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Abstract 26 

Motor theories of action prediction propose that our motor system combines prior 27 

knowledge with incoming sensory input to predict other people’s actions. This prior knowledge 28 

can be acquired through observational experience, with statistical learning being one candidate 29 

mechanism. But can knowledge learned through observation alone transfer into predictions 30 

generated in the motor system? To examine this question, we first trained infants at home with 31 

videos of an unfamiliar action sequence featuring statistical regularities. At test, motor activity 32 

was measured using EEG and compared during perceptually identical time windows within the 33 

sequence that preceded actions which were either predictable (deterministic) or not predictable 34 

(random). Findings revealed increased motor activity preceding the deterministic but not the 35 

random actions, providing the first evidence that the infant motor system can use knowledge 36 

from statistical learning to predict upcoming actions. As such, these results support theories in 37 

which the motor system underlies action prediction. 38 

 39 
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Visual statistical learning leads to predictive motor activation in the infant brain 49 

1.0 Introduction 50 

According to motor theories of action observation, we predict the actions of other people 51 

by means of our own motor system (Flanagan & Johansson, 2003; Kilner, 2011; Rizzolatti & 52 

Craighero, 2004). When we perceive someone reach for a coffee mug at the breakfast table, we 53 

already anticipate they will next bring the mug to their mouth. This anticipation takes place in 54 

cortical pre-motor regions that are active both when performing and observing actions or their 55 

effects (Kilner et al., 2004; Paulus, et al., 2013). Motor predictions of observed actions are 56 

thought to underlie adaptive social interaction (Sebanz & Knoblich, 2009) and inferring the goals 57 

and mental states of others (Becchio et al., 2012; Gallese & Goldman, 1998; Ondobaka et al., 58 

2015). 59 

However, a challenge for the motor system is that perceptually similar actions can result 60 

in very different outcomes. As a consequence, predictions cannot always be made on the basis of 61 

the current ongoing action alone (Jacob & Jeannerod, 2005). Motor accounts of action prediction 62 

have been criticized for failing to explain how action predictions can be generated for cases in 63 

which the observed motor act itself does not contain enough information to make an accurate 64 

prediction (Kilner et al., 2007). To solve this ambiguity problem, recent probabilistic accounts 65 

have emerged that are largely based on principles of predictive coding (Friston, 2003, 2005). The 66 

core idea in this approach is that the motor system combines prior knowledge with incoming 67 

sensory input to determine the most likely action outcome (Kilner et al., 2007; Ondobaka et al., 68 

2015; Wolpert et al., 2003). If the person reaching for her coffee mug is standing next to the sink 69 
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with a sponge in hand, this will elicit a different motor prediction based on the observer’s world 70 

knowledge that her intention is most likely to wash the mug. Crucially, these accounts rest on the 71 

assumption that this prior knowledge is ‘fed’ into the motor system and allows it to generate an 72 

accurate prediction based on the current action context.  73 

Predictive processing accounts provide a solution for the ambiguity problem, yet raise a 74 

new challenge: how does new action knowledge—acquired from perceptual information—75 

become encoded in the motor system? Observational experiences are one important route to prior 76 

knowledge, particularly during development (Hunnius & Bekkering, 2014). An infant may, for 77 

instance, observe a parent reach for a peanut butter jar, which could be followed by many 78 

possible outcomes. However, if the majority of the time their parent then removes the lid, scoops 79 

peanut butter from the jar and reaches for a slice of bread, after multiple observations, the infant 80 

can predict what is most likely to occur next when their parent first grasps the jar. In this 81 

example, the statistical regularities between action steps provide information that the infant can 82 

learn through observational experiences.  83 

This ability is referred to as statistical learning (SL), a powerful mechanism that explains 84 

how humans can acquire knowledge of the environment through observation (Perruchet & 85 

Pacton, 2006). SL skills broadly refer to the ability to detect regularities in continuous sensory 86 

input, and have been demonstrated empirically across sensory modalities and across the lifespan 87 

(Conway & Christiansen, 2005; Fiser & Aslin, 2005; Kirkham et al., 2007; Saffran et al., 1996; 88 

Slone & Johnson, 2015). A few recent studies have shown that both infants and adults are also 89 

sensitive to the statistical regularities in continuous human actions (Ahlheim et al., 2014; 90 

Baldwin et al., 2008; Monroy et al., 2017; Stahl et al., 2014). For instance, Baldwin and 91 

colleagues (2008) investigated whether observers can parse action streams according to the 92 
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transitional probabilities between action steps. In their experiment, adult participants observed an 93 

action stream made of 3-step action elements presented continuously, such as ‘pour-poke-clink’ 94 

or ‘peek-clink-rattle’. Participants were next shown ‘action’ sequences (the original 3-step 95 

sequences, such as ‘pour-poke-clink’) and ‘part-action’ sequences (which spanned the 96 

boundaries of two actions, such as ‘poke-clink-peek’). Adults accurately discriminated action 97 

from part-action sequences, which could only be based on the transitional probabilities within 98 

these 3-step sequences (Baldwin et al., 2008). Infants from seven months of age demonstrate 99 

similar segmentation skills for familiar action sequences such as cleaning a kitchen (Baldwin, 100 

Baird, & Saylor, 2001), and for novel, abstract movement sequences (Stahl et al., 2014).  101 

Building upon these studies, which measured sensitivity to action structure post-102 

observation, Ahlheim and colleagues (2014) examined neural responses to statistical structure 103 

during observation of action sequences. Results showed that increases in neural activation 104 

corresponded to the probability of the occurrence of the next action step in the sequence. These 105 

findings confirm that adults can exploit statistical structure while processing continuous human 106 

action. They also suggest that observers use statistical learning skills to inform their predictions 107 

of upcoming action steps. 108 

The current study tested the hypothesis that new action knowledge, acquired via 109 

observation, can be ‘fed’ into the motor system and result in a motor prediction of an observed 110 

action based on visual statistical learning. Infants, who have a limited knowledge base for many 111 

of the actions they observe—in terms of observational and motoric experience—present an ideal 112 

opportunity for investigating this question. A developmental approach allowed us to directly test 113 

the effect of introducing naïve participants to novel perceptual information about action 114 

sequences, and whether this new knowledge is used to generate predictions in their motor 115 
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system. In a previous study, we showed that 18-month-old infants can learn statistical 116 

regularities in continuous action sequences and predict upcoming actions (Monroy et al., 2017). 117 

Importantly, infants correctly anticipated more frequently when they observed sequences 118 

performed by a human actor, relative to infants who observed a non-action event sequence. This 119 

finding supports the hypothesis that the motor system is involved in the perception and 120 

prediction of observed actions. Building upon this prior work, we conducted a combined training 121 

and EEG study with 18-month-old infants. Infants were first trained over three days by observing 122 

videos of action sequences in which one action pair was deterministic: the second action always 123 

followed the first action of this pair and was thus 100% predictable. The remaining actions in the 124 

sequence were random and thus less predictable. Following this training phase, infants 125 

participated in an EEG test session in which they observed a novel sequence featuring the same 126 

statistical structure as the training phase. 127 

A decrease in power of the mu rhythm overlaying motor regions is an established index 128 

of anticipatory activation occurring prior to the onset of an observed action in infants and adults 129 

(Marshall & Meltzoff, 2011; Southgate, Johnson, Osborne, & Csibra, 2009). The mu rhythm, 130 

also sometimes referred to as sensorimotor alpha, features reduced power during both action 131 

execution and observation (Fox et al., 2016; Vanderwert et al., 2012). In infants, this suppression 132 

is also observed prior to the onset of an observed action, suggesting that the mu rhythm reflects 133 

predictive activity in the human mirror neuron system (Southgate et al., 2009). We hypothesized 134 

that the mu rhythm would be suppressed over the motor cortex, reflecting an increase in motor 135 

activity, in anticipation of upcoming actions infants could predict based on statistical regularities 136 

learned through observation. Conversely, we hypothesized that infants would show no such 137 

anticipatory activity for actions which occurred at random and that they could thus not predict.  138 
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2.0 Method 139 

2.1 Participants 140 

Twenty-eight infants (mean age = 18.55 months, SD = .41, 17 males) were included in 141 

the final sample. Our predetermined target sample size of approximately 25 infants was based on 142 

conventional standards for studies that measure the mu rhythm in infants (Gerson et al., 2015; 143 

Marshall, et al., 2011; Southgate et al., 2009). Sixteen infants were tested but excluded from the 144 

final analysis due to refusal to wear the EEG cap (n = 4), insufficient artifact-free trials given a 145 

minimum requirement of 3 trials per condition (n = 9), not completing the required 3 days of 146 

home training (n = 1), or experimenter error (n = 2). This attrition rate is not atypical in infant 147 

EEG studies (Stets et al., 2012). All parents gave written consent, and families received a small 148 

gift or 20 euros for participation. Participants were recruited from a database of interested 149 

families from the surrounding region of Nijmegen, a middle-sized city in the Netherlands. All 150 

procedures were approved by the local ethics committee. 151 

2.2 Stimuli and Materials 152 

Three training videos and one test video were created, which were identical in length 153 

(7m) and statistical structure. Videos featured an adult performing an action sequence on a box-154 

shaped toy which afforded six unique object-directed actions (Fig. 1). Action sequences 155 

consisted of deterministic and random action pairs, which were presented with a brief fixation 156 

cross between each pair. Deterministic pairs consisted of two pre-selected actions occurring in 157 

the same order, such as ‘slide’ always followed by ‘bend’, and repeated 10 times throughout the 158 

sequence. Random pairs were comprised of any other combination of the six objects on the toy. 159 

The order of all pairs was shuffled pseudo-randomly in each of the four videos. Thus, infants 160 

observed a novel video on each training day and during the test phase. Three sets of stimulus 161 
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videos were created, in which the two actions comprising the deterministic pair were uniquely 162 

selected from the six possible actions. These three video conditions were counterbalanced across 163 

infants. 164 

Fig. 1 illustrates the presentation of an action pair. There were 60 total pairs in each video 165 

featuring 10 deterministic pairs and 50 random pairs for a total of 120 observed actions. Thus, 166 

during the learning phase, infants were presented with a maximum of 360 total actions and 30 167 

repetitions of the deterministic pairs over the three days. All actions were presented an identical 168 

number of times (i.e. 20) to ensure that infants received equal exposure to all six actions. 169 

 170 

Figure 1. (A) Example frames from video stimuli illustrating two successive trials. Trials began 171 

with a static fixation cross, followed by four successive clips played continuously (7s total). EEG 172 

markers were time-locked to the onset of each clip. Yellow boxes indicate the two condition time 173 

windows used for comparison in the EEG analysis: both conditions are perceptually identical (a 174 
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1s still frame with no action occurring), but in the Deterministic condition, infants can make a 175 

prediction about the subsequent action based on statistical likelihood, whereas in the Random 176 

condition they cannot make a prediction better than chance. The fixation cross was used as a 177 

baseline condition in the analyses. 178 

 179 

Videos were divided into four blocks, with the orientation of the toy relative to the 180 

camera rotated in each block. This ensured that infants could not simply learn the physical 181 

location on the screen where each action occurred, as the objects’ spatial locations were 182 

dissociated from their temporal position in the action sequence. In addition, we imposed the 183 

following constraints: all actions occurred with equal frequency (20 times); no pair could occur 184 

more than two times consecutively, random pairs could not consist of the same action twice, and 185 

deterministic pairs were evenly distributed among the four blocks of the videos. Lastly, no sound 186 

was played during any of the videos. 187 

2.3 Procedure 188 

2.3.1 Training phase.  189 

Parents were asked to show each of the three learning videos to their infants at home once 190 

per day over the three days immediately prior to their lab appointment. These videos were made 191 

available to parents via links on YouTube (www.youtube.com) which were sent to them by email 192 

(video links are provided in the Supplementary materials). We instructed parents to play the 193 

videos to their infants in a quiet setting with minimal distraction and to maintain identical 194 

viewing conditions each day if possible. They were further instructed to watch the videos with 195 

their infant seated on their lap approximately one meter from the viewing screen, to mimic the 196 

conditions in the laboratory they would experience during the EEG session. 197 
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Parents were asked to fill out a detailed diary at home containing information about each 198 

video session, including the number of minutes the child watched the movie and their own rating 199 

of their infant’s average attention to the screen on a scale from 1 to 5. In addition, they were 200 

asked to record the type of device they used to watch the videos (e.g., laptop, television screen, 201 

or tablet), the time of day, and any additional notes about each training day. The aim of the diary 202 

was to assess whether parents complied with the instructions and to measure potential individual 203 

differences in infants’ exposure to the training videos. All parents but one brought completed 204 

diaries with them to the EEG lab session. The mean number of minutes that infants watched the 205 

three training videos at home was 13.06 minutes (SD = 5.9; range = 1-21), which yielded an 206 

average of 18.44 observations of the Deterministic pair. Mean rating of attention on the five-207 

point scale was 3.07 (SD = 1.21, median = 3.33). Additional data and analyses from the training 208 

phase can be found in the Supplementary materials (S1 and S2).  209 

2.3.2 EEG session (test phase).  210 

Test sessions took place on the day following the final training day and consisted of an 211 

action observation phase followed by an action execution phase. Infants were first familiarized 212 

with the environment while the procedure was explained to the parent. Experimenters then fitted 213 

an infant-sized EEG cap to the infant (ActiCap, Brain Products, Munich, Germany) with 32 214 

active electrodes arranged according to the standard 10-20 configuration. Following capping, 215 

EEG was recorded continuously while infants sat on a caretaker’s lap in a shielded testing room. 216 

The EEG signal was referenced online to FCz and re-referenced offline to the average of all 217 

electrodes after excluding noisy channels. The mean number of channels included in the average 218 

reference was 22 (SD = 3). During measurement, the signal was amplified using a Brain-Amp 219 

amplifier, band-pass filtered (0.1–125 Hz) and digitized at 500Hz. 220 
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Infants were next shown the test video displayed on a monitor at approximately 50cm 221 

distance from the infant and caretaker. An experimenter monitored a live video feed of infants’ 222 

behavior from an adjacent room and initiated attention-grabbers (brief, salient cartoons) 223 

whenever necessary to regain the infant’s attention. Trials containing or following attention-224 

grabbers were excluded from further analyses. After all trials were completed or when infants 225 

lost interest, an action execution phase began. The purpose of this phase was to identify the 226 

sample-specific mu frequency range, as defined by a decrease in power during overt movement 227 

relative to baseline (Meyer et al., 2016). The experimenter turned off the video monitor and 228 

placed the toy stimulus in front of the infant. Infants were allowed to play with the toy for 229 

several minutes or until they began to lose interest. The entire testing session was video-recorded 230 

for offline movement and behavior analysis. 231 

2.4 Data Analysis. 232 

2.4.1 Coding for movement artifacts and visual attention.  233 

Video recordings of the action observation phase were coded offline frame-by-frame for 234 

infant movement. Trials that contained any whole body (e.g., kicking) or single-limb (e.g., 235 

moving one arm) movement were marked as invalid and removed from analyses to eliminate 236 

motor activity related to overt motor movements during action observation. Trials in which the 237 

infant was not looking at the screen were marked as invalid and removed from analyses as well. 238 

Across infants, 32.41% of all trials were removed from analyses based on these criteria. These 239 

coding procedures are commonly used for infant EEG studies (Hoehl & Wahl, 2012). 240 

2.4.2 Identification of the mu rhythm. 241 

 To investigate differences in motor activity during anticipation of deterministic and 242 

random actions, we first identified the mu rhythm in the current sample of 18-month-old infants. 243 
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Video recordings from the action execution phase were coded offline and epochs were selected 244 

in which the infant reached for or manipulated one of the objects on the toy. These epochs were 245 

segmented into 1s trials for data processing (see EEG processing). To verify that the frequency 246 

range in our sample was within the expected range for this age (Marshall et al., 2002), the mean 247 

power spectrum was inspected in the 2–50Hz range during baseline and action execution 248 

conditions across central channels (C3, Cz and C4; Fig. 1). Consistent with the literature (e.g., 249 

Marshall et al., 2011; Nyström et al., 2011), data inspection indicated a clear alpha peak around 8 250 

Hz (+/-1Hz) in which power during action execution was lower compared to baseline, despite 251 

broadband differences. Consequently, a sample-specific frequency range of 7-9Hz was used to 252 

compare our conditions of interest in the action observation phase. 253 

 254 

Figure 2. (A) Power values as a function of frequency (Hz) for the action execution and 255 

baseline trials. The mu rhythm is clearly visible as a sharp peak between 7 and 9Hz. Electrode 256 
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layout depicted on the right; selected channels corresponding to motor regions are outlined in 257 

red. Shaded areas represent the standard error of the mean. 258 

 259 

2.4.3 EEG processing.  260 

Data were analyzed using Fieldtrip, an open source toolbox for Matlab (Oostenveld et al., 261 

2011). Each action pair was divided into two trials: the 1-second fixation cross (Baseline 262 

condition) and the 1-second time window of still-frame preceding the second action, which 263 

became the Deterministic and Random conditions depending on the pair (Fig. 1). Trials were de-264 

trended, corrected by the mean of the entire segment, and a DFT filter was applied to remove 265 

line noise. They were then visually inspected for artifacts such as noisy channels or muscle 266 

artifacts (Marshall et al., 2011; Meyer et al., 2016). Segments in which infants were not attending 267 

to the screen based on video recordings of the session were rejected. Based on prior work, 268 

participants were required to have at least three artifact-free trials per experimental condition (to 269 

be included in further analyses (Kaduk et al., 2016; Monroy et al., 2017). Table 1 contains the 270 

mean number of trials included in the analysis for each condition after artifact rejection.  271 

Table 1.  272 

Mean number of artifact-free trials during the test phase (SD). 273 

Baseline Condition 

(max = 60) 

Deterministic Condition 

(max = 10) 

Random Condition 

(max = 50) 
Action Execution phase 

17.64 (11.08) 

Range: 3-52 

4.54 (1.75) 

Range: 3-8 

16.39 (10.25) 

Range: 4-41 

12.93 (11.39) 

Range: 3-45 

 274 

Following artifact rejection, we performed a fast Fourier transform using a multitaper 275 

method (Hanning taper) to estimate power values between 7-9Hz (see Identification of the Mu 276 

Rhythm). Based on visual inspection of the data (Fig. 2), we also analyzed the mean log-277 
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transformed in the theta rhythm (3–6Hz). Results from this post-hoc analysis are described in the 278 

Supplementary file (S3).  279 

3.0 Results 280 

We first conducted a repeated-measures ANOVA with mean normalized power of the mu 281 

rhythm over central sites (C3, Cz, and C4) as the dependent variable and Condition 282 

(Deterministic, Random, Baseline) as a within-subjects factor. This revealed a main effect of 283 

Condition, F(2.54) = 5.22, p < .01, p
2 = .16 (Fig. 3). A one-sample Kolmogorov-Smirnov test 284 

revealed the Random condition in the occipital region, p = .03, differed significantly from a 285 

normal distribution. No other dependent measures differed from a normal distribution, ps > .20. 286 

There was one outlier (+/- 3SD from the mean) in the Baseline condition over central channels; 287 

however, as results did not change when this participant was excluded, we included all 288 

participants in our analyses.  289 
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 290 



Running head: STATISTICAL LEARNING AND THE MOTOR SYSTEM 

 

16 

 

Figure 3. (A) Mean log-transformed power depicted for the two experimental conditions 291 

(Deterministic, Random) and the baseline condition (a fixation cross) over central channels 292 

overlaying motor regions (electrode layout depicted on the right; selected channels are outlined 293 

in red). Error bars represent the standard error of the mean. (B) Power values as a function of 294 

frequency (Hz). Shaded areas represent the standard error of the mean. Gray dotted lines indicate 295 

the selected mu frequency range (7–9 Hz).  296 

 297 

Pairwise comparisons confirmed that power in the mu rhythm over central channels was 298 

lower in the Deterministic condition relative to both the Random and Baseline conditions (ps < 299 

.02; see Table 2). There was no significant difference between the Random and Baseline 300 

conditions (p = .56). These findings show that motor activity selectively increased in anticipation 301 

of the deterministic actions and not prior to random actions.  302 

Table 2.  303 

Paired t-test comparisons of mean normalized power for the mu rhythm (7-9Hz) over central 304 

channels (N = 28). 305 

Paired sample t-tests Mean Difference (SD) t(27) p-value 95% CI 

Random - Deterministic .22 (.44) 2.64 0.01 [0.05, 0.39] 

Baseline - Random -.04 (.32) -0.59 0.56 [-0.16, 0.09] 

Baseline - Deterministic .18 (.39) 2.51 0.02 [0.03, 0.34] 

 306 

Based on previous literature (Vanderwert et al., 2012), we expected mu suppression to 307 

reflect activation of the motor cortex and thus be specific to channels over motor regions. To 308 

investigate the topographical specificity of the observed mu suppression, we also examined 309 

activity in the 7-9Hz range over occipital channels (O1, Oz, and O2) located over the visual 310 
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cortex. We did not expect visual activity to differ between Deterministic and Random conditions 311 

because the input was perceptually identical. A repeated-measures ANOVA with mean 312 

normalized power as the dependent variable and Condition (Deterministic, Random, Baseline) as 313 

a within-subjects factor yielded a main effect of Condition, F(1,43) = 6.34, p < .01, p
2 = .19 314 

(Fig. 4). Time-resolved power plots for central and occipital regions are depicted in the 315 

Supplementary file (S4). 316 
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 317 



Running head: STATISTICAL LEARNING AND THE MOTOR SYSTEM 

 

19 

 

Figure 4. (A) Mean log-transformed power depicted for the two experimental conditions 318 

(Deterministic, Random) and the baseline condition (a fixation cross) over occipital channels 319 

corresponding to visual regions (electrode layout depicted on the right; selected channels 320 

outlined in red). Error bars represent the standard error of the mean. (B) Power values as a 321 

function of frequency (Hz). Shaded areas represent the standard error of the mean. Gray dotted 322 

lines indicate the selected mu frequency range (7–9 Hz). 323 

 324 

Pairwise comparisons revealed that normalized power during Deterministic and Random 325 

conditions was lower than during the Baseline condition (mean differenceDeterministic-Baseline = -.30, 326 

t(27) = 4.34, p < .001, mean differenceRandom-Baseline = -.20, t(27) = 2.62, p = .01, respectively). 327 

There was no significant difference in normalized power between Deterministic and Random 328 

conditions (mean differenceDeterministic-Random = -.11, t(27) = 1.78, p = .09). Thus, power reduction 329 

reflecting visual processing was greater during predictive time windows (displaying the toy 330 

stimulus) than during the baseline (displaying the fixation cross), regardless of the upcoming 331 

action’s probability. These results confirm that the differential mu suppression during 332 

anticipation of deterministic relative to random actions was specifically observed over motor, 333 

and not visual, regions.  334 

4.0 Discussion 335 

The current study is the first to examine whether new knowledge learned through 336 

observation in infancy can be ‘fed’ into the motor system and thereby used for predicting 337 

upcoming actions. Until now, research on action perception has focused on the role of statistical 338 

learning in action segmentation and prediction, or on the role of the motor system in generating 339 

action predictions. Using a developmental approach, we investigated how these two systems 340 
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interact by examining whether infants make motor predictions about upcoming actions based 341 

solely on visual statistical learning. In line with our hypothesis, findings revealed suppression of 342 

the infant mu rhythm, an index of motor activity, during anticipation of upcoming actions that 343 

were statistically deterministic, and not for random actions. Infants were not simply anticipating 344 

that any action would occur; rather, the observed motor activated reflected anticipation of 345 

specific actions based on their statistical likelihood. Moreover, as the videos used in the EEG 346 

session had never been seen before, infants could only base their predictions on previously 347 

learned transitional probabilities within action pairs. These findings provide the first evidence for 348 

motor-based predictions based on information acquired through visual statistical learning. 349 

Our findings are in line with recent frameworks which propose that prior action 350 

knowledge is fed into generative models in the motor system  (Kilner, 2011; Schubotz, 2007). In 351 

the current study, infants learned the transitional probabilities between sequential actions from 352 

observation alone. The motor system was then able to access this new knowledge and infer the 353 

most likely upcoming action. In addition, the current study extends this framework from 354 

predicting single action events (e.g., Kilner, et al., 2004) to predicting sequential action steps.  355 

These results are also consistent with prior evidence for statistical learning as a 356 

foundational mechanism underlying infants’ developing understanding of their sensory 357 

environment (for a review, see Krogh et al., 2013). Statistical learning is likely a core mechanism 358 

that accounts for the human ability to build expectations about upcoming sensory events. 359 

Statistical learning abilities may thus also be an important pathway through which infants 360 

develop conceptual knowledge about observed actions (Ruffman et al., 2012). In the current 361 

study, infants were not simply learning raw frequencies of occurrences, as each action was 362 

presented an equal number of times. Rather, infants could only rely on the transitional 363 
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probabilities between action events to form predictions, which is consistent with prior research 364 

on infant SL abilities (Stahl et al., 2014). Future research could target the specific aspects of the 365 

structure that infants were able to encode, such as joint or conditional probabilities.  366 

A separate line of evidence has shown that infants’ own actions are another important 367 

source of information linked to action processing (Hunnius & Bekkering, 2014). Infants can 368 

acquire new sensorimotor associations between self-produced actions and the same actions when 369 

they observe them performed by others (Gerson et al., 2015; Paulus et al., 2012). However, until 370 

now these two sources of information—active and observational experiences—have been 371 

considered complementary but separate from one another (e.g., Calvo-Merino et al., 2006). The 372 

current findings challenge this notion by providing evidence that the motor system can predict 373 

actions from observational experiences alone, suggesting that these two pathways are rather part 374 

of one integrated mechanism.  375 

In line with this notion, neuroimaging research in adults reveals that brain regions 376 

relevant for statistical learning also overlap with regions of the action-observation network 377 

(Ahlheim et al., 2014; Turk-Browne et al., 2008). According to Kilner (2009) the action-378 

observation network relies on reciprocal connections with domain-general regions to generate 379 

predictions. These regions are likely to include those involved in visual statistical learning, such 380 

as the medial temporal lobe and the hippocampus, which are activated when statistical 381 

regularities provide predictive cues of upcoming stimuli (Turk-Browne et al., 2008, 2010). 382 

An alternative interpretation of our data could be that the observed power reduction in the 383 

7-9Hz range reflects a more general suppression of the alpha rhythm, rather than the 384 

sensorimotor mu rhythm. As the two rhythms share an overlapping frequency band, it is possible 385 

that our findings reflect modulation of the ‘classical’ alpha rhythm which is thought to reflect 386 
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general processing of visual stimuli (Bazanova & Vernon, 2014). The observed reduction in 387 

alpha power prior to the predictable action might then reflect enhanced visual attention in 388 

anticipation of a stimulus that is expected relative to one that is unknown, although if so this 389 

should have been observed primarily in the occipital channels. However, our methodology was 390 

designed to reliably separate the mu rhythm from the alpha rhythm as suggested in the literature 391 

(Bowman et al., 2017; Fox et al., 2016). First, we included both action execution and observation 392 

phases, which is crucial to identify the mu rhythm as it is characterized by a suppression over 393 

motor regions during movement relevant to non-movement (Cuevas et al., 2014). Second, we 394 

report findings from multiple electrode sites, including visual areas, which did not show the same 395 

pattern of results. Third, we controlled for visual confounds by analyzing the predictive time 396 

window prior to the actions themselves during which the stimuli were visually identical. Thus, 397 

the observed activity was most likely related to the infants’ anticipation of the forthcoming 398 

stimulus rather than ongoing visual processing  399 

Due to the limited number of trials included in our experimental conditions, findings 400 

from the current study should be interpreted with caution and replicated in future work. Still, our 401 

main findings regarding the mu rhythm are consistent with prior research in terms of both its 402 

functional significance during action anticipation (e.g., Southgate et al., 2009) as well as the 403 

location and frequency range in infants (Marshall et al., 2002; 2011, Nyström et al., 2011). In 404 

addition, the current study is limited to the interpretation of neural data. Given the challenges of 405 

simultaneous EEG and eye-tracking recordings in infants, we did not collect eye-tracking data, 406 

which would have allowed us to examine anticipatory eye movements as an additional measure 407 

of learning and prediction. Directly relating the current findings with behavioral findings from 408 
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prior research (e.g., Monroy et al., 2017) using simultaneous recordings—for instance, with 409 

adults—would be an interesting avenue for future research. 410 

4.1 Conclusion 411 

In conclusion, we show that prediction of an upcoming action based on its statistical 412 

likelihood elicits activation of the infant motor system. These results extend the functional role 413 

of infants’ statistical learning to the development of the human action-observation network. 414 

Infants can acquire new knowledge of an upcoming action by using their powerful statistical 415 

learning abilities, and subsequently use this knowledge to generate action predictions in their 416 

motor system. 417 
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