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Abstract 

 

A new family of thirteen phosphoramidate prodrugs (ProTides) of different 6-

substituted-5-fluorouridine nucleoside analogues were synthesized and evaluated as 

potential anticancer agents. In addition, antiviral activity against Chikungunya 

(CHIKV) virus was evaluated using a cytopathic effect inhibition assay. Although a 

carboxypeptidase Y assay supported a putative mechanism of activation of ProTides 

built on 5-fluorouridine with such C6-modifications, the Hint docking studies 

revealed a compromised substrate-activity for the Hint phosphoramidase-type enzyme 

that is likely responsible for phosphoramidate bioactivation through P-N bond 

cleavage and free nucleoside 5’-monophosphate delivery. Our observations may 

support and explain to some extent the poor in vitro biological activity generally 

demonstrated by the series of 6-substituted-5-fluorouridine phosphoramidates 

(ProTides) and will be of guidance for the design of novel phosphoramidate prodrugs.   

 

Keywords: Orotidine-5’-monophosphate decarboxylase (ODCase), nucleoside 
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Introduction 

 

Antimetabolites such as nucleoside analogues (NAs) play a crucial role in the 

clinical treatment of patients with cancer and viral infections.1-3 Nucleoside analogues 



are chemically-modified synthetic compounds that have been developed with the aim 

to closely mimic their natural counterparts. Hence, they have a good chance to be able 

to be taken-up by cells, metabolized and incorporated into nucleic acids to 

subsequently inhibit cellular division and/or viral replication. At the molecular level, 

the biological effect of NAs is usually exerted following their metabolic conversion 

into corresponding 5’-mono-, di- and tri-phosphate forms. In addition to their 

incorporation into newly synthesized DNA or RNA, NAs can target and inhibit 

intracellular enzymes like for example viral or human polymerases, ribonucleotide 

reductase4 (RNR), thymidylate synthase5 (TS) or orotidine-5’-monophosphate 

decarboxylase6a,b (ODCase). All these enzymes are involved either in the DNA or 

RNA synthesis, DNA repair or de novo pyrimidine nucleotide synthesis. Because de 

novo synthesis of pyrimidine nucleotides is upregulated during abnormal cell growth 

or during the replication of cells, when the demand for pyrimidine nucleotides is high, 

the ODCase can be considered as one of the potential anticancer targets.7 In fact, in 

the last decades a significant interest has been given to ODCase as a drug target for a 

number of modified nucleos(t)ide analogues, in particular C6-substituted UMP 

derivatives also in the antiviral and antimalarial arena.7-10 This is due to a pivotal role 

that ODCase plays in the de novo synthesis of pyrimidine nucleotides such as uridine-

5’-O-monophosphate (UMP, 2) from orotidine-5’-O-monophosphate (OMP, 1, Figure 

1) via decarboxylation6a and its extraordinary reaction rate enhancement (over 17 

orders of magnitude) in comparison with spontaneous uncatalyzed decarboxylation of 

OMP observed in water at neutral pH and ambient temperature.11a,b Present in most 

species except viruses, ODCase exists as a monofunctional enzyme in bacteria and 

parasites and as a part of the bifunctional enzyme UMP synthase in human and other 

high-developed organisms.12a,b A number of nucleoside-like and non-nucleoside 

ODCase inhibitors have been developed and reported in the literature13 with 6-

azauridine14a-c (3) and pyrazofurin15 (4) as representative examples of the nucleoside 

class of compounds being effective at the monophosphate level (Figure 2). In 2009, 

Kotra and co-workers reported in cell-based assays a variety of modified 5-

fluorouridine (Figure 2) nucleoside derivatives bearing at the 6-position of the 

pyrimidine nucleobase small groups like iodo, azido, amino, or ethyl as potent 

anticancer agents, and their corresponding monophosphate analogues as inhibitors of 

human (Hs) and Methanobacterium thermoautotrophicium (Mt) ODCase.16 Later, the 



same group disclosed novel N-modified cytidine-based (CMP) orotidine-5’-

monophosphate decarboxylase inhibitors with anti-parasitic activity, improved 

inhibition of the catalytic enzyme activity and binding conformations studies.17  

 

Figure 1. De novo synthetic pathway of OMP (1) to UMP (2) catalysed by ODCase. 

 

Nucleoside analogues, including the above-mentioned 6-substituted-5-fluorouridines 

are biologically effective after being phosphorylated into their 5’-monophosphate and 

further to their 5’-di- and 5’-triphosphate forms. The effectiveness of NAs can be 

impaired as a consequence of limited cellular uptake via nucleoside-specific 

transporters, down-regulation of nucleoside kinases responsible for the 

phosphorylation step (activation) and up-regulation of deactivating enzymes (i.e 

nucleo(s)(t)ide deaminases, purine/pyrimidine nucleoside phosphorylase…).18 To 

overcome these limitations, and thus improving their effectiveness, several prodrug 

approaches have been developed and reviewed over the last years. Notably, phosphate 

and phosphonate prodrugs such as phosphodiesters (HepDirect, CycloSal, SATE) or 

phosporamidates in which a nucleoside analogue is linked to the prodrug entity by 

either a phosphorus-oxygen or a phosphorus-nitrogen bond, respectively, have been 

extensively studied.19-21 One of the prominent strategies applied in the modulation of 

the activity of many nucleoside analogues and potentially overcoming the NA 

limitations accounting on both innate and acquired resistance of cancer cells to 

nucleoside analogues, is the ProTide technology pioneered by McGuigan and 

colleagues.22 Designed to mask the negative charges in a “monophosphate moiety” of 

a ProTide template, the ProTide approach introduces an amino acid ester and aryloxy 

entities as two lipophilic and biolabile groups linked to the phosphate part of the 

molecule. These two groups increase membrane permeability thereby circumventing 

the need for nucleoside-transporters and after their intracellular metabolism delivering 

a nucleoside monophosphate form suitable for further phosphorylation and exertion of 

its eventual biological activity.  



 

 

 

 

Figure 2. Examples of anticancer nucleoside analogues (3-11) targeting different 

intracellular enzymes to exert their eventual biological activity.  

 

The phosphoramidate (ProTide) technology has now an established position in the 

nucleotide prodrug field and led to the discovery of clinically successful drugs such as 

Sofosbuvir23 (FDA approval in 2013 for the treatment of HCV, 12) and others being 

subject of currently ongoing clinical trials as exemplified in Figure 3 for antiviral (i.e. 

stampidine24 (phase I for HIV treatment, 13), and anticancer (i.e. thymectacin)25 

(phase I/II, 14), NUC-103126 (phase II, 15) and NUC-337327 (phase I, 16) activity. In 

our laboratory we have extensively investigated and applied the ProTide technology 

to a number of antiviral28-30 and anticancer agents such as for example 5-fluoro-2’-

deoxyuridine (FdUrd),31 and gemcitabine.32 As part of our anticancer program and 

driven by our continuous interests in the discovery of novel anticancer agents we 

decided to apply the ProTide approach also to 6-substituted-5-fluorouridine 

analogues. In addition, a new class of 2’-fluoro-6-substituted uridine derivatives 

reported in the literature7 as potential inhibitors of ODCase revealed the lack of 



cellular anticancer activities most likely due to their poor activation to the 

corresponding 5’-monophosphate forms. Herein, we report the ProTide technology 

approach employed to 6-substituted-5-fluorouridine analogues (5-8) to design novel 

nucleoside phosphoramidates (25-37) as potential anticancer agents. These 

compounds were prepared with the aim to improve cellular uptake of their parent 

nucleoside analogues and intracellular delivery of their corresponding monophosphate 

forms. All compounds were preliminary tested for their IC50 activity in a panel of 

cancer cell lines including tumor cell lines of hematopoietic origin as these cell lines 

were found to be strongly inhibited by 6-substituted-5-fluorouridine analogues.16  

 

 

 

Figure 3. Examples of antiviral and anticancer phosporamidate-type prodrugs. 

 

 

Chemistry 

The 6-modified nucleosides 5-8 were prepared according to previously 

reported methods16 starting from a two-steps full protection of 5-fluorouridine (17) to 

give an intermediate (19) as shown in Scheme 1. The treatment of compound 19 with 

LDA followed by iodination with I2 led to the formation of the key nucleoside 20 that 

was further deprotected under acidic conditions to yield 6-I-FUR (5). In addition the 

iodo-derivative 20 was used to form three other 6-substituted nucleoside analogues, 

such as 6-azido-, 6-methyl- and 6-ethyl-FUR (21-23). The 6-azido-derivative 21 was 



prepared by treating 20 with NaN3 followed by removal of its silyl and isopropylidine 

moieties to give compound 6. The 6-methyl (22) and 6-ethyl (23) derivatives were 

successfully prepared using a modified procedure16 in one-pot reaction upon the 

treatment of 19 with LDA and subsequent addition of 2.0 eq. of CH3I. Interestingly, 

both derivatives 22 and 23, the latter compound obtained as a side product upon the 

additional methylation of monomethylated derivative 22, were isolated and further 

submitted to the standard acidic deprotection conditions to furnish nucleosides 7 and 

8, respectively. Next, the ProTide technology was applied to the four nucleoside 

analogues 5-8 leading to the formation of 6-substitited-5-fluorouridine ProTides 25-

37 in moderate yields. The key reagents used in the synthesis of ProTides are the 

arylaminoacyl phosphorochloridates represented by the general structure 24, formed 

by allowing the aryl phosphorodichloridates, either phenyl or 1-naphthyl, to react with 

L-alanine esters in the presence of triethylamine at low temperature (Scheme 2). The 

formation of phosphorochloridates 24, each obtained as a pair of diastereoisomers at 

the phosphate centre (1:1 mixture), was monitored and confirmed by 31P NMR. Due 

to their limited stability, 24 were used in the ProTide syntheses as crude materials or 

after rapid silica gel chromatography. Finally, the four 6-modified nucleosides 5-8 

were reacted with the key reagents 24 in the presence of NMI to give a number of 

ProTides 25-37 isolated as diastereisomeric mixtures (4-17% yield), as evidenced by 

31P NMR, HPLC (two peaks), 1H NMR, and 13C NMR (splitting of many nucleoside 

signals). Given the low yield of ProTides formation and requirement for an extensive 

and repeated chromatographic purification, the final compounds 25-37 were 

submitted to in vitro evaluation as diastereoisomeric mixtures. Because a primary 

goal of the following study was to establish preliminary biological activity, at this 

stage a coupling reaction conditions and methods of isolation of final ProTides as two 

separate diastereoisomeres were not optimized in the present report. 

 

 

Scheme 1. Synthesis of 6-substituted-5-fluorouridine nucleoside analogues 5-8a. 

 



 
 
aReagents and conditions: (a) acetone, H2SO4, 0 C, 2 h, 96%; (b) TBDMSCl, imidazole, 

DCM, 0 C then room temp 3 h, 90%; (c) LDA, I2, THF, –78 C, 7 h, 54%; (d) LDA, CH3I, 

THF, –78 C, 5 h, 20-42%; (e) 1, NaN3, DMF, room temp, 3 h, 74%; (f) 50% TFA/H2O, 0 C 

to room temp, 2 h, 80-92%. 

 

Scheme 2. General synthesis of 6-modified ProTides 25-37a. 

 

 
aReagents and conditions: (a*) for the synthesis of 1-naphthyl phosphorodichloridate POCl3, 

Et3N, anhydrous Et2O, –78 C for 1 h, then room temp for 1 h, 91%; phenyl 

phosphorodichloridate commercially available; (b) phenyl or 1-naphthyl 

phosphorodichloridate, Et3N, anhydrous DCM, –78 C for 1 h, then room temp for 1 – 3 h, 

70-90%; (c) NMI, anhydrous THF, room temp, 16 h, 4-17%. 



 

Figure 4. Four classes of 6-substituted-5-fluorouridine target ProTides (25-37). 

 

Biology 

 

The cytostatic activities of 6-substitited-FUR ProTides 25-37 (Figure 4) were 

evaluated against various cancer cell lines including human breast adenocarcinoma 

(MCF-7), colon (SW620), pancreatic (Mia-Pa-Ca), acute myeloid leukaemia (MV4-

11), erythroleukaemia (HEL92.1.7), non-Hodgkin’s lymphoma (RL) and Hodgkin’s 

lymphoma (HS445). The L-alanine-Bn-Naph 6-I-FUR prodrug 27 was among the 

most active in the series of all 6-modified-FUR ProTides with submicromolar IC50 

values ranging between 0.08 M (MV4-11) and 3.9 M in (MCF-7) cell cultures. The 

ProTide 27 proved to be equipotent as a cytostatic agent as its parent nucleoside 5 in 

SW620 cell cultures (0.52 vs 0.50 M) and 1.8–5.8-fold less potent against HS445 

(0.71 vs 0.38 M) and MCF-7 cell cultures (3.9 vs 0.67 M), respectively. The loss of 



inhibitory activity of the prodrug versus 5 was more significant for two other L-

alanine 6-I-FUR ProTides, the phenyl-pentyl 25 and phenyl-cyclohexyl 26, and the 

activity loss ranged between 2–65-fold and 9–228-fold, respectively.  

In the 6-N3-FUR series, the cytostatic activities for nucleoside analogue 6 were in the 

lower micromolar range (6–14 M), whereas for three 6-N3-FUR ProTides (30, 31, 

32) the IC50 values ranged between 6.0 and 44 M. The ProTides 31 and 32 turned 

out to be relatively equipotent in three cell lines of hematopoietic origin (MV4-11, RL 

and HS445) with a 2.3-fold boost in activity for 31 versus the parent nucleoside 6 (6.0 

M vs 14.0 M in the HS445 cell line). In general, the solid tumour cell lines were 

markedly less sensitive to the 6-N3-FUR ProTides in particular to the L-alanine 

phenyl hexyl (29) and phenyl ethyl (28) derivatives with the latter compound even 

being inactive up to 50 M in six out of seven cancer cell lines.  

Similar to nucleoside 6, the 6-Me-FUR nucleoside 7 exerted micromolar activity 

across all tumor cell lines tested ranging between 2.0 M (MV4-11) and 16 M (RL). 

In the 6-Me-FUR series, no cytostatic activity was detected for ProTides 33-36 up to 

50 M in the panel of cancer cell lines. A somewhat similar trend was noted for 6-Et-

FUR (8) versus its ProTide derivative 37, although the latter compound showed 

micromolar activity in three out of five tumour cell lines (IC50’s for SW620 10 M; 

for RL 27 M; and for HS445 10 M).  

 

 

Table 1. Cytotoxicity of 6-modifed-FUR ProTides 25-37 reported as aIC50 (M) 

Values. 



 

 

Cytotoxicity data reported as aIC50 (M) values (50% inhibitory concentration of cell 

viability). The compounds were added to the cell in duplicate and tested in 9 serial 

concentrations from 198 M to 0.0199 M. 

 

The screening of the compounds was performed on a broad variety of at least 6 

different cancer cell lines to cover different metabolic properties that may exist 

between different types of cancer cells that may result in a different outcome of the 

eventual cytostatic activity of the compounds. In fact, it was observed that the 

cytostatic activity for some of the 6-substituted-FUR derivatives and their 

corresponding prodrugs (i.e. 6-I-FUR, 6-Me-FUR) may significantly differ depending 

on the nature of the prodrug part in the molecule and/or the nature of the tumor cell 

line investigated. Although the molecular basis of the observed differences are not 

further investigated in detail yet, the cytostatic differences may be most likely due to 

i) differences in drug uptake (i.e. depending on the presence and activity of different 

nucleoside carriers in the tumor cell membrane) and/or efflux of the drugs by the 

different tumor cell lines, ii) differences in levels and activity of metabolic enzymes 

that intracellularly convert the particular nucleotide prodrug to the parent nucleotide 



5’-monophosphate, and/or iii) differences in nucleotide kinases and other enzymes 

that may convert the nucleoside 5’-monophosphate to the eventual 5’-triphosphate (i.e. 

nucleoside 5'-monophosphate kinases and nucleoside 5’-diphosphate kinases) or to the 

free nucleoside or nucleobase (i.e. 5’-nucleotidases, thymidine phosphorylase). Thus, 

a complex interplay of a broad variety of enzymes in the particular tumor cell lines 

will play a determining role in the eventual cytostatic activity of the nucleotide 

prodrugs. It would therefore be of importance to identify these different factors to 

clarify and understand the underlying metabolic processes that lead to the cytostatic 

activity of the different ProTides. 

Moreover, it has been suggested that anticancer activity of 6-substituted-FUR 

analogues might be exerted via inhibition of thymidylate synthase (TS). These 6-

modified nucleosides would be intracellularly degraded to their nucleic bases by 

thymidine phosphorylase (TPase) and further transformed to the corresponding 2’-

deoxynucleosides as acceptable substrates for TS.16 In the studies of 5-fluoro-2’-

deoxyuridine (FdUrd) ProTides, we have previously reported that FdUrd ProTides are 

completely stable in the presence of TP and uridine phosphorylase (UP).33 In this 

view, it might be speculated that the ProTide promoiety introduced into the 6-

substituted-5-fluorouridine analogues can potentially compromise activity of such 

compounds as it would prevent their conversion to 6-substituted-5-fluorouracil. Thus, 

a formation of 6-substituted-2’-deoxy-5-fluorouridine derivatives and their 

corresponding monophosphate forms would be impaired resulting in potential lack of 

TS inhibition.  

 

Antiviral Activity In vitro 

 

ODCase has been considered as a potential target for agents directed against RNA 

viruses such as flaviviruses, and togaviruses.34 Numerous pyrimidine-nucleosides and 

their derivatives including the phosphoramidate prodrug 6-aza-uridine-5’-(ethyl-

methoxyalaninyl)phosphate were shown to exhibit antiviral (RNA) activity in vitro 

and in vivo.14c In addition, 6-azauridine was also reported as an in vitro inhibitor of 

Chikungunya virus (CHIKV) via inhibition of host ODCase rather than by inhibiting 

viral specific enzymes.35a,b CHIKV as a re-emerging RNA virus for which currently 

there is no approved treatment or vaccination,36 is considered as a global health 

concern. Although, the recent expanding knowledge about the CHIKV genome allows 



design of inhibitors that would target individual viral enzymes,37a-c there is continuous 

need for the discovery of novel anti-CHIKV agents. In this view, we evaluated 

selected nucleosides (6, 7) and their ProTides 32, 33, 35-37 against Chikungunya 

virus in cell culture. Most of the compounds tested in the cytopathicity (CPE)-based 

assay were devoid of antiviral activity (EC50 of >200 M in comparison with the 

control 6-azauridine EC50 = 0.468 M). However, five compounds (6, 32, 7, 35 and 

37) proved to be cytotoxic in a CC50 range of 9.4-82 M. A significant difference in 

cytotoxicity was observed for the 6-alkylated nucleoside analogues 6-methyl-FUR (7, 

9.0 M) versus 6-ethyl-FUR (8, >200 M) as well as their corresponding ProTides, in 

particular 36 (>200 M) and 37 (53 M), respectively.  

 

Table 2. Antiviral activity and cytotoxicity in Vero cells of nucleosides 6, 7 and 8 and 

ProTides 32, 33, 35-37. 

 

EC50 or compound concentration required to inhibit the Chikungunya virus-induced 

cytopathic effect of 50%. The compounds were added to the cells in triplicate and 

tested in 6 serial concentrations from 198 M to 0.0196 M. 

 

 



Prodrugs such as phosphoramidates exert their biological activity after metabolic 

activation38 and intracellular release of the monophosphate form, which would next 

be phosphorylated to their di- and -triphosphates. In general, the first step in the 

activation pathway for ProTides is believed to be a hydrolysis of an ester moiety in 

the amino acid part of the prodrug to form the intermediate 29-A (Scheme 3). This 

step is mediated by a carboxyesterase-type enzyme and is followed by a spontaneous 

cyclization leading to a displacement of an aryl moiety via an internal nucleophilic 

attack of the carboxylate residue on the phosphorus to yield an unstable cyclic 

intermediate 29-B. In the following two final steps, the cyclic anhydride 29-B is 

hydrolyzed to the intermediate 29-C, which further give rise to the corresponding 

monophosphate 29-D upon P-N bond cleavage mediated by the phosphoramidase-

type enzyme.39 In order to assess whether also 6-substituted-FUR ProTides act as a 

good substrate for the carboxyesterase-type enzyme and hence would be activated by 

the same common pathway, we performed the carboxypeptidase Y assay on one of 

the 6-N3-FUR ProTide, the compound 29 using a reported assay procedure.40 Thus, 

compound 29 dissolved in acetone-d6 in the presence of Trizma buffer (pH 7.6) was 

treated with carboxypeptidase Y and submitted to 31P NMR analysis over 14 h (Figure 

5). Two peaks recorded in the blank spectrum at P 3.64 and 3.82 ppm, correlate to the 

diastereoisomers of the parent ProTide 29. Within the first 10 min of the experiment 

the prodrug 29 was rapidly hydrolysed to the first metabolite 29-A, lacking the ester 

moiety (represented as two signals at P 4.68 and 4.87 ppm), which further was 

processed to the corresponding metabolite 29-C (single peak at P 7.17 ppm). A 

complete conversion of the ProTide 29 to 29-C occurred within approximately 60 min 

with an estimated half-life of less than 5 min. 

 

Scheme 3. Proposed Activation Route of 6-N3-FUR ProTide 29. 



 
 

 

 
Figure 5. Carboxypeptidase Y-mediated cleavage of ProTide 29 as monitored by 31P 

NMR. 
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Docking Studies: Human Hint Enzyme 

 

The last enzymatic step required for the activation of phosphoramidate prodrugs is the 

cleavage of the P-N bond catalysed by the phosphoramidase-type enzyme, which 

belongs to the human histidine triad nucleotide-binding protein (Hint).41 The 

efficiency of this step determines the eventual activity of ProTides since during this 

step the free nucleoside monophosphate form is intracellularly delivered. In order to 

investigate the potential interaction between Hint protein and metabolite 29-C and to 

asses its potentiality as a substrate of this enzyme, a series of molecular docking 

studies using the human Hint enzyme (PDB id: 1KPF)42 were performed. The 

catalytic active-site is well-defined by the co-crystallized adenosine monophosphate 

(AMP), with the three histidine residues interacting with the substrate and Ser107, an 

important amino acid reported as playing a central role in catalysing the P-N bond 

cleavage through an acid-base catalysis,43 making an interaction with the phosphate 

head. Figure 6 shows the metabolite 29-C proposed binding mode into the Hint 

enzyme active pocket. The nucleobase and the sugar are oriented in a different 

manner if compared to the AMP substrate thus forcing the phosphate moiety in a not-

ideal position for the cleavage of the P-N bond (lacking direct interaction with 

Ser107). This results in a binding that could be considered as being not optimal for 

the proper enzyme catalytic activity. The docking results seem to suggest that 29-C 

and, as a consequence, the other members of this new ProTide series, might not be 

optimal substrates for Hint. Therefore, the release of the monophosphate form could 

be drastically reduced or even completely impeded. These findings are in line with 

previously reported data in which the Hint enzyme has been found to have a lower 

affinity for pyrimidine than purine derivatives43,44 and could potentially explain the 

substantial reduction or even the total lack of cytostatic activity of 6-substituted-FUR 

ProTides in general when compared with the parent nucleoside. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Figure 6. Proposed binding mode of metabolite 29-C (carbon atoms in orange) in the 

Hint-1 enzyme. The nucleobase and the sugar occupy the binding site in a different 

manner when compared with AMP (carbon atoms in green), forcing the P-N bond 

away from the catalytic Ser107. 

 

Conclusion 

In conclusion, we report on the application of the ProTide approach to 6-

substituted-5-fluorouridine nucleoside analogues bearing at the C6-position of the 5-

fluorouridine scaffold small substituents such as iodo, azido, methyl and ethyl with 

the aim to prepare potential anticancer and anti-viral agents. It is worth mentioning 

that during the one-pot synthesis of the 6-alkyl substituted-5-fluorouridine analogues 

using methyl iodide and LDA, two derivatives were formed and isolated, being the 

target 6-methyl- and 6-ethyl-5-fluorouridine (as a side-product), respectively. In 

general, in our in vitro studies, 6-substituted-5-fluorouridine ProTides revealed to be 

less active in comparison with the parent nucleosides. Among four different 6-

substituted-5-fluorouridine ProTide series, only the 6-iodo- (27) and 6-azido- (31 and 

32) compounds were equipotent to the parent nucleosides 5 and 6. The differences in 

and/or lack of anticancer and anti-CHIKV activity in most cases may indicate either 

differences in drug uptake depending on the tumor cell, differences in levels and 

activity of metabolic enzymes and/or poor bioactivation and thus inefficient delivery 

of a free nucleoside 5’-monophosphate form, respectively. Although carboxypeptidase 



Y was able to efficiently activate these phosphoramidate prodrugs to their nucleoside 

aminoacid phosphate key metabolite, the ProTides seem to be poor, if any substrate 

for the Hint enzyme. The HINT docking studies performed with 6-azido-flurouridine 

metabolite indeed showed that structures bearing modifications at the C6-position in a 

nucleobase moiety are not recognized as good substrates for the phosphoramidase-

type Hint enzyme. Overall, the application of the phosphoramidate approach to 6-

substituted-5-fluorouridine nucleosides was only modestly successful since none of 

the ProTides tested showed a significant boost in cytostatic activity against a broad 

panel of cancer cell lines in comparison with the parent nucleoside analogues. These 

finding should be kept in mind for the design of novel phosphoramidate ProTides. 

 

Experimental Section 

MTS Cell Viability Assay.  The assay was contracted and carried-out by 

WuXi AppTec (Shanghai) Co., Ltd. The tumour cell lines MCF-7, SW620, Mia-Pa-

Ca, MV4-11, HEL92.1.7, RL and HS445 were seeded at cell densities of 0.5 to 100 x 

103 cells/well in a 96-well plate the day before drug incubation. Then the plates were 

incubated for 72 hours with the different concentrations of compound to be tested. 

After the incubation period, 50 L of MTS was added and the tumour cells were 

incubated for 4 h at 37 C. The data were read and collected by a Spectra Max 340 

Absorbance Microplate Reader. The compounds were tested in duplicate with 9 serial 

concentrations (3.16-fold titrations with 198 μM as the highest concentration), and the 

data were analyzed by XL-fit software.  

 Chikungunya CPE-based EC50 Assay. The assay was contracted and carried- 

out by IBT Bioservices. Vero cells were seeded in 96-well plates and incubated 

overnight. The next day 6 serial dilutions (starting at 198 μM with 6.32-fold dilutions) 

of the test compounds and a control compound (6-azauridine) were prepared in 

culture medium. The growth medium was aspirated from the cells and the compound 

dilutions were added to the cells in triplicate for a one-hour incubation period. 

Thereafter, the virus was added at a predetermined MOI (0.01) and the cells were 

incubated for 3 days. The cell cultures were then fixed and stained with crystal violet 

in glutaric dialdehyde solution. The optical density was determined and the EC50’s 

were calculated using the uninfected (cell only) control as 0% CPE and the controls 

without compound (virus only) as 100% CPE using a 4-PL curve fit of the OD. 



 Cytotoxicity Assay. The assay was contracted and carried-out by IBT 

Bioservices. Vero cells were seeded in 96-well plates and incubated overnight. The 

next day serial dilutions of the test compounds and a control compound (6-azauridine) 

were prepared. The growth medium was aspirated from the cells and the compound 

dilutions were added in triplicate. Cells that were incubated with medium only were 

used for generating the 0% cytotoxicity data. Medium was aspirated and cells were 

lysed for evaluation of the ATP content using Promega’s CelltiterGlo kit on day 3. 

The resulting luciferase luminescence was quantified and used to calculate the CC50 

using a 4-PL curve fit of the OD.  

Carboxypeptidase Y (EC 3.4.16.1) Assay. The experiment was carried-out 

by dissolving ProTide 29 (5.0 mg) in acetone-d6 (0.15 mL) followed by addition of 

0.30 mL of Trizma buffer (pH 7.6). After recording the control 31P NMR at 25 C, a 

previously defrosted carboxypeptidase Y (0.1 mg dissolved in 0.15 mL of Trizma) 

was added to the sample, which was then immediately submitted to the 31P NMR 

analyses (at 25 C). The spectra were recorded every 7 minutes and followed 14 

hours. 31P NMR recorded data were processed and analyzed with the Bruker Topspin 

2.1 program.  

 

Chemistry. General Procedures. Solvents and Reagents. The following anhydrous 

solvents were purchased from Sigma-Aldrich: dichloromethane (CH2Cl2), diethyl 

ether (Et2O), tetrahydrofuran (THF), dimethylformamide (DMF), and any other 

reagents used. Amino acid esters commercially available were purchased from 

Novabiochem. All reagents commercially available were used without further 

purification. 

Thin Layer Chromatography (TLC).  

Precoated aluminum backed plates (60 F254, 0.2 mm thickness, Merck) were 

visualized under both short- and long-wave ultraviolet light (254 and 366 nm). 

Preparative TLC plates (20 cm × 20 cm, 500-2000 μm) were purchased from Merck. 

Flash Column Chromatography. Flash column chromatography was carried-out 

using silica gel supplied by Fisher (60A, 35-70 μm). Glass columns were slurry- 

packed using the appropriate eluent with the sample being loaded as a concentrated 

solution in the same eluent or preadsorbed onto silica gel. Fractions containing the 

product were identified by TLC, pooled and the solvent was removed in vacuo. 



High Performance Liquid Chromatography (HPLC). The purity of the final 

compounds was verified to be >95% by HPLC analysis using either i) 

ThermoSCIENTIFIC, SPECTRA SYSTEM P4000, detector SPECTRA SYSTEM 

UV2000, Varian Pursuit XRs 5 C18, 150 x 4.6 mm (as an analytical column) or ii) 

Varian Prostar (LC Workstation-Varian Prostar 335 LC detector), Thermo 

SCIENTIFIC Hypersil Gold C18, 5, 150 x 4.6 mm (as an analytical column). For the 

method of elution, see the experimental part.  

Nuclear Magnetic Resonance (NMR). 1H NMR (500 MHz), 13C NMR (125 MHz), 

31P NMR (202 MHz) and 19F NMR (470 MHz) were recorded on a Bruker Avance 

500 MHz spectrometer at 25 ºC. Chemical shifts (δ) are quoted in parts per million 

(ppm) relative to internal MeOH-d4 (δ 3.34 1H-NMR, δ 49.86 13C-NMR) and CHCl3-

d4 (δ 7.26 1H NMR, δ 77.36 13C NMR) or external 85 % H3PO4 (δ 0.00 31P NMR). 

Coupling constants (J) are measured in Hertz. The following abbreviations are used in 

the assignment of the NMR signals: s (singlet), d (doublet), t (triplet), q (quartet), m 

(multiplet), bs (broad singlet), dd (doublet of doublet), dt (doublet of triplet), app 

(apparent). The assignment of the signals in 1H NMR and 13C NMR was done based 

on the analysis of coupling constants and additional two-dimensional experiments 

(COSY, HSQC, HMBC, PENDANT).  

Mass spectromethry (MS). Low resolution mass spectra were performed on Bruker 

Daltonics microTof-LC, (atmospheric pressure ionization, electron spray mass 

spectroscopy) in either positive or negative mode.  

Purity of final compounds. The ≥95% purity of all the final compounds was 

confirmed using HPLC analysis.  

 

The following compounds 2’,3’-O-isopropylidene-5-fluoro-uridine (18), 5’-O-

(t-butyldimethylsilyl)-2’,3’-O-isopropylidene-5-fluoro-uridine (19), fully protected 6-

substituted nucleosides 20-23 and their deprotected analogues 5-8 were prepared 

according to the slightly modified procedures previously reported in the literature and 

the experimental data are in agreement with the data reported.16  

5’-O-(t-Butyldimethylsilyl)-2’,3’-O-isopropylidene-5-fluoro-uridine (19). To a 

stirred suspension of 5-fluorouridine (3.0 g, 11.4 mmol) in anhydrous acetone (120 

mL) H2SO4 (1.5 mL) was added dropwise at 0C. The reaction mixture was stirred for 

2 h at room temperature. The mixture was then neutralized with 6N NH4OH and 



evaporated to afford crude product which was purified by column chromatography 

with gradient of MeOH in DCM (5 to 8%) to yield 2’,3’-O-isopropylidene-5-fluoro-

uridine (18) as a white solid (3.30 g, 96%). 1H NMR (500 MHz, MeOD): δ 8.18 (1H, 

d, J = 7.0 Hz, H-6), 5.92 (1H, d, J = 2.5 Hz, H-1’), 4.89 (1H, dd, J = 6.5, 2.5 Hz, H-

2’), 4.87 – 4.85 (1H, apparent m, H-3’), 4.25 (1H, apparent q, J = 3.0 Hz H-4’) 3.83 

(1H, dd, J = 12.0, 3.0 Hz, 1 x H-5’), 3.75 (1H, dd, J = 12.0, 3.0 Hz, 1 x H-5’), 1.56 

(3H, s, CH3),
 1.37 (3H, s, CH3). A solution of 18 (3.30 g, 10.91 mmol) in anhydrous 

DCM (130 mL) was treated with imidazole (1.48 g, 21.83 mmol), and TBDMSCl 

(1.64 g, 10.91 mmol) at 0C. The reaction mixture was allowed to warm to room 

temperature and was stirred for 3 h. After solvent evaporation, the crude residue was 

re-dissolved in EtOAc (60 mL), washed with water (30 mL), brine (30 mL), and dried 

with Na2SO4. Evaporation of the solvent followed by purification by column 

chromatography with EtOAc/Hexane (3:7) gave 5’-O-(t-butyldimethylsilyl)-2’,3’-O-

isopropylidene-5-fluoro-uridine as a foam (4.08 g, 90%). 1H NMR (500 MHz, 

CDCl3): δ 7.99 (1H, d, J = 7.0 Hz, H-6), 5.87 (1H, d, J = 1.5 Hz, H-1’), 4.84 – 4.79 

(2H, m, H-2’, H-3’), 4.36 (1H, apparent q, J = 3.0 Hz H-4’), 3.98 (1H, d, J = 11.5, 3.0 

Hz, 1 x H-5’), 3.87 (1H, d, J = 11.5, 3.0 Hz, 1 x H-5’), 1.56 (3H, s, CH3),
 1.37 (3H, s, 

CH3), 0.94 (s, 9H, C(CH3)3), 0.14 (6H, s, Si(CH3)2); 
13C NMR (125 MHz, MeOD): δC 

158.27 (d, 2JC-F = 23.5 Hz, C-4), 149.40 (C-2), 140.30 (d, 1JC-F = 231.0 Hz, C-5), 

125.31 (d, 2JC-F = 34.5 Hz, C-6), 113.45 (C(CH3)3), 91.81 (C-1’), 87.23 (C-4’), 85.17 

(C-2’), 80.72 (C-3’), 63.27 (C-5’), 26.08 (CH3), 24.96 (C(CH3)3), 24.07 (CH3), -6.81 

(Si(CH3)2). 

5’-O-(t-Butyldimethylsilyl)-2’,3’-O-isopropylidene-5-fluoro-6-iodouridine (20). 5’-

O-(t-Butyldimethylsilyl)-2’,3’-O-isopropylidene-5-fluoro-uridine 19 (3.1 g, 7.44 

mmol) was dissolved in anhydrous THF (40 mL) and at -78 C was treated with 

dropwise addition of LDA (11.16 mL, 22.32 mmol, 2.0 M solution in THF). After 

stirring for 1 h, iodine (2.83 g, 11.2 mmol) dissolved in anhydrous THF (50 mL) was 

added slowly at -78 C and the resulting mixture was stirred for an additional 6 h in 

dark. The reaction was quenched with water and brought to room temperature and 

diluted with EtOAc (80 mL). The organic layer was washed with water (40 mL), 

brine (40 mL), and dried over Na2SO4. The solvent was evaporated and further 

purified by column chromatography using EtOAc/Hexane (3:7) as an eluent to afford 

the product as an yellow foam (2.17 g, 54%). 1H NMR (500 MHz, CDCl3): δ 8.87 



(1H, bs, NH), 6.10 (1H, d, J = 1.5 Hz, H-1’), 5.22 (1H, dd, J = 6.5, 1.5 Hz, H-2’), 4.83 

(1H, dd, J = 6.0, 4.0 Hz, H-3’), 4.21 – 4.18 (1H, m, H-4’) 3.84 – 3.77 (2H, m, 2 x H-

5’), 1.58 (3H, s, CH3),
 1.37 (3H, s, CH3), 0.90 (s, 9H, C(CH3)3), 0.07 (6H, s, 

Si(CH3)2).  

5-Fluoro-6-Iodouridine (5) A stirred solution of 5’-O-(t-butyldimethylsilyl)-2’,3’-O-

isopropylidene-5-fluoro-6-iodouridine 20 (2.0 g, 3.68 mmol) in water (6 mL) was 

treated with 50% aqueous (6 mL) at 0C, brought to room temperature, and stirred for 

an additional 2 h in dark. The reaction mixture was concentrated under vacuum and 

was purified by column chromatography with a gradient of MeOH in DCM (5% to 

10%) to give a product as a yellowish solid (1.24 g, 87%).  1H NMR (500 MHz, 

MeOD): δ 5.96 (1H, d, J = 3.5 Hz, H-1’), 4.76 (1H, dd, J = 6.5, 3.5 Hz, H-2’), 4.36 

(1H, t, J = 6.5 Hz, H-3’), 3.92 (1H, td, J = 6.0, 3.0 Hz, H-4’) 3.83 (1H, dd, J = 12.0, 

3.0 Hz, 1 x H-5’), 3.70 (1H, dd, J = 12.0, 6.0 Hz, 1 x H-5’); 13C NMR (125 MHz, 

MeOD): δC 156.05 (d, 2JC-F = 29.0 Hz, C-4), 148.74 (C-2), 145.29 (d, 1JC-F = 228.0 

Hz, C-5), 105.17 (d, 2JC-F = 39.0 Hz, C-6), 103.16 (C-1’), 86.29 (C-4’), 73.42 (C-2’), 

71.32 (C-3’), 63.71 (C-5’); MS (ES+) m/z: 387.96 (M + Na+, 100%), Accurate mass: 

C9H10FIN2O6 required 387.96 found 410 (M + Na+).  

5’-O-(t-Butyldimethylsilyl)-2’,3’-O-isopropylidene-5-fluoro-6-azidouridine (21). 

The compound 20 (1.86 g, 3.43 mmol) dissolved in anhydrous DMF (15 mL) was 

treated with NaN3 (0.22 g, 3.43 mmol). The reaction mixture was stirred for 3 h in 

dark. After that time, the solvent was evaporated, and the residue was re-dissolved in 

EtOAc (30 mL), washed with brine, and dried over Na2SO4. The combined organic 

layers were evaporated and to afford a yellowish residue which was purified by 

column chromatography using DCM/MeOH (99:1) as an eluent to give compound 2 

as a light-yellow solid (1.16 g, 74%). 1H NMR (500 MHz, CDCl3): δ 9.40 (1H, s, 

NH), 6.08 (1H, d, J = 1.5 Hz, H-1’), 5.15 (1H, dd, J = 6.5, 1.5 Hz, H-2’), 4.80 (1H, dd, 

J = 6.5, 4.5 Hz, H-3’), 4.16 – 4.12 (1H, m, H-4’), 3.84 – 3.77 (2H, m, 2 x H-5’), 1.56 

(3H, s, CH3),
 1.35 (3H, s, CH3), 0.90 (s, 9H, C(CH3)3), 0.07 (6H, s, Si(CH3)2). MS 

(ES+) m/z: 480.2 (M + Na+, 20%), Accurate mass: C18H28FN5O6Si required 457.52 

found 480.2 (M + Na+), 937.4 (2 x M + Na+). 

5-Fluoro-6-azidouridine (6) A stirred solution of 5’-O-(t-butyldimethylsilyl)-2’,3’-O-

isopropylidene-5-fluoro-6-azidouridine 21 (1.10 g, 2.18 mmol) in water (10 mL) was 

treated with 50% aqueous (10 mL) at 0C, brought to room temperature, and stirred 



for an additional 2 h in dark. The reaction mixture was concentrated under vacuum 

and was purified by column chromatography with a gradient of MeOH in DCM (6% 

to 12%) to give a product as a yellowish solid (0.56 g, 85%). 1H NMR (500 MHz, 

MeOD): δ 5.95 (1H, d, J = 3.5 Hz, H-1’), 4.65 (1H, dd, J = 6.5, 3.5 Hz, H-2’), 4.32 

(1H, t, J = 6.5 Hz, H-3’), 3.86 – 3.81 (2H, m, H-4’, 1 x H-5’), 3.70 – 3.67 (1H, m, 1 x 

H-5’); 13C NMR (125 MHz, MeOD): δC 156.54 (d, 2JC-F = 26.0 Hz, C-4), 148.40 (C-

2), 137.20 (d, 1JC-F = 213.0 Hz, C-5), 132.8 (d, 2JC-F = 24.0 Hz, C-6), 91.60 (C-1’), 

86.29 (C-4’), 84.50 (C-2’), 71.94 (C-3’), 69.0 (C-5’); MS (ES+) m/z: 326.20 (M + Na+, 

100%), Accurate mass: C9H10FN5O6 required 303.06 found 326.20 (M + Na+). 

5’-O-(t-Butyldimethylsilyl)-2’,3’-O-isopropylidene-5-fluoro-6-methyluridine (22) 

and 5’-O-(t-Butyldimethylsilyl)-2’,3’-O-isopropylidene-5-fluoro-6-ethyluridine 

(23). 5’-O-(t-Butyldimethylsilyl)-2’,3’-O-isopropylidene-5-fluoro-uridine 19 (3.5 g, 

8.40 mmol) was dissolved in anhydrous THF (40 mL) and at -78 C was treated with 

dropwise addition of LDA (12.6 mL, 25.20 mmol, 2.0 M solution in THF). After 

stirring for 1 h, CH3I (1.04 mL, 16.80 mmol) dissolved in anhydrous THF (5 mL) was 

added and, and the mixture was stirred for 5 h at -78 C. The reaction was quenched 

with water (7 mL) and allowed to warm to rt and then dissolved in ethyl acetate (100 

mL). The organic layer was washed with water (40 mL), brine (40 mL), and dried 

over NaSO4. The solvent was evaporated and the residue was purified by column 

chromatography using hexane/EtOAc (7:3) as an eluent to give the product 23 (fast 

eluting fraction, 0.75 g, 20%), and the product 22 (slow eluting fraction, 1.53 g, 42%), 

both as a white foam. 1H NMR (500 MHz, CDCl3): δ 10.40 (1H, s, NH), 5.63 (1H, d, 

J = 1.0 Hz, H-1’), 5.18 (1H, dd, J = 6.0, 1.0 Hz, H-2’), 4.78 (1H, dd, J = 6.0, 4.5 Hz, 

H-3’), 4.13 – 4.10 (1H, m, H-4’), 3.80 – 3.74 (2H, m, 2 x H-5’), 2.31 (3H, d, JH-F = 3.5 

Hz, C-6-CH3), 1.50 (3H, s, CH3),
 1.30 (3H, s, CH3), 0.83 (s, 9H, C(CH3)3), 0.02 (6H, 

s, Si(CH3)2).
 13C NMR (125 MHz, CDCl3): δC 156.70 (d, 2JC-F = 28.0 Hz, C-4), 149.20 

(C-2), 138.40 (d, 1JC-F = 228.0 Hz, C-5), 137.85 (d, 2JC-F = 24.3 Hz, C-6), 113.78 

(C(CH3)3), 91.89 (C-1’), 89.58 (C-4’), 84.12 (C-2’), 81.70 (C-3’), 64.10 (C-5’), 27.20 

(CH3), 25.87 (C(CH3)3), 25.31 (CH3), 11.92 (d, JC-F = 2.9 Hz, C-6-CH3), -5.31 

(Si(CH3)2). 

5’-O-(t-Butyldimethylsilyl)-2’,3’-O-isopropylidene-5-fluoro-6-ethyluridine (23). δ 

9.70 (1H, s, NH), 5.57 (1H, d, J = 1.5 Hz, H-1’), 5.16 (1H, dd, J = 6.5, 1.5 Hz, H-2’), 

4.77 (1H, dd, J = 6.5, 4.5 Hz, H-3’), 4.14 – 4.10 (1H, m, H-4’), 3.81 – 3.75 (2H, m, 2 



x H-5’), 2.82 – 2.65 (2H, m, C-6-CH2CH3), 1.51 (3H, s, CH3),
 1.30 (3H, s, CH3), 1.27 

(3H, t, J = 8.0 Hz, C-6-CH2CH3), 0.83 (9H, s, C(CH3)3), 0.04 (6H, s, Si(CH3)2); 
13C 

NMR (125 MHz, CDCl3): δC 156.90 (d, 2JC-F = 27.8 Hz, C-4), 149.28 (C-2), 143.00 

(d, 2JC-F = 23.9 Hz, C-6), 137.64 (d, 1JC-F = 229.3 Hz, C-5), 113.91 (C(CH3)3), 91.88 

(C-1’), 89.68 (C-4’), 84.26 (C-2’), 81.93 (C-3’), 64.19 (C-5’), 27.24 (CH3), 25.92 

(C(CH3)3), 25.31 (CH3), 18.79 (C-6-CH2CH3), 12.44 (C-6-CH2CH3), -5.23 

(Si(CH3)2). 

5-Fluoro-6-methyluridine (7). A stirred solution of 5’-O-(t-butyldimethylsilyl)-2’,3’-

O-isopropylidene-5-fluoro-6-methyluridine 22 (1.43 g, 3.32 mmol) in water (10 mL) 

was treated with 50% aqueous (10 mL) at 0C, brought to room temperature, and 

stirred for an additional 2 h. The reaction mixture was concentrated under vacuum 

and was purified by column chromatography with a gradient of MeOH in DCM (6% 

to 10%) to give a product as a yellowish solid (0.84 g, 92%). 
1H NMR (500 MHz, 

MeOD): δ 5.53 (1H, d, J = 4.0 Hz, H-1’), 4.78 (1H, dd, J = 6.5, 4.0 Hz, H-2’), 4.33 

(1H, t, J = 6.5 Hz, H-3’), 3.93 – 3.90 (1H, m, H-4’), 3.82 (1H, dd, J = 12.0, 3.0 Hz, 1 

x H-5’), 3.69 (1H, dd, J = 12.0, 5.5 Hz, 1 x H-5’), 2.38 (3H, d, JH-F = 4.0 Hz, C-6-

CH3); 
13C NMR (125 MHz, MeOD): δC 158.75 (d, 2JC-F = 27.8 Hz, C-4), 150.77 (C-

2), 140.20 (d, 2JC-F = 24.5 Hz, C-6), 139.71 (d, 1JC-F = 225.5 Hz, C-5), 94.12 (C-1’), 

86.32 (C-4’), 72.81 (C-2’), 71.40 (C-3’), 63.62 (C-5’), 12.02 (d, 3JC-F = 3.80 Hz, C-6-

CH3); MS (ES+) m/z: 299.2 (M + Na+, 100%), Accurate mass: C10H13FN2O6 required 

276.22 found 299 (M + Na+). Reverse-phase HPLC, eluting with H2O/AcCN from 

100/0 to 0/100 in 35 min, F = 1 mL/min,  = 254, tR = 5.01 min. 

5-Fluoro-6-ethyluridine (8). A stirred solution of 5’-O-(t-butyldimethylsilyl)-2’,3’-O-

isopropylidene-5-fluoro-6-ethyluridine 23 (0.75 g, 1.68 mmol) in water (10 mL) was 

treated with 50% aqueous (10 mL) at 0C, brought to room temperature, and stirred 

for an additional 2 h. The reaction mixture was concentrated under vacuum and was 

purified by column chromatography with a gradient of MeOH in DCM (6% to 10%) 

to give a product as a yellowish solid (0.38 g, 80%). 
1H NMR (500 MHz, MeOD): δ 

5.34 (1H, d, J = 4.0 Hz, H-1’), 4.64 (1H, dd, J = 6.5, 4.0 Hz, H-2’), 4.19 (1H, t, J = 6.5 

Hz, H-3’), 3.79 – 3.76 (1H, m, H-4’), 3.67 (1H, dd, J = 12.0, 3.0 Hz, 1 x H-5’), 3.59 

(1H, dd, J = 12.0, 5.5 Hz, 1 x H-5’), 2.73 – 2.60 (2H, m, C-6-CH2CH3), 1.18 (3H, t, J 

= 7.5 Hz, C-6-CH2CH3); 
13C NMR (125 MHz, MeOD): δC 157.50 (d, 2JC-F = 28.8 Hz, 

C-4), 149.52 (C-2), 143.68 (d, 2JC-F = 23.8 Hz, C-6), 137.62 (d, 1JC-F = 225.0 Hz, C-



5), 92.71 (C-1’), 85.01 (C-4’), 71.38 (C-2’), 70.06 (C-3’), 62.38 (C-5’), 18.25 (d, 3JC-F 

= 2.5 Hz, C-6-CH2CH3), 11.31 (C-6-CH2CH3); MS (ES+) m/z: 313.25 (M + Na+, 

100%), Accurate mass: C11H15FN2O6 required 290 found 313 (M + Na+). Reverse-

phase HPLC, eluting with H2O/AcCN from 100/0 to 0/100 in 35 min, F = 1 mL/min, 

 = 254, tR = 6.05 min. 

 

General Method for the Preparation of phosphorochloridates (24).45 Anhydrous 

triethylamine (2.0 mol eq.) was added dropwise at -78 ºC to a stirred solution of the 

appropriate aryl dichlorophosphate (1.0 mol eq.) and an appropriate amino acid ester 

(1.0 mol eq.) in anhydrous DCM under argon atmosphere. Following the addition, the 

reaction mixture was allowed to slowly warm to room temperature and stirred for 1-2 

hours. A formation of a desired compound was monitored by 31P NMR. After the 

reaction was completed, the solvent was evaporated under reduced pressure and the 

resulting residue was re-dissolved in anhydrous Et2O and filtered. The filtrate was 

reduced to dryness to give a crude product as an oil, which was in some cases used 

without further purification in the next step. Most of aryl phosphorochloridates, in 

particular those obtained from the amino acid tosylate salt were purified by flash 

column chromatography using EtOAc/Hexane (7:3) as an eluent.  

 

General method for the preparation of phosphoramidates. 

To a stirring solution of nucleoside analogue (1.0 mol/eq.) in anhydrous THF, an 

appropriate phosphorochloridate (3.0 mol/eq.) dissolved in anhydrous THF was added 

dropwise under an argon atmosphere. To that reaction mixture NMI (5.0 mol/eq.) was 

added dropwise over 5 minutes at –78°C under an argon atmosphere. After 15 

minutes, the reaction mixture was let to rise to room temperature and stirred overnight 

(16 - 18h). The solvent was removed under reduced pressure and the residue was re-

dissolved in DCM and washed with 0.5 M HCl (3 x 3 mL). The organic layer was 

dried over MgSO4, filtered, reduced to dryness and purified by column 

chromatography with gradient of eluent (DCM/MeOH 99:1 to 97:3 to 95:5) followed 

by preparative TLC purification (DCM/MeOH 95:5). 

5-Fluoro-6-iodouridine-5’-O-[phenyl-(pentoxy-L-alaninyl)] phosphate (25). 

Prepared according to the standard procedure from 5-fluoro-6-iodouridine 5 (0.20 g, 

0.51 mmol), NMI (0.20 mL, 2.57 mmol), phenyl-(pentoxy-L-alaninyl)-



phosphorochloridate (0.43 g, 1.03 mmol). After column purification on silica gel 25 

was obtained as a yellowish solid (0.021 g, 6%). 31P NMR (202 MHz, MeOD): δP 

3.52, 3.46; 1H NMR (500 MHz, MeOD): δH 7.36 – 7.33 (2H, m, H-Ar), 7.24 – 7.22 

(2H, m, H-Ar), 7.19 – 7.16 (1H, m, H-Ar), 5.96 (1H, apparent t, J = 3.0 Hz, H-1’), 

4.73, 4.70 (1H, 2 x dd, J = 6.0, 2.5 Hz, H-2’), 4.53 – 4.34 (2H, m, H-3’, 1 x H-5’), 

4.27 – 4.22 (1H, m, 1 x H-5’), 4.18 – 4.02 (2H, m, OCH2), 3.98 – 3.94 (1H, m, H-4’), 

3.64 – 3.59 (1H, m, NHCHCH3), 1.71 – 1.60 (6H, m, 3 x CH2 ester), 1.39 – 1.32 (3H, 

m, NHCHCH3), 0.96 – 0.91 (3H, m, CH3);
 13C NMR (125 MHz, MeOD): δC 173.59, 

172.90 (C=O ester), 156.56 (C-4), 151.75, 151.26 (C-2), 149.19 (C-Ar), 145.28 (d, 

1JC-F = 205.0 Hz, C-5), 129.28, 127.57, 124.61, 120.12 (CH-Ar), 108.98 (C-6), 102.19 

(C-1’), 83.02, 82.51 (C-4’), 72.29 (C-2’), 70.59, 69.89 (C-3’), 65.08 (C-5’), 64.24 

(OCH2), 50.06 (NHCHCH3), 28.00, 21.96, 21.06 (CH2), 19.37 (NHCHCH3), 12.90 

(O(CH2)4CH3); MS (ES+) m/z: 708.0 (M + Na+, 100%), Accurate mass: 

C23H30FIN3O10P required 685.38 found 708.0 (M + Na+); Reverse-phase HPLC, 

eluting with H2O/AcCN from 100/0 to 0/100 in 35 min, F = 1 mL/min,  = 254, two 

peaks for two diastereoisomers with tR = 17.11, 17.43 min. 

 

5-Fluoro-6-iodouridine-5’-O-[phenyl-(cyclohexoxy-L-alaninyl)] phosphate (26).  

Prepared according to the standard procedure from 5-fluoro-6-iodouridine 5 (0.23 g, 

0.59 mmol), NMI (0.23 mL, 2.96 mmol), phenyl-(cyclohexoxy-L-alaninyl)-

phosphorochloridate (0.40 g, 1.18 mmol). After column purification on silica gel 26 

was obtained as a yellowish solid (0.028 g, 7%). 31P NMR (202 MHz, MeOD): δ 

3.68, 3.54; 1H NMR (500 MHz, MeOD): δ 7.37 – 7.33 (2H, m, H-Ar), 7.24 – 7.23 

(2H, m, H-Ar), 7.20 – 7.17 (1H, m, H-Ar), 5.97 – 5.95 (1H, m, H-1’), 4.51 – 4.34 (2H, 

m, H-2’, OCH ester), 4.51 – 4.34 (2H, m, H-3’, 1 x H-5’), 4.28 – 4.23 (1H, m, 1 x H-

5’), 4.05 – 4.01 (1H, m, H-4’), 3.96 – 3.89 (1H, m, NHCHCH3), 1.83 – 1.73 (5H, m, 

CH2 ester), 1.58 – 1.54 (1H, m, CH2 ester), 1.49 – 1.38 (4H, m, CH2 ester), 1.37, 1.32 

(3H, 2 x dd, J = 7.0, 1.0 Hz, NHCHCH3); 
13C NMR (125 MHz, MeOD): δC 174.52, 

174.4 (2 x d, 3JC-P = 5.4 Hz, C=O ester), 156.40 (d, 2JC-F = 32.0 Hz, C-4), 152.30, 

152.25 (2 x d, 4JC-F = 4.70 Hz, C-2), 148.67, 148.52 (C-Ar), 145.36, 145.30 (2 x d, 

1JC-F = 228.0 Hz, C-5), 130.69, 129.34, 126.03 (CH-Ar), 121.68 (d, 3JC-P = 4.6 Hz, 

CH-Ar), 104.94, 104.78 (2 x d, 2JC-F = 39.0 Hz, C-6), 103.58, 103.43 (C-1’), 84.01, 

83.55 (d, 3JC-P = 7.10 Hz, C-4’), 75.01, 74.99 (OCH), 73.70, 73.55 (C-2’), 71.28, 



70.69 (C-3’), 68.52, 67.48 (2 x d, 2JC-P = 5.5 Hz, C-5’), 51.63 (d, 2JC-P = 5.5 Hz, 

NHCHCH3), 32.49, 32.47, 32.39, 26.45, 26.43, 26.41, 24.69, 24.62 (CH2), 20.85, 

20.76 (2 x d, 3JC-P = 5.75 Hz, NHCHCH3); MS (ES+) m/z: 720.1 (M + Na+, 100%), 

Accurate mass: C24H30FIN3O10P required 697.39 found 720.1 (M + Na+); Reverse-

phase HPLC, eluting with H2O/AcCN from 100/0 to 0/100 in 35 min, F = 1 mL/min, 

 = 254, two peaks for two diastereoisomers with tR = 17.60, 17.64 min. 

5-Fluoro-6-iodouridine-5’-O-[1-naphthyl-(benzoxy-L-alaninyl)] phosphate (27). 

Prepared according to the general procedure from 5-fluoro-6-iodouridine 5 (0.18 g, 

0.46 mmol), NMI (0.18 mL, 2.32 mmol), 1-naphthyl-(benzoxy-L-alaninyl)-

phosphorochloridate (0.37 g, 0.93 mmol). After column purification on silica gel 27 

was obtained as a yellowish solid (0.017 g, 5%). 31P NMR (202 MHz, MeOD): δ 

3.89, 3.74; 1H NMR (500 MHz, MeOD): δ 8.19 – 8.16 (1H, m, H-Ar), 7.89 – 7.85 

(1H, m, H-Ar), 7.69 – 7.65 (1H, m, H-Ar), 7.54 – 7.47 (3H, m, H-Ar), 7.41 – 7.36 

(1H, m, H-Ar), 7.33 – 7.25 (5H, m, H-Ar), 5.96 – 5.94 (1H, m, H-1’), 5.01 – 4.96 (2H, 

m, CH2Ph), 4.73, 4.68 (1H, 2 x dd, J = 6.5, 3.0 Hz, H-2’), 4.54 – 4.41 (2H, m, H-3’, 1 

x H-5’), 4.33 – 4.27 (1H, m, 1 x H-5’), 4.12 – 4.02 (2H, m, H-4’, NHCHCH3), 1.35, 

1.30 (3H, 2 x dd, J = 7.0, 0.5 Hz, NHCHCH3);
 13C NMR (125 MHz, MeOD): δC  

174.40, 174.26 (C=O, ester), 156.50 (C-4), 152.40, 152.20 (C-2), 148.67 (C-Ar), 

137.20 (d, 3JC-P = 4.5 Hz, C-Ar), 136.10 (C-Ar), 135.30, 135.22 (2 × d, 1JC-F = 225.0 

Hz, C-5), 129.68, 129.58, 129.36, 129.25, 129.26, 128.76, 128.69, 127.75, 127.71, 

127.48, 127.46, 126.57, 126.54, 125.90, 122.90, 122.75 (CH-Ar), 116.30, 116.21 (2 x 

d, 3JC-P = 3.4 Hz CH-Ar), 108.74 (C-6), 103.63, 103.44 (C-1’), 84.00, 83.64 (2 × d, 

3JC-P = 7.25 Hz, C-4’), 74.05, 73.88 (C-2’), 71.28, 70.72 (C-3’), 68.52 (d, 2JC-P = 5.8 

Hz, C-5’), 67.97, 67.85 (OCH2Ph), 67.71 (d, 2JC-P = 5.4 Hz, C-5’), 51.70 (NHCHCH3), 

20.86, 20.74 (2 × d, 3JC-P = 6.4 Hz, NHCHCH3); MS (ES+) m/z: 755.42 (M + Na+, 

100%), Accurate mass: C29H28FIN3O10P required 755.42 found 778.0 (M + Na+); 

Reverse-phase HPLC, eluting with H2O/AcCN from 100/0 to 0/100 in 35 min, F = 1 

mL/min,  = 254, two peaks for two diastereoisomers with tR = 17.21, 17.37 min. 

5-Fluoro-6-azidouridine-5’-O-[phenyl-(ethoxy-L-alaninyl)] phosphate (28). 

Prepared according to the general procedure from 5-fluoro-6-azidouridine 6 (0.15 g, 

0.49 mmol), NMI (0.19 mL, 2.47 mmol), phenyl-(ethoxy-L-alaninyl)-

phosphorochloridate (0.28 g, 0.99 mmol). After column purification on silica gel 28 

was obtained as a yellowish solid (0.014 g, 5%). 31P NMR (202 MHz, MeOD): δP 



3.69, 3.53; 1H NMR (500 MHz, MeOD): δH 7.38 – 7.35 (2H, m, H-Ar), 7.25 – 7.18 

(3H, m, H-Ar), 5.95, 5.92 (1H, 2 × d, J = 2.80 Hz, H-1’), 4.67 – 4.62 (1H, m, H-2’), 

4.47 – 4.34 (2H, m, H-3’, 1 x H-5’), 4.28 – 4.22 (1H, m, 1 x H-5’), 4.18 – 4.10 (2H, m, 

OCH2CH3), 4.00-3.92 (2H, m, NHCHCH3, H-4’), 1.36, 1.32 (3H, 2 × d, J = 7.17 Hz, 

NHCHCH3), 1.27 – 1.23 (m, 3H, OCH2CH3); 
13C NMR (125 MHz, MeOD): δC 

175.11, 174.97 (2 × d, 3JC-P = 5.60 Hz, C=O, ester), 157.85 (d, 2JC-F = 24.1 Hz, C-4), 

152.25 (apparent t, 2JC-P = 12.75 Hz, O-C-Ar), 149.32, 149.22 (C-2), 139.36 (d, 2JC-F = 

21.3 Hz, C-6), 136.26, 134.45 (2 × d, 1JC-F = 235 Hz, C-5), 130.0, 121.47, 121.43, 

121.56, 121.53, 121.47, 121.43 (CH-Ar), 92.96, 92.84 (C-1’), 83.60, 83.33 (2 × d, 3JC-

P = 7.12 Hz, C-4’), 73.41, 73.30 (C-2’), 70.97, 70.50 (C-3’), 68.22, 67.38 (2 × d, 2JC-P 

= 6.10 Hz, C-5’), 62.41, 61.37 (OCH2CH3), 51.50 (d, 2JC-P = 5.17 Hz, NHCHCH3), 

20.15, 20.53 (2 × d, 3JC-P = 6.39 Hz, NHCHCH3), 14.97 (OCH2CH3); MS (ES+) m/z: 

581.1 (M + Na+, 100%), Accurate mass: C20H24FN6O10P required 558.1 found 581.1 

(M + Na+); Reverse-phase HPLC, eluting with H2O/AcCN from 100/0 to 0/100 in 35 

min, F = 1 mL/min,  = 254, two peaks for two diastereoisomers with tR = 14.68, 

14.95 min. 

5-Fluoro-6-azidouridine-5’-O-[phenyl-(hexoxy-L-alaninyl)] phosphate (29). 

Prepared according to the general procedure from 5-fluoro-6-azidouridine 6 (0.10 g, 

0.33 mmol), NMI (0.13 mL, 1.65 mmol), phenyl-(hexoxy-L-alaninyl)-

phosphorochloridate (0.23 g, 0.66 mmol). After column purification on silica gel 29 

was obtained as a yellowish solid (0.008 g, 4%). 31P NMR (202 MHz, MeOD): δP 

3.67, 3.51; 1H NMR (500 MHz, MeOD): δH 7.38 – 7.35 (2H, m, H-Ar), 7.25 – 7.18 

(3H, m, H-Ar), 5.95, 5.93 (1H, 2 × d, J = 2.75 Hz, H-1’), 4.67 – 4.62 (1H, m, H-2’), 

4.47 – 4.34 (2H, m, H-3’, 1 x H-5’), 4.28 – 4.22 (1H, m, 1 x H-5’), 4.14 – 4.05 (2H, m, 

OCH2), 4.00 – 3.93 (2H, m, NHCHCH3, H-4’), 1.66 – 1.60 (2H, m, 

OCH2CH2(CH2)3CH3), 1.40 – 1.31 (9H, m, 3 x CH2, NHCHCH3), 0.93 – 0.90 (3H, m, 

CH3);
 13C NMR (125 MHz, MeOD): δC 175.17, 175.03 (2 × d, 3JC-P = 5.90 Hz, C=O, 

ester), 157.80 (d, 2JC-F = 23.7 Hz, C-4), 152.25 (apparent t, 2JC-P = 12.9 Hz, O-C-Ar), 

149.42, 149.37 (C-2), 139.35 (d, 2JC-F = 20.92 Hz, C-6), 136.27, 134.47 (2 × d, 1JC-F = 

232.9 Hz, C-5), 130.70, 126.08, 126.04, 121.58, 121.54, 121.47, 121.43 (CH-Ar), 

92.97, 92.84 (C-1’), 83.65, 83.33 (2 × d, 3JC-P = 7.11 Hz, C-4’), 73.42, 73.29 (C-2’), 

70.96, 70.50 (C-3’), 68.24, 67.39 (2 × d, 2JC-P = 5.44 Hz, C-5’), 66.49, 66.45 (OCH2), 

49.87 (NHCHCH3), 32.88, 32.57, (OCH2CH2), 29.66, 26.63, 26.60, 23.59, 23.58 



(CH2), 20.70, 20.59 (2 × d, 3JC-P = 6.9 Hz, NHCHCH3), 14.34 (O(CH2)5CH3); MS 

(ES+) m/z: 581.1 (M + Na+, 100%), Accurate mass: C24H32FN6O10P required 614.52 

found 637.2 (M + Na+); Reverse-phase HPLC, eluting with H2O/AcCN from 100/0 to 

0/100 in 35 min, F = 1 mL/min,  = 254, two peaks for two diastereoisomers with tR = 

18.99, 19.23 min. 

5-Fluoro-6-azidouridine-5’-O-[phenyl-(benzoxy-L-alaninyl)] phosphate (30). 

Prepared according to the general procedure from 5-fluoro-6-azidouridine 6 (0.18 g, 

0.59 mmol), NMI (0.24 mL, 2.90 mmol), phenyl-(benzoxy-L-alaninyl)-

phosphorochloridate (0.42 g, 1.18 mmol). After column purification on silica gel 30 

was obtained as a yellowish solid (0.026 g, 7%). 31P NMR (202 MHz, MeOD): δP 

3.71, 3.45; 1H NMR (500 MHz, MeOD): δH 7.37 – 7.32 (7H, m, H-Ar), 7.22 – 7.16 

(3H, m, H-Ar), 5.96 (1H, 2 x d, J = 3.0 Hz, H-1’), 5.17 – 5.11 (2H, m, CH2Ph), 4.65, 

4.62 (1H, 2 x dd, J = 6.5, 3.0 Hz, H-2’), 4.45 – 4.33 (2H, m, H-3’, 1 x H-5’), 4.26 – 

4.21 (1H, m, 1 x H-5’), 4.04 – 3.95 (2H, m, NHCHCH3, H-4’), 1.37, 1.33 (3H, dd, J = 

7.0, 1.0 Hz, NHCHCH3); 
13C NMR (125 MHz, MeOD): δC  173.39, 173.26 (2 × d, 

3JC-P = 4.75 Hz, C=O, ester), 157.76 (d, 2JC-F = 24.8 Hz, C-4), 149.26, 149.15 (C-2), 

152.36 (C-Ar), 139.31 (C-6), 136.18 (C-Ar), 135.30, 135.21 (2 × d, 1JC-F = 224.0 Hz, 

C-5), 130.10, 130.04, 129.58, 129.52, 128.86, 128.79, 127.65, 127.55 (CH-Ar), 

120.06, 120.0 (CH-Ar), 92.90, 92.81 (C-1’), 83.45, 83.25 (C-4’), 73.45, 73.28 (C-2’), 

70.94, 70.50 (C-3’), 68.50 (d, 2JC-P = 5.4 Hz, C-5’), 68.00, 67.80 (OCH2Ph), 67.70 (d, 

2JC-P = 5.4 Hz, C-5’), 51.70 (NHCHCH3), 20.70, 20.55 (2 × d, 3JC-P = 6.4 Hz, 

NHCHCH3); MS (ES+) m/z: 643.0 (M + Na+, 100%), Accurate mass: C25H26FN6O10P 

required 620.48 found 643.0 (M + Na+); Reverse-phase HPLC, eluting with 

H2O/AcCN from 100/0 to 0/100 in 35 min, F = 1 mL/min,  = 254, two peaks for two 

diastereoisomers with tR = 17.60, 17.76 min. 

5-Fluoro-6-azidouridine-5’-O-[1-naphthyl-(hexoxy-L-alaninyl)] phosphate (31). 

Prepared according to the general procedure from 5-fluoro-6-azidouridine 6 (0.18 g, 

0.59 mmol), NMI (0.23 mL, 2.97 mmol), 1-naphthyl-(hexoxy-L-alaninyl)-

phosphorochloridate (0.47 g, 1.19 mmol). After column purification on silica gel 31 

was obtained as a yellowish solid (0.019 g, 5%). 31P NMR (202 MHz, MeOD): δP 

3.89; 1H NMR (500 MHz, MeOD): δH 8.08 – 8.06 (1H, m, H-Ar), 7.78 – 7.74 (1H, m, 

H-Ar), 7.59 – 7.57 (1H, m, H-Ar), 7.45 – 7.30 (3H, m, H-Ar), 7.32 – 7.28 (1H, m, H-

Ar), 5.81, 5.79 (1H, 2 × d, J = 3.0 Hz, H-1’), 4.53, 4.50 (1H, 2 x dd, J = 6.5, 3.0 Hz, 



H-2’), 4.38 – 4.26 (2H, m, H-3’, 1 x H-5’), 4.23 – 4.17 (1H, m, 1 x H-5’), 3.93 – 3.85 

(4H, m, OCH2, NHCHCH3, H-4’), 1.45 – 1.38 (2H, m, OCH2CH2(CH2)3CH3), 1.24, 

1.20 (3H, 2 x dd, J = 7.0, 0.5 Hz, NHCHCH3), 1.17 – 1.10 (6H, m, 3 x CH2), 0.78 – 

0.73 (3H, m, CH3);  
13C NMR (125 MHz, MeOD): δC  175.18, 175.0 (2 × d, 3JC-P = 

4.50 Hz, C=O, ester), 157.75 (d, 2JC-F = 24.0 Hz, C-4), 149.25, 149.17 (C-2), 148.10 

(d, 2JC-P = 7.0 Hz, O-C-Ar), 139.30 (d, 2JC-F = 19.5 Hz, C-6), 136.29 (d, 3JC-P = 2.0 Hz, 

C-Ar), 135.32, 135.29 (2 × d, 1JC-F = 225.0 Hz, C-5),128.87, 128.79, 127.75, 127.73, 

127.42, 127.38 (CH-Ar), 126.54, 126.52 (2 x d, 3JC-P = 1.5 Hz, CH-Ar), 125.83, 

122.95, 122.78, 116.23, 116.20, 116.19, 116.17 (CH-Ar), 92.98, 92.85 (C-1’), 83.68, 

83.36 (2 × d, 3JC-P = 7.0 Hz, C-4’), 73.46, 73.31 (C-2’), 70.95, 70.52 (C-3’), 68.51, 

67.66 (2 × d, 2JC-P = 5.5 Hz, C-5’), 66.52, 66.45 (OCH2), 51.64 (NHCHCH3), 32.57, 

32.54 (OCH2CH2), 29.60, 26.60, 26.57, 23.57, 23.55 (CH2), 20.78, 20.64 (2 × d, 3JC-P 

= 6.5 Hz, NHCHCH3), 14.35, 14.33 (O(CH2)5CH3); MS (ES+) m/z: 687.58 (M + Na+, 

10%), Accurate mass: C28H34FN6O10P required 664.58 found 687.2 (M + Na+), 

1351.4 (2 x M + Na+), Reverse-phase HPLC, eluting with H2O/AcCN from 100/0 to 

0/100 in 35 min, F = 1 mL/min,  = 254, two peaks for two diastereoisomers with tR = 

23.08, 23.51 min. 

5-Fluoro-6-azidouridine-5’-O-[1-naphthyl-(benzoxy-L-alaninyl)] phosphate (32). 

Prepared according to the general procedure from 5-fluoro-6-azidouridine 6 (0.17 g, 

0.56 mmol), NMI (0.23 mL, 2.80 mmol), 1-naphthyl-(benzoxy-L-alaninyl)-

phosphorochloridate (0.45 g, 1.12 mmol). After column purification on silica gel 32 

was obtained as a yellowish solid (0.029 g, 8%). 31P NMR (202 MHz, MeOD): δP 

3.95, 3.79; 1H NMR (500 MHz, MeOD): δH 8.19 – 8.17 (1H, m, H-Ar), 7.89 – 7.86 

(1H, m, H-Ar), 7.70 (1H, apparent d, J = 12.5 Hz, H-Ar), 7.55 – 7.48 (3H, m, H-Ar), 

7.43 – 7.38 (1H, m, H-Ar), 7.32 – 7.29 (5H, m, H-Ar), 5.91, 5.90 (1H, 2 x d, J = 3.0 

Hz, H-1’), 5.09 – 5.02 (2H, m, CH2Ph), 4.65, 4.60 (1H, 2 x dd, J = 6.0, 3.0 Hz, H-2’), 

4.48 – 4.37 (2H, m, H-3’, 1 x H-5’), 4.33 – 4.28 (1H, m, 1 x H-5’), 4.13 – 4.05 (1H, m, 

NHCHCH3), 4.02 – 3.98 (1H, m, H-4’), 1.35, 1.32 (3H, 2 x dd, J = 7.0, 1.0 Hz, 

NHCHCH3);  
13C NMR (125 MHz, MeOD): δC  173.39, 173.26 (2 × d, 3JC-P = 4.75 

Hz, C=O, ester), 157.76 (d, 2JC-F = 24.8 Hz, C-4), 149.26, 149.15 (C-2), 148.07 (d, 

2JC-P = 7.3 Hz, O-C-Ar), 139.31, 139.26 (2 x d, 2JC-F = 19.1 Hz, C-6), 137.18 (d, 3JC-P 

= 4.5 Hz, C-Ar), 136.28 (C-Ar), 135.28, 135.25 (2 × d, 1JC-F = 224.8 Hz, C-5), 129.58, 

129.54, 129.31, 129.23, 129.18, 128.86, 128.79, 127.75, 127.73, 127.46, 127.41, 



126.53, 126.51, 125.87, 122.95, 122.75 (CH-Ar), 116.31, 116.21 (2 x d, 3JC-P = 3.4 Hz 

CH-Ar), 92.97, 92.81 (C-1’), 83.65, 83.35 (2 × d, 3JC-P = 6.8 Hz, C-4’), 73.45, 73.28 

(C-2’), 70.94, 70.50 (C-3’), 68.52 (d, 2JC-P = 5.4 Hz, C-5’), 68.01, 67.80 (CH2Ph), 

67.71 (d, 2JC-P = 5.4 Hz, C-5’), 51.70 (NHCHCH3), 20.58, 20.45 (2 × d, 3JC-P = 6.4 Hz, 

NHCHCH3);  MS (ES+) m/z: 693.2 (M + Na+, 30%), Accurate mass: C29H28FN6O10P 

required 670.54 found 693.2 (M + Na+), 1363.4 (2 x M + Na+), Reverse-phase HPLC, 

eluting with H2O/AcCN from 100/0 to 0/100 in 35 min, F = 1 mL/min,  = 254, two 

peaks for two diastereoisomers with tR = 17.20, 17.53 min. 

5-Fluoro-6-methyluridine-5’-O-[1-phenyl-(hexoxy-L-alaninyl)] phosphate (33).  

Prepared according to the general procedure from 5-fluoro-6-methyluridine 7 (0.18 g, 

0.65 mmol), NMI (0.26 mL, 3.26 mmol), phenyl-(hexoxy-L-alaninyl)-

phosphorochloridate (0.45 g, 1.30 mmol). After column purification on silica gel 33 

was obtained as an off-white solid (0.034 g, 9%).  31P NMR (202 MHz, MeOD): δP 

3.56, 3.44; 1H NMR (500 MHz, MeOD): δH 7.37 – 7.33 (2H, m, H-Ar), 7.25 – 7.22 

(2H, m, H-Ar), 7.22 – 7.17 (1H, m, H-Ar), 5.52, 5.50 (1H, 2 × d, J = 2.75 Hz, H-1’), 

4.77, 4.74 (1H, 2 x d, J = 6.0, 3.0 Hz, H-2’), 4.49 – 4.34 (2H, m, H-3’, 1 x H-5’), 4.27 

– 4.21 (1H, m, 1 x H-5’), 4.14 – 3.93 (4H, m, OCH2, NHCHCH3, H-4’), 2.37, 2.36 

(3H, 2 x d, JC-F = 4.0 Hz, CH3), 1.65 – 1.58 (2H, m, OCH2CH2(CH2)3CH3), 1.38 – 

1.31 (9H, m, 3 x CH2, NHCHCH3), 0.93 – 0.89 (3H, m, CH3);
  13C NMR (125 MHz, 

MeOD): δC 175.13, 174.99 (2 × d, 3JC-P = 6.0 Hz, C=O, ester), 158.85 (d, 2JC-F = 26.6 

Hz, C-4), 152.30, 152.26 (2 x d, 2JC-P = 5.5 Hz, O-C-Ar), 150.57, 150.45 (C-2), 

139.95 (d, 2JC-F = 24.4 Hz, C-6), 139.72, 139.67 (2 × d, 1JC-F = 225.5 Hz, C-5), 130.07, 

126.08, 126.03, 121.66, 121.62, 121.50, 121.47  (CH-Ar), 94.63, 94.51 (C-1’), 83.70, 

83.38 (2 × d, 3JC-P = 7.40 Hz, C-4’), 73.17, 73.04 (C-2’), 71.26, 70.75 (C-3’), 68.34, 

67.46 (2 × d, 2JC-P = 5.50 Hz, C-5’), 66.49, 66.42 (OCH2), 51.54 (NHCHCH3), 32.88, 

32.57 (OCH2CH2), 29.67, 26.65, 26.62, 23.59, 23.58 (CH2), 20.73, 20.64 (2 × d, 3JC-P 

= 6.0 Hz, NHCHCH3), 14.35 (O(CH2)5CH3), 11.96 (d, 3JC-F = 3.6 Hz, C-6-CH3);  MS 

(ES+) m/z: 610.2 (M + Na+, 100%), Accurate mass: C25H35FN3O10P required 587.53 

found 610.2 (M + Na+), 1197.4 (2 x M + Na+);  Reverse-phase HPLC, eluting with 

H2O/AcCN from 100/0 to 0/100 in 35 min, F = 1 mL/min,  = 254, two peaks for two 

diastereoisomers with tR = 17.73, 17.91 min. 

5-Fluoro-6-methyluridine-5’-O-[phenyl-(benzoxy-L-alaninyl)] phosphate (34). 

Prepared according to the general procedure from 5-fluoro-6-methyluridine 7 (0.15 g, 



0.54 mmol), NMI (0.22 mL, 2.72 mmol), phenyl-(benzoxy-L-alaninyl)-

phosphorochloridate (0.38 g, 1.08 mmol). After column purification on silica gel 34 

was obtained as an off-white solid (0.026 g, 8%). 31P NMR (202 MHz, MeOD): δP 

3.57, 3.39; 1H NMR (500 MHz, MeOD): δH 7.38 – 7.30 (7H, m, H-Ar), 7.22 – 7.16 

(3H, m, H-Ar), 5.51, 5.49 (1H, 2 x d, J = 3.0 Hz, H-1’), 5.17 – 5.09 (2H, m, CH2Ph), 

4.76, 4.72 (1H, 2 x dd, J = 6.5, 3.0 Hz, H-2’), 4.48 – 4.33 (2H, m, H-3’, 1 x H-5’), 

4.25 – 4.18 (1H, m, 1 x H-5’), 4.04 – 3.95 (2H, m, NHCHCH3, H-4’), 2.35, 2.33 (3H, 

2 x d, J = 4.0 Hz, CH3), 1.37, 1.31 (3H, 2 x dd, J = 7.0, 1.0 Hz, NHCHCH3);  
13C 

NMR (125 MHz, MeOD): δC  173.37, 173.30 (2 × d, 3JC-P = 5.10 Hz, C=O, ester), 

157.46, 157.40 (2 x d, 2JC-F = 26.2 Hz, C-4), 150.81, 150.76 (C-2), 147.96 (C-Ar), 

139.16, 139.09 (d, 2JC-P = 7.5 Hz, O-C-Ar), 138.53, 138.50 (2 x d, 2JC-F = 24.6 Hz, C-

6), 136.58 (d, 1JC-F = 185.5 Hz, C-5), 129.33, 129.27, 128.17, 128.15, 127.91, 127.85, 

124.64, 124.62 (CH-Ar), 120.23, 120.06 (2 x d, 2JC-P = 4.5 Hz CH-Ar), 93.22, 93.06 

(C-1’), 82.26, 81.92 (2 × d, 3JC-P = 7.2 Hz, C-4’), 71.74, 71.60 (C-2’), 69.80, 69.27 (C-

3’), 66.95 (d, 2JC-P = 5.8 Hz, C-5’), 66.58, 66.46 (OCH2Ph), 66.04 (d, 2JC-P = 5.8 Hz, 

C-5’), 50.16 (NHCHCH3), 19.13, 19.05 (2 × d, 3JC-P = 6.4 Hz, NHCHCH3), 10.54 (d, 

3JC-F = 3.3 Hz, C-6-CH3); MS (ES+) m/z: 616.1 (M + Na+), Accurate mass: 

C26H29FN3O10P required 593.49 found 616.1 (M + Na+), 1209.3 (2 x M + Na+), 

Reverse-phase HPLC, eluting with H2O/AcCN from 100/0 to 0/100 in 35 min, F = 1 

mL/min,  = 254, two peaks for two diastereoisomers with tR = 15.15, 15.35 min. 

5-Fluoro-6-methyluridine-5’-O-[1-naphthyl-(neopentoxy-L-alaninyl)] phosphate 

(35). Prepared according to the general procedure from 5-fluoro-6-methyluridine 7 

(0.10 g, 0.36 mmol), NMI (0.14 mL, 1.81 mmol), 1-naphthyl-(neopentoxy-L-

alaninyl)-phosphorochloridate (0.28 g, 0.72 mmol). After column purification on 

silica gel 35 was obtained as an off-white solid (0.038 g, 17%). 31P NMR (202 MHz, 

MeOD): δP 3.92, 3.78; 1H NMR (500 MHz, MeOD): δH 8.04 – 8.0 (1H, m, H-Ar), 

7.73 – 7.70 (1H, m, H-Ar), 7.53 (1H, apparent d, J = 8.0 Hz, H-Ar), 7.39 – 7.33 (3H, 

m, H-Ar), 7.27 – 7.23 (1H, m, H-Ar), 5.33, 5.31 (1H, 2 x d, J = 3.0 Hz, H-1’), 4.58, 

4.55 (1H, 2 x dd, J = 6.5, 3.0 Hz, H-2’), 4.35 – 4.24 (2H, m, H-3’, 1 x H-5’), 4.19 – 

4.13 (1H, m, 1 x H-5’), 3.94 – 3.86 (2H, m, NHCHCH3, H-4’), 3.63 – 3.50 (2H, m, 

CH2C(CH3)3), 2.15, 2.14 (3H, 2 x d, J = 4.0 Hz, CH3), 1.22, 1.18 (3H, 2 x dd, J = 7.0, 

0.5 Hz, NHCHCH3), 0.75, 0.73 (9H, 2 x s, CH2C(CH3)3);
 13C NMR (125 MHz, 

MeOD): δC 175.01, 174.87 (2 × d, 3JC-P = 5.3 Hz, C=O, ester), 158.83, 158.79 (2 x d, 



2JC-F = 28.3 Hz, C-4), 150.55, 150.42 (C-2), 148.12, 148.07 (2 x d, 2JC-P = 5.2 Hz, O-

C-Ar), 140.58, 140.54 (C-Ar), 139.92, 139.90 (2 x d, 2JC-F = 24.4 Hz, C-6), 139.35 

(C-Ar), 137.54, 137.52 (2 × d, 1JC-F = 310.0 Hz, C-5), 128.85, 128.79, 127.75, 127.72, 

127.41, 126.56, 126.52, 125.86, 122.95, 122.77 (CH-Ar), 116.35, 116.20 (2 x d, 3JC-P 

= 2.8 Hz CH-Ar), 94.65, 94.51 (C-1’), 83.71, 83.45 (2 × d, 3JC-P = 7.3 Hz, C-4’), 

75.45, 75.35 (CH2C(CH3)3), 73.21, 73.03 (C-2’), 71.18, 70.76 (C-3’), 68.66, 67.90 (2 

x d, 2JC-P = 5.8 Hz, C-5’), 51.68 (NHCHCH3), 32.31 (CH2C(CH3)3), 26.73 

(CH2C(CH3)3), 20.96, 20.79 (2 × d, 3JC-P = 5.6 Hz, NHCHCH3), 11.96 (d, 3JC-F = 3.4 

Hz, C-6-CH3); MS (ES+) m/z: 646.2 (M + Na+, 80%), Accurate mass: C28H35FN3O10P 

required 623.56 found 646.2 (M + Na+), 1269 (2 x M + Na+); Reverse-phase HPLC, 

eluting with H2O/AcCN from 100/0 to 0/100 in 35 min, F = 1 mL/min,  = 254, two 

peaks for two diastereoisomers with tR = 17.72, 17.92 min. 

5-Fluoro-6-methyluridine-5’-O-[1-naphthyl-(benzoxy-L-alaninyl)] phosphate 

(36). Prepared according to the general procedure from 5-fluoro-6-methyluridine 7 

(0.18 g, 0.65 mmol), NMI (0.26 mL, 3.26 mmol), 1-naphthyl-(benzoxy-L-alaninyl)-

phosphorochloridate (0.52 g, 1.30 mmol). After column purification on silica gel 36 

was obtained as an off-white solid (0.033 g, 8%). 31P NMR (202 MHz, MeOD): δP 

3.94, 3.75; 1H NMR (500 MHz, MeOD): δH 8.13 – 8.09 (1H, m, H-Ar), 7.82 – 7.79 

(1H, m, H-Ar), 7.62 (1H, apparent d, J = 8.5 Hz, H-Ar), 7.48 – 7.41 (3H, m, H-Ar), 

7.35 – 7.29 (1H, m, H-Ar), 7.25 – 7.19 (5H, m, H-Ar), 5.41, 5.39 (1H, 2 x d, J = 3.0 

Hz, H-1’), 5.02 – 4.93 (2H, m, CH2Ph), 4.68, 4.65 (1H, 2 x dd, J = 6.5, 3.0 Hz, H-2’), 

4.44 – 4.34 (2H, m, H-3’, 1 x H-5’), 4.27 – 4.22 (1H, m, 1 x H-5’), 4.06 – 3.94 (2H, m, 

NHCHCH3, H-4’), 2.21, 2.20 (3H, 2 x d, J = 4.0 Hz, CH3), 1.28, 1.24 (3H, 2 x dd, J = 

7.0, 1.0 Hz, NHCHCH3); 
13C NMR (125 MHz, MeOD): δC  173.39, 173.26 (2 × d, 

3JC-P = 4.75 Hz, C=O, ester), 157.45, 157.40 (2 x d, 2JC-F = 26.0 Hz, C-4), 149.13, 

149.02 (C-2), 146.65, 146.63 (2 x d, 2JC-P = 7.0 Hz, O-C-Ar), 139.15, 139.09 (C-Ar), 

138.52, 138.46 (2 x d, 2JC-F = 24.0 Hz, C-6), 136.58, 135.53 (2 × d, 1JC-F = 192.4 Hz, 

C-5), 134.84 (d, 3JC-P = 1.6 Hz, C-Ar), 128.15, 128.10, 127.88, 127.81, 127.77, 

127.42, 127.36, 126.33, 126.30, 126.02, 125.14, 125.10, 124.44, 121.56, 121.34 (CH-

Ar), 115.01, 114.79 (2 x d, 3JC-P = 3.0 Hz CH-Ar), 93.20, 93.06 (C-1’), 82.25, 81.87 

(2 × d, 3JC-P = 7.0 Hz, C-4’), 71.75, 71.30 (C-2’), 69.75, 69.20 (C-3’), 67.19 (d, 2JC-P = 

5.8 Hz, C-5’), 66.58, 66.44 (OCH2), 66.23 (d, 2JC-P = 5.8 Hz, C-5’), 50.25 (d, 3JC-P = 

5.3 Hz, NHCHCH3), 19.21, 19.16 (2 × d, 3JC-P = 6.3 Hz, NHCHCH3), 10.53 (d, 3JC-F = 



3.6 Hz, C-6-CH3); MS (ES+) m/z: 687.58 (M + Na+, 10%), Accurate mass: 

C30H31FN3O10P required 643.55 found 666.2 (M + Na+), 1309.4 (2 x M + Na+), 

Reverse-phase HPLC, eluting with H2O/AcCN from 100/0 to 0/100 in 35 min, F = 1 

mL/min,  = 254, two peaks for two diastereoisomers with tR = 16.89, 17.15 min. 

5-Fluoro-6-ethyluridine-5’-O-[1-naphthyl-(benzoxy-L-alaninyl)] phosphate (37). 

Prepared according to the general procedure from 5-fluoro-6-ethyluridine 8 (0.15 g, 

0.52 mmol), NMI (0.21 mL, 2.58 mmol), 1-naphthyl-(benzoxy-L-alaninyl)-

phosphorochloridate (0.42 g, 1.03 mmol). After column purification on silica gel 37 

was obtained as an off-white solid (0.027 g, 8%). 31P NMR (202 MHz, MeOD): δP 

3.88, 3.73; 1H NMR (500 MHz, MeOD): δH 8.19 – 8.15 (1H, m, H-Ar), 7.88 – 7.87 

(1H, m, H-Ar), 7.68 (1H, dd, J = 8.5, 1.0 Hz, H-Ar), 7.55 – 7.47 (3H, m, H-Ar), 7.42 

– 7.35 (1H, m, H-Ar), 7.35 – 7.26 (5H, m, H-Ar), 5.45, 5.43 (1H, 2 x d, J = 3.0 Hz, 

H-1’), 5.08 – 4.98 (2H, m, CH2Ph), 4.75, 4.70 (1H, 2 x dd, J = 6.5, 3.0 Hz, H-2’), 4.51 

– 4.39 (2H, m, H-3’, 1 x H-5’), 4.37 – 4.28 (1H, m, 1 x H-5’), 4.12 – 4.01 (2H, m, 

NHCHCH3, H-4’), 2.83 – 2.65 (2H, m, CH2CH3), 1.36 – 1.24 (6H, m, NHCHCH3, 

CH2CH3); 
13C NMR (125 MHz, MeOD): δC 174.80, 174.66 (2 × d, 3JC-P = 3.75 Hz, 

C=O, ester), 159.0 (d, 2JC-F = 27.5 Hz, C-4), 150.71, 150.61 (C-2), 148.07 (d, 2JC-P = 

6.25 Hz, O-C-Ar), 139.90 (C-Ar), 138.13 (d, 2JC-F = 24.0 Hz, C-6), 136.26 (d, 1JC-F = 

220.5 Hz, C-5), 130.77 (C-Ar), 129.57, 129.53, 129.23, 128.85, 128.78, 128.29, 

127.89, 127.74, 127.72, 127.44, 126.57, 126.54, 126.53, 125.88, 122.99, 122.77, 

121.91 (CH-Ar), 116.44, 116.27 (2 x d, 3JC-P = 2.5 Hz CH-Ar), 94.65, 94.53 (C-1’), 

83.87, 81.72 (2 × d, 3JC-P = 7.0 Hz, C-4’), 71.64, 71.31 (C-2’), 68.71, 68.02 (C-3’), 

67.84 (d, 2JC-P = 7.5 Hz, C-5’), 65.27 (OCH2Ph), 51.65 (d, 3JC-P = 6.5 Hz, NHCHCH3), 

20.68, 20.58 (2 × d, 3JC-P = 6.3 Hz, NHCHCH3), 19.64 (C-6-CH2CH3), 12.74, 12.65 

(C-6-CH3);  MS (ES+) m/z: 680.2 (M + Na+, 100%), Accurate mass: C31H33FN3O10P 

required 657.58 found 680.2 (M + Na+), 1337.4 (2 x M + Na+), Reverse-phase HPLC, 

eluting with H2O/AcCN from 100/0 to 0/100 in 35 min, F = 1 mL/min,  = 254, two 

peaks for two diastereoisomers with tR = 18.60, 18.77 min. 

 

Molecular Modelling 

 

All molecular modelling studies were performed on a Viglen Genie Intel®CoreTM i7-

3770 vPro CPU@ 3.40 GHz x 8 running Ubuntu 14.04. Molecular Operating 

Environment (MOE) 2015.1046 and PLANTS47 were used as molecular modelling 



software.  The human HINT-1 structure was downloaded from the PDB data bank 

(http://www.rcsb.org/; PDB code 1KPF). Hydrogen atoms were added to the protein, 

using the Protonate 3D routine of the Molecular Operating Environment (MOE). 

Ligand structures were built with MOE and minimized using the MMFF94x force 

field until a RMSD gradient of 0.05 kcal mol−1/Å−1 was reached. The docking 

simulations were performed using PLANTS applying the following parameters: 

search algorithm: aco_ants 20, aco_evap 0.15, aco_sigma 2.0; binding site: 

bindingsite_center [10.77 11.16 13.79], binding site_radius 12; cluster algorithm: 

cluster_rmsd 2.0, cluster_strucures 10; scoring function: chemplp. The reliability of 

PLANTS docking results has been validated by docking the AMP substrate into 

HINT-1 catalytic site and then measuring the root mean square deviation (RMSD) of 

the best docking pose obtained with the co-crystallized AMP giving a RMSD value of 

1.0180. 
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