
Edge-supported Approximate Analysis for Long Running Computations

Ali Reza Zamani, Javier
Diaz-Montes, Manish Parashar
Rutgers Discovery Informatics

Institute
Rutgers University, USA
alireza.zamani@rutgers.edu

Ioan Petri
School of Engineering
Cardiff University, UK
petrii@cardiff.ac.uk

Omer Rana
School of Computer Science

& Informatics
Cardiff University, UK
ranaof@cardiff.ac.uk

Abstract—With the increasing availability of In-
ternet of Things (IoT) devices, and potential appli-
cations that make use of data from such devices,
there is a need to better identify appropriate data
processing techniques that can be applied to this
data. The computational complexity of these appli-
cations, and the complexity of the requirements on
the data processing techniques, often derives from
the capabilities of current IoT devices and the need
to integrate data streams across multiple IoT de-
vices, which result in larger data sizes and loads
on the computing infrastructure. Furthermore, due
to the dynamics and uncertainties of edge environ-
ments, it is essential that these techniques are capable
of adapting across a range of computational and
data transfer requirements (such as execution perfor-
mance) and infrastructure scales (processing nodes,
storage needs, network requirements) to carry out a
particular analysis task, in response to changing re-
quirements and constraints. Approximate computing
offers techniques that can simplify the overall analysis
workflow, trading off loss in quality and optimality of
the solution with time to reach a particular outcome.
These techniques have two main advantages: (i) re-
duced time to execute a particular data analysis; (ii)
reduced requirements on the computational infras-
tructure (i.e., lower energy, computational resource
needs, etc) to carry out such analysis. With data
processing capabilities available IoT devices and as-
sociated gateway nodes, such approximate computing
can be achieved at or close to the network edge. In
this paper, we propose in-transit and edge-supported
approximation techniques, which can undertake par-
tial/approximate data processing at the data genera-
tion/capture or aggregation site, prior to delivery to
a cloud data center. We also demonstrate how such
an approach can be used in practice by applying it
to support energy optimization in built environments
(utilizing a combination of sensors and cloud-based
data analysis). Several approximation techniques that
are relevant in this context are presented, and their
relevance explored and evaluated in the context of an
energy simulation application scenario.

Keywords-Approximation Techniques; Internet of
Things; Smart Built Environments; Distributed
Cloud Computing

I. Introduction
With the increasing availability of IoT and pervasive

devices, and the need to connect these devices to cloud-
based systems in order to support data analysis, there is
a realization that a computational infrastructure closer
to these devices is required (in addition to a data center).
A number of requirements have been identified that
support this need: (i) the network latency to transfer
data from these devices to a cloud data centre can be
excessive, especially if the IoT device is connected over
a network with a varying availability and bandwidth
profile; (ii) data generated from the IoT device may have
security/privacy constraints, which limits how much of
this data can be transferred to a cloud data center;
(iii) such devices may be constantly generating data,
however only a small subset of the data may be useful
or require further analysis. Transferring all of this data
to a cloud data center, where, for example, a significant
part of it is subsequently deleted, is inefficient and does
not make effective use of network and storage resources.
Understanding when and how much data should be ana-
lyzed close to where it is captured, remains an important
research challenge – an aspect addressed in this paper.
Specifically, this paper focusses on how “approximation"
techniques can effectively used to process data close to
the data sources with reduced computational resource
requirements.
There is a significant class of data intensive appli-

cations (especially those involving data generated from
IoT devices) that have associated analysis deadlines with
direct relationships to a quality of results metric. The
incoming workloads for these applications can include
a number of sources, such as various types of sensors
(i.e., potentially inexact inputs), and the associated
data analysis algorithms are often stochastic in nature
(e.g., iterative algorithms). For example, in the build-
ing energy optimization scenario being considered in
this work, simulations are iterative and have different
numerical configuration parameters that directly influ-
ence the duration of simulation, as well as the quality
of results. Therefore, it becomes important to develop

2017 IEEE 5th International Conference on Future Internet of Things and Cloud

978-1-5386-2074-8/17 $31.00 © 2017 IEEE

DOI 10.1109/FiCloud.2017.24

321

a suitable computational infrastructure wherein both
hardware and software are continually optimized, in-line
with application specific objectives.
Approximate computing provides a useful mechanism

for supporting the requirements identified above, and has
attracted significant interest from both academia and
industry. It enables techniques for creating robust and
resilient applications by proposing the introduction of
intervals of acceptable errors into the execution to ad-
dress both computing and application uncertainties. Ap-
proximate computing views regions in the application’s
execution in terms of the degree of error tolerance, and
uses this tolerance to trade off between storage, result
accuracy, and efficient usage of computing resources (i.e.,
energy, storage size, etc.). Thus, approximate computing
provides a balance between the level of accuracy required
by the user and that provided by the computing system,
to achieve a spectrum of optimizations. Such techniques
are applicable to a wide range of applications/frame-
works, for example, data analytics, scientific computing,
multimedia and signal processing, machine learning and
MapReduce [6, 12].
In previous works [14, 20], we developed an analytical

model to improve the use of computational resources at
the network edge and within network data centers to
support data transformation and analysis from source
to destination. The objective of those works was to
combine efficient use of resources within a cloud data
center and those at the network edge, while providing
an extra source of revenue for those who operate and
manage such resources. In this paper, we extend this
approach by investigating how network edge resources
can be used to support a data analysis workflow deployed
leveraging approximation techniques. We seek to find
ways to optimize workflow execution over resources that
are located at the network edge and to determine which
approximation techniques are most beneficial given re-
source constraints at the edge. A key assumption in this
work is that the core data center are far away from data
source and have a greater capability (capacity, function)
compared to those at the network edge.
In this paper, we investigate two uses of approximate

computing:(i) The ability to reduce computation using
approximate computing techniques. (ii) The ability to
execute parts of the workload or increase the accuracy
of approximation techniques using resources at in-transit
nodes or at the edge of the network.
Our application workflow performs real-time energy

optimization within a building, and makes use of mul-
tiple approximation techniques as part of the simu-
lation(s). In this work, we determine which of these
techniques can be executed in-transit or at the edge of
the network in the presence of multiple constraints such
as execution time and quality of results. The rest of the

paper is organized as follows. In Section II we present re-
lated work in approximate computing. In Section III we
explain the application use-case as identified in building
optimization, followed by the associated approximation
techniques presented in Section IV. The methodology is
presented in Section V. We present our evaluation in
Section VI and conclude in Section VII.

II. Aproximation techniques
In this section, we summarize several approximate

computing techniques that can be applied at the network
edge.

Memory access skipping, task dropping/skipping,
Memoization: Samadi et al. [7] propose a pattern-based
approximation technique to reduce number of memory
accesses by skipping tasks in a loop, apply memoization
to optimize map and scatter/gather patterns and cache
result of computationally expensive function calls, to
reduce computational overhead. Samadi et al. [8] pro-
pose SAGE, a self-tuning approximation for graphics
engines which uses lossy compression (data packing) to
reduce access to memory. Goiri et al. [4] present an
ApproxHadoop module which can apply approximations
to MapReduce frameworks using data sampling and task
dropping.

Using multiple inexact program versions/lossy com-
pression: Vassiliadis et al. [10] propose a programming
model and runtime system to improve energy efficiency
of the programs. The programming model enables devel-
opers to identify the impact of different sections of their
program on the final output.

Neural network-based accelerators: McAffee and
Olukotun [5] developed EMEURO which is a neural-
network emulation and acceleration platform. With
small approximation error rate, EMEURO can achieve
considerable speedup in various applications within the
image processing domain. Amant et al. [9] developed
a general-purpose code acceleration and end-to-end so-
lution to utilize analog circuits in order to accelerate
approximate applications and neural network training
phase.

Approximating neural networks: Venkataramani et
al. [11] have explored the use of approximate computing
to design a new energy efficient hardware implemen-
tation for large scale neuromorphic systems(AxNN).
Zhang et al. [18] propose an approximate computing
framework for ANN. It is based on approximating neu-
rons which are less critical.

Precision Scaling: Anam et al. [1] explore the trade-
off in precision for energy and throughput in a generic
matrix multiplication and one dimensional convolution.
Yeh et al. [13] apply dynamic precision tuning in floating
point computation. This techniques can increase the per-
formance and decrease energy consumption in physics-
based animation.

322

Loop Perforation: Baek and Chilimbi [2] develop
a framework for supporting energy-conscious program-
ming using controlled approximation formed of 2 phases
– “calibration" phase, which involved building a model
for Quality of Service (QoS) loss, and an “operational"
phase which involves directly applying the approxima-
tion decisions.

III. Energyplus Use Case
An instrumented built environment, which can con-

sist of single/multiple buildings (homes, office build-
ings, sports facilities, etc), provides a useful scenario
to validate the use of edge-supported approximation.
Depending on the number of sensors within a single
building, the frequency at which data is captured from
such sensors and the particular data analysis objective
(e.g. reduce energy consumption, improve efficiency of
HVAC (heating, ventilation and air condition) function,
improve comfort levels based on occupancy, etc), the
computational capability requirements can vary signifi-
cantly. In some instances such data is often analyzed off-
line (in batch mode) to enable improvements in building
design or to support long term facilities management.
In other instances (evidenced by recent use of such
instrumented environments), real time analysis needs
to be carried out (over intervals of 15 to 30 minutes
generally) to enable better energy efficiency and use of
such infrastructure. When multiple such buildings are
considered (e.g. within a business park, University cam-
pus or a housing association), the overall computational
requirement can increase considerably.
To provide practical real time decision making in

building energy management based on real time mon-
itored data, it is necessary to develop a ‘behaviour’ of a
building energy system by using various simulation tools.
During the process, domain experts are often involved in
order to identify the main use cases and scenarios with
associated input parameters and feasible outputs. In the
modelling process, a number of components have to be
assessed and calibrated iteratively, and the developed
building energy simulation model is then executed (as
the calculation engine) within a generic optimization
program. In this work we seek to identify approximation
techniques that can complement or replace the execu-
tion of multiple EnergyPlus1 instances, a software that
requires significant computational resources to run, with
different input parameter ranges.
Various types of sensors are used to monitor energy

efficiency levels within a building, such as: (i) solid-
state meters for accurate usage levels, (ii) environmental
sensors for measuring temperature, relative humidity
(RH), carbon monoxide (CO), and carbon dioxide (CO2)

1http://apps1.eere.energy.gov/buildings/energyplus/

Figure 1: Energy optimization scenario. c©2016 IEEE.
Reprinted with permission, Zou et al. [20].

levels, (iii) temperature measurements using both me-
chanical (e.g., thermally expanding metallic coils) and
electrical means (e.g., thermistors, metallic resistance
temperature detectors (RTD), thermocouples, digital P-
n junctions, infrared thermocouples) to provide sufficient
accuracy. When dealing with large buildings such as
sports facilities, the accuracy of these sensors is often
questionable, largely because of the significant drift that
occurs after initial calibration. In some buildings, there
are specific requirements for sensors when monitoring
CO2 concentration, air flow, humidity, etc and these
sensors are more expensive to use and deploy. We use
sensor data from the SportE2 project pilot called FIDIA,
a public sports building facility, located in Rome, Italy.
SportE2 is a research project co-financed by the Eu-
ropean Commission FP7 programme under the domain
of Information Communication Technologies and Energy
Efficient Buildings. This project focuses on developing
energy efficient products and services dedicated to needs
and unique characteristics of sporting facilities.

IV. EnergyPlus approximation techniques
We identify the following approximation techniques

applicable to EnergyPlus:
EnergyPlus loop reduction: this technique involves

reducing the number of EnergyPlus instances by reduc-
ing the number loop iterations used within this simula-
tion. As EnergyPlus execution needs to be carried out
over a particular time frame, we can reduce the number
of iterations/loop counter used, leading to a reduction in
time over which EnergyPlus executions are carried out.
This reduces the overall execution time while keeping
the quality of results within a pre-defined error interval.
The error rate is: err = 1

times , where times ≥ 1 is the
number of times/loops to repeat the simulation.

Use of Artificial Neural Network: such a method
involves the use of a learning algorithm for replacing the
EnergyPlus simulation altogether. A neural network is
trained based on historical (input/output) data obtained
from previous executions of EnergyPlus simulations.
This data is then used to train a neural network as a
function approximator for the behaviour of an Energy-
Plus simulation. The corresponding error rate is based

323

on the size of historical data and on the efficiency of the
neural learning algorithm being used. We set the error
rate to 0.05, so that additional EnergyPlus simulations
can be triggered if the error exceeds this threshold.

Parameter value skipping: based on a set of param-
eters that the simulation requires, this methods reduces
the number of the parameter values which are used as
input to the EnergyPlus simulation. The corresponding
error rate of this method is based on the skipping
interval. The associated error rate is k

100 , where k is the
number of parameter values skipped.

• Execution time without approximation techniques:
total.time = n ∗ m ∗ time, where time is the time of
one EnergyPlus simulation

• Execution time with approximation techniques
total.approx.time = (n ∗ m ∗ total.time) − (k ∗
total.time), n represents total number of parame-
ters values, m is the number of parameters, and k
represents the number of parameter values skipped;

• error rate = k
total.param , where total.param is the

total number of parameter values.
Parameter interval reduction: from the interval

associated with a parameter we reduce the interval
limits so the simulation would use only values from a
predefined average value/centrality associated with a
parameter interval. The error of this method depends
on the remaining number of parameter values to use as
input in the simulation. The error rate is: =n+k

100 , where
n is the number of the total parameters and k is the
number of intervals being used.

• Execution time without approximation techniques:
total.time = n ∗ m ∗ time;

• Execution time with approximation techniques
total.approx.time = (n ∗ m ∗ total.time) − ((n −
k) ∗ total.time), n represents total number of pa-
rameters values, m is the number of parameters,
and k represents the number of parameter intervals
reduced;

• error rate = n+k
total.params+total.intervals , where

total.params is total number of parameters and
total.intervals is total number of intervals

V. Methodology and Approximate In-transit
Computational Model

To use network infrastructure more effectively, we
propose hosting a data processing service at the network
edge (on a gateway node connected to IoT devices) or
within a network (making use of programmable network-
based approaches, e.g. OpenFlow and other Software De-
fined Networks (SDN) approaches) to offer idle/available
computational capabilities at the edge/in-transit data
centers. Furthermore, this service is able to provision
computational resources and allocate workload into such
resources. Since the computational capabilities of the

network data centers and edge clouds are limited, the
main purpose of the resources at the edge and in-transit
is to carry out small parts of the workload and increase
the accuracy of the approximation techniques at the
edge of the network by utilizing unused capacity within
network data centers.
In general, two types of resources are considered in

this paper. The main source of computation is compu-
tational data centers(sites or resource providers), which
collectively form the cloud federation established using
CometCloud [3]. The secondary resources are network
data centers, that are located at the edge of the net-
work. Lets assume a client needs to compute a job J ,
composed of k tasks, which is generated at the client’s
location defined as source s. Whenever the client decides
to outsource the job to be executed at a remote site
defined as destination d, the data would be exposed to
possible edge and in-transit resources. A set of q network
data centers R : {r1, ..., rq} has been considered as
potential resources at the edge of the network. Hence, it
is essential to identify the workload placement, the best
route from source to destination, and possible edge/in-
transit resources that can contribute to the execution of
the job. The service level agreement (SLA) of a job J
includes: deadline (Deadline(J)) by which results have
to be returned to the client and a budget (Budget(J))
that sets the maximum amount available to spend on
computing job J .
To ensure the control over the network, all of the

sites and network data centers are equipped with SDN
enabled routers. We consider that there is some waiting
timeW (J) before a job J can be executed at destination
site d. During this time, the job is idle and it occupies
storage space at the destination site. Hence, we would
like to identify and configure a data path that leverages
edge/in-transit computation to take advantage of W (J)
for a job. The following variables have been considered
in our formulations:

• P (ri) is the average number of tasks that resource
ri completes per unit of time.

• E(ri) is the amount of time spent computing in
resource ri.

• CE(ri) is the cost per unit of time of using resource
ri for computation.

• T (ri, rk) is the amount of time spent transferring
data between resources ri and rk.

• CT (ri, rk) is the cost of reserving a network channel
per unit of time.

• W (J) is the waiting time before job J can start its
computation at destination resource.

The objective of our problem is to maximize the number
of tasks completed at edge/in-transit resources:

max
∑

i

P (ri) ∗ E(ri)

324

subject to being ready to be computed at destination re-
source d at the scheduled time (1) and making sure that
the all of tasks within a job is executed completely(2),
within the given deadline(3) and budget(4) :

∑

i

E(ri) + Transfer(J) ≤ W (J), (1)
∑

i

[P (ri) ∗ E(ri)] + P (d) ∗ E(d) = k, (2)
∑

i

E(ri) + Transfer(J) + E(d) ≤ Deadline, (3)

Cost(J) ≤ Budget, (4)

where Transfer(J) is the overall transfer time of a job,
defined as the sum of the time spent transferring data
from source (s) to first network data center (ri), the sum
of the time spent transferring data between network data
centers ∈ R, and the time spent transferring data be-
tween the last network data center (rk) and destination
(d):
Transfer(J) = T (s, ri) +

q∑

i

q∑

k �=i,k

T (ri, rk) + T (rk, d).

Cost(J) is the overall cost of computing job J , defined
as:
Cost(J) = CostExecMid+ CostExecDest+ CostNet,

where the cost of computing in-transit (CostExecMid)
and computing at the destination resource d
(CostExecDest) are defined as:

CostExecMid =
∑

i

[CE(ri) ∗ E(ri)],

CostExecDest = CE(d) ∗ E(d),

and the cost of transferring data associated with a job
(CostNet) is defined as:

CostNet = T (s, ri) ∗ CT (s, ri)+
q∑

i

q∑

k �=i,k

[T (ri, rk) ∗ CT (ri, rk)] + T (rk, d) ∗ CT (rk, d)

subject to E(rk) �= 0. Note that the time and cost of
returning results to the client is negligible as only a few
parameters are sent.
When resource providers cannot execute a job with

the required SLA, the client can consider the use of
approximation techniques. We consider that for an ap-
plication app, we have a set of applicable approximation
techniques T = {t1, t2, ..., tm}, where each app has an as-
sociated required quality of solution and can be approx-
imated with a subset of techniques Qk = {t1, t2, ..., tk},
Qk ⊂ T , m ≥ k, provided these techniques can satisfy a
minimum accuracy threshold. Our two main objectives
are to determine:

Figure 2: Infrastructure Setup. Solid and dashed lines
indicate high and low bandwidth links, respectively.

1) set of approximation techniques T that are applica-
ble to an application app

2) tj ∈ T that produces results within accuracy
threshold, and techniques that can be executed on
edge/in-transit resource(s)(i.e. create QK)

Given a set of suitable approximation techniques, Qk =
{t1, t2, ..., tk}, each tj has a corresponding error rate.
Our strategy is to pick the approximation technique that
has highest accuracy. If two approximation techniques
have the same accuracy level, we pick the one with
less computational resource requirement. If we pick an
approximation technique, the edge/in-transit resource
will use the waiting time (W (J)) to increase the accuracy
of the chosen technique. For example, if a loop reduction
approximation techniques is chosen, we try to increase
the number of loops with resources at the edge of the
network to increase the accuracy of the chosen approxi-
mation technique.

VI. Evaluation

In this section, we present the overall setup for our
experimental infrastructure and several scenarios that
we deployed to validate our hypothesis.

A. Configuration of Testbed
Our federation has been deployed on CloudLab [15]

infrastructure platform. 8 VM instances are emulat-
ing geographically distributed environment to develop
an evaluation testbed. Figure 2 shows the overview of
the implemented infrastructure. 3VMs served as our
resource providers’ data centers: Site1, Site2 and Site3.
Furthermore, we dedicated 5 more VMs as in-transit
and edge resources(Edge Clouds) which are located at
the edge of the network (i.e. between main sites). To
emulate geographic distribution of the resources, we use
Hierarchy Token Bucket (HTB) to configure various net-
work bandwidth parameters. This network configuration
is inspired in data obtained from previous experiments.
Based on the computational capabilities at the edge/in-
transit and resource provider sites, we considered three
different infrastructure scenarios. The details of each

325

Table I: Infrastructure Scenarios.
Scenario Edge Resources Site Resources

Base c4.2xlarge c4.2xlarge
Higher c4.2xlarge c4.4xlarge
Highest c4.2xlarge c4.8xlarge

Table II: Resource Properties
Resource Type vCPU ECU Memory Price ($/Hour)

c4.2xlarge 8 31 15 0.464
c4.4xlarge 16 62 30 0.928
c4.8xlarge 36 132 60 1.856

scenario has been shown in table I. To model the men-
tioned scenarios, we used the characteristics of Amazon
EC2 VM instances in our model. Summary of resource
characteristics have been shown in table II.
To deploy the instances and create the network be-

tween them, we use Mininet [19]. In each VM, one
Mininet host is connected to a virtual switch deployed
by Open vSwicth [21]. These virtual switches in different
instance are connected to each other using Generic Rout-
ing Encapsulation (GRE) tunneling [17]. Aside from the
computational resources, a POX SDN controller [22]
has been deployed to control the network infrastructure.
In this work, the SDN controller has 2 main jobs: (i)
installing the forwarding rules on switches. (ii) dedi-
cating ports and connections to switches in order to
receive necessary information from sites and optimizing
the job execution. The controller establishes a dedicated
connection between hosts and the controller. Here, we
use UDP packets for communication between hosts and
controller. Hence, the controller configures the switches
to forward the UDP packet to the controller, unless those
packets are generated from the controller. Specifically,
when the source site, i.e. client, wants to talk to the
controller, it should create a UDP message and send
it to a specific address. The first switch receiving that
message forwards the packet to the controller. Next,
the controller sends UDP packets to all edge and in-
transit sites asking for their status and computational
capabilities. Since these UDP messages are from the
controller, switches know where to send (i.e. in-transit
resources) and deliver them flawlessly. Then, based on
the feedback from the edge and in-transit resources,
the controller selects the data transfer and execution
pattern. This decision is sent to the client.

B. Experiments
For the use case, we considered that there are multiple

smart buildings requesting to evaluate and optimize
their energy consumption. Considering the FIDIA pi-
lot [16], three types of jobs have been considered in this
work. Table III collects the characteristics of different
job types. The budget has been chosen high enough for

Table III: Job Information.
JobType Data Size(MB) Budget Deadline(s) Tasks†

JobType1 10 20 120 10
JobType2 20 30 150 20
JobType3 30 40 180 30

† – A job is composed of a set of tasks
jobs to eliminate imposed cost limitation on the system.
As a result, the deadline is the only limiting factor in
our experiments. We have considered 4 strategies:

• Traditional Approach(T): In this strategy, only
resource providers’ sites can perform computation.

• Edge Approach(E): Using this strategy, the edge
data center and in-transit resources can contribute
to the execution of the EnergyPlus jobs.

• Approximation Approach(A): For this strategy,
we considered that only resource providers’ sites can
execute jobs. However, if the system cannot meet
the SLA requirement, using different approximation
techniques will be considered.

• Edge plus Approximation Approach(E-A): In
this approach, the edge and in-transit resources can
contribute to the computations and also increase the
accuracy of approximation strategy.

For all of the scenarios mentioned in table I, we con-
ducted the experiments based on the different strategies
mentioned above. In each experiment, 326 jobs were in-
serted from Site1 to a federated marketplace, generated
using a Poisson distribution. Once a job was inserted in
the federation, different sites (i.e. Site1, Site2, and Site3)
offered their services using a blind auction mechanism.
For all of the jobs, if approximation techniques were
available(E and E-A approaches), we established the
minimum accuracy requirement of 95%. Consequently,
if there was not enough resources to execute the job
within the deadline, the system executed the job us-
ing one of the available approximation techniques. The
approximation techniques selection has been discussed
in section V. Moreover, for the ANN approximation
method, we considered a training period that prepares
the ANN method for desired accuracy. We considered
100 complete EnergyPlus executions for ANN training
phase. In other words, if we could accept 100 Ener-
gyPlus jobs(excluding other approximation methods),
ANN model would be ready and system could use ANN
method afterwards.
Table IV shows the required completion time for all
types of EnergyPlus jobs in different infrastructures.
The execution time for the different approximation
techniques has been explained in section IV and is
based on the parameters selected for approximation
techniques, e.g. number of loops, amount of parameter
value skipped, etc.
In order to compare different scenarios and evaluate

326

Table IV: Time to completion of EnergyPlus job types.
JobType c4.2xlarge c4.4xlarge c4.8xlarge

JobType1 80 s 40 s 20 s
JobType2 100 s 50 s 25 s
JobType3 120 s 60 s 30 s

 0

 20

 40

 60

 80

 100

T E A E-A
T E A E-A

T E A E-A

A
cc

ep
ta

nc
e

R
at

io
 (%

)

Scenario

E+
ANN
Loop

Interval
Parameter

HighestHigherBase

Figure 3: Job Acceptance Ratio. E+: EnergyPlus, ANN:
Artificial Neural Network, Loop: Loop Reduction, Inter-
val: Parameter Interval Reduction, Parameter: Parame-
ter Value Skipping

the impact of edge clouds and approximation techniques,
job acceptance ratio is demonstrated in Figure 3. The
acceptance ratio is the ability of the resources to execute
jobs completely within the deadline. Various approxi-
mation techniques help to reduce the potential resource
requirement and overcome the limitations imposed by
lack of resources. Looking at Figure 3, addition of edge
resources and approximation techniques increase the job
acceptance ratio. In base scenario, ANN method has not
been used due to the small number of accepted jobs.
Therefore, ANN method training has not reached the de-
sired accuracy threshold. Moreover, in the base scenario,
since the computing power of the site resources is lim-
ited, addition of the edge and approximation techniques
slightly increase the acceptance ratio(2% to 5%). In the
higher scenario, the best result has been reached in E-A
approach, where sufficient E+ (EnergyPlus) simulations
are executed to pass the threshold of accuracy of ANN,
so ANN has a great impact on the job acceptance ratio.
The edge strategy(E) has 22% more acceptance ratio
compared to approximation(A) strategy, which shows
the importance of the edge clouds in the case where
the site computing resources are limited. In the highest
scenario, E-A strategy has reached 100% acceptance
ratio from which ANN covers around 2% of the jobs. For
the approximation(A) strategy, In all scenarios, if ANN
is not available, parameter interval reduction has the
most contribution among all approximation techniques
followed by parameter value skipping and loop reduction
techniques.

 90
 92
 94
 96
 98

 100
 102

Base higher highest

A
cc

ur
ac

y
(%

)

Scenario

T E A E-A

Figure 4: Average Accuracy

 0
 20
 40
 60
 80

 100
 120

JobType1

JobType2

JobType3

JobType1

JobType2

JobType3

JobType1

JobType2

JobType3

W
ai

tin
g

Ti
m

e
(s

)

Scenario

T E A E-A

HighestHigherBase

Figure 5: Idle time Overheads per job

Figure 4 compares the average accuracy achieved in
different scenario and strategies. As we mentioned ear-
lier, the minimum required accuracy in case of approxi-
mation is 95%. Since approximation is not available for
traditional(T) and edge(E) strategies, the accuracy for
those cases are 100%. However, for approximation(A)
and edge-approximation techniques(E-A), the maximum
accuracy among available techniques are selected. More-
over, addition of the edge to approximation strategy
produces more accurate results. This behavior is due
to the fact that the system uses edge clouds to execute
part of the job or possibly increases the approximation
accuracy. Considering both Figures 3 and 4, we conclude
that approximation techniques have large impact on the
acceptance ratio with slightly less accuracy. Addition of
the edge resources results in more jobs to be executed
with higher accuracy.
Figure 5 collects the information regarding the job

waiting time (queue time). Having edge clouds can cause
less waiting time because edge resources use waiting time
to increase the accuracy of the approximation techniques
or execute part of the jobs.
The average cost of the jobs has been shown in

Figure 6. In general, approximation techniques(A and
E-A strategies) result in cheaper job completion due
to the reduction in job execution time. Specially, ANN
techniques is significantly cost beneficial due to small
execution time needed for ANN. However, we should
note that approximation techniques are not as accurate
as regular E+ execution.

327

 0
 0.005

 0.01
 0.015

 0.02
 0.025

JobType1

JobType2

JobType3

JobType1

JobType2

JobType3

JobType1

JobType2

JobType3

C
os

t (
$)

Scenario

T E A E-A

HighestHigherBase

Figure 6: Average Cost
VII. Conclusions

In this paper, we explore the advantages of approxi-
mation techniques by presenting a real use-case scenario
from the energy optimization domain. We demonstrate
that long running computation jobs can be approxi-
mated using various techniques to reduce computation
time without compromising the quality of results. This
work identifies that approximation techniques, which
have lower computational requirements, can be used
directly closer to the data generation source to reduce
latency of analysis, making more efficient use of available
resources, improve acceptance ratio of tasks (i.e. enable
a greater number of tasks to be completed within a
given deadline), and provide a source of revenue for
both owners of edge resources and network operators.
Integrating approximation techniques with more con-
ventional simulation can provide useful ways to improve
utilization of our emerging computational infrastructure.
We have determined four different approximation

techniques for EnergyPlus and investigated how these
approximation techniques can be deployed at the edge
the network and assessing their associated impact. Our
results show that some approximation techniques cannot
reach a desired accuracy threshold although comple-
tion time is improved. However when site resources are
limited, a combination of the edge and approximation
techniques help to increase the acceptance ratio.

Acknowledgements
This work is supported in part by NSF via grants numbers ACI

1640834, IIS 1546145 and ACI 1441376, and by US Department of
Energy through the SIRIUS grant number DE-SC0015160. The research
at Rutgers was conducted as part of the Rutgers Discovery Informatics
Institute (RDI2). We are also grateful for Prof. Yacine Rezgui and
his team at Cardiff University for collaboration on the energy simu-
lation scenario reported here, as part of the European SportE2 project
(http://www.sporte2.eu/).

References
[1] M. A. Anam, P. N. Whatmough, and Y. Andreopoulos.
Precision-energy-throughput scaling of generic matrix mul-
tiplication and discrete convolution kernels via linear pro-
jections. In Embedded Systems for Real-time Multimedia
(ESTIMedia), 2013 IEEE 11th Symposium on, pages 21–30.
IEEE, 2013.

[2] W. Baek and T. M. Chilimbi. Green: a framework for
supporting energy-conscious programming using controlled
approximation. In ACM Sigplan Notices, volume 45, pages
198–209. ACM, 2010.

[3] J. Diaz-Montes, M. AbdelBaky, M. Zou, and M. Parashar.
Cometcloud: Enabling software-defined federations for end-
to-end application workflows. IEEE Internet Computing,
19(1):69–73, 2015.

[4] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen. Ap-
proxhadoop: Bringing approximations to mapreduce frame-
works. In ACM SIGARCH Computer Architecture News,
volume 43, pages 383–397. ACM, 2015.

[5] L. McAfee and K. Olukotun. Emeuro: A framework for
generating multi-purpose accelerators via deep learning. In
Proceedings of the 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, pages
125–135. IEEE Computer Society, 2015.

[6] S. Mittal. A survey of techniques for approximate computing.
ACM Computing Surveys (CSUR), 48(4):62, 2016.

[7] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke. Paraprox:
Pattern-based approximation for data parallel applications.
In ACM SIGARCH Computer Architecture News, volume 42,
pages 35–50. ACM, 2014.

[8] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and
S. Mahlke. Sage: Self-tuning approximation for graphics
engines. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 13–24.
ACM, 2013.

[9] R. St Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Es-
maeilzadeh, A. Hassibi, L. Ceze, and D. Burger. General-
purpose code acceleration with limited-precision analog com-
putation. ACM SIGARCH Computer Architecture News,
42(3):505–516, 2014.

[10] V. Vassiliadis, K. Parasyris, C. Chalios, C. D. Antonopou-
los, S. Lalis, N. Bellas, H. Vandierendonck, and D. S.
Nikolopoulos. A programming model and runtime system
for significance-aware energy-efficient computing. In ACM
SIGPLAN Notices, volume 50, pages 275–276. ACM, 2015.

[11] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan.
Axnn: energy-efficient neuromorphic systems using approxi-
mate computing. In Proceedings of the 2014 international
symposium on Low power electronics and design, pages 27–
32. ACM, 2014.

[12] Q. Xu, T. Mytkowicz, and N. S. Kim. Approximate comput-
ing: A survey. IEEE Design & Test, 33(1):8–22, 2016.

[13] T. Yeh, P. Faloutsos, M. Ercegovac, S. Patel, and G. Rein-
man. The art of deception: Adaptive precision reduction
for area efficient physics acceleration. In Microarchitecture,
2007. MICRO 2007. 40th Annual IEEE/ACM International
Symposium on, pages 394–406. IEEE, 2007.

[14] A. R. Zamani, M. Zou, J. Diaz-Montes, I. Petri, O. Rana,
A. Anjum, and M. Parashar. Deadline constrained video
analysis via in-transit computational environments. IEEE
Transactions on Services Computing, 2017.

[15] CLoudLab. https://www.cloudlab.us, Last accessed on May
2017.

[16] FIDIA project. http://www.asfidia.it, Last accessed on June
2015.

[17] GRE Tunneling. http://lartc.org/howto/lartc.tunnel.gre.
html, Last accessed on May 2017.

[18] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu. Approxann:
an approximate computing framework for artificial neural
network. In Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition, pages 701–706. EDA
Consortium, 2015.

[19] Mininet. http://mininet.org, Last accessed on May 2017.
[20] M. Zou, A. R. Zamani, J. Diaz-Montes, I. Petri, O. Rana,

and M. Parashar. Leveraging in-transit computational capa-
bilities in federated ecosystems. In Service-Oriented System
Engineering (SOSE), 2016 IEEE Symposium on, pages 81–90.
IEEE, 2016.

[21] OVS project. http://openvswitch.org, Last accessed on May
2017.

[22] POX controller. https://openflow.stanford.edu/display/
ONL/POX+Wiki, Last accessed on May 2017.

328

