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ABSTRACT. The restriction to the sphere of an homogeneous and isotropic random field defines a
spherical isotropic random field. This paper derives central and non-central limit results for the first
Minkowski functional subordinated to homogeneous and isotropic Gaussian and chi-squared random
fields, restricted to the sphere in R3. Both scenarios are motivated by their interesting applications in
the analysis of the Cosmic Microwave Background (CMB) radiation.
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1. INTRODUCTION

The main purpose of this article is two-fold. First, we give a survey of some key
results on central and non-central limit theorems for Minkowski functionals of spherical
random fields. Second, we discuss some new results on the spherical Rosenblatt-type
distribution, in particular we present an explicit expression of its characteristic function
and series representation. These results highlight some of Professor Yadrenko’s pioneering
contribution in the area spectral theory of spherical random fields and to study their
spherical averages, see [33] and [27].

Recent year have witnessed an enormous amount of attention, in the astrophysical
and cosmological literature, on testing for Gaussianity for spherical random fields. The
empirical motivation for these studies can be explained as follows. The NASA satellite
mission WMAP and the nearly finished (data collection will be released in 2018) ESA
mission Planck [25, 26] will probe Cosmic Microwave Background radiation (CMB) to an
unprecedented accuracy. CMB can be viewed as a signature of the distribution of matter
and radiation in the very early universe, and as such it is expected to yield very tight
constraints on physical models for the Big Bang. For the density fluctuations of this
field, the highly popular inflationary scenario predicts a Gaussian distribution, whereas
alternative cosmological theories, such as topological defects or non-standard inflationary
models, predict otherwise. Non-Gaussianities may also have a non-physical origin, i.e.
they might be generated by systematic errors in the CMB map, such as noise which has
not been properly removed, contamination from the galaxy or distortions in the optics
of the telescope. A proper understanding of the density distributions of fluctuations is
also instrumental for correct inference on the physical constants which can be estimated
from CMB radiation.

For these reasons, many different Gaussianity tests were considered in the recent
cosmological literature, some of them based upon the topological properties of Gaussian
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fields ([1, 5, 21, 29], see also their references), others on higher-order cumulants spectra
(see [19]). In particular, the so-called Minkowski functionals, which have a simple and
intuitive geometrical meaning, were introduced in [1, 5]. Choosing a threshold v, we
can divide the sphere into two parts: hot regions where the random field T passes the
threshold, and cold regions where T' < v. The hot region is also called the excursion set
of the field T over the threshold v, or the spherical measure of excess of level v > 0.

In two dimensions three Minkowski functionals are:

1) Area: My(v) is the total area of all hot regions, that is points on a sphere sa(r) =
= {z e R®:||z| = 2} + 2} + 23 = r?}, where T(x) = T(r,0,¢) > v, where
r = (v1,72,23) € R3 and u = (0,9) € s2(1),0 <0 <7, 0 < ¢ < 2m,
where (0, @) are the spherical polar coordinates, and r = |z|.

2) Boundary length: Mi(v) is proportional to the total length of the boundary
between cold and hot regions

3) Euler characteristic: Ms(v), a purely topological quantity, counts the number of
isolated hot regions minus the number of isolated cold regions.

Note that the morphological analysis of random fields using Minkowski functionals
are widely used in many other areas of applications. The results derived in this paper
on Central and Non-Central Limit theorems for first Minkowski functional My(v), under
increasing domain asymptotics, constitute a methodological contribution to this area, as
preamble of its fixed domain asymptotics counterpart, which is the most interesting case
in cosmological applications. But this last subject constitutes the topic of a subsequent

paper.

2. ISOTROPIC RANDOM FIELDS

This section reviews a number of mostly known results from the monograph [33] (see,
also [6-8, 19]).
Consider a sphere in three-dimensional Euclidean space

sa(r)={z eR®: ||z|| =7} CR?
with the Lebesgue measure (the area element on the sphere)
G, (du) = 0,(d0.d@) = r*sin0d0dep, (0, @) € so(1), 7= |z| > 0.
A spherical random field on a complete probability space (2, F,P), denoted by

T=A{T(r0,0) =Tw(r,0,0):0<0<m 0< @ <21, r>0, we N},

or T = {T(x), = € s3(r) ¢, is a stochastic function defined on the sphere so(r). We
consider a real-valued spherical random field T, with finite second-order moments, and
being continuous in the mean-square sense. Note that [20] proved that the covariance
function of a measurable finite-variance isotropic random field on the sphere is necessarily
everywhere continuous.

Under these conditions, the field T' can be expanded in the mean-square sense as a
Laplace series [33, p. 73]:

[e%S) l
T(r,0,0) =2 > Y"(0,0)aum(r), (1)

=0 m=—1

where Y,"(0, ¢) represent the spherical harmonics. The spectral representation (1)
can be viewed as Karhunen—Loéve expansion, which converges in the Hilbert space
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Lo (€2 x s5(r),r? sin8d0de); that is,

l

L 2
Jim E j (T(T,G,(p)z > Ylm(e,q))alm(r)) % sin 8d0de | = 0.

s5(7) =0 m=—1

According to Peter—Weyl Theorem (see [20, p. 69]), the expansion (1) also converges in
the Hilbert space Ly(2), for every x € so(r); that is, for each x € so(r),

L 1 2
LILH;OE< -2 2 V@ )0-

Recall that for —1 < m </,

% _ 1/2
Y™ (x) =Y,"(0,9) = cim exp(im@) P (cos 0), ey = (-=1)™ {21 +10 k)!} @

. (1 +k)!
and P/™(cos 0) denotes the associated Legendre polynomial of degree I, m, i.e.
- o\ m/2 Jm 1 dl .
@ =0 (=) P D pe, aw = ey @
The spherical harmonics have the following properties
27
[7] ve. )i (0. 9)sinedede = 5 53 (4)
0

W(e, (P) = (_1)m1/27m(97 (9)7
Y/"(m—0,9+m) = (_1)1Ylm(e’ (P),
where éf/ represent the Kronecker delta. The random coefficients in the Laplace series

(1) can be obtained through inversion arguments in the form of mean-square stochastic
integrals

j j% (r,0,0)Y™(8, @)r?sin 0d0de =
—jm< WY@ (), u= i en) r=ld @)

The field T(r,0, @) = T(z) is said to be isotropic (in the weak sense) on a sphere so(r)
if ET(x)? < oo, and its first and second-order moments are invariant with respect to the
group of rotations on the sphere, i.e.

ET(x) = ET(gx), ET(2)T(y) = ET(92)T(gy),
for every g € SO(3), the group of rotations in R®. This is equivalent to saying that the
mean ET(r,0, @) = ¢ = constant (we assume ¢ = 0), and that the covariance function

ET(r,0,9)T'(r,0, ') depends only on the angular distance 6 = 8pg between the points
P=(0,¢) and Q = (8’, ') on sa(r). The field is isotropic if and only if
Eaf"(r)ajy’(r) = 887 Ci(r), ~l<m<l —I'<m' <, (6)
or
Ela"(r)|? = Cy(r), m=0,+1,...,+l (7)
The functional series {Cy(r),Ca(r),...,Ci(r),...}, » > 0, is called the angular power
spectrum of the isotropic random field T'(r, 0, ¢). From (1), (5) and (6) we deduce that

T(cos0) = ET(r,0,9)T(r,0", @) = %_c Z(Ql + 1)Cy(r) Pi(cos 0), (8)
=1
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where
o0

Z(Zl +1)Ci(r) < oo, 9)

1=1
for every fixed » > 0. If T'(r,0, @) is an isotropic Gaussian field, then the coefficients
a(r), m=—1,...,1,1 > 1, are complex-valued independent Gaussian random processes
unless m = —m/, with

Ea*(r) =0, Ea]"(r)al¥(r) = 6%6{0;(7“),
it Cj(r) > 0, or degenerate at zero if Cj(r) = 0. This does not deny that they are
uncorrelated for every m, m/, including m = —m’.
A random field T'(z), x € R?, with ET(x)? < oo is called homogenous (in the weak

sense) if its first two moments are invariant with respect to the Abelian group of shifts

in R3. An isotropic field T'(z), € R3, is homogenous if and only if [33, p. 89]

Eaf" (r)aj’ (s) = 8 &), Ci(r, s) (10)
with T () Ty (u3)
_ o2 [ g \WT) iy g (RS
Cl(r, S) =27 J;) (W’)UQ (Hs)l/Q G(d},l), (11)
1=1,2,..., where G is a finite measure on the Borel sets of [0, c0) such that

Gf\far J G(du) <

and Jy(z) is the Bessel function of the first kind of order v.

The covariance function Cov{f(m), T(y)} of a mean-square continuous isotropic ran-

dom field T'(z) depends only on the Euclidean distance

x,
r=lz—yl= \/91 +p3 —2p1p2cosy, cosy = <p ;/>7 = (p1,u1),  y = (p2,u2),
102
with p; = ||z||, and ps = |ly||. Moreover, by the addition theorem for Bessel functions

(see, for example, [33, p. 6]) the covariance function can be represented as

By = [ SIn() ) =

ur

o 1 o < Jiy1(upr) Jiy1(1p2)
B ) m w7 (s I+3 +3 .
=y N W) [ G (2

By Karhunen’s Theorem (see, for example, [33, p. 10]), a mean-square continuous ho-
mogenous isotropic random field with zero mean has a spectral representation

T(z) =T(r,0, ¢) Z Z Y™ (0, @)a™(r), (13)

=1 m=—1

where, in this case,

J,
— /2 j A3 W) ), (14)
V(ur)
with Z]*, =1 <m <[, 1=1,2,..., being the family of complex-valued random measures
on Borel sets of [0, 00) such that
EZ"(A) =0, EZ™A)ZI (B)=28!6"G(ANB). (15)
If there exists an isotropic spectral density g(u) > 0 such that
G(du
G oy 1) 2g). w2a(w) € Li((0.00). (16)

dp



INCREASING DOMAIN ASYMPTOTICS FOR THE FIRST MINKOWSKI FUNCTIONAL 5

where |s3(1)| denotes the Lebesgue measure of the unit sphere in R3, then (13) holds
with

() = 2 7 Vi () VAW ), (17)

and

EW™ ()W (B) = &) &y |AN B,
being W™, =l < m <[, 1 =1,2,..., a family of white noise random measures. The
restriction of an homogenous and isotropic random field T'(z), 2 € R3, to the sphere
s2(r) is an isotropic random field on the sphere. In this particular case, the covariance

function of this isotropic random field 7" on so(r) is representable in the form (8) with
the angular power spectrum

C _ 2 > Jl2+%(ur) —
l(T‘) =271 0 TG(dM)’ = 1,2,..., (18)

or if (16) holds,

3 (7 Jl2+%(ur) 2
Cilr) = (2m° | g (19)
0 ur
For example, if (18) is satisfied and
h(p

where h(p) is continuous and positive in a neighborhood of zero and bounded everywhere
on [0,00), then by the Tauberian theorem [33, p. 32], from (19) and (20) we obtain the
following asymptotic result:

Ci(r) = 2n)2h0)ky (I, )r* {1+ 0(1)}, asr — oo,

where

Fa(l, k) = foo Ty (2)2dz = {r?(l 5 K)r(m +22 - K) }_lr(_K)r(zz 2 k)2

0

Note that the convergence as r — oo, is not uniform over I, and the sequence k1 (I, k)
diverges (for every fixed k). This does not contradict to (9), since the convergence is not
uniform. It follows that if the field is homogeneous the series (9) does not depend on r.

According to the standard terminology, for k € (—2,—1), the random field has a radial
long range dependence, while for k € [—1,0) the random field has a radial singularity at
Zero.

In general, the covariance function on sphere I',. can be originated from covariance
function of some homogenous and isotropic random fields on Euclidean spaces B as
follows [33, p. 76]:

00 o} i 0

s1n(2p.r s1r; 2) G (dw).
2

(21)

In this case we consider two locations P = (1,0, ¢) and Q = (r,0’, ¢’) on the sphere
s2(r) with angle 0 € [0,7], then the Euclidean distance between them in terms of the
angle is 27 sin(0/2), which gives a direct correspondence between the original covariance
function B(p) and the covariance function I',.(cos0) on sphere depending only on the
angular distance © = 0pg between the points on the sphere s (7).

Examples of valid covariance functions, based on equation (21), can be found in [16].

I, (cos0) = Cov(T(r,0,¢),T(r,0', ¢")) = B(2rsin(6/2)) = jo 9rpsin
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A Gaussian random field Tv(x), x € R3 is called a fractional Brownian field with the
Hurst parameter H, if it satisfies the conditions

E{T(z) - T(y)} —0; E{T(z) - T@)}Q =llz—y|", z,yeR® 0<H<2

We may assume T(O) = 0; it is well-known that fractional Brownian motion is an isotropic
and self-similar Gaussian random field, i.e.

o) l
T(x)=> > ™0, @)am(lz]), =eR?, (22)
=1 m=-1
where
apm (1) = f " Tv(ru)Ylm(u)&l(du), u=(0,9),
with

Edip (1) (s) = 81 87 Ci(r, ), (23)

and the self-similarity property holds:
T(Az) < T(x)A"/2, X>0, forevery H € [0,2].
The covariance function C(r, s), in (23), satisfies the self-similarity condition:
Ci(Ar,As) = AN1Cy(r, 5).

By Lamperti’s transformation [6, p. 117] the process

an(t) = e Mtapn (e2t), teR,
is stationary with covariance function

R(t,s) = e~ Hit+s) 0, (th,th) ==, <17 e_Q(t_s)), t,s € R.

If @j1(t) is purely non-deterministic then it has a canonical representation
t
an () = f Alt — )Wo(ds), A€ Ly(R),

where Wy (+) is a complex Gaussian white noise random measure on the Borel sets of R,
and then a;;(r) is representable as

ap(r) = LT %A(log \/%)rH/Qs_l/QW(dS), (24)

with W (-) being a complex Gaussian white noise random measure on [0, 00). The coeffi-
cient processes G, (t) in (22) are independent copies of the process (24). The restriction
of a field T'(x) to so(r) is an isotropic random field on s, (r), with spectral representation
(22), and angular power spectrum
Aros(2))[
s

for some function A(u) such that |A(u)|? € La([0,0)).

Ci(r)=Ci(r,r) = %J rHs1ds,

0
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3. THE FIRST MINKOWSKI FUNCTIONAL FOR (GAUSSIAN RANDOM FIELDS

3.1. Direct formulae. In this section we examine the first Minkowski functional for a
Gaussian random field with SRD or LRD. We use some ideas from [3, 6, 8, 33]. Let f(x),
x € R?, be a measurable, mean-square continuous homogenous isotropic Gaussian ran-
dom field, with zero mean, and covariance function B(z) = COV(T(.’L‘)7 f(O)) = B(||z])),
x € R3; in the sequel, we assume B(0) = 1. Consider now an isotropic random field
T(r,8, @), which is the restriction to the sphere s(r) of the random field T'(x). The first
Minkowski functional can be represented as

My(v) = o({(r,6,9) € sa(r) : T(r,0,9) > Vv}) =

:j ( )1{T>V}(’I“,9, ©)o,(dO,de) =

- L (r) LFsvy (@)or(dr), (25)

with 1.3 denoting the indicator function. Now let IN(-) represents any, real measurable

- 2
function such that E [N (T (0))] < 00. The function N(-) can be expanded in the series

N =Y prH), K= [ N e, (26)
k=0 R

which converges in the Hilbert space La(R,d(u)du). In (26), the function ¢(u) =
= (27‘()_1/26_“2/2, u € R, is a standard Gaussian density, and

u?\ d* u?
H, = (=1)* — | — - R
= (e () drew (-5 ). wer,
is the kth Hermite polynomial. It is well-known that such polynomials form a com-
plete orthonormal system in the Hilbert space Lo(R, ¢ (u)du), and EHy(E)Hy () =

= éﬁlq!{E&]}k, where (&,1) is a zero-mean Gaussian vector. In particular, for the indi-
cator function

1oy = S0 Oy, (27)
k=0 ’
where
1= 2(v), k=0,
Rt = {«b(v)ﬂkl(v), k> .

and ®(v) = [ ¢(u)du.
Thus, the first Minkowski functional can be expanded in the Hilbert space L2(Q) as
follows:

Mo(v) =" K’;C(!V) H, (T(x))a(dm) -

b—0 s2(r)
= EMy(v) + ]gl K’;flv) f et (T(@))& (de), (29)
where
EMo(v) = {1 — &(v)}72|s(1)] = 4mr?{1 — ®(v)}, (30)
and

E{Lm 1 (T ()5 (dz) |~ Hy (T<y>)6r<dy>} = 8 &3 (r),

s2(r)



8 N. N. LEONENKO, M. D. RUIZ-MEDINA

air) =k | | | Bl = ylDB, ()3 ). (31)

Let s2(r) be a sphere in R? and consider two independent vectors § and y; we assume
B,y are uniformly distributed on so(r), that is
6,(dz)
PBeA) =PyeA) = f ——
(PeA) =PI EA)= | i PIsCD
It can then be shown (see for instance [33, p. 28]) that the probability density function
of the Euclidean distance p(f3,v) = || — v|| is of the form

. A Cosy(r).

1 u
ur (p(B,Y)) = ur(u) = 5 gz Usus?2r (32)
Then, from (31) and (32), we obtain
2r
B (r) = r*s(DPKEB*(|p —v]) = 2%%%![ 2B*(2) dz. (33)
0
Thus,
K2(v) s 2 2o KR (¥
Var{My(v)} = Z (b2 di(r) = 2%y ’27' 2B*(2) dz. (34)
k=1 k=1 70
Now, consider the bivariate Gaussian density
1 2% +y? — 2zyp
d(z,y;0) = mexp{w}a (z,y) €R?  |p| < 1 (35)

using the well-known formula

[ o= ([ o & ol )

we obtain the following alternative expression for the Minkowski functional itself and its
variance:

Mo(v) = {1 — ®(v)}r2ss(1)] + d)(v)f T(2)5,(de) +

s2(r)

v) f: Ky (v)% H, (T(x)) 5, (dz) =
k=2

s2(r)
= EMy(v) +1v(r) + Ry (r), (36)

where 1+ (r) is a Gaussian random field with zero mean and variance
27

En (1)’ = 0220 | 2B(2) dz.

b

and

> KZ(v) [*"
Var{ R, (r)} = 2372 $p?(v Z k:(' J 2BH(2) dz.
k=2

Also one can obtain the following direct formula:

2r B(z) v2 dw
Var{ M, =27 QJ J {— } dw, 37
ar{ O(U)} T 0 z 0 €Xp 1+w m w ( )

since

Var{f Lz (2)0,(dx) } j j +(dx) o, (dy) x
52(r) (T 52() Jsa(r)

]| s [0 0 B = D) = b)) dudo
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f J( (@) dy) [ [ [0 (s Bl — o) - o (w)]dudu =

1 (B® V2 dp
= 2372 dz — — . 38
U S R ey (39)

For a general isotropic Gaussian random field 7" with zero mean and covariance function
T, (cosB), we get:

EMo(v) = 4rr?{1 — ®(v)},

') (cosO) 2 d
Var Mo(v) f f 5, (dz) (dy) f eXp{ v }P.
s2(r) Jsa(r) 0 L+p)\/1—-p?

The last formula seems new and computational friendly.

3.2. Asymptotic formulae as r — co. We introduce

Assumption AI. The homogeneous isotropic Gaussian random field f(m), x € R3, has
the covariance function B(||z]|), z € R?, such that

jooozm( ) d < oo, j () dz # 0.

Under the assumption Al as r — oo
Var Mo (v) = ka(v)r?{1 +o(1)},

where
ba(v) = 222 () 3 2 f:o 2B¥(2)dz € (0,00).

k=1

Assumption AII.

i) The homogeneous isotropic random field f(a:), x € R3, is a zero-mean mean-square
continuous Gaussian random field with E[T?(z)] = 1, for all # € R3, and has the
covariance function

where L(]|z]|) is a slowly varying function, as ||z| — oo, and

ii) the Gaussian random field T has absolutely continuous spectrum, with spectral
density fo(||A]|]) defined on R®, and being a decreasing function for ||A|| € (0, €],
e > 0.

Under the assumption AII i), as r — oo

Var Mo(v) = ks(o, v)r*=“L(r){1 + o(1)}, (40)
where
k3(o,v) = 24"‘712492@);%?_;3 € (0, 00), (41)

while for « = 2, and 7 — oo
Var Mo(v) = ky(v)r?L(r) log(2r){1 + o(1)},
with
ks(v) = ka(v)/4 € (0,00).
We can now formulate Theorem 1 about the asymptotic normality of the first Minkow-

ski functional of a Gaussian random field under increasing domain asymptotics. The follo-
wing lemma is required in the proof of Theorem 1.
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Lemma 1. Under the assumption AII i) for 0 < « < 2, the following identities hold:

2
Jo1 1P Y/
[ i LHW‘“/Q] =o)L 15| <o

where
B
Y(B) = ni(z(i/;) (21[3) 0<p<2, (42)
and )
Ys(r[[All) = 50 o exp(i(\, z)) 0, (dz). (43)

Proof. The proof is based in the following identity:

fw“’““””zlmrﬁ [F) Lo L eeasstan

which holds from the weak-sense definition of the Fourier transform of the Riesz potential,
and its associated convolution properties (see, for example, Lemma 1 in [30, p. 117]), as
well as from the inner product induced by the kernel defining such a potential (see also
Lemma 2, and Theorem 3 (i) in [13], for d = 2 and D = s3(1)). O

Theorem 1. Under Assumption Al and r — oo
[Mo(v) — 4mr? {1 — ®(v)}] /r =% Ny ~ N(0, k2 (v)). (44)
Under Assumption AII i) for 0 < o < 2 and r — 00
[Mo(v) = drr{1 = ()} /[~ 5 VI()]| =% Ny ~ N(O, s(o, 7)), (45)
while for o« = 2
[Mo(v) — 4r2{1 — ®(v)}]/ [r Z(r) 1og(2r)] st AL O N(0, ka(V)),  (46)
where 7=t stands for convergence in distributions.

Remark 1. Under Assumption AII i), ii), for 0 < a < 2, as r — 00, the limit Gaussian
random variable Ny admits the following stochastic integral representation, in the mean-

square sense:
s2(1)] dX)
py = B [ v 22
"‘/ 2) ||7\H2"
where Z denotes complex Gaussian white noise.

Proof. The proof used some ideas from different sources. Namely, (44) and (46) follow
from [14], while (45) can also be obtained from [9], taking into account that the Hermite
rank of the function N(u) = 14,5+ is equal to one.

We now present a summary of the main steps of the proof. Specifically, under As-
sumption AII, we retsrict our attention to the case 0 < « < 2, and detail the main steps
in the derivation of the Gaussian limit distribution when r — oco.

First, for 0 < a < 2, we have to note that, in view of

1

WE {Mo(v) — A4 {1 — ®(v)} — K1 (v) H, (T(x))ar(dx)] 2 .

SQ(T)

[ Ly Pl 05 05 ) S0
< — B4(||lx — y||)o(dz)o(dy) K:—0, r—oo, (47)
L(r)rt= ),y Jsatr) ; ’
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a Reduction Principle can be applied, and the limit, in the mean-square sense, as
r — 0o, of

1 2
Lr)y2—ar My(v) — 4rr?{1 — @(v)}
coincides with the mean-square limit of
1 - ~
me i ] (@)

Hence, as 7 — oo both functionals has the same limit in distribution sense. Note that
inequality (47) directly follows from Assumption AII, since

B ([l < B*(ll=])), =2,

and, considering r sufficiently large, there exists and M(e) such that B(||z|]) < €
for ||lz|] > M(e), e — 0, with B(||z|]) < 1, for ||z| < M(e), keeping in mind that

E [T2 (x)} =1, for all z € R3. In particular,

r? r4=*L(r)
Jo o P = 0t < | o+ ] oo 0
We now study the limit, in the mean-square sense, of
1 ~
e | (T(@)E(de).
L(r)yr2=o/2 | oy () )or(d)

Let us consider an homogeneous isotropic Gaussian random field 7" on R? having
covariance function:

COV(T(O),T(J:)) = ET(Q?) ﬁ( )

where L£(z) = L(||z|)) = L(r), r > 0, is a slowly varying function, as r = ||z|| = oo, such

that the Gaussian random field 7 has absolutely continuous spectrum, with spectral

density fJ (||A||) defined on R2, and being a decreasing function for ||A|| € (0, €], € > 0.
Under Assumption AII from equations (40) and (41),

lim L(r);_“E{ Lot (T(:c))?rr(d:r,) -

Br(|lz]) = ””P, rER,  (48)

T(x)a(dx)] ~0 (49)

s2(r)
Hence, as r — oo,
1 ~
H ” - -
r4 f {(7)5 () ana s, T@E()

have the same limit in dlbtrlbutlon sense.
Furthermore, denoting by W (dA) the Wiener measure on R?

! 5 (e 200 @]
E[M@ﬂ_wgsﬂﬂ7<ynw> Y3} s TP g]
= [ [ 2200 g 00
R2

Y(o/2) A=
Qr()\) = (

2— (/2 2
TP 4/2) e 2] -
L(r)r2—(«/2) .
By Tauberian theorems (see, for example, [9]; [10]), @, converges to zero pointwise, as
r — 0o. From Lemma 1, we can apply Dominated Convergence Theorem to obtain the
mean-square convergence to zero, and hence, in distribution sense. (|

where
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Note that using the Malliavin—Stein method, the rate of convergence in the central
limit theorem (44) is investigated in [23, 24].

4. THE FIRST MINKOWSKI FUNCTIONAL FOR X2—SQUARE RANDOM FIELDS

4.1. Direct formulae. Consider the chi-square random field of the form

~ 1/~ ~
Su@) = 5(T2@) + -+ T2@), aeR? g1, (50)
where T} (z),... ,Tq(z) are independent copies of zero-mean homogeneous isotropic Gaus-

sian field T'(z), = € R3, such that
E[Tv2(x)} =1, cov(f(o),f(g;)) = B(z) = B(||lz]|), =€ R®.
Note that

o q o q o o q
ES,(@) =1, VarS,@) =1, Cov(5,00.5,@) = 1B%(=l). 1)

The x2-random fields belong to the Lancaster—-Sarmanov class (see [12]), thus, the
marginal and bivariate densities are of the form:

- (¢/2)-1,~u
} =L we(0,00), (52)

) = pyja(w) = 2 P{S(o) < u} =

2 ~
paja (e =) = 5om P{Syte) < u, Sylo) < w) =

= p(u)p(w) (1 +> ¥ (e - y||)€k(U)€k(w)> =

k=1

“(5)" o) oo (Y5 o <°°23)

where I,,(z) is the modified Bessel function of the first kind of order p,
v =¥(le —yl) = Corr(3,(@). 8,(v) ) = B(Jall),

o () = @2 () — p(@2-1 [ _*T(e/2) v

with L,gb) (u) being the generalized Laguerre polynomials of index b, for £ > 0. These
functions are orthogonal with respect to the density py/2(u), u > 0. Using the represen-
tation

u~be" d*

b
L () = ==

—uub+k)

)

one can derive the first few polynomials:
et (W =1, i (u) = ((a/2) ~u)(a/2) 7>
Note that
Ee}cq/Q) (@(m)) =0, k>1,

E(elt/ (8,() ) ek’ (Syw)) ) = 8hv™ (2 = yl) = 85, B>l — y).

In this construction of x?-random fields, the correlation function B?(||z — y||) > 0 must
be not only non-negative definite, but also nonnegative.
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Consider now an isotropic random field S,(r, 0, @), which is the restriction to the
sphere s(r) of the random field Sy(x). The first Minkowski functional can be repre-
sented as

Mg(v) = of(r,8,9) € 53(r) : Sy(r,0,9) > v} =

B Jsm.) L{5,>v) (#)5r(d2). i

~ 2
Now let N(-) denote any, real measurable function such that EN (Sq(())) < oo. The

function N(-) can be expanded in the series

N(u) = Z K,fe,gq/z) (u), KF= jo N(u)e,(eq/z) (u)pgy2(uw)du, (55)
k=0

which converges in the Hilbert space Ly ((0,00),pg/2(u)du), and in view of the Parseval
equality: Z;’;O [K kL]z < 0o . In particular, for the indicator function 1(,~+y

Kt = [ e wplaydu (56)

v

We denote the incomplete Gamma function

00 u(q/2)—le—u
razw = [

du,
which has the property:

L(B+1,w) = BL(B,w) +ePe™, B>0, w0,
and thus, from (56), we get:

K{(v)= —\/ﬁp@pm(w, (57)

where

Opas2 _ 4 9paj2)+1

oy 2 Oudw

Then, the first Minkowski functional can be expanded in the Hilbert space
L3((0,00), pg/a(u)du) as follows:

(58)

M) = Y KE) j /2 (S (@) )& (d) =
k=0 s2(r)

= EMI(v) + Y Kf(v) f /2 (8 (2) )& (da), (59)
k=1 §

2(r)

where

k=1
e 2r
= 25?2 Z (K (V)] 2 f 2y*(2)dz.
k=1 0

By Kinematic Formula (see [1]) we have

EMJ(v) = 4T(q/2, w)r?m, (60)
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and using the differential equation (58), for function p(,/2)(u, w,y) (see [2]), one can
obtain the following direct expression for the variance

) 2r Y(2)
q J zdzJ P(q/2)+1(V,V,8)ds | =
0 0

a/2 2r v(2) 2v NG 1
:422V7f df - (2 ds.
T2y ), F), TP\ ) e\ s s — e

Really,

Va {j Yo, (dx) } J J +(dz) 6, (dy) x
s2(r) s s2(r)Jsa(r)

<[] st st (e = o) = pla)p()dudu =

y(llz—yl 5
f f +(dz)6,(dy) f f f [pq/2(u, w; t)]dtdudw =
s2(r) Jsa(r)

Y(llz— yH

4 G (a5 () [ s [ f P,
2 sa(r) Jsa(r) oudw

q Y(lz—yll
§f J dx)or(dy)J p(q/Z)—‘,—l(v v, S)dS -
s2(r) Jsa(r)

2r v(2)
= 4mr?q f zdzf P(q/2)+1(V,V,8)ds|.
0 0

For a general isotropic x2-random field 7" with the covariance function I',.(cos 8), one can
show that

EMJ(v) = 4T(q/2,w)r*m, Var{MJ(v)} =

qvq/2 J j
+(dz)6,(d
T(2/2+ 1) Josi Juac ©)0r(dy) x

I'?(cos 0) 2 \/g 1
Xfo eXp(_ls) Iq/2<2vls>sq/4 =5 ds,

where I'Y(cos 0) = [[',(cos 0)]2, and T'.(cos0) = ET'(r,0, @)T(r,0', @').
The last formula seems new and computational friendly.

Var Md(v) = 4m*r

4.2. Asymptotic formulae as r — oco. The following assumptions will be considered.

Assumption BI. The homogeneous isotropic x2-random random field §q(az:)7 z € R3,
has the correlation function y(||z||), € R3, such that

[Tl < [Taveas o

Under the Assumption BI, as r — oo
Var MJ(v) = ks(v)r*{1 + o(1)},
where

v) = 2372 Z [K,f(v)]Q JOO 2y"(2) dz € (0,00).
k=1 0
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Assumption BII. The homogeneous isotropic y2-random field §q(m), r € R3, has
correlation function

y(|:c||)[L”(x|ﬁcl|)}, zERY, 0<a<l, (61)

where L(]|z||) is a slowly varying function, as ||z|| — oc.

Condition BII is satisfied by the correlation function

1
Y(lzl) = W’

where L(||z)) = [|z[|%/(1 + ||2]1®)".
Under Assumption BII, for 0 < o« < 1, and r — oo,

Var M{ (v) = ke(o, v)r*2*L(r){1 + o(1)}, (63)

0<8<2, a>0, (62)

where
[KE(v)]"24n?T (45%)

)

and Jp(v) is the Bessel function of the first kind of order 1, while for o« = 1, and r — oo

ke(ox, v) = € (0,00), (64)

Var M (v) = kz(v)r?L(r) log(2r){1 + o(1)},
with
kz(v) = ks(v)/4 € (0, 00).

Assumption BIII. The slowly varying function L, appearing in equation (61), in As-
sumption BII, is such that, for every m > 2 there exists a constant C' > 0, satisfying
f J L(r|lzy — @) L(r[lze — as])
sa(1) (M) Jsy (1) L(r)|[w1 — w2f|* L(r)[lze — a5|*
L(Tme—le) ~ ~ ~
X oo X ———————= 0(dx1)0(dza) . .. 0(dxy,) <
L(r)||[2m — 21| (dz1)0(dzs) (dzm) <
<c J o(dxq)o(dzs) ... o(dxy,) .
s2(1) (M) Jsy 1) [lo1 — @2[¥[lwe — @)% . g — 21|

In the following result, we will use the Fredholm determinant of an operator A, which
is a complex-valued function generalizing the determinant of a matrix, as given in the
next definition.

Definition 1 (see, for example, [28], Ch. 5, pp. 47-48, equation (5.12)). Let A be a
trace operator on a separable Hilbert space H. The Fredholm determinant of A is

D(w) = det(] — wA) = exp (- Tr]fk wk> = exp (— > Z[AZ(A)]’f‘*;> . (65)

k=1 k=1I1=1

for w € C, and |w| - ||Al]1 < 1. Note that ||A™|; < ||A||}*, for A being a trace operator.

We can now formulate the theorem about asymptotic distributions of the first Min-
kowski functional of x?-random field under increasing domain asymptotics.

Theorem 2. Under Assumption BI, as r — oo

[M{(v) — 4 (q/2,w)r*n] /r =¥ 5" N (0, k5(v)). (66)
Under Assumptions BII-BIII, for 0 < o« < 1, and r — oo,

[Md(v) — AD(g/2, w)r’n] / [r*~*L(r)] —dist R, (67)
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where the random variable R has the Rosenblatt-type distribution with characteristic func-
tion

o | 2iz 2)+1(
P(z) = B = exp §Z< F%/ - 0)/%) e (68)

m=2

with ¢, m > 2, being defined as

1 1 1 ~ ~
cm:f f . o(dry)...o(dzy).
s2(1) (M) Jsy 1y [l — @2 l|* (w2 —@sl|* [Jom — @

Fora=1

[M{(v) = 4T (a/2, w)r*r] / [ry/Li(r)Tog(2r)| 5" N(0, kz(v)). (69)

Remark 2. Note that, for the covariance function (62), Theorem 2 holds under Assump-
tion BII, and clearly, Assumption BIII is not needed.

Proof. Again, we pay attention to the proof of the non-central limit result derived under
Assumptions BIT-BIII (for more details, we refer to the reader to [12-15, 31]). We now
summarize the main steps of the proof of such a result.

First, a Reduction Principle can be applied, since the following inequality holds:

<= (Jlx — y||)o(dz)c(dy) 0, 7— oo,
{M)ﬂ“}J;mLm) ) 2K

Jj=2

[ e[wgi) e - it [ e >)a<dm>r <

where the convergence to zero of the last integral can be proved in a similar way to
equation (47), considering

B ([ll)) < B*(l=[), J =3,

and similar inequalities for B3(||z||) and B2(||z||) (instead of B?(||z||) and B(||x]])).
From equation (50),

9 (32 () = — S H (T (). (70)
V2q 4

Let us denote by 7~}7 j=1,...,q, g independent copies of a zero-mean Gaussian isotropic
random field 7 on R? with covariance function

Llel) g

Under BII, from equation (63), for j =1,...,q,

lim 1_5[ L (7)) (da) - Lw) (77 ) - 1)5r(dx)r 0. (71)

r—oo L(r)rd—2«

Hence, as r — oo, for j =1,...,q,

r2 = f H2 )Ur(da?) and ﬁ LZ(T) (7;2(@ - 1)5T(d$)
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have the same limit in distribution sense. Therefore, it is sufficient to compute the limit,
as r — 00, of the following characteristic function:

q

iKL(v)z ~
o (2) = E |exp Kl()f( LS (@) |6 | | =

r2=*[(r) ) @jzl
AN
B i 1SS 1 [ 2i2v/q/2pgg/2)41(V) m _
(3 55 (") (s sz<~>> —
<1 (2iz /2q21()m m

where, in its computation, we have applied Fredholm determinant formula (see Definition

1), and the identity
—\4/2pq/2)+1(V)

Here, for m > 2, Tr (R’T” ) and Tr (Rm ) denote the trace of the mth power of
T,s 2( ) 73’ 2( )

the autocovariance operator R%’SZ(T) of T and of the autocovariance operator R7~—j752 )

of 7 on sy(r), for j = 1,...,q. Futhermore, the following pointwise convergence holds
: 1 m m
> 2.
7,hm [ (T)T2 } (RT sar )) Tr(RTs (1)) m > 2 (73)

To apply Dominated Convergence Theorem, under Assumptions BII-BIII, consider
i 1 (2 (V) ) o ( B )
m V2qr2=*L(r) Ts2(r)

m=2
<c§: Bt S e 1

2 2
<—Cln (DR%@(U ( \/ij(q/2)+1(\/)z

V2q
24/4/2p(q/2)+1 (V)2
where DR?,SZ(U( #

24/4/2p(q/2)+1(V)2
V2q

<

TY(R%,Szu)) =

) e

> denotes the Fredholm determinant of R7~_

s2(1)7 at

point , which is finite for

2v/q/2p(g/2)+1(V)z
V2q

TRz, 0)) < 1

From equations (73) and (74),

o %i 2 "
o) = o35 5 (ML) i) ) <ut,

m=2

for all z such that

o, V q/2p(q/2)+1(V)

N Tr(R%732(1)> <1,
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where

1 1 1
Tr(R? 1):J f X
rs2(1) 0(1) M) ) |21 — 22| lze — 23| flwm — z1]|*

X 0(dzy)...0(dxy) = cm.-

An analytic continuation argument (see [17, Th. 7.1.1]) guarantees that \{ defines the
unique limit characteristic function for all real values of z. O

Alternatively, an isonormal representation of R in (67) can be obtained, in the mean-
square sense, as follows from the following result, applying the above reduction principle.
The following additional assumption is considered

Assumption BIV. The slowly varying function L, appearing in equation (61), in As-
sumption BII, is such that, the chi-squared random field S; = 1/2 Z?:l Tj2, introduced

in equation (50), has absolutely continuous spectra. Specifically, for j =1,...,q, T} has
spectral density fo;(||A]]), being a decreasing functions for ||A|| € (0, €], € > 0.

The following lemma will be applied in the proof of Theorem 3 below.

Lemma 2. For 0 < « < 1, the following identities hold:
dAydAs MCORE
Yalls + Al — (e v)| <, (76)
JR‘* (A2~ |s2(1)]

where Y3 is defined in (43), constant k¢(x,v) has been computed in (64), and y(x) has
been introduced in equation (42).

The proof of Lemma 2 can be derived in a similar way to Theorem 3(i) in [13],
considering d = 2, and D = s5(1).

Theorem 3. Under Conditions BII-BIV, for 0 < « < 1, the limit random variable R
in (67) admits the following integral representation:

s(DIKE(V) < (7 Z1:(dN1) Zoi (dAg
= 3oL s e DA
Y 7 jSUR A7 (A2

where, as before, y(a) = %, O0<a<l,Zy,i=1,2,5=1,...,r, are independent
=

complex Gaussian white noise measures, fﬂ;4 means that one does not integrate on the
hyperdiagonals A = +Aa, and Y3 denotes, as in Lemma 2, the spherical Bessel function.

Proof. First a reduction principle is applied as in Theorem 2. Secondly, as in such a
theorem, apply the relationship between the first Laguerre polynomial and the second-
Hermite polynomial, to obtain

{L(:)ii—“} LZ(T) et/ (x2(2))5, (dw) =

[ KF 1 ~
= —\/Wx} ; . Hy(T;(x))0r(dx) | - (77)

Under Assumption BII, we can also consider here the asymptotic mean-square identity
(71), for r — oo, between the functionals

1 q
B L(r)r2—« ;

sa(r

~ 1 2 ~ N
R D | @) =5 ),
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where, as before, ’7}, j = 1,...,q, are independent copies of a zero-mean Gaussian
isotropic random field 7 on R? with covariance function
L(||z
”(”(L'), zreR?, 0<a<?2.
x

Thus, for 0 < o < 1, we now study the limit, in mean-square sense, as r — oo, of
7“2 & ZJ

Denote, for j = 1,...,q, by foj (IA]]) the spectral density of the isotropic and homo-

geneous random field 7;, being a decreasing function of ||A|| € (0,€], € > 0. Using the
self-similarity of Gaussian white noise, and the Itd formula (see, for example, [4] and
[18]), we obtain

-] S| m(Fe)e. f/‘%jz:sﬁ

j=1 s2(r)

. 1)6r(dz).

KEW)sa()|
Y(VEir* <L)

2 L ~41/2
XZ j mmmn( L] ||Ak||>>zu<dxl>22j<dxz>;

k=1
__KWs0]

¢ VT
XZ j Y3|A1+A2||< H[ i ||Ak||/r>>zlj<dxl>zzj<dxa>. (78)

By the isometry property of multiple Wiener—It6 stochastic integrals, for j =1,...,q,

2
" . .
Els._“?(l)' ¥; 7\1+A2||)le(dj\12223(‘?\2)] _
Al (A2l

[s2(1)]

= [ a2 g,

[ [ i
where, for j =1,...,q, Sy; has been introduced in (78), and

P 4 Y e T e O R = T )
Qry(Ai,Ag) = 1) ) omam | -1) - o)

k=1

Under Assumptions BII and BIV, by Tauberian theorems (see, for example, [10]), for

j=1,...,q, Qrj(A1,As) converges to 0, pointwise as r — co. From Lemma 2, we can
apply Lebesgue’s Dominated Convergence Theorem, to prove the convergence to zero of
the integral in equation (79), for j =1,...,q. O

Remark 3. Note that, in [11], one can find results on the limit distributions of the
first Minkowski functional for Student and Fisher—Snedecor random fields, in terms of
multiple Wiener—It6 integral representations, but the spherical random field case has not
been addressed yet.

From Theorem 3, a series expansion of the limit spherical Rosenblatt-type random
variable R can be derived, as given in the following corollary.
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Corollary 1. Assume that the conditions of Theorem 8 hold. Then, the limit random
variable R, appearing in such a theorem, admits the following series representation:

- B 3 MIMOICENIES 9) SN EEINEC)

j 1n>1 j=1n>1
where {e,} are independent and identically distributed standard Gaussian random vari-

ables, and
w0 (Vy) = — Y2V (E(R)
|s2(1)]

is a sequence of positive real mumbers, which are the eigenvalues of the self-adjoint

n>1

7

Hilbert-Schmidt operator, given by, for all h € Lo (RQ, G(X(dx)) = Lo (RQ, M%mdx),
YVs(h)(A1) = fRZ Y3([[A1 = A2l[)h(A2) G (dA2), (82)
with
Gq(dz) = dz, (83)

[

and Ly(R?, G «(dx)) denoting the collection of linear combinations, with real-valued coeffi-
cients, of complex valued and Hermitian functions, that are square integrable with respect
to Gx(dz) = kuz —r==dz. Note that Ly(R? Gy(dx)) is a real Hilbert space, endowed with

the scalar product
1l = [ b1 (@ha@)Calda)
(see [22, pp. 159-161]).

The proof is similar to the proof of Corollary 1 in [13], considering d = 2 and D = s2(1)
(see also [12]).

We would like to thank the anonymous referee for his meticulous and rigorous reading
of the manuscript and his numerous suggestions that greatly improve the presentation
of the present paper.
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3BIJIBIITYBAHI PABOM 3 OBJIACTIO ACUMIITOTUKUW JIA
ITEPIITIOTO ®YHKIIIOHAJIA MIHKOBCBKOTO BIJ C®PEPUYHUX
BUITAJKOBUX IIOJIIB

M. M. JIEOHEHKO, M. JI. PYI3-MEJIHA

AHoTAlsa. OnHOpigHe Ta i30TPONHE BUIIAAKOBE I0JIE, 3BYKeHEe Ha cdepy, BusHadae chepuyne i30Tpo-
MHE BUNAJAKOBE moJje. Y Iiff cTaTTi AOBOAATHLCA IEHTPAJbHI Ta HEIEHTPAJbHI IpaHUYHI TEOpeMHU s
nepmoro GpyHKIioHaaa MiHKOBCBKOTrO0, MiAIOPSAKOBAHOTO TayCCiBCbKOMY a0 Xi-KBaapaT OTHOPIZHOMY
BHIIAIKOBOMY IIOJIIO, 3BysKeHOMy Ha cdepy B R3. OBuzasa cuenapil MOTHBOBAHI IIKABMMHE 3aCTOCYBAHHSI-
MHE 70 aHAJII3y KOCMIYHOTO PEIKTOBOrO MiIKPOXBH/IBOBOIO BHIIPOMIHIOBAHH.

YBEJINYNBAIOIMINECSI BMECTE C OBJIACTbIO ACMMIITOTUKN
JJISI IEPBOTO ®YHKIIMOHAJIA MUHKOBCKOI'O OT C®EPUYECKUX
CJIYUYAUNHBIX IIOJIEN

H. H. JEOHEHKO, M. JI. PYU3-MEJUHA

AuHOTAIIMSA. OXHOPOIHOE W W3OTPOIHOE CJIydafiHOe MMojie, Cy:KeHHOe Ha cdepy, ompejenser chepu-
9eCKO€ M30TPONMHOE CAydaiHoe mosie. B naHHON cTaTbe QOKA3LIBAIOTCS LEHTPAJIbHBEIE H HEIEHTDPAIb-
HBIE TIPEJIeIbHBIE TEOPEMBI JJIsI IEPBOTO PYHKIIMOHAIa MUHKOBCKOTO, IOJYMHEHHOTO TAYCCOBCKOMY HJIH
XH-KBa/IPAT OJ[HOPOIHOMY CJIyUafiHOMY TIOJIIO, CyskeHHOMy Ha cdepy B R3. O6a crienapus MOTHBUPOBAHEL
WHTEPECHBIMU PUMEHEHUSIMHU K aHAJIN3Y KOCMHUYECKOTO PEJUKTOBOIO MUKDPOBOJIHOBOTO M3JIYUEHHUSI.



