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Summary 

Age-related macular degeneration (AMD) is the leading cause of visual 

impairment in the developed world. Whilst the pathogenesis is complex and not 

fully understood, changes to the choroidal vasculature in AMD have been 

demonstrated using histology. Advances in imaging technology, particularly 

long-wavelength optical coherence tomography (OCT), allow in vivo visualisation 

and investigation of this structure. The aim of this work is to determine whether 

changes to the choroidal vasculature are detectable in AMD using in vivo imaging. 

This was achieved through the evaluation of parameters for quantifying the 

structure, and the application of a machine learning approach to automated 

disease severity classification, based on choroidal appearance.  

 Participants with early AMD (n=25), neovascular AMD (nAMD; n=25), and 

healthy controls (n=25) underwent imaging with a non-commercial long-

wavelength (λc=1040 nm) OCT device. Subfoveal choroidal thickness, choroidal 

area, and luminal area were significantly lower in the nAMD group than the 

healthy and early AMD groups, whilst vessel ratio was significantly greater 

(P<0.05 in all cases). There was no significant difference in visible vessel 

diameter, choroidal vascularity index, luminal area ratio, or luminal perimeter 

ratio between the groups. No significant differences were found between the 

healthy and early AMD groups for any of the eight vascular parameters assessed.  

Classification of the disease groups based on choroidal OCT images was 

demonstrated using machine learning techniques. Textural features within the 

images were extracted using Gabor filters, and K-nearest neighbour, support 

vector machine, and random forest classifiers were assessed for this 

classification task. Textural changes were most pronounced in late-stage disease, 

although attribution to pathology or pharmacological intervention (anti-VEGF 

treatment) was not possible. Changes were also discernible in the early AMD 

group, suggesting sensitivity of this approach to detecting vascular involvement 

in early disease.  
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 In conclusion, structural changes to the choroidal vasculature in AMD are 

detectable in vivo using OCT imaging, demonstrated with both manual and 

automated analysis techniques. Whilst changes were most prominent in late-

stage disease, subtle structural changes in early AMD were identified with 

texture analysis, warranting further investigation to improve our understanding 

of choroidal involvement in the pathogenesis of early AMD. 
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1 Introduction 

1.1 Outline  

This thesis describes a series of studies designed to detect structural changes 

in the choroidal vasculature of patients with age-related macular degeneration 

(AMD), using in vivo imaging. AMD is the leading cause of visual impairment in the 

developed world, and has been estimated to affect 8.7% of people aged 45-85 (Wong 

et al. 2014). It is generally experienced as visual distortion and a progressive loss of 

central vision, causing difficulties with simple daily tasks such as reading, face 

recognition, and ability to drive. This often results in loss of independence, and 

feelings of isolation, with up to 45% of people with AMD showing clinical signs of 

depression (Dawson et al. 2014). With increasing life expectancy, the prevalence of 

AMD is predicted to rise, reaching 196 million people worldwide in 2020, and 288 

million by 2040 (Wong et al. 2014). Treatment is currently only available for the wet 

sub-type of AMD (accounting for ~10% of cases), in the form of intravitreal anti-

VEGF injections. The vision loss associated with dry AMD is irreversible, and is 

typically managed by provision of visual aids through low vision services. This lack 

of early intervention, coupled with the relatively high cost of pharmacological 

therapy (~£550-£815 per injection; British Medical Association 2017), imposes a 

considerable economic burden on healthcare services.  

Although the underlying pathogenesis of AMD is not yet fully understood, it is 

known that changes to the choroidal blood supply contributes to the retinal 

degeneration seen in AMD (Zarbin 2004). Traditionally, histological techniques 

have been used to identify these changes ex vivo, but advances in imaging technology 

increasingly allows in vivo visualisation of this structure. In particular, optical 

coherence tomography (OCT) imaging now provides a means for fast, non-invasive 

imaging of the posterior eye, and is becoming increasingly prevalent in both primary 

and secondary care. Although this technology is primarily used for retinal imaging, 

it has recently been optimised for choroidal imaging (Ferrara et al. 2016). A number 

of parameters for quantifying the choroidal structure have been described, 

including choroidal thickness, and vessel diameter. However, these parameters are 
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not yet used in clinical assessment. Development and optimisation of such 

parameters may provide novel methods of early diagnosis or monitoring of AMD.  

Machine learning is a contemporary and increasingly popular approach to 

complex image analysis problems, including medical image analysis and computer 

aided diagnosis (Wernick et al. 2010; Alpaydin 2014; de Bruijne 2016). There are 

two main aspects to this approach; feature extraction, and prediction. For instance, 

structural or textural features may be extracted from an OCT image, and algorithms 

are trained to make predictions from these features, such as disease classification. 

To date, this approach has not been applied to automated disease classification of 

AMD severity, using choroidal OCT images. Accurate classification of disease status 

using this method would support the hypothesis that the choroid has a significant 

role in AMD pathogenesis, and that these structural changes are detectable using 

OCT imaging. It would also confirm that machine learning is a feasible approach for 

assessing structural change to the choroid in AMD.  

This thesis initially reviews the current literature regarding physiological and 

pathological variations in the choroid, the current understanding of AMD 

pathogenesis (particularly choroidal involvement), application of OCT to choroidal 

imaging, and image analysis techniques. The following chapters describe the 

development of protocols for image acquisition, processing, and analysis. Previously 

described methods for quantifying the choroid are evaluated and assessed for 

repeatability, as well as the application of machine learning techniques to the 

classification of AMD from choroidal OCT images. The results from this automated 

approach are discussed in relation to potential clinical application of choroidal 

investigation in AMD, and other pathologies involving the choroid.  

 The principle aim of the work described in this thesis is to determine 

whether structural changes to the choroidal vasculature in AMD are detectable 

using in vivo OCT imaging.  

To achieve this, three supplementary aims are as follows:  

1) To optimise protocols for image acquisition and processing for enhanced 

visualisation of the choroidal vasculature.  

2) To evaluate parameters describing the choroidal vasculature, including 

assessment of inter-session repeatability.  
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3) To explore the feasibility of applying machine learning techniques to 

automated classification of AMD by disease severity, based on choroidal 

appearance.  

1.2 The healthy eye 

Before considering the pathology, it is important to have an understanding of 

the basic structural and functional properties of the tissue or structure in question. 

This section provides an overview of the principle structures implicated in the 

pathophysiology of AMD (anterior to posterior); the retina, retinal pigment 

epithelium (RPE), Bruch’s membrane, and the choroid. The typical physiological 

ageing changes for each structure have also been outlined.   

1.2.1 Retina 

When viewed histologically, the retina can be divided into a number of 

distinct layers, as seen in Figure 1.1. These layers are representative of the highly 

organised cellular structure of the retina, with each comprising a number of specific 

cell types. The ultimate purpose of the retina is the absorption of light and the 

Figure 1.1 Light microscope image of a vertical section through the human retina, showing the 
distinct layers, and the types of retinal cell. The vitreous is adjacent to the ILM, and the RPE 
neighbours the photoreceptors. OLM = outer limiting membrane; ONL = outer nuclear layer; 
OPL = outer plexiform layer; INL = inner nuclear layer; IPL = inner plexiform layer; GCL =
ganglion cell layer; ILM = inner limiting membrane. Image from Kolb (2014).
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conversion, through a process known as phototransduction, into a neural signal for 

transmission to the brain (via the optic nerve). In AMD, it is primarily the outer 

retina containing the light-sensitive photoreceptors that is affected, with other 

structures becoming increasingly disrupted with disease progression.  

1.2.2 Macula 

The macula is the region of the retina centred on the fovea, and is responsible 

for high acuity vision. Anatomically, the macula is defined as the region of retina in 

which the ganglion cell layer is more than one cell in thickness. This has an 

approximate diameter of 5.5 mm (Hogan et al. 1971). For simplicity, clinical grading 

systems generally define the macula as a circle of 6 mm diameter, centred on the 

foveal pit (Bird et al. 1995; AREDS 2001a; Figure 1.2). This corresponds to 

approximately the central 20° of visual field. The macula is surrounded by the 

vascular arcades branching from the optic nerve head, but the central 500 µm of the 

fovea is avascular, to allow for uninterrupted high acuity vision (Hendrickson 2005). 

A higher concentration of pigment in the macula gives it a darker appearance in 

retinal images than the surrounding retina (Snodderly et al. 1984a).  

Figure 1.2 Retinal photograph of a healthy right eye. The vascular arcades can be seen 
encircling the macula, which appears more pigmented than the rest of the retina. The overlaid 
grid is 6 mm in diameter, demonstrating the total size of the macular region by standard 
clinical definition (Bird et al. 1995; AREDS 2001a). Image acquired by L. Terry during conduct 
of this study. 
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There are two types of photoreceptor in the human retina; rods and cones 

(Figure 1.3). Rods provide monochromatic vision optimised for scotopic conditions. 

Cones are responsible for colour vision and high acuity vision, and hence are of high 

density at the macula. Both types of photoreceptor have an inner and outer segment. 

The outer segment contains a stack of membranous discs embedded with 

photopigments, which are formed at the base of the outer segment, and then migrate 

along its length before being shed at the apex and phagocytosed by the RPE (Strauss 

2005). The inner segment contains a high number of mitochondria and other sub-

cellular components required for energy production and maintenance of the cell.  

Photoreceptors require large amounts of energy to function, particularly in 

the dark when the rod cells are most active. In daylight, rod responses are 

suppressed, reducing total energy consumption by >75% (Okawa et al. 2008).  

Oxygen is required for this energy production process, hence the high oxygen 

demand of the outer retina, particularly under scotopic conditions (Lamb and Pugh 

2004). As the fovea is avascular, it receives this oxygen solely from the choroidal 

supply (through Bruch’s membrane and the RPE), clearly demonstrating the 

importance of choroidal circulation in maintaining high acuity vision.  

Figure 1.3 Schematic of the two types of photoreceptor, showing the inner and outer segments. 
The outer segments are surrounded by apical processes from the RPE (not shown). Image 
adapted from Dubuc (2014).
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1.2.3 Retinal pigment epithelium 

The RPE is a monolayer of pigmented hexagonal-shaped cells with a regular 

arrangement, located between Bruch’s membrane and the outer neural retina 

(photoreceptors). At the apical surface, long microvilli extend to surround the rod 

and cone cells, increasing the area of contact between the photoreceptors and the 

RPE. The cells of the RPE are bound together by tight junctions, forming part of the 

blood-retina barrier (Campbell and Humphries 2012).  

The RPE has numerous functions (as summarised in Figure 1.4), including 

the transportation of water, nutrients and ions from the choroid to the outer retina 

and sub-retinal space. The protein RPE65 found in RPE cells is required for the 

isomerisation of all-trans-retinal to 11-cis-retinal; an essential component of the 

visual cycle (Redmond et al. 1998). Furthermore, the highly pigmented RPE absorbs 

stray light not absorbed by photoreceptors, protecting the retina from photo-

oxidative damage (Strauss 2005). 

The RPE is also responsible for the phagocytosis of shed photoreceptor outer 

segments. However, the structure is susceptible to oxidative damage since these 

outer segment membranes have a high polyunsaturated fatty acid content, and are 

easily oxidised if not disposed of (Beatty et al. 2000). Incomplete digestion of these 

membranes is thought to result in a build-up of the pigment lipofuscin, which itself 

leaves the RPE prone to further oxidative damage (Margrain et al. 2004). The RPE is 

protected from this damage by light absorbing pigments including melanin, and 

Figure 1.4 A schematic summary of the functions of the RPE. Abbreviations include: OS = outer 
segments; MV = microvilli; PEDF = pigment epithelium derived factor; VEGF = vascular 
endothelial growth factor; Epithel = epithelial. Image from Strauss (2005).
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antioxidant enzymes such as catalase (Simó et al. 2010). Furthermore, the adjacent 

photoreceptors contain antioxidant carotenoids including lutein and zeaxanthin, 

believed to help minimise oxidative damage (Beatty et al. 2000; Strauss 2005).  

In addition, the RPE maintains the retina and adjacent structures by 

producing growth and other factors, including vascular endothelial growth factor 

(VEGF) and pigment epithelium derived factor (PEDF). These factors have pro- and 

anti-angiogenic properties respectively, and are essential for maintaining choroidal 

health and structure. However, these factors also have a pivotal role in the 

development of neovascular membranes in wet AMD (Bhutto et al. 2005; Section 

1.4.3).  

1.2.4 Bruch’s membrane

Bruch’s membrane is a thin (2-4 µm), acellular layer of extracellular matrix 

located between the RPE and the choroidal vessels. The membrane acts as a barrier, 

allowing metabolites and waste products to pass from the choroid to the outer 

retina and vice versa. It is structurally comparable to the renal glomerulus, providing 

a basis for commonality between aspects of retinal and kidney disease (Kim et al. 

1997; Weiner et al. 2011).  

1.2.4.1 Ageing changes 

With age, Bruch’s membrane becomes thicker for a number of reasons, 
including increased deposition of oxidised metabolic waste and cross-linking of 

collagen fibres (Ramrattan et al. 1994; Booij et al. 2010). Lipids and advanced 

glycation end-products, along with basal laminar and linear deposits have all been 

found to accumulate with age, and alter the permeability of the membrane (Guymer 

et al. 1998; Yamada et al. 2006; Booij et al. 2010). An increase in collagen cross-

linking has also been identified, as well as a reduced membrane permeability in aged 

eyes (Karwatowski et al. 1995; Guymer et al. 1998). Finally, a reduction in the 

integrity and flexibility of the elastic layer of Bruch’s membrane has been shown in 
early age-related disease (Loffler and Lee 1986; Chong et al. 2005). These ageing 

changes to Bruch’s membrane are thought to act as a barrier to the exchange of 

metabolites between the choroid and the RPE and outer retina (Guymer et al. 1998).  
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1.2.5 Choroid 

The choroid is a highly vascularised structure located between the RPE and 

sclera, and forms the uveal tract, along with the iris and ciliary body. It is comprised 

of three layers – the choriocapillaris; a dense capillary bed adjacent to Bruch’s 
membrane; and the Sattler and Haller layers, comprising medium and large blood 

vessels respectively, with the latter being adjacent to the sclera (Figure 1.5). The 

choriocapillaris is fed by (and drains into) these larger vessels. The choroid is 

supplied by the short posterior ciliary arteries (deriving from the ophthalmic 

artery), and drained by the vorticose veins into the ophthalmic veins (Snell and 

Lemp 1998).  

Advances in imaging technology (particularly OCT imaging, see Section 1.6.1) 

have facilitated investigation of the choroid in vivo. The healthy choroid has a 

reported mean subfoveal thickness ranging from 196 µm to 354 µm (Margolis and 

Spaide 2009; Ikuno et al. 2010; Rahman et al. 2011; Ding et al. 2011; Lee et al. 

2013c). This demonstrates the large variability in choroidal thickness between 

individuals. The choroid is thicker temporally than nasally, and superiorly than 

inferiorly (Ikuno et al. 2010; Tan et al. 2014). Variations in choroidal thickness due 

to several factors are discussed in more detail in Section 1.3.  

The choriocapillaris is comprised of small capillaries, typically ranging from 

~7-10 µm in diameter, measured with histology (Ramrattan et al. 1994; Spraul et al. 

Haller layer

Sattler layer

Figure 1.5 Schematic of the choroid and its surrounding structures, showing the distribution of 
the large and medium vessels as well as the choriocapillaris (not to scale). Image adapted 
from Remington (2005).
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1996). Reported mean diameter of the large choroidal vessels with in vivo OCT 

imaging ranges from 122.5 µm to 159.8 µm in young, healthy eyes (Yang et al. 2013; 

Bittencourt et al. 2014; Park and Oh 2014).  

Primarily, the vasculature of the choroid supplies metabolites to the outer 

retina and removes waste products from the retina; the capillaries are fenestrated 

to allow these molecules to pass through the vessel walls. Photoreceptors are highly 

metabolically active, and approximately 90% of the oxygen delivered to the 

photoreceptors is supplied by the choroidal circulation (Ahmed et al. 1993). In the 

macula, photoreceptors are densely packed to maximise high acuity vision, and 

there is no retinal vasculature. It has been hypothesised that this physiology makes 

the macula more susceptible to metabolic deprivation and hence age-related 

damage than the rest of the retina where a dual blood supply is present (Penfold et 

al. 2001; Provis et al. 2005).  

Another proposed function of the choroid is thermoregulation, facilitated by 

the very high blood flow, protecting the retina from damage in extreme 

temperatures (Parver 1991). In low temperatures, the choroid may act as a heat 

source, warming the retina, and in high temperatures, it may act as a heat sink, 

directing heat away from the retina. This also applies to the heat generated during 

exposure of the eye to bright light. However, this theory of thermoregulation 

provided by the choroid is not universally accepted (Nickla and Wallman 2010). The 

pigment within the choroid absorbs stray light within the eye not already absorbed 

by the photoreceptors or RPE, reducing intra-ocular scatter.  

It has also been suggested that the choroid plays a role in emmetropization, 

and has been shown to change in thickness to move the position of the chick retina 

made functionally myopic or hyperopic using lenses (Irving et al. 1992; Wildsoet 

and Wallman 1995). Following the removal of the defocussing lenses, the eye 

compensated in the opposite direction, returning to emmetropia (Wildsoet and 

Wallman 1995). In humans, optical defocus has been shown to interrupt the natural 

diurnal rhythm in choroidal thickness (see Section 1.3.6), suggesting the role of 

defocus (particularly hyperopic) in the development of myopia.  
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1.2.5.1 Ageing changes 

Ageing has been shown to affect the choroid in a number of ways. Advancing 

age increases capillary spacing, and reduces the number and diameter of vessels 

(Ramrattan et al. 1994). Doppler flowmetry has been used to identify a reduction in 

choroidal blood flow and choroidal volume with age (Riva et al. 1994). This 

disrupted supply of metabolites and removal of waste products may leave the retina 

susceptible to degenerative ageing changes, including hypoxia and build-up of 

metabolic waste products (see Section 1.4.3; Chakraborty et al. 2012; Chakraborty 

et al. 2013).  

 To conclude, the choroid plays an important role in maintaining the health of 

the outer retina and RPE. Changes to these structures are therefore likely to have a 

detrimental effect on retinal integrity, inhibiting retinal function, and resulting in a 

decrease in visual acuity. Ageing has been shown to alter the composition of both 

the choroidal vasculature and Bruch’s membrane, rendering the outer retina at risk 
of degenerative changes, particularly at the macula.  

1.3 Factors affecting choroidal structure  

Several factors have been shown to affect choroidal structure, both 

physiological and pathological (Table 1.1). It is unsurprising that a number of factors 

associated with the circulatory system manifest in the choroid, a highly vascular 

structure. In particular, age, smoking, and hypertension have been associated with 

an increased risk of both cardiovascular disease and AMD development 

(Chakravarthy et al. 2010).  

This section outlines the literature addressing detectable variations in 

choroidal structure, including physiological factors, and ocular and systemic 

pathology. It is important to account for these factors in the study of choroidal 

structure, so that relevant variables are controlled for in study design and data 

analysis, where possible. This ensures that any difference detected in the structure 

can be attributed to the variable being studied, rather than variation resulting from 

other confounding factors. Whilst choroidal thickness is the most common measure 

reported in the literature, other parameters that describe choroidal structure are 
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also discussed. All choroidal measurements discussed in this chapter were obtained 

from OCT images, unless otherwise stated.  

Table 1.1 Factors associated with choroidal thickness and/or structure. 

Physiological factors Pathological factors

Non-modifiable Modifiable

Age Caffeine intake Systemic hypertension

Sex Water intake Diabetes mellitus

Refractive error Alcohol intake Age-related macular degeneration

Axial eye length Smoking Central serous chorioretinopathy

Time of day Posterior uveitis

1.3.1 Age and sex 

Studies have shown a decrease in choroidal thickness with age (Nishida et al. 

2012; Wong et al. 2013; Jonas et al. 2014). Regression models have been developed 

to describe the relationship between these variables. Margolis and Spaide (2009), 

Ikuno et al. (2010), and Coscas et al. (2012) found choroidal thickness to decrease 

by 1.56 µm, 1.4 µm, and 1.95 µm per year of age respectively. Agawa et al. (2011) 

found a significant correlation between choroidal thickness and age in eyes with an 

axial length >25 mm (myopic eyes only). This is in agreement with Barteselli et al. 

(2014) who found macular choroidal volume to decrease by 0.32 mm3 for every 

decade of life (from a mean total volume of 5.56 mm3), in high myopes. Given these 

identified changes, and the demonstrated decrease in choroidal perfusion, age 

should be controlled for in any study of choroidal structure.  

In the Beijing Eye Study (n=3233), a significantly higher choroidal thickness 

was found in men than women (mean difference 28.5 µm with multivariate analysis; 

Wei et al. 2013). The mean age in this study was 64.6 years. A study of 93 young, 

healthy Danish participants found the subfoveal choroid to be 18% thicker in men 

than women, when adjusted for age and axial eye length (AEL; Li, Larsen and Munch 

2011). The authors state that this observation may help explain the sex-linked 

prevalence of choroid-related conditions such as central serous chorioretinopathy 

(CSC), AMD, and myopia.  

CSC is an idiopathic condition causing a detachment of the retinal layers from 

the RPE at the macula, resulting in the accumulation of fluid in the sub-retinal space. 
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The choroid has been found to be substantially thicker in this condition than in 

healthy subjects, with reported mean thicknesses ranging from 421 µm to 505 µm 

in the affected eye (Imamura et al. 2009; Pryds and Larsen 2012; Yang et al. 2013). 

This condition occurs more frequently in men than women, who typically have a 

thicker choroid (Li et al. 2011; Wei et al. 2013). Conversely, a thinner choroid is 

generally observed in late-stage AMD (see Section 1.4.5) where the disease 

prevalence has been reported to be higher in women (Evans 2001; Rudnicka et al. 

2012). Furthermore, large population studies have reported a higher prevalence of 

myopia and higher degrees of myopia in women (Sperduto et al. 1983; Wang et al. 

1994; Wong et al. 2000), where the choroid is generally thinner (see Section 1.3.2). 

However the existence of such a relationship is still debatable, as other studies have 

not found a significant difference between the sexes, or suggest that women tend 

slightly towards hyperopia when compared to men (Katz et al. 1997; Shimizu et al. 

2003).  

Given the evidence for a difference in choroidal thickness between men and 

women, and with advancing age, any study of choroidal thickness should attempt to 

control for these factors.  

1.3.2 Refractive error and axial eye length 

A number of studies have identified a relationship between choroidal 

thickness and refractive error (Ikuno et al. 2010; Agawa et al. 2011; Coscas et al. 

2012; Tan et al. 2014; Barteselli et al. 2014). A study of 124 healthy individuals of 

Chinese ethnicity, showed the choroid to be thickest among emmetropes, becoming 

progressively thinner among low, moderate and high myopes (Tan et al. 2014). The 

same trend was demonstrated for retinal thickness, but this variation was smaller 

than that of choroidal thickness. However, the study was limited to emmetropes and 

myopes (refractive error range -10.00D to +0.50D), since only 0.7% of the Chinese 

population under 30 years of age are hyperopic, making patient recruitment 

challenging (Wu et al. 2001; Tan et al. 2014). Furthermore, Nishida et al. (2012) 

found subfoveal choroidal thickness to have a significant inverse correlation with 

myopic refractive spherical equivalent, as well as with age and logMAR visual acuity 

in high myopes. The authors suggest choroidal thickness as an important predictor 
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of visual acuity in high myopia, and that it may have epidemiologic significance with 

increasing myopia worldwide.  

Coscas et al. (2012) found the choroid to be thinner in high myopes (with 

over -6.00D of myopia), but no significant difference between emmetropes and 

moderate myopes (under -6.00 D of myopia), whilst Agawa et al. (2011) also found 

a significant positive correlation between choroidal thickness and magnitude of 

myopia. In contrast, Ikuno et al. (2010) reported only a borderline positive 

correlation between these variables, although participants with high myopia (over 

-6.00 D) were excluded from this study. Jonas et al. (2014) conducted multivariate 

regression analysis and found choroidal thickness to decrease by 15 µm per dioptre 

increase in myopia.  

 These findings are consistent with those of Barteselli et al. (2014), who 

assessed 98 eyes using a volumetric analysis, due to the nature of the pathological 

myopia included in the study. Features of pathological myopia, such as lacquer 

cracks, often result in an uneven thickness across the choroid (Wang et al. 2013); 

sampling thickness at a single point or points may therefore not be a true 

representation of overall choroidal thickness. Barteselli and colleagues found a 

decrease in choroidal volume in highly myopic eyes, particularly those with 

coexisting myopic traction maculopathy or a history of choroidal 

neovascularisation. The authors suggest this severe thinning of the choroid in these 

individuals is likely to lead to insufficient metabolic supply to the macula, and these 

patients should undergo closer clinical follow-up.  

Despite this correlation, the majority of population-based studies have 

identified no significant association between refractive error and risk of developing 

AMD (Klein et al. 2004). If anything, increased risk of AMD development has been 

associated with high degrees of hyperopia rather than myopia (Ikram et al. 2003). It 

is unclear why this is the case, although there have been several theories presented. 

Firstly, hyperopic eyes tend to have a higher retinal thickness as well as choroidal 

thickness. This may lead to a higher demand for metabolites per unit area of retina, 

increasing the likelihood of a deficit. Secondly, hyperopic eyes tend to have a shorter 

AEL and therefore a thicker and more compact sclera. This increased stiffness may 

restrict choroidal flow, thereby restricting exchange of metabolites and increasing 

risk of hypoxia and oxidative stress (see Section 1.4.3).  
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Due to the optics of the eye, AEL and refractive error are closely related 

(myopes often have a longer axial length and vice versa; Llorente et al. 2004; Foster 

et al. 2010). It is therefore unsurprising that a relationship between choroidal 

thickness and AEL has also been identified (Ikuno et al. 2010; Agawa et al. 2011; Li 

et al. 2011; Wei et al. 2013; Sanchez-Cano et al. 2014; Barteselli et al. 2014).  

 Li et al. (2011) used a linear regression model to show that choroidal 

thickness decreased by 58.2 µm per mm increase in AEL, whilst Sanchez-Cano et al. 

(2014) found a similar decrease of 43.8 µm per mm. Likewise, Barteselli et al. (2014) 

demonstrated a decrease in choroidal volume of 0.49 mm3 per mm increase in AEL 

in high myopes (from a mean volume of 7.74 mm3 in emmetropes). Other studies 

have also documented a significant negative correlation between choroidal 

thickness and AEL (Ikuno et al. 2010; Agawa et al. 2011; Wei et al. 2013), all in Asian 

populations.  

 The possible effect of OCT image magnification should be considered here. 

Transverse image magnification is known to be different in eyes with different AEL 

(see Sections 2.3.4 and 3.1). This does not affect axial measurements, such as 

subfoveal choroidal thickness, but will affect regional thickness or volume 

measurements. However, the majority of the studies described in this section used 

axial measurements only, or acquired measurements with a Spectralis OCT 

(Heidelberg Engineering, Heidelberg, Germany) which makes a compensation for 

AEL on image scaling, based on corneal curvature and the defocus setting on the 

instrument (Barteselli et al. 2014). This should therefore minimise this error in 

these studies.  

There is substantial evidence of a relationship between choroidal thickness 

and refractive error/AEL. Consequently, any study of choroidal structure should 

control for the potential effect of refractive error and AEL.  

1.3.3 Caffeine intake 

Several studies have identified a decrease in choroidal thickness following 

consumption of coffee, or more specifically caffeine (Vural et al. 2014; Zengin et al. 

2015; Altinkaynak et al. 2015; Dervişoğulları et al. 2016). The largest of these 

studies involved 62 healthy individuals in the study group, and 54 healthy controls 
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(Vural et al. 2014). The study group consumed 100 ml of Turkish coffee (57 mg of 

caffeine), whilst the control group were given 100 ml water. The study group 

demonstrated a significant decrease in choroidal thickness from just 5 minutes 

following caffeine administration; this effect lasted for at least 4 hours but peaked 

after 2 hours, with a mean decrease in thickness of ~50 µm. No significant variation 

in choroidal thickness was reported in the control group.  

Altinkaynak and colleagues (2015) produced very similar findings, with a 

mean decrease in choroidal thickness of approximately 66 µm, peaking after 2 

hours. However, in this study, administration was via a 200 mg caffeine capsule. 

Following the same administration method, Zengin et al. (2015) found a mean 

decrease in thickness of ~26 µm. Although this is a smaller decrease compared to 

other studies, only two time points were measured; 1 hour and 3 hours after caffeine 

administration. The maximum difference may have been between these time points, 

as indicated by the other studies described here.   

This is consistent with Okuno et al. (2002), who found that 100 mg of caffeine 

(approximately the amount found in a single cup of many popular beverages) 

decreased the microcirculation in both the optic nerve head (ONH) and choroid-

retina by 6%. Similarly, Lotfi and Grunwald (1991) reported a 13% decrease in 

macular blood flow 1 hour after administration of 200 mg of caffeine.  

In this context, it is interesting to note that a study in 2014 of over 37,000 

people in the USA, aged ≥2 years, found the mean caffeine intake from beverages to 
be 165 mg per day (Mitchell et al. 2014). This included only self-reported caffeinated 

beverage consumers, defined as ≥21 ‘beverage occasions’ within a 7 day period. In 

those aged ≥65 years (the likely age group for an AMD cohort), mean caffeine 
consumption was 207 mg; of which 159 mg was from coffee, 32 mg from tea, and 16 

mg from carbonated soft drinks. Of caffeine consumers aged ≥65 years in the UK, 
mean daily consumption was ~114 mg; 50 mg from coffee, 39 mg from tea, and 25 

mg from energy and soft drinks (Fitt et al. 2013). It therefore seems pertinent to 

consider recent consumption of these beverages, considering the demonstrated 

effect of caffeine on choroidal thickness.   

These findings strongly suggest that caffeine consumption causes a 

significant decrease in choroidal thickness; an effect seen as quickly as 5 minutes 



16 

following administration, and lasting for at least 4 hours. Given the scale of caffeine 

consumption in the population, this factor should be controlled for, wherever 

possible, in studies using choroidal parameters as outcome measures.  

1.3.4 Water and alcohol intake 

Mansouri et al. (2013) conducted the water drinking test (WDT) on 25 

healthy participants to investigate the effect of water consumption on choroidal 

thickness. This involved drinking 1000 ml of water within a 5 minute period. The 

authors report an increase in both peripapillary and macular choroidal thickness, 

by a maximum of 5.7% and 4.3% respectively. Choroidal volume also increased, by 

6.4% and 3.9% respectively. This is a relatively small, yet significant, increase in 

choroidal thickness following water consumption, but choroidal thickness appeared 

to peak at different points in the study for each individual (ranging from 15 minutes 

to 120 minutes following the WDT). On a day-to-day basis, the majority of 

individuals are unlikely to consume a large volume of water over this short time 

period, hence water drinking is unlikely to have a significant effect on the outcomes 

of the majority of choroidal studies.  

Alcohol consumption has also been shown to cause a short-term increase in 

choroidal thickness; ~15 µm within a 30 minute period, and returning to baseline 

within 2 hours (Kang et al. 2016). In the Beijing Eye Study however, there was found 

to be no significant association between long-term alcohol consumption and 

subfoveal choroidal thickness (Wei et al. 2013). Since the potential effects of ethanol 

are small and short-term (<2 hours), it is unlikely that this will have significant 

implications on clinical or research measurements of choroidal thickness.  

1.3.5 Smoking 

Sizmaz et al. (2013) measured choroidal thickness in 17 otherwise healthy 

smokers, and 17 non-smoker controls. No significant difference in choroidal 

thickness was found between the two groups at baseline, but a statistically 

significant decrease in mean thickness of around 30 µm was identified following the 

smoking of a single standard cigarette. This did not return to baseline for at least 3 
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hours. Ideally this study would be extended to investigate the duration of smoking-

induced choroidal thinning, but ethical issues arise from ‘heavy’ smokers abstaining 

from smoking for this length of time. Neither smoking duration nor the habitual 

number of cigarettes smoked per day were found to have a significant correlation 

with choroidal thickness. During the 3 hour period, there was no fluctuation in 

thickness in the control group who did not smoke a cigarette. All participants 

refrained from smoking and drinking caffeinated drinks for a period of 8 hours prior 

to baseline measurements to control for the effects of these substances. The authors 

suggest a possible link between the decrease in choroidal thickness and decreased 

blood flow to the choroid following smoking, which may in part explain the 

underlying physiology of smoking as a risk factor for AMD (see Section 1.4.2). This 

being said, increased retinal oxidative stress resulting from smoking is likely a 

significant contributor to this association (Tan et al. 2007).  

In contrast to these findings, Ulaş et al. (2014) recruited 30 ‘long-term’ 
smokers (≥10 year history; one pack per day minimum for the last 12 months), along 

with 40 healthy, ‘never-smoking’ controls. Choroidal thickness was found to 

increase (by 10-25 µm) in the central, nasal and temporal segments of the fundus, 

within 5 minutes of smoking. This returned to baseline within 1 hour. Again, there 

was no significant difference found in baseline choroidal thickness (or retinal 

thickness) between the study and control groups, which suggests minimal long-term 

effects of smoking on choroidal thickness. This is in agreement with Kantarci et al. 

(2016), who also found no difference in choroidal thickness between long-term 

smokers (≥20 year history) and non-smoking controls.  

Choroidal thickness measurements collected by Sizmaz and colleagues 

(2013) commenced 60 minutes after smoking, by which time choroidal thickness as 

measured by Ulaş et al. (2014) had returned to baseline. Both study groups 

underwent the same period of abstinence, but normal blood parameters were used 

as part of the inclusion criteria for the latter of the studies, which may have affected 

the results, given the association between long-term smoking and cardiovascular 

disease.  

However, the mean age of participants in these studies was between 29 years 

and 50 years. In contrast, Sigler et al. (2014) showed the choroid to be thinner in 

smokers than non-smokers in older eyes (mean age 78 years) with and without 
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early AMD. These findings may suggest that smoking has a greater effect on 

choroidal structure in older eyes, resulting in an increased risk of AMD development 

in this group.  

Given that these studies report changes in choroidal thickness following 

cigarette smoking, albeit over different time periods and in different age groups, it 

would seem prudent to control for this variable in future study designs investigating 

the choroid. There is no apparent long-term effect of smoking on choroidal thickness 

in younger eyes, despite its association with cardiovascular disease and 

development of late-stage AMD. However, there is evidence that in older eyes, 

history of smoking may be associated with thinning of the choroid.  

1.3.6 Diurnal variation 

It is well established that daily rhythms occur in the eye, including 

fluctuations in intraocular pressure (IOP), corneal thickness, and AEL (Harper et al. 

1996; Liu 1998; Stone et al. 2004). However, it wasn’t until 2009 that a diurnal 
change in choroidal thickness of the human eye was proposed. Brown et al. (2009) 

used partial coherence interferometry to estimate choroidal thickness in vivo, at 3-

hourly intervals between 7am and 10pm. Choroidal thickness was found to vary 

over the day, and the authors described it as ‘likely a dynamic parameter influenced 
by oscillations in IOP or the cardiac cycle’. 

1.3.6.1 Patterns and peaks  

Studies have since investigated this relationship using OCT imaging. There is 

much debate in the literature as to the pattern of these diurnal changes, and the 

times at which the maximum and minimum thickness typically occur. Chakraborty 

et al. (2011) measured choroidal thickness in 30 young adults, over 2 consecutive 

days. The choroid was found to be thinnest at midday, and increased in thickness 

progressively through time points at 3pm, 6pm, and 9pm, at which point the study 

ended. The mean amplitude of change during this time was ~10 µm, a small change 

when compared to the mean choroidal thickness of 256 ± 49 µm. In the same study, 

a small diurnal fluctuation of AEL was identified; in near exact anti-phase to the 

variation in choroidal thickness (a phase gap of 11 hours 56 minutes; Figure 1.6). 
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Choroidal thickness and IOP also appear to fluctuate in anti-phase, however there 

has been no definitive relationship identified between these variables (Chakraborty 

et al. 2011; Lee et al. 2013c).  

This diurnal pattern in choroidal thickness is supported by a further study in 

which choroidal thickness peaked at 9:02pm in 15 young emmetropes (Chakraborty 

et al. 2013). This was in agreement with Toyokawa et al. (2012), who reported 

greater subfoveal and nasal choroidal thicknesses in the evening than in the 

morning. No significant difference was found in the thickness of the temporal 

choroid. Again, this study found only small mean differences (~10-20 µm), and was 

limited in size, comprising 12 older Japanese subjects (62.6 ± 14.5 years).  

Osmanbasoglu et al. (2013) reported no significant diurnal variation of 

choroidal thickness during working hours (measurements collected at 9am and 

4pm only). However, these time points fall either side of the choroidal thickness 

minimum identified by Chakraborty and colleagues (2011), which may explain the 

absence of a significant difference (see Figure 1.6). In younger subjects however, 

choroidal thickness had a tendency to be higher in the afternoon than in the 

morning.  

Other studies have shown choroidal thickness to peak somewhere between 

8am and 9am and then decrease throughout the working day, although the rate of 

this decrease seems to slow towards 5pm (Tan et al. 2012; Lee et al. 2013c). These 

Figure 1.6 Choroidal thickness and AEL were found to be in almost exact anti-phase. IOP 
showed a similar trend to AEL. IOP = intraocular pressure; AL or AEL = axial eye length; CT = 
choroidal thickness. Image from Chakraborty et al. (2011).
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studies found a mean diurnal amplitude of 33.7 µm and 13.4 µm respectively. The 

more recent of these studies (Lee et al. 2013c) used 100 healthy participants, by far 

the largest study to date on choroidal diurnal variation. Neither of these studies 

continued past 5pm, so it was not possible to place the time of minimum choroidal 

thickness. However, they appear to be around 12 hours out of phase with the 

findings of Chakraborty et al. (2011) and Toyokawa et al. (2012), despite being of 

similar study design. A number of smaller studies have shown choroidal thickness 

to peak in the morning, with times ranging from 6am to 11am (Han et al. 2015; 

Kinoshita et al. 2016; Zhao et al. 2016). In all cases, the mean amplitude of the 

variation was <20 µm. Kinoshita and colleagues (2016) attributed the majority of 

this variation to fluctuation in luminal (vessel) area rather than stromal 

(surrounding tissue) area.  

 A diurnal variation pattern was also identified by Usui et al. (2012), who 

measured choroidal thickness at 3-hourly intervals over a 24 hour period using a 

long-wavelength OCT (1060 nm). The choroid was found to be thinnest at 6pm and 

thickest at 3am (mean subfoveal choroidal thickness of 271.9 ± 103.5 µm, and 290.8 

± 110.8 µm respectively). This appears to be out of phase with the aforementioned 

findings by approximately 6 hours, and the amplitude of change is almost double 

that found by Chakraborty et al. (2011).  

The diurnal pattern of choroidal thickness, and particularly the time of peak 

thickness, remains disputed in the literature. There is some speculation that this is 

related to caffeine intake, which was not controlled for in the majority of these 

studies. The reported decrease in choroidal thickness following caffeine 

consumption is in the order of 26-66 µm (see Section 1.3.3); larger than the mean 

diurnal variation amplitude identified by these studies (all <34 µm). No significant 

diurnal variation was found in the no-caffeine control group of one such study (Vural 

et al. 2014). Despite the exact pattern and amplitude of these apparent diurnal 

changes, it seems prudent to control for time of day when assessing the choroid.  

1.3.6.2 Retinal thickness 

Whilst the retina is not the primary focus of this thesis, it is worth considering 

any diurnal changes to the structure, given its proximity to the choroid. A number of 
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studies have found no diurnal variation in retinal thickness in healthy individuals 

(Larsen et al. 2005; Polito et al. 2006; Jo et al. 2011; Han et al. 2015). Read et al. 

(2012) found no significant variation in total retinal thickness over a 10 hour period, 

although a small but significant variation in the thickness of the foveal outer 

segment layer (7 ± 3 µm) was identified. Jo et al. (2011) found a small variation in 

retinal thickness with TD-OCT, but attributed this to limited repeatability of the 

device rather than true tissue variation. Another study found a small but significant 

decrease in retinal thickness in the nasal and inferior subfields towards the evening, 

however this fluctuation is again close to the resolution of the OCT device and 

repeatability (Ashraf and Nowroozzadeh 2014).    

 In macular oedema, however, diurnal changes have been identified. Kotsidis 

et al. (2012) measured retinal thickness over a 24-hour period, in 53 diabetic 

patients with clinically significant macular edema (CSME), 22 diabetic patients 

without macular pathology, and 36 healthy individuals. Both control groups 

displayed mean retinal thickness variation throughout the day of 2 µm, which was 

not significant. The CSME group demonstrated a mean absolute change of 49 µm (a 

relative change of 17%), with a minimum thickness at 3pm. Visual acuity was 

poorest at 7am in individuals with CSME, when the retina was thickest. The authors 

speculate that this variation in macula thickness is likely due to the effect of gravity 

and hydrostatic pressure on oedema formation, or nocturnal hypotension leading to 

decreased retinal perfusion overnight.  

 Retinal thickness does not appear to alter throughout the day in healthy eyes, 

although diurnal changes have been shown in macular oedema. Therefore, this 

factor should be considered in clinical assessment of the retina in these patients. 

1.3.7 Systemic associations 

There are many other factors that have been found to affect choroidal 

thickness and choroidal blood flow. These include systemic hypertension, 

hypercholesteremia, obesity, Alzheimer’s disease, sleep apnea, exercise, pregnancy, 
and medications including acetazolamide, sildenafil nitrate, and vasopressin. More 

detail on the effects of these can be found elsewhere (Riva et al. 1997; Dallinger et 

al. 1998; Vance et al. 2011; Bogner et al. 2011; Wong et al. 2013; Alwassia et al. 2013; 



22 

Takahashi et al. 2013; Bayhan et al. 2014a; Bayhan et al. 2014b; Kara et al. 2014; 

Yumusak et al. 2016).  

Hypertension is the most relevant of these factors to this work, due to its high 

prevalence in the older population. Masis et al. (2011) undertook a retrospective 

analysis of 112 patients with systemic arterial hypertension and 15 healthy patients. 

They found the choroid to be significantly thinner in patients with systemic 

hypertension than non-hypertensive patients (mean subfoveal choroidal thickness 

136.24 ± 46 µm and 173.72 ± 38 µm respectively). However, the control group was 

relatively small in this study. This is in agreement with the findings of Akay et al. 

(2015), although this was in young hypertensive adults (mean age 23.8 ± 2.8 years). 

In contrast to this, Alwassia et al. (2013) investigated the effect of exercise-induced 

acute hypertension on choroidal thickness in 15 healthy patients with a mean age of 

60.6 ± 10.4 years. They found a significant increase in systolic blood pressure 

following a cardiac exercise stress test, but no change in choroidal thickness. These 

findings suggest that only pathological, chronic hypertension is associated with a 

significant change in choroidal thickness.  

This highlights the importance of collecting demographic data relating to 

medical and ocular history when investigating choroidal thickness. Since the 

choroid is highly vascular tissue, it may be advisable to measure blood pressure at 

imaging sessions, for consideration when conducting inter-session or inter-group 

analysis.  

1.3.8 Ocular pathologies 

A number of studies have investigated structural changes to the choroid at 

different stages of AMD; these are discussed in detail in Section 1.4.5. Choroidal 

structural changes have also been identified in other common posterior ocular 

conditions, including diabetic retinopathy, central serous chorioretinopathy (CSC), 

and posterior uveitis (Regatieri 2012a; Bittencourt et al. 2014). These identified 

pathological changes are discussed in the following section.  



Chapter 1 – Introduction 

23 

1.3.8.1 Diabetic retinopathy 

The effect of diabetes mellitus on choroidal thickness and choroidal blood 

flow has been investigated (Nagaoka et al. 2004; Esmaeelpour et al. 2011; Regatieri, 

Branchini 2012a; Unsal et al. 2014). A reduction in choroidal thickness in type-1 

diabetics was demonstrated when compared to non-diabetic controls, with a mean 

difference of ~90 µm between the healthy and diabetic groups (Esmaeelpour et al. 

2012). This was the case in eyes with and without diabetic retinopathy (DR). To 

investigate the effect of disease severity on choroidal thickness, Esmaeelpour et al. 

(2011) utilised a non-commercial long-wavelength OCT (1060 nm) to image 42 eyes 

of type-2 diabetics; divided into 4 groups based on macular involvement; no 

maculopathy (M0), microaneurysms (M1), exudates (M2) and clinically significant 

macular oedema (CSME); as well as 16 non-diabetic controls. Mean subfoveal 

choroidal thickness was found to be 214 ± 55 µm, 208 ± 49 µm, 205 ± 54 µm, 211 ± 

76 µm, and 327 ± 74 µm respectively. Subfoveal choroidal thickness was shown to 

be reduced by ~35% in all diabetic eyes, regardless of disease stage. However, the 

groups in this study were small (n=12-19 eyes per group) and may not be 

representative of the variability within each disease state. In the Beijing Eye Study, 

which had a far larger sample albeit of a different ethnicity, there was no significant 

association between choroidal thickness and presence of diabetes (Wei et al. 2013).  

A number of studies have investigated choroidal thickness in different stages 

of DR; non-proliferative retinopathy (NPDR) with and without maculopathy 

(specifically CSME), and proliferative retinopathy (PDR) with a history of panretinal 

photocoagulation (PRP) treatment (Regatieri et al. 2012a; Unsal et al. 2014). 

Patients with untreated PDR were excluded. Both studies found the choroid to be 

significantly thinner in patients with NPDR with CSME, as well as in patients with 

PDR treated with PDP, when compared to a healthy control group. Neither study 

identified a statistically significant difference in choroidal thickness between 

patients with NPDR without CSME and the control group. In other words, both 

studies identified reduced choroidal thickness in diabetes, but only in eyes with 

macular oedema or advanced retinopathy treated with PRP.  

In contrast to these findings, Kim et al. (2013) found the subfoveal choroid to 

be significantly thicker in PDR. Eyes were classified by severity into 2 NPDR groups 

(mild-moderate and severe), and 2 PDR groups (untreated, and treated with PRP). 
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Eyes that received treatment within the previous 12 months were excluded, to avoid 

the potential effect of laser-induced choroidal swelling. The group with the highest 

mean choroidal thickness was the treatment-naïve PDR (363.6 ± 74.9 µm). Eyes with 

PDR and a history of PRP treatment were found to have far thinner choroids (239.8 

± 57.4 µm). This may explain the difference in findings to the previous studies, which 

included only treated eyes in the PDR group and found a reduction in thickness. Eyes 

with CSME were found to have thicker choroids than those without oedema (mean 

difference ~50 µm). There was no significant difference between the no-DR control 

group and the two NPDR groups. Some thinning was noted in the no-DR and early 

NPDR groups when compared to healthy non-diabetic controls (mean difference 

~14 µm and ~31 µm respectively), in agreement with the studies described above. 

The authors speculate that this thinning may be due to vascular constriction or 

choriocapillaris loss secondary to hypoxia.  

Nagaoka et al. (2004) used laser Doppler flowmetry to assess choroidal blood 

flow in the foveal region of type-2 diabetics. Choroidal blood flow was found to be 

significantly reduced in all diabetic groups, including those with no DR. The largest 

reduction in blood flow was seen in NPDR with CSME (58.5% lower than non-

diabetic controls). Their findings indicate that choroidal changes may precede DR in 

a subset of patients. Similar evidence has been reported for AMD, suggesting a link 

between disrupted blood flow and structural changes (as described in Section 1.4.5).  

Cho et al. (2013a) and Takahashi et al. (2008) investigated the effects of PRP 

treatment on choroidal thickness and choroidal blood flow respectively in patients 

with severe PDR. Subfoveal choroidal thickness was shown to increase 1 week 

following PRP, from 318.1 ± 96.5 µm to 349.9 ± 108.3 µm (Cho et al. 2013a). These 

changes in choroidal thickness did not correlate with changes in macular thickness. 

The authors comment that changes in choroidal circulation may not be the primary 

factor causing PRP-induced macular oedema. Choroidal blood flow was found to 

increase by 46% from baseline to 1 month after PRP treatment (Takahashi et al. 

2008). Again, there was no significant correlation between this increase and 

macular thickness changes. The authors suggest that the increase in choroidal blood 

flow induced by PRP may be caused by vasodilation of choriocapillaries in the foveal 

region. Previous or current treatment for severe PDR may therefore skew results of 

studies on choroidal thickness in diabetics if not controlled for.  
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1.3.8.2 Central serous chorioretinopathy 

As mentioned previously, CSC has been shown to be associated with vascular 

hyperpermeability and a very thick choroid (Imamura et al. 2009; Pryds and Larsen 

2012; Yang et al. 2013; Kuroda et al. 2013). Imamura and colleagues found the mean 

subfoveal choroidal thickness to be 505 ± 124 µm in 19 patients with CSC, compared 

to 287 ± 76 µm in healthy individuals. The choroid has also been shown to be thicker 

bilaterally than in healthy controls, even if subretinal fluid was observed unilaterally 

(in the region of 324 to 387 µm in the unaffected eye; Pryds and Larsen 2012; Yang 

et al. 2013). The authors suggest that the increased choroidal thickness may be 

caused by increased hydrostatic pressure in the choroid. The vessel lumen of the 

large choroidal vessels has also been demonstrated to be larger in eyes with CSC and 

(to a lesser extent) fellow unaffected eyes (Yang et al. 2013; Kuroda et al. 2016). 

Pryds and Larsen (2012) investigated the effects of verteporfin photodynamic 

therapy (PDT) on the choroid in patients with unilateral CSC. Complete resorption 

of subretinal fluid was found in all eyes at 1-month follow-up, with choroidal 

thickness decreasing significantly following treatment in both the treated area and 

the foveal area. The authors conclude that the process causing choroidal thickening 

in CSC appears to spread laterally within the choroid, affecting not only the visible 

pathological area of choroid.  

1.3.8.3 Posterior uveitis  

 Also known as choroiditis, posterior uveitis is associated with an increase in 

choroidal thickness in the active (inflammatory) stage. This condition is often a 

manifestation of an underlying systemic inflammatory condition, such as 

sarcoidosis, Vogt-Koyanagi-Harada (VKH) syndrome, or Behçet’s disease. VKH 
disease in particular has been shown to present with a markedly thick choroid 

(Maruko et al. 2011; Takahashi et al. 2014), often making it impossible to visualise 

the posterior boundary of the choroid in OCT images (Nakayama et al. 2012). 

Maruko and colleagues (2011) found the mean choroidal thickness to be 805 ± 173 

µm at presentation, dropping to 341 ± 70 µm following 2 weeks of corticosteroid 

treatment (n=16 eyes). They suggest this marked thickening of the choroid may be 

due to inflammatory infiltration and increased exudation, and that OCT could serve 

to evaluate choroidal involvement in the disease as well as monitoring treatment.  
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 In contrast, chronic uveitis has been associated with a significant reduction 

in choroidal thickness and vessel diameter (Bittencourt et al. 2014). Takahashi et al. 

(2014) evaluated the convalescent stage of VKH disease, i.e. patients with no 

remaining active inflammation. They found the choroid to be thinner in those with 

severe ‘sunset glow’ fundus (caused by depigmentation) compared to healthy 
controls; with a mean subfoveal choroidal thickness of 144 ± 72 µm and 227 ±            

58 µm respectively. An inverse correlation between choroidal thickness and disease 

duration was also demonstrated, possibly caused by latent choroidal inflammation 

during the convalescent stage of VKH disease, the authors suggest.  

 Given the relationship between choroidal thickness and several common 

conditions including diabetes mellitus, CSC, and posterior uveitis, these pathologies 

should be considered as confounding factors in the design of studies investigating 

choroidal structure. Patients with a history of these conditions should be excluded 

from studies of choroidal vasculature in healthy eyes or other specified pathology.  

 To summarise, many variables have been shown to affect choroidal 

structure, both physiological and pathological. The choroid becomes thinner with 

increasing age, axial eye length, and degree of myopia, as well as following the 

consumption of caffeine. Smoking and diurnal variation have also been shown to 

affect choroidal thickness, although these effects are not as clear from the literature. 

Several systemic pathologies have been shown to result in a thinner choroid, 

including chronic hypertension and diabetes mellitus. Increased choroidal thickness 

and vessel diameter can result from ocular diseases, including CSC and active 

posterior uveitis. With so many variables affecting choroidal structure, it is 

important to consider and control for as many of these as possible in the design of 

studies investigating the choroid.  

1.4 Age-related macular degeneration 

AMD is a painless condition affecting the macula, usually bilaterally but 

asymmetrically, resulting in the loss or distortion of central vision. The condition 

presents in later life (usually >55 years), and affects the individual’s ability to carry 
out high acuity tasks, such as reading, driving, and face recognition. It does not affect 

peripheral vision. Whilst treatments exists for the neovascular subtype (discussed 
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later), there are currently no effective treatments for the atrophic subtype of the 

disease (although lifestyle advice has been shown to slow progression; Seddon et al. 

2006). Consequently, the development of new therapies is a large area of research. 

A comprehensive understanding of the pathogenesis of AMD is beneficial, to ensure 

this research is effective. Furthermore, it is imperative that sensitive methods of 

detecting and monitoring early disease are developed to facilitate early intervention 

and evaluation of these new therapies.   

The following provides an overview of the pathogenesis of AMD, with an 

emphasis on choroidal involvement, along with an overview of the prevalence, 

clinical presentation, and current classification and treatment.  

1.4.1 Prevalence and incidence 

In 2014, a systematic review estimated the global prevalence of AMD (of any 

stage) to be 8.69% in those aged 45-85 years (Wong et al. 2014). A breakdown of 

prevalence in different age groups can be seen in Table 1.2. Furthermore, there is 

expected to be a 3-fold increase globally in the number of people aged 60 and over 

between 2005 and 2050 (Chamie 2005). This ageing population would result in a 

continued rise in prevalence of AMD over the coming years. In fact, the projected 

number of people with AMD in 2020 is 196 million, increasing to 288 million by 

2040 (Wong et al. 2014).  

Table 1.2 Estimated prevalence figures for a Caucasian population based on a review by Klaver 
et al. (2004) of 7 epidemiological studies.  

Age (years) Early AMD (%) Late AMD (%)

65-74 15 1

75-84 25 5

85+ 30 13

In the United Kingdom, the prevalence of late-stage AMD has been estimated 

as 4.8% and 12.2% in those aged over 65 and 80 years respectively (Owen et al. 

2012). The condition is responsible for over half of all visual impairment 

registrations in the UK; more than all other ocular conditions combined (Bunce et 

al. 2010; Rees et al. 2014).  
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Vision loss from AMD can be devastating, and is often associated with loss of 

independence, loss of income, isolation, and depression. It has been reported that 

almost one third of people with AMD suffer from depression (Brody et al. 2001), 

even amongst those receiving anti-VEGF treatment (see Section 1.4.4; Casten and 

Rovner 2013). This is substantially higher than the percentage found in the general 

population of older adults (~12%; Steffens et al. 2009).  

1.4.2 Risk factors 

Several risk factors for the development of AMD have been identified, 

including age, smoking, previous cataract surgery, genetics, race, diet and light 

exposure (particularly to short-wavelength light). Notably, the primary modifiable 

risk factor is smoking, which has been shown to produce a 4-fold increased risk of 

late-stage AMD (Tan et al. 2007). More information about these risk factors can be 

found in reviews by Evans (2001) and Chakravarthy et al. (2010). The underlying 

connection of these factors to AMD pathogenesis is briefly explained in Section 1.4.3.  

1.4.3 Aetiology and pathogenesis 

There are two distinct end points to the condition; atrophic AMD (dry or non-

exudative), and neovascular AMD (wet or exudative). The disease is often 

asymptomatic in the early stages, but sometimes presents with symptoms of mild 

distortion. From the early stage, the disease may progress to one of two potential 

late-stages. In the atrophic subtype, a central scotoma typically develops as large 

areas of the macular atrophy (termed geographic atrophy; GA). In the neovascular 

subtype (nAMD), new blood vessels grow from beneath the macula, which leak and 

haemorrhage causing sudden central vision loss. Example retinal photographs and 

cross-sectional scans of each AMD subtype can be seen in Figure 1.7.  
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The pathogenesis of AMD is complex and not yet fully understood. To date, 

the literature has outlined several processes believed to contribute to the 

development of the condition, to a greater or lesser extent. These include oxidative 

stress, metabolic insufficiency, chronic inflammation and choroidal vascular 

changes (Beatty et al. 2000; Zarbin 2004; Ambati and Fowler 2012). AMD is closely 

linked to age-related changes, hence these changes will be discussed here, with their 

Figure 1.7 Example retinal photographs and macular cross-sectional OCT images of each 
major AMD subtype. Solid black lines indicate the scan line through the fovea. The following 
features are visible in each stage: multiple small drusen (early AMD); choroidal neovascular 
membrane (neovascular AMD; nAMD); atrophy of outer retinal layers, RPE and choroid 
(geographic atrophy; GA). Images acquired by L. Terry during conduct of this study. 
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believed implications in the development of the condition. The three leading 

theories for the development of AMD are outlined below; oxidative stress, 

inflammation, and hypoxia.  

1.4.3.1 Oxidative theory 

Oxidative stress is a process resulting in cellular damage caused by reactive 

oxygen species (ROS) and free radicals, and has been implicated in damage to both 

the RPE and the choriocapillaris in both AMD and ageing (Beatty et al. 2000). This 

theory is summarised in Figure 1.8. The macula is susceptible to oxidative damage 

for several reasons. Firstly, there is a high consumption of oxygen by the 

photoreceptors, which are at highest concentration in the macula. Secondly, the 

retina is exposed to high light levels, particularly blue light, which has been 

associated with the development of AMD (Margrain et al. 2004); a finding that 

explains why excessive exposure to sunlight is a risk factor for the development of 

the condition (Sui et al. 2013). Thirdly, a high dietary intake of polyunsaturated fatty 

acids (found in high concentrations in photoreceptor outer segments) has been 

associated with AMD (Beatty et al. 2000; Seddon et al. 2001; Chong et al. 2009). 

Smoking is also a contributing factor to oxidative stress, with cigarette smoking 

having been identified as a major risk factor for the development of late-stage 

macular degeneration (Klein et al. 1998; Mitchell et al. 2002; Tan et al. 2007).  

Mitochondria are the main source of endogenously formed ROS in the 

photoreceptors and RPE, as a consequence of the mitochondrial respiratory chain. 

Although these are important for cell signalling, mitochondrial DNA is particularly 

susceptible to oxidative damage by ROS, which can result in cell death, mutation, 

and/or overproduction of ROS (Ambati and Fowler 2012). This mitochondrial 

dysfunction has been demonstrated as a feature of ageing, and is thought to underlie 

the development of AMD, through excessive oxidative damage and resultant 

impaired function of the RPE and outer retina (Jarrett and Boulton 2012; Ferrington 

et al. 2016).  

Antioxidants have been shown to protect against oxidative damage in the 

retina, including vitamins A, C, and E, and enzymes such as catalase (Beatty et al. 

2000). The naturally occurring pigments lutein and zeaxanthin are collectively 
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known as macular pigment. These antioxidant carotenoids are also believed to help 

protect the retina by filtering out blue light and quenching ROS, and reacting with 

free radicals (Snodderly 1995). The pigment concentration peaks at the centre of 

the fovea, where protection is most needed, and diminishes with eccentricity 

(Snodderly et al. 1984b). A decline in the concentration of macular pigment with age 

has been demonstrated; it has been suggested that this leaves the macula more 

susceptible to oxidative damage (Beatty et al. 2001). This is the basis for attempting 

to increase the concentration of antioxidants at the macula (possibly with high dose 

supplements of antioxidants combined with zinc, like in the AREDS trial; AREDS 

2001b) which could have a potential prophylactic effect on AMD progression (Roth 

Figure 1.8 Summary of the oxidative theory of AMD development. The arrows depict the 
theoretical pathways followed in the development of AMD, with supporting evidence (blue) of 
the principle connections. Feedback loops in RPE dysfunction indicated by dashed arrows. 
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et al. 2004). It has also been shown that several factors influence the density of 

macular pigment, including smoking, iris colour and sex; this is consistent with these 

also being risk factors for AMD (Chakravarthy et al. 2010). It is likely a combination 

of these contributing factors (decrease in macula pigment, exposure to high light 

levels, and a high concentration of polyunsaturated fatty acids), coupled with the 

very high oxygen demand of the outer retina, that results in oxidative stress.  

Oxidative stress has been implicated in damage to the choriocapillaris and 

RPE (Beatty et al. 2000). There is strong evidence to support that lipofuscin is 

derived, in part, from oxidative damage to photoreceptor outer segments, and 

incomplete phagocytosis of the outer segments within the RPE (Kennedy et al. 1995; 

Holz et al. 2001). Lipofuscin itself is thought to drive oxidation through its photo-

reactive component A2-E (Beatty et al. 2000; Margrain et al. 2004), further 

damaging the RPE and impairing phagocytosis of outer segments. This cycle results 

in an increased concentration of fatty acids from incomplete digestion of outer 

segments, which are highly vulnerable to oxidation (Beatty et al. 2000). Ultimately, 

this impairs the RPE, which may cause an imbalance in the production of factors 

such as VEGF and PEDF. This could lead to the development of a neovascular 

membrane (Frank et al. 1996; Witmer et al. 2003) or RPE cell death resulting in 

geographic atrophy (Roth et al. 2004); the two end points of AMD. 

1.4.3.2 Inflammation theory 

Excessive (chronic) inflammation with involvement of the complement 

system has also been associated with AMD; it is outlined by Hageman et al. (2001), 

Johnson et al. (2001), Anderson et al. (2002), and Figure 1.9. This theory stems from 

RPE dysfunction (discussed in the oxidative theory) causing a breakdown of the 

blood-retina barrier via the formation of drusen, thickening of Bruch’s membrane 
and disruption of the tight junctions between RPE cells (Cunha-Vaz et al. 2011; 

Klaassen et al. 2013). This is supported by evidence of inflammatory components 

found in drusen, including immunoglobin and fragments of complement system 

proteins C3 and C5 (Johnson et al. 2000). These proteins have been linked to the 

expression of VEGF, which may contribute to the development of choroidal 

neovascularisation (Nozaki et al. 2006).  
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There is also evidence of a genetic predisposition to AMD by the Complement 

Factor H (CFH) gene, which codes for the CFH protein involved in inhibiting the 

complement cascade (Donoso et al. 2010). If this gene is faulty, the complement 

system is not properly regulated, triggering an immune response resulting in 

excessive inflammation. This in turn has been hypothesised to result in AMD-

associated choriocapillaris degeneration (Chirco et al. 2016).  

Figure 1.9 Summary of the inflammation theory of AMD development. The arrows depict the 
theoretical pathways followed in the development of AMD, with supporting evidence (blue) of 
the main connections. Feedback loop in drusen formation indicated by dashed arrow. 
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1.4.3.3 Hypoxia theory 

The role of hypoxia and metabolic insufficiency at the RPE and outer retina 

caused by reduced choroidal blood flow and perfusion has been suggested as the 

primary trigger of AMD (Sarks 1976; Feigl 2007), and an overview can be seen in 

Figure 1.10. As discussed in Section 1.2.4, age-related changes to Bruch’s membrane 
result in reduced permeability of this membrane, acting as a barrier to metabolic 

Figure 1.10 Summary of the hypoxia theory of AMD development. The arrows depict the 
theoretical pathways followed in the development of AMD, with supporting evidence (blue) of 
the main connections. Feedback loops in VEGF expression and drusen formation indicated by 
dashed arrows. 
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exchange between the choriocapillaris, RPE and outer retina (Guymer et al. 1998). 

This impaired diffusion to and from the choroid promotes the formation of more 

drusen, further impairing the transport of metabolites through Bruch’s membrane 
(Curcio 2001; Feigl et al. 2007). A review by Stefánsson et al. (2011) proposed that 

ageing and early AMD changes (including retinal elevation, oedema, drusen and 

choroidal ischaemia) increase retinal hypoxia due to the reduced oxygen flux from 

the choroid to the outer retina. This is according to Fick’s law of diffusion, and is a 
result of the increased distance between the choriocapillaris and retina. 

These changes are coupled with RPE dysfunction (discussed in the oxidative 

theory) causing an imbalance of RPE-derived growth factors that leads to vascular 

changes in the choriocapillaris (Witmer et al. 2003; Schlingemann 2004). The 

vessels of the choriocapillaris decrease in density and diameter (Sarks 1976; 

Ramrattan et al. 1994), as well as a general reduction in choroidal thickness in AMD 

(discussed in more detail in Section 1.4.5). This disruption to the normal blood 

supply to the outer retina likely leads to further reductions in the supply of 

metabolites to the macula, which is already susceptible due to its lack of a dual blood 

supply and the extremely high oxygen demand of the photoreceptors (Provis et al. 

2005; Figure 1.11). The combination of these ageing changes results in a hypoxic 

retina, which is exacerbated in scotopic conditions due to the increased oxygen 

demand of the photoreceptors (Stefánsson et al. 2011). This chronic ischaemia 

upregulates VEGF production in the RPE (Feigl 2007; Stefánsson et al. 2011), and 

possibly also stimulates excessive inflammation (see inflammation theory); 

ultimately resulting in neovascularisation or RPE atrophy.   

Figure 1.11 Oxygen profile for different depths in the feline retina. In the outer retina, the 
partial oxygen pressure reaches near zero. X=0 and X=L are the boundaries of the 
photoreceptor outer segments, and X=2L represents the vitreous-retina border. Figure from 
Wang and Linsenmeier (2007).
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1.4.3.4 Pathogenesis summary 

There is significant overlap in these theories (Figure 1.8 to Figure 1.10); it is 

likely a combination of several of these processes happening simultaneously that 

results in the development of AMD. Regardless of the specific pathways followed or 

their relative contributions, the potential end points remain the same; development 

of a neovascular membrane, or atrophy of the outer retina, RPE and choriocapillaris. 

It is the expression of VEGF and an imbalance between this and other angiogenesis 

factors that result in the neovascular end point (Frank et al. 1996; Witmer et al. 

2003) and severe loss of central vision.  

The ‘tipping point’ for the progression to nAMD appears to be different for 

each person, with many individuals with early AMD never reaching this threshold. 

Consider a single threshold for this exudative change; this limit is raised or lowered 

with age, genetics, smoking, diet, and other risk factors discussed previously. For 

example, an individual with a genetic predisposition is more likely to progress to 

nAMD, despite other risk factors being minimised (e.g. non-smoker, good diet, 

minimal UV exposure). Conversely, even if all risk factors are met (e.g. a 90 year old 

heavy smoker with a poor diet), lacking these associated genetic variations may 

keep the threshold low enough to prevent the progression to nAMD. Although this 

is theoretical, it provides a potential explanation as to why some individuals 

progress to late-stage AMD, where others do not.  

It is evident that the choroid plays a fundamental role in the pathogenesis of 

AMD, as it is the sole supply of metabolites to the macula. Although the thickness of 

the choroid has been shown to decrease in AMD (see Section 1.4.5), the changes to 

the vessels themselves have been largely assessed using histology, and have not 

been extensively studied in vivo (Sarks 1976; Ramrattan et al. 1994). Having the 

ability to image the choroidal vascular structure in the living eye using OCT brings 

new opportunities to study these vessels, in particular how the vascular structure 

changes throughout the disease process. This provides potential for the 

development of non-invasive analysis techniques to detect and monitor the 

condition.  
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1.4.4 Treatment and prevention 

There are currently no effective treatments available for dry AMD, however 

there are prophylactic measures that can be taken to minimise the risk of 

progression to nAMD. This involves considering the modifiable risk factors for the 

condition. For instance, age, sex, and genetics clearly cannot be altered, but patients 

can be advised to stop smoking and improve their diet by reducing dietary fat and 

increasing intake of antioxidants (Chakravarthy et al. 2010). There is also some 

evidence for the benefit to individuals susceptible to AMD of taking antioxidant 

supplements, although this is disputed (AREDS 2001b; Chong et al. 2007; Evans and 

Lawrenson 2012). For individuals who suffer from visual loss due to AMD, 

rehabilitation services are available (e.g. Low Vision Service Wales) to assist the 

individual in maintaining their quality of life and independence.  

 Anti-VEGF therapy can be used in the treatment of nAMD, delivered via 

intravitreal injection. These agents block expression of VEGF produced by the RPE, 

lessening its angioproliferative effects, and hence preventing the growth of new 

vessels. Commonly used anti-VEGF drugs include ranibizumab (Lucentis) and 

bevacizumab (Avastin), which are delivered to the posterior pole via intravitreal 

injection. These treatments have been shown to be effective in halting the 

development of neovascular membranes, and improve visual acuity in many cases 

(Rosenfeld et al. 2009; Martin et al. 2011; Martin et al. 2012). More recently, another 

anti-VEGF drug (aflibercept; Eylea) was introduced, with efficacy equivalent to 

ranibizumab (Heier et al. 2012). This has shown potential benefit for cases of nAMD 

with persistent fluid when treated with ranibizumab and/or bevacizumab (Cho et 

al. 2013b). The nature and effectivity of these treatments evidences the crucial role 

of VEGF in the pathogenesis of nAMD. However, this is an invasive therapy, with 

associated adverse effects, including ocular pain and risk of endophthalmitis and 

rhegmatogenous retinal detachment (Falavarjani and Nguyen 2013; Sanabria et al. 

2013).  

1.4.5 Structural changes to the choroid  

1.4.5.1 Ex vivo 
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Although the choroid has been implicated in the pathogenesis of AMD, 

changes to the vascular structure have predominantly been identified using 

histology. A decrease in the density of the choriocapillaris with advancing AMD has 

been identified (Ramrattan et al. 1994; Spraul et al. 1999), as well as a reduction in 

the diameter of the capillary lumen (Sarks 1976; Ramrattan et al. 1994; McLeod et 

al. 2009). McLeod and colleagues also reported a decrease in vascular area and loss 

in capillary fenestration in late-stage AMD (in both the wet and dry subtypes). They 

concluded that choriocapillaris atrophy occurred secondary to RPE atrophy. 

However, there is uncertainty over the pathogenesis, since choriocapillaris loss has 

been identified in eyes without RPE atrophy also (Seddon et al. 2016). Despite this, 

a significant decrease in vascular area was identified with advancing disease 

severity, which is consistent with previous findings. The presence of ‘ghost’ vessels 
(empty capillaries that were once blood-filled) in early AMD has been used to 

suggest disease-related capillary loss, rather than a congenitally lower vascular 

density causing these individuals to be prone to degenerative changes (Whitmore et 

al. 2015).  

Although the majority of histological changes identified in AMD have been at 

the level of choriocapillaris, these vessels are very small (typically ~7-10 μm), which 

is nearing the resolution limit of OCT imaging, and therefore cannot be reliably 

imaged using this technique (see Section 1.5.2). Considering the vessels which can 

be resolved with OCT imaging, Spraul et al. (1999) identified a reduction in the 

number of large choroidal vessels in AMD. No significant difference in vessel 

diameter or choroidal thickness was found between the groups. However, this is 

based on a single study with limited sample size (51 eyes with AMD, and 40 age-

matched controls); this highlights the need for further investigation into structural 

changes to the choroid in AMD, ideally utilising advances in in vivo imaging 

techniques. The limitations of ex vivo measurement using histology are discussed in 

Section 1.6.2.  

1.4.5.2 In vivo 

To have a potential clinical application, changes to the choroidal structure 

must be detectable in vivo. A number of studies have identified a reduction in 

choroidal thickness in patients with AMD, using in vivo imaging (Chung et al. 2011; 
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Sigler and Randolph 2013; Lee et al. 2013b; Esmaeelpour et al. 2014a; Adhi et al. 

2014; Lindner et al. 2015; Yiu et al. 2015; Lu et al. 2016). However, it is debated in 

the literature at which stage in the disease process this thinning occurs.  

Considering firstly the early disease stage, Sigler and Randolph (2013) found 

the choroid to be significantly thinner in early AMD (115 ± 40 µm) when compared 

to healthy controls (235 ± 49 µm). Conversely, Wood et al. (2011) measured 

choroidal thickness beneath the fovea, and at 0.5 mm intervals across the central 4 

mm of choroid horizontally and vertically (centred on the fovea). No significant 

difference in choroidal thickness was identified between the early AMD and control 

groups at any location. However, these were relatively limited in sample size (n= 51 

and n=16 healthy eyes, and n=39 and n=16 early AMD eyes, respectively); these 

studies may therefore have been under-powered to detect small differences in 

choroidal thickness between groups. Additionally, the potential effects of diurnal 

variation or caffeine intake were not controlled for in these studies.  

Other studies have also found no significant difference in choroidal thickness 

between early AMD and controls (Kim et al. 2011; Jonas et al. 2014). The more 

recent of these studies included 204 eyes with AMD, and 228 age-matched control 

eyes, and found no significant difference in subfoveal choroidal thickness between 

the control group and the four AMD subgroups (dry AMD, and nAMD sub-divided by 

predominant feature into; pigment epithelial detachment (PED), retinal oedema, or 

sub-retinal fibrotic scarring). However, this study did not control for the potential 

effect of diurnal variation, and all patients in the nAMD group were under 

bevacizumab therapy at the time of data collection. Medical treatment of nAMD with 

anti-VEGF has been associated with a reduction in choroidal thickness (Yamazaki et 

al. 2012), as discussed in Section 1.4.6. Kim et al. (2011) found choroidal thickness 

in early AMD (186.62 ± 62.02 µm) to be thinner than that of a control group (241.97 

± 102.87 µm), although this difference did not reach statistical significance. No 

significant difference was found between nAMD (226.46 ± 102.87 µm) and the early 

AMD or control groups. However, due to the retrospective nature of this study, 

diurnal variation and caffeine intake were not controlled for, potentially resulting in 

increased variance and therefore reduced the likelihood of significance. 

Ko et al. (2013) reported an inverse correlation between choroidal thickness 

and drusen area, which was independent of age and sex. They hypothesised that a 
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thinner choroid leads to a decreased blood flow and decreased waste removal from 

the outer retina, resulting in drusen formation. This disrupts the RPE, Bruch’s 
membrane and the choriocapillaris, leading to unhealthy or atrophied 

photoreceptors and a reduction in visual acuity (similar to the hypoxia theory of 

AMD; see Section 1.4.3.3). This is in line with their finding of a positive correlation 

between drusen area and logMAR visual acuity (VA). Ko and colleagues go on to 

suggest drusen load (square root of drusen area) as a useful biomarker in the 

management of AMD, as well as a potential outcome parameter of clinical trials in 

dry AMD. 

Several studies have found significant thinning in intermediate or late-stage 

neovascular disease (Lee et al. 2013b; Esmaeelpour et al. 2014a; Yiu et al. 2015; Lu 

et al. 2016). Esmaeelpour et al. (2014a) acquired long-wavelength OCT images from 

patients with bilateral intermediate AMD (n=21), intermediate AMD with nAMD 

fellow eye (n=21), and healthy controls (n=24). The choroid was found to be 

thinnest in eyes with intermediate AMD (149 ± 60 µm) and a diagnosis of nAMD in 

the fellow eye (171 ± 78 µm), followed by bilateral intermediate AMD (222 ± 98 µm), 

and finally healthy eyes (259 ± 95 µm). There was no significant difference in 

thickness between the two eyes in patients with unilateral nAMD, despite the 

difference in disease stage. Since disease state of the fellow eye was the only 

difference between the groups in this study, these findings suggest a symmetry in 

the pathogenesis of AMD, and may explain why unilateral development of choroidal 

neovascularisation (CNV) is a major risk factor for progression to nAMD in the 

fellow eye (Chew et al. 2014). The difference between bilateral intermediate AMD 

and healthy controls was not statistically significant; this may be limited by the 

relatively small size of each disease group in this study.  

 The most marked reduction in choroidal thickness is typically observed in 

GA, when compared to healthy eyes. Lindner et al. (2015) found a mean difference 

between groups of ~80 µm, whilst the difference identified by Adhi et al. (2014) was 

~110 µm, and this thinning was evident in all vascular layers of the choroid.  

 Considering variations in the appearance of the disease, advances in imaging 

technology have revealed a distinct phenotype of drusen, termed reticular 

pseudodrusen (RPD). These are often visible on colour retinal photographs and OCT, 

although visualisation may be enhanced using fundus autoflorescence or infrared 
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imaging (Sohrab et al. 2011). The prevalence of RPD in AMD populations varies 

greatly, due in part to differences in imaging modalities used, with reported values 

of 8.4% in early AMD, 22.1% to 36% in nAMD, and 29% to 92.3% in atrophic AMD 

(Hogg 2014; Wilde et al. 2016). Several studies have compared choroidal thickness 

in eyes with AMD with and without RPD. Presence of RPD in AMD has been 

associated with macular choroidal thinning, with mean differences ranging from 40 

µm to 155 µm when compared to AMD without RPD (Switzer et al. 2012; Garg et al. 

2013; Haas et al. 2014; Zheng et al. 2016). Additionally, eyes with RPD have been 

shown to have reduced vessel density (Zheng et al. 2016), resulting in a narrow and 

sparse appearance of choroidal vessels (Ueda-Arakawa et al. 2014) and a lack of 

detectable choriocapillaris (Sohrab et al. 2012). This may explain why RPD have 

been strongly linked to development of late-stage AMD (both nAMD and GA; Hogg 

2014), due to increased disruption to metabolic supply.  

Polypoidal choroidal vasculopathy (PCV) is categorised by some as a subtype 

of nAMD with a distinct clinical appearance, although others regard it as a 

neovascular manifestation of several diseases, such as CSC (Koh et al. 2013). It is 

characterised by multiple detachments of the RPE and neurosensory retina 

secondary to fluid leakage from networks of abnormal choroidal vessels. This 

subtype has been shown to have increased choroidal thickness when compared to 

typical nAMD, with Kim et al. (2011) reporting a mean subfoveal thickness of 319.9 

± 64.0 µm, and 226.5 ± 102.9 µm respectively. Koizumi et al. (2011) reported a 

similar trend, with mean choroidal thicknesses of 293.4 ± 73.1 µm and 244.6 ± 72.3 

µm respectively. This relationship was significant, even when adjusting for age, sex, 

and refractive error distribution. The authors also reported that those with a 

subfoveal choroidal thickness of 300 µm or more were 5.6 times more likely to have 

PCV, and speculated that the development of PCV may be due to altered choroidal 

circulation similar to that seen in CSC (see Section 1.3.8.2).  

Another study involving 87 participants demonstrated a significant 

thickening of the choroid in eyes with PCV (mean choroidal thickness of 438.3 ± 87.8

µm), in contrast with choroidal thinning in eyes with nAMD and early AMD (mean 

choroidal thickness of 171.2 ± 38.5 µm, and 177.4 ± 49.7 µm respectively; Chung et 

al. 2011). The authors suggest that there may be differences in the pathogenic 

mechanisms of PCV and AMD which explain these findings. Therefore, PCV should 
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be classified as a separate group to nAMD where possible, particularly when 

choroidal parameters are used as outcome measures. However, since the estimated 

prevalence rate of PCV in groups of presumed AMD is 4% to 9.8% in Caucasian 

populations (Koh et al. 2013), this may not have significant implications. This is 

more likely to be significant in Asian populations, where the estimated prevalence 

of PCV in presumed AMD is 23.9% to 54.7%. Furthermore, a number of more recent 

studies have identified a thicker choroid in PCV than typical AMD, although this did 

not reach statistical significance (Koizumi et al. 2015; Ting et al. 2016; Wei et al. 

2016). 

Although choroidal thickness is the most commonly reported parameter, a 

handful of studies have reported methods of quantifying changes to the choroidal 

vessels in AMD. From OCT imaging, both choroidal and luminal area have been 

shown to be significantly lower in nAMD than healthy eyes (Sonoda et al. 2014; Wei 

et al. 2016). The more recent of these studies also identified a reduction in the ratio 

of luminal area to choroidal area, suggesting attenuation of vessels in the disease; 

this ratio was termed choroidal vascularity index (CVI). This is consistent with the 

decrease in vascular density in AMD noted with histology (Spraul et al. 1999).  

Using laser Doppler flowmetry, foveolar choroidal blood flow and blood 

volume have been shown to be reduced by an average of 37% and 33% respectively 

in eyes with dry AMD, compared to healthy age-matched controls (Grunwald et al. 

1998). There was no difference in blood velocity between groups. Quantification of 

choroidal blood flow with optical coherence tomography angiography is becoming 

feasible, with preliminary findings indicating a distribution of blood flow speeds 

associated with atrophic and neovascular lesions, with lower speeds typically found 

at the extremities of the lesions (Ploner et al. 2016; Ferrara et al. 2016; see Section 

1.5.3.3).  

To summarise, the evidence suggests that the choroid changes in AMD, and 

that such changes are detectable in vivo. These changes appear to be associated with 

disease severity and subtype, and are particularly evident in late-stage disease. 

Choroidal thickness is the most commonly reported parameter in the current 

literature, although this measurement is highly variable between individuals. Other 

methods of quantifying the vasculature to describe these changes are limited (e.g. 

vessel diameter, see Section 1.7.1). The development and optimisation of 
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parameters describing the choroidal structure may provide increased sensitivity to 

the detection of differences between subgroups, including disease severity.  

1.4.6 Anti-VEGF therapy and choroidal structure 

 Anti-VEGF therapy has also been implicated in structural changes to the 

choroid, and RPE atrophy. This is likely due to the role of VEGF in maintaining 

healthy choroidal structure (see Section 1.2.3). Rahman et al. (2013) conducted a 

retrospective case-controlled study, and found no gross difference in subfoveal 

choroidal thickness between treated and untreated nAMD groups. However, this 

was cross-sectional in study design, and limited by sample size (n=15 per group). 

Yamazaki et al. (2012) conducted a longitudinal study comprising 40 patients with 

unilateral nAMD and fellow eye unaffected by neovascularisation or geographic 

atrophy. Patients underwent intravitreal injections of ranibizumab (IVRs) monthly 

for 3 months, then as needed over the following 9 months. Mean subfoveal choroidal 

thickness was found to decrease following the anti-VEGF therapy, from 244 ± 62 µm 

at baseline to 226 ± 68 µm at 3 months, which remained almost constant until 12 

months when the study ended. This decrease in choroidal thickness was found to be 

independent of the number of IVRs (mean 5.8 ± 2.9), the subtype of nAMD, or any 

previous treatments. The authors suggest that IVRs may have a pharmacologic effect 

on the underlying choroid as well as the neovascular lesion itself, which could 

explain the decrease in choroidal thickness following treatment.  

 These findings are in agreement with Ting et al. (2016), who report a mean 

decrease in subfoveal choroidal thickness of ~10 µm after 3 months of anti-VEGF 

therapy (P=0.08), and ~25 µm after 6 months (P<0.01), with no further change until 

12 months when the study ended. Bevacizumab was the predominant agent used 

(77% of injections), and a similar trend in choroidal thickness was identified in 

treatment of PCV. Again, there was no correlation with number of injections or 

nAMD subtype, although this should be interpreted with caution, since the number 

of injections was typically low (3.9 ± 1.3 after 6 months, and 5.6 ± 2.1 after 12 

months). There was also no change in the fellow eye during the study period, for 

either the typical nAMD or PCV group. This suggests that local anti-VEGF therapy 

has no direct effect on the choroid in the fellow eye, and thus need not be an 

exclusion criterion for study of the fellow eye in these cases.  
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Similarly, a significant decrease in macular choroidal thickness (~35 µm) 

was identified following 3 months of aflibercept therapy (Koizumi et al. 2015). The 

majority of this change (~22 µm) was found within the first month. The effect of 

intravitreal injections is important when investigating choroidal changes in nAMD, 

since patients newly diagnosed with this disease stage typically begin treatment 

immediately. Choroidal changes caused by the anti-VEGF agent must be 

distinguished from choroidal changes due to pathology in patients with a history of 

treatment with anti-VEGF therapy.  

1.4.7 Clinical classification of AMD 

Classification of disease type and severity is commonly used in the clinical 

management of several ocular diseases, including AMD, based on underlying 

pathophysiology. In clinical research, disease classification is often used to group 

participants according to disease stage for cross-sectional studies, and to allow 

disease progression monitoring in longitudinal studies. To be useful for these 

applications, methods of ascertaining a classification should utilise commonly 

available imaging equipment, and be sensitive to clinical features of each class.  

There are a number of established methods of AMD classification (Klein et al. 

1991; Bird et al. 1995; AREDS 2001a; Ferris et al. 2005; Danis et al. 2013), one of the 

earliest being the ‘Wisconsin Age-related Maculopathy Grading System’ (Klein et al. 

1991). This system was devised based on previous methods for grading AMD and 

DR, and has been independently assessed for performance (Sparrow et al. 1997). 

Since its development, it has been used over many years for grading purposes in the 

Beaver Dam Eye Study (Klein et al. 2007), and has spawned a number of new 

systems, e.g. the International Classification and Grading System (Bird et al. 1995), 

and the Age Related Eye Disease Study Group Grading System (AREDS 2001a). Both 

of these methods were devised to enable multicentre grading and classification of 

AMD for a large-scale epidemiological study and clinical trial respectively. These 

systems define an age limit (over which retinal features seen are likely attributable 

to AMD) of 50 and 55 years respectively.  

Variations of the AREDS system have since been produced, including the 

Simplified Severity Scale (Ferris et al. 2005; Ferris et al. 2013), which involves less 
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demanding grading protocols, and approximates 5-year risk of development of 

advanced disease. More recently, the AREDS2 system was established for the 

multicentre AREDS2 clinical trial (Danis et al. 2013). Again, this was based upon the 

AREDS system, but adopting the modern assumption that the standard optic disc 
diameter is 1800 µm in size, rather than 1500 µm as assumed by previous systems.  

This altered the size of the grid overlay used during grading.  

 The published approaches are all based upon documenting the presence, 

frequency and location of retinal features associated with AMD, such as drusen and 

pigmentary abnormalities, from retinal photographs. The features only within a pre-
defined macular region are considered, assumed to be a circle of 6000 µm diameter 

centred on the fovea (with the exception of the AREDS2 system, which is of 7200 µm 

diameter). This region is subdivided into three annular regions, by two additional 
circles of 1000 µm and 3000 µm diameter, both centred on the fovea.  The outer two 

annular regions are each further subdivided into 4 equally-sized regions, 

representing inferior, superior, nasal, and temporal areas (see Figure 1.12). These 

map sectors were defined by the Early Treatment Diabetic Retinopathy Study 

Research Group (ETDRS 1991).  

These classification systems utilise 30° or 35° stereoscopic retinal 

photography to gain a degree of insight into depth information e.g. areas of fluid 

N1 T1N2 T2
S1

S2

I1
I2

F

1mm

Figure 1.12 Grid overlay for use with AMD classification and grading, with standard sizing 
used. Notations indicate nasal (N), temporal (T), inferior (I) and superior (S) quadrants in the 
inner (1) and outer (2) rings, as well as the foveal subfield (F). Image adapted from AREDS 
(2001b).
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collection. Other imaging modalities that would enhance clinical signs of AMD have 

been considered, such as fluorescein angiography, however the benefits of this 

technique were deemed to not outweigh the invasive nature, and the risk of 

anaphylaxis and death (AREDS 2001a).  Since this time, advances in non-invasive 

imaging technology now allow a far more detailed appreciation of such information, 

for example OCT imaging. However, such techniques are yet to be incorporated into 

AMD disease classification systems. Choroidal features are not included in any 

classification system, due to the poor visibility of these structures in retinal 

photography, and the limited understanding of choroidal changes in AMD at the time 

of development.  

The clinical use of stereoscopic retinal photography has largely been 

replaced by OCT imaging in conjunction with conventional 45° digital retinal 

photography. Since OCT provides a high resolution view of the retinal layers, some 

clinical features of AMD such as small drusen may be visible on OCT but not on 

retinal photography. Following anti-VEGF therapy for nAMD (which was not used at 

the time of development of these classification systems), intra-retinal and sub-

retinal fluid are often reabsorbed. This makes the typical signs of this disease stage 

difficult or impossible to see with photography in some cases, resulting in 

misclassification. In light of new imaging equipment and treatment methods, the 

established classification systems may no longer be appropriate in many cases. An 

adapted protocol was therefore adopted for the classifications in this thesis (see 

Section 4.2).   

In summary, AMD presents a substantial problem due to its prevalence, 

debilitating visual symptoms, and lack of cheap and effective treatments 

(particularly for early and atrophic AMD). Opportunities to develop new therapies 

are likely to be identified through an improved understanding of the exact 

pathogenesis of AMD. Retinal signs such as drusen, pigmentary changes, and intra-

retinal fluid are currently used to diagnose and monitor AMD. However, presence of 

the latter sign is indicative of nAMD, by which stage vision is often significantly 

reduced and intervention is typically required. Considering the suggested role of 

hypoxia in AMD, the choroid may provide information predictive of change to the 

overlying retina.  
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Although the choroid has been implicated in AMD pathogenesis, it is still 

unclear of the exact mechanisms behind this. Exploiting advances in in vivo imaging 

may help improve our understanding of the role of the choroid in AMD progression, 

and provide a potential new approach to diagnosing and monitoring the condition. 

Although subfoveal choroidal thickness is commonly reported in studies of the 

choroid, this parameter has high variability, and does not describe the vascular 

structure. Optimisation of existing parameters, and development of new parameters 

to describe the structure, may provide increased sensitivity to choroidal change 

throughout the AMD disease process.  

1.5 Optical coherence tomography  

Optical coherence tomography (OCT) is an optical imaging modality, enabling 

in vivo 3-D visualisation of biological tissue. It is non-invasive, and provides a 

micron-level resolution view of internal structures, making it ideal for medical 

diagnostic purposes. Ophthalmic diagnosis is one of the most clinically developed 

OCT applications, particularly for retinal diseases such as AMD, and OCT imaging is 

routinely undertaken in hospitals and some high street optometry practices. This 

section briefly describes the principles and development of OCT technology, and 

how it has been optimised for imaging the deeper ocular structures pertinent to this 

work, including the choroid.  

1.5.1 Basic principles  

The earliest measurements of a one-dimensional axial scan (equivalent to an 

ultrasound a-scan) were in the 1980s (Fujimoto et al. 1986; Fercher, Mengedoht and 

Werner 1988), with cross-sectional two-dimensional scans (equivalent to an 

ultrasound b-scan) being demonstrated in the early 1990s (Huang et al. 1991). The 

first in vivo OCT imaging studies of the human retina followed in 1993 (Fercher er 

al. 1993; Swanson et al. 1993). Since this time, there has been a tremendous growth 

in the number of publications and citations in the field; from 19 publications in 1996, 

to 1081 in 2006, to 4853 in 2016 (number of search results for ‘optical coherence 
tomography’ on PubMed.gov for each given year). Commercial OCT instruments are 
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now commonplace in hospitals, medical imaging centres and high street optometry 

practices.   

OCT is based on the principle of low-coherence optical interferometry. 

Fundamentally, OCT is analogous to ultrasound, measuring backscattered 

(reflected) light from within the imaged structure. The sampling depth is 

determined by the optical equivalent of echo time delay in ultrasound. By obtaining 

measurements at regular intervals (with increasing depth), OCT is able to produce 

an axial a-scan. Moving the scanning system laterally allows a series of adjacent a-

scans to be obtained, producing a cross-sectional b-scan. Lateral movement in one 

direction is used to form a two-dimensional b-scan, whilst movement in two 

directions forms a 3-D c-scan.  

The design of OCT is based on a Michelson interferometer, which produces 

an interference pattern by splitting a beam from a light source into two paths, using 

a semi-silvered mirror (Figure 1.13A). To produce interference fringes, each path is 

of a different length or comprised of a different material (with a different refractive 

index; n). This results in a phase difference, as the light from one path will return to 

the central mirror before the light from the other path. Once the light returns to the 

semi-silvered mirror, the two paths are recombined, and directed to a 

photodetector. The phase difference between the light from each path is evident 

from the amplitude of the detected signal (resulting from constructive and 

destructive interference).  

The retina is a multi-layered structure, with each layer having different 

reflective properties. It is therefore possible to assess the reflectivity at different 

depths in the retina and discern the individual layers, given sufficient resolution. 

The interferometer within an OCT instrument splits the beam of light in half; the 

beam that enters the eye, and a reference beam (Figure 1.13B). When the beam 

passes into the eye, a small portion of the light is reflected by each retinal layer. The 

reflected beam can be matched to the reference beam by adjusting the position of a 

reference mirror, until the two optical paths lengths are equal. The position of the 

reference mirror allows the reference path length to be ascertained, enabling the 

construction of an image with several predetermined depth points within the retina 

(a-scan). However, light scattering and absorption within the sample ultimately 

limit the depth to which useful OCT imaging is possible (Huang et al. 1991).  
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1.5.2 Resolution 

Several parameters define how useful an imaging modality is, for both 

clinical and research purposes. One of the main advantages of using OCT for medical 

imaging is the complete decoupling of axial (depth) resolution and transverse 

(lateral) resolution (Hitzenberger 2003). The axial resolution is determined by the 

coherence length of the light used and, unlike scanning laser ophthalmoscopy, is not 

influenced by the numerical aperture of the eye nor aberrations arising from the 

Figure 1.13 Schematic diagram of (A) a Michelson interferometer, and (B) optical coherence 
tomography. The return paths and photodetector are shown off-axis for demonstrative 
purposes. Image adapted from Terry (2017). 

A

B



50 

cornea or lens. Transverse resolution is defined by the size of the focussed 

transverse spot of the optical beam.  

Axial image resolution is important for visualising individual layers of the 

retina, and is related to the spectral bandwidth of the imaging light source used as 

described in Equation 1.1 (Drexler 2004).  

Equation 1.1 
 

where:  

∆z is the axial resolution,  

∆λ is the spectral bandwidth of the light source,  

λ is the centre wavelength of the light source used for imaging (assuming a Gaussian  

   spectrum). 

Commercial OCT instruments commonly use broad-bandwidth 

superluminescent diode (SLD) light sources, emitting ~50 nm bandwidths centred 

at ~850 nm, resulting in ~5 µm axial resolution in tissue (n=1.4). Schmitt (1999) 

identifies three parameters as requirements for the ideal OCT light source; emission 

in the near infrared spectrum, a high irradiance, and a short temporal coherence 

length. The coherence length is a finite distance over which light maintains some 

degree of coherence, and is inversely proportional to the spectral bandwidth of the 

light source. Although SLDs satisfy the first two of these parameters and are 

relatively cheap to manufacture, they have a long coherence length, which limits the 

axial resolution. To overcome this limitation, ultrabroad-bandwidth, solid state 

femtosecond Titanium:sapphire lasers have been used, which provide excellent 

resolution but are very expensive and less portable than SLDs, limiting their use to 

research rather than clinical application.  

As previously mentioned, transverse resolution for OCT imaging is defined 

by the size of the focussed transverse spot of the optical beam (Equation 1.2; Drexler 

2004).  
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Equation 1.2 

where:  

∆x is the transverse resolution 

d is the spot size on the objective lens 

f is the focal length of the objective lens 

λ is the centre wavelength of the light source used for imaging (assuming a Gaussian 
   spectrum) 

High transverse resolution images can be obtained by using a high numerical 

aperture (i.e. a reduced spot size) at the expense of a reduced depth of focus. 

Transverse image resolution of the retina is generally limited by pathological or 

normal ageing changes to the intraocular media (i.e. cataracts) and ocular 

aberrations, although this can be minimised using adaptive optics techniques (see 

Drexler and Fujimoto (2008) for a comprehensive review).  

 Other important parameters of OCT for research and clinical use are data 

acquisition time (must be short to minimise motion artefacts and maximise patient 

comfort and exposure safety), detection sensitivity (often compromised in order to 

keep acquisition time to a minimum), image penetration depth in tissue, and image 

contrast (Drexler and Fujimoto 2008).  

1.5.3 Types of OCT 

Early clinical devices were ‘Time Domain OCT’, although these have been 

almost entirely superseded by the newer generation ‘Frequency Domain OCT’, with 

the recent introduction of swept-source systems bringing new opportunities in 

imaging of the deeper structures. OCT angiography has also become commercially 

available, allowing enhanced imaging of vascular structures by using adapted image 

processing techniques in conjunction with conventional OCT imaging, to detect 

blood flow. An explanation of each type of OCT and their advantages and limitations 

are outlined in the following section.  
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1.5.3.1 Time Domain OCT  

The method of adjusting the reference mirror to measure the reflectivity at 

each data point is known as Time Domain OCT (TD-OCT). The need for manual 

movement within the system results in slow image acquisition (~4000 a-scans/sec) 

and hence difficulty in collecting sufficient data to allow for 3-D imaging (Drexler 

2004; Povazay et al. 2007). This was a major limitation of the early commercial 

instruments, such as the Stratus OCT (Carl Zeiss Meditec, Inc., Dublin, CA) system, 

which is now considered obsolete. Furthermore, TD-OCT displays an inverse 

relationship between axial resolution and signal-to-noise ratio (SNR), limiting the 

resolution attainable by this method of imaging (Choma et al. 2003).  

1.5.3.2 Frequency Domain OCT 

The alternative to TD-OCT is Frequency (or Fourier) Domain OCT (FD-OCT). 

This modality assesses the interferometry data in the frequency domain, using 

Fourier transforms to directly obtain the depth-reflectivity profile. FD-OCT 

measures reflectivity along an entire a-scan simultaneously rather than 

sequentially, negating the requirement of a mobile reference mirror. Consequently, 

FD-OCT has a substantially higher a-scan acquisition rate (by approximately 50 

times; Leitgeb, Hitzenberger and Fercher 2003; Drexler 2004; Povazay et al. 2007), 

facilitating the acquisition of 3-D images in a clinically feasible time period (~5 

seconds). FD-OCT has been demonstrated as having higher sensitivity than TD-OCT 

to macular pathologies, including AMD, diabetic macular edema (DME), and uveitis-

related maculopathies (Choma et al. 2003; Gupta et al. 2008; Forooghian et al. 2008; 

Sayanagi et al. 2009; Cukras et al. 2009; Major et al. 2014).  

There are two different methods of acquiring the interferometry data in FD-

OCT; Spectral Domain (SD-) and Swept Source (SS-) OCT. Both use Fourier 

transforms to produce depth-reflectivity profiles which comprise the final OCT 

image (van Velthoven et al. 2007). These techniques are described in more detail in 

the following section.   

Spectral Domain OCT 

The first of these methods (SD-OCT) uses a broadband light source with a 

spectrometer as the detector. The spectral components are spatially encoded rather 
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than time encoded (as in TD-OCT), and a dispersive element is used to spectrally 

distribute the different wavelengths from the light source. The interferometer 

encodes the depth information from the sample across the spectrum, before it is 

spectrally dispersed and imaged by a high speed camera. A single exposure of light 

can be used to build a full-depth scan, resulting in a higher acquisition speed than 

TD-OCT.  

Swept Source OCT  

SS-OCT uses a photodiode detector and a rapidly tuned light source to 

acquire the spectral signature from the sample. Conversely to SD-OCT, the spectral 

components are time encoded rather than spatially encoded, but without the need 

for a mobile reference mirror as in TD-OCT. The use of this type of detector results 

in a higher acquisition rate, reducing image acquisition time whilst maintaining the 

use of 3-D imaging.  Swept source technology is utilised in the latest generation of 

OCT devices; for example, the DRI OCT Triton (Topcon Corp, Tokyo, Japan) has a 

scan rate of 100,000 a-scans/sec, whereas its predecessor, the spectral domain 

Topcon 3D OCT-2000, operates at half this rate (50,000 a-scans/sec).  

Additionally, the sensitivity (defined as the SNR for a perfect sample 

reflector) is independent of both scan depth and source bandwidth, unlike other 

modalities (Choma et al. 2003). This allows visualisation of deeper structures with 

more clarity. The DRI OCT Triton provides choroidal thickness maps for operators 

to evaluate choroidal thickness with minimal time and effort (Hirata et al. 2011). 

This is potentially useful for monitoring choroidal thickness in pathologies known 

to affect choroidal thickness, such as CSC, AMD, pathologic myopia, and angioid 

streaks (Ellabban et al. 2012; Jirarattanasopa et al. 2012; Ohno-Matsui et al. 2012).  

 Klaver et al. (2012) conducted a population-based study on retinal and 

choroidal thickness measured by SS-OCT. A total of 111 participants aged 55 and 

over were included from the Rotterdam Study (Hofman et al. 2007), and 93% of 

scans acquired were deemed to be of high quality. They concluded that the long-

wavelength SS-OCT was fast and relatively easy to use, and provides opportunities 

for evaluating retinal and choroidal thickness in large studies. A disadvantage of 

these swept source systems is the cost to manufacture, and hence the cost to the end 

user.  
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1.5.3.3 OCT angiography 

Optical coherence tomography angiography (OCTA) is a recently developed 

approach to non-invasive vascular imaging. It employs motion contrast to identify 

blood flow, by comparing backscattered signal between rapidly acquired sequential 

OCT images. Point by point signal correlation is used to identify spatial change 

between the images. Areas of no difference between repeated scans are deemed 

stationary, whilst differences in signal are attributed to motion of erythrocytes in 

the blood vessels (Ferrara et al. 2016). Both the retinal and choroidal 

microvasculature may be viewed with OCTA.  The acquisition time of an OCTA scan 

is typically 2-4 times that of an SS-OCT volume scan (~2 seconds), and is comparable 

to a conventional SD-OCT volume scan (~5 seconds). To ensure consistency 

between sequential images, eye tracking and image registration techniques are 

typically employed.   

Injection of contrast material is not required for this technique, providing an 

advantage over the current gold standard angiography techniques; fluorescein 

angiography and indocyanine green angiography. Furthermore, OCTA acquires 

volumetric data, unlike the 2-D photography used in traditional angiography. 

Different layers of the vasculature can therefore be isolated and viewed 

independently with OCTA. For example, the retinal vasculature can typically be 

separated into the superficial plexus and deep plexus, and the choriocapillaris can 

often be visualised. However, since the majority of OCTA devices are adapted from 

conventional OCT devices, the wavelength at which they operate limits visualisation 

of the structures beneath the RPE (see Section 1.6.1.1).  

Since OCTA requires motion to identify vasculature, stationary fluid leakage 

is not easily detectable, as with traditional angiography. Artefacts are inherent in 

OCTA imaging, which commonly arise from eye motion, or overlying vascular 

structures or media opacities (for more detail on artefacts in OCTA, see Spaide et al. 

2015). Unlike other angiography methods, OCTA provides an image representing a 

single time-point, where all vessels are visualised simultaneously. This cannot be 

differentiated into vascular filling and emptying stages (e.g. arteriovenous phase, 

laminar venous phase), as can be investigated from the time-course following 

injection of contrast material. 
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Despite these limitations, OCTA has been shown to be capable of detecting 

changes in choroidal blood flow, indicating the presence of CNV in AMD, and 

capturing microvascular abnormalities in diabetic eyes and vascular occlusions (Jia 

et al. 2014; de Carlo et al. 2015). Although OCTA shows promise for future use in 

clinical identification of vascular changes in pathology, it was not utilised in this 

thesis for a number of reasons. Firstly, this technology was not commercial available 

at the outset of this work. Secondly, it is not optimised for imaging the deeper 

structures, and the SNR of the deeper choroid is often low. Finally, areas of 

particularly high or low flow velocity have been shown to generate signals outside 

the detection range of the device, resulting in artefacts (Spaide et al. 2015; Ferrara 

et al. 2016). The effect of AMD on blood flow and the impact this has on OCTA 

imaging is not yet fully understood. Since the aim of this thesis was to identify 

structural changes to the vasculature in AMD, it seemed pertinent to utilise an 

established imaging technique based on structure reflectivity rather than blood 

flow.  

1.6 OCT imaging of the choroid  

Since choroidal imaging in vivo is a relatively new technique, protocols for 

quantifying the vasculature are not well established. The following section contains 

an overview of OCT optimisation for imaging deeper structures, including the 

choroid. This is followed by a review of histological studies of the choroid in AMD, 

and explores how these quantification techniques may be used to inform study 

design for in vivo choroidal analysis.   

1.6.1 Optimisation of OCT for choroidal imaging 

There are limitations that should be considered when imaging the choroid 

with conventional SD-OCT instruments. For example, there is a decrease in imaging 

sensitivity with increased depth in the structure, termed ‘signal roll-off’. 
Additionally, light scattering by the ocular tissue and optical media results in a 

reduction of the OCT signal. These factors limit the SNR, and ultimately the 

sensitivity of the imaging system. In an attempt to overcome these limitations, 
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alterations to conventional OCT have been made to optimise visualisation of the 

deeper structures, including long-wavelength OCT and enhanced depth imaging. 

1.6.1.1 Light source wavelength 

The majority of commercial SD-OCT instruments utilise a light source with a 

central wavelength of ~800-860 nm. A table of the specifications of several 

commercial OCT devices can be found in Appendix A. More recently, OCT 

instruments utilising a longer wavelength light source in the region of 1050 nm have 

been developed. These provide better visualisation of the deeper structures, 

particularly beneath the RPE. The RPE has a high concentration of melanin pigment, 

which is highly scattering and absorbing. However, the optical properties of melanin 

are strongly wavelength-dependent, with longer wavelengths suffering less from 

scatter and absorption. This allows improved visualisation of the choroid with long-

wavelength OCT devices. This may be clinically useful for diagnosing early stage 

pathologies known to affect the choroid including AMD, particularly when 

accompanied by choroidal neovascularisation (Povazay et al. 2003; Unterhuber et 

al. 2005).  

Long-wavelength OCT also has the advantage of reduced image degradation 

due to scatter caused by opacities in the intraocular media, such as cataracts and 

corneal opacities (since these are also wavelength-dependent), resulting in a higher 

SNR. This enables clinically useful data to be collected in a wider range of subjects, 

particularly those with other age-related ocular conditions such as AMD or diabetic 

retinopathy (Povazay et al., 2007; Drexler and Fujimoto 2008). Additionally, since 

1050 nm is not visible to the human eye, patients will not exhibit the reflex to track 

the scanning line during image acquisition, which is commonly reported with 

conventional-wavelength OCT.  

Assuming the water content of the vitreous to be ~90% and the average 

human axial eye length to be ~25 mm, one can estimate the comparative OCT signal 

loss at various wavelengths. There is a reduction of detectable signal from the retina 

from ~89.4% at 800 nm to ~48.4% at 1060 nm (Hammer et al. 1995; Unterhuber et 

al. 2005). This is largely due to the absorption spectrum of water (Figure 1.14). This 

may be compensated for by increasing the power of the light source, although not 
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exceeding standards for continuous corneal irradiance (ANSI 2000; ICNIRP 2013). 

Images obtained at 1050 nm have been shown to penetrate ~200 µm deeper into 

the choroid than those obtained at 800 nm (Unterhuber et al. 2005).  

 The water absorption spectrum has two wavelength regions where 

absorption is relatively low; below ~950 nm, and a narrow band between 1040-

1100 nm. Three different lasers are also shown in Figure 1.14, displaying the 

suitability of two of these for use in posterior eye imaging, with corresponding water 

absorption minima of ~800 nm and ~1050 nm. The third laser (MenloSystems) is 

clearly unsuitable for this purpose. However, this fiber laser may have clinical 

applications for in vivo imaging of the anterior segment, where the path of light 

through water-filled cavities is shorter prior to reaching the target structure 

(Drexler 2004). The Visante OCT (Carl Zeiss Meditec, Inc., Dublin, CA) uses an SLD 

at 1310 nm for anterior eye imaging, including the anterior segment, cornea and 

lens (e.g. to collect clinical data for LASIK or intraocular lens (IOL) surgery).  

1.6.1.2 Enhanced depth imaging 

Prior to the introduction of commercial long-wavelength OCT devices, 

alterations in acquisition techniques were made to optimise visualisation of the 

deeper structures using conventional-wavelength OCT systems (Spaide et al. 2008). 

These techniques are collectively known as enhanced depth imaging (EDI).  

SD-OCT inherently suffers from depth-dependent signal roll-off; this is a 

reduction in the SNR with increasing distance from the ‘zero delay line’ (the depth 
of highest image sensitivity). In clinical OCT imaging, the retinal structures are 

Figure 1.14 Output spectra of three different lasers: Ti:sapphire laser (black line, left), 
photonic crystal fiber-based source (grey line, centre), and a MenloSystems laser (black line, 
right), overlaid with a water absorption spectrum (broken line). Image from Drexler (2004).
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typically of most interest, and therefore are positioned close to the zero delay line. 

However, this limits the capabilities of SD-OCT for imaging the choroid, which is 

located further from the zero delay line. In EDI, the position of the reference mirror 

is adjusted to invert the image, bringing the choroid closer to the zero delay line. EDI 

is available in the acquisition software of many newer commercial OCT instruments 

(Regatieri et al. 2012b). EDI has been shown to be effective for imaging the choroid 

in healthy individuals as well as those with choroidal abnormalities, including AMD, 

CSC, and CNV in high myopia (Fujiwara et al. 2009; Imamura et al. 2009; Margolis 

and Spaide 2009; Sigler and Randolph 2013).  

However, OCT devices optimised for imaging the deeper structures (e.g. long-

wavelength light sources) are likely to outperform conventional SD-OCT 

instruments with EDI. Visualisation of the deeper structures can be further 

enhanced with image processing techniques, which are discussed further in Section 

2.3.  

1.6.2 Comparison to histology 

Histology is considered the gold standard method of informing and 

validating OCT measurements of the retina and choroid (Toth et al. 1997; Yabushita 

et al. 2002; Drexler and Fujimoto 2008). Pre-dating OCT, histology has contributed 

a large amount to the pool of knowledge on the physiology of the posterior pole, 

including the choroidal vasculature (McLeod and Lutty 1994). Light microscopes 

have a far higher spatial resolution than OCT (~0.2 µm versus ~5 µm), allowing for 

repeatable measurements of small features, including the thickness of Bruch’s 
membrane (~3 µm) and lumen diameters within the choriocapillaris (~8 µm; 

Ramrattan et al. 1994).   

 To investigate choroidal vasculature in vivo, methods of quantifying 

structures can be adapted from previously used ex vivo techniques. There have been 

several publications using histological analysis to investigate changes to the choroid 

in AMD (Sarks 1976; Ramrattan et al. 1994; Spraul et al. 1996; Spraul et al. 1999; 

McLeod et al. 2002; McLeod et al. 2009; see Section 1.4.5). These studies utilise light 

microscopy to visualise the choroidal vasculature, and quantify based upon vessel 

diameter and density.  
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Ramrattan et al. (1994) studied histologic sections of 95 normal human 

maculae and 25 maculae with various stages of AMD. Thickness of Bruch’s 
membrane was measured, as well as length and cross-sectional diameter of the 

capillary lumen in the choriocapillaris (measured parallel and perpendicular to 

Bruch’s membrane respectively), in addition to total choroidal thickness (Figure 

1.15). These were measured 8 times at regularly spaced intervals of 140 µm, and 

averaged. Although measurements of these small structures are possible using 

histology, this feature size is below the resolution limit of current OCT instruments 

and hence cannot currently be measured in vivo. However, it may be possible to 

transfer the concept of lumen length and diameter measurements used in this study 

to the deeper, larger choroidal vessels which can be resolved. Spraul et al. (1996; 

1999) followed a similar approach, extending their histological analysis of the 

choriocapillaris to incorporate diameters of the larger choroidal arteries and veins.  

 To ensure that these measurement techniques are transferrable to OCT 

images, the imaging modalities must be comparable (i.e. the areas or relative high 

or low reflectivity on OCT must relate directly to retinal or choroidal structures on 

light microscopy). Several studies have demonstrated the comparability of OCT 

imaging and histology (Gloesmann et al. 2003; Anger et al. 2004; Curcio et al. 2011; 

Figure 1.16).  

Figure 1.15 Diagram illustrating the measurements performed on histologic sections of 
choroid: (1) thickness of Bruch’s membrane; (2) capillary lumen length; (3) capillary diameter; 
(4) choroidal thickness; (5) total distance (1120 µm) along which measurements were made at 
140 µm intervals. Bruch’s membrane has been exaggerated for demonstrative purposes. 
Image from Ramrattan et al. (1994).
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 Curcio et al. (2011) manually measured thickness of 21 physiological layers 

of retina and choroid (including the choriocapillaris and choroid) at 25 lateral 

locations, in 18 donor eyes. These locations were distributed nasally and temporally 

within the central 6 mm of posterior pole, centred on the foveal pit. Measurements 

were made perpendicularly to the RPE, using the ‘lengths’ tool in IPLab, a 

commercial image analysis program (Scanalytics, Fairfax, VA). The histologic 

measurements and boundary selection were compared to that of ex vivo OCT 

(Spectralis). The measurement methods were very different between the two 

techniques, however the authors concluded that newer OCT systems can accurately 

identify retinal and choroidal layer boundaries, with good agreement to histologic 

measurements with light microscopy.  

 It should be noted that whilst histology provides high-resolution images, 

there are significant limitations. Firstly, availability of donor eyes is limited, 

particularly those from young individuals. Secondly, histology is an ex vivo

technique, requiring an excised eye with no circulation. When considering 

visualisation of the choroid, a highly vascular structure, histology may not be the 

most appropriate approach, since the structure can be expected to change without 

blood flow.  

Figure 1.16 Ex vivo section of monkey fovea imaged using (A) light microscopy and (B) UHR-
OCT.  Image adapted from Anger et al. (2004).

A

B
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For example, the mean macular choroidal thickness of healthy eyes 

measured using histological methods has been reported as 125.7 ± 44.1 µm (Curcio 

et al. 2011) and 139 ± 51 µm (Spraul et al. 1999). This is far lower than the published 

literature on mean choroidal thickness measured using in vivo OCT imaging (ranging 

196 to 354 µm; see Section 1.2.5). The same is true for the mean diameter of the 

large choroidal vessels, reported as 37.1 µm with histological examination (Spraul 

et al. 1999), and ranging from 123 to 160 µm with in vivo OCT imaging (Bittencourt 

et al. 2014; Park and Oh 2014). Curcio and colleagues (2011) identified a mean 

difference between histological and OCT retinal volume measurement of 14.5%, 

attributed to tissue shrinkage during the histological sample preparation process. 

Tissue shrinkage in the choroid was not investigated due to the poor visibility of the 

choroid-scleral boundary in the OCT images. Based on the differences in mean 

choroidal thickness and vessel diameters between the methods reported in the 

literature, the preparation process of histological samples is likely to have a 

substantial effect on the choroidal structure. In fact, choroidal thickness has been 

shown to reduce to approximately half its in vivo value following histologic fixation 

(Li et al. 2016; Figure 1.17).  

In summary, although we are well informed about ex vivo choroidal structure 

from histological techniques, in vivo techniques such as OCT can provide 

information regarding choroidal vasculature in the functioning eye, and in a clinical 

setting. OCT is an established and effective method of imaging the human retina in 

vivo, comparable to histology (albeit with a reduced resolution, and allowing for 

Figure 1.17 Horizontal macular sections comparing histological preparation (post-
enucleation; A) with in vivo EDI OCT imaging (B). The choroid was found to be half the 
thickness following enucleation, with a reduction in the large choroidal vessel diameter 
(arrowheads). Image from Li et al. (2016).
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tissue shrinkage). More recent developments in OCT imaging, such as EDI and long-

wavelength light sources, facilitate optimised visualisation of the choroidal 

structure. The technique is non-invasive, and allows for quick and easy acquisition 

of high resolution 3-D images of the posterior pole, in both clinical and research 

settings. However, the majority of clinical analysis of these images is qualitative, 

with only minimal quantitative analysis available on commercial systems (generally 

limited to retinal layer thickness maps and manual calliper measurements). Section 

1.7 describes various image analysis techniques that may be employed to quantify 

structural features within OCT images.  

1.7 Image analysis techniques 

To gain useful information from a clinical image, structural features must 

undergo evaluation (for example, assessing the integrity of the retinal layers). This 

may be a qualitative evaluation by a skilled clinician, or may involve manual or 

automated analysis to quantify the features. There are two stages to image analysis: 

image preparation and data extraction. The first of these aims to optimise image 

quality, typically with regard to noise reduction and feature enhancement. This is 

followed by data extraction, which may be qualitative or quantitative, depending on 

the purpose of the analysis. In clinical assessment, this is often qualitative analysis, 

whereby clinicians will screen images for signs of pathology (e.g. identifying intra- 

or sub-retinal fluid in OCT images). In research, quantitative analysis is more 

common, for example comparing retinal or choroidal thickness between disease and 

control groups.  

These two processes are collaborative, with image preparation being tailored 

to the type of data to be extracted. For example, enhancement of certain features is 

commonly applied to improve their visualisation. Conversely, the type of data to be 

extracted is also limited by the images themselves; image resolution being a 

common limiting factor. This section explores approaches to data extraction from 

OCT images, including manual parameters, automated segmentation, and machine 

learning techniques. With consideration to these approaches, image preparation 

techniques are discussed in Section 2.3.  
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1.7.1 Manual choroidal vasculature quantification 

For a parameter to be effective at describing the vascular structure, it should 

meet a set of criteria. For clinical feasibility, it should be easily applicable to existing 

imaging techniques (e.g. OCT), with minimal processing time and user input (to 

minimise inter-observer variation). Parameters should be sensitive to detecting 

differences between groups, for example, between disease and control groups (for 

diagnosis), or over time (for monitoring). For biological parameters, this is often 

difficult to achieve due to large variations between individuals, and between repeat 

measurements, often due to confounding factors. For instance, subfoveal choroidal 

thickness has high variability between individuals, and is affected by many short-

term factors including time of day and caffeine intake (see Section 1.3). Parameters 

should therefore also demonstrate good intra- and inter-session repeatability.  

The parameter most commonly used to describe the choroid is choroidal 

thickness. This is typically measured subfoveally, or at defined locations relative to 

the foveal pit or ONH, using digital callipers. Alternatively, it may be obtained using 

automated segmentation algorithms (see Section 1.7.2). Other vascular parameters 

have been evaluated to describe the vasculature itself, including vessel diameter 

(Yang et al. 2013; Park and Oh 2014), thickness of the choroidal sublayers (Haller’s 
and Sattler’s layer; Park and Oh 2014; Esmaeelpour 2014b), and assessment of the 

ratio of vessel lumen to surrounding stromal tissue (Branchini et al. 2013; Sonoda 

et al. 2015).  

1.7.1.1 Vessel diameter 

Vessel diameter has been investigated as a potential parameter to describe 

the choroidal vasculature in pathological and healthy eyes (Yang et al. 2013; 

Bittencourt et al. 2014; Park and Oh 2014). Yang et al. (2013) performed manual 

diameter measurement of the largest visible vessel with a zone of width 4500 µm, 

centred on the fovea (Figure 1.18). This was measured perpendicularly to Bruch’s 
membrane at the widest point of the lumen. Two masked observers performed the 

measurements, and measurements were re-performed if the inter-observer 

difference was >15%. In cases with a difference ≤15%, the mean of the two values 
was used. Line scans (average of 100 b-scans) acquired using the Spectralis OCT 

were utilised in this study. This parameter was used to demonstrate vascular 
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engorgement in CSC, both in the affected and fellow eye (vessel diameters of 305 ± 

101 µm and 251 ± 98 µm respectively, versus 140 ± 40 µm in the control group). 

However, only a single vessel per eye was used in analysis, with small sample sizes 

(n=15 per group). The measurement protocol provides no assessment of changes to 

the smaller choroidal vessels.  

Bittencourt et al. (2014) measured vessel diameter in Haller’s layer at 3 
locations within a single foveal b-scan (subfoveal, 2 mm nasally and 2 mm 

temporally). This was repeated for two further b-scans, 2 mm superior and 2 mm 

inferior to the foveal b-scan. A mean was calculated from these measurements, and 

was shown to be smaller in eyes with chronic posterior non-infectious uveitis than 

healthy controls (123 ± 37 µm and 160 ± 32 µm respectively). Park and Oh (2014) 

followed a similar protocol, and measured the diameter of large choroidal vessels at 

Figure 1.18 Example OCT b-scan from an eye with CSC (A), the fellow eye (B), and a healthy 
control eye (C). Arrowheads denote the posterior choroidal boundary, and subfoveal choroidal 
thickness is shown by the long white arrows. The shorter vertical arrows represent the 
diameter of the largest vessel lumen. Image from Yang et al. (2013). 
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locations 750 µm nasal, temporal, inferior and superior of the fovea. Large vessels 

were defined as measuring ≥100 µm in adults, and ≥80 µm in children, based upon 

unpublished pilot data. Mean choroidal vessel diameters were 123 ± 21 µm (age 

30.7 ± 4.3 years) and 103 ± 16 µm (age 6.7 ± 1.9 years). This difference was 

statistically significant, despite there being no significant difference in choroidal 

thickness between the groups.  

1.7.1.2 Haller’s and Sattler’s layer thickness

Although these measurement protocols include multiple vessels per eye, 

limitations associated with sampling selection (i.e. representation of the population 

within those structures sampled) are inherent. To minimise the effects caused by 

individual vessel quantification, several studies have used choroidal sublayer 

thicknesses to quantify the choroidal vasculature (Sim et al. 2013; Branchini et al. 

2013; Park and Oh 2014; Esmaeelpour 2014b; Adhi et al. 2015; Lu et al. 2016). This 

is based upon differentiation of the large and medium vessel populations, i.e. 

Haller’s layer and Sattler’s layer.  

The thickness of these two choroidal sublayers has been documented in 

healthy eyes. Park and Oh (2014) found the large vessel layer thickness to be 238.3 

± 55.9 µm and the medium vessel layer to be 88.5 ± 28.4 µm in adult eyes. These 

values are similar to the findings of Branchini et al. (2013), who measured layer 

thicknesses of 204.3 ± 65.9 µm and 52.9 ± 20.6 µm respectively. These digital 

calliper measurements were taken from three locations; subfoveal, and 750 µm 

nasally and temporally. This same manual measurement protocol was utilised to 

demonstrate significant thinning of both vascular layers in diabetic retinopathy and 

geographic atrophy (Adhi et al. 2013; Adhi et al. 2014). The control groups in these 

studies consisted of healthy eyes, with good agreement in vessel layer thicknesses 

to previous findings. However, these measurement protocols required manual 

calliper measurement at several pre-defined point locations in the image, again 

introducing sampling limitations. To further minimise this limitation, segmentation 

of the choroidal boundaries was used to obtain thickness measures averaged over a 

defined region, for example ETDRS subfields.  
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Sim et al. (2013) assessed the repeatability and reproducibility of a novel 

segmentation protocol to identify the large and medium vessel layers, in eyes with 

DR. Two observers manually segmented three boundaries; outer border of RPE, 

choroidoscleral junction, and the Haller-Sattler layer boundary (Figure 1.19). This 

intra-choroidal boundary was defined as the top of the hypo-intense areas of large 

vessel lumen (the Haller layer). The Sattler layer included the choriocapillaris, as 

this was deemed indistinguishable due to its small thickness. High reproducibility 

in choroidal thickness within a standard ETDRS grid was found, with a mean inter-

observer difference of 4.1 µm and 13.7 µm for the Haller and Sattler layers 

respectively. Intra-observer repeatability was also assessed, resulting in coefficients 

of repeatability (CoR) of 35.2 µm (29.6%) and 29.2 µm (26.0%) respectively. The 

authors concluded that the choroidal vascular sublayers can be quantified in eyes 

with DR, with good repeatability and reproducibility. A similar segmentation 

protocol was used to demonstrate a reduction in the area of Sattler’s layer (as a 

percentage of total choroidal area) in intermediate AMD (41.1%), when compared 

to early AMD and healthy controls (Lu et al. 2016). No significant difference was 

found between eyes with early AMD (47.6%) and healthy controls (47.2%).  

Esmaeelpour et al. (2014b) developed an automated algorithm to segment 

the Haller and Sattler layers in images acquired with a long-wavelength OCT, in eyes 

with and without dry AMD. Mean thickness of Haller’s layer and Sattler’s layer 

Figure 1.19 Example b-scan with manually segmented boundaries within the choroid. Black 
arrowheads (A) and yellow line (B) indicate the boundary between the Haller and Sattler 
layers. Black stars (A) denote areas with ambiguous boundary definition. Image adapted from 
Sim et al. (2013). 
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within a standard ETDRS grid were calculated. For healthy eyes, intra-session CoR 

(as a percentage of mean thickness) were 18% and 23% for Haller’s and Sattler’s 
layer respectively, whilst inter-session CoR were 19% and 26%. For the AMD group, 

intra-session CoR were 22% and 44% respectively, whilst inter-session CoR were 

21% and 34%. This is comparable to the repeatability of manual segmentation in 

diabetic eyes reported by Sim and colleagues (2013). Both vascular layers were 

found to be significantly thinner in intermediate AMD with nAMD fellow eye 

diagnosis, when compared to healthy eyes and to bilateral intermediate AMD 

(Esmaeelpour 2014a). There was no difference between the eyes with intermediate 

AMD and the nAMD fellow eye, although both layers were thinner in the nAMD eyes 

than the healthy group. Although this algorithm showed feasibility for automated 

segmentation of the choroidal sublayers, it is not currently available outside the 

institution in which it was developed.  

1.7.1.3 Thresholding and binarisation 

In OCT images, varying intensity is representative of reflectivity of the 

imaged structure. Structures with high reflectivity appear bright (e.g. pigment), 

whilst those with low reflectivity appear dark (e.g. fluid). In the choroid, the vessel 

lumen have low reflectivity and appear darker than the surrounding stromal tissue, 

which has higher reflectivity. This relative difference in intensity can be used to 

distinguish between the vessel lumen and stroma, within the choroidal structure. By 

defining a ‘cut-off’ intensity value, greyscale images may be converted to binary 

images, with pixels below this intensity threshold becoming black and pixels above 

the threshold becoming white. This technique is known as thresholding, and can be 

used to identify lumen and stroma within a choroidal image. From these binary 

images, the percentage lumen or stroma can be easily ascertained.  

Thresholding of OCT images has been applied in several investigations of 

choroidal structure in vivo (Branchini et al. 2013; Sonoda et al. 2015; Agrawal 

2016a; Kuroda et al. 2016). Two main methods of automated thresholding have 

been utilised; Otsu global thresholding and Niblack’s autolocal thresholding (Otsu 

1979; Niblack 1986). Otsu’s method determines a single threshold value applied to 
every pixel within the image, using an iterative method to minimise intra-class 

variance. Branchini et al. (2013) applied this method to OCT scans of healthy eyes 



68 

(n=42), to determine the ratio of choroidal stroma to vessel lumen. A ratio of 0.27 ± 

0.08 was found, suggesting a greater proportion of vessel lumen in the choroidal 

layer. This was conducted for a single averaged b-scan through the foveal pit, and 

therefore included vessels from all depths within the choroid. This was conducted 

on a conventional-wavelength OCT (Cirrus HD-OCT; Carl Zeiss Meditec, Inc., Dublin, 

CA), prior to the advent of EDI; the authors suggest that the use of long-wavelength 

OCT may be beneficial to this methodology. Otsu thresholding has since been 

applied to enface images (at a constant depth beneath the RPE; see Section 2.3.3) 

acquired with the Topcon DRI OCT Triton (Kuroda et al. 2016). These images were 

of healthy eyes (n=26) and eyes with CSC (n=40). Vascular area (defined as the 

percentage of vessel lumen in the binarised image) was found to be significantly 

higher in eyes with CSC, although the authors acknowledge that the protocol of 

threshold selection was gross, and should be improved to distinguish stroma from 

lumen.  

Niblack’s autolocal thresholding defines a threshold based upon mean and 
standard deviation pixel intensity within a predefined neighbourhood size. The 

threshold is therefore not consistent across the image. This method accounts for 

fluctuation in mean intensity across the image (i.e. regions of relative high or low 

intensity). This is particularly pertinent to the use of OCT images, as areas of low 

relative contrast may result from overlying media opacities or retinal features (e.g. 

CNV). Sonoda et al. (2014) outlined a protocol for thresholding OCT cross-sectional 

scans using a modified Niblack method. The luminal and stromal areas were 

automatically calculated for 20 healthy eyes and 15 eyes with active nAMD pre- and 

post- photodynamic therapy (PDT). A variation of this protocol has been verified on 

healthy eyes (Figure 1.20), and a parameter was developed to quantify the vascular 

status of the choroid, termed choroidal vascular index (CVI; Agrawal et al. 2016a). 

This was calculated by dividing luminal area by total choroidal area; on average, 

approximately 66% of the subfoveal choroid was found to be vascular in healthy 

eyes. This analysis has since been used to investigate the choroidal vasculature in 

several ocular diseases, including nAMD, CSC, VKH disease, panuveitis, and diabetes, 

with promising results (Wei et al. 2016; Agrawal 2016b; Agrawal 2016c; Agrawal et 

al. 2016d; Tan et al. 2016; Koh et al. 2017).  
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1.7.2 Automated segmentation 

The resolution of modern OCT systems allows visualisation of several intra-

retinal layers and individual choroidal vessels. The number of studies utilising OCT 

has created a demand for fast, automated methods of segmentation (boundary 

identification) and quantification of features. Retinal layer segmentation has a clear 

clinical use in gaining a quick insight into the health and integrity of the retinal 

layers, with many commercial OCT instruments now providing reliable and 

repeatable on-board segmentation software (Giani et al. 2010; Terry et al. 2016; 

Hanumunthadu et al. 2017). This information is often presented to the clinician as 

layer thickness maps, which are quickly generated, relatively easy to interpret, and 

can be compared to a database of healthy, age-matched individuals. However, 

segmentation of the well-defined retinal layers and the somewhat less-defined 

choroidal vessels and posterior choroidal boundaries are very different tasks, each 

presenting unique obstacles to overcome. The following section briefly outlines 

recent developments in automated layer segmentation software and choroidal 

vessel segmentation algorithms (for examples, see Figure 1.21).  

Figure 1.20 Niblack’s autolocal thresholding applied to a cross-sectional SD-OCT scan of a 
healthy eye. Luminal (dark) and stromal (bright) areas are identified (A). A central region of 
interest (1.5 mm in width) is identified (B). The binarised image is used to produce segmented 
vessels (C). Vessel segmentation overlay on original b-scan (D). Image adapted from Agrawal, 
Gupta, et al. (2016). 
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1.7.2.1 Choroid and intra-retinal layer segmentation 

Commercial OCT devices are supplied with on-board analysis software, 

which is usually capable of producing automated segmentation of the retina, and 

often a number of intra-retinal layers. The definition and number of layers varies 

greatly between devices, with some now even incorporating automated choroidal 

layer segmentation, for example the Topcon DRI OCT Triton (Figure 1.21B). The 

repeatability of this particular algorithm is assessed in Section 3.4. Although these 

algorithms are convenient for fast clinical review of acquired images, this on-board 

software is almost universally restricted to use on images acquired by the parent 

device, limiting its application in a research capacity.  

Beyond on-board OCT analysis software, there are a number of fully 

automated intra-retinal layer segmentation algorithms have been developed. These 

have mostly been developed at research institutions, and are device-independent 

(i.e. allow input of images from multiple OCT devices). This section outlines these 

segmentation algorithms, including their potential applications and limitations. 

Each algorithm is assessed against a list of criteria, including number of layers, 

availability of the software, and ongoing development; a summary can be seen in 

Table 1.3. The published accuracy and reproducibility of each algorithm is 

discussed, where this information is available.  

Figure 1.21 Examples of automated feature segmentation on OCT images. (A) Intra-retinal 
layer segmentation with the Iowa Reference Algorithms. (B) Choroidal layer segmentation 
with the DRI OCT Triton (Topcon) on-board analysis software. (C) Choroidal vessel 
segmentation; image from Kajić et al. (2013). Images in A and B acquired by L. Terry during 
conduct of this study. 
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Table 1.3 Comparison of intra-retinal layer segmentation algorithms.  

Algorithm/
software

Number of intra-
retinal layers

Choroidal 
segmentation?

Free to 
use? 

Continued 
development?

Iowa Reference 
Algorithms

11 Yes Yes Yes

DOCTRAP 7 No Unknown Yes
Orion 7 No No Yes
OCTSEG 6 No Yes No

Iowa Reference Algorithms 

 The Iowa Reference Algorithms (Retinal Image Analysis Lab, Iowa Institute 

for Biomedical Imaging, Iowa City, IA) contains OCT Explorer for viewing and 

annotating images, and OCT Segmenter which is capable of segmenting 11 retinal 

layers and 2 choroidal layers in 3-D macula OCT images (Abràmoff et al. 2010; Zhang 

et al. 2015; Sonka and Abràmoff 2016; Figure 1.21A). It can import images exported 

from several commercial OCT devices, as well as standard image formats including 

‘.tif’ and ‘.jpg’. These algorithms are based on graph-theory and contextual 

information from neighbouring b-scans, and are documented in detail by Abràmoff 

et al. (2010). They were adapted for SD-OCT by Garvin et al. (2009) from an 

algorithm by Li et al. (2006), originally designed for TD-OCT.  

Garvin and colleagues (2009) validated the intra-retinal layer segmentation 

using images from 24 healthy eyes, manually segmented by two experienced 

ophthalmologists as a reference standard. A software boundary positioning error of 

5.69 ± 2.41 µm was found, which was very comparable to the inter-observer 

variability of 5.71 ± 1.98 µm. Philip et al. (2016) validated the choroidal 

segmentation on healthy eyes (n=18), demonstrating good agreement between SD-

OCT and SS-OCT, with automated and manual boundary placement. At the time of 

writing, these algorithms are still undergoing further development, and support is 

available from the developers (https://www.iibi.uiowa.edu/content/iowa-

reference-algorithms-human-and-murine-oct-retinal-layer-analysis-and-display; 

accessed 11th January 2017).   

DOCTRAP 

 An alternative segmentation algorithm is the Duke Optical Coherence 

Tomography Retinal Analysis Program (DOCTRAP; Duke University, Durham, NC). 

This algorithm is also based on graph theory, and is capable of segmenting 7 layers 
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in normal eyes, as accurately as expert graders (Chiu et al. 2010). The software has 

been shown to produce automated thickness values with good agreement with the 

on-board segmentation of Spectralis and Cirrus HD-OCT in DME (Lee et al. 2013a; 

Willoughby et al. 2017). It has also been shown to accurately and reproducibly 

segment retinal boundaries in images containing drusen and GA, producing 

potentially useful metrics representing RPE changes in AMD (Chiu et al. 2012). 

Srinivasan et al. (2014a) applied this software to OCT images of mice retinae with 

and without pathology, and found the software to accurately segment retinal layer 

boundaries when compared to manual segmentation. The DOCTRAP software 

package also has the facility for manual segmentation, although it is not widely 

available outside the institution in which it was developed 

(https://olv.duke.edu/tech/3383; accessed 11th January 2017).  

Orion 

 Orion is a device-independent 7 layer segmentation software package 

produced by California-based company Voxeleron. This automated algorithm has 

been shown to have good agreement with manual segmentation by experts, and has 

excellent repeatability across all reported layers (Oakley et al. 2014). To date, the 

majority of studies utilising this algorithm aimed to investigate retinal changes in 

optic neuritis and multiple sclerosis, rather than retinal pathology (Saidha et al. 

2011; Syc et al. 2012). This software was released commercially in 2014, and is 

undergoing further development (http://www.voxeleron.com/orion; accessed 11th

January 2017).  

OCTSEG 

 The Optical Coherence Tomography Segmentation and Evaluation GUI 

(OCTSEG) is a MATLAB-based retinal layer segmentation algorithm under 

development at The Pattern Recognition Laboratory (University of Erlangen-

Nuremberg, Germany). The output from this software has been shown to be 

comparable to manual segmentation results on normal and glaucomatous eyes 

(Mayer et al. 2010). However, the focus of the currently published work is on 

glaucoma and the ONH, and only the retinal nerve fibre layer (RNFL) is discussed in 

any detail. This suggests that the algorithm may not be optimised for application to 

macular scans. Development on this algorithm has now ceased, and no technical 
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support is available (https://www5.cs.fau.de/research/software/octseg; accessed 

11th January 2017).  

 To conclude, each of these algorithms has limitations, and are likely 

optimised for differing applications, dependent on which structure or layer is 

intended for assessment. It is important to note that none of these algorithms are 

approved for clinical use, and are currently intended for research use only. Of these 

algorithms, the Iowa Reference Algorithms is capable of segmenting the most intra-

retinal layers, and is the only one to include automated choroidal segmentation. 

Lastly, it is freely available for download and use, and support from the developers 

is available. Further detail on this software, as well as an evaluation of repeatability 

and agreement with on-board segmentation of two commercial OCT systems 

(Topcon 3D-OCT 1000 and Zeiss Cirrus HD-OCT), can be found in Section 3.1 (and 

Terry et al. 2016; Appendix G).   

1.7.2.2 Choroidal vessel segmentation 

Until recently, limitations in commercial OCT technology have restricted 

analysis of the choroid to calliper measurement or manual segmentation. 

Advancements such as long-wavelength light sources and EDI have been 

accompanied by a limited number of publications describing algorithms to allow 

automated choroidal vessel segmentation (Zhang et al. 2012; Duan et al. 2013; Kajić 
et al. 2013). These have used a variety of techniques to differentiate the vessel lumen 

from surrounding stromal tissue.  

Zhang et al. (2012) modelled choroidal vessels as 3-D tube-like objects to aid 

vessel detection, and segmented vessels by thresholding voxels (3-D pixels) 

obtained by the vessel detection algorithm. The authors showed this automated 

method to have high reproducibility, but the sample size was relatively low (n=24), 

and restricted to healthy individuals. Furthermore, only around half of the repeat 

scans (24 of 43) were of sufficient image quality to warrant further analysis. For 

clinical application of this technique, further optimisation would be required. This 

study was conducted using a Cirrus HD-OCT, although the authors suggested that 

the use of a long-wavelength OCT may result in a larger percentage of images 

providing useful measurements.  
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Duan et al. (2013) produced enface images at a constant depth beneath the 

RPE, and applied algorithms to filter noise and threshold. This was combined with 

segmentation of overlying retinal vessels to remove resulting shadows from the 

binarised image, before vessel diameter and thickness analyses were conducted. 

This methodology was found to not be reliable for the choriocapillaris, and 

processing times were fairly extensive (~20 minutes per volume scan), limiting 

their application to large datasets. Furthermore, the images used in this study were 

of a small number of healthy eyes (n=8) and there is no published data on its 

performance in eyes with pathology.  

Kajić et al. (2013) developed a fully automated vessel segmentation 

algorithm using 3-D edge filtering and projection of probability cones to determine 

the likely position of a vessel core (Figure 1.21C). Images from a non-commercial 

long-wavelength OCT were used, and the authors claimed that the algorithm could 

produce results even in tomograms with a low SNR. The applied processing took 5-

10 minutes per volume scan on an average desktop machine (2 GHz, 8 GB RAM), and 

the algorithm was tested successfully on both healthy eyes (n=45), and eyes with 

dry AMD (n=10; Esmaeelpour et al. 2014b). The authors cautioned that since the 

technique was developed using images from a non-commercial OCT, it would be 

expected that the algorithms would require adapting for optimised performance on 

commercial OCT devices.  

 In summary, each of these approaches to choroidal analysis appear to have 

different strategies of segmenting and assessing choroidal vasculature, with 

associated limitations. At present, none of these algorithms are at a stage of 

development to be released outside the institutions in which they were produced, 

or to be applied clinically. These algorithms are therefore not utilised in this thesis. 

However, a custom thresholding protocol of enface choroidal images is evaluated in 

Section 3.2. The development of OCTA has led to a migration in research interest for 

many groups investigating choroidal vasculature from conventional OCT to OCTA 

(see Section 1.5.3.3). However, analysis of these images is typically qualitative at this 

stage, as quantitative analysis is limited (Koustenis et al. 2016).  



Chapter 1 – Introduction 

75 

1.7.3 Machine learning  

Machine learning is the study and construction of algorithms that are capable 

of learning from and making predictions on data. Training data is used to form the 

basis of the algorithm, providing features from which predictions are based when 

novel data is encountered. This technique is ideal for big data, where designing and 

programming explicit algorithms for each given task is unfeasible. There are many 

established methods of feature extraction, algorithm training, and validation; a 

detailed description and evaluation of these can be found in Chapter 5.  

All of the image analysis methods described in Sections 1.7.1 and 1.7.2 are 

limited by visualisation of the choroid in OCT images. This can largely be attributed 

to limited SNR and the relatively low contrast of the choroidal vessels caused by 

signal roll-off (although averaging could ameliorate this to some extent). In similar 

cases, machine learning approaches have been utilised, to identify more complex 

textural features within a region of poor contrast (Wernick et al. 2010; Alpaydin 

2014; de Bruijne 2016). The simplest way to assess the viability of such a method is 

to determine whether texture changes are detectable with advancing disease. This 

approach is based on mathematically extracting shape and orientation information 

from images, which reflect the underlying physiological structure.  

Clinical classifications are established for AMD (see Section 1.4.7), and can be 

used to establish the ‘true’ classification of data, upon which to train the learning 
algorithms. This is known as the ground truth, and is used for testing the accuracy 

of the algorithms. Successful classification of novel images into disease groups 

(based on severity or subtype) indicates that differences are detectable in the 

structure between groups or with advancing disease, and that automated 

classification is feasible using machine learning algorithms. To the author’s 
knowledge and at the time of writing, no automated techniques have been 

developed to classify images by AMD disease severity, based on choroidal 

appearance (keyword searches for “machine learning” AND “choroid” on PubMed, 
Web of Science, and Scopus; 28th April 2017). Therefore, studies described in this 

section fall into two categories; applying machine learning techniques to the 

detection of AMD from OCT images, and to the classification of AMD from retinal 

photographs. See Chapter 5 for more detail on the techniques described here.  
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1.7.3.1 AMD detection from OCT images 

 Only one study has applied machine learning principles to automated 

classification of OCT images based solely on choroidal appearance (Koprowski et al. 

2013). A retrospective analysis of 1000 OCT images was conducted. Morphological 

and texture features were extracted from the choroidal region, and were used to 

build a classifier using ‘decision trees’ from 600 of the images. The remaining 400 

were used for validation and testing. The random forest classifier (RFS) uses a series 

of weak (only slightly better than chance) binary decision trees; a majority decision 

from multiple trees is utilised for the final classification (Breiman 2001). The 

features were based upon number of ‘objects’ in the image, average position of the 

centre of gravity in the x- and y-axis, and standard deviation of the mean brightness 

of pixels within the objects. Ophthalmological diagnosis into one of three groups was 

used as the ground truth, to assess accuracy of the classifier. The three groups used 

were nAMD or DME, ischemia of the inner retinal layers, and scarring fibrovascular 

tissue. Classification accuracy was 73%, 83% and 69% respectively. In this study, 

the choroid layer was defined as all portions of the image posterior to the RPE, which 

included the sclera. Furthermore, since this was a retrospective analysis, the images 

were not optimised for choroidal visualisation during acquisition. Crucially, the 

feature classification was, at least in part, dependent on differences in choroidal 

appearance caused by overlying retinal features, rather than solely changes to the 

choroidal morphology. For instance, the authors comment that the neovascular 

group displayed characteristic shadows in the choroid caused by retinal changes, 

and a global reduction in brightness was evident in the ischaemic group. From this, 

no conclusion could be drawn with regard to differences in the choroidal 

vasculature between disease groups.  

 Srinivasan (2014b) extracted features from 45 OCT images, using multiscale 

Histograms of Oriented Gradient (HOG) descriptors. This essentially describes the 

shape of objects by assessing the strength and orientation of the spatial gradients in 

the image (Dalal and Triggs 2005). These features were used to train a support 

vector machine (SVM)-based classifier to identify images into one of three groups; 

normal, dry AMD, or DME. SVM is based on the theoretical mapping of features in 

space and determination of the optimal plane to best separate the data into classes 

based upon these features (Cortes and Vapnik 1995; Kim et al. 2002). Classification 

accuracies of 86.7%, 100% and 100% were achieved for the normal, dry AMD, and 
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DME groups respectively. Srinivasan and colleagues describe the insufficiency of a 

single b-scan for diagnosing retinal diseases, hence volume scans were utilised for 

this study. Within a single volume scan, a representation of 33% b-scans of a single 

disease state was found experimentally to be the optimum cut-off for detection rate 

(i.e. if a third or more of the b-scans were classified as AMD, a final classification of 

AMD was given for that eye). Prior to feature extraction, images were cropped 

axially to 40 pixels above and 5 below the mean lower boundary of the retina. This 

excluded the majority of the choroid from this analysis.  

 Albarrak et al. (2016) also utilised HOG descriptors for automated detection 

of AMD from OCT volume scans. This feature detection methodology avoids 

segmentation-based methods which rely on high contrast features and are generally 

time consuming. Similarly to the work of Srinivasan and colleagues, SVM classifiers 

were trained for automated classification, although this time there were only 2 

groups; AMD (n=72) and normal (n=68). Parameters relating to feature extraction 

refinement were experimentally optimised, achieving a classification performance 

ranging from 86% to 100%. The Area Under the Receiver Operator Characteristic 

Curve (AUC) was used to assess performance in this study. This method of assessing 

performance is independent of the decision threshold chosen, and demonstrates 

increased sensitivity in ANOVA tests (Bradley 1997). Unlike the other methods 

discussed in this section, Albarrak and colleagues utilised 3-D feature extraction, 

rather than considering 2-D b-scans individually. However, due to the requirement 

of non-excessive computation time, parameters were constrained to a relatively 

small range.  

Artificial neural networks are a commonly used approach to computational 

classification, modelled on biological neural networks, such as those behind image 

recognition in the human brain (Lippmann 1987; Specht 1990). This is a ‘deep 
learning’ technique, and features are self-learnt by the classifier through a series of 

feed-back and feed-forward loops. This negates the need for ‘hand-crafted’ features 
such as the HOG descriptors described previously, which can introduce an element 

of bias. However, very large datasets are typically required to train a classifier with 

high accuracy (Krizhevsky et al. 2012). The largest study to date to apply these 

techniques to classification of OCT images is Lee et al. (2017). Convolutional neural 

networks (CNN) were used to automatically classify normal (n=1259) versus AMD 
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(n=347) based on retinal appearance, achieving a sensitivity of 88.6% and 

specificity of 87.8%. Apostolopoulos et al. (2016) applied CNN to a smaller dataset; 

n=269 intermediate AMD, and n=115 without AMD. Their ‘RetiNet C’ algorithm 
achieved an AUC of 99.7%. From these studies, CNN appears to be a promising 

technique for automated screening and computer-aided diagnosis of AMD using 

volumetric OCT images.  

1.7.3.2 AMD classification from retinal photographs 

 Machine learning techniques have also been applied to automated detection 

and classification of AMD from retinal photographs. Parvathi and Devi (2007) 

optimised algorithms for drusen detection, using log-Gabor filters for feature 

extraction. This is an established texture-based technique, using a series of linear 

filters of varying frequency and orientation to localise and extract information (Jain 

and Farrokhnia 1990).  

 Kankanahalli et al. (2013) advanced from disease detection, and evaluated 

automated classification by AMD severity. A subset of 600 subjects from the AREDS 

study were selected for analysis (divided equally between nAMD, GA, and control 

patients). Visually salient features (relatively prominent textural features) were 

extracted from retinal photographs, and used to train random forest classifiers for 

4 different severity classes; AREDS categories 1-4 (AREDS 2001a). For a 3-class 

severity problem (i.e. combining categories 1 and 2), an accuracy of 91.8% was 

achieved. Priya and Aruna (2011) also attempted to classify images into disease 

groups, although this time by type of disease rather than severity. A Kirsch operator 

(another method of edge detection) was used to extract features, predominantly 

describing blood vessels visible in the retinal photographs. These were used to train 

a probabilistic neural network to classify into 3 groups; normal, dry AMD, and wet 

AMD. This method achieved sensitivity of 94% and specificity of 95%. However, 

these were coarse groups with distinct differences in retinal appearance, so a high 

classification accuracy was to be expected.  

 In summary, machine learning techniques have been applied to detection of 

AMD from OCT images, as well as disease severity classification from retinal 

photographs. The results show potential for automated disease detection using a 
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variety of feature extraction techniques (e.g. Gabor filters, HOG descriptors) and 

classifier training methodologies (e.g. random forest, SVM, and neural networks). 

Since the choroid is known to be implicated in the pathogenesis of AMD, but 

methods of quantifying the vasculature have significant limitations (see Section 

1.7.1), machine learning should be explored as an alternative approach to analysis. 

To date, no algorithms have been optimised for automated classification of AMD by 

disease severity (early- and late-stage AMD) based upon textural appearance of the 

choroid.  

1.8 Project overview and aims 

It is clear from the literature that structural changes to the choroid have been 

identified in AMD, although these are not typically detectable in the early disease 

stage. However, the hypoxia theory of AMD suggests that changes to the choroid are 

linked to signs of early disease, such as drusen development (Feigl 2007). A number 

of factors make detecting these changes difficult in vivo. Firstly, choroidal thickness 

is the most common parameter used to quantify the structure. The normal variation 

in this parameter is large, and differences in mean thickness between disease groups 

would therefore need to be large to reach statistical significance. Furthermore, 

relatively small changes in early disease may be masked by other factors shown to 

cause fluctuations in choroidal thickness, difficult to control for in experimental 

study design (e.g. smoking and cardiovascular associations such as hypertension).  

Other parameters have therefore been explored to describe the vessels 

themselves, such as vessel diameter and choroidal vascularity index. Although 

imaging technology now allows for optimised visualisation of the choroid, inherent 

image noise and signal lost to the overlying structure continue to limit the ability to 

differentiate vessel lumen from surrounding tissue. The main aim of this thesis was 

therefore to determine whether structural changes to the choroidal vasculature in 

AMD are detectable using long-wavelength OCT imaging, and whether they have any 

potential clinical value in detecting or monitoring AMD. This was addressed by 

evaluating methods for vessel quantification, adapted from previously described 

protocols (Sohrab et al. 2012; Bittencourt et al. 2014; Sonoda et al. 2014). This 

included assessment of the repeatability of vascular parameters.  



80 

Since the majority of these analysis techniques require input from an 

observer, they are often time consuming, limiting their clinical application. Machine 

learning algorithms have been shown to be capable of automated classification of 

medical images (Wernick et al. 2010). Once classifiers have been developed using a 

training set of images, no further subjective input is required to establish a 

classification of a previously unseen image. This makes machine learning algorithms 

ideal for integration into clinical image analysis software. As an example, on-board 

OCT image analysis software could be made capable of producing a likely disease 

diagnosis from a newly acquired image, providing a fast and accurate tentative 

diagnosis for triaging busy hospital clinics. This could ensure that clinical 

assessment and treatment be delivered to those requiring most urgent care and 

minimise false positive referrals into secondary care.  

As a step towards this ultimate aim, the feasibility of these techniques for 

classifying choroidal OCT images by AMD disease severity was evaluated. Following 

classifier training, features with the strongest relationship with disease stage (i.e. 

contributing to classification) were extracted to provide information on how the 

vasculature differs between disease states. For example, different spatial 

frequencies may peak in each disease stage, which could be linked to changes in 

vessel diameter or density. Relating the features to vascular parameters may further 

our understanding of vascular changes in AMD, and the role of the choroid in the 

pathogenesis of the condition.  

The main aim of this thesis is to determine whether structural changes to the 

choroidal vasculature in AMD are detectable using in vivo OCT imaging.  

To achieve this, three supplementary aims are as follows:  

1) To optimise protocols for image acquisition and processing for enhanced 

visualisation of the choroidal vasculature.  

2) To evaluate parameters describing the choroidal vasculature, including 

assessment of inter-session repeatability.  

3) To explore the feasibility of applying machine learning techniques to 
automated classification of AMD by disease severity, based on choroidal 
appearance.  
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2 Development of image acquisition and processing protocols 

Advances in OCT imaging and analysis techniques, particularly the advent of 

long-wavelength OCT, have facilitated reliable imaging of the choroid in vivo. 

However, given the novelty of choroidal OCT imaging, definitive imaging protocols 

and analysis methods have not yet been established. The best approach to these 

tasks is not evident from the literature, with published approaches typically tailored 

to the immediate aims of each study. This chapter discusses the development of 

imaging and analysis protocols utilised in the studies in this thesis. An overview of 

the imaging system and techniques used in this thesis is provided, followed by the 

image processing steps undertaken following acquisition. The results of two pilot 

studies are then presented, which were used to inform protocol design for further 

data collection.  

2.1 Long-wavelength (1040 nm) OCT system 

The investigations presented in this thesis have utilised a non-commercial 

long-wavelength (1040 nm) SD-OCT to produce 3-D images of the posterior pole. 

This system was selected to benefit from the long-wavelength light source, which 

can penetrate deeper into the retinal structures (including the highly pigmented 

RPE). This provides improved visualisation of the choroid and choroid-scleral 

junction, in comparison with conventional systems. Furthermore, penetration 

through media opacities such as cataracts is improved (Povazay et al. 2007), which 

are prevalent in the elderly target population. This wavelength also has the benefit 

of being outside the visible spectrum, preventing the common observer response of 

tracking the scanning line during image acquisition. See Section 1.6 for more detail 

on long-wavelength OCT and imaging the choroid. An overview of the specifications 

of this system are shown in Table 2.1.  

This OCT system also allows the scanning parameters to be freely adjusted, 

including scan width, number of a-scans per b-scan, spacing of b-scans, number of 

b-scans per volume, and horizontally- or vertically-oriented raster scanning. This is 

in contrast to most commercial devices, which restrict image acquisition to pre-set 
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parameters with only limited customisability, likely to maximise compatibility with 

the on-board software analysis. This customisability allows for acquisition of a 

range of image types, from small, very highly sampled images to wide scanning 

areas, covering more retina than the majority of commercial OCT systems. 

Additionally, an 800  600 pixel LCD micro-display is used to present a fixation 

target, which can be customised for each patient. For example, a large cross or 

peripheral fixation target can be used for a patient with a central scotoma.  

Table 2.1 Specifications of the long-wavelength OCT system utilised in this thesis. 

Central wavelength (λc) ~1040 nm

Imaging rate 47,000 a-scans/sec

Axial resolution ~5 µm in tissue (RI=1.4)

Lateral resolution (theoretical) ~6 µm

Refractive error range Up to ± 6.00 dioptres

 Whilst this non-commercial device provides a number of distinct advantages, 

the limitations must also be considered. Firstly, the graphical user interface (GUI) 

for image capture is not designed for commercial use and consequently is not easily 

accessible to inexperienced users. The system requires considerable training to be 

used effectively. The focus of the instrument must be manually adjusted, and is 

calculated from the patient’s biometry and refractive error. Manual alignment of the 

eye with the imaging system is based solely on the live OCT image, whereas 

alignment on commercial devices is usually supplemented by a live infrared image, 

making the process easier for the operator. The image capture software has an 

enface OCT facility enabling visualisation of an image following acquisition, to 

ensure the absence of gross eye movements and blinks, providing an opportunity to 

repeat an image if necessary. There is no capacity for instant review or analysis of 

images, as is commonly incorporated in commercial devices. Images must be 

exported and manually processed prior to analysis, and subsequent analysis such as 

thickness maps must be produced by other means, which can be time consuming. 

This is extremely limited in comparison to most on-board commercial review 

software that enable near-instant review and analysis.  

 Eye tracking systems are becoming increasingly common in newer 

commercial systems (e.g. Cirrus HD-OCT). These track the location of the eye, and 
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attempt to correct for small eye movements. They may pause a scan during blinks 

or gross eye movements, and resume once fixation has been re-established. This is 

particularly valuable for patients with poor fixation or a high blink rate, and can 

minimise patient discomfort caused by refraining from blinking for a period of time. 

However, this facility was not incorporated in this OCT device. Other limitations of 

this non-commercial system include higher rates of instrument down-time to allow 

for repairs and alterations, and a restricted availability of such devices. Although a 

commercial long-wavelength instrument became available during the course of this 

work (Topcon DRI OCT Triton), to date there are only a handful of these devices in 

clinical use in the UK. This is likely due to the current cost of this device, which 

exceeds that of its conventional OCT counterparts, due in part to the addition of 

swept-source technology.  

At the outset of this project, the light source of the non-commercial device 

had been in use for approximately 5 years, and in this time had lost ~25% of its 

power. A noticeable reduction in image quality over this period was observed, due 

to restricted imaging penetration depth of the system. To address this issue, a new 

‘identical’ light source was installed, following completion of the repeatability study 

(Chapter 3) but prior to commencement of data collection from patients with AMD 

(Chapter 4 onward). 

The 1040 nm OCT is able to acquire a volumetric scan in ~5 seconds; a 

duration widely considered clinically acceptable. During this time, the patient is 

required to fixate a target and avoid eye movements and blinking. A longer 

acquisition time would allow for either image averaging or higher scan density, 

improving image quality and/or SNR. However, since dry eye is particularly 

prevalent in the elderly population, increasing the acquisition time is an unrealistic 

approach. Experience suggests the standard acquisition time of 5 seconds may 

potentially be challenging for patients with a reduced tear break-up time, although 

artificial tears can be used to reduce discomfort during image acquisition.   

2.2 Scan parameters 

An advantage of the 1040 nm non-commercial system is the ability to control 

the scanning parameters (e.g. scan angle). In comparison, the majority of 
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commercial OCT devices are limited to a small range of pre-set scan parameters, the 

most common being 6  6 mm, or 20°  20° (512  128 pixels) as found on Topcon 

and Zeiss instruments respectively. Unless otherwise stated, all studies in this thesis 

utilise 20°  20° isometric scans, consisting of 512 a-scans per b-scan, and 512 b-

scans per volume. This provided equal spatial sampling in the X and Z planes (Figure 

2.1). To allow comparison between devices, averaging in the Z-plane was used to 

produce equivalent volumes (512  128 pixels) where appropriate. However, 

images of this size were under-sampled, limiting image resolution. This is discussed 

further in Section 2.4.2.  

In addition, an averaged line scan through the fovea was collected to provide 

an image with a high SNR. This was 36° (4096 a-scans) in width to encompass 

visualisation of the ONH, and was an average of 16 b-scans of the same region. The 

volume scans would ideally also undergo averaging to a similar extent, however this 

would require increased acquisition time or loss of sampling, and suffer from the 

challenges associated with 3-D image registration (Markelj et al. 2012; Lee et al. 

2015). Since instant review of images was not possible, multiple images of each type 

were collected from each individual, to ensure high image quality. Table 2.2 outlines 

the parameters of the standard images collected as part of this thesis. Some 

parameters required optimisation to address the aims of the studies in this thesis; 

these preliminary studies are presented in Section 2.5. 

Y

X

Z

Figure 2.1 Series of consecutive b-scans within a 20° 20 (512 512) macular volume scan. 
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Table 2.2 Scan parameters used in this thesis for the 1040 nm OCT device. Parameters 
requiring further investigation with preliminary studies are indicated in the final column.  

Parameter Volume scan Line scan Further investigation required?
Scan size 20° 20° 36° Yes – volume scans under-sampled

Scan dimensions
(pixels)

512x512x1024 4096x1024 No – consistent with literature

Repeat images 3 3 No – sufficient to exclude outliers
Wavelength 1040 nm 1040 nm No – extensive literature

Power output <2.5 mW <2.5 mW Yes – ensure safety and quality

Although the scan sizes described above are generally accepted as the clinical 

norm for retinal imaging, choroidal imaging is a relatively new field and few 

established imaging protocols have been developed. A pilot study in Section 2.5

describes the development of a protocol for maximising choroidal visualisation with 

long-wavelength OCT imaging. However, it is first necessary to consider the post-

processing steps and measurement techniques to be applied to the acquired images.  

2.3 Post-processing  

Following acquisition, all long-wavelength OCT images were saved as 

proprietary (spectral) data files (.FD1) and required pre-processing before viewing 

and/or analysis. The following describes the processing steps applied to all images 

obtained using the long-wavelength OCT in this thesis (Figure 2.2), and image 

scaling considerations made during the analysis process.  

2.3.1 Conversion from spectral data to image data 

All long-wavelength OCT images were converted from spectral data (.FD1) to 

image data (.TIF). This was performed using customised software written in 

MATLAB (The MathWorks, Inc., Natick, MA). During this process, images underwent 

dispersion correction. The purpose of this correction was to address a mismatch 

between the two arms of the interferometer within the OCT system. Since different 

wavelengths of light travel at different speeds through a material, the light is 

dispersed (in time rather than in space) when it returns to the photodetector. To 

correct for this, a rectangular region of interest (ROI) was manually selected, ideally 

through a high-contrast section of retina and choroid. From this region, a factor to 
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correct the dispersion was calculated and applied across the entire image stack. A 

high-specification computer (Intel Core i7-4790 CPU at 3.6 GHz, with 16 GB RAM) 

was used to minimise processing time (approximately 5 minutes per 512  512 

volume scan).  

Figure 2.2 Series of image pre-processing steps (white rectangles) that all scans acquired with 
the 1040 nm OCT device underwent. Blue rhombi represent image types; green rhombi 
represent outcome measure categories, and the section in which they are investigated is 
specified. 
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2.3.2 Image preparation and artefact correction 

Although images were optimised during the acquisition process, inevitably 

artefacts and noise were inherent. Artefacts were commonly a result of poor fixation 

or ocular motion during acquisition, or due to the optics of the eye and the 

instrument itself (e.g. low levels of stray light within the imaging system). The effects 

of such artefacts may be minimised using post-processing techniques. The following 

processes were carried out sequentially to all long-wavelength OCT images using 

the Java-based image processing package Fiji, an open source distribution of ImageJ 

(Rasband; National Institute of Health, USA; Schindelin et al. 2012).  

2.3.2.1 Transform and crop  

Images were collected using a technique similar to EDI (see Section 1.6), 

positioning the choroid close to the zero delay line during acquisition. This 

optimised visualisation of the choroidal vessels, however images appeared inverted 

(choroid at the top of the image and retina below). Images underwent vertical 

transformation (inverting to place the retina above the choroid) for consistency 

with the format familiar to users of commercial OCT devices, and to allow for image 

input into automated retinal layer segmentation software (see Section 3.1).  

Vertical cropping of images was used prior to stack registration, to remove 

reflection artefacts likely due to stray light within the imaging system. This had the 

added benefit of reducing file size, by removing portions of the image containing 

structures irrelevant to the analysis (i.e. excess vitreous and post-choroid). This 

reduced processing times for subsequent steps described here.  

2.3.2.2 Stack registration  

Due to the raster-scanning pattern used during acquisition of the volume 

scans, small involuntary eye movements resulted in misalignments between 

adjacent b-scans within the volume. Stack registration was therefore used to align 

all b-scans according to a ‘global anchor’ (Figure 2.3). The StackReg plugin 

(Thévenaz et al. 1998) allowed the user to define the global anchor slice; for these 

images, the b-scan corresponding to the centre of the foveal pit was used as the 

global anchor. The algorithm used common features between adjacent b-scans to 



88 

register all slices within the volume to the selected slice. This registration was 

essential for viewing enface images and prior to averaging of adjacent b-scans.  

Artefacts in the image as described above could provide strong features for 

alignment by the algorithm. This would lead to inappropriate registration, as these 

artefacts may not be present in the exact same location in each b-scan. To overcome 

this, these artefacts were removed prior to stack registration, using cropping. 

Translational transforms (images moved only in the X and Y plane) were used for 

these images, to prevent magnification or rotation of the b-scans, as would occur in 

alternative forms of transformation, such as scaled rotation.  

2.3.3 Noise reduction and image enhancement  

The preceding steps were applied to all images acquired with the 1040 nm 

OCT (both volume and line scans), to produce images in TIFF format for further 

analysis. The following describes processing steps applied to reduce noise, or 

enhance certain features within the image. The processing steps applied were 

selected to optimise the image with respect to the desired outcome measure, and 

were therefore dependent on the particular feature(s) to be assessed (Figure 2.2).  

Figure 2.3 Macular volume scan without stack registration (A) and with stack registration (B). 
Note the misalignment of b-scans in the Z-direction pre-registration, and the artefacts at the 
top and bottom of the image post-registration, caused by vertical translation to align each b-
scan. 
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2.3.3.1 Z-projection and image scaling  

Z-projection was utilised to average adjacent b-scans within a volume scan, 

reducing noise to enhance visualisation of the choroidal layer and vessel boundaries 

(Figure 2.4). This produced 2-D representations of the volume, which were used for 

manual calliper measurement of choroidal thickness or vessel size. Typically, 5 

adjacent b-scans centred on the foveal pit were included in this averaging, equating 

to a total separation between b-scans of ~50 μm. This minimised noise whilst 

maximising spatial resolution; averaging over a greater number of b-scans (i.e. a 

higher total separation between slices) resulted in a decrease in boundary definition 

due to varying location of the boundary in image space.  

There were several potential projection types, including the use of a 

maximum, minimum, or median intensity, or summing the intensities across 

adjacent b-scans. Speckle (a type of high frequency noise) is inherent in OCT images, 

causing corresponding pixels in consecutive slices to vary in intensity (these may be 

higher or lower than the average intensity). If minimum, maximum, or sum of pixel 

intensities were applied, each pixel was considered in the averaging process, 

regardless of its representative value. To prevent inclusion of erroneous pixel 

intensities, the median intensity was used. The limitation of Z-projection was the 

loss of spatial localisation, since adjacent b-scans were not of the exact same retinal 

location.  

Z-projection was also used for the line scans, to produce high quality line 

scans through the foveal pit by averaging several b-scans. This was equivalent to 

A B

Figure 2.4 Single b-scan through the foveal pit (A), taken from a 20° 20° (512 512) volume. 
Following z-projection of 5 consecutive b-scans (B), much of the high-frequency noise has been 
removed and the retinal and choroidal structures are more easily distinguished. 
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highly averaged line scan processing on the majority of commercial OCT devices. 

The number of averaged b-scans varies between commercial devices; those with a 

faster acquisition rate and retinal tracking (to compensate for small eye 

movements) generally average a larger number of b-scans (up to 100). Since the 

non-commercial device used in this thesis did not have retinal tracking, any 

misaligned slices following stack registration were manually identified and 

excluded prior to averaging of line scans.  

Image scaling was also used to make the 1040 nm OCT volume scans (512 

512) comparable in size to commercial equivalents (typically 512  128; Section 

3.1). This involved decreasing the number of slices in the image, by averaging every 

4 slices (i.e. Z=0.25 scaling using averaged down-sampling). This technique used the 

neighbourhood of known pixel values surrounding the unknown pixel to calculate 

an interpolated value for the pixel in question.  

2.3.3.2 Reslice and flatten 

Stack reslice was used to construct orthogonal slices through an image, 

generating a ‘side-view’ of adjacent b-scans. This was used to produce enface images 

from the acquired volume scans. This allowed visualisation of choroidal cross-

sections of a fixed depth below the retina, from a perspective akin to retinal 

photography. Stack registration was crucial prior to this step, to ensure alignment 

of adjacent b-scans within the volume.  

Despite this process, the images often retained a residual curve due to the 

optics of the visual system. Producing an enface image from this would be of 

inconsistent depth in the choroid (Figure 2.5). To overcome this, a custom program 

written in MATLAB was used to ‘flatten’ the b-scans prior to stack reslice (see 

Appendix B). Several points lying on the RPE-choroid boundary were manually 

identified on 5 predetermined b-scans throughout the stack. This boundary was 

selected as it was well-defined and easy to identify in the images (unlike the 

posterior choroidal boundary), and was consistent in shape across the foveal pit 

(unlike the inner retinal layers). The program interpolated between the identified 

points on each b-scan to produce semi-automated segmentation of the anterior 

choroidal boundary. This was then interpolated between slices to produce a 
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boundary for each b-scan in the stack. Vertical translation of pixel columns (a-scans) 

was automatically applied to align the segmented boundaries to a flat plane. Again, 

scaled rotation was not used, to prevent the introduction of transverse scaling 

errors.  

2.3.3.3 Noise reduction  

Applying a mean or median filter replaces each pixel with the mean or 

median value of its neighbours, including itself. This has the effect of eliminating 

pixel values which are unrepresentative of their surroundings i.e. noise reduction. A 

convolution filter is based on a kernel system, which describes the shape, size and 

weighting of the neighbouring pixels to be represented in the average. More 

weighting can be given to the central pixel to limit the influence of surrounding 

pixels on the outcome. The effects of various kernels can be seen in Figure 2.6. A         

Figure 2.5 Flattening images using semi-automated segmentation of the anterior choroidal 
boundary ensured greater consistency of choroidal depth in the enface view. In the unaltered 
image, the reslice plane (yellow line) incorporates sclera towards the edges of the b-scan. The 
brightness and contrast of the enface images have been manipulated to enhance the vessels. 
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3  3 square kernel with equal weighting given to each pixel was applied to the 

enface OCT images to reduce the effect of unrepresentative pixel intensities caused 

by speckle (Figure 2.7).  

Larger kernels (e.g. 5  5) will give smoother, less noisy images, however this 

will result in the loss of high-frequency image information. Anisotropic kernels can 

also be applied solely in one direction (X or Y), to average pixels in a single 

orientation. This could be of potential benefit for OCT imaging, due to the decoupling 

of axial and transverse resolution (see Section 1.5.2). An anisotropic kernel could be 

applied to enhance retinal layers by applying averaging horizontally only, in b-scan 

view. For this thesis however, enhancement of retinal layers was not required, so 

this directional process was not applied.  

Figure 2.6 Examples of kernels commonly used in convolving filters, and the effects they have 
on the central pixel.

A B

Figure 2.7 Enface choroidal OCT image before (A) and after (B) application of convolution blur. A 
3  3 kernel with equal pixel weighting was used to reduce high frequency noise (speckle). 
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2.3.3.4 Brightness and contrast 

Adjusting the brightness of an image adds or subtracts a bias to every pixel 

within the image, altering the overall perceived intensity, whilst maintaining the 

absolute differences between pixels. Brightness was manually adjusted to 

subjectively improve visualisation of the retinal layers and choroidal structures. 

Contrast adjustment alters the proportional luminance according to the relative 

intensity of each pixel. Since this can result in saturation of boundaries such as the 

RPE, which may have led to errors in interpreting exact boundary positions, contrast 

adjustment was not used in image quantification. 

2.3.4 Magnification and scaling 

OCT images are affected by magnification in the transverse plane; therefore 

to ensure accurate quantifiable measurements the images required scaling. The 

magnification effect results from the optics of the imaging instrument and the 

subject’s eye. Transverse OCT dimensions should be corrected for axial length to 

counter this effect (Odell et al. 2011).  

To appreciate the potential magnitude of this effect, we consider two eyes; 

one with an axial length of 20 mm (likely a hyperope), and one with an axial length 

of 28 mm (likely a myope). Using Equation 2.1, the first of these eyes will have a 

magnification factor of 0.80x, the second will have a magnification factor of 1.16x. 

Therefore, for a retinal feature of 100 µm, the measured size would be calculated as 

80 µm and 116 µm respectively; an error of up to 20 µm, which would be considered 

significant.  

Prior to the correction of any magnification effects, the size in microns was 

calculated from the size in pixels measured from the image. A lateral scaling factor 

was calculated for each image using the following equations (Littmann 1982; 

Bennett et al. 1994):  

Equation 2.1 
 



94 

where: 

Np = number of pixels in the scan 

A = input scan angle (°) 

R = retina to nodal point distance, or vitreous chamber depth (mm) 

R can be calculated as follows: 

Equation 2.2 
 

where:  

A = axial eye length (AEL; mm) 

1.6 mm is the cornea to principle plane distance (from Bennett et al. 1994) 

1.34 is the assumed group refractive index of the eye 

 From Equations 2.1 and 2.2, a 20°  20° (512  512) volume scan obtained 

from an eye with AEL = 24 mm would have lateral scaling of 11.38 µm/pixel. At least 

2 adjacent pixels are required to resolve an edge, which in this case would have a 

combined size of 22.76 µm. This is larger than the lateral resolution limit of the OCT 

(~6.3 µm), and would therefore be under-sampled. A 5°  5° scan of the same 

dimensions on the same eye would have lateral scaling of 2.85 µm/pixel, which 

would be over-sampled. Over- and under-sampling are explained in more detail in 

Section 2.5.1. For this research, lateral scaling was calculated from the measured 

AEL of each eye, and used to convert image size in pixels to feature size in microns. 

A detailed investigation of the effect of AEL-dependent lateral scaling is outlined in 

Section 3.1.  

Since the axial scaling is determined by the bandwidth of the light source 

(Huang et al. 1991; Drexler and Fujimoto 2008), the axial component of an OCT 

image is independent of AEL, and is the same for all eyes. However, an axial scaling 

factor must still be applied to convert the number of image pixels to a physical size 

in microns. For the long-wavelength OCT, the axial scaling in air was empirically 

determined to be 2.66 µm/pixel, which equated to 1.90 µm/pixel in tissue (n=1.4). 

Therefore, an axial scaling factor of 1.90 µm/pixel was applied to all images from the 

long-wavelength device.  
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2.4 Measurement techniques 

Histological measures, as outlined in Section 1.6.2, are considered the gold 

standard for informing quantification of OCT images. This section describes the 

development of measurement techniques used in this thesis, and the associated 

limitations of such quantification.  

2.4.1 Manual measurement approaches 

For this thesis, manual measurement of choroidal thickness and vessel 

diameter were carried out using digital callipers in Fiji. All non-foveal retinal 

locations were identified considering transverse magnification, as described in the 

previous section. Measurements were taken vertically on the image, regardless of 

the slope of the retina, for ease of axial scaling conversions. However, since the 

retina typically follows a convex curve in OCT images, axial measurements may not 

be truly representative, particularly in locations further from the foveal pit (Figure 

2.8). To minimise the effects of this, images were acquired with the retina as ‘flat’ as 
possible, through careful alignment of the imaging system. The program to 

translationally align a-scans to a flat plane (RPE) was therefore only required for 

images to be viewed enface.  

Figure 2.8 Choroidal thickness was manually measured axially (grey arrow). For curved 
images, this was not the same as choroidal thickness perpendicularly to the RPE, particularly 
further from the foveal pit (black line; exaggerated). 
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The choroid was defined as the area enclosed by the posterior boundary of 

the RPE and the choroid-scleral boundary, identified by the visible bright sclera and 

the outer border of the choroidal stroma. This was selected as the posterior 

choroidal boundary, as it has been shown to be more reproducible than alternative 

boundaries, such as the outer border of the choroidal lumen, or the inner border of 

the sclera, as shown in Figure 2.9 (Vuong et al. 2016).  

In terms of quantifying the choroidal vascular structure itself, there were 

several approaches that could be taken. The first approach was manual calliper 

measurement of vessel diameters (Figure 2.10A). Again, these were measured 

axially for ease of scaling conversions. As an alternative, manual segmentation of the 

vessels was a possibility (Figure 2.10B), to obtain vessel area, vessel density, and a 

ratio of vessel to surrounding tissue.  

Figure 2.9 Horizontal averaged b-scan from a Spectralis OCT, with three potential posterior 
choroidal boundaries displayed. Vascular choroidal thickness (VCT) uses the outer border of the 
vessel lumen. Stromal choroidal thickness (SCT) uses the outer border of the choroidal stroma. 
Total choroidal thickness (TCT) uses the inner border of the sclera (arrowheads), which was 
found to be visible in only 43% of participants. Image from Vuong et al. (2016). 

Figure 2.10 Potential manual choroidal parameter measurements. (A) Calliper measurements; 
subfoveal choroidal thickness (longest white line) and vessel diameters (three shorter white 
lines). (B) Hand segmentation of the vessel lumen. 
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  Another approach was to use the enface view for quantification, providing 

visualisation of a fixed depth across the choroid simultaneously. Again, calliper 

measurements or hand segmentation could be used, yielding similar parameters to 

those discussed previously. Alternatively, thresholding techniques could be applied 

to binarise the images (Figure 2.11). The ratio of black to white (i.e. vessel lumen to 

surrounding tissue) could then be established with image processing software, and 

provide an output representative of the entire choroid at a single plane of set depth 

in the choroid. This limited potential misrepresentation through sampling 

individual vessels.  

2.4.2 Limitations of manual measurements 

Whilst these manual techniques are simple and easy to apply, they are 

associated with significant limitations. The choroid is a 3-D dense vascular network, 

however only a 2-D section through this structure is visualised in each tomogram. 

Therefore these images lack perspective of the angle at which any given vessel has 

been ‘sectioned’. If vessels are sectioned obliquely, a true vessel cross-section is not 

visible, although it may have a similar shape (see Figure 2.12). Vessel diameters will 

tend to be over-estimated using this method.  

Figure 2.11 Example of an enface image of choroidal vessels (A) and the same image having 
undergone binarization using thresholding techniques (B). Note the artefact from an overlying 
retinal vessel (arrow). Image from Duan et al. (2013). 

A B



98 

Furthermore, from a 2-D section in isolation it was not possible to assess 

whether the apparent cross-section is simply a segment through an arching vessel 

(see Figure 2.13). Unlike the retina, the choroidal structure varies greatly between 

individuals. There is no regular structure akin to retinal layers, and the blood vessels 

do not appear to follow set patterns like that of the vascular arcades supplying the 

inner retina. It was therefore not possible to select a corresponding vessel on each 

individual, and there was no simple way to ensure that sampled vessels were 

representative of the entire choroid. The use of enface images addressed this 

limitation in-part, by encompassing all vessels at a predetermined depth below the 

RPE. However, these were still 2-D samples of the volume, and in addition suffered 

from other limitations such as artefacts from overlying structures (e.g. retinal blood 

vessels as demonstrated in Figure 2.11).  

Figure 2.12 The angle at which a vessel is bisected (red lines) has a great effect on the 
resulting apparent vessel ‘diameter’ (blue arrows). Without knowledge of the directionality of 
the vessel relative to the 2-D plane being viewed, it is difficult to ensure appropriate 
measurement.

Figure 2.13 Without perspective from surrounding slices, a 2-D vessel section (A) can arise 
from bisection of a vessel of unknown directionality (B and C), or a section through an arching 
vessel (D). The red lines indicate the plane at which the vessel in each example could be 
bisected to produce a similar 2-D luminal shape. 

A B
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To minimise the impact of these issues, established histological techniques 

often utilise sampling approaches, for example, averaging measurements across 

multiple vessels. Although this usually improves measurement repeatability, the 

method of vessel selection is still associated with known limitations of sampling, 

including potential bias and misrepresentation. To overcome these limitations, the 

entire choroidal volume within the scan region should be included in the analyses. 

However, averaging techniques used to reduce noise are limited (e.g. Z-projection), 

and the individual b-scans remain relatively noisy. In similar cases, texture analysis 

has previously been used to extract information in an attempt to quantify structure 

(Koprowski et al. 2013; Srinivasan 2014b; Albarrak et al. 2016).  

Finally, as with the majority of manual quantification techniques, the 

measurements described here are time-consuming, and can inherently suffer from 

significant inter- and intra-observer variability. This greatly limits the potential 

clinical value of such measurements. To overcome these limitations, the 

employment of automated analysis methods should be considered. As discussed in 

Section 1.7.3, machine learning techniques are a powerful tool for this type of 

analysis (see Chapter 5).   

2.5 Optimising scan parameters and protocols  

When collecting data of this type, a protocol must be established detailing the 

parameters of the images acquired. This ensures consistency within the dataset, and 

optimises the dataset for the purpose for which it was collected. These parameters 

include (but are not limited to) scan angle, a-scans per b-scan, b-scans per volume, 

and number of repeat images acquired. In addition, the higher the power of the light 

source in the imaging device, the better the image quality. For safety reasons 

however, power output must be capped at a pre-defined level for ocular imaging 

(ANSI 2000; ICNIRP 2013). The following section outlines pilot studies undertaken 

for parameter selection and imaging protocol development, including investigations 

of image sampling and light source power.  
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2.5.1 Pilot study 1: Effect of lateral sampling on choroidal vessel visualisation 

2.5.1.1 Background 

Although long-wavelength OCT allows visualisation deeper into the 

choroidal structure, contrast of this region is often limited due to signal roll-off. One 

potential method to increase visualisation is to increase the sampling density of the 

scan (i.e. increase the number of a-scans per unit area of choroid), and thus utilise 

the full optical resolution of the device. Increasing the number of a-scans per b-scan, 

and b-scans per volume would have this effect, but would also greatly increase the 

image acquisition time. Therefore, reducing the scan angle would be the preferable 

option to achieve this.  

 The theoretical resolution limit of this non-commercial OCT system is ~6 µm. 

This is inherent to the optics of the human eye, and will be the limiting factor of 

image resolution for images with sampling exceeding this level (i.e. over-sampling). 

If an image is sampled below this limit, image resolution is further limited by the 

sampling rate; this is called under-sampling. Since a minimum of two adjacent pixels 

are required to resolve an edge, sampling rate must be at least half the resolution 

limit to resolve the edge (~3.09 µm/pixel).  

A list of sampling rates for a range of scan widths can be seen in Table 2.3, 

calculated using Equation 2.1, and a standard AEL of 24 mm. The conventional scan 

size of commercial OCT devices is typically 20°  20° which is substantially under-

sampled, limiting the lateral image resolution. The smaller the scan angle, the 

greater the sampling (i.e. the fewer microns of structure represented per image 

pixel). Greater degrees of over-sampling allow for more averaging during post-

processing without loss of spatial information from the image. However, the 

limitations of decreasing the scan size are the reduction in number of vessels within 

the imaging field, and the loss of localisation information. The ideal scan size for 

visualising the choroidal vasculature would maximise lateral image resolution 

whilst maintaining a reasonable field of view. Beyond the point where the sampling 

rate is equal to the theoretical resolution limit of the system (equating to ~5.6° scan 

width), no further improvement in image quality would be expected, since the 

resolution is limited by optics of the eye.  
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Table 2.3 Lateral sampling rates for different sized scans, assuming a scan size of 512  512 
pixels of an eye with an AEL of 24 mm. The sampling rate approximately equal to half the 
theoretical resolution of the imaging system is highlighted in grey.  

Scan width (°) Lateral sampling rate (µm/pixel) Under/over sampled?

20 11.33 Under 

10 5.66 Under

9 5.10 Under

8 4.53 Under

7 3.97 Under

6 3.40 Under

5.6 3.09 Equal

5 2.83 Over

4 2.27 Over

The aim of this study was to demonstrate the effects of lateral sampling, and 

to investigate the extent to which these effects impact OCT image quality. To achieve 

this, images with a range of scan sizes underwent both objective and subjective 

image quality analysis. The scan sizes assessed represented images with a lateral 

sampling rate close to the theoretical resolution limit of the device (from Table 2.3). 

Three observers familiar with OCT images were enrolled to grade image quality 

based on pre-defined criteria. The agreement between observers was assessed to 

ensure grading consistency.  

2.5.1.2 Methods 

Participants  

Young, healthy participants (n=9) were recruited for this study from staff, 

students, and volunteers at the School of Optometry and Vision Sciences, Cardiff 

University. Mean age (±SD) was 25.9 ± 2.8 years. AEL was measured using an 

average of 5 readings from an IOLMaster (Carl Zeiss, Jena, Germany). Mean AEL and 

refractive error (mean sphere) were 24.7 ± 1.8 mm and -2.00 ± 2.77 D respectively. 

All participants had visual acuity of 0.1 logMAR (6/7.5) or better.  
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Image acquisition and preparation  

Each participant underwent long-wavelength OCT imaging of the right eye. 

512  512 macular volume scans were obtained, for scan sizes from 8°  8° to            

4°  4°, in 1° intervals. In addition, 512  512 macular volume scans of 20°  20° 

visual angle were acquired (the clinical standard; to be used for reference only). 

Participants did not undergo pupil mydriasis, and all images were acquired under 

minimal room lighting.  

Following conversion from spectral data to image data, a predetermined set 

of processing steps were followed to prepare the images for assessment (see Figure 

2.14). This included vertical cropping and stack registration, as described in Section 

2.3.2. To enable visualisation of both the large- and medium-sized choroidal vessels 

in this task, depths of 75% and 50% of the choroidal thickness beneath the foveal 

pit were isolated. An area was selected with a height of 5 pixels and the full width of 

the scan, centred on each of the two depths, and resliced to produce two enface 

views of 5 consecutive slices each. A convolving filter was applied to reduce speckle, 

using a 3  3 kernel of equal weighting. Each set of 5 slices were then averaged using 

Figure 2.14 Image processing protocol. (A) A single b-scan through the foveal pit, with minimal 
processing, showing 75% depth in the choroid (dashed line). (B) Enface view of the choroid at 
this depth. (C) Convolving blur applied to the enface view. (D) Average of 5 consecutive images 
in the stack with convolving blur, and adjusted brightness.

A

B

C

D
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Z-projection, and the resulting images were converted to 8-bit to allow manual 

adjustment of brightness, to subjectively maximise visibility of the choroidal vessels. 

The result was two enface images, at 75% and 50% choroidal depth respectively. 

Image contrast was not adjusted, as it was to be used as one of the quality grading 

criteria.  

It was important to consider the effects of image magnification during 

presentation. It was likely that a more ‘zoomed out’ image (i.e. the wider scans), 
would be perceived as better quality, due to the presence of more vessels, and the 

lack of visibility of smaller vessels, which may be masked by background noise. To 

control for this effect, the central 3° of each image was isolated, and scaled to 410 

410 pixels (the number of pixels in the 4° image following cropping to 3°). A size of 

3° was selected to prevent bias from identification of the true 4° scans by the 

presence of misalignments surrounding the image caused by the stack registration 

process. Images were scaled up in size rather than down to prevent pixel averaging 

that may artificially improve perceived image quality. An example is shown in Figure 

2.15. During presentation for grading, the screen resolution was set such that 

images were presented over 410  410 screen pixels, removing the possible effects 

of aliasing (spatial sampling of pixels during image presentation).   

Grading protocol 

Three independent observers who were masked to the images and were not 

involved in the collection of the images were used for grading image quality. These 

Figure 2.15 The same area of choroid sampled at 75% depth, imaged using (A) 4° and (B) 8° 
scanning protocols. The central 3° of visual angle of each image has been cropped and scaled 
to 410  410 pixels. The 8° scan has a more pixelated appearance, and the extent of over-
sampling of the 4° scan is evident when comparing the perceived quality of the images.

A B
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were experienced optometrists familiar with viewing similar ophthalmological 

images. A total of 45 enface choroidal OCT images at 75% depth (5 scan widths per 

eye) were presented three times each in a random order (135 presentations in 

total). In cases where two identical images were randomised into consecutive order, 

the latter image was swapped with the following image.  

The graders were provided with simple instructions (see Appendix C) a day 

prior to the grading sessions, to familiarise themselves with the protocol. The 

grading session began with a training session, in which 5 test images with a variety 

of image qualities were presented. The graders were encouraged to record a grade 

for these images, although these results were not included in the analysis. These test 

images were collected from the fellow eye of a subset of participants, and hence 

were not included in the main presentation, but were of similar quality for training 

purposes.  

Graders were given unlimited time to record grades for two criteria; overall 

contrast of the image, and edge definition of the vessels (described below). Graders 

were not permitted to return to previous images once they had been graded. Both 

criteria were graded on a 5-point scale (Ludewig et al. 2010), as follows:  

1. Poor 
2. Restricted 
3. Sufficient 
4. Good 
5. Excellent 

The overall contrast of the image was graded according to the difference in 

luminance between the vessel lumen and surrounding tissue. Edge definition was 

based upon the apparent luminance profile, with a distinct edge receiving a higher 

grade. Diagrammatic examples, which were included in the grading instructions, are 

shown in Figure 2.16.  

This entire process was repeated for the 50% depth images on a different 

day, to minimise fatigue effects. The same computer monitor was used by the three 

graders on both days to ensure consistent image presentation, and negating the 

need for monitor calibration.  
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Objective quality assessment  

 As an objective measure, the number of misalignments due to image 

registration failure were counted for each unscaled image at 75% choroidal depth. 

This was not repeated at 50% depth, as the number of misalignments would be 

consistent at any depth. Due to the size of the larger vessels, misalignments were 

likely to be more evident at 75% depth. Misalignments were classed as visible 

horizontal lines of poor continuity in the enface view (Figure 2.17). This was carried 

out independently of the subjective quality grading, by a single observer who was 

masked to the randomised images.  

Statistical analysis  

The data were checked for normality using a Shapiro-Wilk test (P>0.05). A 

repeated measured ANOVA was used to determine whether the differences in 

subjective grades between the scan sizes were statistically significant (P<0.05). A 

post-hoc Bonferroni correction was applied to ascertain where the significant 

differences were, at a 95% significant level. Where normality could not be assumed 

Figure 2.17 Schematic demonstrating poor continuity in an enface image, due to ‘failings’ of 
the stack registration process. Each arrow indicates one misalignment. 

Figure 2.16 Schematics demonstrating both criteria: (A) optimum image quality, Grade 5; (B) 
low contrast; (C) low edge definition. 
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(Shapiro-Wilk P≤0.05), a Friedman test was used, with a post-hoc Wilcoxon signed 

ranks test.  

 To assess observer repeatability and inter-observer agreement, single 

measures intra-class correlation coefficients (ICC) were calculated. These 

coefficients were interpreted as follows: 0.01-0.2, slight agreement; 0.21-0.4, fair 

agreement; 0.41-0.6, moderate agreement; 0.61-0.8, substantial agreement; >0.8, 

almost perfect agreement (Landis and Koch 1977).  

2.5.1.3 Results 

Subjective assessment 

 The mean subjective image quality results from the three graders can be seen 

in Table 2.4. For 75% choroidal depth, smaller scan angles were generally associated 

with higher grading scores for contrast and edge definition of the vessels. The mean 

scores for edge definition were consistently poorer than contrast. For the 50% 

choroidal depth, there was no obvious association between scan angle and 

subjective image quality. For both grading criteria, inter-observer variability was 

similar for each of the scan sizes, and there was a similar level of variability for each 

of the criteria (Figure 2.18). However, there was a higher degree of inter-observer 

variability for both criteria at 50% depth than at 75% depth (as represented by the 

error bars).  

Table 2.4 Mean subjective image quality grade (1=poor; 5=excellent) for images of varying 
scan size, by three observers.  

Scan size (°) Mean image quality grade

Overall contrast Edge definition

75% depth 50% depth 75% depth 50% depth

4 2.77 2.47 2.74 2.36

5 2.53 2.38 2.43 2.36

6 2.54 2.53 2.26 2.58

7 2.31 2.44 2.07 2.40

8 2.21 2.41 1.88 2.04
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  For 75% choroidal depth, a repeated measures ANOVA determined that the 

difference in mean contrast grade between scan sizes was statistically significant 

(P<0.05). With Bonferroni correction, a difference in contrast grade was found only 

between the 4° and 8° scans. Since normality could not be assumed for edge 

definition grades (Shapiro-Wilk, P < 0.05), a Friedman test was used. A post-hoc 

Wilcoxon signed ranks test identified a significant difference between all sizes, with 

the exception of consecutive sizes, e.g. 4° and 5° (Table 2.5). For 50% choroidal 

depth, a repeated measures ANOVA determined that there were no significant 

differences in the contrast and edge definition grades for different sized scans 

(P=0.926 and P=0.252, respectively).  

Figure 2.18 Mean grades (1=poor; 5=excellent) for varying scan sizes. Mean data from the 
three independent observers is presented at 75% and 50% depth, for both grading criteria. 
Error bars represent the range of grades assigned by the three observers. 
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Table 2.5 Pairwise comparison of mean grades of contrast (black) and edge definition (grey) 
at 75% depth, following a repeated measures ANOVA with post-hoc Bonferroni correction, and 
a Friedman test with post-hoc Wilcoxon signed ranks test, respectively. The significance values 
for each comparison are included in the table.  

Scan size (°) 4 5 6 7 8

4 - 0.656 0.905 0.193 0.029*

5 0.106 - 1.000 0.338 0.649

6 0.024* 0.398 - 0.440 0.127

7 0.012* 0.049* 0.271 - 0.440

8 0.012* 0.012* 0.018* 0.271 -
*significant at the 0.05 level 

Statistical analysis showed substantial to almost perfect intra-observer 

agreement for all three graders at both choroidal depths (Table 2.6). At 50% depth, 

edge definition grades had a higher consistency than contrast grades for all 

observers, however at 75% depth this was only substantial for Grader 2. Inter-

observer agreement was almost perfect for both grading criteria at 75% depth, and 

substantial for both criteria at 50% depth (Table 2.7).  

Table 2.6 Intra-class correlation coefficient (ICC) for intra-observer consistency in both 
grading criteria, for both choroidal depths.  

Grader Intra-class correlation coefficient

Overall contrast Edge definition

75% depth 50% depth 75% depth 50% depth

1 0.846 0.794 0.850 0.888

2 0.652 0.623 0.813 0.758

3 0.728 0.698 0.740 0.719

Table 2.7 Intra-class correlation coefficient (ICC) for inter-observer consistency between the 
three graders in both grading criteria, for both choroidal depths. 

Intra-class correlation coefficient

Overall contrast Edge definition

75% depth 50% depth 75% depth 50% depth

0.859 0.774 0.860 0.800
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Objective assessment 

The largest scans had, on average, 2.8 ± 2.5 misalignments, compared to 5.7 

± 3.2 for the smallest scans (Table 2.8). Scans ≥6° in size demonstrated less 
variability in the number of misalignments (failure of image registration) between 

individuals, as shown by the error bars in Figure 2.19.  

A repeated measures ANOVA determined that mean number of 

misalignments differed significantly between scan sizes (P<0.05). However, with 

Bonferroni correction, no statistically significant differences were found in the 

number of misalignments between any of the scan sizes. Least significant difference 

adjustment was then applied, producing statistically significant differences at a 95% 

significance level in the number of misalignments between 4° and 6°, 4° and 7°, 4° 

and 8°, 5° and 7°, and 5° and 8° scans (Table 2.9).  

Table 2.8 Number of misalignments per image for each participant (A-I), for a single observer.  

Scan size (°) Number of misalignments Mean Standard 

deviationA B C D E F G H I

4 4 9 6 8 2 2 10 2 8 5.7 3.2

5 4 4 6 8 1 0 9 1 13 5.1 4.3

6 5 4 4 5 0 2 5 0 6 3.4 2.2

7 2 3 5 3 2 0 3 0 7 2.8 2.2

8 3 2 4 6 0 0 2 1 7 2.8 2.5

Total 18 22 25 30 5 4 29 4 41

Figure 2.19 Mean (± SE error bars) number of misalignments of image registration for various 
scan sizes. Smaller scan sizes result in a higher average number of misalignments in the stack 
registration software.
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Table 2.9 Pairwise comparisons of number of misalignments, following a repeated measures 
ANOVA with post-hoc least significant difference adjustment (equivalent to no correction). 
Post-hoc Bonferroni correction shown in grey boxes (italics). The significance values for each 
comparison are included in the table. 

Scan size 
(°) 4 5 6 7 8

4 - 0.540 0.010* 0.008* 0.012*

5 1.000 - 0.105 0.029* 0.023*

6 0.100 1.000 - 0.282 0.242

7 0.080 0.294 1.000 - 1.000

8 0.117 0.232 1.000 1.000 -
*significant at the 0.05 level

2.5.1.4 Discussion and conclusions  

For 75% choroidal depth, wider scan angles were associated with poorer 

subjective image quality on both criteria assessed. This indicates that an increase in 

sampling rate (i.e. a smaller scan), provides higher perceived image quality. At 50% 

depth, no significant association was found between subjective image quality and 

scan size, potentially due to crowding effects caused by a higher density of vessels 

per image (i.e. higher spatial frequency). This may be perceived as a less prominent 

‘background’ in the image, arising from a higher ratio of vessel lumen to surrounding 

tissue at this depth (Figure 2.20). Furthermore, it is more likely that at this depth, 

some smaller vessels may not be resolved due to the optical limits of the OCT, 

resulting in a perceived increase in noise in the image background. This may also 

have the effect of lowering the background luminance, reducing the perceived 

contrast of the image. High frequency noise (inherent to this imaging technique) 

likely reduced the ability of the observer to appreciate differences in image quality 

between the scan sizes, which may explain the findings at 50% choroidal depth, 

where the typical feature size (i.e. vessel size) was smaller.  

The number of vessels visible in the smaller scans was relatively low, 

particularly when factoring in patient misalignments and the parts of the image lost 

to the stack registration process. Furthermore, image acquisition was more difficult 

for the smaller scans, due to limited field of view when aligning the imaging system.  
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For the objective analysis, scans ≥6° in size demonstrated more consistent 
stack registration.  Statistical analysis revealed significantly fewer misalignments in 

6° images when compared to smaller images, whilst no further improvement 

beyond this was identified (P<0.05). With a Bonferroni correction however, these 

differences were not significant. The 7° and 8° images displayed a similar number of 

misalignments due to stack registration as the 6° images. These results suggested 

that an image of 6° or greater was optimal for minimising the number of 

misalignments due to stack registration. This was consistent with the expectations 

of stack registration, since images of a smaller area of choroid were likely to have 

fewer similar features between b-scans, and were therefore more prone to 

registration failures.  

Statistical analysis showed strong intra-observer agreement for each of the 

three graders. When comparing the grades from the three observers, both grading 

criteria showed near-perfect agreement. This consistency allowed more confidence 

in the reliability of the results produced by the graders.  

The use of a 5-point grading scale is a potential limitation. This allowed for 

grader indecisiveness i.e. assigning a grade of 3. A forced choice grading scale (e.g. a 

4-point or 6-point scale) may have eliminated any effects of this central-tendency 

bias. A 4-point scale may not have provided a spread of data wide enough to 

distinguish between images of reasonable and good quality, so a 6-point grading 

scale may have been preferable. However, other studies have defended the use of 5-

Figure 2.20 The same 7° scan sampled at (A) 75% depth, and (B) 50% depth. The image at 
50% depth has a higher vessel density, and a higher apparent ratio of visible lumen to 
background.

A B
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point grading scales similar to the one used in this study, such as the well-

established Likert scale (Likert 1932; Ludewig et al. 2010).  

Overall, larger vessels had higher subjective image quality with a higher 

sampling rate (i.e. smaller scan size) in terms of contrast and vessel definition. 

Although this subjective difference was statistically significant, it was small and 

unlikely to be clinically significant. For smaller vessels, there was no difference 

between any of the scan sizes, suggesting that different imaging protocols were not 

required for visualising vessels of different sizes.   

Considering all the findings of this pilot study, a medium-sized scan 

equivalent to the theoretical resolution limit of the imaging system (~6°) would be 

optimal to balance optimal subjective image quality with field of view, whilst 

minimising misalignments of the stack registration software. The 6° scan size had 

the additional benefit of ease of alignment during image acquisition, whilst 

maintaining the majority of the perceived benefits related to over-sampling.  

In summary, this pilot study has demonstrated the effects of image sampling 

on perceived image quality, with the optimum scan size found to be 6°. The clinical 

standard for volume scans is 20°  20°, and the majority of commercial devices do 

not allow absolute flexibility in scan size (typically limited to a handful of pre-set 

specifications). Furthermore, the macula is defined clinically as the central 6 mm 

centred on the fovea, which approximately equates to the central 20° of visual angle. 

It is possible that scans smaller than this may fail to represent the clinical 

appearance of macular pathology, as defined by clinical classification systems 

(AREDS 2001a). For these reasons, the standard 20° scan angle will be primarily 

utilised in this thesis. However, since these images are under-sampled, 36° line 

scans comprising 4096 pixels will also be used to provide an over-sampled image, 

with a wide field of view. A comparison of these two types of image for quantifying 

the choroidal vasculature can be found in Section 3.2.  

2.5.2 Pilot study 2: Light source power output  

2.5.2.1 Background  
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Another variable which has a direct effect on image quality is the power output 

of the imaging light source. Typically, the higher the power output, the better the 

image quality. However, this is limited by guidelines outlined by the International 

Commission on Non-Ionizing Radiation Protection (ICNIRP 2013) and the American 

National Standards Institute (ANSI 2000), which describe the safety standards for 

ocular exposure to a laser beam of a given wavelength, assuming a pupil size of             

7 mm.  

A change in the power output of the light source could directly affect both the 

penetration depth and the relative intensity of the structures imaged (Drexler and 

Fujimoto 2008). To ensure consistency between OCT images, particularly for the 

purpose of comparison, it was important that the imaging parameters and 

conditions remained as similar as possible between imaging sessions. Consequently, 

it was deemed necessary to investigate the power output characteristics of the light 

source within the long-wavelength OCT system over time. Any trends or variations 

in the power output may be taken into account when establishing the imaging 

protocol, to maximise the reliability and repeatability of the images.  

2.5.2.2 Methods 

A handheld PM100D energy meter (Thorlabs, Newton, NJ) was used to 

measure the power output of the long-wavelength OCT light source over a 5 hour 

period. The initial measurement was taken following light source activation and 

completion of the system self-calibration (lasting approximately 90 seconds). 

Measurements were obtained at a distance of 30 mm from the anterior surface of 

the OCT system’s objective lens, as this is the approximate distance between the 

instrument and the patient’s eye during image acquisition. A subsequent 

measurement was obtained every 5 minutes for 150 minutes (2.5 hours), at which 

stage the measurement frequency was reduced to 30 minute intervals for a further 

150 minute period. The power output was assessed over a 300 minute period (5 

hours), since this was the upper limit of likely use per day throughout this research.   

For safety reasons, the imaging beam was blocked at the objective lens using 

an infra-red card between readings, in line with the standard operating procedures 

of the device, and ethical approval. A control measurement was also taken with the 
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equipment in situ, with the infra-red card blocking the beam. The detector of the 

meter was set to measure the power output at 1040 nm; the wavelength of the light 

source. Room lighting was minimal, to mimic the conditions of image acquisition.  

2.5.2.3 Results 

Following initialisation of the light source, a steep decline in power output 

was observed over the first 30 minutes. The rate of decline then slowed over the 

subsequent 20 minutes, until reaching an equilibrium at around 70 minutes (Figure 

2.21). The power output did not fluctuate after this point.  

2.5.2.4 Discussion and conclusions 

As the light source power output declined most steeply during the first 30 

minutes, imaging should be avoided during this period. Although images obtained 

during this period would have a greater reflectivity and appear to be of ‘better 
quality’, they would not be directly comparable to images collected after this period, 

due to intensity change. After this initial ‘warming up’ period, the change in power 
output was minimal over the following 4 hours.   

 Furthermore, all power measurements were within the recommended safe 

levels for a light source at 1040 nm (2.5 mW of continuous corneal irradiance; ANSI 

2000). As long as this limit is observed, this light source is safe for imaging human 

participants.  

Figure 2.21 The power output of the long-wavelength OCT light source declined steeply over a 
30 minute period following initialisation (Time = 0), after which time it stabilised.
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To conclude, all imaging protocols in this thesis included a 30 minute latency 

period following light source activation, prior to image acquisition. This minimised 

variation between imaging sessions attributed to power output of the imaging light 

source.  

2.5.3 Image acquisition and processing summary  

The aforementioned image acquisition, processing and potential analysis 

protocols are summarised in Table 2.10. The image acquisition protocols for use in 

this research have been described, including the imaging system and scan 

parameters. A series of image processing steps have been defined, but are 

dependent on the structure or parameter to be investigated. With regard to image 

analysis, a number of limitations of conventional analysis methods, such as manual 

calliper measurements, have been outlined. An evaluation of such parameters is 

conducted in Section 3.2. A machine learning approach to analysis with potential to 

overcome these limitations is developed and validated in Chapter 5.  

Table 2.10 Summary of the image acquisition, processing, and potential analysis protocols 
used in this research. Protocols requiring further investigation are discussed in Chapter 3.  

Variable Protocol
Imaging system 1040 nm non-commercial OCT
Scan size 20° 20° (512 512 1024 pixels)

6° 6° (512 512 1024 pixels)
36° (4096 1024 pixels)

Number acquired 3 repeat images of each type
Initialisation time 30 minutes
Pupil size ≥ 5 mm (mydriasis with 0.5% Tropicamide)
Image pre-processing protocol See flowchart in Figure 2.2 Series of image 

pre-processing steps (white rectangles) that 
all scans acquired with the 1040 nm OCT 
device underwent. Blue rhombi represent 
image types; green rhombi represent 
outcome measure categories, and the section 
in which they are investigated is specified. 

Choroidal parameters (to be 
developed)

Choroidal thickness (digital calliper)
Vessel diameters (digital calliper)
Percentage vessel lumen (thresholding)
Choroidal volume (automated segmentation)
Automated texture analysis (machine learning)

AMD disease clinical classification Adapted protocol required
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3 Evaluation of analysis techniques 

A number of parameters for describing the choroid and the choroidal 

vasculature have previously been described (see Section 1.7). The majority of the 

literature evaluating these parameters used images acquired with conventional-

wavelength (~850 nm) OCT devices. This chapter evaluates several of these 

parameters on images from a non-commercial long-wavelength (~1040 nm) OCT 

device, as well as introducing a novel parameter to quantify the vessel structure. All 

studies conducted here were on healthy eyes, to establish the repeatability of 

parameter measurement prior to application in disease. The importance of ocular 

biometry for lateral scaling of OCT images is also explored.  

3.1 Effect of lateral scaling on OCT quantification 

The transverse size of any retinal or choroidal feature in an OCT image can be 

calculated using the appropriate ocular biometry and instrument meta-data 

(Littmann 1982; Bennett et al. 1994). The following describes a study investigating 

the importance of lateral scaling considerations for quantifying OCT images.  

3.1.1 Background 

Commercial OCT devices are generally manufactured with on-board retinal 

layer segmentation software. Contemporary software is commonly limited to retinal 

thickness and a small number of intra-retinal layers, and is almost universally 

restricted to use on images acquired by the parent device. Furthermore, on most 

contemporary OCT devices (e.g. Topcon 3D OCT-1000, and Zeiss Cirrus HD-OCT), 

this software does not make lateral scaling compensation for ocular biometry (i.e. 

AEL). Differences in the definition of the posterior retinal boundary, along with the 

diversity of segmentation methods, also makes quantitative comparisons between 

the devices difficult.  

The Iowa Reference Algorithms (Retinal Image Analysis Lab, Iowa Institute 

for Biomedical Imaging, Iowa City, IA) are a publically available, graph theory-based 
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approach to 3-D segmentation of the retinal layers in spectral domain OCT images 

(Garvin et al. 2009; Abràmoff et al. 2010; Antony et al. 2011). The software has 

previously been shown to be capable of identifying 7 retinal layer boundaries, 

providing results comparable to hand segmentation by two ophthalmologists 

(Garvin et al. 2009). OCT Explorer version 3.5 is capable of segmenting 10 intra-

retinal layers in addition to providing conventional retinal thickness values (inner 

limiting membrane (ILM) to RPE). These algorithms have been shown to generate 

layer thicknesses, comparable to a retinal specialist, in healthy participants using 

Cirrus HD-OCT 5000 images (Lee et al. 2010). Furthermore, it has been shown to 

produce comparable results to the on-board Spectralis OCT software on images 

from participants with diabetic macular edema (Sohn et al. 2013).  

A lateral scaling factor for any OCT image can be determined using:  

(i) An estimate of the retina to principal plane (a hypothetical plane at which 

all the refraction in the lens system can be considered to happen) 

distance, taken as AEL minus 1.6 mm for the purposes of this study 

(representing the cornea to principal plane distance, from Gullstrand’s 
exact schematic eye; Bengtsson and Krakau 1992).  

(ii) The scan angle of an image in air.  

(iii) An estimate of the bulk ocular refractive index.  

The on-board software of two commercial (Topcon and Zeiss) instruments 

used in this study provide only a single lateral scaling value for all patients 

regardless of AEL, resulting in an error in the reported size of the image which scales 

with AEL. This error manifests as a discrepancy between the fixed size ETDRS grid 

(which does not compensate for AEL) and the AEL-dependent image size. Therefore, 

the position of retinal layer measurements and hence the regional thickness values 

become AEL-dependent; an important consideration when comparing different OCT 

instruments. Converting all image files to a compatible TIFF format allowed input of 

an independently calculated, AEL-dependent lateral scaling into the Iowa Reference 

Algorithms, for images from all devices.  

The following study had one primary and two secondary aims:  
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Primary aim:  

1) To investigate the importance of biometric considerations and image scaling 

by comparing the segmentation of the Iowa Reference Algorithms on images 

from various (conventional and long-wavelength) OCT devices using both 

fixed-AEL and AEL-dependent scaling.  

Secondary aims:  

2) To evaluate the inter-session repeatability of the intra-retinal layer 

segmentation performed by the Iowa Reference Algorithms and the on-board 

commercial segmentation software, on healthy eyes.  

3) To assess agreement in retinal thickness values generated by the Iowa 

Reference Algorithms and the on-board commercial segmentation software.  

Since the primary aim is the most pertinent to this thesis, it will be discussed 

here in detail.  A detailed report addressing the two secondary aims (not directly 

relevant to this work) can be found in Terry et al. (2016) and Appendix G.  

3.1.2 Methods and protocols  

Participants  

Healthy participants (n=25) were recruited from staff, students and 

volunteers at the School of Optometry and Vision Sciences, Cardiff University. All 

participants had a corrected visual acuity of 0 logMAR (6/6) or better using an 

ETDRS chart and a refractive error (mean sphere) of less than ±6.00 dioptres in the 

test eye.  

Exclusion criteria included: posterior ocular pathology such as age-related 

macular degeneration and glaucoma; ocular hypertension (>21 mmHg); narrow 

iridocorneal angles (grade 1 or less assessed by Van Herick); and significant corneal 

or lenticular opacities (Lens Opacities Classification System III grade 4 or more for 

any criteria; Chylack et al. 1993). Grade 4 was selected due to the enhanced imaging 

performance of long-wavelength OCT in the presence of media opacities (Povazay 

et al. 2007). Participants with systemic conditions including diabetes, uncontrolled 
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hypertension and neurological disease were also excluded, as were those taking 

medication known to affect retinal function.  

One eye was selected as the test eye for each participant; this was the eye 

with the better visual acuity (or lower refractive error if one eye was outside the 

refractive range). An average of 4 IOP measurements were taken using non-contact 

tonometry (Topcon CT-1), and one drop of tropicamide 0.5% was instilled into the 

test eye of each participant prior to imaging. Retinal photographs were obtained to 

ensure participants did not have posterior eye disease. AEL (anterior corneal 

surface to RPE) was measured using optical biometry (IOLMaster).  

OCT imaging 

Following mydriasis, all participants underwent OCT imaging using a non-

commercial long-wavelength (1040 nm) SD-OCT, a Topcon 3D-OCT 1000, and a 

Zeiss Cirrus HD-OCT 5000. Imaging undertaken with the long-wavelength OCT was 

performed below the recommended maximum power limit for a 10 second exposure 

(less than 2.5 mW at the cornea; ANSI 2000).  

Volume scans centred on the fovea were acquired using each device. To allow 

comparison, all images from the commercial instruments were obtained from a     

20°  20° field of view, comprised of 512  128 a-scans, and were acquired by a 

single trained operator.  

Data analysis  

The long-wavelength OCT images underwent dispersion correction to 

convert the raw spectral data (FD1 file format) to logged image data (TIFF file 

format), using custom software in MATLAB. The images were then exported to Fiji, 

where they were converted to 8-bit and cropped along the Y-axis to remove 

artefacts. The images then underwent translational stack registration, and further 

y-axis cropping to remove artefacts from this process (omitting this step resulted in 

misidentification of these artefacts as retinal layer boundaries by the Iowa 

algorithms). The images were then imported to the Iowa Reference Algorithms, 

along with the images from the two commercial instruments which were unaltered. 

In addition, the commercial device images were converted to TIFF format using Fiji 
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and re-imported to the Iowa Reference Algorithms, to allow for manual scaling 

input.  

All OCT images underwent automated retinal layer segmentation using the 

Iowa Reference Algorithms. Retinal thickness was taken as the distance from the 

most anterior hyper-reflective line (corresponding to the ILM) to the posterior of 

the most posterior hyper-reflective line (corresponding to the outer boundary of 

RPE). Mean thickness values for the retina and 10 intra-retinal layers were obtained 

for the foveal subfield and the inner and outer rings of a standard ETDRS grid on all 

images (see Figure 3.1).  

For the commercial instruments, the metadata supplied by the manufacturer 

was used in determining voxel (3-D equivalent of pixel) size, in order to demonstrate 

the importance of correct lateral scaling. In all other cases, including the long-

wavelength OCT images, lateral scaling factors were calculated from the scan angle, 

AEL and an assumed bulk ocular index of 1.336 (Littmann 1982; Bennett et al. 

1994). The axial scaling of each pixel was calculated assuming a mean refractive 

index of the retinal layers of 1.4, 1.38, and 1.36 for the long-wavelength, Topcon, and 

Zeiss instruments respectively (Sidman 1957; Terry et al. 2016). These represent 

the assumptions for refractive index made for each device, and were provided by 

Figure 3.1 ETDRS grid and example 10 intra-retinal layer segmentation. (A) Standard ETDRS 
grid showing the foveal subfield (black). The inner ring is an average of the four parafoveal 
subfields (dark grey) and the outer ring of the four perifoveal subfields (light grey). (B) 10 
layer (11 boundary) segmentation of a long-wavelength OCT image, produced by the Iowa 
Reference Algorithms. The left half of the image shows the image prior to segmentation. Image 
from Terry et al. (2016).
Layers 1-10 (top to bottom; as defined by the software): retinal nerve fibre layer (RNFL); 
ganglion cell layer (GCL); inner plexiform layer (IPL); inner nuclear layer (INL); outer 
plexiform layer (OPL); outer plexiform layer-Henle fibre layer to boundary of myoid and 
ellipsoid of inner segments (HFL/ONL); photoreceptor inner/outer segments (IS/OS); 
inner/outer segment junction to inner boundary of outer segment photoreceptor/retinal 
pigment epithelium complex (IS/OSJ); outer segment photoreceptor/retinal pigment 
epithelium complex (OPR); retinal pigment epithelium (RPE).
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the manufacturers of the commercial devices. The percentage differences between 

the fixed-AEL and AEL-dependent scaled measurements were calculated for the two 

commercial devices.  

The mean differences in total retinal thickness between the commercial 

devices and the long-wavelength OCT (assumed as ground truth for this analysis) 

were calculated. This was performed for both fixed-AEL scaling and AEL-dependent 

scaling for the commercial devices. The relationship between retinal thickness 

discrepancies of the scaling methods and AEL was evaluated using Spearman’s rank 
correlation.  

3.1.3 Results  

Twenty-five eyes from 25 participants were included in the study. The mean 

age of the participants was 34.9 ± 13.5 years (range 20 to 62 years). Sixteen 

participants were female (64%). The mean AEL and refractive error (mean sphere) 

were 23.7 ± 1.3 mm (range 21.6 to 26.6) and -0.58 ± 1.93 dioptres (range -4.50 to 

+3.00) respectively. The maximum cylindrical power was 3.00 dioptres.  

Table 3.1 Total retinal thickness measurements (mean ± SD; µm) using AEL-dependent and 
fixed-AEL scaling (with the exception of the 1040 nm OCT images). The percentage difference 
between the two scaling methods is shown.  

Fovea Inner ring Outer ring
AEL-dependent 
scaling

1040 nm 270.9 ± 16.8 335.2 ± 17.4 294.0 ± 20.6

Topcon 284.6 ± 17.0 342.2 ± 18.2 293.2 ± 21.6

Zeiss 284.8 ± 17.6 347.6 ± 18.3 300.6 ± 21.0

Fixed-AEL scaling Topcon 281.5 ± 16.9 342.8 ± 18.0 295.2 ± 21.8

Zeiss 280.8 ± 17.5 347.0 ± 18.0 302.0 ± 21.4

Percentage 
difference

Topcon 1.1% 0.2% 0.7%

Zeiss 1.4% 0.2% 0.5%

Mean retinal thickness measurements produced with both scaling methods 

can be seen in Table 3.1. The images from the long-wavelength device only 

underwent AEL-dependent scaling, to serve as the ‘ground truth’ for comparison to 
the other devices. Correcting for individual AEL with the Iowa Reference Algorithms 

yielded mean differences of less than 2% in total retinal thickness in all cases, when 
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compared to the fixed-AEL scaled thickness measurements. This difference was 

largest in the foveal subfield. In general, the measured retinal thickness was greatest 

for the Zeiss images, followed by the Topcon, and finally the long-wavelength OCT.  

The Iowa Reference Algorithms returned automated segmentation of 10 

intra-retinal layers for all images. These values underwent AEL-corrected lateral 

scaling as described previously. The percentage difference of these corrected values 

from the fixed-AEL scaling values ranged from -15% to +26% (corresponding to 

Topcon GCL layer/Zeiss RNFL, and Zeiss GCL layer respectively, both in the foveal 

subfield; Table 3.2).  

Table 3.2 Mean thickness (µm) of 10 intra-retinal layers produced by segmentation using the 
Iowa Reference Algorithms with AEL-dependent scaling. Percentage difference from fixed-AEL 
scaling shown in italics, to the nearest percentile (commercial devices only). The largest 
percentage differences are highlighted in grey. 

Layer Fovea Inner ring Outer ring

Topcon Zeiss 1040
nm

Topcon Zeiss 1040
nm

Topcon Zeiss 1040
nm

RNFL 7.0

-7% 

5.9

-15%

5.2

-

25.5

0%

25.2

0%

24.2

-

39.3

-9% 

40.9

-7% 

39.3

-

GCL 17.0

-15%

13.4

26%

17.2

-

48.5

0% 

52.4

1% 

50.5

-

24.7

3% 

27.2

7% 

29.3

-

IPL 29.3

1% 

27.5

-4% 

24.4

-

42.5

1% 

40.7

-2% 

39.9

-

35.3

3% 

37.3

0% 

36.0

-

INL 17.7

-10%

22.5

-4% 

18.9

-

37.8

-1% 

43.2

-1% 

37.5

-

28.1

0% 

32.9

1% 

29.6

-

OPL 23.0

3% 

20.7

0% 

20.3

-

29.6

1% 

28.0

0% 

30.0

-

26.2

2% 

24.1

2% 

28.4

-

OPL-
HFL ~ 
BMEIS

120.8

0% 

122.3

0% 

116.5

-

95.5

1% 

96.9

1% 

90.3

-

79.7

1% 

79.4

1% 

71.6

-

IS/OS 13.9

0% 

11.7

0% 

14.8

-

12.6

2% 

10.3

1% 

13.7

-

12.5

-1% 

10.2

-1% 

13.0

-

IS/OSJ ~ 

IB_RPE

17.0

1%

19.7

1% 

17.3

-

11.7

0% 

14.0

0% 

12.6

-

10.3

0% 

15.5

-2% 

15.8

-

OPR 20.1

-1% 

20.7

-1% 

20.6

-

19.8

1% 

21.3

0% 

20.7

-

18.5

1% 

17.8

2% 

15.2

-

RPE 18.6

1% 

15.5

0% 

15.6

-

18.6

0% 

15.5

-1% 

15.5

-

18.6

-1% 

15.3

-1% 

15.5

-
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Discrepancies in fixed-AEL scaled retinal thickness measurements between 

the commercial and long-wavelength devices showed a strong correlation with AEL, 

for the commercial instrument data, in both the foveal subfield and the outer ring 

(Spearman rank ρ>0.50, P<0.05 in all cases), although only moderate to weak for the 

inner ring (Spearman ρ<0.50). In all cases, the correlation was reduced to an 

insignificant level when the AEL-dependent scaling was used in the comparisons 

between data from the three devices (Figure 3.2).  

3.1.4 Discussion  

The Iowa Reference Algorithms produced automated segmentation of 10 

intra-retinal layers on all images from all three devices. A substantial impact of AEL-

corrected lateral scaling on mean intra-retinal layer thickness values was 

demonstrated, particularly for the inner retinal layers. If an AEL-dependent lateral 

scaling is not used, the ETDRS grid (defined in mm units at the retinal surface) will 

overlay a smaller or larger area of retina, depending on the AEL. The ETDRS subfield 

sizes could vary by up to 30%, assuming a normal AEL range of 20 - 28 mm which is 

Figure 3.2 Difference in retinal thickness measurements between devices (µm) versus AEL
(mm) for the foveal subfield, as produced by the Iowa Reference Algorithms using both scaling 
methods. The 1040 nm OCT images underwent AEL-dependent scaling only, and serves here as 
ground truth. 
*significant at the 0.05 level
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a little larger than for the cohort of this study. Due to the physiological shape of the 

retina (particularly at the foveal pit), a relative difference in size of the ETDRS grid 

would impact the mean thickness measurements of a given region (Figure 3.3). This 

is reflected in the percentage differences in thickness between the two scaling 

methods, shown in Table 3.2. Appropriate scaling to account for AEL is therefore an 

important consideration for any quantitative retinal thickness analysis, particularly 

in cross-sectional applications.  

Refractive index assumptions for retinal tissue used by each device could 

result in a small difference in axial scaling. Knowing the assumption made by each 

device, a difference in absolute thickness values between instruments of between 

1.4% and 2.9% would be expected, with largest thickness values from the Zeiss 

images (n=1.36), then Topcon images (n=1.38), and finally the long-wavelength OCT 

(n=1.4). This expectation was consistent with the findings in Figure 3.2.  

Discrepancies in retinal thickness measurement between images from the 

long-wavelength and commercial systems were significantly correlated with AEL for 

the foveal and outer ring subfields, using the fixed-AEL scaling. When the AEL-

dependent scaling was used throughout this analysis, all these correlations were 

reduced and were no longer significant (Figure 3.2). This effect is consistent with 

the expected transverse magnification error that arises when fixed-AEL scaling is 

used for images from either of the commercial instruments. The Iowa Reference 

Algorithms allow for direct input of transverse scaling factors prior to image 

segmentation which should be used, where possible, to reduce these demonstrated 

magnification errors.  

Figure 3.3 Differences in AEL-dependent scaling result in a larger or smaller area of retina 
residing within each region of the ETDRS grid (dashed lines). Difference in foveal subfield size 
shown (1 mm in diameter) for lateral scaling assuming an AEL of 20 mm and 28 mm. 
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To conclude, lateral magnification errors affect the consistency and reliability 

of generated thickness values, and are therefore an important consideration in 

quantitative OCT retinal layer analysis. Furthermore, the Iowa Reference 

Algorithms provide a convenient mechanism to apply an accurate AEL-dependent 

lateral scaling to images from any OCT device. This approach should be followed 

where any quantitative analysis with a lateral aspect (i.e. not solely axial 

measurements) is undertaken. These findings are directly applicable not only to 

retinal analysis, but also to choroidal analysis, the principle topic of this thesis. 

Although the likely effect of this error is relatively small, AEL-dependent scaling will 

be incorporated wherever appropriate. 

3.2 Choroidal parameter development 

A number of methods of quantifying the choroidal vasculature have been 

previously assessed (see Section 1.7.1). To be an effective parameter, measures 

must be feasible, repeatable, and sensitive to detecting difference between groups 

(cross-sectional) or change over time (longitudinal). Since the images in this thesis 

were acquired using a non-standard OCT device, previously used parameters must 

be validated on these images, prior to application to disease. This section includes 

an evaluation of a number of previously described choroidal measures for feasibility 

and repeatability. These include subfoveal choroidal thickness, vessel diameter, and 

proportion of vessel lumen. The use of a novel parameter describing structure 

complexity is also assessed in Section 3.2.4.  

Inter-session repeatability was established using the dataset described in 

Section 3.1, comprising volume and line scans of healthy eyes, which underwent pre-

processing as described in Figure 2.2. All study participants were asked to refrain 

from drinking tea or coffee on the days of data collection, to control for any potential 

effect of caffeine intake on the choroidal structure (see Section 1.3). To minimise the 

effect of diurnal variation, both imaging sessions were conducted at the same time 

of day. Bland-Altman plots and CoR were used to assess repeatability. A comparison 

is made between the use of volume scans and line scans for the measurement of 

these parameters, where appropriate. Measurement protocols for each parameter 

are described in the following sections, and were performed by one observer, who 
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was masked to previous measurements. All processing steps were undertaken using 

Fiji, unless otherwise stated.  

3.2.1 Subfoveal choroidal thickness 

The first parameter assessed was subfoveal choroidal thickness (SFCT). This 

is the most commonly described and applied parameter in the literature, and is one 

of the simplest to perform through manual digital calliper measurement.  

3.2.1.1 Methods 

SFCT was defined as a vertical measurement beneath the lowest point of the 

foveal pit, from the posterior border of the outermost hyper-reflective line (RPE) to 

the posterior choroidal stroma, as described by Vuong et al. (2016). For the volume 

scans, surrounding b-scans were used to localise the deepest point of the foveal pit, 

and this b-scan was used for the measurement. The zoom and adjust brightness 

functions were freely used to enhance visualisation of the anterior and posterior 

choroidal boundaries. A single digital calliper measurement was manually 

performed for each volume scan and line scan in the dataset. 

3.2.1.2 Results 

 Volume and line scans were acquired from 25 participants at 2 sessions. As 

discussed in Sections 2.2 and 2.5.1, the line scans were over-sampled and underwent 

greater averaging, providing a higher SNR than the volume scans. Of the 25 eyes 

imaged, visibility of the posterior choroidal boundary in the volume scans was poor 

for 4 of the eyes. These 4 eyes were excluded from all volume scan analysis. 

However, this boundary was visible in the line scans of all 25 eyes; hence no eyes 

were excluded from the line scan analysis. For comparison between the scan types, 

a separate analysis of the line scans was performed, excluding the same 4 eyes. The 

demographics of the study participants can be found in Table 3.3. In general, the 

eyes excluded from the volume scan analysis had a shorter AEL and were more 

hyperopic than the included eyes, although this was based on only 4 excluded eyes 

and it is therefore difficult to assess the significance of this observation.  
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Table 3.3 Demographics (mean ± SD) of all study participants, and subdivided into those that 
were included and excluded from the analysis of the volume scans.   

All participants Included Excluded

n 25 21 4

Age (years) 34.9 ± 13.5 36.4 ± 14.1 26.8 ± 4.3 

AEL (mm) 23.7 ± 1.3 23.9 ± 1.3 22.7 ± 1.0

Refractive error (mean 
sphere; dioptres)

-0.60 ± 1.9 -0.80 ± 1.9 0.44 ± 1.8

 Mean SFCT of all eyes measured from the line scans was 341.1 ± 132.0 µm, 

although this reduced to 297.1 ± 91.1 µm following exclusion of 4 eyes (Table 3.4). 

SFCT of the excluded eyes (measured from the line scans) ranged from 537 µm to 

595 µm. When the same 4 eyes were removed from the line scan analysis also (for 

comparison only), SFCT was very comparable between scan types (paired t-test, 

P=0.769). Inter-session repeatability was very similar for volume and line scans 

(CoR ~7%). The variation in SFCT between individuals was very high, ranging from 

85.5 to 594.7 µm. There was no significant difference in SFCT between Session 1 and 

Session 2 (paired t-test, P>0.05 in all cases). 

Table 3.4 Mean (± SD) subfoveal choroidal thickness (SFCT) and inter-session CoR in µm and as 
a percentage of the mean SFCT. The larger dataset of line scans is shown separately.  

Scan type Mean SFCT (µm) Range (µm) CoR (µm) CoR (%)

Volume (n=21) 295.3 ± 87.8 88.0 - 448.7 20.5 6.9

Line (n=21) 297.1 ± 91.1 85.5 - 457.9 21.1 7.1

Line (n=25) 341.1 ± 132.0 85.5 - 594.7 24.1 7.1

3.2.1.3 Discussion 

Mean SFCT in this cohort was 341.1 ± 132.0 µm. This is similar to the findings 

of Rahman et al. (2011), who reported a mean thickness of 332 ± 90 µm in a healthy 

cohort of similar age (38 ± 5 years) imaged using Spectralis OCT. The variation in 

thickness between eyes was greater in the present cohort, as was the age range of 

participants (20-62 versus 30-49 years). This may in part account for the variation 

in choroidal thickness, since the choroid has been shown to thin with age (see 

Section 1.3.1). As a result of the demonstrated large variation between healthy 

individuals, large differences in mean choroidal thickness between disease groups 
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(or a large sample size) would be required to reach statistical significance. This 

parameter may therefore not be sensitive to small differences between groups.  

 Conversely, a number of studies have reported a lower mean SFCT than these 

findings (Ding et al. 2011; Lee et al. 2013c). The majority of participants in the 

present study were Caucasian, whilst these two studies were of Asian eyes, which 

are typically more myopic and have a longer AEL, where one would expect thinner 

choroids (see Section 1.3.2). For instance, Lee et al (2013c) reported a mean SFCT 

of ~270 µm, with a mean AEL of 25.11 ± 1.43 mm and a mean refractive error of -

3.27 ± 2.48 D. The difference in mean SFCT between studies could be explained by 

the demographics of the cohorts.  

The inter-session CoR of SFCT was ~24 µm; this represents the normal 

variability that can be expected between imaging sessions with this measurement 

technique in a young, healthy population. Changes between sessions of greater than 

this value may indicate change in the structure beyond normal variation, which 

could be associated with pathology. Rahman et al. (2011) assessed the repeatability 

of SFCT measurements in young, healthy participants (n=50). Intra-observer CoR 

was found to be 23 µm, whilst inter-observer CoR and intra-session CoR were 32 µm 

and 34 µm respectively. Inter-session repeatability was not assessed, but in the 

present study was found to be slightly lower than these values. This may be due to 

the OCT devices used in the studies; Rahman et al. acquired images using a 

conventional-wavelength commercial OCT with EDI, whilst a long-wavelength OCT 

was used in this study. This long-wavelength device may therefore provide an 

advantage over the conventional commercial OCT devices in terms of repeatability 

of SFCT measurement.  

Inter-session repeatability of SFCT was very similar for volume and line 

scans acquired from the same eyes. However, 4 of the 25 eyes were excluded from 

the volume scan analysis due to poor visibility of the posterior choroidal boundary. 

These eyes had the greatest SFCT of the sample (all >530 µm), therefore suffered 

most from the inherent signal roll-off with depth in the images. The SNR was low at 

the posterior choroidal boundary, causing the boundary to be poorly defined and 

not possible to accurately locate. This boundary could be visualised on the line scans 

of all four of these eyes, likely due to the reduced image noise resulting from 

averaging during image processing.  
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There was minimal difference in SFCT measurements acquired from the line 

scans and volume scans. Measurements from these scan types are therefore directly 

comparable. However, since the posterior choroidal boundary was visible in a 

higher proportion of the line scans, this scan type is preferable for use in manual 

measurement of SFCT.  

Since SFCT is a sampled measurement (i.e. measured at a single location), it 

may not be representative of the sub-macular choroid as a whole. An averaged 

measurement of choroidal thickness over a defined area is likely to be more suitable 

for this task. However, since this requires manual segmentation of the anterior and 

posterior choroidal boundaries, it is time consuming and therefore not feasible for 

clinical application. Methods of automated segmentation for fast regional choroidal 

thickness measurement are explored in Section 3.4.  

3.2.2 Visible vessel diameter and vessel ratio  

Vessel diameter has been described in the literature as a method for 

quantifying the choroidal vasculature. Approaches to measurement technique vary, 

with some authors measuring the largest visible vessel within a given distance from 

the fovea (Yang et al. 2013), whilst others measure the largest vessel at a predefined 

distance and direction from the fovea (Bittencourt et al. 2014; see Section 1.7.1). 

However, these measurements are susceptible to high inter-observer variability. 

For instance, Yang et al. (2013) defined the limit of acceptable measurement 

difference between observers as 15%. Since the mean vessel diameter of their 

control group was 140 µm, this equates to a difference of ~21 µm. In an attempt to 

minimise the effects of this potential error, this section evaluates the use of multiple 

measurements to produce a mean value for visible vessel diameter (VVD).  

In addition to vessel diameter, Bittencourt et al. (2014) outlined the use of a 

ratio of vessel diameter to choroidal thickness in describing the vasculature. This 

parameter is also evaluated in this section, and will be referred to here as ‘vessel 
ratio’. 
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3.2.2.1 Methods  

VVD was defined as a vertical measurement of the hypo-reflective vessel 

lumen, taken at the point of maximum diameter. For the volume scans, surrounding 

b-scans were used to localise the deepest point of the foveal pit, and this b-scan was 

used for the measurement. The zoom and adjust brightness functions were freely 

used to enhance visualisation of the vessel lumen boundaries. A single digital 

calliper measurement was manually performed for each of the three largest visible 

vessels within 3000 µm nasally and temporally of the fovea (Figure 3.4). This 

ensured that the same area of choroid was included in the volume scans (width 

~6000 µm) and line scans (width ~11000 µm). The vessel ratio (VR) was also 

calculated (VR=VVD/SFCT).  

3.2.2.2 Results 

 Of the 25 participants, 4 were excluded from the volume scan analysis due to 

poor visibility of the choroidal vessels. These were the same 4 eyes as were excluded 

from the SFCT analysis (see Section 3.2.1). It was possible to obtain VVD 

measurements from the line scans of all 25 participants.   

 Mean VVD measured from the line scans of all eyes was 152.8 ± 35.7 µm, 

although this reduced to 142.7 ± 28.3 µm following exclusion of 4 eyes (Table 3.5). 

VVD of the excluded eyes (measured from the line scans) ranged from 187 µm to 

231 µm. When these eyes were excluded from the line scan analysis, mean VVD was 

still significantly larger in the line scans than the volume scans (paired t-test, 

P<0.05). Inter-session repeatability was slightly better for the measurements from 

the line scans than the volume scans (CoR of 14.7% versus 21.2%). There was no 

Figure 3.4 Measurement of VVD from a line scan. The three largest vessels were manually 
measured vertically, at the point of maximum diameter (white lines) using digital callipers. 
The mean of these was taken as VVD. 
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significant difference in VVD between Session 1 and Session 2 (paired t-test, P>0.05 

in each case).  

Table 3.5 Mean (± SD) visible vessel diameter (VVD) and inter-session CoR in µm and as a 
percentage of the mean VVD. The larger dataset of line scans is shown separately.  

Scan type Mean VVD (µm) Range (µm) CoR (µm) CoR (%)

Volume (n=21) 122.6 ± 28.8 58.9-185.2 25.9 21.2

Line (n=21) 142.7 ± 28.3 99.8-186.8 24.0 16.8

Line (n=25) 152.8 ± 35.7 99.8-231.2 22.4 14.7

 The mean ratio of VVD to SFCT (vessel ratio) was 0.49 ± 0.17 (Table 3.6). The 

vessel ratio of the 4 excluded eyes ranged from 0.33 to 0.39 (due to the high SFCT). 

The CoR of this parameter was lower for the line scans than the volume scans.  

Table 3.6 Mean (± SD) vessel ratio and inter-session CoR (also as a percentage of the mean 
vessel ratio). The larger dataset of line scans is shown separately.  

Scan type Mean VR Range CoR CoR (%)

Volume (n=21) 0.44 ± 0.10 0.30-0.67 0.15 34.6

Line (n=21) 0.52 ± 0.17 0.32-1.18 0.10 19.1

Line (n=25) 0.49 ± 0.17 0.32-1.18 0.09 18.4

 The relationships between these parameters and SFCT can be seen in Figure 

3.5. A strong positive correlation was found between the variables, with thicker 
choroids generally having a larger VVD (Spearman’s ρ>0.5; P<0.05). One outlier was 

identified in the VR correlation and was removed from further analysis. A strong 
negative correlation was found between SFCT and vessel ratio (Spearman’s ρ>0.5, 

P<0.05).  
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3.2.2.3 Discussion  

  Based on these repeatability findings, a change in VVD of >22.4 µm is 

required to indicate change in the structure beyond normal inter-session variation. 

Although this is a large difference given the mean vessel diameter, differences 

exceeding this value have been demonstrated with OCT imaging between disease 

and control groups, in both central serous chorioretinopathy (CSC) and posterior 

uveitis (Yang et al. 2013; Bittencourt et al. 2014). The mean absolute difference in 

VVD between sessions was 9.0 µm, which equates to ~5.9% of mean vessel 

diameter. This is far lower than the 15% acceptance criteria employed by Yang et al. 

(2013).  

 Vessel measurements obtained from the line scans were significantly larger 

than those from the volume scans, even when the same 4 images were excluded 

from both sets (paired t-test, P<0.05). Measurements of VVD are therefore not 

directly comparable between scan types. The cause of this discrepancy is unclear, 

Figure 3.5 Scatter plots showing the relationship between (A) mean visible vessel diameter and 
(B) vessel ratio, as a function of subfoveal choroidal thickness. Spearman’s rho (ρ) and 
significance value (P) given. The outlier in plot B was removed prior to correlation testing but 
is included here for demonstrative purposes. 

ρ = 0.805
P < 0.001

ρ = -0.792
P < 0.001

A

B
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although it may be associated with the averaging of multiple b-scans during image 

processing of line scans. If the b-scans are misaligned, spatial resolution is reduced. 

It is possible that if the stromal space between vessel lumen is small, it may be lost 

during averaging of misaligned b-scans. Although care was taken to ensure this 

error was minimised during image processing, it is likely that a small amount of 

misalignment remained, which may in part explain these findings. The mean VVD of 

the line scans was 152.8 ± 35.7 µm, which is consistent with the healthy control 

group of previous studies; for example the findings of Yang et al. (2013) and 

Bittencourt et al. (2014), who reported mean vessel diameters of 140 ± 40 µm, and 

160 ± 32 µm respectively.  

 A strong positive correlation was found between SFCT and VVD. This 

suggests that, in general, the maximum choroidal vessel size is larger in thicker 

choroids. This is consistent with the findings of Park and Oh (2014), who identified 

a strong positive correlation between these variables in both adults and children. 

Additionally, a strong negative correlation was identified between SFCT and VR; i.e. 

the vessel ratio was lower for thicker choroids. The mean VR in the total sample 

(n=25) was 0.49; therefore the mean diameter of the 3 largest choroidal vessels was 

approximately half of the SFCT. This is lower than the VR of 0.61 reported by 

Bittencourt et al. (2014) on 23 healthy, young participants, despite similar mean 

vessel diameter values. The difference is attributable to the mean SFCT between the 

studies (261.6 ± 45.6 µm versus 341.1 ± 132.0 µm). The far greater variation in 

choroidal thickness in the current cohort (particularly in the upper range) may 

contribute to the difference in VR.  

 One outlier was identified in the correlation of SFCT and VR (Figure 3.5 

Scatter plots showing the relationship between (A) mean visible vessel diameter 

and (B) vessel ratio, as a function of subfoveal choroidal thickness. Spearman’s rho 
(ρ) and significance value (P) given. The outlier in plot B was removed prior to 

correlation testing but is included here for demonstrative purposes. B). This 

participant had a particularly thin choroid (SFCT of 85.5 µm). The largest vessels 

were identified to measure VVD, however these were typically not located directly 

beneath the fovea. In this case, the largest vessels were located elsewhere, in a 

location where the choroid was thicker than beneath the fovea. Since the choroid is 

typically physiologically thickest beneath the fovea, the VR is usually less than 1. 
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However, the VR of this participant was 1.2, as the VVD was larger than the SFCT. 

Since this study was on a healthy cohort and this measure did not follow the 

physiological norm, this measure was classed as an outlier and removed from the 

correlation analysis. However, it should be noted that the vessel ratio may exceed 1 

in pathological eyes, particularly in cases of subfoveal choroidal atrophy.  

Inter-session repeatability of VVD was better for the line scans than the 

volume scans. Due to the averaging applied during processing of the line scans, the 

SNR is higher, and the vessel lumen appear more defined than in the volume scans. 

This allowed greater accuracy in localisation of the lumen boundaries, which likely 

explains the difference in CoR between the scan types. The 4 eyes excluded from the 

volume scan analysis were those with high SFCT (>530 µm) in which visualisation 

of the posterior choroidal boundary was not possible. It was large vessels that were 

of interest for this evaluation, which are located in the outer choroid (Haller’s layer), 
and hence suffer most from signal roll-off in those with a thicker choroid, limiting 

visualisation of the vessel lumen. Despite this, VVD measurements (and hence VR 

calculations) were feasible on all eyes using the line scans. Line scans are therefore 

preferable for manually quantifying vessel diameter in this manner.  

3.2.3 Choroidal area, luminal area, and choroidal vascularity index 

The measurements evaluated in Sections 3.2.1 and 3.2.2 were 1-dimensional, 

i.e. lengths. They therefore suffer from the limitations of sampling, since a 

measurement of a single location (or an average of multiple locations) is used to 

describe the structure. These protocols also consider only axial measures for ease 

of image scaling. To minimise the effect of sampling, 2-dimensional measurements 

have previously been considered, including choroidal area and luminal area. These 

are the 2-dimensional counterparts to choroidal thickness and vessel diameter 

respectively, but consider the entire choroid visible in the b-scan, rather than at 

fixed locations. A protocol for obtaining these parameters from OCT line scans using 

image binarization has been described by Sonoda et al. (2014), and has been applied 

to several ocular pathologies (see Section 1.7.1.3).  

Considering VR (the ratio of VVD to SFCT), the corresponding 2-D 

measurement is the ratio of luminal area to choroidal area. This parameter has been 
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previously described by Agrawal et al. (2016a), and termed Choroidal Vascularity 

Index (CVI). This section evaluates the application of these methods to line scans of 

healthy eyes acquired using a non-commercial long-wavelength OCT device.  

3.2.3.1 Methods 

 The protocol described by Sonoda et al. (2014) was applied to measure 

choroidal area, luminal area and stromal area, with minor modifications. Firstly, the 

image was cropped to a rectangular area 3000 µm wide (equivalent to the inner ring 

of the ETDRS grid), centred on the deepest point of the foveal pit. The zoom and 

adjust brightness functions were then used freely to enhance visualisation of the 

boundaries of the choroid. The boundaries of the central 1500 µm of choroid were 

selected from the basal margin of the RPE to the choroidal-scleral border, using the 

polygon selection tool (Figure 3.6A). This area was added to the ‘ROI manager’ in 
Fiji.  

 Three large choroidal vessels were identified (it was not possible for these to 

all exceed 100 µm in this dataset, as stated in the original protocol). The mean 

brightness of these vessel lumen was measured, within a circle of 9 pixel diameter, 

using the oval selection tool. The image minimum brightness was adjusted to this 

value to minimise noise (Figure 3.6B), and the image was converted to 8-bit.  

Figure 3.6 Protocol summary for image binarization and parameter measurement. (A) Area 
selection. (B) Adjustment of brightness. (C) Niblack auto local thresholding (Niblack 1986). (D) 
Overlay of binarised image perimeter.
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Prior to thresholding, a median filter was applied to minimise remaining 

speckle in the image. This was not included in the original protocol, which was 

optimised for images acquired with the Spectralis OCT. Since the images in the 

current dataset were acquired on a non-commercial device, only minimal post-

processing had been applied, and some high frequency noise remained. Following 

the median filter, images underwent Niblack autolocal thresholding (Niblack 1986; 

Figure 3.6C). The binarised image was then converted to a RGB image to allow use 

of the ‘threshold color’ tool. This tool was used to produce an automated outline of 
the binarised perimeter across the image (i.e. the luminal areas). This selection was 

added to the ROI manager, and was combined with the previous selection to produce 

an outline of the luminal areas in the central 1500 µm of choroid only (Figure 3.6D).  

Automated measurements of the choroidal area (CA) and luminal area (LA) 

were then produced using the Analyse>Measure tool in Fiji (with the sum of the 

black areas in pixels taken as LA). The stromal area (SA) was then calculated from 

these values (SA=CA-LA). These values were in pixels, and were converted to mm2

by multiplying by both the axial and transverse scaling factors. The choroidal 

vascularity index (CVI) was also calculated (CVI=LA/CA) for each image.  

3.2.3.2 Results 

 All 25 participants were included in this analysis. Mean choroidal area within 

the central 1.5 mm was 0.484 mm2, of which vessel lumen accounted for 0.367 mm2

(75.8%). Variation in CA between eyes was high, and ranged from 0.14 to 0.87 mm2. 

CVI ranged from 0.683 to 0.900. There was no significant difference between Session 

1 and Session 2 for any of the parameters (paired t-test, P>0.05 in all cases). Inter-

session repeatability of each parameter is shown in Table 3.7.  

Table 3.7 Mean (± SD) choroidal area (mm2), luminal area (mm2), stromal area (mm2), and 
choroidal vascular index (CVI). Inter-session CoR is given for each parameter, including as a 
percentage of the mean value.  

Parameter Mean ± SD Range CoR CoR (%)

Choroidal area 0.484 ± 0.178 0.142-0.865 0.051 10.51

Luminal area 0.367 ± 0.148 0.118-0.730 0.042 11.53

Stromal area 0.117 ± 0.047 0.024-0.221 0.033 29.01

CVI 0.758 ± 0.055 0.683-0.900 0.048 6.39
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The correlation of LA and CVI with CA can be seen in Figure 3.7. A strong 

positive correlation was found between CA and LA, with thicker choroids generally 
having a larger LA (Spearman’s ρ>0.5; P<0.05). There was no linear correlation 

between CA and CVI (Spearman’s ρ=-0.193).  

3.2.3.3 Discussion 

 Mean CA in the central 1.5 mm2 was 0.484 ± 0.178 mm2. This is comparable 

to the findings of Gupta et al. (2017), who reported a value of 0.452 ± 0.094 mm2 in 

healthy eyes (n=273). On average, vessel lumen accounted for 75.8% of choroidal 

area, although this value ranged from 68.3 to 90.0% between individuals. This is 

higher than the mean values of 65.4% reported by Sonoda et al. (2014) and 65.6 ± 

2.3% (range 60.1 to 71.3%) by Agrawal (2016a), on healthy individuals using this 

protocol. Following the same protocol, Gupta et al. (2017) reported a CVI of 55.5%, 

which is far lower than the present study. However, this was on an older cohort with 

ρ = 0.987 

P < 0.001

ρ = -0.193 
P = 0.355

A

B

Figure 3.7 Scatter plot showing relationship between (A) luminal area and (B) choroidal 
vascular index (CVI), as a function of choroidal area. Spearman’s rho (ρ) and significance value 
(P) given. 
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a mean age of 60.1 ± 6.8 years, which may explain some of the difference between 

these findings.  

This protocol was optimised for images from the Spectralis OCT, whereas the 

current study utilised a non-commercial long-wavelength device. The images from 

the commercial device undergo pre-processing, including averaging of 100 b-scans 

to improve SNR. This may contribute to the discrepancy between these values of 

CVI. Branchini et al. (2013) reported a light to dark pixel ratio of 0.27, which equates 

to a CVI of 78.7%. This is a more similar value to the findings of the current study. 

Images in that study were acquired on a Cirrus OCT device, and utilised an 

alternative thresholding method, which may contribute to the difference in findings 

between studies.  

Both CA and LA had a reasonable CoR (0.051 mm2 and 0.042 mm2

respectively). A change in CA of >0.051 mm2 (or luminal area of > 0.042 mm2) would 

suggest structural change beyond normal variation. Following the same 

measurement protocol, Sonoda et al. (2014) identified a mean difference between 

eyes with AMD and healthy controls of ~0.049 mm2 in CA and ~0.033 mm2 in LA, 

which is slightly lower than these values. However, mean differences exceeding 

these CoR values have been demonstrated in CSC and diabetic retinopathy (Agrawal 

2016b; Gupta et al. 2017).  

 There was a strong positive correlation between CA and LA, which is 

unsurprising given the relationship between SFCT and VVD demonstrated 

previously. There was no correlation between CA and CVI. This indicates that there 

is no relationship between SFCT and proportion of vessel lumen. This is in contrast 

to the VR parameter evaluated in Section 3.2.2, which showed a strong negative 

correlation. However, this finding is in agreement with Wei et al. (2016) who found 

CVI to not be influenced by choroidal thickness.  

 In conclusion, all the parameters evaluated are feasible for application to line 

scans acquired by the non-commercial long-wavelength OCT device. All parameters 

demonstrated reasonable inter-session repeatability. However, CVI should be used 

with caution due to limited agreement with the published literature, and the use of 

a protocol not optimised for use with this OCT device.  
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3.2.4 Enface analysis 

The previous method of quantifying vessel area ratio considered the entire 

choroidal depth in a single b-scan. This includes a spectrum of vessel sizes, from the 

small vessels of the choriocapillaris to the large vessels of Haller’s layer. During 
image thresholding, fine detail from the anterior choroid is often lost (as can be seen 

in Figure 3.6D). Pathology primarily affecting this smaller vasculature may therefore 

not be detectable using this method. An alternative measurement method would be 

to quantify all vessels at a predefined depth in the choroid. Sohrab et al. (2012) 

analysed enface OCT images of the choroid at varying depth, producing a parameter 

they termed ‘choroidal vascular density’. This was defined as the ratio of black pixels 
(representing vessel lumen) to total image pixels (similarly to CVI at a fixed 

choroidal depth), following a custom thresholding protocol. Due to the ambiguity of 

this term (density may be taken to represent vessels per unit area), this parameter 

will be referred to here as ‘luminal area ratio’. 

Measuring vessel lumen area relative to total area does not provide 

information on the size of features in the image, in this case vessels. For instance, a 

choroid containing many small vessels may produce a similar luminal area ratio to 

a choroid with fewer large vessels. A novel parameter was therefore evaluated for 

describing feature complexity. The perimeter of the vessel lumen in a binarised 

image is relatively simple and easy to obtain, and can be reported as a proportion of 

total image pixels, termed ‘luminal perimeter ratio’. This section evaluates the 
feasibility and repeatability of quantifying the vasculature at a set choroidal depth 

using enface OCT images.  

3.2.4.1 Methods  

As outlined in Section 2.3.3.2 (and Appendix B), all volume scans were 

flattened to the outermost hyper-reflective line (RPE) to ensure that a consistent 

choroidal depth was selected across the image. To account for the large variation in 

SFCT in this cohort, a percentage depth from RPE to posterior choroidal boundary 

was utilised, rather than an absolute depth beneath the RPE. An arbitrary depth of 

50% was selected to ensure sufficient vessel resolution (i.e. to avoid inclusion of the 

small vessels of the choriocapillaris). This depth also minimised inclusion of sclera 



140 

at the edges of the enface image, caused by the physiological thinning of the choroid 

with increased distance from the fovea (as seen in Figure 3.8).  

The processing steps are summarised in Figure 3.8. Firstly, a rectangular 

region was selected at 50% choroidal depth, of full image width and height of 5 

pixels. This was resliced then underwent median Z-projection to produce an enface 

image. The artefacts from stack registration were cropped from the image. The 

image was then duplicated, and a median filter applied to each image, one with a 

radius of 4 pixels (to remove high frequency noise) and the other with a radius of 50 

pixels. The first image was then divided by the second to control for any large 

intensity fluctuation across the image. This step was necessary to prepare the image 

for application of a global Otsu threshold to produce a binarised image.  

 The luminal area ratio (LAR) was calculated by dividing the number of black 

pixels by total image pixels. Similarly to the measurement of LA in the previous 

section, the image was converted to RGB, and ‘color threshold’ tool was used to 
measure the perimeter of the luminal area. The perimeter was divided by total 

image pixels to produce luminal perimeter ratio (LPR), a gross measure of feature 

complexity.  

 To test the discriminative abilities of the parameters, different choroidal 

depths were used as a proxy for different disease states. The above protocol was 

therefore repeated to produce an additional set of enface image at 25% choroidal 

depth from the RPE, where vessels should appear anatomically different (Spraul et 

Figure 3.8 Summary of protocol for producing binarised enface images at 50% choroidal 
depth. 
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al. 1999). A Wilcoxon signed ranks test was used to test whether the difference 

between depths was statistically significant.  

3.2.4.2 Results 

Since this analysis was using the volume scans, the 4 eyes with poor 

visualisation of the choroidal vessels were excluded (as for the previous analyses). 

The mean LAR at 50% choroidal depth was 0.595 ± 0.031. The mean LPR was 0.113 

± 0.002. There was no significant difference between Session 1 and Session 2 for 

either parameter (Wilcoxon, P>0.05). Inter-session repeatability is shown in Table 

3.8.  

Table 3.8 Mean (± SD) luminal area ratio and luminal perimeter ratio at 50% depth. Inter-
session CoR given for each parameter, including as a percentage of the mean value.  

Parameter Mean ± SD Range CoR CoR (%)

Luminal area ratio 0.595 ± 0.031 0.527 - 0.644 0.033 5.48

Luminal perimeter ratio 0.113 ± 0.002 0.096 - 0.156 0.012 10.75

A representative example of the binarised enface images at 25% and 50% 

choroidal depth can be seen in Figure 3.9. In general, the images at 50% displayed 

larger vessels. A comparison between choroidal depths at Session 1 can be seen in 

Figure 3.10. The mean LAR at 50% and 25% depth was 0.599 ± 0.031 and 0.594 ± 

0.030 respectively. This difference was not statistically significant (Wilcoxon, 

P=0.970). The mean LPR at 50% and 25% depth was 0.111 ± 0.017 and 0.125 ± 

0.012 respectively. This difference was statistically significant (Wilcoxon, P<0.001). 

Figure 3.9 Binarised enface OCT images from the same eye show larger vessels at 50% depth 
(A) than at 25% depth (B) beneath the RPE. 
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3.2.4.3 Discussion 

 On average, vessel lumen accounted for 59.5 ± 3.1% of choroidal tissue at 

50% depth. This is similar to the findings of Kuroda et al. (2016), who reported a 

value of 53.8 ± 4.3% on healthy eyes. This was using a similar protocol, including 

Otsu thresholding, and was conducted on images acquired using a commercial long-

wavelength OCT device. However, these values are lower than those reported by 

Sohrab et al. (2012). Following a custom analysis program to process and threshold 

images, they found vessel lumen to constitute 75.9 – 88.4% of the middle vessel 

layer and 79.3 – 87.2% of the outer vessel layer. This study was conducted on images 

from a Cirrus HD-OCT. The difference in values between the studies is likely 

attributable to the differences in thresholding protocol and OCT device (and 

therefore image scaling) used.  

 Both LAR and LPR had a reasonable inter-session CoR (0.033 and 0.012 

respectively). Therefore to indicate structural change beyond normal variation, an 

increase in these values of >3.3% and >1.2% would be required. When applying the 

protocol to eyes with early AMD, the mean difference between the disease and 

control groups was 3.3% in the middle vessel layer (Sohrab et al. 2012). To date, it 

has not been applied to late-stage AMD. Kuroda et al (2016) identified a large mean 

difference in this parameter between their CSC and control groups (~11.0%). It is 

therefore feasible for this difference to be detectable in pathology. To the author’s 
knowledge, no previous studies have investigated LPR in choroidal OCT imaging, or 

in AMD patients.  

Figure 3.10 Comparison of Session 1 mean luminal area ratio (A) and mean luminal perimeter 
ratio (B) for enface slices at 50% and 25% choroidal depth. Error bars represent the standard 
error of the mean. The difference between depths was not significant for luminal area ratio 
(P=0.970), but was significant for luminal perimeter ratio (P<0.001).
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 When comparing the two different depths in the choroid, there was no 

significant difference in LAR. This indicates that either there is no difference 

between these depths, or that this parameter is not sensitive enough to detect a 

small difference between the two choroidal depths. Given the physiology of the 

choroidal structure, and the detectable difference in vessel appearance perceived by 

the observer (as seen in Figure 3.9), one can assume that there is truly little 

difference in LAR between 50% and 25% choroidal depth. However, since these are 

healthy eyes, it is possible that a change in this parameter would be detectable 

between disease and control eyes, attributed to vessel changes such as dropout (e.g. 

AMD) or engorgement (e.g. CSC).  

 Conversely, LPR was significantly higher at 25% than 50% depth in the 

choroid. This novel parameter provides a gross measure of feature complexity, with 

finer detail features (i.e. multiple small vessels) yielding a higher ratio. This may 

therefore be useful in quantifying differences in feature complexity between disease 

and control groups, which could be attributable to structural change such as vessel 

dropout, known to occur in AMD (Ramrattan et al. 1994; Chirco et al. 2016).  

In conclusion, both parameters evaluated are feasible for application to 

enface images acquired with this non-commercial long-wavelength OCT device. 

Both parameters demonstrated reasonable inter-session repeatability. It should be 

noted that the use of LAR alone does not fully describe the features within the enface 

image, and it is possible for two images with obvious differences in vessel structure 

to yield similar results. LPR can therefore be used alongside this parameter as a 

gross measure of vessel complexity.  

3.2.5 General discussion  

In this section, a total of eight parameters (including one novel parameter) 

were evaluated for feasibility and inter-session repeatability on a dataset 

comprising images of 25 healthy eyes, acquired with a non-commercial long-

wavelength OCT device. All parameters were feasible and demonstrated reasonable 

repeatability (CoR ranging from 5.5% to 18.4%). Each parameter will therefore be 

applied to a dataset comprising images of early and late-stage AMD, along with 
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healthy age-similar controls, to assess their sensitivity to detecting difference in 

structure between disease stages (see Section 4.4).  

 Several parameters were measured on both line and volume scans, to 

identify which scan type was more appropriate to use. Although the inter-session 

repeatability was usually similar between scan types, 4 eyes were excluded from 

some of the volume scan analyses due to poor visualisation of the vessels. No eyes 

were excluded from the analyses of the line scans. Therefore, line scans should be 

used (where possible) to conduct 1-D or 2-D measurements of the b-scans. However, 

volume scans are required for the production of enface images, and hence the enface 

parameters that were evaluated. Therefore, both scan types should be collected for 

the AMD dataset, and quantified according to Table 3.9.  

Table 3.9 Summary of parameters for quantification of choroidal vasculature using each scan 
type.  

Line scan Volume scan

Subfoveal choroidal thickness (SFCT) Luminal area ratio (LAR)

Visible vessel diameter (VVD) Luminal perimeter ratio (LPR)

Vessel ratio (VR)

Choroidal area (CA)

Luminal area (LA)

Choroidal vascular index (CVI)

3.3 Three-dimensional analysis of choroidal vasculature 

The OCT volume scans acquired represent the choroid in three-dimensions. 

The low contrast and low SNR inherent to these choroidal images would be expected 

to make 3-D structural analysis difficult. However, given the availability and value 

of many 3-D techniques in other areas (e.g. 3-D skeletonization/connectivity; 

Kohjiya et al. 2006; Reif et al. 2012; Jin and Kim 2017), it was necessary to further 

explore the feasibility of a 3-D analysis approach.  

The first stage of 3-D analysis is to identify the features of interest within an 

image, in this case the choroidal vessel lumen throughout the volume scan. Most 

simply this could be achieved using a manual segmentation approach. However, this 

is time-consuming and open to subjectivity, and was therefore not considered a 

feasible approach for a large numbers of volume scans. Therefore, automated 
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segmentation of the choroidal vessels, similar to the approaches described in 

Section 1.7.2.2 (Zhang et al. 2012; Kajić et al. 2013), was attempted using Fiji. To 

maximise the likelihood of success and limit the impact of low contrast and poor 

SNR previously identified, it was decided that the 6° volume scans would be used, 

which were shown to provide optimum image quality due to greater image sampling 

(see Section 2.5.1).  

Images were resliced to produce an enface view, and underwent noise 

reduction (median filtering), as described in Section 3.2.4 (enface analysis). Otsu 

thresholding was then applied to the enface images to automatically identify the 

vessel lumen. To evaluate the feasibility of this technique as a precursor to 3-D 

analysis, the results from individual binarised image frames were compared to 

manual segmentation by a clinical observer familiar with OCT images of the choroid 

(an example is shown in Figure 3.11).  

Although there was similarity between the binarised images produced 

through manual and automated segmentation, the Otsu thresholding resulted in a 

large number of high frequency noise artefacts, particularly in low contrast regions 

of the image. In an attempt to minimise this, a median filter was used to remove 

outliers, which were defined as clusters of black or white pixels with a radius ≤2 

pixels. Despite this, some regions remained (visible particularly in the lower part of 

Figure 3.11C). These regions were generally not consistent between neighbouring 

image frames, and hence produced poor continuity during attempted construction 

of a 3-D model (Figure 3.12).  

Figure 3.11 Comparison of choroidal vessel identification methods. An enface image was 
produced from a 6° volume scan, which underwent noise reduction (A). From this image, the 
vessel lumen were manually segmented (B) and automatically segmented using Otsu 
thresholding (C). 
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Unlike the highly-averaged line scans used to establish choroidal area in 

Section 3.2.3, these volume scans did not undergo averaging, resulting in maintained 

spatial resolution but a relatively low SNR. Furthermore, the contrast between the 

vessel lumen and surrounding tissue was low, despite the image enhancement 

during post-processing (median filtering). This resulted in inconsistent vessel 

segmentation between image frames, which was not sufficient for subsequent 3-D 

analysis. It was therefore decided that 3-D structural analysis of the choroidal 

vasculature was not feasible on this dataset. However, this should be revisited with 

the advent of swept source long-wavelength OCT, which demonstrates reduced 

signal roll-off and a higher scanning rate (see Section 1.5.3), facilitating the 

acquisition of higher quality images than those acquired for this study.  

Texture analysis has been shown to be an effective technique for automated 

extraction of shape and orientation information from OCT images with relatively 

low contrast and SNR (Koprowski et al. 2013; Srinivasan 2014b; Albarrak et al. 

Figure 3.12 A 3-D model of the choroidal vasculature in the 6° 6° volume scan, produced 
using automated Otsu thresholding to identify the vessel lumen. The vascular structure is 
largely obscured by high frequency noise in the binarised image. 
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2016). The application of this technique to describing changes to the choroidal 

structure in AMD is explored in Chapter 5.  

3.4 Automated choroidal segmentation 

Since the majority of parameters described in Section 3.2 required manual 

measurement, they were time consuming, relied on an experienced observer, and 

are likely limited by inter-observer variability (see Section 2.4.2). This in turn limits 

the feasibility of application of these parameters to clinical assessment. This section 

therefore evaluates two methods for automated segmentation of the choroidal layer, 

as a means of producing fast, automated choroidal thickness and volume 

measurements, with a view to clinical application.  

The majority of data presented in this thesis were obtained using a non-

commercial long-wavelength OCT, principally due to control of scan parameters (a 

facility generally restricted on commercial devices) and the increased penetration 

necessary for choroidal imaging. However, the Topcon DRI OCT Triton was released 

in Europe in March 2015; after commencement of this work. With the availability of 

a commercial equivalent of the equipment described in this thesis, it can reasonably 

be expected that future work would be conducted using such a device, particularly 

for applications in a clinical setting. The following therefore describes a short 

investigation of the imaging system capabilities, and the on-board analysis of this 

device, as well as the performance of a device-independent segmentation software 

on these images.  

3.4.1 Background 

As described in Section 3.1, the Iowa Reference Algorithms is device-

independent software for multi-layer segmentation of OCT images. In 2015 (version 

4.0), a choroidal segmentation module was added, allowing automated choroidal 

thickness values to be produced for images from multiple OCT devices. Since the 

commercial devices used in Section 3.1 were not optimised for choroidal imaging, 

the capabilities of this segmentation were not evaluated. However, a commercial 

long-wavelength OCT dataset would be ideal for this purpose, since it is optimised 

for choroidal visualisation in a clinical setting.  
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The on-board analysis software of the DRI OCT Triton is capable of producing 

automated segmentation of the choroidal layer on images acquired on the device, 

within minutes of image acquisition. This can be used to generate choroidal 

thickness maps which can be reviewed by the clinician.  

The aim of the following study was to investigate the intra-session 

repeatability of both choroidal segmentation algorithms on images from a 

commercial SS-OCT device, and to determine the agreement in automated choroidal 

thickness measurements.  

3.4.2 Methods and protocols 

Healthy participants (n=24) were recruited from staff, students and 

volunteers at the School of Optometry and Vision Sciences, Cardiff University. All 

participants had no known ocular pathology. Two 20°  20° (512  256) macular 

volume scans were acquired from the same eye within a 15 minute period, using the 

Topcon DRI OCT Triton (λc≈1050 nm). Participants did not undergo mydriasis prior 

to imaging, and images were acquired under minimal room lighting.  

All images underwent fully automated choroidal segmentation with the on-

board analysis software. AEL data for each participant (measured using an 

IOLMaster) was entered into the electronic patient record prior to image 

acquisition, and a correction for biometry was then made automatically by the 

system during lateral image scaling. The exact correction made is unknown, as this 

information has not been made available by the manufacturer. All images were also 

exported from the software, and underwent automated choroidal segmentation 

using the Iowa Reference Algorithms. Again, AEL-dependent scaling was used to 

minimise errors associated with ETDRS grid positioning (see Section 3.1).  

Mean choroidal thickness in 9 ETDRS subfields was produced for each image 

using both segmentation methods (Figure 3.13). Bland-Altman plots and CoR were 

used to assess intra-session repeatability and agreement of automated choroidal 

thickness measurements produced by the algorithms. The relationship between the 

absolute choroidal thickness difference between algorithms and mean choroidal 

thickness was investigated. A least squares linear regression was used to assess the 

statistical significance of the relationship between mean choroidal thickness and 
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agreement between segmentation methods (F statistic; P<0.05). A paired samples t-

test was also used to determine if the thickness values produced by each algorithm 

were significantly different (P<0.05). With no correction for multiple comparisons, 

the chance of finding one or more significant differences in 9 tests was 37%. 

Therefore, a Bonferroni adjustment was made to account for these multiple 

comparisons, by reducing the critical value from 0.05 to 0.006 (for n=9 comparisons; 

Altman 1991).  

3.4.3 Results 

Twenty-four eyes from 24 participants were included in the study. The mean 

(± SD) age of participants was 34.3 ± 13.5 years (range 19 to 63 years). Thirteen 

participants were female (54%). An automated segmentation result was produced 

for all images, by both algorithms.  

Mean choroidal thickness for 9 ETDRS subfields is shown in Table 3.10. The 

Triton on-board segmentation produced greater mean choroidal thickness values 

than the Iowa Reference Algorithms, in all subfields. The mean difference between 

algorithms was greater in the temporal and superior subfields, than the nasal and 

inferior subfields. However, the difference between algorithms was only statistically 

significant for the S2 subfield, and was no longer significant when a Bonferroni 

adjustment was applied.  

Figure 3.13 Example ETDRS grid overlays from (A) Triton on-board software; mean thickness 
(µm), and (B) Iowa Reference Algorithms; mean thickness (and SD; µm). 

A B
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Table 3.10 Comparison of mean choroidal thickness (CT; µm) produced by the two 
segmentation methods.  

ETDRS 

subfield

Mean CT (Triton on-board 

segmentation; µm)

Mean CT (Iowa Reference 

Algorithms; µm)

P (t-test)

F 268 245 0.074

N1 246 232 0.156

N2 193 188 0.511

I1 259 236 0.103

I2 244 220 0.075

T1 268 238 0.061

T2 260 227 0.055

S1 281 245 0.053

S2 275 237 0.033*

*significant at 0.05 level  

There was no significant bias in choroidal thickness in the first and second 

set of acquired images, for either algorithm (paired t-test; P>0.05 in all cases). The 

CoR of both segmentation methods is shown in Figure 3.14. CoR was consistently 

lower for the Triton on-board segmentation than the Iowa Reference Algorithm 

segmentation, with the exception of the foveal subfield. A representative example of 

the Bland-Altman plots for each algorithm is shown in Figure 3.15.  

In general, the CoR was higher for thicker choroids. However, the 

relationship between absolute difference and mean thickness was only statistically 

significant for a subset of ETDRS subfields (Table 3.11). These subfields were not 

Figure 3.14 (A) ETDRS subfields; F=Foveal, N=Nasal; T=Temporal; S=Superior; I=Inferior. CoR 
(µm) for mean choroidal thickness values produced by (B) the Triton on-board software, and 
(C) the Iowa Reference Algorithms. 

A B C
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consistent across both segmentation algorithms (N2 for the Triton on-board 

segmentation, and F and I1 for the Iowa Reference Algorithms).  

Table 3.11 Mean difference (bias; µm) and 95% limits of agreement (µm) for mean choroidal 
thickness produced by each segmentation algorithm. P values represent statistical significance 
of the relationship between mean thickness and absolute difference between algorithms.    

ETDRS 

subfield

Mean 

difference 

(µm)

Limits of 

agreement (µm)

P (F statistic) 

Triton on-board 

P (F statistic)

Iowa Ref 

Algorithms

F 22.3 -91.8 to 136.4 0.019* 0.002**

N1 13.7 -76.1 to 103.6 0.008* 0.232

N2 4.4 -58.7 to 67.5 0.005** 0.148

I1 22.7 -105.6 to 151.0 0.039* 0.004**

I2 23.3 -97.1 to 143.8 0.023* 0.469

T1 29.9 -115.6 to 175.3 0.031* 0.465

T2 33.2 -124.2 to 190.6 0.122 0.887

S1 35.8 -132.6 to 204.2 0.090 0.479

S2 38.1 -123.5 to 199.9 0.179 0.033*

*significant at 0.05 level  

**significant with Bonferroni adjustment  

3.4.4 Discussion 

The Triton on-board software demonstrated better repeatability than the 

Iowa Reference Algorithms for these images. This was likely a result of optimisation 

Figure 3.15 Example Bland-Altman plots for intra-session repeatability of both segmentation 
algorithms; subfield I1 (representative of the 9 subfields). Solid line = mean difference; dashed 
lines = 95% limits of agreement. 
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of the segmentation algorithms for images from the parent device. The Iowa 

Reference Algorithms segmentation failed to accurately identify the posterior 

choroidal boundary on a number of images (Figure 3.16), resulting in an overall 

underestimation of mean choroidal thickness and a poorer repeatability. The 

difference in choroidal thickness between segmentation methods was not 

statistically significant, although was likely large enough to be considered clinically 

significant (ranging from 4.4 to 38.1 µm). This bias was more prominent for thicker 

choroids in several subfields (Table 3.11), where signal roll-off had a greater effect 

(i.e. it was more difficult to visualise the choroid-scleral boundary). In addition, the 

mean thickness difference between algorithms was lower in regions where the 

choroid is physiologically thinner (particularly subfield N2, due to its proximity to 

the ONH), providing further support for this argument.  

To summarise, the Triton on-board segmentation produced automated 

choroidal thickness values with high intra-session repeatability. It is therefore a 

potential method of automated segmentation of the choroid in healthy eyes, in 

future work. The Iowa Reference Algorithms had a relatively high frequency of 

posterior choroidal boundary misplacement, and is therefore not suitable for 

Triton on-board segmentation Iowa Reference Algorithms

Figure 3.16 Example choroidal segmentations, demonstrating good agreement between 
algorithms (top row) and poor agreement (bottom row). The images in the left column were 
exported directly from the Triton on-board review software, where they had undergone 
automated image enhancement for viewing purposes. The raw image files were imported into 
the Iowa algorithms (right column); this is why the contrast appears different between 
segmentation methods. 
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automated segmentation of images from the Triton device at this time. It may be 

possible to optimise the algorithm for these images, or conversely that the images 

could be manipulated to achieve repeatable segmentation (e.g. image 

brightness/contrast), although this would require further investigation. It should be 

noted that the version of the Iowa Reference Algorithms with the facility for 

choroidal segmentation (version 4.0.0 beta) is an experimental release, undergoing 

continued improvements. It is investigational software only, and is not approved for 

clinical use at this time.  

The majority of studies within this thesis utilised images acquired using a 

non-commercial device, which these segmentation algorithms have not been 

optimised for, and hence would be likely to perform poorly. Additionally, this study 

included only healthy eyes; a lower repeatability for segmentation of eyes with 

retinal pathology would be expected, due to reduced visibility of the choroidal 

boundaries. Therefore, all choroidal segmentation in this thesis was conducted 

using a manual segmentation protocol, as described and validated in Section 5.1.1.  
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4 Manual quantification of choroidal vasculature in AMD 

Having evaluated the feasibility and inter-session repeatability on healthy 

eyes (Section 3.2), the eight manual choroidal parameters could now be applied to 

a dataset of long-wavelength OCT images acquired from individuals with various 

stages of AMD. By doing this, these parameters could be assessed for their ability to 

quantify the choroidal structure throughout the disease process (furthering our 

knowledge of choroidal involvement in the pathogenesis of AMD), and for their 

diagnostic potential. This chapter describes the process of constructing this dataset, 

including participant identification and data collection (Section 4.1). A custom 

protocol for clinical classification of AMD disease severity, adapted from the AREDS 

classification system (AREDS 2001a), is then described and evaluated (Section 4.2). 

The results of a demographic analysis of the participants are presented in Section 

4.3. All statistical analyses were performed in SPSS (version 20; SPSS Inc., Chicago, 

IL), unless otherwise stated. Finally, the results from the application of the manual 

choroidal parameters to the dataset are presented and discussed, in relation to 

detecting and classifying AMD disease stage based on choroidal vascular structure 

(Sections 4.4 and 4.5).  

4.1 Participants and preliminary measurements 

The following section describes the identification and recruitment of 

participants for this study, as well as the methodology for the preliminary 

measurements collected. This cohort was used for all analysis in this chapter and 

Chapter 5; the participant demographics are also described in this section.  

4.1.1 Power calculation 

To estimate the sample size required to detect a significant difference 

between the disease groups, a power calculation was performed. Since vessel 

diameter was a relatively simple parameter, this was used to estimate the required 

sample size. No published data was available on changes in vessel size in AMD 

assessed with in vivo imaging, therefore the minimum significant difference and 



Chapter 4 – Manual vascular quantification  

155 

assumed standard deviation were based on histological data. Spraul et al. (1996) 

reported a mean difference of ~8.5 µm in choroidal vessel diameter between eyes 

with AMD and age-matched controls. This difference is theoretically possible to 

detect with the long-wavelength OCT device used, with an axial resolution of ~5 µm 

in tissue. In the same study, the within-group standard deviation was ~10 µm. This 

calculation used the Altman Nomogram (Altman 1991) and the following values:  

Minimum significant difference (δ): 8.5 µm 

Assumed standard deviation (s): 10 µm 

Significance level: 95% 

Power: 90% 

 Using these values, the standardised difference (δ/s) was calculated as 0.85. 

Given the assumptions made in the calculation of standardised difference, a higher 

power than 80% was selected to increase the probability of correctly rejecting the 

null hypothesis, if the alternative hypothesis was true (i.e. to correctly identify a 

difference between disease groups, if such a difference exists). From the Altman 

Nomogram, a sample size of 25 participants per group was therefore required to 

detect a significant difference between groups, with a power of 90%, and 

significance level of 95%.  

 For validation, a further calculation was performed, based on published data 

on choroidal thickness measurement from long-wavelength OCT images of eyes 

with intermediate AMD, nAMD, and healthy controls (Esmaeelpour 2014a). The 

differences between the disease and healthy groups were 110 µm and 88 µm 

respectively, the smaller of these differences was used in this calculation, as well as 

the largest standard deviation of the groups (the healthy group; 95 µm).  This 

yielded a standardised difference of 0.93, resulting in a slightly smaller sample size 

of 23 participants per group, using the same significance level and power as the 

previous analysis. Therefore, a sample size of 25 eyes per group was deemed 

appropriate for the purpose of this research.  
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4.1.2 Participant identification and recruitment 

4.1.2.1 Ethical approval 

Ethical approval for this study was received from the South East Wales 

Research Ethics Committee (Panel D). All participants were provided with a copy of 

the Participant Information Sheet (Appendix D) prior to deciding whether to take 

part in the research. There was no time limit between receiving the information and 

participation in the study (until the end of the data collection period). Written 

informed consent was obtained from all participants on the day of data collection. 

The study adhered to the tenets of the Declaration of Helsinki.   

4.1.2.2 Participant recruitment  

Participants with AMD were primarily identified from patients attending 

scheduled outpatient appointments in the medical retinal clinic of Mr Ayed Al-

Bermani, at the University Hospital of Wales.  Additional participants were recruited 

from Cardiff University Optometrists. Healthy participants who acted as controls for 

the study were recruited from Cardiff University Optometrists, or were research 

volunteers at Cardiff University.  

4.1.2.3 Inclusion and exclusion criteria 

 A set of criteria for inclusion in the study, and exclusion criteria, are outlined 

below. For inclusion in the study, all participants had to meet all inclusion criteria 

and none of the exclusion criteria.  

Inclusion criteria 

 Aged 55 years or over 

 Male or female  

 With or without clinical signs or diagnosis of AMD 

 Willing and able to give consent and participate in the study 

Exclusion criteria 

 Any of the following ocular conditions: glaucoma; ocular hypertension      

(>21 mmHg); narrow anterior chamber angles (≤Grade 1 with Van Herick); 
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significant cataract (≥Grade 4 on any criterion with LOCS III); significant 

corneal or other media opacity; non-AMD related fundus changes.  

 Any of the following systemic conditions: diabetes mellitus; neurological 

disease (e.g. Alzheimer’s disease, Parkinson’s disease, epilepsy). 
 Currently taking medication known to affect retinal function (e.g. 

chloroquine, tamoxifen).  

 Refractive error ≥ ±6.00 dioptres in the most powerful meridian, or 

astigmatism > 3.00 dioptres.  

 Consumption of caffeinated tea or coffee on the day of data collection.  

4.1.3 Preliminary measurements  

To ensure that participants were suitable for inclusion in the study, a series 

of preliminary measurements were obtained. The following section is a list of the 

tests or procedures that were performed prior to OCT image acquisition, in 

chronological order. All tests were performed on both eyes, where possible, and by 

a single registered optometric researcher.  

Consent, medical and ocular history  

 Firstly, written informed consent was obtained. Participants were then asked 

a series of questions about their general health, medication, and ocular history, to 

ensure that they did not meet any of the exclusion criteria listed in Section 4.1.2.3. 

The patient’s sex, age, and ethnicity were also recorded to ensure that the disease 

and control groups were demographically similar (see Section 4.3). Patients were 

also asked to report their history of smoking and anti-VEGF therapy.  

Visual acuity  

 Visual acuity (VA) was measured monocularly using a standard ETDRS 

logMAR letter chart (Ferris et al. 1982). This was performed at 3 m (the distance for 

which the chart was calibrated), and reduced to 2 m or 1 m if the patient was unable 

to read any letters at the standard distance. Participants were encouraged to read 

as many letters as possible on the chart, and the acuity was measured on an 

individual letter basis, and recorded in conventional logMAR notation (i.e. each 

letter was equivalent to 0.02 logMAR).  
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Anterior chamber angle and pupil mydriasis  

 The anterior chamber angle was assessed using the Van Herick technique 

(Van Herick et al. 1969), adjacent to the temporal limbus. To minimise risk of angle 

closure glaucoma induced by pupil mydriasis, participants with narrow anterior 

chamber angles (Grade 0 or 1) did not undergo mydriasis, and were excluded from 

the study. For those with Grade 2 or above, both pupils were dilated using 1 drop of 

Tropicamide 1%. The drug expiry date, batch number, and time of instillation were 

recorded.  

Media assessment 

 The intra-ocular media (cornea, anterior chamber, lens, and anterior 

vitreous) were assessed for clarity using slit lamp biomicroscopy. The LOCS III 

grading system (Chylack et al. 1993) was used to quantify the extent of any opacities 

in the crystalline lens (nuclear, cortical and posterior subcapsular opacities were 

graded separately). Eyes with LOCS III Grade 4 or above in any criterion were 

excluded, as were those with significant corneal opacities. This relatively high grade 

was selected due to the enhanced performance of long-wavelength OCT in the 

presence of media opacities, when compared to conventional-wavelength OCT 

(Povazay et al. 2007).  

Axial eye length  

 Axial eye length (AEL) was measured using optical biometry (IOLMaster). An 

average of 5 measurements was calculated to ensure measurement accuracy. AEL 

was used to establish accurate lateral scaling of OCT images for each eye (see Section 

3.1).  

Refractive error 

 An objective measure of refractive error was obtained using autorefraction 

(KR-7500 Autokeratorefractor; Topcon, Tokyo, Japan). An average of 3 

measurements was used and the spherical and cylindrical components of the 

refraction were recorded. The mean spherical refraction was calculated as the 

spherical component plus half of the cylindrical component. Eyes with a refractive 

error over ±6.00 dioptres in the most powerful meridian, or astigmatism over 3.00 

dioptres, were excluded from the study.  
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Intra-ocular pressure 

 Intra-ocular pressure (IOP) was measured as an average of 4 reading 

acquired using a non-contact tonometer (CT80; Topcon, Tokyo, Japan). Eyes with an 

IOP >21 mmHg were classed as outside the normal range, as defined by the NICE 

guidelines (National Institute for Health and Care Excellence 2009), and were 

excluded from the study.  

Retinal photography  

 Retinal photographs were obtained using a Topcon 3D-OCT 1000 (Topcon, 

Tokyo, Japan). Images were 45° in diameter, centred on the fovea. These 

photographs were used to establish the disease classification of each eye in the 

study, according to the protocols described in Section 4.2.  

Blood pressure  

 Blood pressure (BP) was measured using an automated sphygmomanometer 

(Omron M5-I; Omron Corporation, Kyoto, Japan). A total of 3 readings from the left 

arm were averaged (systolic and diastolic), following a 5 minute seated rest period. 

This directly preceded image acquisition using the long-wavelength OCT.  

Study eye selection 

 If one eye of a participant met any of the exclusion criteria, the other eye was 

automatically selected as the study eye. If both eyes met none of the exclusion 

criteria, one eye was randomly selected as the study eye. Disease classification of the 

fellow eye was noted, but was not used for selection of the study eye (other than in 

the healthy control group, where neither eye had a classification of AMD).  

4.2 Clinical classification methodology 

As discussed in Section 1.4.7, imaging technology, understanding of AMD 

pathophysiology, and clinical requirements have changed since the development of 

the majority of classification systems (Klein et al. 1991; Bird et al. 1995; AREDS 

2001a; Ferris et al. 2013; Danis et al. 2013). Some aspects of these systems are now 

either inappropriate or not feasible for use in the contemporary clinical/research 

environment (e.g. stereoscopic retinal photography). Furthermore, OCT is an 
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imaging modality ideal for cross-sectional visualisation of the retina, and is now 

commonplace in the clinical environment, but is yet to be incorporated into a widely 

used classification system. The following section describes the protocol developed 

for categorising participants into disease groups for this thesis.  

The proposed protocol utilised three sources of data available to the 

researchers; retinal photography, OCT imaging, and ophthalmological diagnosis, 

with categorisation based on established AREDS definitions (AREDS 2001a). The 

definitions of macular regions and retinal features were kept largely in line with 

those established by the AREDS classification system, to maximise consistency and 

comparability with existing literature and practice.  

4.2.1 Retinal photography 

Retinal photographs (45°) obtained with a Topcon 3D-OCT 1000, centred on 

the fovea, were inspected. The photographs were viewed in a randomised order in 

PowerPoint (Microsoft, Richmond, WA). The image size could be adjusted at user 

discretion using the zoom function, and no time limit was set for assessing each 

image. Overlays of predetermined sizes were provided that could be moved freely 

across the images (but not resized). These were used to display the macula regions 

Figure 4.1 A 45° retinal photograph showing the outer boundary of the ETDRS grid, as defined 
by AREDS (solid line) and AREDS2 (dashed line). The size of a 20°  20° OCT volume scan is 
shown by the dashed square, assuming an AEL of 24.5 mm. 
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defined by the ETDRS grid, and to determine the size of retinal lesions, such as 

atrophy, drusen or pigmentary disturbances. These overlays were sized according 

to the definitions set out by the AREDS classification (AREDS 2001a). AREDS2 

definitions were not used, as these define the macular region as 7200 µm in 

diameter, which is larger than the OCT images collected as part of this dataset 

(Figure 4.1).  

4.2.2 OCT imaging 

The second step was inspection of 20°  20° (512  512) long-wavelength 

(1040 nm) OCT images, centred on the fovea. These were presented in Fiji software, 

in conjunction with the corresponding retinal photograph, for verification purposes. 

This was to ensure that signs of AMD not detected in the retinal photograph 

(particularly subtle signs of nAMD) were not overlooked due to lack of stereopsis. 

Again, the zoom function could be used freely, as could adjustment of brightness and 

contrast. Two optometrists were selected to grade a total of 149 images, and were 

masked to patient identity and data. In cases of disagreement, a classification by a 

third optometrist was used, and the three graders met to discuss each case and 

determine a final classification. If agreement could not be reached, the image was 

deemed ungradable. The classification criteria based on retinal appearance for both 

imaging modalities are shown in Table 4.1.   

Since the aim of this research was to assess parameters for their ability to 

quantify the choroidal structure with advancing disease, the severity groups used in 

the clinical classification were intentionally coarse. Furthermore, the exclusion 

criteria for media opacities in this study was not particularly stringent (LOCS III, 

Grade 4 or above), possibly resulting in a subset of retinal photographs of sub-

optimal quality to allow accurate grading with the 9-point scale utilised in the 

AREDS system (Davis et al. 2005). The disease status of the fellow eye was not 

considered during the classification process (as in the AREDS simplified severity 

scale; Ferris et al. 2005). 



162 

Table 4.1 Classification criteria for the three disease groups. Area definitions from AREDS 
(2001a): I-1 = 180 µm diameter; C-1 = 125 µm diameter; C-0 = 63 µm diameter.  

Class AREDS 
Level

Photograph Criteria OCT Criteria

Neovascular 
AMD 
(nAMD)

4 
(advanced)

Presence of ANY of the 
following: 
Fibrovascular/serous PED, 
Serous sensory retinal 
detachment, 
Subretinal/RPE 
haemorrhage, subretinal 
fibrous tissue, 
Photocoagulation for AMD

Presence of ANY of the 
following: 
Fibrovascular/serous PED, 
Serous sensory retinal 
detachment, 
Subretinal/RPE 
haemorrhage, subretinal 
fibrous tissue, 
Photocoagulation for AMD

Geographic 
atrophy 
(GA)

4 
(advanced)

Sharply demarcated 
depigmentation in central 
subfield, area > I-1 
AND no signs of nAMD

Depigmentation at fovea, 
diameter > 11 pixels
laterally
AND no signs of nAMD

Early AMD 2 and 3 No signs of GA or nAMD 
AND drusen max size ≥ C-0 
OR drusen total area ≥ C-1 
OR pigmentary changes, area 
≥ C-1 

No signs of GA or nAMD 
AND presence of drusen, 
max size ≥ 4 pixels laterally
OR pigmentary changes, 
area ≥ 7 pixels laterally

Normal 1 No signs of GA or nAMD 
Drusen max size < C-0 
AND drusen total area < C-1 

No signs of GA or nAMD 
AND no drusen ≥ 4 pixels 
laterally in size present 

Ungradable N/A Unable to determine a 
classification 

Unable to determine a 
classification 

4.2.3 Ophthalmological diagnosis  

The final aspect of this classification protocol was diagnosis by a consultant 

ophthalmologist. This was only used to determine a classification of inactive nAMD, 

following anti-VEGF treatment. In some cases, these patients have very few or no 

remaining signs of a previous neovascular episode, and may be misclassified as early 

AMD or even healthy if a classification is based solely on retinal appearance. This 

was used to override classification by the graders in these cases.  

4.2.4 Evaluation of classification system 

  A total of 149 eyes of 77 participants were classified using this approach, to 

evaluate the robustness of the classification system. Each eye was classified 

according to the above protocol, and assigned to one of five categories; normal, early 
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AMD, nAMD, GA, or ungradable (as defined in Table 4.1). Agreement of the two 

primary graders was achieved on 122 of these eyes (~82%; Table 4.2). Almost half 

of the images were of the non-study eye, which were classified to allow further sub-

analysis of fellow eye diagnosis. Since fellow eyes were not subject to the exclusion 

criteria used for the study eye (e.g. media clarity), images from these eyes were often 

of sub-optimal quality and more likely to be ungradable.  

Table 4.2 Inter-grader agreement for classification of all eyes classified during the evaluation 
of this grading system (n=149). Areas of agreement between graders are highlighted in grey.  

Grader 1

Normal Early AMD nAMD GA Ungradable

Gr
ad

er
 2

Normal 43 4 0 0 0

Early AMD 3 31 5 1 0

nAMD 0 1 38 2 3

GA 0 3 4 7 0

Ungradable 0 1 0 0 3

The study eye of each participant was selected as described in Section 4.1.3

(n=75). Considering the classification of these eyes only, agreement between the 

primary graders was achieved on 64 of 75 eyes (~85%; Table 4.3). The largest 

source of disagreement between graders was the early versus nAMD classification; 

5 of the eyes that were classified as nAMD by Grader 1 were classified as early AMD 

by Grader 2. A potential source of these disagreements was the misclassification of 

large confluent drusen as drusenoid PED in the OCT images, and the differentiation 

of inactive nAMD (following anti-VEGF therapy) from early disease. These were the 

main sources of discussion between the three graders concerning disagreements, 

prior to final classification decisions.  

This final classification stage rendered this classification system suitably 

robust for use in this research. Following the group discussion, there were 25 eyes 

classified into each group (healthy, early AMD, and nAMD), agreed upon by all 

graders. Eyes classified as GA or ungradable were not used in further analysis.  
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Table 4.3 Inter-grader agreement for classification of the 75 study eyes used in further 
analysis. Areas of agreement between graders are highlighted in grey.  

Grader 1

Normal Early AMD nAMD GA Ungradable

Gr
ad

er
 2

Normal 25 1 0 0 0

Early AMD 2 22 5 0 0

nAMD 0 0 17 1 0

GA 0 1 1 0 0

Ungradable 0 0 0 0 0

4.3 Participant demographics  

A summary of participant demographics is shown in Table 4.4. There were a 

total of 25 participants classified in each group, all of which self-identified as ‘white 
British’. There was no statistically significant difference in the proportion of males 
in each group, nor the proportion of right eyes, pseudophakic eyes, or participants 

with a history of smoking (Chi-squared test; P>0.05). There was also no statistically 

significant difference in age, AEL, refractive error, IOP, systolic BP, diastolic BP, or 

time of day of image acquisition between groups (1-way ANOVA or Kruskal-Wallis 

test; P>0.05 in all cases).  

VA was significantly poorer in the nAMD group than the other two groups 

(Kruskal-Wallis test; P<0.001), although there was no significant difference 

between the healthy and early AMD groups. Many of the participants in the early 

AMD group may therefore be asymptomatic and, without having undergone 

ophthalmological examination, may have been unaware of their condition. This 

highlights the importance of thorough macular assessment in this age group, to 

identify those at risk of developing nAMD, and to inform clinical advice and 

monitoring. 
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Table 4.4 Summary of participant demographics for the 3 groups. Binary parameters are given 
as a percentage, and were tested for significance using a Chi-squared test. Other parameters 
are given as mean ± SD, and were tested for significance using a 1-way ANOVA (parametric) or 
Kruskal-Wallis test (non-parametric#). For VA, post hoc Dunn-Bonferroni analysis revealed 
that the nAMD group was significantly greater than the other two groups.  

Parameter Healthy Early AMD nAMD p

n 25 25 25 -

Ethnicity (% Caucasian) 100 100 100 -

Sex (% male) 44 48 36 0.683

Test eye (% right eye) 48 60 48 0.618

Pseudophakic (%) 12 28 32 0.215

History of smoking (%) 48 52 44 0.852

Age (years) 73.3 ± 7.9 76.3 ± 7.6 77.7 ± 8.3 0.141

AEL (mm) 23.44 ± 0.63 23.45 ± 0.95 23.52 ± 0.95 0.927

Refractive error (dioptres)# 1.19 ± 1.66 0.30 ± 1.58 0.88 ± 1.82 0.342

VA (logMAR)# 0.05 ± 0.14 0.06 ± 0.14 0.37 ± 0.37 <0.001*

IOP (mmHg) 13.8 ± 2.2 14.2 ± 3.7 15.0 ± 2.8 0.356

BP - systolic (mmHg)# 143.0 ± 23.3 149.0 ± 22.6 145.1 ± 23.0 0.773

BP - diastolic (mmHg)# 77.0 ± 13.2 77.4 ± 9.1 79.1 ± 10.3 0.594

Time of day# 11:37 ± 01:26 12:08 ± 01:28 12:11 ± 01:36 0.284
*significant at 0.05 level 
#non-parametric statistical test applied 

 In the nAMD group, the mean number of anti-VEGF injections to the study 

eye was 10.2 ± 5.9 (range 0 to 25). Of the 25 eyes, 23 were currently undergoing 

anti-VEGF therapy; this is high due to the method of participant identification. It is 

unknown which anti-VEGF agent(s) were used to treat each eye, as well as the 

treatment duration. The remaining 2 eyes were treatment-naïve. Since access to 

treatment records were not available for this study, this data was based on self-

reported treatment history, and should therefore be interpreted with caution.  

Where possible, the fellow (non-study) eye was also classified according to 

the classification protocol described in Section 4.2. A summary of these is presented 

in Table 4.5. In total, 8 fellow eyes were ungradable. In the healthy group, this was 

due to presence of epiretinal membrane (n=3), or atypical retinal appearance not 

attributed to AMD (n=2). In the AMD groups, these represented previous trauma 

(n=1), toxoplasmosis scar (n=1), or retinal appearance atypical of AMD (n=1). A total 

of 4 fellow eyes did not undergo classification, since no OCT images were available. 
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This was due to refractive error outside the imaging capabilities of the OCT device 

(n=1), previous trauma resulting in no fundus view (n=1), or unilateral imaging at 

the request of the participant (n=2).  

Over half of the participants in the early AMD group had a fellow eye 

classification of nAMD. This was likely due to the primary source of participant 

recruitment, since the majority of patients attending the ophthalmology clinic had a 

diagnosis of nAMD and were receiving anti-VEGF therapy. However, if changes to 

the choroid precede development of CNV, these may be evident bilaterally, and may 

therefore have an effect on the appearance of the vascular structure in the fellow 

eye. Analysis of fellow eye diagnosis was therefore performed to investigate this 

potential effect.  

Table 4.5 Fellow eye status for all participants included in the study. Bilateral classifications 
(i.e. both eyes with the same disease stage) are highlighted in grey.  

Study eye

Healthy Early AMD nAMD

Fe
llo

w
 e

ye

Healthy 18 4 6

Early AMD 0 7 0

nAMD 0 12 13

GA 0 0 3

Ungradable 5 1 2

Not classified 2 1 1

Total 25 25 25

4.4 Manual choroidal vasculature quantification results 

4.4.1 Between-group comparison 

The parameters described in Section 3.2 were obtained from all images in the 

dataset described in Section 4.3 (n=75) by a single observer. To maximise the 

accuracy of measurements, an observer experienced with acquiring and analysing 

long-wavelength OCT images was selected. Although this observer was an 

optometrist with experience in interpretation of OCT images, they were masked to 

the disease classification of the images (as established in Section 4.2) to minimise 

any bias in quantification. The order in which images were analysed was 

randomised for each choroidal parameter evaluated.  
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The mean value (±SD) of each parameter for each disease group is shown in 

Table 4.6. These are presented as bar charts in Figure 4.2, with error bars 

representing standard error of the mean (SE), and significant differences between 

groups indicated with an asterisk (*).  

Table 4.6 Mean (±SD) measurement for each parameter describing the choroidal vasculature, 
for the three disease groups. Significance was tested using a 1-way ANOVA (parametric) with 
post-hoc Bonferroni, or Kruskal-Wallis test (non-parametric#) with post-hoc Dunn-Bonferroni. 
The significant differences were between the healthy and nAMD group, and the early AMD and 
nAMD group, in all cases where P<0.05. SFCT = subfoveal choroidal thickness; VVD = visible 
vessel diameter; VR = vessel ratio; CA = choroidal area; LA = luminal area; CVI = choroidal 
vascularity index; LAR = luminal area ratio; LPR = luminal perimeter ratio.    

Parameter Mean (±SD) measurement p 
Healthy Early AMD nAMD

SFCT (µm) 237.2 ± 88.9 255.7 ± 103.1 163.2 ± 61.8 0.001*

VVD (µm) 133.8 ± 33.6 140.7 ± 35.0 118.4 ± 30.0 0.056

VR# 0.606 ± 0.157 0.609 ± 0.185 0.780 ± 0.214 0.001* 

CA (mm2) 0.311 ± 0.103 0.317 ± 0.106 0.225 ± 0.086 0.002*

LA (mm2) 0.223 ± 0.076 0.230 ± 0.078 0.158 ± 0.064 0.001*

CVI# 0.718 ± 0.031 0.725 ± 0.048 0.698 ± 0.064 0.308

LAR 0.560 ± 0.040 0.567 ± 0.042 0.552 ± 0.052 0.519

LPR 0.112 ± 0.009 0.110 ± 0.011 0.107 ± 0.011 0.197
*significant at 0.05 level  
#non-parametric statistical test applied 

SFCT was significantly lower in the nAMD group than both the healthy and 

early AMD groups (Figure 4.2A). There was no statistical significance between the 

healthy and early AMD groups. VVD was also lower in the nAMD group than the 

other two groups; although this did not reach statistical significance (Figure 4.2B; 

P=0.056). VR was significantly higher in the nAMD group than the healthy and early 

AMD groups (Figure 4.2C). Again, there was no significant difference between the 

healthy and early AMD groups.  

In the 2-D analysis (Figure 4.2D-F), choroidal area and luminal area were 

significantly lower in the nAMD group than both the healthy and early AMD groups. 

There was no significant difference between the healthy and early AMD groups. CVI 

was lowest in the nAMD group, although this difference did not reach statistical 

significance (P=0.308).  



168 

In the enface analysis (Figure 4.2G-H), LAR was not significantly different 

between the three groups. LPR showed a general negative trend with advancing 

disease stage, although this did not reach statistical significance (P=0.197).  

4.4.2 Relationship with fellow eye diagnosis 

To investigate the relationship with fellow eye status, the early AMD group 

was subdivided into three subgroups based on diagnosis of the fellow eye; no AMD 

Figure 4.2 Mean values (± SE error bars) for (A) SFCT, (B) VVD, (C) VR, (D) CA, (E) LA, (F) CVI, 
(G) LAR, and (H) LPR, for the three disease groups. SFCT = subfoveal choroidal thickness; VVD 
= visible vessel diameter; VR = vessel ratio; CA = choroidal area; LA = luminal area; CVI = 
choroidal vascularity index; LAR = luminal area ratio; LPR = luminal perimeter ratio.
*significant at 0.05 level. 
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(n=4), early AMD (n=7), and nAMD (n=12). The parameters showing a significant 

difference (or near-significant in the case of VVD) between disease groups in the 

previous analysis were compared between these subgroups, to identify the presence 

or absence of a gross relationship between fellow eye diagnosis and choroidal 

structure. Since the groups were small, between-group differences were evaluated 

subjectively, and no statistical analyses were performed.  

The mean value of each parameter for each disease subgroup is shown in 

Figure 4.3, with error bars representing standard error of the mean. In general, SFCT 

was higher for early AMD eyes with healthy fellow eyes, than for bilateral early AMD 

or fellow eye nAMD. VR was lowest for the healthy fellow eye subgroup. There was 

little difference between subgroups for VVD, CA, or LA. There was also little 

difference between those with a fellow eye status of early AMD or nAMD, for any of 

the parameters.  

Figure 4.3 Mean values (± SE error bars) for eyes in the early AMD group, sub-divided by fellow 
eye diagnosis. SFCT = subfoveal choroidal thickness; VVD = visible vessel diameter; VR = vessel 
ratio; CA = choroidal area; LA = luminal area. 
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4.4.3 Diagnostic potential 

To investigate the diagnostic ability of the parameters, receiver operating 

characteristic (ROC) curves were produced (Figure 4.4). ROC curves are for 

dichotomous data (i.e. two groups), although this study had three disease groups. A 

one-versus-all approach was therefore used; since there was little difference in the 

parameter means and standard deviations between the healthy and early AMD 

groups (Table 4.6), these were pooled into a single group for this analysis. The 

ability to differentiate between nAMD and non-nAMD would likely be of greatest 

clinical value, since treatment is currently available only for the neovascular 

subtype. Reliable identification of this subtype through choroidal structure could be 

of potential benefit in triaging patients through referral refinement schemes, or in 

monitoring stable AMD in ‘virtual’ macular clinics in the hospital eye service. This 
could theoretically enhance prioritisation of patients requiring further 

ophthalmological assessment and/or treatment, whilst minimising the number of 

‘false positive’ referrals into secondary care. 

This analysis was performed only on those parameters with statistically 

significant differences (or near-significant in the case of VVD) between disease 

groups. A total of 5 parameters were therefore investigated further; SFCT, VVD, VR, 

CA, and LA.  

The diagnostic potential of each parameter to predict a classification of 

nAMD on the entire dataset (n=75) was assessed using the area under the curve 

(AUC). AUC ranged from 0.762 for VR to 0.658 for VVD. The optimum cut-off for 

Figure 4.4 Example receiver operating characteristic (ROC) curves assessing diagnostic 
potential for (A) SFCT and (B) VVD. AUC = area under the curve; SFCT = subfoveal choroidal 
thickness; VVD = visible vessel diameter. 
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prediction of nAMD with each parameter was determined subjectively as the point 

maximising sensitivity and specificity (i.e. the point on the ROC curve closest to the 

top left corner). These values are presented in Table 4.7.  

Table 4.7 The optimal cut-off value for each parameter to predict a classification of nAMD with 
maximum accuracy. Parameters are ordered by AUC (descending). SFCT = subfoveal choroidal 
thickness; VVD = visible vessel diameter; VR = vessel ratio; CA = choroidal area; LA = luminal 
area.  

Parameter AUC Optimal cut-off Sensitivity (%) Specificity (%)

VR 0.762 0.635 80 66

SFCT 0.750 198.8 µm 84 64

LA 0.748 0.198 mm2 76 64

CA 0.743 0.263 mm2 76 68

VVD 0.658 127.4 µm 64 64

4.5 Discussion 

A total of eight parameters describing the choroidal vascular structure were 

applied to a dataset of long-wavelength OCT images acquired from eyes without 

AMD (n=25), with early AMD (n=25), and with nAMD (n=25). A significant 

difference between the nAMD group and the other two groups was identified in the 

SFCT, VR, CA, and LA parameters. The difference in VVD between groups was 

nearing statistical significance (P=0.056). No significant difference between the 

healthy and early AMD groups was identified with any parameter evaluated.  

Considering SFCT firstly, the choroid was significantly thinner in the nAMD 

group than the healthy group (163.2 ± 61.8 µm and 237.2 ± 88.9 µm respectively; 

Figure 4.2A). This was equivalent to a mean difference between groups of ~75 µm 

(~32%); comparable to previously reported values of ~53 µm  (Chung et al. 2011), 

~88 µm  (Esmaeelpour 2014a), and ~95 µm (Lu et al. 2016). However, it should be 

noted that the majority of participants in the nAMD group of the present study were 

undergoing (or had previously undergone) anti-VEGF therapy. This study was 

limited by the lack of treatment history data; the number of injections were self-

reported, and anti-VEGF agent and treatment duration were unknown.  

Anti-VEGF therapy has been associated with a reduction in choroidal 

thickness, with reported mean decreases in thickness of 10-25 µm following a 12 

month treatment period (Yamazaki et al. 2012; Ting et al. 2016; Section 1.4.6). This 
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reduction in choroidal thickness was identified in the first 6 months of treatment 

only, with no further change over the following 6 months. The mean number of anti-

VEGF injections in these studies after the 12 month period were 5.8 ± 2.9 and 5.6 ± 

2.1 respectively, although there was no relationship between number of injections 

and decrease in choroidal thickness over time. However, it is unknown if this trend 

would extend to the mean number of injections in the present study (10.2 ± 5.9). 

Although the mean difference in SFCT between the treated nAMD and healthy 

groups of the present study (~75 µm) exceeded these reported longitudinal 

changes, it is not possible to separate choroidal changes associated with the 

pathology from changes resulting from pharmacological intervention. Any 

conclusions regarding the aetiology of the choroidal changes observed in the nAMD 

group would therefore be speculative. Further work would be required to 

investigate the effects of anti-VEGF therapy on choroidal structure and to 

differentiate these from changes associated with the underlying pathology.  

In keeping with previous literature, no difference in SFCT was identified 

between early AMD (255.7 ± 103.1 µm) and healthy age-similar controls (Wood et 

al. 2011; Kim et al. 2011; Lee et al. 2013b; Jonas et al. 2014; Lu et al. 2016). The mean 

and standard deviation of SFCT were comparable to previously reported values for 

healthy and early AMD groups (Wood et al. 2011), and for all three disease groups 

(Esmaeelpour 2014a), with both studies utilising a non-commercial long-

wavelength OCT device, similar to the one used in this thesis. 

The mean difference in VVD between the healthy and nAMD groups was ~15 

µm (~11%), although this did not reach statistical significance (Figure 4.2B). This 

may be due to the large within-group variation in VVD, and more data would likely 

be required to investigate this parameter further. The mean VVD in the healthy 

group was 133.8 ± 33.6 µm; this is similar to the control group of previous studies 

of vessel diameter in CSC, with reported mean values of 140 ± 40 µm (Yang et al. 

2013) and 160 ± 32 µm (Bittencourt et al. 2014). The mean ages of these groups 

were 47 and 30 years respectively, whereas the mean age of the healthy group in 

the present study was 73 years. This difference may explain the lower mean vessel 

diameter in this thesis, since age has been shown to negatively correlate with vessel 

diameter (Bittencourt et al. 2014).  
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Since the mean differences between groups were not known at the start of 

this research, the power calculation was performed using an estimate of this value 

and the within-group standard deviation (see Section 4.1.1). To detect such a small 

difference between groups with high standard deviation, with the power and 

significance level used, a far larger sample size would be required. Given the 

difference in the mean VVD between the healthy and nAMD groups of the present 

study (~15 µm), and the within-group standard deviation (~33 µm), a sample size 

of 75 participants per group would be required for a power of 80% and a 95% 

significance level (Altman 1991).  

The VR was significantly higher for the nAMD group than the other two 

groups (Figure 4.2C). In nAMD, the mean diameter of the largest choroidal vessels 

was 78% of the SFCT, compared to 61% in both the healthy and early AMD groups. 

The mean VR of the healthy group was very similar to a previously reported value 

of 61 ± 1% in healthy eyes (Bittencourt et al. 2014). There is no published data on 

vessel diameter or vessel ratio measured in vivo in AMD for comparison.  

 Considering the 2-D analysis (Figure 4.2D-F), CA and LA were both 

significantly lower in the nAMD group than the other two groups. The mean CA was 

~28% lower in the nAMD group than the healthy group, whilst the mean LA was 

~29% lower. CVI was also lowest for the nAMD group, although this difference did 

not reach statistical significance. Again, this may be due to large within-group 

variation.  

Comparing to the existing literature, mean values of CA and LA in the healthy 

group (0.311 mm2 and 0.223 mm2 respectively) were similar to values reported by 

Gupta et al. (2017) of 0.452 mm2 and 0.241 mm2 respectively, following the same 

measurement protocol. The lower CA in the present study may be explained by the 

lower mean SFCT (237 ± 89 µm versus 302 ± 63 µm) or the higher mean participant 

age (73 ± 8 versus 60 ± 7 years). Wei et al. (2016) found CVI to be reduced in eyes 

with nAMD by an average of 0.026, compared to the fellow eye with early AMD. This 

is highly comparable to the current study, where a mean difference of 0.027 was 

found between the early and nAMD groups. However, the absolute mean value and 

within-group variation of CVI in the nAMD group were higher in the present study 

(0.698 ± 0.064 compared to 0.601 ± 0.046). Since the same measurement protocol 

was followed, this difference may (in part) be attributed to the different OCT devices 
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used in these studies, possibly due to the wavelength-dependent reflectivity 

properties of the choroidal structures.  

 For the enface analysis, no significant difference was found between any of 

the three groups, for both LAR and LPR (Figure 4.2G-H). However, there was a 

general decrease in LPR with advancing disease stage. Again, the within-group 

variation was high in relation to the between-group variation, which is likely why 

this difference did not reach statistical significance. An arbitrary depth of 50% in the 

choroid was used for this analysis, to ensure sufficient vessel resolution (i.e. to avoid 

inclusion of the small vessels of the choriocapillaris nearing the resolution limit of 

the OCT), and to minimise inclusion of the sclera at the edges of the enface image 

(see Section 3.2.4). However, the use of this fixed percentage depth would not be 

sensitive to disease-related changes in vessel structure localised to other choroidal 

depths, for example at the level of choriocapillaris. Since these vessels are too small 

to resolve with this OCT, the parameters evaluated here would not be suitable for 

quantifying the vascular structure. Other image analysis methods such as texture 

analysis may be utilised for this purpose, as explored by Sohrab et al. (2012). This 

approach is employed in the machine learning methodology, as a way of extracting 

feature information from the OCT images (see Section 5.1.2).  

The early AMD group was sub-divided by fellow eye diagnosis, to investigate 

a potential relationship between fellow eye diagnosis and choroidal structure in this 

cohort. There was little difference between the three subgroups for VVD, CA, or LA. 

This suggests that fellow eye diagnosis did not influence these parameters, although 

the power of the sub-analysis is greatly reduced. However, the choroid was thicker 

in eyes with no signs of AMD in the contralateral eye than the other two groups. 

Assuming these individuals had relatively few signs of early AMD in the study eye 

(mild degenerative changes) compared to those with bilateral early AMD (including 

intermediate degeneration), this may indicate a level of symmetry in choroidal 

vessel changes with progression of early AMD. There was little difference between 

eyes with bilateral early AMD and those with fellow eye nAMD. If vessel abnormality 

is part of the pathogenesis of nAMD, choroidal changes would be expected to be 

more advanced in cases of fellow eye nAMD. This is the basis for the AREDS 

simplified scale, which takes into account fellow eye diagnosis for 5-year risk 

prediction (Ferris et al. 2005). However, this was not the case for this cohort. The 
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high proportion of fellow eye nAMD in this sample is therefore unlikely to contribute 

significantly to the inter-group findings. However, it should be noted that these 

subgroups were small, and larger sample sizes would be required to investigate this 

relationship further.  

The five parameters assessed diagnostically provided reasonable ability to 

predict a classification of nAMD (AUC ranging from 0.658 to 0.762; Table 4.7). The 

parameters showing greatest diagnostic potential were SFCT and VR. The optimal 

SFCT cut-off to predict a classification of nAMD was 200 µm, achieving a sensitivity 

of 84% and specificity of 64%. These values are not feasible for a clinical test, due to 

the frequency of false positives and negatives. However, SFCT is simplest and 

quickest measurement to perform, and provides one of the most accurate 

predictions of the parameters evaluated. Although it is of limited potential as a 

standalone biomarker, it may be a useful parameter to be used in conjunction with 

other clinical information to inform clinical follow-up (i.e. monitoring of those 

individuals likely to develop CNV). Further work would be required to investigate 

the optimum combination of potential structural and functional parameters for this 

purpose. However, it should also be noted that the majority of eyes in this group 

were of treated nAMD, and the change in choroidal structure in the nAMD group was 

likely attributed (at least in part) to anti-VEGF therapy rather than pathological 

change. This was therefore not a test of true diagnostic ability (which would be 

based on treatment-naïve eyes).  

The other structural parameters assessed in this chapter were limited in 

their ability to predict the disease classification, due to their relatively low 

sensitivity and specificity for a clinical test. Additionally, they require manual 

measurement of the vessels, which may not be practical for a clinical setting and 

may result in high inter-observer variability, and they offer no distinct advantage 

over the measurement of SFCT. To automate the disease group predictions, and to 

maximise sensitivity and specificity, the use of machine learning is explored in 

Chapter 5. This allows the development of a more complex model for predicting 

disease classification, which may also be sensitive to subtle differences in choroidal 

structure in the early disease stage, not detectable with the parameters evaluated in 

this chapter.  
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5 Automated disease stage classification using machine learning 

As discussed in Sections 2.4.2 and 3.2.5, manual choroidal parameter 

measurement is limited by several factors, including intra- and inter-observer 

variability, 2-D sampling of the 3-D vessel structure, and clinical feasibility of time-

consuming measurement protocols. This section describes the development of 

machine learning protocols for automated classification of AMD by disease severity, 

as outlined in Figure 5.1. 

5.1 Methodology 

 Firstly, images were acquired and pre-processed as described in Sections 2.2

and 2.3, producing stack-registered volume scans (512  512). All images were then 

manually classified by AMD disease severity using a custom protocol (described in 

Section 4.2), adapted from the AREDS classification system (AREDS 2001a). This 

was used as the ground truth for automated classification.  

Manual segmentation was then used to distinguish the choroid from other 

structures in the OCT image (Section 5.1.1). Textural information was then extracted 

from this region, to describe and quantify features of the choroidal vasculature 

(Section 5.1.2). Various machine learning techniques were tested for automated 

classification of AMD by disease stage, based upon textural features within the 

choroid (Section 5.1.3). Finally, the accuracy of the classifiers was assessed using 

Figure 5.1 Flowchart depicting the development of automated classification protocols, along 
with the section of this thesis in which they are discussed. OCT images were acquired and 
processed, classified using a modified AREDS classification (AREDS 2001b), and the choroid 
was manually segmented. Textural features were extracted and used to train classifiers. These 
were evaluated for accuracy using cross-validation. 
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cross-validation (Section 5.1.4). All steps in the machine learning process (feature 

extraction, classifier training, and cross validation) were undertaken using custom 

programs written in MATLAB, unless otherwise stated. The methods in Sections 

5.1.2 to 5.1.4 were performed by collaborators from the Department of Computer 

Science, Swansea University (Dafydd Ravenscroft; Jingjing Deng; Xianghua Xie).  

5.1.1 Region of interest segmentation 

Since only the choroidal region of the OCT images was to be included in the 

automated classification, this region required identification in each image. As 

discussed in Section 3.4, at the time of writing, there was no validated method of 

automated choroidal segmentation. Hence, manual segmentation of the choroid was 

required (n=75 OCT images).  

5.1.1.1 Manual segmentation protocol 

Due to the time-consuming nature of manual segmentation, three observers 

were used to identify the ROI. For consistency, all observers followed the same 

protocol for segmentation (depicted in Figure 5.2). All observers were masked to 

the clinical classification of the images, and underwent training on a minimum of 2 

volume scans in order to familiarise themselves with the style of images and the 

segmentation protocol. A custom program in MATLAB was used to view images and 

manually identify the boundaries of the choroid. To improve visualisation, 

particularly of the posterior choroidal boundary, a rolling average of 10 consecutive 

b-scans was applied (for visualisation purposes only; Figure 5.2A-B).  

Starting in the lower left-hand corner of the first b-scan, observers identified 

the posterior choroidal boundary first, by manually selecting several points along 

the boundary. This was primarily defined as the choroidal-scleral junction, or the 

posterior vessel lumen if the junction was not visible. A minimum of 5 points was 

suggested, although it was at the observers’ discretion whether more points were 
deemed necessary. The minimum suggested value was implemented to produce a 

good approximation to the curvature of the choroidal boundary, using higher order 

polynomial interpolation (e.g. cubic and quartic polynomials; Figure 5.3).  
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Following identification of the posterior choroidal boundary, observers 

continued labelling the contour by identifying the right hand edge of the visible 

choroid (this varied due to lateral shift of b-scans during the preceding stack 

registration process). This was then extended to the anterior choroidal boundary, 

defined as the posterior of the most hyper-reflective line (RPE), and finally the left 

hand boundary of the visible choroid (Figure 5.2C-D).  

Figure 5.2 Steps (A-E) in the protocol for manual identification of the choroidal ROI, using a 
custom program in MATLAB. Volume scans were loaded into the program (A), and averaged to 
enhance boundary visualisation (B). The posterior choroidal boundary was manually 
identified (C), followed by the anterior boundary, creating a closed contour (D). This process 
was repeated for every tenth b-scan in the volume, and the Cartesian coordinates in image 
space of each identified boundary point were saved as a list for each b-scan (E). 
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Interpolation was used to join consecutive points within a segmented 

boundary to produce a closed contour, which was then saved in a coordinate system. 

This process was repeated at intervals of 10 b-scans throughout the image stack. A 

total of 51 b-scans per volume were therefore segmented (Figure 5.2E). 

Interpolation between b-scans was applied to produce an approximated 

segmentation of the choroid for all b-scans within each volume.  

5.1.1.2 Inter-observer validation 

Images were assigned to one of three observers (two clinical and one non-

clinical) to identify the choroidal ROI. The non-clinical observer underwent training 

and their performance was validated by one of the clinical observers. However, due 

to the complex clinical appearance of late-stage AMD, the non-clinical observer was 

restricted to assessing images classified as healthy or early AMD. Images in the 

nAMD class generally displayed poorer visibility of the choroidal boundaries caused 

by overlying retinal features (i.e. areas of relative low contrast caused by highly 

reflective neovascular membranes or fibrovascular scarring). This limitation in 

assignment methodology was a potential source of bias between classes, due to 

differences in segmentation technique between observers. To ensure this bias was 

not significant, a subset of images were segmented again by a different observer, 

masked to disease classification and previous segmentation results. The following 

section describes this validation process.  

Figure 5.3 Demonstration of the effect of the number of identified points on the accuracy of the 
curvature approximation, using polynomial interpolation. 
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Quality control/validation method 

A total of 15 volume scans (5 per disease class) were randomly selected to 

undergo validation (i.e. to ensure consistency in segmentation between observers). 

Of the 51 b-scans that were segmented (every 10th b-scan in the original volume), 

10 b-scans were randomly selected. Each volume was then randomly assigned to a 

different observer to the initial segmentation, and the same segmentation protocol 

was followed for the subset of 10 b-scans identified for validation per volume scan.  

Following segmentation by the second observer, the identified regions of 

interest were compared between the two observers, for each selected b-scan. The 

boundaries of the ROI identified for each b-scan were stored within a coordinate 

system. To quantify agreement between observers, a program written in MATLAB 

(see Appendix E) was used to establish the percentage overlap of the two regions. 

This was calculated using the number of common pixels between regions identified 

by each observer (Equation 5.1; top row), and the maximum number of pixels 

encompassed by the two regions (Equation 5.1; bottom row).  

Equation 5.1 
 

This parameter was chosen to ensure that the regions identified by both 

observers were consistent in size and location (Figure 5.4A). The median and 

interquartile range (IQR) of percentage overlap were calculated across all randomly 

Figure 5.4 Example ROI from the same b-scan from a healthy eye, identified by two observers 
(A). Percentage overlap in this case was 84.3%. Demonstration of variability in choroidal size 
and shape across a single volume scan (B); 10 b-scans are shown, each segmented by two 
observers. Particularly note the variation in position of the right hand vertical boundary, due 
to the preceding stack registration process. 

A B
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selected b-scans within each disease group (a total of 50 b-scans per group). Figure 

5.4B highlights the need to label b-scans throughout the 3-D stack, since the size and 

shape of the choroidal region varied greatly across the volume scan from a single 

eye.   

Results 

 An example of the identified ROIs within a single volume, by 2 observers, can 

be seen in Figure 5.4B. There was substantial variation in choroidal size and shape 

between b-scans within a single volume scan, most notably in the position of the 

posterior choroidal boundary, and the vertical boundary on the right of the image. 

Median percentage overlap between the two observers was 88.4%, 86.3% and 

76.8% for the healthy, early AMD, and nAMD groups respectively. The range and IQR 

were similar between the healthy and early AMD group, but there was far more 

variation in percentage overlap within the nAMD group (Figure 5.5).  

Discussion

Variation between b-scans in vertical boundary placement on the right of the 

images was caused by the preceding stack registration process (see Figure 5.6). It 

was imperative to eliminate any such artefacts from the images, to prevent inclusion 

of these regions in the training and testing data. Since this boundary was well 

Figure 5.5 Box plots showing the median, IQR and range of percentage overlap of the ROI 
between observers, for each disease group. 

30

40

50

60

70

80

90

100

Healthy  Early AMD  nAMD

O
ve

rl
ap

 (%
)



182 

defined, there was little disagreement on the position between observers (for 

example, Figure 5.4A). The bold contrast in reflectivity between the RPE and the 

anterior choroid made the anterior choroidal boundary relatively easy to identify 

accurately, although this was poorer in eyes showing disruption to the RPE resulting 

from pathological changes. The majority of disagreements between observers 

originated in the position of the posterior choroidal boundary. This boundary had 

the smallest difference in reflectivity between layers (i.e. between the posterior 

choroid and sclera), making it difficult to accurately locate in some cases. Due to its 

physiological location posterior to the retina and RPE, this boundary also suffered 

most from signal roll-off, causing it to be poorly defined and difficult to identify in 

some eyes.  

The percentage agreement was lower in the nAMD group, although this was 

to be expected due to reduced visibility of the choroidal boundaries caused by a 

relative increase in reflectivity from overlying retinal features. However, this may 

have an effect on the training of neural networks used in further analysis. If regions 

of choroid were falsely being included or excluded preferentially from one group (in 

this case, the nAMD group), the training data may not be truly representative of the 

choroid in that disease stage. The posterior choroid was the region most likely to be 

excluded (or conversely, the anterior sclera to be included) during identification of 

the ROI. Since these regions had relatively low contrast (the main reason for 

Figure 5.6 Artefacts from stack registration process (dark areas) visible around lower and 
right side of image.  These were excluded from the identified ROI to ensure they were not used 
during classifier training. 
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boundary misplacement), it was unlikely that they would contribute strong 

representation within the neural networks. It was therefore probable that this 

limitation would not have a large direct effect on the automated classification 

results.  

Overall, the percentage overlap was reasonable, suggesting that observers 

were consistent in identifying the ROI. Since the purpose of this protocol was to 

identify a region of the image to be isolated for further analysis, the agreement did 

not need to be as high as would be required for direct quantitative analysis of the 

segmentation region (e.g. choroidal area). This protocol for manual segmentation of 

the choroidal layer was therefore suitable for use in this study.  

5.1.2 Feature extraction 

The next step in the classification process was to extract textural information 

from the ROI. This aim of this was to condense the image data in the ROI (i.e. pixel 

locations and intensities) into summarised textural information, such as spatial 

arrangement of pixel values. Assuming the OCT image accurately depicts the 

structure, the mathematically extracted shape and orientation information 

represents the underlying vascular structure. Although several methods for feature 

extraction have been described, Gabor filters are relatively simple to apply, and have 

been shown to perform well against alternative methods in textural analysis 

problems (Monadjemi 2004; Gonzalez-Lopez et al. 2015). They have been 

successfully applied to retinal image analysis, including retinal vessel and choroidal 

layer segmentation, drusen detection, and RNFL defect detection (Soares et al. 2006; 

Hayashi et al. 2007; Parvathi and Devi 2007; Gonzalez-Lopez et al. 2015; see Section 

1.7.3).  

A 2-D Gabor filter is a linear filter consisting of a sine wave grating multiplied 

by a Gaussian kernel function (Figure 5.7). A number of gratings of predefined 

spatial frequency and orientation are produced to form a Gabor filter bank (Figure 

5.8). This technique is therefore a multi-channel filtering approach, similar to that 

described by Jain and Farrokhnia (1990). The theory is based upon the 

deconstruction of images into a number of filtered images, each representing a 

narrow range of frequencies and orientations. This is analogous to early 
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descriptions of perception in the human visual system (Campbell and Robson 1968), 

with Gabor filters comparable to the simple cells of the visual cortex, responding 

primarily to oriented edges and gratings.  

Theoretically, a range of spatial frequencies is useful for detecting vessels of 

different diameters, for example the smaller vessels of the anterior choroid, and the 

larger vessels of Haller’s layer. The grating size giving the strongest response should 
correspond to the predominant vessel size in the image. Changes to the vessel sizes 

throughout the AMD disease process may therefore be detectable using these filters 

of varying spatial frequency.  

Since the choroid comprises a range of vessel sizes, the wavelengths (λ) of 

the sine wave gratings were selected to reflect this. The optimum wavelength 

required to detect a vessel would be double that of the vessel diameter, assuming 

the vessel diameter is equal to the spacing between vessels. However, due to the 

Figure 5.8 Visual representation of the Gabor filter bank used in this analysis. From top to 
bottom, the wavelength of the gratings are 6, 8, 10, 12 and 18 pixels, and orientations rotate 
from horizontal by 22.5° (left to right).

Figure 5.7 The product of (A) a sine wave grating and (B) a Gaussian blob is (C) a Gabor patch. 
In this case, a wavelength of 10 pixels and an orientation of 22.5° from vertical are used. 
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decoupling of axial and lateral scaling in OCT, these wavelengths will equate to 

different vessel sizes in the two directions. For instance, a grating of λ = 8 pixels (λ/2 

= 4 pixels) would equate to vessel diameters of ~8 µm axially and ~46 µm laterally. 

This grating would therefore be sensitive to different vessel sizes in each meridian. 

To account for this, a range of wavelengths were employed in the Gabor filter bank; 

λ/2 = 3, 4, 5, 6, and 9 pixels. This equates to a range of vessel diameters of ~6 to 17 

µm axially, and ~34 to 102 µm laterally (assuming an AEL of 24 mm). Therefore, 

changes to the small vessels should produce differences in the horizontally oriented 

filters, and changes to the large vessels should produce differences in the vertically 

oriented filters. Orientations between these two axes were also used to complete the 

Gabor filter bank (every 22.5°), and account for the vessels between these sizes. A 

total of 40 filters were used (8 orientations of 5 spatial frequencies), each 39  39 

pixels in size.  

During feature extraction, each of the filters in the Gabor bank was convolved 

across the image, producing a series of filtered images with limited spectral 

information. The aim of this was to determine the ‘energy’ of each filtered image 
required to reconstruct the input image. As described by Jain and Farrokhnia 

(1990), the relative importance of each filtered image was represented in a 

histogram (Figure 5.9; Deng et al. 2016). Each image pixel was assigned to one of 11 

equally sized energy ‘bins’, each of which represented a discrete range of energy 

responses (shown along the x-axis). The relative frequency of pixels assigned to each 

bin (normalised from 0 to 1) defined the y-axis.  

Figure 5.9 Example energy histogram from an image produced by a single Gabor filter. The y-
axis represents relative frequency of each discrete ‘energy bin’, shown along the x-axis (a total 
of 11 bins were used). Image adapted from Deng et al. (2016).
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This filtering process was repeated for all 40 filters in the Gabor bank (8 

orientations  5 spatial frequencies), and the energy histograms were concatenated 

to form a total of 440 feature descriptors (40 filters  11 bins), for each b-scan. 

These feature descriptors were then used as input to train and test the classifiers 

(described in Section 5.1.3 and 5.1.4 respectively). 

5.1.3 Classifier training 

Since the data used in classifier training was pre-classified into disease group 

by clinicians, this was a ‘supervised’ classification problem. The aim was to train 
classifiers to sort images into one of three groups; healthy, early AMD, or nAMD. The 

input to the classifiers was the feature descriptors described in Section 5.1.2, along 

with the ground truth classification (Section 4.2).  The output was one of the three 

disease groups. A subset of the data was used for training purposes, whilst the 

remaining data was used to test the classifiers for accuracy (see Section 5.1.4).  

Each b-scan within a volume was assigned the same class during the clinical 

classification. All b-scans from a single eye were given equal weighting in the 

classification, regardless of their proximity to the fovea, or signs of overlying retinal 

degeneration visible on the OCT scan. This was based on the assumption that vessel 

changes in AMD are uniform across the central 20°  20° of sub-macular choroid. 

Since the aim of this research was to establish the feasibility of applying machine 

learning to automated disease severity classification, this assumption was made for 

ease of classifier training. Reasonable accuracy of a simple classifier acts as proof of 

concept, as well as indicating structural change to the choroidal vasculature 

throughout the disease process. Following this, the classifiers would require 

optimisation on a far larger dataset, to maximise accuracy of automated disease 

classification prior to clinical application. This optimisation process may include 

weighting of b-scans in the classification with relation to location or retinal features. 

The implications of this assumption are discussed further in Section 5.3.  

Three established types of classifier were evaluated on this dataset; K-

nearest neighbour (KNN), random forests (RFS), and support vector machines 

(SVM). Although all three classifiers have been shown to produce accurate 

classification of medical tomographic images (Koprowski et al. 2013; Bhuvaneswari 
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and Therese 2015; Albarrak et al. 2016), it was unknown which would have the best 

performance in this classification task. All three classifiers were therefore evaluated, 

and their performance is compared in Section 5.2. A study of the latter two of these 

methods applied to a preliminary dataset comprising OCT images of eyes with 

varying stages of AMD is described in Deng et al. (2016). The following sections are 

a description of the models and predictions made by each classifier type. A 

comprehensive explanation of each type of classifier, along with additional 

information, can be found in Alpaydin (2014).  

5.1.3.1 K-nearest neighbour (KNN) 

 KNN is a relatively basic classifier, which makes predictions directly from the 

entire training set. For a previously unseen image, the K-most similar images 

(‘nearest neighbours’) in the training set are identified and summarised to produce 
a classification for the new image (Figure 5.10). To measure similarity between the 

input and training set, distances in Euclidian space between images were calculated 

for each of the 440 feature descriptors. This distance was used to produce a 

weighted score, with the nearest neighbour having the highest weighing. The final 

classification of the new image was based on a majority vote from the K-highest 

weighted scores. For this analysis, K was set to 5 to maximise accuracy, whilst 

minimising over-fitting.  

Figure 5.10 K-nearest neighbour predicts the class of a new input (shaded square) by 
identifying the K-most similar data in the training set. The classification is determined by the 
most frequent class in this neighbourhood (in this case, Class 1).  



188 

Over-fitting is a common limitation of machine learning, referring to a 

classifier with high sensitivity to the training data, but poor accuracy when 

classifying previously unseen test data. This occurs when random patterns or noise 

in the test sample are learned by the classifier, and used as a basis for classifying 

data from a different sample during testing. This is often the case in relatively small 

datasets, resulting in poor generalisation of the model to previously unseen data in 

the population. The extent of over-fitting of all classifiers used was assessed using 

cross-validation (testing the classifiers by sampling previously unseen data; see 

Section 5.1.4).  

5.1.3.2 Random forests (RFS)  

A random forest classifier is a type of ensemble machine learning, combining 

a large number of weak classifiers (‘decision trees’) to create an accurate predictive 

model. A decision tree is a method of classifying data into discrete groups, using a 

series of successive binary criteria. Data is input at the top of the tree, and passes 

down each layer until it reaches an end node at the bottom of the tree, where a 

classification is output. The path followed (and hence the end node reached) is 

dependent on multiple split points in the tree, each based on a binary criterion 

designed to divide the data. These criteria generally determine whether a variable 

is less than or greater than a predefined threshold. An example of simple decision 

tree architecture is shown in Figure 5.11.  

Figure 5.11 (A) Simple decision tree architecture, showing the possible paths of input data, 
through a series of split points, leading to an end node denoting a classification. (B) An 
example of a simple decision tree, with binary criteria at each split-point. In this case, input 
data (X = 3, Y = 7) was allocated to Class C. 
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In this study, RFS classifier training involves constructing decision trees to 

classify into the disease groups, based on the labelled training data. These trees are 

sensitive to the specific data on which they are trained, and therefore are prone to 

over-fitting (resulting in poor classification accuracy on previously unseen data). 

Bootstrap aggregation (‘bagging’) can be used to minimise this problem; at each 
node within the tree, a random subset of all possible features for the binary criterion 

are made available to the learning algorithm. From this subset, the feature and 

threshold combination which produces the most discriminative data split are 

selected and assigned to that split-point. The size of the subset was set to 21 in the 

present study, calculated as the square root of the number of feature descriptors 

(√440; Breiman 2001). Trees are allowed to grow until a minimum number of 

samples at each split-point is reached (this was set to 3 in the present study to 

minimise overfitting). The result is a decision tree with multiple split points to 

separate data into the classes.  

This process was repeated with a different random subset of features, 

producing another decision tree based on different combinations of features and 

thresholds (due to the bagging process). This was repeated until a total of 50 trees 

were constructed, which were combined to form the decision forest (Figure 5.12). 

For previously unseen (test) data, the probability of the sample belonging to each 

class was assigned at the end node of each tree. The final classification was 

determined by combining weighted predictions from each tree in the forest.  

Figure 5.12 Random forest classifiers consist of multiple decision trees (n=3 shown here), 
each with a number of binary split-points (white squares). New data (shaded square) is 
entered at the top of each tree, and is classified at the end node. The final classification is 
based on the combined weighted predictions from each tree (in this case, Class 2). 
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5.1.3.3 Support vector machines (SVM) 

 This classifier describes how training data plotted in n-dimensional space (n 

representing the number of feature descriptors) can be separated by a ‘hyperplane’. 
This describes the plane that best separates the training data into two known 

classes. The position of this hyperplane is learned from the training data and used 

to determine the class of a new input; its mapped location in relation to the 

hyperplane is used to predict the classification.  

SVM is based upon the hypothetical ‘maximal-margin’ classifier. The 
maximal-margin hyperplane is the term given to the optimal hyperplane separating 

the classes. The ‘margin’ is defined as the perpendicular distance from the nearest 
correctly classified point of each group to the hyperplane (Figure 5.13). The smaller 

the margin (i.e. the closer the input is to the hyperplane), the less confidence the 

model gives to the class prediction. The points with the smallest margin (i.e. the 

closest correctly classified points to the hyperplane) are called the support vectors, 

and are used to define the hyperplane, and hence the construction of the classifier.  

With real data however, there will often be some overlap in space between 

classes; therefore a hyperplane may not perfectly separate all training points in the 

classes. The ‘soft margin’ classifier is used to relax the constraints of the hyperplane, 
allowing some points in the training data to violate the separating line (Cortes and 

Vapnik 1995). This accounts for outliers in the training data, and aids in reducing 

model over-fitting to these outliers.  

Figure 5.13 A support vector machine uses a hyperplane (solid line) to define the best 
separation between data belonging to two classes, shown here in 2-D space for simplicity. The 
support vectors (marked in grey boxes) are the correctly classified data points closest to the 
hyperplane, and the perpendicular distance from these to the hyperplane is known as the 
margin (black arrow). Image adapted from Cortes and Vapnik (1995).
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In practice, the SVM algorithm is implemented using a kernel, defining the 

similarity between new data and the support vectors. This kernel may be linear, 

polynomial, or radial, to best separate the classes (allowing for curved or more 

complex hyperplanes). The present study used the established radial basis function 

(RBF) kernel, also known as the Gaussian kernel (Equation 5.2). This was capable of 

creating complex regions within the feature space, and hence maximise 

classification accuracy.  

Equation 5.2 

where:  

(x - x’)2 is the squared Euclidian distance between vectors  

σ is a free parameter to be determined by the algorithm 

SVM was developed for binary classification (i.e. separating data into two 

classes only). Since there were three classes in this dataset, a one-against-all 

approach was used (Kim et al. 2002). In turn, each class was tested against all data 

from the remaining two classes combined. This produced multiple SVMs, of which 

the one with the strongest prediction (i.e. the maximal margin) for a particular input 

was used.  

5.1.3.4 Convolutional neural networks (CNN) 

In addition to these traditional classifiers, the use of neural networks for 

automated classification into disease groups was evaluated. This did not require the 

feature extraction techniques described in Section 5.1.2, and the results are 

therefore presented and discussed separately to the other classifiers (Section 5.2.3).  

Artificial neural networks are a commonly used approach to computational 

classification, modelled on biological neural networks, such as those behind image 

recognition in the human brain (Lippmann 1987). Convolutional neural networks 

(CNN) are a powerful machine learning technique, often applied to object 

recognition problems (LeCun et al. 2015). Unlike traditional neural network 

techniques, a CNN preserves the spatial relationship between pixels, to prevent loss 
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of spatial structure from the image during the learning process. A CNN is designed 

to learn and generalise features from an input image, in order to classify a previously 

unseen image. The input data for the CNN was intensity and spatial location of all 

pixels in the choroidal ROI. The ‘hand-crafted’ features used to train the other 
classifiers (produced by the Gabor filters) were therefore not required for this 

analysis.  

A CNN typically has a complex architecture, with three types of layers (from 

input to prediction); convolutional layers (typically coupled with normalisation 

layers), pooling layers, and fully-connected layers (Figure 5.14). The convolutional 

layers are comprised of filters, with the aim of extracting textural information from 

the image. The filters are a square of fixed size, known as a receptive field, which are 

convolved across the input image (in a similar manner to the Gabor filters described 

in Section 5.1.2). This is a method of combining pixels with their neighbours, 

accentuating or masking certain image features, depending on the kernel used. A 

predefined number of filters are used, which are initially randomised, but then 

undergo optimisation by the algorithm using back-propagation in the network. The 

output from the first layer is called a feature map, and forms the input for the next 

convolutional layer. A new set of optimisable features are then convolved across the 

feature map, the output of which feeds into the next layer, and so on.  

Normalisation layers are often utilised between convolutional layers, for 

spatial smoothing of the feature maps, following filtering. A commonly used type of 

normalisation is the ‘rectified linear unit’ (ReLU), which normalises values over a 
local region of defined size (LeCun et al. 2015).  

Figure 5.14 Schematic of a simplified convolutional neural network. Convolutional, 
normalising and pooling layers are used for extracting and generalising textural features 
within the image. Fully connected layers are used as a classifier to predict the class of a 
previously unseen image. Image adapted from Lawrence et al. (1997).
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Pooling layers follow the convolutional layers, and down-sample the feature 

maps from the previous convolutional layer. These layers aim to consolidate and 

generalise the textural features across all input data, to reduce the effect of over-

fitting of the model to the training sample. Fully connected layers are implemented 

at the end of the network, to create non-linear combinations of features, for class 

prediction by the model.  

CNN typically relies on all input images being the same size. However, this 

was not true for the choroidal ROIs, which varied greatly in size and shape. 

Therefore, 50 patches were randomly selected from the ROI for this analysis, each 

40  40 pixels in size. These patches were used as the input for the CNN.  

The CNN used in this analysis was comprised of the following 21 layers, from 

input to prediction (architecture shown in Figure 5.15):  

Figure 5.15 Network architecture of the CNN, from input to prediction. Conv = convolutional 
layer; ReLU = ‘rectified linear unit’ normalisation layer; MaxPool = maximum pooling layer; FC. 
X = fully connected layer with X neurons; Softmax = layer to carry out error calculations in 
class prediction. 
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 5 convolutional layers, each with 128 filters with receptive field (kernel) size 

3  3 pixels. Although the number of filters was specified, the actual filters 

used were determined by the algorithm (Figure 5.16). A ReLU normalisation 

layer was used after each convolutional layer for spatial smoothing prior to 

entering the next layer.  

 3 pooling layers, to select the maximum pixel values in the feature maps, in a 

2  2 pixel neighbourhood. This compressed the feature information, 

minimising the computational demand of the classifier.  

 3 fully connected layers to separate images into the classes based on the 

feature maps. The first two of these consisted of 200 neurons and were 

followed by a ReLU normalisation layer, whilst the final layer consisted of 3 

neurons (one for each class).  

 A ‘Softmax’ layer was added to the end of the network to carry out error 
calculations in class predictions. This layer outputs a ‘confidence score’, akin 
to the probability of each input sample belonging to each of the three classes. 

The largest confidence score was used to determine the final classification of 

each b-scan.  

Figure 5.16 The output of the 128 filters that were created by the first convolutional layer of 
the CNN (3  3 kernels convolved across an image patch 40  40 pixels in size). These were 
randomly generated filters, and included bar gratings and diagonal gradients, with a range of 
contrasts. Image adapted from Ravenscroft (2016).
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5.1.4 Cross-validation 

For this analysis, each volume scan was separated into individual b-scans, 

each of which was treated as a single image. All 512 b-scans per volume were 

included in the analysis. Every b-scan in the volume scan was labelled with the class 

established by the protocol in Section 4.2; this was taken as the ground truth. This 

was repeated for all 75 volume scans. This produced a dataset of 38,400 labelled b-

scans, equally divided between three disease groups.  

To evaluate the accuracy of the classifiers, a proportion of the images were 

set aside as test data. This data was not used during the training process, and was 

therefore previously unseen by the classifiers. Each classifier was then used to 

classify these test images, and the accuracy of the classifiers was established (i.e. the 

percentage agreement between automated classification and ground truth). This 

process was called cross-validation. Three methods of cross-validation were 

conducted, based upon the proportion of data devoted to training and testing; 10-

fold, 2-fold, and leave-one-out (Figure 5.17).  

For 10-fold cross-validation, the 512 b-scans from each eye were randomly 

distributed amongst 10 equally sized groups. Nine of these groups were used for 

training, and the final group was used for testing. During cross-validation, the 

algorithmic prediction was compared to the clinical classification, and the 

percentage agreement between classification methods (automated and clinical) was 

established. The classifiers were then retrained, this time removing one of the other 

9 groups from the training phase, to be used for testing. The classification accuracy 

Figure 5.17 The total dataset comprised of 75 volume scans from 75 eyes, each consisting of 
512 b-scans. In the first run, one tenth or half of the b-scans were randomly selected for the test 
set, in 10-fold and 2-fold cross-validations respectively. The remainder were used to train the 
classifiers. For the leave-one-out cross-validation, all b-scans from 3 eyes (one per disease 
group) were used as the test set. This was repeated using each subset for testing, for a total of 
10, 2, and 25 runs for the 10-fold, 2-fold and leave-one-out cross-validation respectively. 
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was again assessed. This was repeated for a total of 10 ‘runs’ (each using a different 
subset for testing), and the mean accuracy was calculated. The agreement between 

classification methods was averaged across all runs, and presented in a ‘confusion 

matrix’. An example confusion matrix with fictional data is shown in Table 5.1, for 

interpretation guidance. These matrices are presented in Appendix F, and are 

summarised in Section 5.2.1 (for KNN, RFS, and SVM), and Section 5.2.3 (for CNN). 

A 2-fold cross-validation was also conducted, in which the data was 

randomly divided in half; the training and test datasets were therefore equal in size. 

There were two runs in this cross-validation, using each half of the dataset for 

training and testing. This is generally a more robust measure of classifier accuracy, 

since more data is used in the testing phase. 

Finally, a leave-one-out cross-validation was used. For this, all b-scans from 3 

eyes (one per disease group) were set aside for testing. All b-scans from the 72 

remaining eyes were used to train the classifiers. During testing, each b-scan from 

the test eyes were classified individually. The class of highest frequency amongst the 

b-scans was taken as the final classification for each eye (i.e. a majority vote). This 

was repeated for a total of 25 runs, with a different random eye from each class 

being removed in turn for testing. This form of cross-validation is the most robust, 

and mimics the clinical scenario of classifying images from eyes previously unseen 

by the classifiers.  

Table 5.1 Fictional confusion matrix for interpretation guidance. Ground truth (analogous to 
clinical classification) is divided by column and algorithmic prediction is divided by row. 80% 
of group B were correctly classified by the algorithm, whilst 15% were classed as group A, and 
5% were classed as group C.  

Ground truth (clinical classification)

A B C

Al
go

ri
th

m
ic

 

pr
ed

ic
ti

on

A 100% 15% 0%

B 0% 80% 10%

C 0% 5% 90%

To summarise, the methodology for automated classification of images using 

machine learning has been presented in this chapter. A method for manually 
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segmenting the choroidal region of interest was described, along with a study of the 

inter-observer variability of this method. Following this, the use of Gabor filters for 

feature extraction was outlined, with a view to producing automated quantification 

of textural features within the choroid. Three types of classifier (K-nearest 

neighbour, random forest, and support vector machine) were then described, each 

of which are designed to predict the class of a previously unseen image, based on 

training data. The accuracy of these three classifiers can be assessed using cross-

validation (10-fold, 2-fold, and leave-one-out). The accuracy of each classifier at 

predicting AMD disease severity is presented in the following sections, along with a 

discussion of their performance relative to each other, and to the literature. The 

feasibility of applying a further classifier, not requiring the hand-crafted feature 

extraction process (convolutional neural network), is also explored. 

5.1.5 Methodology summary 

The methods described in Section 5.1 were applied to a dataset of long-

wavelength OCT images acquired from individuals at different stages of AMD. The 

training and testing of the classifiers was performed with collaborators from the 

Department of Computer Science, Swansea University (Dafydd Ravenscroft; Jingjing 

Deng; Xianghua Xie). Interpretation of the results (including association of image 

features to the choroidal structure), and a discussion of subsequent clinical 

implication, was undertaken by the author of this thesis.  

The aim of this analysis was to evaluate the feasibility of applying machine 

learning techniques to automated classification of AMD by disease severity, based 

on choroidal appearance. By proxy, successful classification would indicate that 

changes to the texture of the choroidal region of OCT images, with advancing disease 

severity, are detectable in vivo. A successful classification was defined as high 

classification accuracy achieved using 10-fold and 2-fold cross-validation, in 

conjunction with reasonable accuracy with leave-one-out cross-validation (which 

was expected to be lower due to the limited size of the training dataset). The results 

of the classifications are presented in this chapter, with results from the 

convolutional neural network (CNN) presented separately due to the difference in 

feature extraction method. The discriminative features that were considered 

important to the classification are explored, and are compared to the vascular 
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changes described in the literature. Additional results can be found in Appendix F, 

including confusion matrices of each classifier, for each cross-validation method 

used.  

5.2 Results  

5.2.1 Cross-validation  

The choroidal ROI from OCT images (n=75) was used to train and test 

classifiers to predict AMD disease severity by classification into three groups; 

healthy, early AMD, or nAMD. The accuracy (percentage agreement between 

classifier and ground truth) of each classifier, evaluated with 10-fold cross-

validation, is shown in Table 5.2. Support vector machine (SVM) was the best-

performing classifier, with mean accuracy of 98.3%. K-nearest neighbour (KNN) 

also performed well, with 94.9% mean accuracy, and random forest (RFS) was the 

poorest of the three classifiers in this analysis, with 89.2% mean accuracy. For KNN 

and SVM, the healthy class had the highest accuracy, whilst with RFS and SVM, the 

early group had the lowest accuracy.  

Table 5.2 Classification accuracy (%) of 10-fold cross-validation for each classifier. KNN = K-
nearest neighbour; RFS = random forest; SVM = support vector machine. 

Healthy Early AMD nAMD Mean

KNN 97.3 94.6 92.9 94.9

RFS 90.9 85.1 91.7 89.2

SVM 98.6 97.9 98.4 98.3

The classification accuracies were slightly lower for the 2-fold than the 10-

fold cross-validation for all three classifiers (Table 5.3), although the same patterns 

as described above were observed. This reduction in accuracy was expected for this 

method of cross-validation, since less data is used for classifier training.  
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Table 5.3 Classification accuracy (%) of 2-fold cross-validation for each classifier. KNN = K-
nearest neighbour; RFS = random forest; SVM = support vector machine. 

Healthy Early AMD nAMD Mean

KNN 96.7 93.8 91.4 94.0

RFS 88.3 81.7 90.2 86.7

SVM 97.7 96.7 97.6 97.3

 For the leave-one-out cross-validation, the mean accuracy was substantially 

lower for all classifiers (Table 5.4). For this validation method, no b-scans from the 

eyes in the test set had been used for classifier training. In the 10-fold and 2-fold 

cross-validations however, all b-scans were randomly assigned to the training and 

test sets. Therefore, a number of b-scans from each eye (90% or 50% on average, 

respectively) were used to train the classifiers. The large differences in accuracy 

between cross-validation methods suggests that the classifiers were poor at 

generalising to the population, from the sample used for each class (n=25).  

Table 5.4 Classification accuracy (%) of leave-one-out cross-validation for each classifier. KNN 
= K-nearest neighbour; RFS = random forest; SVM = support vector machine.  

Healthy Early AMD nAMD Mean

KNN 40 48 48 45.3

RFS 56 44 80 60.0

SVM 40 60 72 57.3

The best-performing classifier in this analysis was the RFS (60.0% mean 

accuracy), whilst the poorest was KNN (45.3% mean accuracy). This is unsurprising, 

since KNN is the most basic of the classifiers used, and RFS is the least prone to over-

fitting. Despite the ability of RFS to generalise to the population, classes with high 

within-class variability still result in limited classification accuracy. The poorest 

performance was for the early AMD group, suggesting that this group had high 

within-class variability. This is not surprising, since this disease group contained 

both early and intermediate AMD (as defined by AREDS 2001a), and had the highest 

standard deviation in several of the choroidal parameters evaluated in Section 4.4.  

The nAMD class had the highest accuracy for all three classifiers. This 

indicated that the choroidal structure is most different in this group, compared to 

the early AMD and healthy groups. Choroidal structure may have been more similar 
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in eyes with no disease or early disease, with more overlap in textural appearance 

between groups, resulting in limited ability of the classifiers to distinguish between 

these two groups. This is consistent with the findings of the manual choroidal 

parameters, where no significant differences were found between early AMD and 

healthy eyes with any parameter evaluated (see Section 4.4).  

 The sensitivity and specificity of each classifier were evaluated for each 

cross-validation method (Figure 5.18). For this analysis, classes were combined to 

allow two different comparisons: AMD (combining early and nAMD) versus non-

AMD (healthy); and neovascular (nAMD) versus non-neovascular (combining early 

AMD and healthy). Specificity of the leave-one out cross-validation was considerably 

higher for the latter of these comparisons, whilst sensitivity was similar. This 

suggests that the classifiers were more accurate at identifying the presence of nAMD 

than of any stage of AMD, supporting the hypothesis that the choroid has a more 

Figure 5.18 Sensitivity (%) and specificity (%) of each classifier, using the three methods of 
cross-validation. The diagnostic ability of the classifiers to identify any stage of AMD (left 
column) and nAMD (right column) were evaluated. For the purposes of this figure, AMD = early 
+ nAMD groups; non-AMD = healthy group; neovascular = nAMD group; non-neovascular = 
healthy + early AMD groups. KNN = K-nearest neighbour; RFS = random forest; SVM = support 
vector machine; LOOCV = leave-one-out cross-validation. 
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distinct appearance in nAMD than in the other groups. This is in agreement with the 

results in Section 4.4, whereby little difference in choroidal structure was found 

between healthy eyes and early AMD, but was significantly different in nAMD. 

However, this was a predominantly treated-nAMD group, and the potential 

implications of anti-VEGF therapy on the choroidal structure must be considered 

(discussed further in Section 5.3). SVM consistently performed the best of all 

classifiers, with the exception of the leave-one-out cross-validation, where it was 

out-performed by RFS.  

 To improve classifier accuracy in the leave-on-out cross-validation, a 

substantially larger dataset would be required, to compensate for the large within-

class variation, and improve generalisation of the choroidal features of each group 

to the population, hence minimising over-fitting (discussed in Section 5.3). Despite 

this, the accuracy of all classifiers evaluated was considerably higher than chance 

(33% for three classes), confirming the feasibility of applying machine learning 

techniques to classification of AMD by disease severity, based on the choroidal 

region in long-wavelength OCT images.  

However, it was not possible to conclude from these findings whether the 

features used in the classification were true structural features, or ‘artefactual’ 
image features produced during image acquisition or processing. It was therefore 

necessary to evaluate the textural image features in the classifier used to 

discriminate between classes, and to associate these with previously demonstrated 

changes to choroidal physiology with advancing disease.  

5.2.2 Associating textural image features to choroidal structure  

To provide an indication of the choroidal features used to predict the disease 

stage, the relative importance of each image feature in the classifier (i.e. each of the 

Gabor filters used) was established. The size and orientation of these filters was 

associated with the structural features of the choroidal vasculature, predominantly 

from the histological literature. The possible influence of artefacts was also 

considered (e.g. those inherent to OCT imaging).  

The classifier with the highest accuracy in the leave-one-out cross-validation 

(RFS) was used for this analysis. The ‘permuted delta error’ was used as a measure 
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of importance of each image feature to the classifier (Ishwaran 2007; Baas 2016). 

The increase in prediction error (i.e. misclassification rate) in the leave-one-out 

cross-validation was established for when the values from each Gabor filter (n=40) 

were permuted (i.e. removed from each decision tree). Delta error was calculated as 

the average of the errors for each tree in the decision forest, divided by the standard 

deviation of the errors. This was performed for each b-scan, and then averaged 

across all b-scans in the dataset. These values were normalised from 0 to 1, and the 

results are shown in Figure 5.19. The higher the delta error, the greater the increase 

in prediction error of the classifier, and therefore the more important that feature 

was in determining the classification of each previously unseen image.  

 For the 3 smallest filters, the vertical gratings (90°) were of highest 

importance to the classifier. In OCT imaging, each a-scan is acquired sequentially, 

representing a reflectivity profile with increasing depth in the imaged structure. The 

reflectivity at a given depth in each a-scan is relative to the proportion of light 

reflected by overlying structures. For instance, more light is reflected from a CNV, 

resulting in an area of relatively reduced intensity in the underlying choroid, when 

compared to choroid without overlying retinal disruption. This can result in 

vertically-oriented, sharply demarcated intensity boundaries between 

neighbouring a-scans (Figure 5.20).  

Figure 5.19 Relative feature importance (delta error; y-axis) for each Gabor filter (n=40; x-
axis). Filter orientations are indicated by different colours (see key), whilst filters of the same 
grating size are grouped along the x-axis. 
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These vertical features are likely to be increasingly common in advancing 

disease, due to increased disruption of the retinal layers (particularly the hyper-

reflective RPE). This orientation was likely to produce discriminative features for 

classification influenced by features of the overlying retina, rather than solely the 

choroidal structure. This argument is supported by an analysis of the 10 most 

important features in the classifier, which included all 5 gratings with vertical 

orientation (Figure 5.21). There was little difference in discriminative ability 

between the other filter orientations (Figure 5.22A).  

The mean delta error for each filter size and orientation was calculated, and 

was used as an indicator of feature importance to disease classification. The largest 

grating size (lowest spatial frequency; wavelength 18 pixels) was generally of high 

importance to the classifier, with 5 of the 8 orientations appearing in the top 10 

features (Figure 5.21 and Figure 5.22B). The size of this grating equated to a vessel 

diameter of ~102 µm for the vertical grating orientation; most similar in size to the 

large choroidal vessels of this cohort. This indicates that the size of the large 

choroidal vessels was discriminative between disease groups, and therefore that the 

large vessels may be most affected throughout the disease process. This is supported 

Figure 5.20 An increase in the number of shadow artefacts caused by overlying retinal features 
can typically be seen with advancing disease stage. These produce sharply demarcated vertical 
features in the deeper structures (choroid and sclera; examples indicated by arrows in the 
sclera, where they are most visible). 
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by the results of the manual choroidal parameters evaluated in Section 4.4, in which 

the mean visible vessel diameter (VVD) was lower in nAMD than the other two 

groups. However, it is difficult to draw direct comparisons between these analyses, 

due to the difference in measurement orientations. VVD was consistently measured 

axially, whilst the largest grating was applied at various orientations, with 

marginally higher discriminative ability in the near-vertical orientations (Figure 

5.19). Although there is little literature on histological changes to the large vessels 

in AMD, Spraul et al. (1999) reported a decrease in vascular density, which is 

consistent with the decrease in choroidal vascular index (CVI) identified using in 

vivo imaging (Sonoda et al. 2014; Wei et al. 2016).  

Figure 5.22 Mean (± SE) delta error for each Gabor filter orientation (A) and grating size (B). 
The vertical gratings were excluded from the grating size analysis (B), due to their likely non-
choroidal origin. 

Figure 5.21 The top 10 features sorted by relative importance to the classifier (A). The 
corresponding Gabor filters are also shown (B). 
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 The smaller grating sizes (particularly the filter with highest spatial 

frequency; wavelength 6 pixels) also contributed to disease classification (Figure 

5.22B). This filter was more discriminative for the near-horizontal orientations (0°, 

22.5°, and 157.5°) than the near-vertical orientations (67.5° and 112.5°; Figure 

5.19). In fact, with increasing filter size, the features of higher importance 

transitioned from the near-horizontal orientations to the near-vertical orientations 

(when considering the 90° filters as non-choroidal). This trend is in line with the 

expected energy response for each filter, considering the difference in axial and 

lateral scaling, and the resulting axial and lateral components of each grating size 

(described in Section 5.1.2 and demonstrated in Figure 5.23). Due to the decoupling 

of axial and lateral scaling in OCT imaging, filters of different orientation were 

theoretically more sensitive to vessels of different diameter. Considering the image 

scaling factors (x1.9 axially and x11.3 laterally, assuming an AEL of 24 mm), the 

range of filter sizes used corresponds to vessel diameters of approximately 6 µm to 

17 µm axially, and 34 µm to 102 µm laterally. In other words, the higher spatial 

frequency filters should generate a greater response to the small choroidal vessels, 

with highest sensitivity in the axial direction (near-horizontal filters). For the larger 

filters, the response should be greatest for the large choroidal vessels, particularly 

Figure 5.23 Equivalent feature size for the smallest and largest Gabor filters used, with 
varying orientation. The equivalent size describes the vessel diameter with the expected 
greatest energy response to a given filter, at a given orientation.  
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in the lateral direction (near-vertical filters). This is consistent with the trend seen 

in Figure 5.19.  

5.2.3 Investigation of convolutional neural networks (CNN) 

The evaluated classifiers required input of ‘hand-crafted’ features; responses 

from the Gabor filters were used in this case. However, defining the features on 

which to base the classification may introduce an element of bias. In an attempt to 

minimise the effect of this, the filters used were selected to correspond to a wide 

range of vessel sizes, in both the axial and lateral directions (discussed in the 

previous section). To eliminate this bias altogether, the use of an alternative 

classifier (CNN) was also explored, which produced a classification without the need 

for predefined hand-crafted features.  

For this type of machine learning technique to be successful, very large 

datasets are typically required, to include the wide range of textural appearances, 

thereby allowing generalisation to the population (Krizhevsky et al. 2012). A total 

of 75 eyes were included in this analysis (n=25 per class), which is unlikely to 

include the sufficient range of choroidal appearances in eyes with and without AMD, 

for accurate results with this type of classifier. Therefore, the aim of this analysis 

was to explore the feasibility of applying CNN to a dataset of OCT images of various 

AMD disease stages. This would be confirmed by a high accuracy of the 2-fold cross-

validation, although the size of this dataset was expected to result in over-fitting of 

the classifier, and therefore limited accuracy in the leave-one-out cross-validation. 

Due to the computational time required to train the CNN, the 10-fold cross-

validation (the least stringent validation method due to the smallest number of 

samples in the testing set) was not performed as part of this analysis.  

The CNN yielded near-perfect classification accuracy with 2-fold cross-

validation (Table 5.5). The accuracy was improved when the individual patches in a 

b-scan were combined to determine the final classification, and was higher-still 

when all b-scans in the volume were considered in the final decision for that eye. 

Although the CNN showed near-perfect sensitivity and specificity with this method 

of cross-validation (Table 5.6), it performed poorly in the leave-one-out cross-

validation (no better than chance; 33% for three classes; Table 5.5).  



Chapter 5 – Machine learning  

207 

Table 5.5 Classification accuracy (%) of the convolutional neural network (CNN), with 2-fold 
cross-validation, and leave one out cross-validation (LOOCV). 2-fold cross-validation was 
evaluated by establishing the classification accuracy per patch, by combining all patches 
within a single b-scan (per b-scan), and by combining all b-scans within a single volume (per 
eye).  

Healthy Early AMD nAMD Mean

2-fold (per patch) 92.5 91.1 92.0 91.9

2-fold (per b-scan) 100.0 99.6 99.3 99.6

2-fold (per eye) 100.0 100.0 100.0 100.0

LOOCV (per eye) 25 25 33 27.7

Table 5.6 Sensitivity (%) and specificity (%) of the convolutional neural network (CNN), using 
the 2-fold and leave-one-out cross-validation (LOOCV). The diagnostic ability of the classifiers 
to identify any stage of AMD (3rd column) and nAMD (4th column) were evaluated. For the 
purposes of this table, AMD = early + nAMD groups; non-AMD = healthy group; neovascular = 
nAMD group; non-neovascular = healthy + early AMD groups. 

AMD vs. non-AMD Neovascular vs. non-neovascular

2-fold Sensitivity 99.9 99.3

Specificity 100.0 99.8

LOOCV Sensitivity 64.6 33.0

Specificity 25.0 64.6

As expected, this large difference in accuracy between validation methods 

indicates that the within-class variability of the data was large, and the classifier was 

over-fit to the training data. However, the classifier accuracy with 2-fold cross-

validation was higher than that of the classifiers evaluated in Section 5.2.1. This 

suggests that CNN may be a promising technique for this application, given a 

sufficient sample size; its full potential for automated classification of AMD severity 

should therefore be evaluated on a substantially larger dataset (discussed further in 

Section 5.3). This could provide further knowledge of changes to the vasculature in 

AMD, without the bias of handcrafted features.  

5.3 Discussion  

The three classifiers evaluated in Section 5.2.1 produced high classification 

accuracy for the 10-fold and 2-fold cross-validation, confirming the feasibility of 

applying these machine learning techniques to automated classification of AMD 
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disease stage, based on choroidal appearance. The accuracy was substantially lower 

for the leave-one-out cross-validation, suggesting poor generalisation of the 

classifiers to the population. This was likely due to limited sample size and high 

within-group variability in choroidal structure. The best-performing classifier in the 

leave-one-out cross-validation was RFS, followed by SVM. KNN produced the lowest 

classification accuracy, which is unsurprising since this was the most basic of the 

methods evaluated.  

The use of a CNN was also explored, as an alternative to these classifiers 

(Section 5.2.3). This is a deep learning technique, using the image data as input, 

rather than hand-crafted features. Salient image features are learnt through a series 

of feedback loops in the network, and are used as a basis for classification of 

previously unseen images. As expected, the classification accuracy of the leave-one-

out cross-validation was substantially lower for this method, likely due to high 

within-class variability in choroidal appearance. Despite this, the CNN produced 

near-perfect classification accuracy with 2-fold cross-validation; this demonstrates 

excellent potential for this application given the relatively small sample sized used, 

and indicates likely success should it be applied to a substantially larger dataset (e.g. 

n≈1500 eyes; discussed later in this section).  

From the literature, only one study has applied machine learning techniques 

to automated classification of OCT images based on choroidal structure. Koprowski 

et al. (2013) used RFS to classify macular lesions as neovascular, ischemic, or 

fibrovascular scarring. Using 20% of the images for testing, accuracies of 73%, 83%, 

and 69% were achieved for the three groups respectively. These values are 

comparable to the current study, with an accuracy of 80% for the nAMD group using 

the RFS classifier (Table 5.4). Since the groups were not the same (i.e. there were no 

healthy or early disease groups), potential comparisons are of limited value. 

However, this does support the hypothesis that structural choroidal differences are 

present within OCT images, and that these images can be used to detect and assess 

this pathology.  

Other studies classifying AMD from OCT images have been published, in 

particular using SVM as a classifier (Srinivasan et al. 2014b; Albarrak et al. 2016; 

Section 1.7.3). The more recent of these studies classified images into two groups 

(healthy or AMD), and demonstrated performance ranging between 86% and 100% 
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with 10-fold cross-validation. The mean accuracy of the present study was 98.3% 

with SVM (Table 5.2), which was at the higher end of this range, despite the use of a 

smaller dataset (n=75 eyes, versus n=140 eyes).  

Srinivasan et al. (2014b) achieved an average of 93.3% accuracy with leave-

one-out cross-validation for normal versus dry AMD, using an SVM classifier. This is 

higher than the present study (57.3%), likely because the analysis was based on 

retinal (rather than choroidal) features. The difference in these textural features 

between groups would be expected to be well-defined, due to the distinct 

characteristic retinal appearance of the disease (e.g. disruptions to the RPE 

overlying drusen). Images were cropped to exclude the choroidal region, making 

comparison between these findings difficult. Furthermore, two eyes with AMD were 

selectively excluded from classifier training, as they were ‘unrepresentative’ of the 
dataset (although the nature of this was not defined by the authors). No eyes were 

excluded from classifier training in the present study, which may have limited the 

accuracy of the results, but is more likely to be representative of the population. In 

relatively small training samples (such as the dataset used in this thesis), the 

inclusion of atypical disease appearance may skew the importance of features in the 

classifier. However, this is of particular importance with regard to large-scale 

clinical application, where accurate classification of atypical disease would require 

the classifier to be exposed to atypical clinical appearance during the training 

process.  

A further study evaluated the use of CNN to classify normal (n=1259) versus 

AMD (n=347) from OCT images (Lee et al. 2017). This study used one of the most 

extensive datasets to date for this type of analysis, and achieved a sensitivity of 

88.6% and specificity of 87.8%, with one fifth of images used for testing only (no b-

scans from test eyes were used in classifier training). The patients in the AMD group 

had nAMD in at least one eye, and VA poorer than 0.20 logMAR in the better-seeing 

eye. The mean VA of that group was 0.38 ± 0.50 logMAR, which is similar to that of 

the nAMD group in the present study (0.37 ± 0.37 logMAR; see Section 4.3), 

suggesting similar functional disease severity between studies. For this reason, the 

results are compared to the nAMD versus non-nAMD analysis in the present study. 

Although the results of the CNN classifier were poor due to over-fitting, the RFS 

classifier yielded a sensitivity of 80% and specificity of 76%. These values are lower 
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than those reported by Lee and colleagues, although this is be expected due to the 

inclusion of retinal features in the classification, and the substantial difference in 

sample size.  

The nAMD group typically had the highest classification accuracy of the three 

classes. This suggests that this group had a distinct choroidal appearance, detectably 

different to that of the other two groups. This is consistent with the results of the 

manual choroidal parameters evaluated in Section 4.4, with significant differences 

in choroidal structure detectable only in the nAMD group. From this, one may 

conclude that the majority of detectable choroidal changes occur in the more 

advanced disease stages. This is also consistent with the literature, where significant 

thinning of the choroid has predominantly been identified in late-stage disease 

(Chung et al. 2011; Esmaeelpour 2014a; Lu et al. 2016; Wei et al. 2016). However, 

since the majority of individuals in the nAMD group were currently undergoing (or 

had previously undergone) anti-VEGF therapy, it was not possible to determine 

whether the vascular features used to classify this disease group were attributed to 

pathological degeneration or resulting from pharmacological intervention (see 

Sections 1.4.6 and 4.5).  

Classification accuracy was considerably higher than chance (range 40-60%, 

versus 33%) for the differentiation of early AMD and healthy eyes. This suggests that 

there are changes in the textural appearance of the vasculature visible in OCT 

images, even at the early stages of the disease. To further explore these structural 

differences, the discriminative image features in the classification were compared 

to the physiological structure of the choroid, established with histological 

techniques (Ramrattan et al. 1994; Spraul et al. 1999). This analysis was performed 

on the classifier yielding the highest accuracy (RFS), as this would provide greatest 

confidence that the features used by the classifier reflect the choroidal structure. 

Although knowledge of the features learnt by the CNN would provide structural 

information unbiased by the use of hand-crafted features, the classification accuracy 

was not significantly better than chance for the sample size used here. It would not 

be possible to have confidence in the features learnt, and this analysis was therefore 

not undertaken.  

The importance of the vertical features in the classifier was likely (at least in 

part) artefactual, resulting from pathological disruption to the overlying retina. An 
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area of relative retinal hyper- or hypo-reflectance caused differences in choroidal 

intensity between neighbouring a-scans, producing vertical intensity boundaries. 

Whilst present in all images, the prevalence of these shadow artefacts may be 

expected to increase with advancing disease stage, due to an increase in retinal 

disruption (Figure 5.20). Since it is likely that this artefact contributed to accurate 

classification of disease groups in this analysis, the classification was influenced by 

overlying retinal features, rather than being based solely on choroidal appearance. 

For this reason, the artefactual delta errors were removed prior to association of the 

discriminative filters to choroidal structure. Since this ‘shadow’ artefact is inherent 
to OCT imaging, this filter orientation should be removed from feature extraction of 

sub-retinal structures in future analysis, where possible.  

Both the small and large Gabor filters were discriminative between disease 

groups, with the medium-sized filters providing a smaller contribution to the 

classification (Figure 5.19). For the small filters, the near-horizontally oriented 

filters were most discriminative, which equated to ~6-10 µm vessel diameter. This 

corresponds to the vessels of the choriocapillaris (mean diameter ~7-10 µm; 

Ramrattan et al. 1994; Spraul et al. 1999), suggesting that the choriocapillaris 

becomes increasingly abnormal throughout the AMD disease process. This is 

consistent with histologically identified changes primarily to diameter and density 

of the choriocapillaris in both early- and late-stage AMD, compared to healthy 

control eyes (Sarks 1976; Ramrattan et al. 1994; Spraul et al. 1999; McLeod et al. 

2009). It should be noted that this filter size is nearing the axial resolution limit of 

the OCT device (~6 µm); structures smaller than this would therefore not be 

detectable with this imaging technique.  

For the large filters, there was less difference between the filter orientations, 

although the near-horizontal orientations were generally of less importance to the 

classification. Considering the near-vertical orientations (excluding the 90° 

orientation), these filters correspond to vessel diameters of ~68-102 µm (i.e. the 

vessels of the Haller and Sattler layers). This suggests that changes to the larger 

vessels also occur with advancing disease. This is again consistent with Spraul et al. 

(1999), who reported a lower density of veins in eyes with AMD than healthy 

controls (by nearly 50%). To summarise, these findings support the reported 
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histological changes to the structure of all vessel layers (choriocapillaris and the 

medium/large choroidal vessels), throughout the AMD disease process.  

  There were a number of limitations to this work, which will be outlined and 

discussed here. Firstly, the sample size was relatively small for a study applying 

machine learning techniques. However, the aim of this research was to investigate 

the feasibility of this analysis for automated classification of AMD by disease 

severity, which has been achieved. To confirm these findings, and to fully investigate 

the potential of these techniques for large-scale clinical application, a large dataset 

would be required. The findings are consistent with reported histological changes 

to the choroidal structure in AMD, and suggest that these changes are detectable in 

vivo, using long-wavelength OCT imaging.  

Based on previous studies which have applied machine learning to AMD 

disease classification from OCT images, the sample size required to achieve accurate 

classification would likely be ~1000-1600 images (Koprowski et al. 2013; Lee et al. 

2017). The upper end of this range relates to the application of CNN to a binary 

classification problem (i.e. disease versus non-disease); for accurate classification 

into three groups, an even larger dataset may therefore be required. However, 

considering that these previous studies utilised conventional OCT, optimisation of 

imaging techniques to enhance visualisation of the choroidal features (e.g. long-

wavelength OCT imaging, in conjunction with enhanced depth imaging and swept-

source OCT) may result in a smaller dataset proving sufficient to identify the 

choroidal features which best discriminate between groups.  

The selection of handcrafted features limited the range of feature sizes that 

could be detected and utilised by the classifiers. To minimise the effect of this, Gabor 

filter sizes were selected to reflect an appropriate range of vessel sizes in both the 

axial and lateral orientations (Figure 5.23; see Section 5.1.2). The smallest filter size 

used was equivalent to ~6 µm. The inclusion of smaller filters than this (i.e. higher 

spatial frequency) would exceed the axial resolution limit of the OCT; they would 

therefore not be capable of detecting smaller features in the image, and would 

become sensitive to high-frequency noise. However, the filters used did not 

encompass the largest choroidal vessels (>102 µm), as described by the VVD 

parameter in Section 4.4. Since the largest Gabor filter used was generally the most 

discriminative in the classifier, and the large choroidal vessels were found to be 
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smaller in this nAMD cohort, it would be interesting to explore the potential of larger 

filters (i.e. lower spatial frequency) for including these larger vessels in the 

classification.  

Every b-scan from a volume scan was given the same ground truth 

classification. Each b-scan was then treated individually by the algorithm, and a 

majority voting system used to determine the final classification for each eye. This 

system is based on the assumption that any choroidal changes with advancing 

disease occur uniformly across the central 20°  20° of choroid. Although areas of 

vascular change have been shown to correlate with areas of retinal atrophy in GA 

(McLeod et al. 2002), it is unclear from the literature whether structural changes in 

the choroid in early AMD are diffuse, or localised to the regions of overlying retinal 

features. In nAMD, a decrease in percentage vascular area (similar to CVI) has been 

demonstrated to extend beyond the area of the CNV, by at least 1 mm (McLeod et al. 

2009). In the present study, every b-scan was given equal weighting in the final 

classification, regardless of position in relation to the foveal pit, or the presence or 

absence of overlying retinal features indicative of disease (Figure 5.24). During the 

majority voting of an eye with nAMD, if the choroid had a healthy appearance in a 

high proportion of b-scans (over one third of the total), the eye would have been 

given an incorrect final classification of healthy. This may have limited the 

sensitivity of the classifiers, particularly for the detection of nAMD.  

The ground truth data was based on clinical grading, using an adapted 

version of the AREDS classification system (AREDS 2001a). This system is based 

upon the appearance of retinal features (described in Section 4.2), although how this 

relates to choroidal appearance throughout the disease process is unclear. The 

Figure 5.24 Retinal photograph of an eye with nAMD (A). The visible retinal features on OCT 
are confined to the foveal and parafoveal area (outlined in white). A b-scan through the fovea 
(B) shows visible disruption to the retinal layers, whilst a b-scan of a more peripheral location 
(C) contains no obvious retinal signs of any stage of AMD. Both b-scans are given equal 
weighting in the final disease classification of the eye. 
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correlation between AREDS disease severity and structural change to the choroid is 

not known (despite a gross relationship shown with histology), although the results 

of Section 4.3 suggest that these changes are detectable only at the nAMD stage 

(group 4; advanced). Additionally, the early AMD group included AREDS groups 2 

and 3 (early and intermediate). This was partially for ease of classifier training, but 

also since the original statistical power was calculated assuming three groups. 

Dividing the dataset into four groups would reduce the amount of training data 

available for each group. However, since the early group was less easily 

differentiated from the healthy group, comparing between an early and 

intermediate group may help to pinpoint where in the disease process the observed 

vessel changes occur.  

Furthermore, the disease status of the fellow eye was not considered in this 

analysis. In the early AMD group, the increased risk of progression to nAMD in those 

with a diagnosis of nAMD in the fellow eye may be related to choroidal structure 

(see Section 4.4.2). Given a dataset of sufficient size, inclusion of fellow eye diagnosis 

in the classifier may reveal potential for using machine learning techniques to 

predict the development of late-stage AMD. The present study was cross-sectional, 

and therefore no conclusions can be drawn regarding vessel changes over time. A 

longitudinal study could be conducted to investigate the timeline of vascular 

changes throughout the AMD disease process, as well as the effect of anti-VEGF 

therapy on choroidal structure, to differentiate structural changes relating to 

pathology and intervention.  

To summarise, the novel use of machine learning techniques for automated 

classification of AMD by disease severity, based on choroidal appearance, was 

shown to be feasible. Reasonable classification accuracy was achieved using 

classifiers trained with hand-crafted features. Despite limitations in the size of the 

training dataset, the application of an additional classifier based on self-learnt 

features (CNN) produced promising results. These findings suggest that changes to 

the choroidal vasculature occur throughout the AMD disease process, and that these 

changes are detectable using in vivo long-wavelength OCT imaging.  
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6 Discussion, conclusions, and future work 

6.1 General discussion 

The overall aim of this research was to determine whether structural 

changes to the choroidal vasculature in AMD are detectable using in vivo OCT 

imaging. It was evident from the literature (Chapter 1) that such changes have been 

identified ex vivo, using histological techniques. However, in vivo quantification of 

the choroid using OCT imaging has mostly been limited to choroidal thickness 

measurement, which is highly variable between individuals, and is affected by many 

physiological factors. A literature review revealed a small number of other 

quantification techniques that had been applied to images of other choroidal 

pathologies, such as central serous chorioretinopathy. From this review, three 

supplementary aims were developed: to optimise image acquisition and processing 

protocols to allow enhanced visualisation of the choroidal vasculature; to develop 

and evaluate repeatable parameters for describing and quantifying the vasculature; 

and to explore the feasibility of applying machine learning techniques to automated 

classification of AMD by disease severity, based on choroidal appearance.  

 The studies in this thesis utilised a non-commercial long-wavelength       

(1040 nm) OCT, intended to maximise visualisation of the choroidal vasculature 

compared to the conventional OCT devices available at the outset of this work. 

Image acquisition and processing techniques were optimised for choroidal 

visualisation, including scan parameters, artefact correction, and noise reduction 

(Chapter 2). To ensure that these investigations would be clinically applicable, it was 

decided that the images used in further analysis should be of comparable size to 

those commonly collected on commercial devices. Isometric volume scans were 

used to provide a three-dimensional representation of the vasculature, whilst 

averaged, over-sampled line scans allowed for higher definition of the structural 

boundaries.  

To ensure that images were scaled appropriately, a study investigating the 

effect of lateral scaling on image quantification was performed (Chapter 3). It was 

shown that inappropriate scaling resulted in errors which affected the consistency 

and reliability of image measurements, and therefore axial eye length (AEL)-

dependent lateral scaling should be employed (Terry et al. 2016). For this reason, 
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the AEL of all participants included in this thesis was acquired to allow for accurate 

quantification of the OCT images.  

The feasibility of eight parameters were then evaluated for quantifying the 

choroidal structure, and inter-session repeatability on healthy eyes (n=25) was 

established. All parameters demonstrated reasonable repeatability (CoR < 20% in 

all cases), and were therefore likely sufficient to detect structural differences 

between disease groups. The over-sampled line scans produced more reliable 

measurements, due to improved visibility of the deeper vessels and posterior 

choroidal boundary, particularly in eyes with thicker choroids. The volume scans 

allowed for enface analysis of vessels across the entire macula, at a given depth 

beneath the RPE. To ensure a consistent sampling depth across the scan, a MATLAB-

based program was developed to flatten the scans to the RPE. Furthermore, an 

existing device-independent algorithm for automated choroidal segmentation was 

evaluated (Iowa Reference Algorithms), albeit at a beta stage of development. Its 

performance was not reliable enough to be applied to this work, although it showed 

potential for future work. Manual segmentation of the choroid was therefore used 

throughout this thesis.  

A 3-D analysis approach was also attempted, however, this did not yield 

meaningful results due to the low SNR inherent to choroidal imaging. This should be 

revisited with the advent of long-wavelength SS-OCT, which demonstrates reduced 

signal roll-off, and allows acquisition of higher quality images than the non-

commercial device used in this study.  

A dataset of long-wavelength OCT images was acquired from eyes with early 

AMD (n=25), nAMD (n=25), and healthy controls (n=25). Due to the limitations of 

the established grading scales (associated with imaging modalities and the 

introduction of anti-VEGF therapy), a modified AREDS classification system was 

developed for clinical classification of eyes by disease severity (Chapter 4). A 

significant difference in the nAMD group was identified in four of the eight manual 

choroidal parameters evaluated (subfoveal choroidal thickness, vessel ratio, 

choroidal area, and luminal area). Visible vessel diameter was also found to produce 

a difference which neared statistical significance. Subfoveal choroidal thickness and 

vessel ratio demonstrated the greatest diagnostic potential for nAMD, although the 

sensitivity and specificity were relatively low for a potential clinical test. 
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Nevertheless, in conjunction with other structural and functional measures (e.g. 

retinal layer disruption, visual acuity, etc.), these parameters show potential for 

monitoring of AMD, particularly for those with late-stage disease. No significant 

difference was found between the healthy and early AMD groups, with any of the 

parameters used.  

It should be noted that it was not possible to differentiate pathological 

structural changes from the changes caused by anti-VEGF therapy (Yamazaki et al. 

2012; Koizumi et al. 2015; Ting et al. 2016) in the nAMD group. There was no access 

to participants’ medical records in the present study, and treatment history 
(approximate number of injections) was self-reported. For this reason, no further 

analysis was performed to investigate the relationship between anti-VEGF therapy 

and choroidal structure.  

The sample size used in the analysis in Chapter 4 was based on a power 

calculation, and was selected to detect a predefined minimum difference between 

groups of 8.5 μm. This difference was based on histological data, which may not have 

been a suitable approximation to differences in the parameters evaluated in vivo. 

The mean differences and within-group standard deviations found in this study (e.g. 

~15 μm and ~30 μm respectively for vessel diameter) could be used in future power 

calculations investigating changes to the choroidal vasculature. Since the intra-

group variation was higher than expected, a larger sample size would be required 

to detect a significant difference between disease groups (with the same power and 

significance level), particularly for the parameters with little inter-group difference.  

 Since these manual measurements were time-consuming and likely to be 

limited by inter-observer variability, the use of machine learning techniques for 

automated disease classification was investigated (Chapter 5). This technique had 

not been previously used to investigate pathological changes to choroidal structure 

in different stages of AMD. Since the dataset used was relatively small for a study of 

this nature, the aim was to determine the feasibility of these techniques, rather than 

to develop a classifier with near-perfect classification accuracy. Of the classifiers 

investigated, the random forest (RFS) classifier achieved the highest accuracy, 

particularly in the leave-one-out cross-validation (representing the clinical scenario 

of an eye previously unseen by the classifier). This demonstrated the feasibility of 
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applying machine learning techniques to automated classification of AMD by disease 

severity, based on choroidal appearance.  

 Classification accuracy was highest for the nAMD group, suggesting that 

vascular changes were most pronounced in this group, which was consistent with 

the manual choroidal parameters evaluated in Chapter 4, and both histological and 

in vivo evidence (McLeod et al. 2009; Lu et al. 2016; Wei et al. 2016). However, since 

this disease stage is more easily diagnosed from other pathological signs visible on 

OCT imaging (e.g. CNV development and/or intra- or sub-retinal fluid), 

identification of nAMD based solely on choroidal appearance alone has limited 

clinical applications. Optimisation of machine learning algorithms to include both 

choroidal and retinal features, similarly to that performed by Lee et al. (2017), 

allows for automated detection of nAMD with high accuracy. For this to be effective 

for automated clinical diagnosis of nAMD, training data should include untreated 

(newly diagnosed) eyes with nAMD, to minimise the effects of anti-VEGF therapy on 

the appearance of the structures. This may be of benefit in triaging patients in 

referral refinement schemes, prioritising those individuals requiring therapeutic 

intervention. There may also be potential for monitoring AMD in ‘virtual’ macular 
clinics within the hospital eye service, allowing for clinical follow-up without the 

need for extensive ophthalmological examination. To this end, an ‘active’ versus 
‘inactive’ nAMD classification protocol would be required. These applications could 
provide potential benefits to the health service, including reduction of clinic 

oversubscription and costs. This is particularly pertinent, given the ageing 

population and the predicted increase in AMD prevalence (Owen et al. 2012; Wong 

et al. 2014).  

The RFS classifier was successful at differentiating between the early AMD 

and healthy groups. However, the possibility of the discriminative image features 

being artefactual rather than structural must be considered, particularly the 

influence of shadow artefacts from overlying retinal features. Although these 

contributed in part to the classifier accuracy, other (non-vertical) structural features 

were also discriminative between disease groups, which were more likely of 

choroidal origin. This suggests that structural changes to the choroid may occur 

early in the disease process. These changes were not detected by applying the 
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manual choroidal parameters to the same image dataset, indicating that the machine 

learning techniques were potentially more sensitive to early structural change.  

These findings are consistent with the hypothesis that the choroid is involved 

in the pathogenesis of AMD, although the extent of this involvement (i.e. a cause or 

effect relationship) would be speculative at this time. If these changes occur prior to 

retinal degeneration, identification of this could be significant for early detection of 

AMD (alongside other biomarkers, e.g. from dark adaptation; Owsley et al. 2016), 

prior to onset of symptoms including visual loss, and irreversible retinal damage. 

Furthermore, this could have a potential application in disease monitoring, through 

identification of patients at risk of progressing to the sight-threatening late-stages 

of the disease. However, longitudinal investigation is required to identify those 

participants who develop AMD, or progress to nAMD, and to explore choroidal 

changes associated with this progression.  

It is important to note that the ground truth classification (i.e. the method by 

which images were labelled with a disease group), was based upon clinical 

appearance. This was undertaken using a modified AREDS system (AREDS 2001a), 

and was therefore based on retinal features, with no influence from the structure of 

the choroid. Results obtained from this dataset are therefore dependent on the 

assumption that changes to the choroidal vasculature throughout the disease 

process are congruous with the retinal changes upon which the classification system 

is based. The exact relationship between choroidal and retinal changes throughout 

the AMD process is unclear, although a gross relationship has been demonstrated 

with histology (McLeod et al. 2009; Whitmore et al. 2015). It is possible that there 

are choroidal changes which precede the development of clinically detectable early 

AMD or nAMD, but would be classified as healthy or early AMD respectively using 

this clinical classification. Whilst these features would be considered sub-clinical, 

they may affect the outcome measures of these groups. This limitation is inherent to 

cross-sectional study designs such as this one, which involve dividing data based on 

assumptions. A definitive method of identifying these individuals with sub-clinical 

disease is to conduct a longitudinal study, and to retrospectively subdivide these 

groups by stable versus advancing disease severity. However, this was not feasible 

in the timescale of this project.  
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Furthermore, the ‘early AMD’ group included AREDS severity groups 2 and 3 
(early and intermediate AMD). The three groups used in the present study were 

expected to produce relatively large differences in choroidal appearance between 

groups, as indicated by previous histological and in vivo studies (Spraul et al. 1999; 

Sigler and Randolph 2013; Wei et al. 2016). These coarse groups were chosen to 

explore the feasibility of detecting structural differences in vivo. No significant 

difference was found between the healthy and early AMD groups using manual 

quantification, although the difference between the early and nAMD groups was 

significant. The within-group variability was highest in the early AMD group, 

suggesting a large range of choroidal appearances within this disease stage. Given 

that there is some evidence of a detectable difference in choroidal structure between 

intermediate AMD and nAMD (Esmaeelpour 2014a), this should be explored further 

by subdividing into early and intermediate disease groups. However, this sub-

analysis was not performed in the present study, due to sample size restrictions.  

6.2 Summary and conclusions 

The main aim of this research was to determine whether structural changes to 

the choroidal vasculature in AMD are detectable using in vivo imaging. To achieve 

this, three supplementary aims were developed (outlined in Section 1.7), which 

have been addressed as follows:  

1) To optimise protocols for image acquisition and processing for enhanced 

visualisation of the choroidal vasculature.  

A series of preliminary investigations were carried out to determine the 

optimal protocols for visualising the vasculature. The importance of image over-

sampling, and accurate lateral image scaling were demonstrated. A non-commercial 

long-wavelength (1040 nm) SD-OCT was successfully used to acquire volume scans, 

and over-sampled line scans from the participants included in this thesis, which 

underwent AEL-dependent lateral scaling. Using the acquisition and processing 

protocols developed, the choroidal vasculature could be visualised in all 

participants.  

2) To evaluate parameters describing the choroidal vasculature, including 

assessment of inter-session repeatability.  
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Eight parameters were developed to quantify the choroidal structure, and 

assessed for inter-session repeatability. The over-sampled line scans produced 

more reliable measurements than the volume scans, and hence were used for these 

measurements (with the exception of the enface analysis). All parameters 

demonstrated high inter-session repeatability, and were therefore assessed for 

their ability to distinguish between disease severity groups. Four of these 

parameters identified a statistically significant difference in late-stage disease. The 

choroid was shown to be thinner in eyes with advanced disease, with a reduction in 

luminal area, although it is not possible to differentiate between changes caused by 

the disease and by anti-VEGF therapy. No changes to the choroidal structure were 

identified in early AMD. Although these parameters are easily applied to OCT 

images, their diagnostic ability is limited due to a relatively poor sensitivity and 

specificity for a clinical test. Despite their limitations as standalone biomarkers, they 

may be useful parameters to be used in conjunction with other clinical information, 

to inform clinical follow-up (i.e. monitoring of individuals likely to progress to late-

stage disease).  

3) To explore the feasibility of applying machine learning techniques to 

automated classification of AMD by disease severity, based on choroidal 

appearance.  

Due to the relatively low contrast and SNR of the choroidal images, a texture 

analysis-based machine learning approach was utilised. Although the restricted size 

of this dataset did not allow for the development of highly accurate classifiers, it was 

of sufficient size to confirm that textural changes to the choroidal region with 

advancing disease are detectable in long-wavelength OCT images. The 

discriminative features in the classifier were consistent with previous histological 

findings; this supported the hypothesis that structural changes to the choroidal 

vasculature are detectable in vivo. Although these changes are most pronounced in 

the advanced disease stage, it is not known whether this is due to the pathology or 

pharmacological intervention. The classification results indicate that changes are 

present in early disease stage, supporting the theory that the choroid is involved in 

the pathogenesis of AMD. Although very large datasets are required to enable highly 

accurate classifiers to be trained, machine learning shows great potential for 
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automated screening and computer-aided diagnosis of AMD from OCT images 

(Apostolopoulos et al. 2016; Lee et al. 2017).  

To conclude, these results show that structural changes to the choroidal 

vasculature in AMD are detectable in vivo with OCT imaging, using both manual and 

automated analysis techniques. Although these changes are prominent in late-stage 

disease, subtle structural changes in early AMD can be identified with texture 

analysis. This furthers our understanding of changes to the choroidal structure 

throughout the disease progression.  

6.3 Future work  

 Following on from the work in this thesis, future research should be directed 

towards optimising machine learning algorithms for automated detection and 

classification of AMD by disease severity. This would be extended from solely the 

choroidal region (as in this thesis) to include pathological retinal signs visible on 

OCT images (e.g. disruption to the intra-retinal layers and RPE), allowing for highly 

accurate prediction of disease stage. Such a study would require a large dataset of 

clinically labelled OCT images (n≈1500 eyes; Koprowski et al. 2013; Lee et al. 2017) 

of various disease stages (healthy, early, intermediate, and advanced AMD) in order 

to train convolutional neural networks capable of generalisation to the population. 

The learned features could then be explored to further our understanding of 

choroidal involvement in the pathogenesis of AMD.  

To maximise the clinical applicability of the classifiers, images from a 

commercial OCT device should be used for training (and testing). These devices are 

commonplace in primary and secondary care, facilitating data collection and 

subsequent integration of algorithms into these clinical settings. However, 

conventional-wavelength OCT devices do not provide sufficient visualisation of the 

choroidal vasculature to obtain reliable results. Long-wavelength swept-source OCT 

devices are now commercially available (Topcon DRI OCT Triton, and Zeiss PLEX 

Elite 9000), which are optimised for visualising the choroid. Images from these 

devices would produce the clearest view of the choroidal vasculature but, to the 

author's knowledge, no large AMD datasets have yet been acquired with these 
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devices. The potential of OCT imaging for automated screening and computer-aided 

diagnosis of AMD should be investigated using these devices.  

 The effects of nAMD and anti-VEGF therapy on choroidal structure were 

confounded in the research, since the majority of the nAMD group were undergoing 

(or had previously undergone) this treatment. To differentiate the treatment effects 

from those of the underlying pathology, it would be necessary to obtain long-

wavelength OCT images from treatment-naïve eyes. The simplest and most ethically 

acceptable method of achieving this would be to acquire images at the time of 

diagnosis, i.e. prior to the initial intravitreal injection. If choroidal changes are part 

of the natural history of AMD, one would expect to observe these changes in 

choroidal structure at this point in time (prior to pharmacological intervention). To 

further explore the effects of treatment, subsequent OCT images could be obtained 

from the same cohort in a longitudinal study. For example, given that AMD 

progresses slowly, if significant changes to the choroidal vasculature were observed 

one month post-treatment follow-up, the most likely explanation would be that 

these observed effects are related to the treatment rather than the disease. 

Additional longitudinal data may be used to determine the characteristics of the 

dose-response relationship.    

  With the increasing need for large datasets, particularly for studies applying 

machine learning techniques (Krizhevsky et al. 2012), multi-centre studies will 

likely be used to meet this demand. Due to the imaging equipment available at each 

centre, these studies often include images from a number of different OCT devices. 

Due to the size of these datasets, device-independent algorithms for automated 

segmentation of the choroidal boundaries (such as the Iowa Reference Algorithms) 

should be optimised and validated on each device, to minimise analysis time and 

inter-observer variability associated with manual segmentation. 

 Finally, the time-course of structural changes to the choroid in the AMD 

disease process could be investigated. If these changes occur prior to severe retinal 

degeneration, and are detectable with in vivo imaging, this may provide novel 

biomarkers for identifying individuals at risk of progressing to nAMD, which could 

help inform clinical follow-up regimes. A large longitudinal study utilising long-

wavelength SS-OCT imaging, with retrospective subgroup analysis of stable versus 

progressing disease, would strengthen our understanding of the underlying 
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pathophysiology of AMD. This may identify vascular features which predispose an 

individual to retinal degeneration, allowing early detection of disease prior to 

irreversible visual loss.  
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A – Specifications of a subset of commercially available OCT devices 

*Information from product manuals.  
#The Topcon 3D-OCT 1000 (as described in this thesis) is no longer manufactured.  

Device* Heidelberg Spectralis Zeiss Cirrus HD-OCT 5000 Topcon 3D-OCT 2000# Topcon DRI-OCT Triton

Centre wavelength 870 nm 840 nm 840 nm 1050 nm

Imaging type Spectral-domain Spectral-domain Spectral-domain Swept-source

Scanning speed 40,000 a-scans/sec 27,000-68,000 a-scans/sec 27,000-50,000 a-

scans/sec

100,000 a-scans/sec

Axial resolution 3.5 µm (digital)

7 µm (optical)

5 µm 5-6 µm 2.6 µm (digital)

8 µm (optical)

Transverse 

resolution

14 µm 15 µm 20 µm 20 µm

Minimum pupil 

diameter

unstated 2 mm 2.5 mm 2.5 mm
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B – MATLAB code to flatten OCT images to the RPE 
%---------------------------------------------------------------------
%NAME
%  main.m
%PURPOSE
%  Main program
%ACRONYM
%  MAIN
%DESCRIPTION
%  This program flattens choroidal OCT images by displacing columns of 
%  pixels vertically. The input images are stacked TIFF files, with 8 
%  bit greyscale (0 is black, 255 is white).
%AUTHORS
%  Louise Terry
%  Tom Bower
%---------------------------------------------------------------------
%=====================================================================
%               INITIALISE
%=====================================================================
%              Clear MATLAB workspace and variables
clear; clc;
%              Get filename from user with "open" windows dialog
[ifile path fi] = uigetfile('*.tif','Select the MATLAB code file');
%              Concatenate strings for path and filename into ifile
ifile=strcat(path,ifile);
%              Add suffixes to generate temp and output filename 
strings
ofile=strcat(ifile(1:end-4),'-temp.tif');
ofile2=strcat(ifile(1:end-4),'-flat.tif');
%              Print the input and output files to the command windows
disp(ifile);
disp(ofile2);
%              Open TIFF file for reading
tin = Tiff(ifile);
%              Store TIFF information (dimensions, compression...)
info = imfinfo(ifile);

%=====================================================================
%               GET USER INPUT DATA
%=====================================================================
%               Maximum possible number of slices assumed (nmax)
nmax = 1024;
%              First assume zero slices
nslice = 0;
last = 0;
%              Loop until last slice, or maximum slices
while (nslice <= nmax) && (last~=1)
%              Increment slice counter
  nslice=nslice+1;
%              Set the current slice to the new counted slice
  setDirectory(tin,nslice);
%              Binary query for last slice, last=0 unless current 
%              slice is the final slice, loop exits when last==1
  last=lastDirectory(tin);
end
%              Print the total number of slices to the command window
disp(['Number of slices: ' num2str(nslice)]);
%              Get image dimensions
width=int64(tin.getTag('ImageWidth'));
height=int64(tin.getTag('ImageLength'));
%               Print image dimensions to command window
disp(['Image width: ' num2str(width)]);
disp(['Image height: ' num2str(height)]);
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%               Call slicenos function, this asks the user which 
%               slices to sample
[slices nsample] = slicenos(nslice);

%=====================================================================
%               PROCESS INPUT DATA AND APPLY TRANSFORMATIONS
%=====================================================================
%               Call sampleddisps function, asks the user for clicks 
%               on each sampling image, then interpolates the parabola 
%               using fourth order regression
sampled = sampleddisps(tin,slices,nslice,nsample,width,height);

%               Print current stage to command window
disp('Interpolating columns with polyfit');
%               Call alldisp funcion, this interpolates each parabola 
%               between slices and outputs the displacement matrix for
%               the entire stacked image
alldisps = alldisp(width,nslice,slices,nsample,sampled);

%               Start timer
tic;
%               Print current stage to command window
disp('Applying interpolated displacements');
%               Call applydisps function, this takes the displacement
%               matrix and transforms the image, the output is a three
%               dimensional matrix containing the 0-255 greyscale 
%               values for each pixel in the TIFF stack
newimg=applydisps(alldisps,width,height,nslice,tin);

%=====================================================================
%               SAVE NEW IMAGE
%=====================================================================
%               Print current stage to command window
disp('Saving image');
%               Create new image and store in t
t = Tiff(ofile,'w');
%               Set properties for new image
t.setTag('ImageLength',size(newimg,1));
t.setTag('ImageWidth',size(newimg,2));
t.setTag('Photometric',Tiff.Photometric.MinIsBlack);
t.setTag('BitsPerSample',8);
t.setTag('PlanarConfiguration', Tiff.PlanarConfiguration.Chunky);
t.setTag('Software', 'MATLAB');
%               Save the 3-D matrix in the new TIFF file
saveimg(newimg,nslice,tin,ofile);
%               Duplicate the written file (workaround for TIFF save
%               failure)
copyfile(ofile,ofile2,'f');
%               Close the file
close(t);
%               Delete the temporary file
delete(ofile);
%               Print completion notification to the command window
disp('--------------------------------------------');
disp('Program complete');
%               Stop timer, this command also outputs the elapsed time 
to
%               the command window
toc;



261 

%---------------------------------------------------------------------
%NAME
%  slicenos.m
%PURPOSE
%  Gets the sample slice numbers from the user
%ACRONYM
%  SLICE_NumberS
%DESCRIPTION
%  The user is first asked to enter the number of slices to be 
%  sampled,this function then asks the user to type each slice number. 
%  The total number of slices has already been displayed and an error 
%  shows when the user input is out of range. 
%AUTHORS
%  Louise Terry
%  Tom Bower
%---------------------------------------------------------------------

function [slices nsample]=slicenos(nslice)
%               Ask user for input of slice numbers
nsample=input('Enter the number of slices to be sampled: ');
%               Initialise counter
i = 1;
%               Loop over entered number of samples
while i<=nsample
%               Output message to user
  disp(['Enter slice number ',num2str(i)]);
%               Request user input in command window
  slices(i)=input('-> ');
%               If out of range, re-enter

if(slices(i)>nslice || slices(i)<=0)
    disp(['Please enter value between 1 and ',num2str(nslice)]);
    i=i-1;

end
  i=i+1;
end
end 
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%---------------------------------------------------------------------
%NAME
%  applydisps.m
%PURPOSE
%  Applies the displacements to each slice and stores in a 3-D matrix
%ACRONYM
%  APPLY_DISPlacementS
%DESCRIPTION
%  This function takes the transformation matrix (alldisps) and 
%  applies it to the original image (tin) to create the new image  
%  matrix (newimg). The   image is also cropped to remove black  
%  regions generated by the transformation. 
%AUTHORS
%  Louise Terry
%  Tom Bower
%---------------------------------------------------------------------

function newimg=applydisps(alldisps,width,height,nslice,tin)
%               largest displacement below original
lgblw = min(alldisps(:));
%               largest displacement above original
lgabv = max(alldisps(:));
%               Set the size of image depending on smallest and  
%               largest displacement
newheight = height + lgabv - lgblw;
%               loop over slices
for islice=1:nslice
  disp(['processing slice ' num2str(islice) ' of ' num2str(nslice)]);
%               Get the displacements for the current slice
  d=alldisps(islice,:);
%               Set next slice
  setDirectory(tin,islice);
%               Get the image matrix from the current slice
  img=tin.read;
%               Apply displacements to current slice
  newslice=imgproc(img,d,width,height,newheight,lgabv);
%               Store current slice in 3-D matrix which will form the 
%               new image
  newimg(:,:,islice)=newslice;
end
end
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%---------------------------------------------------------------------
%NAME
%  imgproc.m
%PURPOSE
%  Applies displacements to a single slice
%ACRONYM
%  IMaGe_PROCess
%DESCRIPTION
%  This function takes the displacements for a single slice (d) and 
%  applies them to a single slice. lim1 and lim2 are the new limits 
%  for the top and bottom of each column, the original column is moved 
%  to between these limits.
%AUTHORS
%  Louise Terry
%  Tom Bower
%---------------------------------------------------------------------

function newimg=imgproc(im8,d,width,height,newheight,lgabv);
%               Set size of new matrix
newimg=zeros(newheight,width);
%               Apply the vertical displacement
%               Loop over each column, then apply the displacement to  
%               the entire height
for iw=1:width
%               Set lower limit
  lim1 = lgabv-d(iw)+1;
%               Upper limit is the lower limit plus the image height
  lim2 = lim1+height-1;
%               Place the column from the original slice (im8) and 
%               place between the limits in the new image
  newimg(lim1:lim2,iw)=im8(1:height,iw);
end
%               Scale colour values for greyscale
newimg=newimg-min(min(newimg,[],1));
newimg=newimg/max(max(newimg,[],1));
end 
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%---------------------------------------------------------------------
%NAME
%  sampleddisps.m
%PURPOSE
%  Gets displacements for each sampled slice
%ACRONYM
%  SAMPLED_DISPlacementS
%DESCRIPTION
%  This function loops over each sample slice and uses the 'disp' 
%  function to interpolate within each slice.
%AUTHORS
%  Louise Terry
%  Tom Bower
%---------------------------------------------------------------------
function sampled = 
sampleddisps(tin,slices,nslice,nsample,width,height)
%               Initialise displacements (ds) to zero
ds(1:nsample,1:width)=0;
%               Loop over each sample image
for isample=1:nsample
%               Store the slice number
  slice=slices(isample);
%               Set the next slice
  setDirectory(tin,slice);
%               Get the current slice
  im=tin.read;
%               Call disps fucntion to get displacements for current  
%               slice
  d=disps(im,width,height);
%               Store in displacement matrix ds
  sampled(isample,1:width)=d(1:width);
end 
end 
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%---------------------------------------------------------------------
%NAME
%  disps.m
%PURPOSE
%  Gets displacements for one sampled slice
%ACRONYM
%  DISPlacementS
%DESCRIPTION
%  This takes user clicks for a given slice, and interpolates a 
%  polynomial using a fourth order regression
%AUTHORS
%  Louise Terry
%  Tom Bower
%---------------------------------------------------------------------
function d=disps(img,width,height)
%               Initialise displacement vector
d=zeros(width,1);
%               Get mouse clicks
[x,y]=clicks(img);
%               Get number of clicks
nclicks=size(x,1);
%               Order of curve fitting algorithm
order=4;
%               Curve fitting between points
p=polyfit(x,y,order);
%               Set up x linear spaced array for each column
x1=linspace(1,single(width),single(width));
%               Convert the polynomial into an array of ordinates
f1=polyval(p,x1);
%               Use the midpoint as a datum for all displacements
y0=height/int64(2);
%               Convert to vertical displacement
d=int64(f1)-y0;
end 
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%---------------------------------------------------------------------
%NAME
%  clicks.m
%PURPOSE
%  Gets x-y coordinates of user clicks for one slice
%ACRONYM
%  CLICKS
%DESCRIPTION
%  This function displays a slice, then records user clicks on the  
%  image.
%AUTHORS
%  Louise Terry
%  Tom Bower
%---------------------------------------------------------------------
function [x,y]=clicks(img)
%               Display original image
imageHandle=imshow(img);
%               Get mouse clicks from user until Return key pressed
[x,y]=ginput;
%               Close the image
close;
end 
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%---------------------------------------------------------------------
%NAME
%  alldisp.m
%PURPOSE
%  Interpolates the displacements between sampling slices
%ACRONYM
%  ALL_DISPlacementS
%DESCRIPTION
%  This function interpolates the displacements between each sampled 
%  slice for every column in turn. A second order polynomial 
%  regression is used here.
%AUTHORS
%  Louise Terry
%  Tom Bower
%---------------------------------------------------------------------
function alldisps=alldisp(width,nslice,slices,nsample,sampled)
%               loop over each column 1-> 512
for icol=1:width
%               Convert to single precision (required for polyfit)
%               X values
    x=single(slices');
%               Displacements for column
    y=single(sampled(:,icol));
%               Order of polynomial interpolation algorithm
    order=2;
%               Interpolate displacements between slices
    p=polyfit(x,y,order);
%               Set up x array for displacement curve
    x1=linspace(1,single(nslice),single(nslice));
%               Get displacement for each x1 value
    f1=polyval(p,x1);
%               Store displacements in alldisps
    alldisps(:,icol)=int64(f1);
end
end 
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%---------------------------------------------------------------------
%NAME
%  saveimg.m
%PURPOSE
%  Saves the final processed image to a file
%ACRONYM
%  SAVE_IMaGe
%DESCRIPTION
%  The input for this function is a three dimensional matrix 
%  containing the greyscale pixel values (newimg). This function 
%  writes the image to a stacked TIFF file. The first slice is saved 
%  as a new image, hence use of the 'Overwrite' tag; all slices 
%  thereafter simply 'Append' to the image to generate the new stack.
%AUTHORS
%  Louise Terry
%  Tom Bower
%---------------------------------------------------------------------

function saveimg(newimg,nslice,tin,ofile)
%               Loop over each slice
for islice = 1:nslice
%               Provide some output to the user
  disp(['saving slice ' num2str(islice) ' of ' num2str(nslice)]); 
%               Set the active slice to 'islice'
  setDirectory(tin,islice);
%               Store 2D slice into 'newslice'
  newslice(:,:) = newimg(:,:,islice);

if islice==1
%               For the first slice only, allow overwriting of 
%               previously flattened file
    imwrite(newslice,ofile,'tif','WriteMode','Overwrite', 
'compression','none');

else
%               For subsequent slices, add each slice to the stack
    imwrite(newslice,ofile,'tif','WriteMode','Append', 
'compression','none');

end
end
end
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C – Image quality grading instructions 

Task 

You will be presented with 135 macular OCT en-face images of the choroid of several 

individuals. These images will be of the central 3° of choroid, centred on the fovea. 

Please assess each image on the two grading criteria explained below. Try to assess 

each image as a whole, rather than concentrating on individual vessels.  

We will start with 5 test images; these are to allow you to familiarise yourself with 

the images, and your grades for these will not be used. These test images are a cover 

a range of good and poor quality images.  

After every 10 images, you will be presented with a blank frame. This allows you 

time for a short break, and to check that you are in the correct place on your record 

sheet.  

Grading Criteria 

1. Overall contrast of the image 

This is the difference in luminance between the vessels (dark) and the surrounding 

tissue (light). A bigger difference in luminance scores a good grade, whereas a small 

difference in luminance scores a poor grade (see below for grading scale).   

The example above shows poor contrast (left) and excellent contrast (right).  
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2. Overall edge definition of the vessels 

This is how distinct the edges of the vessels appear in the image. A sharp, distinct 

edge scores a good grade, whereas a blurred, indistinct edge scores a poor grade.  

The diagram above shows luminance profiles for 2 different edges. Edge (a) has a 

more gradual change in luminance than Edge (b). They both undergo the same 

change in luminance, therefore have the same contrast, but Edge (b) is more clearly 

defined than Edge (a).  

The example above shows poorly-defined edges (left) and well-defined edges 

(right).  
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Grading Scale 

Each of the criteria listed above will be graded on a scale of 1 to 5, as follows:  

1. Poor 
2. Restricted 
3. Sufficient 
4. Good 
5. Excellent 

Please record a grade (1-5) for the each of the three criteria, for each image 

presented, on the grading sheet provided.  
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D – Participant information sheet and consent form 

Participant Information Sheet

An In vivo investigation of choroidal vasculature 

in Age-related Macular Degeneration (Study A)

We would like to invite you to take part in our research study. Before you decide, we 

would like you to understand why the research is being done and what it would 

involve for you. Please take the time to read this information sheet, feel free to talk 

to others about the study if you wish. Prior to beginning the study we will go through 

the information sheet with you and answer any questions you may have. Ask us if 

there is anything that is not clear.

It is up to you to decide to join the study. If you agree to take part, we will then ask 

you to sign a consent form. You are free to withdraw at any time, without giving a 

reason. This would not affect the usual care that you receive. 

The following information sheet has two parts as follows: 

Part 1 tells you the purpose of this study and what will happen if you take part. 

Part 2 gives you more detailed information about the conduct of the study. 
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PART 1 

What is this study about? 

Age-related Macular Degeneration (AMD) is a common eye condition that mostly 

affects those aged 55 and over. AMD affects the retina at the back of the eye 

responsible for detailed vision which can affect the ability to carry out activities such 

as reading, driving and recognising familiar faces.  

Many affected individuals only develop early AMD with only some ageing changes 

visible at the back of the eye and often do not experience any change to their vision. 

However these individuals, particularly with increasing age, are at greater risk of 

developing more advanced types of AMD. In some individuals new blood vessels can 

grow beneath the retina, this is known as “Wet” or neovascular AMD, which can 
cause a loss of vision but may be treated if detected quickly. In other individuals both 

the blood vessels and overlying retina may slowly degenerate leading to a gradual 

loss of vision, often over many years.  

We are carrying out research to improve our understanding of AMD and in 

particular how changes to the blood vessels beneath the retina contribute to the 

disease. We aim to use the results of this research to help us develop tests that can 

identify and monitor those at most risk of advanced AMD. To do this we are looking 

for people with (both early and advanced) AMD and without AMD to help us with 

this research. 

How will we find these things out? 

This study will also use a new clinical technique to take a detailed three-dimensional 

photograph of the back of the eye. These images will allow us to see and measure 

the individual layers of cells which make up the retina and the blood vessels 

beneath. We would like to see people with and without AMD to allow comparison. 

What will happen to me if I take part? 

If you decide to volunteer for this study, we will ask you to give up approximately 1 

hour and a half of your time. The study will take place in the School of Optometry 

and Vision Sciences on Maindy Road.  
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Firstly we will collect some background information about your eyes and give you 

an opportunity to ask any questions about the research. We will then assess 

different aspects of your vision and examine the front and back of your eyes, using 

tests and techniques found in everyday optometric practice. We will also perform a 

quick blood pressure check, and check the pressure in your eyes using a small puff 

of air (you may remember this from visits to the optician). We will then put some 

drops into your eyes (Tropicamide*) to enlarge the pupils before taking the 3-D 

photographs of the back of your eyes. If you are interested we will be happy to show 

the completed image(s) to you.  

You will be asked not to drink tea or coffee on the day of the visit, prior to the session. 

This is to minimise the potential effect that caffeine has on the circulation of the eye.   

*If you have a known allergy to Tropicamide or other dilating drops, please inform 

one of the investigators and you should not particpate in the study.  

Are there any risks involved? 

This study is very safe, however the drops that enlarge the pupil may make your 

vision temporarily a little blurred and more sensitive to bright lights, these effects 

can last for about 6 hours. During this time we advise you not to drive or to operate 

any dangerous machinery. You may find that the drops sting slightly when they go 

in, this is normal and the stinging wears off quickly. The drops have been known to, 

on the very rare occasion, cause closed-angle glaucoma, resulting in red and sore 

eyes a few hours after putting in the eye drops. In the extremely unlikely event that 

this should occur you should contact any of us on the numbers shown below (we are 

all registered optometrists). If however we are unavailable then you should attend 

eye casualty for assessment.  

If you are taking part in any other research projects, please inform one of the 

investigators and you should not participate in this study.  

Is this the same as having an ‘eye test’ with my own optometrist or optician?

No. This does not replace any examination by your regular optometrist (optician). 

Everybody should have regular check-ups with their optician at least every two 

years.   
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What are the possible disadvantages of taking part? 

If the researchers discover anything that indicates you should see another eye 

specialist or your GP, they will explain why and write to your GP with your 

permission, but remember this is not a complete eye examination and does not 

replace regular appointments with your ophthalmologist and optometrist. 

What are the possible benefits of taking part? 

There are no intended benefits.  

Do I have to take part? 

No – it is up to you whether you decide to take part or not. Participation in this study 

is purely voluntary and you will receive £20 towards your expenses. If you do decide 

to take part, you will be given this information sheet to keep and be asked to sign a 

consent form. You can withdraw at any time without giving a reason. Please note 

that if you do not wish to take part in the study it will not affect your current or 

future care. 

What if there is a problem? 

If you do have a concern about any aspect of this study, you should ask to speak to 

the researchers (contact details below) who will do their best to answer your 

questions. If you remain unhappy and wish to complain formally, you can do this 

through the Cardiff University Complaints Procedure – details can be obtained from 

the researchers. 

What if I have any questions? 

Please ask. We are very happy to discuss any aspect of the study.

Miss Louise Terry E-mail: TerryL1@cardiff.ac.uk              Tel: (029) 20870247 

Dr Ashley Wood E-mail: WoodA2@cardiff.ac.uk            Tel: (029) 20875063 

Prof Rachel North E-mail: North@cardiff.ac.uk              Tel: (029) 20875114 

Dr Tom Margrain E-mail: MargrainTH@cardiff.ac.uk             Tel: (029) 20876118 
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School of Optometry & Vision Sciences 

College of Biomedical and Life Sciences 

Cardiff University 

Maindy Road 

Cardiff 

CF24 4HQ 

PART 2 

What will happen if I don’t want to carry on with the study?

The study will usually require only a single visit to the School of Optometry and 

you are free to withdraw at any time without giving a reason; however we will 

retain non identifiable data collected up to your withdrawal. Please note that if you 

do not wish to take part in the study it will not affect your current or future care.

What if there is a problem? 

In the unlikely event that harm should occur as a result of negligence, cover is 

provided by the Cardiff University insurance policy. 

Will my taking part in this study be kept confidential? 

All information collected during the study will be processed and stored securely by 

the researchers using password-protected systems. Your personal information will 

be coded and only the researchers will be able to identify you during the study. 

When the study is over, the data may be retained for use in future studies, but will 

be anonymous from this point. All procedures are compliant with the Data 

Protection Act 1998.  
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What will happen to the results of the research study? 

The study results will be analysed and presented at national and international 

meetings, as well as comprising part of a PhD thesis. A copy of the thesis will 

eventually be held in Cardiff University’s Bute Library. Identities of participating 

volunteers will not be revealed in any resulting published material. If you wish to be 

provided with a summary of the research findings at the end of the study please tick 

the appropriate box on the consent form.   

Who is organising and funding the research? 

This study is funded by Cardiff University. 

Who has reviewed the study? 

This study was reviewed and approved by the South East Wales Research Ethics 

Committee.  
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School of Optometry & Vision Sciences 
College of Biomedical and Life Sciences 
Cardiff University 
Maindy Road 
Cardiff 
CF24 4HQ 

Study Number: 

Patient Identification Number for this trial: 

CONSENT FORM

Title of Project: An In vivo investigation of choroidal vasculature in Age-related Macular 

Degeneration (Study A)

Name of Researcher: Miss Louise Terry

Please initial all 

boxes  

1. I confirm that I have read and understand the information sheet dated Jun2015 
(version A5) for the above study.  I have had the opportunity to consider the 
information, ask questions and have had these answered satisfactorily. 

2. I understand that my participation is voluntary and that I am free to withdraw at any 

time without giving any reason, without my medical care or legal rights being 

affected. 

3. I understand that relevant sections of my medical notes and data collected during the 

study, may be looked at by individuals from Cardiff University, from regulatory 

authorities or from the NHS Trust, where it is relevant to my taking part in this 

research.  I give permission for these individuals to have access to my records. 

4. I agree to my GP being informed of my participation in the study.    

5. I agree to take part in the above study.

6. I would like to receive a summary of the research findings at the end of the study. 

Name of participant   Date    Signature 

Name of person taking consent  Date    Signature  
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E – MATLAB code to establish inter-observer agreement of manual 

choroidal segmentation 
%---------------------------------------------------------------------
%NAME
%  imageoverlap.m
%PURPOSE
%  Establishes percentage overlap between two labelled regions of  
%  interest
%DESCRIPTION
%  This function loads two sets of labelled regions of interest and  
%  calculates the area of overlap as a percentage of the total area  
%  contained within the two regions. The regions are also displayed  
%  graphically.  
%  Inputs 'labs1'and 'labs2' are the names of files containing the  
%  choroidal labels. 'islice' is an integer which selects the slice  
%  number within the volume to use.
%AUTHOR
%  Dafydd Ravenscroft
%---------------------------------------------------------------------

function imageoverlap(labs1, labs2, islice)
%               Load two sets of labels defining the region of  
%               interest
labels1=load(labs1);
labels2=load(labs2); 
%               Select the slice number in the volume  
slice1=islice; 
slice2=slice1; 
%               Ensure all values are of the same type 
for i=1:length(labels1.labelAll)
    labels1.labelAll{i,1}=uint16(labels1.labelAll{i,1});
end
for i=1:length(labels2.labelAll)
    labels2.labelAll{i,1}=uint16(labels2.labelAll{i,1});
end
%               Create a mask from the labels
x1=labels1.labelAll{cell2mat(labels1.labelAll(:,1))==slice1,3}(:,1);
y1=labels1.labelAll{cell2mat(labels1.labelAll(:,1))==slice1,3}(:,2);
x2=labels2.labelAll{cell2mat(labels2.labelAll(:,1))==slice2,3}(:,1);
y2=labels2.labelAll{cell2mat(labels2.labelAll(:,1))==slice2,3}(:,2);
%               Convert cell array to ordinary array
x1=cell2mat(x1);
y1=cell2mat(y1);
x2=cell2mat(x2);
y2=cell2mat(y2);
%               
x1(length(x1)+1)=x1(1);
y1(length(y1)+1)=y1(1);
x2(length(x2)+1)=x2(1);
y2(length(y2)+1)=y2(1);
%               Plot both regions of interest
plot(x1,y1);
hold on;
plot(x2,y2);
%               Convert region of interest polygon to region mask
Image1=poly2mask(x1,y1,1024,512);
Image2=poly2mask(x2,y2,1024,512);
%               Create overlap of the two regions
overlapImage = Image1 & Image2; 
%               Count number of common pixels 
numOverlapPixels = nnz(overlapImage);
%               Count number of pixels in each region
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numPixels1=nnz(Image1);
numPixels2=nnz(Image2);
%               Calculate percentage overlap of the two regions
ImgOverlap=100*numOverlapPixels/numPixels1+numPixels2-
numOverlapPixels);
%               Display percentage image overlap
fprintf('Image overlap is %.1f%% \n',ImgOverlap);
end
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F – Supplementary machine learning results 

10-fold cross-validation 

Table 1 Confusion matrix for 10-fold cross-validation of K-nearest neighbour (KNN).  
KNN (%) Clinical classification

Healthy Early AMD nAMD

Al
go

rit
hm

ic
 

pr
ed

ic
tio

n Healthy 97.3 3.4 3.1

Early AMD 0.9 94.6 4.0

nAMD 1.8 1.9 92.9

Table 2 Confusion matrix for 10-fold cross-validation of random forest (RFS). 
RFS (%) Clinical classification

Healthy Early AMD nAMD

Al
go

rit
hm

ic
 

pr
ed

ic
tio

n Healthy 90.9 5.6 4.5

Early AMD 3.7 85.1 3.8

nAMD 5.4 9.2 91.7

Table 3 Confusion matrix for 10-fold cross-validation of support vector machine (SVM). 
SVM (%) Clinical classification

Healthy Early AMD nAMD

Al
go

rit
hm

ic
 

pr
ed

ic
tio

n Healthy 98.6 0.8 0.5

Early AMD 0.6 97.9 1.1

nAMD 0.8 1.3 98.4
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2-fold cross-validation 

Table 4 Confusion matrix for 2-fold cross-validation of K-nearest neighbour (KNN).  
KNN (%) Clinical classification

Healthy Early AMD nAMD

Al
go

rit
hm

ic
 

pr
ed

ic
tio

n Healthy 96.7 3.9 3.8

Early AMD 1.2 93.8 4.8

nAMD 2.1 2.4 91.4

Table 5 Confusion matrix for 2-fold cross-validation of random forest (RFS).  
RFS (%) Clinical classification

Healthy Early AMD nAMD

Al
go

rit
hm

ic
 

pr
ed

ic
tio

n Healthy 88.3 7.0 5.0

Early AMD 5.4 81.7 4.9

nAMD 6.3 11.3 90.2

Table 6 Confusion matrix for 2-fold cross-validation of support vector machine (SVM).  
SVM (%) Clinical classification

Healthy Early AMD nAMD

Al
go

rit
hm

ic
 

pr
ed

ic
tio

n Healthy 97.7 1.2 0.7

Early AMD 1.1 96.7 1.7

nAMD 1.2 2.1 97.6

Table 7 Confusion matrix for 2-fold cross-validation per b-scan of convolutional neural 
network (CNN).  

CNN (%) Clinical classification

Healthy Early AMD nAMD

Al
go

rit
hm

ic
 

pr
ed

ic
tio

n Healthy 100.0 0.0 0.1

Early AMD 0.0 99.6 0.5

nAMD 0.0 0.3 99.3
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Leave-one-out cross-validation (LOOCV) 

Table 8 Confusion matrix for LOOCV of K-nearest neighbour (KNN).  
KNN (%) Clinical classification

Healthy Early AMD nAMD
Al

go
rit

hm
ic

 

pr
ed

ic
tio

n Healthy 40 32 24

Early AMD 32 48 28

nAMD 28 20 48

Table 9 Confusion matrix for LOOCV of random forest (RFS). 
RFS (%) Clinical classification

Healthy Early AMD nAMD

Al
go

rit
hm

ic
 

pr
ed

ic
tio

n Healthy 56 24 0

Early AMD 28 44 20

nAMD 16 32 80

Table 10 Confusion matrix for LOOCV of support vector machine (SVM). 
SVM (%) Clinical classification

Healthy Early AMD nAMD

Al
go

rit
hm

ic
 

pr
ed

ic
tio

n Healthy 40 16 8

Early AMD 36 60 20

nAMD 24 24 72

Table 11 Confusion matrix for LOOCV of convolutional neural network (CNN). 
CNN (%) Clinical classification

Healthy Early AMD nAMD

Al
go

rit
hm

ic
 

pr
ed

ic
tio

n Healthy 25.0 37.5 33.3

Early AMD 41.7 25.0 33.3

nAMD 33.3 37.5 33.3
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Abstract
Retinal and intra-retinal layer thicknesses are routinely generated from optical coherence

tomography (OCT) images, but on-board software capabilities and image scaling assump-

tions are not consistent across devices. This study evaluates the device-independent

Iowa Reference Algorithms (Iowa Institute for Biomedical Imaging) for automated intra-reti-

nal layer segmentation and image scaling for three OCT systems. Healthy participants

(n = 25) underwent macular volume scans using a Cirrus HD-OCT (Zeiss), 3D-OCT 1000

(Topcon), and a non-commercial long-wavelength (1040nm) OCT on two occasions.

Mean thickness of 10 intra-retinal layers was measured in three ETDRS subfields (fovea,

inner ring and outer ring) using the Iowa Reference Algorithms. Where available, total reti-

nal thicknesses were measured using on-board software. Measured axial eye length

(AEL)-dependent scaling was used throughout, with a comparison made to the system-

specific fixed-AEL scaling. Inter-session repeatability and agreement between OCT sys-

tems and segmentation methods was assessed. Inter-session coefficient of repeatability

(CoR) for the foveal subfield total retinal thickness was 3.43μm, 4.76μm, and 5.98μm for

the Zeiss, Topcon, and long-wavelength images respectively. For the commercial soft-

ware, CoR was 4.63μm (Zeiss) and 7.63μm (Topcon). The Iowa Reference Algorithms

demonstrated higher repeatability than the on-board software and, in addition, reliably

segmented all 10 intra-retinal layers. With fixed-AEL scaling, the algorithm produced sig-

nificantly different thickness values for the three OCT devices (P<0.05), with these dis-

crepancies generally characterized by an overall offset (bias) and correlations with axial

eye length for the foveal subfield and outer ring (P<0.05). This correlation was reduced to

an insignificant level in all cases when AEL-dependent scaling was used. Overall, the

Iowa Reference Algorithms are viable for clinical and research use in healthy eyes imaged

PLOSONE | DOI:10.1371/journal.pone.0162001 September 2, 2016 1 / 15

a11111

OPEN ACCESS

Citation: Terry L, Cassels N, Lu K, Acton JH,
Margrain TH, North RV, et al. (2016) Automated
Retinal Layer Segmentation Using Spectral Domain
Optical Coherence Tomography: Evaluation of Inter-
Session Repeatability and Agreement between
Devices. PLoS ONE 11(9): e0162001. doi:10.1371/
journal.pone.0162001

Editor: Marinko Sarunic, Simon Fraser University,
CANADA

Received: April 5, 2016

Accepted: August 16, 2016

Published: September 2, 2016

Copyright: © 2016 Terry et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All images, metadata
and associated segmentation data files are available
from the Figshare (https://figshare.com/) database
(DOI: https://dx.doi.org/10.6084/m9.figshare.c.
3286643.v1).

Funding: This work was funded by Cardiff University.
VSBL acknowledges the Medical Research Council
and School of Optometry and Vision Sciences for
support.

https://dx.doi.org/10.6084/m9.figshare.c.3286643.v1
https://dx.doi.org/10.6084/m9.figshare.c.3286643.v1
https://figshare.com/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0162001&domain=pdf


with these devices, however ocular biometry is required for accurate quantification of OCT

images.

Introduction
Optical coherence tomography (SD-OCT) is an essential imaging tool for the diagnosis and
monitoring of retinal diseases such as age-related macular degeneration (AMD) [1,2] and dia-
betic macular oedema [3,4]. This non-invasive technique allows clinicians to produce three-
dimensional (3-D) images of intraocular structures in vivo. In addition to subjective qualitative
assessment, images can be analyzed objectively, providing quantitative measurements includ-
ing retinal thickness. Such metrics are commonly used clinically and as outcome measures in
research, for example in clinical trials [5,6]. Quantitative analysis of OCT images has become
increasingly sophisticated [7,8] as image quality and software capabilities improve.

Whilst manual caliper tools and hand segmentation (hand tracing of intra-retinal layer
boundaries) can be simple to perform, it is time consuming (particularly when implemented in
3-D scans) and subject to significant inter-observer variation [9]. These methods are therefore
not feasible for use clinically or in large, multi-center clinical trials.

Commercial OCT devices are generally supplied with on-board segmentation software,
designed to generate fast, reliable values for interpretation by clinicians. This software has
historically been limited to total retinal thickness. Additionally, the definition of the retinal
boundaries varies between manufacturers, with different reflective bands, as seen in OCT
images, being chosen to represent the posterior retinal margin. This makes quantitative retinal
thickness comparisons between commercial devices difficult [10]. Some instruments, such as
the Topcon DRI OCT-1 Atlantis (Topcon Corp, Tokyo, Japan) and the latest Spectralis OCT
(Heidelberg Engineering, Heidelberg, Germany), are now supplied with software that is capable
of segmenting a number of intra-retinal layers. Furthermore, the commercial software is almost
always limited to use with images captured by the parent device, and cannot be applied to
images from other OCT devices. The diversity of segmentation methods and normative values
confound comparisons between commercial systems [11–13].

OCTSeg is a module of OCT Explorer, itself part of the Iowa Reference Algorithms (Retinal
Image Analysis Lab, Iowa Institute for Biomedical Imaging, Iowa City, IA). It is a publicly
available, device-independent, graph theory-based tool for segmentation of 10 retinal layers in
volumetric OCT images [7,14,15]. It produces retinal thickness values comparable to manual
measurements of OCT images by retinal specialists [14,16], and to analysis by the Heyex soft-
ware (Heidelberg Engineering) of images from participants with diabetic macular oedema [17].
Unlike the majority of commercial software, it can be applied to images from all widely-avail-
able clinical OCT devices, allowing direct comparison of images from multiple devices.

Since the segmentation software may be used with images from several different OCT instru-
ments, it is important to establish agreement between devices. The majority of current devices
utilize broad-band light sources with centre wavelengths (λc) of ~850nm, but longer wavelength
OCT (λc ~1040nm) has recently become commercially available. The algorithmmay perform
differently on these images, due to differences in reflectivity of retinal layer boundaries at these
wavelengths. We used a non-commercial long-wavelength OCT (λc ~1040nm) in our evaluation
of the algorithm.

Based on the work of Littmann and others [18,19], the transverse size of any retinal feature
can be calculated using the appropriate ocular biometry and instrument meta-data. A reasonably

Evaluation of Retinal Layer Segmentation Algorithm
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accurate lateral scaling (converting feature sizes from pixels to microns) of any OCT image can
be determined using (i) an estimate of the principal plane to retina distance of the eye (axial eye
length (AEL) - 1.8mm), (ii) the angle of the OCT scan in air and (iii) an estimate of the bulk ocu-
lar refractive index. The on-board software of the two commercial instruments used in this
study provide only a single lateral scaling value for all patients regardless of AEL, resulting in an
error in the reported size of the image which scales with AEL. This error manifests as a discrep-
ancy between the fixed size ETDRS grid and the AEL-dependent image size. Therefore, the
position of retinal layer measurements and hence the regional thickness values become AEL-
dependent; an important consideration when comparing different OCT instruments. By con-
verting all our image files to a compatible TIFF format we were able to use the ability of OCTEx-
plorer to accept an independently calculated, AEL-dependent lateral scaling for images from all
devices used.

To the authors’ knowledge, inter-session repeatability of the Iowa Reference Algorithms has
not been assessed to date. Given the potential clinical and research utility of quantitative intra-
retinal layer analysis [20–22], investigation of this feature of the algorithm is a key step in vali-
dating the sensitivity of this tool to detect retinal changes. Furthermore, to our knowledge,
there has been no formal comparison between retinal thickness measurements produced by
the Iowa algorithm and the on-board segmentation algorithms of many commonly available
commercial devices.

The aims of the present study are to evaluate the use of Iowa Reference Algorithms as a
means of generating repeatable intra-retinal layer thickness values from images of healthy eyes,
captured using two commercial SD-OCT devices (λc ~850nm) and one non-commercial long-
wavelength (λc ~1040nm) device. Secondary objectives are to assess agreement between the
algorithm and commercial, device-dependent software, as well as inter-device agreement.

Materials and Methods

Participants
Healthy participants (n = 25) were recruited from staff, students and volunteers at the School
of Optometry and Vision Sciences, Cardiff University. All participants had a corrected visual
acuity of 0.0 logMAR (20/20) or better using a high contrast Early Treatment of Diabetic Reti-
nopathy Study (ETDRS) chart and a mean refractive error of� ±6.00 diopters in the test eye.
Approval for this study was obtained from the South East Wales NHS Research Ethics Com-
mittee. All experimental procedures adhered to the tenets of the Declaration of Helsinki, and
written informed consent was obtained before data collection commenced.

Participants with disease affecting retinal function were excluded, including diabetes, glau-
coma, and significant media opacities (Lens Opacities Classification System III grade 3 or more
for any criteria [23]). These were identified using a medical history questionnaire, slit lamp
examination and fundus photography. Those with narrow iridocorneal angles (grade 1 or less
assessed by Van Herick) or intraocular pressure over 21mmHg were also excluded, as were
those taking medication known to affect retinal function.

One eye was selected as the test eye for each participant; this was the eye with the better
visual acuity (or lower refractive error if one eye was outside the ±6.00D range). One drop of
Tropicamide 0.5% was instilled into the test eye of each participant prior to imaging. Following
sufficient pupil dilation, fundus photographs were obtained to ensure participants did not have
retinal disease. AEL (cornea to retinal pigment epithelium (RPE)) was measured using optical
biometry (IOL Master, Carl Zeiss, Jena, Germany) to enable accurate lateral scaling calcula-
tions for all OCT images.

Evaluation of Retinal Layer Segmentation Algorithm
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OCT Imaging
OCT images were obtained from all participants using a 3D-OCT 1000 (Topcon Corp, Tokyo,
Japan), Cirrus HD-OCT (Carl Zeiss Meditec, Inc., Dublin, CA), and a non-commercial long-
wavelength (λc 1040nm) SD-OCT [24–26]. Images from the latter were obtained using less
than the maximum permissible corneal exposure for unlimited duration at this wavelength
(less than 5mW/cm2 averaged over a 7mm pupil) [27].

Volume scans centered on the fovea were acquired using each device. For comparison, all
images had a scan angle of 20° x 20°, comprising 512 x 128 A-scans. Following dilation, all
images were obtained by a single trained operator (LT). A second session was conducted within
1 month, using the same protocol and scheduled for the same time of day as the previous ses-
sion (± 30 minutes).

Data Analysis
Long-wavelength OCT images were exported to Fiji (Rasband; National Institute of Health,
USA) [28] and underwent stack registration, using the Fiji plugin StackReg [29], to remove eye
movement artefacts. Images were then exported to OCTExplorer 3.5. Images from the two
commercial instruments were directly imported into the Iowa software, with no alteration
when using the instrument-supplied scaling, or via conversion to a standard TIFF format (via
Fiji) in order to apply an AEL-dependent lateral scaling.

Automated retinal layer segmentation using the Iowa Reference Algorithms was performed
on all images. Mean retinal thickness values of 10 retinal layers were obtained on all images for
the foveal subfield and the inner and outer rings of a standard ETDRS grid (shown in Fig 1).
Total retinal thickness was also calculated, as the distance from the most anterior hyper-reflec-
tive line (corresponding to the inner limiting membrane; ILM) to the posterior of the outer-
most hyper-reflective line (corresponding to the outer boundary of RPE).

For all comparisons with the commercial software, the posterior retinal boundary used by
the commercial segmentation was adopted in the Iowa Reference Algorithm segmentation
(inner boundary of outer segment photoreceptor/RPE complex, and inner boundary of RPE
for Topcon and Zeiss respectively; see Fig 1). These parameters will be referred to in this paper
as ‘equivalent retinal thicknesses’.

Fig 1. ETDRS grid and example 10 intra-retinal layer segmentation. (A) Standard ETDRS grid showing the foveal subfield (black). The
inner ring is an average of the four parafoveal subfields (dark grey) and the outer ring of the four perifoveal subfields (light grey). (B)
Screenshot of 10 layer (11 boundary) segmentation of a long-wavelength OCT image, produced by the Iowa Reference Algorithms. The left
half of the image shows the image prior to segmentation. Layers 1–10 (top to bottom; as defined by the software): retinal nerve fiber layer
(RNFL); ganglion cell layer (GCL); inner plexiform layer (IPL); inner nuclear layer (INL); outer plexiform layer (OPL); outer plexiform layer-
Henle fiber layer to boundary of myoid and ellipsoid of inner segments (OPL-HFL ~ BMEIS); photoreceptor inner/outer segments (IS/OS);
inner/outer segment junction to inner boundary of outer segment photoreceptor/retinal pigment epithelium complex (IS/OSJ ~ IB_RPE);
outer segment photoreceptor/retinal pigment epithelium complex (OPR); retinal pigment epithelium (RPE).

doi:10.1371/journal.pone.0162001.g001
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For images from the two commercial instruments, meta-data supplied by the manufacturer
were used in determining lateral pixel size for analyses using the on-board software to show
the importance of correct scaling. In all other cases, lateral scaling was obtained from the scan
angle, measured AEL and an assumed bulk ocular refractive index of 1.336. Axial scaling of all
images was obtained from the supplied instrument meta-data. This included a group refractive
index for retinal tissue of 1.4, 1.38 and 1.36 for the long-wavelength, Topcon and Zeiss instru-
ments respectively.

Coefficients of repeatability (CoR), a measure of repeatability familiar to clinicians [30],
were used to assess the inter-session variations in retinal thickness values produced by both the
Iowa Reference Algorithms and on-board software of each device (versions 3.51.003.04 and
7.0.1.290 for the Topcon and Zeiss instruments respectively). CoR was calculated as 1.96 times
the standard deviation (SD) of the differences between sessions [31], and is also expressed as a
percentage of the mean retinal layer thickness. Bland-Altman plots [31] were used to assess
agreement between these segmentation methods, and for inter-device comparisons. The bias
(mean difference) and 95% limits of agreement (LoA) were calculated for each comparison,
and Friedman’s two way ANOVA was used to identify statistically significance differences. In
these comparisons, data points outside ±3 SD of the difference were defined as significant outli-
ers (by Grubbs’ test [32] for n = 25) and were excluded from the analysis. These were classified
as failings of the segmentation algorithm.

The relationship between retinal thickness discrepancies using the commercial instrument
scaling and the AEL-correct scaling for our long wavelength images vs measured AEL was eval-
uated using Spearman’s rank correlation.

Results
Twenty-five eyes from 25 healthy participants were included in the study. The age range of the
participants was 20 to 62 years (mean ± SD, 34.9 ± 13.5 years). Sixteen participants were female
(64%). The mean AEL and refractive error (mean sphere) were 23.7 ± 1.3 mm (range 21.6 to
26.6) and -0.58 ± 1.93 diopters (range -4.50 to +3.00) respectively. The maximum cylindrical
power was 3.00 diopters.

Lateral scaling for AEL
OCTSeg reported automated segmentation of 10 intra-retinal layers for all images. Mean values
across all eyes for each retinal layer are shown in Table 1. These values underwent AEL-cor-
rected lateral scaling as described above. The percentage difference of these corrected values
from the fixed scaling values (by OCTSeg) ranged from -15% to +26% (corresponding to Top-
con and Zeiss GCL layer respectively, both in the foveal subfield). Mean total retinal thickness
measurements produced by both segmentation methods for the three devices can be seen in
Table 2. These values underwent fixed-AEL scaling to allow comparison to the commercial
software. In this case, correcting for AEL yielded mean differences of less than 2% in all cases
when compared to the fixed-AEL scaling (by OCTSeg).

An inter-device comparison of AEL-corrected scaled retinal thickness measurements pro-
duced by the Iowa Reference Algorithms is shown in Table 3. One significant outlier was
removed from the 1040nm-Topcon comparison (foveal subfield only). Images from the Top-
con instrument yielded significantly higher values for retinal thickness than the long-wave-
length system (Friedman test, P<0.05), but significantly lower values than the Zeiss OCT (with
the exception of the foveal subfield). This bias between the Zeiss and long-wavelength OCT
images was similar across the three ETDRS subfields. However, the bias between the Topcon
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and long-wavelength images decreases in magnitude with eccentricity (largest in the foveal
subfield and smallest in the outer ring).

Discrepancies in fixed-AEL scaled retinal thickness measurements between the commercial
and long-wavelength devices showed a strong correlation with AEL, for the commercial

Table 1. Mean thickness of 10 intra-retinal layers. Thickness values (mean ± SD; μm) produced by segmentation of images at session 1 using the Iowa
Reference Algorithms.

Layer Fovea Inner ring Outer ring

Topcon Zeiss 1040nm Topcon Zeiss 1040nm Topcon Zeiss 1040nm

1. RNFL 7.0 ± 2.3 5.9 ± 2.9 5.2 ± 2.2 25.5 ± 2.3 25.2 ± 2.3 24.2 ± 2.4 39.3 ± 7.0 40.9 ± 5.9 39.3 ± 5.0

2. GCL 17.0 ± 6.3 13.4 ± 5.4 17.2 ± 5.1 48.5 ± 5.9 52.4 ± 5.7 50.5 ± 6.2 24.7 ± 3.0 27.2 ± 3.1 29.3 ± 3.8

3. IPL 29.3 ± 2.9 27.5 ± 4.1 24.4 ± 4.2 42.5 ± 4.2 40.7 ± 3.5 39.9 ± 4.2 35.3 ± 2.8 37.3 ± 2.8 36.0 ± 3.8

4. INL 17.7 ± 4.6 22.5 ± 5.3 18.9 ± 4.2 37.8 ± 3.5 43.2 ± 3.8 37.5 ± 3.6 28.1 ± 3.3 32.9 ± 3.0 29.6 ± 3.3

5. OPL 23.0 ± 3.4 20.7 ± 4.9 20.3 ± 5.3 29.6 ± 3.8 28.0 ± 5.0 30.0 ± 5.1 26.2 ± 2.6 24.1 ± 3.0 28.4 ± 4.2

6. OPL-HFL ~BMEIS 120.8 ± 10.2 122.3 ± 9.2 116.5 ± 10.7 95.5 ± 8.8 96.9 ± 9.2 90.3 ± 8.8 79.7 ± 10.1 79.4 ± 6.4 71.6 ± 6.8

7. IS/OS 13.9 ± 0.9 11.7 ± 0.6 14.8 ± 2.4 12.6 ± 0.6 10.3 ± 0.4 13.7 ± 1.7 12.5 ± 1.2 10.2 ± 0.8 13.0 ± 1.7

8. IS/OSJ ~IB_OPR 17.0 ± 1.8 19.7 ± 2.2 17.3 ± 3.0 11.7 ± 1.4 14.0 ± 2.9 12.6 ± 2.4 10.3 ± 2.1 15.5 ± 4.3 15.8 ± 4.4

9. OPR 20.1 ± 2.6 20.7 ± 3.0 20.6 ± 3.8 19.8 ± 2.2 21.3 ± 3.3 20.7 ± 3.4 18.5 ± 2.3 17.8 ± 4.8 15.2 ± 3.8

10. RPE 18.6 ± 2.1 15.5 ± 0.5 15.6 ± 0.2 18.6 ± 1.7 15.5 ± 0.4 15.5 ± 0.2 18.6 ± 1.6 15.3 ± 0.5 15.5 ± 0.4

doi:10.1371/journal.pone.0162001.t001

Table 2. Total retinal thicknessmeasurements from different segmentation methods. Thickness values (mean ± SD; μm) for the three ETDRS regions
of images acquired at session 1.

Fovea Inner ring Outer ring

Iowa Reference Algorithms 1040nm 270.9 ± 16.8 335.2 ± 17.4 294.0 ± 20.6

Topcon 281.5 ± 16.9 342.8 ± 18.0 295.2 ± 21.8

Zeiss 280.8 ± 17.5 347.0 ± 18.0 302.0 ± 21.4

On-board segmentation Topcon 244.6 ± 17.4 306.0 ± 17.6 260.9 ± 21.4

Zeiss 263.1 ± 17.4 325.4 ± 18.1 281.2 ± 21.4

Iowa equivalent retinal thickness* Topcon 242.8 ± 22.9 304.4 ± 19.3 258.0 ± 21.6

Zeiss 265.4 ± 18.6 331.6 ± 18.7 286.8 ± 21.6

*Equivalent values from the Iowa Reference Algorithms (Topcon, ILM to inner boundary of OPR; Zeiss, ILM to inner boundary of RPE) are quoted for

comparison to the commercial on-board software segmentation.

doi:10.1371/journal.pone.0162001.t002

Table 3. Agreement of total retinal thickness between OCT devices. Mean difference (bias; μm) and 95% limits of agreement (μm) for mean retinal thick-
ness at session 1 produced by the Iowa Reference Algorithms, using AEL-dependent scaling, for each pairing of OCT instruments.

Fovea Inner ring Outer ring

1040nm-Topcon Mean difference -14.18 -7.05 0.80

Limits of agreement -20.05 to -8.30 -14.65 to 0.55 -6.95 to 8.55

Friedman test P 0.000* 0.000* 0.317

1040nm-Zeiss Mean difference -13.89 -12.46 -6.62

Limits of agreement -21.62 to -6.16 -18.91 to -6.00 -13.53 to 0.30

Friedman test P 0.000* 0.000* 0.000*

Topcon-Zeiss Mean difference -0.21 -5.41 -7.42

Limits of agreement -4.18 to 3.75 -8.67 to -2.15 -10.66 to -4.17

Friedman test P 0.841 0.000* 0.000*

*significant at 0.05 level.

doi:10.1371/journal.pone.0162001.t003
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instrument data, in both the foveal subfield and the outer ring (Spearman rank ρ>0.50,
P<0.05 in all cases), although only moderate to weak for the inner ring (Spearman ρ<0.50). A
weak correlation was also seen across all subfields when comparing Topcon with Zeiss data. In
all cases, the correlation was reduced and/or became not significant when the AEL-dependent
scaling was used in the comparisons between data from any of the three sources (Fig 2).

Inter-Session Repeatability
Intra-retinal layer thickness values produced by the Iowa software were compared between ses-
sion 1 and session 2. For these comparisons, AEL-corrected scaled data was used. Differences
outside 3 SD of the mean difference (Grubbs’ test) were considered failings in segmentation
and were removed from further analysis (n = 26 of 2250 comparisons). Of these, 46%, 42% and
12% were attributed to images from the long-wavelength, Topcon and Zeiss instruments
respectively. In general, CoR was similar across images from all devices, and across the three
ETDRS subfields (Fig 3).

For layer thickness averaged across the entire ETDRS grid, the layers with best repeatability
(as a percentage of the mean) were layer 10 (RPE; 1.2%), layer 4 (INL; 6.2%), and layer 10
(RPE; 4.1%) for the Zeiss, Topcon and long-wavelength devices respectively. The layers with
poorest repeatability were layer 8 (IS/OSJ ~ IB_RPE; 22.5%), layer 1 (RNFL; 19.1%), and layer
8 (IS/OSJ ~ IB_RPE; 36.9%) respectively.

Total retinal thickness values were also compared between session 1 and session 2. In all
cases, the mean bias was between ±1 μm, and there was no significant difference between ses-
sion 1 and session 2 for any device or ETDRS subfield (P>0.05 in all cases). Fixed-AEL scaling
was used to allow comparison to the commercial segmentation. One significant outlier was

Fig 2. Correlation of retinal thickness differences against AEL.Difference in retinal thickness measurements (μm)
versus axial eye length (mm) for the foveal subfield, as produced by the Iowa Reference Algorithms using two different
transverse scaling methods.

doi:10.1371/journal.pone.0162001.g002
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removed from the long-wavelength data (all subfields), as identified by Grubbs’ test. For the
Iowa Reference Algorithms, the CoR for the foveal subfields was 4.76μm and 3.43μm for Top-
con and Zeiss OCT images respectively. The CoR of both instruments was lower than that of
the long-wavelength OCT, which had a CoR of 5.98μm. In all cases the CoR was higher for the
foveal subfield than the inner and outer rings (Table 4).

Fig 3. Intra-retinal layer thickness and CoR.Mean thickness of 10 intra-retinal layers segmented by the
Iowa Reference Algorithms at session 1, on images from all three OCT devices. Error bars and table values
represent inter-session CoR (μm) for each layer.

doi:10.1371/journal.pone.0162001.g003

Table 4. Inter-session repeatability of the Iowa Reference Algorithms. Coefficients of repeatability (μm; and percentage) of mean retinal thickness pro-
duced by the Iowa Reference Algorithms at session 1 and session 2.

Fovea Inner ring Outer ring

1040nm Full thickness 5.98 (2.2%) 5.86 (1.7%) 5.48 (1.9%)

Topcon Full thickness 4.76 (1.7%) 3.99 (1.2%) 4.10 (1.4%)

Equivalent thickness* 3.90 (1.6%) 3.48 (1.1%) 3.78 (1.5%)

Zeiss Full thickness 3.43 (1.2%) 2.92 (0.8%) 3.19 (1.1%)

Equivalent thickness* 3.37 (1.3%) 2.95 (0.9%) 3.14 (1.1%)

*Equivalent values from the Iowa Reference Algorithms (Topcon, ILM to inner boundary of OPR; Zeiss, ILM to inner boundary of RPE) are quoted for

comparison to the commercial on-board software segmentation.

doi:10.1371/journal.pone.0162001.t004
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For the commercial segmentation, no AEL-correction was made in the scaling. Two signifi-
cant outliers were removed from the Topcon segmentation data (foveal and inner ring sub-
fields only). The CoR of the foveal subfield was 7.63μm and 4.63μm for the Topcon and Zeiss
OCT respectively. Again, the CoR was higher for the foveal subfield than the inner and outer
rings for the Topcon OCT images, but was similar across all subfields for the Zeiss OCT images
(Table 5).

To allow for comparison between segmentation methods, the Iowa Reference Algorithm
‘equivalent retinal thicknesses’ were used (Table 4; Fig 4). The on-board software of both com-
mercial instruments was less repeatable than the Iowa Reference Algorithms, for all three sub-
fields (Fig 5).

Table 5. Inter-session repeatability of the on-board software. Coefficients of repeatability (μm; and per-
centage) of mean retinal thickness produced by the on-board analysis software of the commercial instru-
ments at session 1 and session 2.

Fovea Inner ring Outer ring

Topcon 7.63 (3.1%) 4.68 (1.5%) 5.68 (2.2%)

Zeiss 4.63 (1.8%) 5.06 (1.6%) 5.04 (1.8%)

doi:10.1371/journal.pone.0162001.t005

Fig 4. Bland-Altman plots showing inter-session repeatability. Total retinal thickness difference (μm) against mean (μm)
for inter-session repeatability of the foveal subfield for both segmentation methods. 95% limits of agreement shown by dashed
lines. Note that two significant outliers were removed from the Topcon on-board segmentation data.

doi:10.1371/journal.pone.0162001.g004
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Segmentation Software Agreement
A comparison of retinal thickness measurements produced by the Iowa Reference Algorithms
and the commercial segmentation software for the two commercial instruments is shown in
Table 6. Again, the thickness values were fixed-AEL scaled to allow comparison between algo-
rithms. One significant outlier was removed from the analysis of the Topcon data (foveal sub-
field only). The commercial segmentation software yielded similar to or marginally higher
retinal thickness values than the Iowa Reference Algorithms for the Topcon OCT images.
These differences were significant only in the outer ring (Friedman test, P<0.05). The commer-
cial software yielded significantly lower values than the Iowa Reference Algorithms for the
Zeiss OCT images in all three subfields (Friedman test, P<0.05).

Discussion
The Iowa Reference Algorithms produced automated segmentation of 10 intra-retinal layers
on all images from all three devices. We have demonstrated a substantial impact of AEL-cor-
rected lateral scaling on mean intra-retinal layer thickness values. If an AEL-dependent lateral
scaling is not used, the ETDRS grid (defined in mm units at the retinal surface) will overlay a
smaller or larger area of retina, depending on the AEL. The ETDRS subfield sizes could vary by
up to 30% assuming a normal AEL range of 20-28mm, which is a little larger than for the
cohort of this present study. Appropriate scaling to account for AEL is therefore an important

Fig 5. Comparison of inter-session repeatability for the two segmentation methods. Coefficients of repeatability for
segmentation by the Iowa Reference Algorithms and on-board software are shown for the Topcon (left) and Zeiss (right)
systems. The ‘equivalent retinal thickness’ values from the Iowa Reference Algorithms were used in this analysis.

doi:10.1371/journal.pone.0162001.g005

Table 6. Agreement of total retinal thickness between segmentation methods. Mean difference (bias; μm) and 95% limits of agreement (μm) for mean
retinal thickness at session 1 produced by the Iowa Reference Algorithms and the commercial on-board equivalent.

Fovea Inner ring Outer ring

Topcon Mean difference 0.11 -1.65 -2.91

Limits of agreement -13.05 to 13.28 -10.96 to 7.66 -12.97 to 7.15

Friedman test P 0.414 0.549 0.009*

Zeiss Mean difference 2.00 6.07 5.73

Limits of agreement -5.76 to 9.75 -5.95 to 17.82 -6.03 to 16.42

Friedman test P 0.028* 0.003* 0.009*

*significant at 0.05 level

doi:10.1371/journal.pone.0162001.t006
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consideration for any quantitative retinal thickness analysis, particularly in cross-sectional
applications.

The Iowa Reference Algorithms demonstrated good agreement between the Topcon and
Zeiss instruments (as shown previously; [33]), and with the long-wavelength device. However,
the Iowa Reference Algorithms produced significantly higher retinal thickness values on
images from both commercial systems than the long-wavelength system, across all subfields,
even when the AEL-dependent scaling was used. Refractive index assumptions for retinal tis-
sues used by each instrument could result in a small difference in axial scaling. Knowing the
assumptions made for each device, we expect a difference in absolute thickness values between
instruments of between 1.4% and 2.9%, with largest thickness values from the Zeiss images
(n = 1.36), then Topcon images (n = 1.38) and finally the long-wavelength OCT (n = 1.4). In
general, this is consistent with our findings (Table 2).

Discrepancies in retinal thickness measurement between images from the long-wavelength
and commercial systems were significantly correlated with AEL for the foveal and outer ring
subfields, when using the fixed-AEL scaling. When the AEL-dependent scaling was used
throughout this analysis, all these correlations were reduced and were no longer significant
(Fig 2). This effect is consistent with the expected transverse magnification error that arises
when fixed-AEL scaling is used for images from either of the commercial instruments. This
confirms that the on-board software of the Zeiss and Topcon instruments used in this study do
not make a scaling correction for AEL. The Iowa Reference Algorithms allow for direct input
of transverse scaling factors prior to image segmentation which should be used, where possible,
to reduce these demonstrated magnification errors.

Inter-session repeatability of the Iowa Reference Algorithms was assessed for each of the 10
intra-retinal layers on images from each device. Although the CoR was similar across the three
devices and three ETDRS subfields, there were far fewer significant outliers excluded from the
Zeiss data by Grubbs’ test. Had these outliers been included, inter-session repeatability would
have been poorer for the other two devices. Overall, RPE thickness was the most repeatable
measure, particularly for the Zeiss and long-wavelength OCT (CoR 0.5μm for both). As a
change in thickness of this layer greater than this value would indicate change outside the nor-
mal variation, these measures represent a useful clinical biomarker for diseases that affect the
RPE, such as AMD [34].

The least repeatable measures were the inner retinal layers (1–5) in the foveal subfield (Fig
3). This is expected, since these layers are thin in this region. Additionally, some layers are
more difficult to distinguish due to near iso-reflectivity, for example GCL from IPL, and HFL
from OPL. The HFL commonly fluctuates in appearance between acquisitions, dependent on
angle of incidence, which would also likely limit the repeatability of segmentation of this layer
[35]. The inner retinal layers were generally more repeatable in the outer ring across all devices.
However, the outer ring has the lowest RNFL repeatability across all devices, possibly attributed
to the thickness variability due to nasal/temporal asymmetry at this eccentricity. However, if
analyzed in an appropriate manner (by quadrant, for instance), this may have applications in a
number of conditions [36–39].

Total retinal thickness in the foveal subfield was less repeatable than the inner and outer
rings, which is also likely attributable to retinal anatomy (greater thickness variability in the
foveal subfield). All repeated measures using the Iowa Reference Algorithms on the Topcon
and Zeiss OCT images were within 1.7% and 1.3% of mean retinal thickness respectively for all
subfields (Table 4). The long-wavelength OCT images had a marginally higher CoR (within
2.2% for all subfields, with one outlier removed). This non-commercial device was designed for
optimal imaging of the deeper structures, including the choroid, due to reduced scatter at this
wavelength [25]. However, differences in reflective properties of the layer boundaries are likely
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to occur at this longer wavelength, which the Iowa Reference Algorithms may not be optimized
to detect. Since the main function of the long-wavelength OCT is to image the deeper retinal
structures, the acquisition protocol used to collect these images was similar to enhanced depth
imaging [40], with the choroid intentionally positioned closer to the zero delay line. This may
have resulted in reduced signal from the more superficial retinal layers, and may explain the
reduced repeatability compared to the commercial devices.

The Iowa Reference Algorithms measurements were more repeatable than the equivalent
commercial segmentation software assessed. The inter-session repeatability analysis of the
Topcon commercial segmentation software revealed two clear outliers. Both images were of
poorer quality than the rest of the sample (image quality<25 in the Topcon-generated report)
which led to marked errors in ILM boundary position in the foveal subfield during segmenta-
tion. Removing these outliers from this subfield, the CoR was reduced from 21.56μm to
7.63μm, which is more comparable to the other subfields and to the Zeiss commercial software.
It should be noted that segmentation of these same two images using the Iowa Reference Algo-
rithms produced no marked errors in boundary placement in any subfield.

Since the majority of these CoR values are nearing the resolution limit of all three instru-
ments (~5μm axially), this small inter-session thickness variation is unlikely to be clinically
meaningful. However, since many thickness values are averaged over each region and/or over
the entire cohort in this study, significant results of boundary positions can be obtained to a
higher precision than the optical resolution of the instrument. The axial sampling resolution
(3.5μm for the Topcon, and ~2μm for the Zeiss and long-wavelength systems) is another
potential limiting factor but averaging over many thickness measurements can again, in theory,
provide even higher resolution results limited ultimately by the signal-to-noise ratio of the
devices and the repeatability of the scanning geometry.

Our inter-session findings for the Zeiss instrument are comparable to, if not slightly more
repeatable than, previous findings [11,41]. Kotera and colleagues [42] reported slightly higher
repeatability than our findings for the Topcon segmentation software (total retinal thickness CoR
of 3.10μm and 2.01μm for the inner ring and outer ring respectively, in comparison to our values
of 5.99μm and 5.68μm). However, their assessment was an intra- rather than inter-session repeat-
ability, and did not include the ETDRS foveal subfield since their main outcome measure was ret-
inal nerve fiber layer (RNFL) thickness in glaucoma. It is worth noting that we would expect the
inter-session repeatability to be poorer in eyes with macular disease due to the nature of the path-
ological retinal features [43,44]. In some cases, the segmented boundaries may require manual
repositioning to ensure accurate quantification. Measures in healthy participants were the focus
of the present study, to evaluate the repeatability of the algorithm under ideal conditions.

Good agreement was shown between the Iowa Reference Algorithms and the commercial
software, when equivalent segmentation boundaries were used (as shown in Table 6). There was
slight bias in both cases, with the Topcon segmentation producing slightly higher values (Fried-
man test, P<0.05 in the outer ring only), and the Zeiss segmentation producing lower values
than the Iowa Reference Algorithms (Friedman test, P<0.05 in all subfields). However, these dis-
crepancies accounted for less than 2% of total retinal thickness in all subfields, and are unlikely
to be significant in clinical applications. This is consistent with previous comparative studies
using the Iowa Reference Algorithms and Cirrus and Spectralis OCT commercial software
[17,45]. To our knowledge, no previous comparison has been made using the Topcon 3D-OCT.

This study had a relatively small sample size (n = 25) for an inter-session repeatability study
and a relatively narrow distribution of AEL. Only participants without retinal disease were
included in this study, therefore conclusions can only be applied to this group. Further study is
necessary to assess the repeatability of the segmentation software in ocular disease. Lastly, the high
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repeatability of the intra-retinal layer segmentation by the Iowa Reference Algorithms is promis-
ing, although further analysis is required to compare this with the available on-board software.

In conclusion, we have confirmed that lateral magnification errors affect the consistency
and reliability of generated thickness values, and are therefore an important consideration in
quantitative OCT retinal layer analysis. Nevertheless, the Iowa Reference Algorithms provide
repeatable automated retinal thickness measurements, which outperform the commercial seg-
mentation software, and allow a convenient mechanism to apply an accurate AEL-dependent
lateral scaling to images from any OCT device. In these respects, this algorithm is viable for
clinical and research applications, for eyes without ocular disease imaged using the three OCT
devices in this study.
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