

For the W catalysts, \(\text{W}/\text{Al}_2\text{O}_3 \) had a higher Brønsted acidity than \(\text{W}/\text{SiO}_2 \), and similar observations were made by Mitran et al.\(^{52}\) It has been reported that for \(\text{W}/\text{SiO}_2 \) catalysts, \(\text{SiO}_2 \) possesses minimal acidity and W is responsible for the acidic sites due to the hydroxyl groups that are formed by protonating the bridging Si–O–W or terminal W–O bonds on the surface.

Raman Spectroscopy. Figure S2 shows the Raman spectra of the Mo and W catalysts. The Mo catalysts showed a band at ∼1000 cm\(^{-1}\) which is assigned to the \(\text{Mo}^5+\text{O}^− \) stretching vibration mode due to polymolybdate species. The bands at ∼820 and ∼680 cm\(^{-1}\) are due to crystalline \(\text{MoO}_3 \) and also indicate that part of the Mo is not well dispersed on the support.\(^{54–57}\) The band at ∼320 cm\(^{-1}\) for both the Mo catalysts is assigned to the \(\text{Mo}^6+\text{O}^− \) bending mode.\(^{58}\) For \(\text{Mo/Al}_2\text{O}_3 \), the bands at ∼380 cm\(^{-1}\) are assigned to bending modes of the terminal Mo–O bond.\(^{59}\) The W catalysts showed bands at ∼800 and ∼700 cm\(^{-1}\) which are characteristic of the stretching and bending vibrations of \(\text{W}^4+\text{O}^− \) respectively. These two bands are also characteristic of crystalline \(\text{WO}_3 \).\(^{59–61}\) For the \(\text{W}/\text{SiO}_2 \) catalyst, a band at ∼273 cm\(^{-1}\) is indicative of the deformation mode of \(\text{W}^4+\text{O}^− \), and a band at ∼326 cm\(^{-1}\) is due to crystalline \(\text{WO}_3 \).

X-ray Photoelectron Spectroscopy. Figure S3 shows the W(4f) and Mo(3d) core-level spectra for each catalyst. For the tungsten based catalysts, there is a clear difference in the distribution of tungsten oxidation states for each support. For the alumina supported tungsten catalyst, the spectrum is dominated by \(\text{WO}_3 \) species (35.9 eV), although \(\text{WO}_2 \) (32.9 eV) and \(\text{WO}_4 \) (34.4 eV) are also present, together with a very small percentage of metallic W (30.6 eV). These species are also in agreement with observations made in TPR. The exact oxidation state of the species at 34.4 eV is unclear; although some researchers assign this as \(\text{W}^5+ \), we consider it to be substoichiometric \(\text{WO}_3 \).\(^{62}\) For \(\text{W}/\text{SiO}_2 \), similar oxidation states are found, but clearly there is a greater concentration of the lower oxidation states.

For the supported molybdenum catalysts the spectra are found to be very similar and comprise of predominantly \(\text{MoO}_2 \) species (Mo(3d5/2) 229.0 eV), which has a complex line shape due to screened states,\(^{53,54}\) together with \(\text{Mo}(5+) \) and \(\text{Mo}(6+) \) oxides; a greater percentage of the \(\text{Mo}(5+) \) is found for the alumina supported catalyst.

Catalytic Testing. Effect of Temperature. Figure 3 shows the effect of temperature on the conversion of glycerol for each of the catalysts. The conversion was found to increase with temperature for all catalysts, as expected, and this is also in agreement with the calculated turnover frequencies in Table S1. The catalysts supported on alumina showed similar conversion due to similar Brønsted acidity. The alumina supported catalysts also showed higher conversion than the silica supported catalysts, likely due to higher Brønsted acidity, their higher surface area, as well as them having a higher degree of reducibility (Tables 1 and 2). Importantly, the catalysts were stable, showing unchanged conversion and selectivity, at each temperature for 24 h.

Figures 4a–d show the effect of temperature on the product selectivities over the different catalysts. The selectivity towards 1,2-PDO and ethylene glycol (EG) decreased, while the selectivity to lower alcohols increased with increasing temperature. This suggests that the lower alcohols are formed via hydrolysis of 1,2-PDO and EG. In support of this, lower alcohols were obtained when 1,2-PDO and EG were used as feed in hydrolysis over supported Ni catalysts.\(^{54}\) Similar observations were made by Ueda and co-workers who found

Table 3. Total Brønsted Acidity of the Mo and W Catalysts Determined from Isopropyl Amine TPD

<table>
<thead>
<tr>
<th>catalyst</th>
<th>total Brønsted acidity/µmol g(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo/Al(_2)O(_3)</td>
<td>10.15</td>
</tr>
<tr>
<td>Mo/SiO(_2)</td>
<td>1.79</td>
</tr>
<tr>
<td>W/Al(_2)O(_3)</td>
<td>10.31</td>
</tr>
<tr>
<td>W/SiO(_2)</td>
<td>2.47</td>
</tr>
</tbody>
</table>

The catalysts supported on alumina showed similar conversion due to similar Brønsted acidity. The alumina supported catalysts also showed higher conversion than the silica supported catalysts, likely due to higher Brønsted acidity, their higher surface area, as well as them having a higher degree of reducibility (Tables 1 and 2). Importantly, the catalysts were stable, showing unchanged conversion and selectivity, at each temperature for 24 h.

Figures 4a–d show the effect of temperature on the product selectivities over the different catalysts. The selectivity towards 1,2-PDO and ethylene glycol (EG) decreased, while the selectivity to lower alcohols increased with increasing temperature. This suggests that the lower alcohols are formed via hydrolysis of 1,2-PDO and EG. In support of this, lower alcohols were obtained when 1,2-PDO and EG were used as feed in hydrolysis over supported Ni catalysts.\(^{54}\) Similar observations were made by Ueda and co-workers who found
which are evident in Raman (Figure S2). W/Al2O3 had higher the selectivity of 1,2-PDO to decrease with increasing
formation of EG in the hydrogenolysis of glycerol over a Pt-promoted Ni/γ-Al₂O₃ catalyst.⁶⁵

Figure 5 shows the selectivity of the products over the catalysts at 325 °C. This temperature was chosen as it gave the highest conversion and selectivity to lower alcohols for all the catalysts studied. The catalysts showed a higher selectivity to 1,2-PDO than EG and 1,3-PDO, due to higher Brønsted acidity which facilitates the dehydration step which leads to the formation of 1,2-PDO.⁶⁶,⁶⁶,⁶⁷ Hydrogenolysis of glycerol occurs via acid-catalyzed dehydration to form intermediates (acetol and 3-hydroxypropionaldehyde (3-HPA)) and subsequent hydrogenation to form propanediols (1,2-PDO and 1,3-PDO) on metal sites.⁵⁻⁷ It is well established that metal and acid sites, along with active hydrogen species, enhance glycerol hydrogenolysis. Besides acid strength, the nature of the acidic sites, i.e. Brønsted and Lewis acidic sites, play a predominant role in determining product formation. It is evident that Brønsted acid sites are responsible for 1,3-PDO formation, while Lewis acid sites allow formation of 1,2-PDO.⁶⁸

These observations are based on a reaction mechanism proposed by Priya et al.⁶⁸ In this mechanism, the secondary carbocation intermediate to 3-HPA is more stable than the primary carbocation to acetol. Therefore, 3-HPA formation is kinetically more favorable than acetol production, although thermodynamically less stable. This pathway involves the protonation and dehydration of the secondary hydroxyl group of adsorbed glycerol on the Brønsted acid sites of the support by interacting with bridging OH groups of the support. The alkoxy species formed as a result of dehydration desorb,
followed by readsorption onto the support via the primary hydroxyl groups of this intermediate to generate 3-hydroxypropene. Subsequently 3-HPA is formed via keto-enol tautomerization and undergoes quick hydrogenation on the active metal sites under hydrogen to yield 1,3-PDO. The fast hydrogenation of 3-HPA is important to prevent further dehydration of 3-HPA to produce acrolein. The higher selectivity to 1,2-PDO over Mo/Al₂O₃ might be related to this catalyst being relatively less active in converting this intermediate as compared to the other catalysts presented in
The total selectivity to monoalcohols (methanol, ethanol, 2-propanol, 1-propanol) was 34.6, 64.8, 70.6 and 54.6% over Mo/Al2O3, Mo/SiO2, W/Al2O3, and W/SiO2 respectively. The selectivity to lower alcohols over Mo/Al2O3 was the lowest, likely due to the poor conversion of 1,2-PDO, which was the lowest among the catalysts. The selectivity to 1-propanol over Mo/SiO2 at the highest temperature is consistent with results obtained by Shinmi et al., who found the highest 1-propanol selectivity, among the monoalcohols, over Rh-Mo/SiO2 catalysts. Under similar reaction conditions, a glycerol conversion of 96.1 and 99.9% over Ni/Al2O3 and Ni/SiO2 respectively has been reported. The total selectivity to monoalcohols was 54.5 and 68.5% over Ni/Al2O3 and Ni/SiO2 respectively. Of other base metal catalysts that have been reported, Cu catalysts have been found the highest 1-propanol selectivity, among the monoalcohols such as ethanol (6−7)% and a remarkable 85.3% over W/Al2O3. Doubling the H2 content led to an increase in the glycerol conversion to as high as 73% over Mo/Al2O3, 1-propanol (15−73%) and 1-propanol (15−73%). Due to the affinity of Mo catalysts to C=C bond cleavage, the selectivity to EG over these catalysts increased due to bond cleavage of glycerol. The selectivity to methanol was also much higher over both Mo and W catalysts due to simultaneous C=C bond cleavage of both EG and ethanol.

Effect of H2:Glycerol Ratio. Figures 6a−6d show the effect of the H2:glycerol ratio on the conversion and product selectivity over the supported Mo and W catalysts at 325 °C. An increase in hydrogen content led to an increase in the conversion over all catalysts, and this is also in agreement with the calculated turnover frequencies in Table S1. It also led to an increase in selectivity to the lower alcohols, 73.6, 72.8, 85.3, and 66.1% over Mo/Al2O3, Mo/SiO2, W/Al2O3, and W/SiO2 respectively, when the H2:glycerol ratio was 2:1. The lower alcohol selectivity obtained over W/Al2O3 was remarkable, and, to our knowledge, such high selectivity has not been reported previously. The selectivity to 1,2-PDO was found to decrease due to the subsequent formation of lower alcohols such as ethanol (6−23%) and 1-propanol (15−33%). Due to the affinity of Mo catalysts to C=C bond cleavage, the selectivity to EG over these catalysts increased due to bond cleavage of glycerol. The selectivity to methanol was also much higher over both Mo and W catalysts due to simultaneous C=C bond cleavage of both EG and ethanol.

CONCLUSIONS

In conclusion, the activity of the catalysts was related to their Brønsted acidity, where an increase in acidity led to an increase in the glycerol conversion to as high as 73% over W/Al2O3. At 325 °C, the highest selectivity to the lower alcohols was also obtained; 34.6, 64.8, 70.6, and 54.6% over Mo/Al2O3, Mo/ SiO2, W/Al2O3, and W/SiO2 respectively. Doubling the H2:glycerol ratio enhanced the activity of all catalysts, with it being almost double over Mo/SiO2. The total selectivity to lower alcohols also increased to 73.6, 72.8, and 66.1% over Mo/Al2O3, Mo/SiO2, and W/SiO2 respectively and a remarkable 85.3% over W/Al2O3.

ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsusschemeng.6b01675.
(71) Hirunsit, P.; Luadthong, C.; Faungnwakij, K. Effect of alumina hydroxylation on glycerol hydrogenolysis to 1,2-propanediol over Cu/