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1. Introduction

The main purpose of this article is two-fold. First, we give a survey of some key
results on central and non-central limit theorems for Minkowski functionals of spherical
random fields. Second, we discuss some new results on the spherical Rosenblatt-type
distribution, in particular we present an explicit expression of its characteristic function
and series representation. These results highlight some of Professor Yadrenko’s pioneering
contribution in the area spectral theory of spherical random fields and to study their
spherical averages, see [33] and [27].

Recent year have witnessed an enormous amount of attention, in the astrophysical
and cosmological literature, on testing for Gaussianity for spherical random fields. The
empirical motivation for these studies can be explained as follows. The NASA satellite
mission WMAP and the nearly finished (data collection will be released in 2018) ESA
mission Planck [25, 26] will probe Cosmic Microwave Background radiation (CMB) to an
unprecedented accuracy. CMB can be viewed as a signature of the distribution of matter
and radiation in the very early universe, and as such it is expected to yield very tight
constraints on physical models for the Big Bang. For the density fluctuations of this
field, the highly popular inflationary scenario predicts a Gaussian distribution, whereas
alternative cosmological theories, such as topological defects or non-standard inflationary
models, predict otherwise. Non-Gaussianities may also have a non-physical origin, i.e.
they might be generated by systematic errors in the CMB map, such as noise which has
not been properly removed, contamination from the galaxy or distortions in the optics
of the telescope. A proper understanding of the density distributions of fluctuations is
also instrumental for correct inference on the physical constants which can be estimated
from CMB radiation.

For these reasons, many different Gaussianity tests were considered in the recent
cosmological literature, some of them based upon the topological properties of Gaussian
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fields ([1, 5, 21, 29], see also their references), others on higher-order cumulants spectra
(see [19]). In particular, the so-called Minkowski functionals, which have a simple and
intuitive geometrical meaning, were introduced in [1, 5]. Choosing a threshold ν, we
can divide the sphere into two parts: hot regions where the random field T passes the
threshold, and cold regions where T < ν. The hot region is also called the excursion set
of the field T over the threshold ν, or the spherical measure of excess of level ν ≥ 0.

In two dimensions three Minkowski functionals are:

1) Area: M0(ν) is the total area of all hot regions, that is points on a sphere s2(r) =

=
{
x ∈ R3 : ‖x‖ = x2

1 + x2
2 + x2

3 = r2
}

, where T̃ (x) = T (r, θ,ϕ) > ν, where

x = (x1, x2, x3)′ ∈ R3, and u = (θ,ϕ) ∈ s2(1), 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π,
where (θ,ϕ) are the spherical polar coordinates, and r = |x|.

2) Boundary length: M1(ν) is proportional to the total length of the boundary
between cold and hot regions

3) Euler characteristic: M2(ν), a purely topological quantity, counts the number of
isolated hot regions minus the number of isolated cold regions.

Note that the morphological analysis of random fields using Minkowski functionals
are widely used in many other areas of applications. The results derived in this paper
on Central and Non-Central Limit theorems for first Minkowski functional M0(ν), under
increasing domain asymptotics, constitute a methodological contribution to this area, as
preamble of its fixed domain asymptotics counterpart, which is the most interesting case
in cosmological applications. But this last subject constitutes the topic of a subsequent
paper.

2. Isotropic random fields

This section reviews a number of mostly known results from the monograph [33] (see,
also [6–8, 19]).

Consider a sphere in three-dimensional Euclidean space

s2(r) =
{
x ∈ R3 : ‖x‖ = r

}
⊂ R3

with the Lebesgue measure (the area element on the sphere)

σ̃r(du) = σr(dθ.dϕ) = r2 sin θdθdϕ, (θ,ϕ) ∈ s2(1), r = ‖x‖ > 0.

A spherical random field on a complete probability space (Ω,F ,P), denoted by

T = {T (r, θ,ϕ) = Tω(r, θ,ϕ) : 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, r > 0, ω ∈ Ω},

or T =
{
T̃ (x) , x ∈ s2(r)

}
, is a stochastic function defined on the sphere s2(r). We

consider a real-valued spherical random field T, with finite second-order moments, and
being continuous in the mean-square sense. Note that [20] proved that the covariance
function of a measurable finite-variance isotropic random field on the sphere is necessarily
everywhere continuous.

Under these conditions, the field T can be expanded in the mean-square sense as a
Laplace series [33, p. 73]:

T (r, θ,ϕ) =

∞∑
l=0

l∑
m=−l

Y m
l (θ,ϕ)alm(r), (1)

where Y m
l (θ,ϕ) represent the spherical harmonics. The spectral representation (1)

can be viewed as Karhunen–Loève expansion, which converges in the Hilbert space
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L2

(
Ω× s2(r), r2 sin θdθdϕ

)
; that is,

lim
L→∞

E

 ∫
s2(r)

(
T (r, θ,ϕ)−

L∑
l=0

l∑
m=−l

Y m
l (θ,ϕ)alm(r)

)2

r2 sin θdθdϕ

 = 0.

According to Peter–Weyl Theorem (see [20, p. 69]), the expansion (1) also converges in
the Hilbert space L2(Ω), for every x ∈ s2(r); that is, for each x ∈ s2(r),

lim
L→∞

E

(
T̃ (x)−

L∑
l=0

l∑
m=−l

Ỹ m
l (x)alm(r)

)2

= 0.

Recall that for −l ≤ m ≤ l,

Ỹ m
l (x) = Y m

l (θ,ϕ) = clm exp(imϕ)Pm
l (cos θ), clm = (−1)m

[
2l + 1

4π

(l − k)!

(l + k)!

]1/2

, (2)

and Pm
l (cos θ) denotes the associated Legendre polynomial of degree l,m, i. e.

Pm
l (x) = (−1)m

(
1− x2

)m/2 dm

dxm
Pl(x), Pl(x) =

1

2ll!

dl

dxl

(
x2 − 1

)l
. (3)

The spherical harmonics have the following properties
∫ π

0

∫ 2π

0

Y m
l (θ,ϕ)Y m′

l′ (θ,ϕ) sin θdθdϕ = δl
′

l δ
m′

m , (4)

Y m
l (θ,ϕ) = (−1)mY −ml (θ,ϕ),

Y m
l (π− θ,ϕ+ π) = (−1)lY m

l (θ,ϕ),

where δl
′

l represent the Kronecker delta. The random coefficients in the Laplace series
(1) can be obtained through inversion arguments in the form of mean-square stochastic
integrals

aml (r) =

∫ π

0

∫ 2π

0

T (r, θ,ϕ)Y m
l (θ,ϕ)r2 sin θdθdϕ =

=

∫

s2(1)

T̃ (ru)Y m
l (u)σ̃1(du), u =

x

‖x‖
∈ s2(1) r = ‖x‖. (5)

The field T (r, θ,ϕ) = T̃ (x) is said to be isotropic (in the weak sense) on a sphere s2(r)

if ET̃ (x)2 <∞, and its first and second-order moments are invariant with respect to the
group of rotations on the sphere, i.e.

ET̃ (x) = ET̃ (gx), ET̃ (x)T̃ (y) = ET̃ (gx)T̃ (gy),

for every g ∈ SO(3), the group of rotations in R3. This is equivalent to saying that the
mean ET (r, θ,ϕ) = c = constant (we assume c = 0), and that the covariance function
ET (r, θ,ϕ)T (r, θ′,ϕ′) depends only on the angular distance θ = θPQ between the points
P = (θ,ϕ) and Q = (θ′,ϕ′) on s2(r). The field is isotropic if and only if

Eaml (r)am
′

l′ (r) = δl
′

l δ
m′

m Cl(r), −l ≤ m ≤ l, −l′ ≤ m′ ≤ l′, (6)

or

E|aml (r)|2 = Cl(r), m = 0,±1, . . . ,±l. (7)

The functional series {C1(r), C2(r), . . . , Cl(r), . . . }, r > 0, is called the angular power
spectrum of the isotropic random field T (r, θ,ϕ). From (1), (5) and (6) we deduce that

Γr(cos θ) = ET (r, θ,ϕ)T (r, θ′,ϕ′) =
1

4π

∞∑
l=1

(2l + 1)Cl(r)Pl(cos θ), (8)
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where
∞∑
l=1

(2l + 1)Cl(r) <∞, (9)

for every fixed r > 0. If T (r, θ,ϕ) is an isotropic Gaussian field, then the coefficients
aml (r), m = −l, . . . , l, l ≥ 1, are complex-valued independent Gaussian random processes
unless m = −m′, with

Eaml (r) = 0, Eaml (r)am
′

l′ (r) = δm
′

m δ
l′

l Cl(r),

if Cl(r) > 0, or degenerate at zero if Cl(r) = 0. This does not deny that they are
uncorrelated for every m,m′, including m = −m′.

A random field T̃ (x), x ∈ R3, with ET̃ (x)2 < ∞ is called homogenous (in the weak
sense) if its first two moments are invariant with respect to the Abelian group of shifts

in R3. An isotropic field T̃ (x), x ∈ R3, is homogenous if and only if [33, p. 89]

Eaml (r)am
′

l′ (s) = δl
′

l δ
m′

m Cl(r, s) (10)

with

Cl(r, s) = 2π2
∫ ∞

0

Jl+ 1
2
(µr)

(µr)1/2

Jl+ 1
2
(µs)

(µs)1/2
G(dµ), (11)

l = 1, 2, . . . , where G is a finite measure on the Borel sets of [0,∞) such that

σ2 = Var
{
T̃ (0)

}
=

∫ ∞

0

G(dµ) <∞,

and Jν(z) is the Bessel function of the first kind of order ν.

The covariance function Cov
{
T̃ (x), T̃ (y)

}
of a mean-square continuous isotropic ran-

dom field T̃ (x) depends only on the Euclidean distance

r = |x− y| =
√
ρ2

1 + ρ2
2 − 2ρ1ρ2 cosγ, cosγ =

〈x, y〉
ρ1ρ2

, x = (ρ1, u1), y = (ρ2, u2),

with ρ1 = ‖x‖, and ρ2 = ‖y‖. Moreover, by the addition theorem for Bessel functions
(see, for example, [33, p. 6]) the covariance function can be represented as

B(r) =

∫ ∞

0

sin(µr)

µr
G(dµ) =

= 2π2
∞∑
l=1

l∑
m=−l

Y m
l (u1)Y m

l (u2)

∫ ∞

0

Jl+ 1
2
(µρ1)

(µρ1)1/2

Jl+ 1
2
(µρ2)

(µρ2)1/2
G(dµ). (12)

By Karhunen’s Theorem (see, for example, [33, p. 10]), a mean-square continuous ho-
mogenous isotropic random field with zero mean has a spectral representation

T̃ (x) = T (r, θ,ϕ) =

∞∑
l=1

l∑
m=−l

Y m
l (θ,ϕ)aml (r), (13)

where, in this case,

aml (r) = π
√

2

∫ ∞

0

Jl+ 1
2
(µr)√

(µr)
Zm
l (dµ), (14)

with Zm
l , −l ≤ m ≤ l, l = 1, 2, . . . , being the family of complex-valued random measures

on Borel sets of [0,∞) such that

EZm
l (A) = 0, EZm

l (A)Zm′
l′ (B) = δl

′

l δ
m′

m G(A ∩B). (15)

If there exists an isotropic spectral density g(µ) ≥ 0 such that

G(dµ)

dµ
= |s2(1)|µ2g(µ), µ2g(µ) ∈ L1([0,∞)), (16)
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where |s2(1)| denotes the Lebesgue measure of the unit sphere in R3, then (13) holds
with

aml (r) = (2π)3/2
∫ ∞

0

√
µJl+ 1

2
(µr)

√
g(µ)Wm

l (dµ), (17)

and

EWm
l (A)Wm′

l′ (B) = δl
′

l δ
m′

m |A ∩B|,
being Wm

l , −l ≤ m ≤ l, l = 1, 2, . . . , a family of white noise random measures. The

restriction of an homogenous and isotropic random field T̃ (x), x ∈ R3, to the sphere
s2(r) is an isotropic random field on the sphere. In this particular case, the covariance
function of this isotropic random field T on s2(r) is representable in the form (8) with
the angular power spectrum

Cl(r) = 2π2
∫ ∞

0

J2
l+ 1

2

(µr)

µr
G(dµ), l = 1, 2, . . . , (18)

or if (16) holds,

Cl(r) = (2π)3
∫ ∞

0

J2
l+ 1

2

(µr)

µr
µ2g(µ)dµ. (19)

For example, if (18) is satisfied and

g(µ) =
h(µ)

µ1−κ , −2 < κ < 0, (20)

where h(µ) is continuous and positive in a neighborhood of zero and bounded everywhere
on [0,∞), then by the Tauberian theorem [33, p. 32], from (19) and (20) we obtain the
following asymptotic result:

Cl(r) = (2π)3h(0)k1(l,κ)r2−κ{1 + o(1)}, as r →∞,

where

k1(l,κ) =

∫ ∞

0

J2
l+ 1

2
(z)zκdz =

{
Γ2

(
1− κ

2

)
Γ

(
2l + 2− κ

2

)}−1

Γ(−κ)Γ(2l + 2− κ)2−κ.

Note that the convergence as r → ∞, is not uniform over l, and the sequence k1(l,κ)
diverges (for every fixed κ). This does not contradict to (9), since the convergence is not
uniform. It follows that if the field is homogeneous the series (9) does not depend on r.

According to the standard terminology, for κ ∈ (−2,−1), the random field has a radial
long range dependence, while for κ ∈ [−1, 0) the random field has a radial singularity at
zero.

In general, the covariance function on sphere Γr can be originated from covariance
function of some homogenous and isotropic random fields on Euclidean spaces B as
follows [33, p. 76]:

Γr(cos θ) = Cov
(
T (r, θ,ϕ), T (r, θ′,ϕ′)

)
= B

(
2r sin(θ/2)

)
=

∫ ∞

0

sin
(
2µr sin θ2

)
2rµ sin θ2

G(dµ).

(21)
In this case we consider two locations P = (r, θ,ϕ) and Q = (r, θ′,ϕ′) on the sphere

s2(r) with angle θ ∈ [0,π], then the Euclidean distance between them in terms of the
angle is 2r sin(θ/2), which gives a direct correspondence between the original covariance
function B(ρ) and the covariance function Γr(cos θ) on sphere depending only on the
angular distance θ = θPQ between the points on the sphere s2(r).

Examples of valid covariance functions, based on equation (21), can be found in [16].
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A Gaussian random field T̃ (x), x ∈ R3, is called a fractional Brownian field with the
Hurst parameter H, if it satisfies the conditions

E
{
T̃ (x)− T̃ (y)

}
= 0; E

{
T̃ (x)− T̃ (y)

}2

= ‖x− y‖H , x, y ∈ R3, 0 ≤ H ≤ 2.

We may assume T̃ (0) = 0; it is well-known that fractional Brownian motion is an isotropic
and self-similar Gaussian random field, i.e.

T̃ (x) =

∞∑
l=1

l∑
m=−l

Y m
l (θ,ϕ)ãlm(‖x‖), x ∈ R3, (22)

where

alm(r) =

∫

s2(1)

T̃ (ru)Y m
l (u)σ̃1(du), u = (θ,ϕ),

with

Eãlm(r)ãl′m′(s) = δl
′

l δ
m′

m Cl(r, s), (23)

and the self-similarity property holds:

T̃ (λx)
d
= T̃ (x)λH/2, λ > 0, for every H ∈ [0, 2].

The covariance function Cl(r, s), in (23), satisfies the self-similarity condition:

Cl(λr, λs) = λHCl(r, s).

By Lamperti’s transformation [6, p. 117] the process

al1(t) = e−Htal1
(
e2t
)
, t ∈ R,

is stationary with covariance function

R(t, s) = e−H(t+s)Cl

(
e2t, e2t

)
= eH(t−s)Cl

(
1, e−2(t−s)

)
, t, s ∈ R.

If al1(t) is purely non-deterministic then it has a canonical representation

al1(t) =

∫ t

−∞
A(t− s)W0(ds), A ∈ L2(R),

where W0(·) is a complex Gaussian white noise random measure on the Borel sets of R,
and then al1(r) is representable as

al1(r) =

∫ r

0

1√
2
A
(

log
√

r/s
)
rH/2s−1/2W (ds), (24)

with W (·) being a complex Gaussian white noise random measure on [0,∞). The coeffi-
cient processes alm(t) in (22) are independent copies of the process (24). The restriction

of a field T̃ (x) to s2(r) is an isotropic random field on s2(r), with spectral representation
(22), and angular power spectrum

Cl(r) = Cl(r, r) =
1

2

∫ r

0

∣∣∣A(log
(r
s

))∣∣∣2rHs−1ds,

for some function A(u) such that |A(u)|2 ∈ L2([0,∞)).
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3. The first Minkowski functional for Gaussian random fields

3.1. Direct formulae. In this section we examine the first Minkowski functional for a
Gaussian random field with SRD or LRD. We use some ideas from [3, 6, 8, 33]. Let T̃ (x),
x ∈ R3, be a measurable, mean-square continuous homogenous isotropic Gaussian ran-

dom field, with zero mean, and covariance function B̃(x) = Cov
(
T̃ (x), T̃ (0)

)
= B(‖x‖),

x ∈ R3; in the sequel, we assume B(0) = 1. Consider now an isotropic random field

T (r, θ,ϕ), which is the restriction to the sphere s2(r) of the random field T̃ (x). The first
Minkowski functional can be represented as

M0(ν) = σ({(r, θ,ϕ) ∈ s2(r) : T (r, θ,ϕ) > ν}) =

=

∫

s2(r)

1{T>ν}(r, θ,ϕ)σr(dθ, dϕ) =

=

∫

s2(r)

1{T̃>ν}(x)σ̃r(dx), (25)

with 1{·} denoting the indicator function. Now let N(·) represents any, real measurable

function such that E
[
N
(
T̃ (0)

)]2
<∞. The function N(·) can be expanded in the series

N(u) =

∞∑
k=0

Kk

k!
Hk(u), Kk =

∫

R
N(u)Hk(u)φ(u)du, (26)

which converges in the Hilbert space L2(R,φ(u)du). In (26), the function φ(u) =

= (2π)−1/2e−u
2/2, u ∈ R, is a standard Gaussian density, and

Hk(u) = (−1)k exp

(
u2

2

)
dk

duk
exp

(
−u2

2

)
, u ∈ R,

is the kth Hermite polynomial. It is well-known that such polynomials form a com-
plete orthonormal system in the Hilbert space L2(R,φ(u)du), and EHk(ξ)Hk′(η) =

= δk
′

k q!{Eξη}k, where (ξ,η) is a zero-mean Gaussian vector. In particular, for the indi-
cator function

1T>ν =

∞∑
k=0

Kk(ν)

k!
Hk(T ), (27)

where

Kk(ν) =

{
1− Φ(ν), k = 0,

φ(ν)Hk−1(ν), k ≥ 1,
(28)

and Φ(ν) =
∫ν

−∞φ(u)du.

Thus, the first Minkowski functional can be expanded in the Hilbert space L2(Ω) as
follows:

M0(ν) =

∞∑
k=0

Kk(ν)

k!

∫

s2(r)

Hk

(
T̃ (x)

)
σ̃r(dx) =

= EM0(ν) +

∞∑
k=1

Kk(ν)

k!

∫

s2(r)

Hk

(
T̃ (x)

)
σ̃r(dx), (29)

where

EM0(ν) = {1− Φ(ν)}r2|s(1)| = 4πr2{1− Φ(ν)}, (30)

and

E

{
∫

s2(r)

Hk

(
T̃ (x)

)
σ̃r(dx)

∫

s2(r)

Hk′

(
T̃ (y)

)
σ̃r(dy)

}
= δk

′

k d2
k(r),
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d2
k(r) = k!

∫

s2(r)

∫

s2(r)

Bk(‖x− y‖)σ̃r(dx)σ̃r(dy). (31)

Let s2(r) be a sphere in R3 and consider two independent vectors β and γ; we assume
β,γ are uniformly distributed on s2(r), that is

P(β ∈ ∆) = P(γ ∈ ∆) =

∫

∆∩s(r)

σ̃r(dx)

r2|s(1)|
, ∆ ⊂ s2(r).

It can then be shown (see for instance [33, p. 28]) that the probability density function
of the Euclidean distance ρ(β,γ) = ‖β− γ‖ is of the form

ur

(
ρ(β,γ)

)
= ur(u) =

1

2
· u
r2

, 0 ≤ u ≤ 2r. (32)

Then, from (31) and (32), we obtain

d2
k(r) = r4|s(1)|2k!EBk(‖β− γ‖) = 23π2r2k!

∫ 2r

0

zBk(z) dz. (33)

Thus,

Var{M0(ν)} =

∞∑
k=1

K2
k(ν)

(k!)2
d2
k(r) = 23π2r2

∞∑
k=1

K2
k(ν)

k!

∫ 2r

0

zBk(z) dz. (34)

Now, consider the bivariate Gaussian density

φ(x, y; ρ) =
1

2π
√

1− ρ2
exp

{
−x2 + y2 − 2xyρ

2(1− ρ2)

}
, (x, y) ∈ R2, |ρ| ≤ 1; (35)

using the well-known formula
∫ ∞

ν

∫ ∞

ν

φ(x, y; ρ)dxdy =

{
∫ ∞

ν

φ(x)dx

}
+

1

2π

∫ ρ

0

exp

{
− ν2

1 + ρ

}
dz√

1− ρ2
,

we obtain the following alternative expression for the Minkowski functional itself and its
variance:

M0(ν) = {1− Φ(ν)}r2|s2(1)|+ φ(ν)

∫

s2(r)

T̃ (x)σ̃r(dx) +

+ φ(ν)

∞∑
k=2

Kk(ν)
1

k!

∫

s2(r)

Hk

(
T̃ (x)

)
σ̃r(dx) =

= EM0(ν) + ην(r) + Rν(r), (36)

where ην(r) is a Gaussian random field with zero mean and variance

Eην(r)2 = φ2(ν)23π2r2
∫ 2r

0

zB(z) dz,

and

Var{Rν(r)} = 23π2r2φ2(ν)

∞∑
k=2

K2
k(ν)

k!

∫ 2r

0

zBk(z) dz.

Also one can obtain the following direct formula:

Var{M0(v)} = 2πr2
∫ 2r

0

z

∫ B(z)

0

exp

{
− ν2

1 + w

}
dw√

1− w2
dw, (37)

since

Var

{
∫

s2(r)

1{T̃>ν}(x)σ̃r(dx)

}
=

∫

s2(r)

∫

s2(r)

σ̃r(dx)σ̃r(dy)×

×
∫∫

R2

1{u>ν}1{w>ν}
[
φ
(
u,w;B(‖x− y‖)

)
− φ(u)φ(w)

]
dudw =
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=

∫

s2(r)

∫

s2(r)

σ̃r(dx)σ̃r(dy)

∫ ∞

ν

∫ ∞

ν

[
φ
(
u,w;B(‖x− y‖)

)
− φ(u)φ(w)

]
dudw =

= 23π2r2

[
∫ 2r

0

zdz
1

2π

∫ B(z)

0

exp

{
− ν2

1 + ρ

}
dρ√

1− ρ2

]
. (38)

For a general isotropic Gaussian random field T with zero mean and covariance function
Γr(cos θ), we get:

EM0(ν) = 4πr2{1− Φ(ν)},

VarM0(v) =
1

2π

∫

s2(r)

∫

s2(r)

σ̃r(dx)σ̃r(dy)

∫ Γr(cosθ)

0

exp

{
− ν2

1 + ρ

}
dρ√

1− ρ2
.

The last formula seems new and computational friendly.

3.2. Asymptotic formulae as r →∞. We introduce

Assumption AI. The homogeneous isotropic Gaussian random field T̃ (x), x ∈ R3, has
the covariance function B(‖x‖), x ∈ R3, such that

∫ ∞

0

z|B(z)| dz <∞,

∫ ∞

0

zB(z) dz 6= 0.

Under the assumption AI, as r →∞
VarM0(v) = k2(ν)r2{1 + o(1)},

where

k2(ν) = 23π2φ2(ν)

∞∑
k=1

K2
k(ν)

k!

∫ ∞

0

zBk(z) dz ∈ (0,∞).

Assumption AII.

i) The homogeneous isotropic random field T̃ (x), x ∈ R3, is a zero-mean mean-square

continuous Gaussian random field with E[T̃ 2(x)] = 1, for all x ∈ R3, and has the
covariance function

B(‖x‖) =
L(‖x‖)
‖x‖α

, x ∈ R3, 0 < α < 2, (39)

where L(‖x‖) is a slowly varying function, as ‖x‖ → ∞, and

ii) the Gaussian random field T̃ has absolutely continuous spectrum, with spectral
density f0(‖λ‖) defined on R3, and being a decreasing function for ‖λ‖ ∈ (0, ε],
ε > 0.

Under the assumption AII i), as r →∞
VarM0(ν) = k3(α,ν)r4−αL(r){1 + o(1)}, (40)

where

k3(α,ν) = 24−απ2φ2(ν)
Γ
(

3−α
2

)
Γ
(

1−α
2

) ∈ (0,∞), (41)

while for α = 2, and r →∞
VarM0(ν) = k4(ν)r2L(r) log(2r){1 + o(1)},

with

k4(ν) = k2(ν)/4 ∈ (0,∞).

We can now formulate Theorem 1 about the asymptotic normality of the first Minkow-
ski functional of a Gaussian random field under increasing domain asymptotics. The follo-
wing lemma is required in the proof of Theorem 1.
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Lemma 1. Under the assumption AII ii) for 0 < α < 2, the following identities hold:

∫

R2

|Y3(‖λ‖)|2
[

1

(‖λ‖)2−α/2

]2

dλ = k3(α,ν)

[
γ(α/2)

|s2(1)|

]2

<∞,

where

γ(β) =
π2βΓ(β/2)

Γ
(

2−β
2

) =
1

c(2,β)
, 0 < β < 2, (42)

and

Y3(r‖λ‖) =
1

|s2(r)|

∫

s2(r)

exp(i〈λ, x〉)σ̃r(dx). (43)

Proof. The proof is based in the following identity:

∫

R2

|Y3(‖λ‖)|2
[

1

(‖λ‖)2−α/2

]2

dλ =

[
γ(α/2)

|s2(1)|

]2 ∫

s2(1)

∫

s2(1)

1

‖x− y‖α
σ̃(dx)σ̃(dy),

which holds from the weak-sense definition of the Fourier transform of the Riesz potential,
and its associated convolution properties (see, for example, Lemma 1 in [30, p. 117]), as
well as from the inner product induced by the kernel defining such a potential (see also
Lemma 2, and Theorem 3 (i) in [13], for d = 2 and D = s2(1)). �

Theorem 1. Under Assumption AI and r →∞[
M0(ν)− 4πr2{1− Φ(ν)}

]
/r →dist N1 ∼ N

(
0, k2(ν)

)
. (44)

Under Assumption AII i) for 0 < α < 2 and r →∞[
M0(ν)− 4πr2{1− Φ(ν)}

]/[
r2−α

2

√
L(r)

]
→dist N2 ∼ N(0, k3(α,ν)), (45)

while for α = 2[
M0(ν)− 4πr2{1− Φ(ν)}

]/[
r
√

L(r) log(2r)
]
→dist N3 ∼ N(0, k4(ν)), (46)

where ”→dist ” stands for convergence in distributions.

Remark 1. Under Assumption AII i), ii), for 0 < α < 2, as r → ∞, the limit Gaussian
random variable N2 admits the following stochastic integral representation, in the mean-
square sense:

N2 =
K1(ν)|s2(1)|
γ(α/2)

∫

R2

Y3(‖λ‖) Z(dλ)

‖λ‖2−
α
2

,

where Z denotes complex Gaussian white noise.

Proof. The proof used some ideas from different sources. Namely, (44) and (46) follow
from [14], while (45) can also be obtained from [9], taking into account that the Hermite
rank of the function N(u) = 1{u>ν} is equal to one.

We now present a summary of the main steps of the proof. Specifically, under As-
sumption AII, we retsrict our attention to the case 0 < α < 2, and detail the main steps
in the derivation of the Gaussian limit distribution when r →∞.

First, for 0 < α < 2, we have to note that, in view of

1

L(r)r4−αE

[
M0(ν)− 4πr2{1− Φ(ν)} −K1(ν)

∫

s2(r)

H1

(
T̃ (x)

)
σ̃r(dx)

]2

≤

≤ 1

L(r)r4−α

∫

s2(r)

∫

s2(r)

B2(‖x− y‖)σ̃r(dx)σ̃r(dy)

∞∑
j=2

K2
j → 0, r →∞, (47)
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a Reduction Principle can be applied, and the limit, in the mean-square sense, as
r →∞, of

1

L(r)r2−α/2
M0(ν)− 4πr2{1− Φ(ν)}

coincides with the mean-square limit of

1

L(r)r2−α/2
K1(ν)

∫

s2(r)

H1

(
T̃ (x)

)
σ̃r(dx).

Hence, as r → ∞ both functionals has the same limit in distribution sense. Note that
inequality (47) directly follows from Assumption AII, since

Bj(‖x‖) ≤ B2(‖x‖), j ≥ 2,

and, considering r sufficiently large, there exists and M(ε) such that B(‖x‖) < ε,
for ‖x‖ > M(ε), ε → 0, with B(‖x‖) ≤ 1, for ‖x‖ ≤ M(ε), keeping in mind that

E
[
T̃ 2(x)

]
= 1, for all x ∈ R3. In particular,

∫

s2(r)

∫

s2(r)

B2(‖x− y‖)σ̃r(dx)σ̃r(dy) ≤ M̃

[
r2

L(r)r4−α + ε
r4−αL(r)

L(r)r4−α

]
, r →∞, ε→ 0.

We now study the limit, in the mean-square sense, of

1

L(r)r2−α/2

∫

s2(r)

H1

(
T̃ (x)

)
σ̃r(dx).

Let us consider an homogeneous isotropic Gaussian random field T on R2 having
covariance function:

Cov
(
T (0), T (x)

)
= B̃T (x) =

L(x)

‖x‖α
= BT (‖x‖) =

L(‖x‖)
‖x‖α

, x ∈ R2, (48)

where L(x) = L(‖x‖) = L(r), r > 0, is a slowly varying function, as r = ‖x‖ → ∞, such
that the Gaussian random field T has absolutely continuous spectrum, with spectral
density fT0 (‖λ‖) defined on R2, and being a decreasing function for ‖λ‖ ∈ (0, ε], ε > 0.

Under Assumption AII, from equations (40) and (41),

lim
r→∞

1

L(r)r4−αE

[
∫

s2(r)

H1

(
T̃ (x)

)
σ̃r(dx)−
∫

s2(r)

T (x)σ̃r(dx)

]2

= 0 (49)

Hence, as r →∞,

1

L(r)r4−α

∫

s2(r)

H1

(
T̃ (x)

)
σ̃r(dx) and

1

L(r)r4−α

∫

s2(r)

T (x)σ̃r(dx)

have the same limit in distribution sense.
Furthermore, denoting by W (dλ) the Wiener measure on R2,

E

[
1

L(r)r2−α/2

∫

s2(r)

T (x)σ̃r(dx)− |s2(1)|
γ(α/2)

∫

R2

Y3(‖λ‖) W (dλ)

‖λ‖2−
α
2

]2

=

=

∫

R2

|Y3(‖λ‖)|2
[
|s2(1)|
γ(α/2)

]2

Qr(λ)
dλ

‖λ‖4−α
,

where

Qr(λ) =

([
‖λ‖2−(α/2)

γ(α/2)√
L(r)r2−(α/2)

[
fT0 (‖λ‖/r)

]1/2

]
− 1

)2

.

By Tauberian theorems (see, for example, [9]; [10]), Qr converges to zero pointwise, as
r → ∞. From Lemma 1, we can apply Dominated Convergence Theorem to obtain the
mean-square convergence to zero, and hence, in distribution sense. �
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Note that using the Malliavin–Stein method, the rate of convergence in the central
limit theorem (44) is investigated in [23, 24].

4. The first Minkowski functional for χ2-square random fields

4.1. Direct formulae. Consider the chi-square random field of the form

S̃q(x) =
1

2

(
T̃ 2

1 (x) + · · ·+ T̃ 2
q (x)

)
, x ∈ R3, q ≥ 1, (50)

where T̃1(x), . . . , T̃q(x) are independent copies of zero-mean homogeneous isotropic Gaus-

sian field T̃ (x), x ∈ R3, such that

E
[
T̃ 2(x)

]
= 1, Cov

(
T̃ (0), T̃ (x)

)
= B̃(x) = B(‖x‖), x ∈ R3.

Note that

ES̃q(x) =
q

2
, Var S̃q(x) =

q

2
, Cov

(
S̃q(0), S̃q(x)

)
=

q

2
B2(‖x‖). (51)

The χ2-random fields belong to the Lancaster–Sarmanov class (see [12]), thus, the
marginal and bivariate densities are of the form:

p(u) = pq/2(u) =
d

du
P
{
S̃q(x) ≤ u

}
=

u(q/2)−1e−u

Γ(q/2)
, u ∈ (0,∞), (52)

pq/2

(
u,w,γ(‖x− y‖)

)
=

∂2

∂u∂w
P
{
S̃q(x) ≤ u, S̃q(y) ≤ w

}
=

= p(u)p(w)

(
1 +

∞∑
k=1

γk(‖x− y‖)ek(u)ek(w)

)
=

=

(
uw

γ

)( q
2−1)/2

exp

(
−u + w

1− γ

)
I(q/2)−1

(
2

√
uwγ

1− γ

)
1

Γ(q/2)(1− γ)
, (u,w) ∈ (0,∞)2,

(53)

where Iµ(z) is the modified Bessel function of the first kind of order µ,

γ = γ(‖x− y‖) = Corr
(
S̃q(x), S̃q(y)

)
= B2(‖x‖),

ek(u) = e
(q/2)
k (u) = L

((q/2)−1)
k (u)

(
k!Γ(q/2)

Γ((q/2) + k)

)1/2

, k = 0, 1, 2, . . . ,

with L
(b)
k (u) being the generalized Laguerre polynomials of index b, for k ≥ 0. These

functions are orthogonal with respect to the density pq/2(u), u > 0. Using the represen-
tation

L
(b)
k (u) =

u−beu

k!

dk

duk

(
e−uub+k

)
,

one can derive the first few polynomials:

e
(q/2)
0 (u) ≡ 1, e

(q/2)
1 (u) =

(
(q/2)− u

)
(q/2)−1/2.

Note that

Ee
(q/2)
k

(
S̃q(x)

)
= 0, k ≥ 1,

E
(
e(q/2)
m

(
S̃q(x)

)
e

(q/2)
k

(
S̃q(y)

))
= δkmγ

m(‖x− y‖) = δkmB2m(‖x− y‖).

In this construction of χ2-random fields, the correlation function B2(‖x− y‖) ≥ 0 must
be not only non-negative definite, but also nonnegative.
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Consider now an isotropic random field Sq(r, θ,ϕ), which is the restriction to the

sphere s2(r) of the random field S̃q(x). The first Minkowski functional can be repre-
sented as

Mq
0 (ν) = σ{(r, θ,ϕ) ∈ s2(r) : Sq(r, θ,ϕ) > ν} =

=

∫

s2(r)

1{Sq>ν}(r, θ,ϕ)σr(dθ, dϕ) =

=

∫

s2(r)

1{S̃q>ν}(x)σ̃r(dx). (54)

Now let N(·) denote any, real measurable function such that EN
(
S̃q(0)

)2

< ∞. The

function N(·) can be expanded in the series

N(u) =

∞∑
k=0

KL
k e

(q/2)
k (u), KL

k =

∫ ∞

0

N(u)e
(q/2)
k (u)pq/2(u)du, (55)

which converges in the Hilbert space L2

(
(0,∞), pq/2(u)du

)
, and in view of the Parseval

equality:
∑∞

k=0

[
KL

k

]2
<∞ . In particular, for the indicator function 1{u>ν}

KL
k =

∫ ∞

ν

e
(q/2)
k (u)p(u)du. (56)

We denote the incomplete Gamma function

Γ(q/2, w) =

∫ ∞

w

u(q/2)−1e−u

Γ(q/2)
du,

which has the property:

Γ(β+ 1, w) = βΓ(β, w) + eβe−u, β > 0, w ≥ 0,

and thus, from (56), we get:

KL
1 (ν) = −

√
q/2 p(q/2)+1(ν), (57)

where
∂pq/2

∂γ
=

q

2

∂2p(q/2)+1

∂u∂w
. (58)

Then, the first Minkowski functional can be expanded in the Hilbert space
L2

(
(0,∞), pq/2(u)du

)
as follows:

Mq
0 (ν) =

∞∑
k=0

KL
k (ν)

∫

s2(r)

e
(q/2)
k

(
S̃q(x)

)
σ̃r(dx) =

= EMq
0 (ν) +

∞∑
k=1

KL
k (ν)

∫

s2(r)

e
(q/2)
k

(
S̃q(x)

)
σ̃r(dx), (59)

where

VarMq
0 (ν) =

∞∑
k=1

[
KL

k (ν)
]2 ∫

s2(r)

∫

s2(r)

γk(‖x− y‖)σ̃r(dx)σ̃r(dy) =

= 23π2r2
∞∑
k=1

[
KL

k (ν)
]2 ∫ 2r

0

zγk(z)dz.

By Kinematic Formula (see [1]) we have

EMq
0 (ν) = 4Γ(q/2, w)r2π, (60)
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and using the differential equation (58), for function p(q/2)(u,w,γ) (see [2]), one can
obtain the following direct expression for the variance

VarMq
0 (ν) = 4π2r2q

[
∫ 2r

0

zdz

∫ γ(z)

0

p(q/2)+1(ν,ν, s)ds

]
=

= 4π2r2q
νq/2

Γ(q/2 + 1)

∫ 2r

0

zdz

∫ γ(z)

0

exp

(
− 2ν

1− s

)
Iq/2

(
2ν

√
s

1− s

)
1

sq/4 (1− s)
ds.

Really,

Var

{
∫

s2(r)

1{S̃q>ν}(x)σ̃r(dx)

}
=

∫

s2(r)

∫

s2(r)

σ̃r(dx)σ̃r(dy)×

×
∫∫

R2

1{u>ν}1{w>ν}[pq/2(u,w;γ(‖x− y‖)− p(u)p(w)]dudw =

=

∫

s2(r)

∫

s2(r)

σ̃r(dx)σ̃r(dy)

∫ ∞

ν

∫ ∞

ν

∫ γ(‖x−y‖

0

∂

∂t
[pq/2(u,w; t)]dtdudw =

=
q

2

∫

s2(r)

∫

s2(r)

σ̃r(dx)σ̃r(dy)

∫ γ(‖x−y‖

0

ds

∫ ∞

ν

∫ ∞

ν

∂2p(q/2)+1(u,w, s)

∂u∂w
dudw =

=
q

2

∫

s2(r)

∫

s2(r)

σ̃r(dx)σ̃r(dy)

∫ γ(‖x−y‖

0

p(q/2)+1(ν,ν, s)ds =

= 4π2r2q

[
∫ 2r

0

zdz

∫ γ(z)

0

p(q/2)+1(ν,ν, s)ds

]
.

For a general isotropic χ2-random field T with the covariance function Γr(cos θ), one can
show that

EMq
0 (ν) = 4Γ(q/2, w)r2π, Var{Mq

0 (ν)} =

=
qνq/2

Γ(q/2 + 1)

∫

s2(r)

∫

s2(r)̃

σr(dx)σ̃r(dy)×

×
∫ Γq

r(cosθ)

0

exp

(
− 2ν

1− s

)
Iq/2

(
2ν

√
s

1− s

)
1

sq/4 (1− s)
ds,

where Γq
r(cos θ) = [Γr(cos θ)]2, and Γr(cos θ) = ET (r, θ,ϕ)T (r, θ′,ϕ′).

The last formula seems new and computational friendly.

4.2. Asymptotic formulae as r →∞. The following assumptions will be considered.

Assumption BI. The homogeneous isotropic χ2-random random field S̃q(x), x ∈ R3,
has the correlation function γ(‖x‖), x ∈ R3, such that

∫ ∞

0

z|γ(z)| dz <∞,

∫ ∞

0

zγ(z) dz 6= 0.

Under the Assumption BI, as r →∞

VarMq
0 (ν) = k5(ν)r2{1 + o(1)},

where

k5(ν) = 23π2
∞∑
k=1

[
KL

k (ν)
]2 ∫ ∞

0

zγk(z) dz ∈ (0,∞).
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Assumption BII. The homogeneous isotropic χ2-random field S̃q(x), x ∈ R3, has
correlation function

γ(‖x‖) =

[
L(‖x‖)
‖x‖α

]2

, x ∈ R3, 0 < α < 1, (61)

where L(‖x‖) is a slowly varying function, as ‖x‖ → ∞.

Condition BII is satisfied by the correlation function

γ(‖z‖) =
1

(1 + ‖z‖δ)a
, 0 < δ ≤ 2, a > 0, (62)

where L(‖z‖) = ‖z‖δa/
(
1 + ‖z‖δ

)a
.

Under Assumption BII, for 0 < α < 1, and r →∞,

VarMq
0 (ν) = k6(α,ν)r4−2αL(r){1 + o(1)}, (63)

where

k6(α,ν) =

[
KL

1 (ν)
]2

24−απ2Γ
(

4−α
2

)
Γ
(

2−α
2

) ∈ (0,∞), (64)

and J1(ν) is the Bessel function of the first kind of order 1, while for α = 1, and r →∞

VarMq
0 (ν) = k7(ν)r2L(r) log(2r){1 + o(1)},

with

k7(ν) = k5(ν)/4 ∈ (0,∞).

Assumption BIII. The slowly varying function L, appearing in equation (61), in As-
sumption BII, is such that, for every m ≥ 2 there exists a constant C > 0, satisfying

∫

s2(1)

· · ·
(m)

∫

s2(1)

L(r‖x1 − x2‖)
L(r)‖x1 − x2‖α

· L(r‖x2 − x3‖)
L(r)‖x2 − x3‖α

×

× · · · × L(r‖xm − x1‖)
L(r)‖xm − x1‖α

σ̃(dx1)σ̃(dx2) . . . σ̃(dxm) ≤

≤ C

∫

s2(1)

· · ·
(m)

∫

s2(1)

σ̃(dx1)σ̃(dx2) . . . σ̃(dxm)

‖x1 − x2‖α‖x2 − x3‖α . . . ‖xm − x1‖α
.

In the following result, we will use the Fredholm determinant of an operator A, which
is a complex-valued function generalizing the determinant of a matrix, as given in the
next definition.

Definition 1 (see, for example, [28], Ch. 5, pp. 47–48, equation (5.12)). Let A be a
trace operator on a separable Hilbert space H. The Fredholm determinant of A is

D(ω) = det(I −ωA) = exp

(
−
∞∑
k=1

TrAk

k
ωk

)
= exp

(
−
∞∑
k=1

∞∑
l=1

[λl(A)]k
ωk

k

)
, (65)

for ω ∈ C, and |ω| · ‖A‖1 < 1. Note that ‖Am‖1 ≤ ‖A‖m1 , for A being a trace operator.

We can now formulate the theorem about asymptotic distributions of the first Min-
kowski functional of χ2-random field under increasing domain asymptotics.

Theorem 2. Under Assumption BI, as r →∞[
Mq

0 (ν)− 4Γ(q/2, w)r2π
]
/r →dist N (0, k5(ν)). (66)

Under Assumptions BII–BIII, for 0 < α < 1, and r →∞,[
Mq

0 (ν)− 4Γ(q/2, w)r2π
]/[

r2−αL(r)
]
→dist R, (67)
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where the random variable R has the Rosenblatt-type distribution with characteristic func-
tion

ψ(z) = EeizR = exp

q

2

∞∑
m=2

(
2iz
√
q/2 p(q/2)+1(ν)/

√
2q
)m

m
cm

 (68)

with cm, m ≥ 2, being defined as

cm =

∫

s2(1)

· · ·
(m)

∫

s2(1)

1

‖x1 − x2‖α
· 1

‖x2 − x3‖α
· · · 1

‖xm − x1‖α
σ̃(dx1) . . . σ̃(dxm).

For α = 1 [
Mq

0 (ν)− 4Γ(q/2, w)r2π
]/[

r
√
L1(r) log(2r)

]
→dist N

(
0, k7(ν)

)
. (69)

Remark 2. Note that, for the covariance function (62), Theorem 2 holds under Assump-
tion BII, and clearly, Assumption BIII is not needed.

Proof. Again, we pay attention to the proof of the non-central limit result derived under
Assumptions BII–BIII (for more details, we refer to the reader to [12–15, 31]). We now
summarize the main steps of the proof of such a result.

First, a Reduction Principle can be applied, since the following inequality holds:[
1

L(r)r2−α

]2

E

[
Mq

0 (ν)− E[Mq
0 (ν)]−KL

1 (ν)

∫

s2(r)

e
q/2
1

(
χ̃2
q(x)

)
σ̃r(dx)

]2

≤

≤
[

1

L(r)r2−α

]2 ∫

s2(r)

∫

s2(r)

B3(‖x− y‖)σ̃(dx)σ̃(dy)

∞∑
j=2

[KL
j (ν)]2 → 0, r →∞,

where the convergence to zero of the last integral can be proved in a similar way to
equation (47), considering

Bj(‖x‖) ≤ B3(‖x‖), j ≥ 3,

and similar inequalities for B3(‖x‖) and B2(‖x‖) (instead of B2(‖x‖) and B(‖x‖)).
From equation (50),

e
(q/2)
1

(
χ2
q(x)

)
= − 1√

2q

q∑
j=1

H2

(
T̃j(x)

)
. (70)

Let us denote by T̃j , j = 1, . . . , q, q independent copies of a zero-mean Gaussian isotropic

random field T̃ on R2 with covariance function

L(‖x‖)
‖x‖α

, x ∈ R2.

Under BII, from equation (63), for j = 1, . . . , q,

lim
r→∞

1

L(r)r4−2α
E

[
∫

s2(r)

H2

(
T̃j(x)

)
σ̃r(dx)−
∫

s2(r)

(
T̃ 2
j (x)− 1

)
σ̃r(dx)

]2

= 0. (71)

Hence, as r →∞, for j = 1, . . . , q,

1

L(r)r2−α

∫

s2(r)

H2

(
T̃j(x)

)
σ̃r(dx) and

1

L(r)r2−α

∫

s2(r)

(
T̃ 2
j (x)− 1

)
σ̃r(dx)
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have the same limit in distribution sense. Therefore, it is sufficient to compute the limit,
as r →∞, of the following characteristic function:

φr(z) = E

exp

 iKL
1 (ν)z

r2−αL(r)

∫

s2(r)

− 1√
2q

q∑
j=1

H2(T̃j(x))

σ̃r(dx)

 =

=

q∏
j=1

E

[
exp

(√
q/2p(q/2)+1(ν)iz
√

2qr2−αL(r)

∫

s2(r)

(T̃ 2
j (x)− 1)σ̃r(dx)

)]
=

=

q∏
j=1

exp

(
1

2

∞∑
m=2

1

m

(
2iz
√
q/2p(q/2)+1(ν)
√

2qr2−αL(r)

)m

Tr
(
Rm
T̃j ,s2(r)

))
=

= exp

(
q

2

∞∑
m=2

1

m

(
2iz
√
q/2p(q/2)+1(ν)
√

2qr2−αL(r)

)m

Tr
(
Rm
T̃ ,s2(r)

))
, (72)

where, in its computation, we have applied Fredholm determinant formula (see Definition
1), and the identity

KL
1 (ν) = −

√
q/2p(q/2)+1(ν).

Here, for m ≥ 2, Tr
(
Rm
T̃ ,s2(r)

)
, and Tr

(
Rm
T̃j ,s2(r)

)
denote the trace of the mth power of

the autocovariance operator RT̃ ,s2(r) of T̃ , and of the autocovariance operator RT̃j ,s2(r)

of T̃j on s2(r), for j = 1, . . . , q. Futhermore, the following pointwise convergence holds

lim
r→∞

[
1

L(r)r2−α

]m
Tr
(
Rm
T̃ ,s2(r)

)
= Tr

(
Rm
T̃ ,s2(1)

)
, m ≥ 2. (73)

To apply Dominated Convergence Theorem, under Assumptions BII-BIII, consider∣∣∣∣∣
∞∑

m=2

1

m

(
2iz
√

q/2p(q/2)+1(ν)
√

2qr2−αL(r)

)m

Tr
(
Rm
T̃ ,s2(r)

)∣∣∣∣∣ ≤
≤ C

∞∑
m=2

1

m

∣∣∣∣∣2
√
q/2p(q/2)+1(ν)z
√

2q

∣∣∣∣∣
m

Tr
(
Rm
T̃ ,s2(1)

)
≤

≤ −C ln

(
DRT̃ ,s2(1)

(∣∣∣∣∣2
√

q/2p(q/2)+1(ν)z
√

2q

∣∣∣∣∣
))

, (74)

where DRT̃ ,s2(1)

(∣∣∣∣ 2√q/2p(q/2)+1(ν)z√
2q

∣∣∣∣) denotes the Fredholm determinant of RT̃ ,s2(1), at

point

∣∣∣∣ 2√q/2p(q/2)+1(ν)z√
2q

∣∣∣∣, which is finite for∣∣∣∣∣2
√
q/2p(q/2)+1(ν)z
√

2q

∣∣∣∣∣Tr
(
RT̃ ,s2(1)

)
< 1.

From equations (73) and (74),

lim
r→∞

φr(z) = exp

(
q

2

∞∑
m=2

1

m

(
2iz
√

q/2p(q/2)+1(ν)
√

2q

)m

Tr
(
Rm
T̃ ,s2(1)

))
= ψ(z),

(75)

for all z such that ∣∣∣∣∣2iz

√
q/2p(q/2)+1(ν)
√

2q

∣∣∣∣∣Tr
(
RT̃ ,s2(1)

)
< 1,
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where

Tr
(
Rm
T̃ ,s2(1)

)
=

∫

s2(1)

· · ·
(m)

∫

s2(1)

1

‖x1 − x2‖α
1

‖x2 − x3‖α
· · · 1

‖xm − x1‖α
×

× σ̃(dx1) . . . σ̃(dxm) = cm.

An analytic continuation argument (see [17, Th. 7.1.1]) guarantees that ψ defines the
unique limit characteristic function for all real values of z. �

Alternatively, an isonormal representation of R in (67) can be obtained, in the mean-
square sense, as follows from the following result, applying the above reduction principle.
The following additional assumption is considered

Assumption BIV. The slowly varying function L, appearing in equation (61), in As-

sumption BII, is such that, the chi-squared random field S̃q = 1/2
∑q

j=1 T̃
2
j , introduced

in equation (50), has absolutely continuous spectra. Specifically, for j = 1, . . . , q, T̃j has
spectral density f0j(‖λ‖), being a decreasing functions for ‖λ‖ ∈ (0, ε], ε > 0.

The following lemma will be applied in the proof of Theorem 3 below.

Lemma 2. For 0 < α < 1, the following identities hold:

∫

R4

|Y3(‖λ1 + λ2‖)|2
dλ1dλ2

(‖λ1‖‖λ2‖)2−α = k6(α,ν)

[
γ(α)

|s2(1)|

]2

<∞, (76)

where Y3 is defined in (43), constant k6(α,ν) has been computed in (64), and γ(α) has
been introduced in equation (42).

The proof of Lemma 2 can be derived in a similar way to Theorem 3(i) in [13],
considering d = 2, and D = s2(1).

Theorem 3. Under Conditions BII–BIV, for 0 < α < 1, the limit random variable R
in (67) admits the following integral representation:

R = −|s(1)|KL
1 (ν)

γ(α)
√

2q

q∑
j=1

∫ ′

R4

Y3(‖λ1 + λ2‖)
Z1j(dλ1)Z2j(dλ2)

‖λ1‖
2−α

2 ‖λ2‖
2−α

2

,

where, as before, γ(α) = π2αΓ(α/2)

Γ( 2−α
2 )

, 0 < α < 1, Zij , i = 1, 2, j = 1, . . . , r, are independent

complex Gaussian white noise measures,
∫ ′
R4 means that one does not integrate on the

hyperdiagonals λ1 = ±λ2, and Y3 denotes, as in Lemma 2, the spherical Bessel function.

Proof. First a reduction principle is applied as in Theorem 2. Secondly, as in such a
theorem, apply the relationship between the first Laguerre polynomial and the second-
Hermite polynomial, to obtain[

KL
1

L(r)r2−α

]
∫

s2(r)

e
q/2
1 (χ2

q(x))σ̃r(dx) =

=

[
− KL

1√
2qL(r)r2−α

] q∑
j=1

∫

s2(r)

H2(T̃j(x))σ̃r(dx)

. (77)

Under Assumption BII, we can also consider here the asymptotic mean-square identity
(71), for r →∞, between the functionals

− 1

L(r)r2−α

q∑
j=1

∫

s2(r)

H2(T̃j(x))σ̃r(dx) and
1

L(r)r2−α

q∑
j=1

∫

s2(r)

(T̃ 2
j (x)− 1)σ̃r(dx),
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where, as before, T̃j , j = 1, . . . , q, are independent copies of a zero-mean Gaussian

isotropic random field T̃ on R2 with covariance function

L(‖x‖)
‖x‖α

, x ∈ R2, 0 < α < 2.

Thus, for 0 < α < 1, we now study the limit, in mean-square sense, as r →∞, of

1

L(r)r2−α

q∑
j=1

∫

s2(r)

(
T̃ 2
j (x)− 1

)
σ̃r(dx).

Denote, for j = 1, . . . , q, by f
T̃j
0 (‖λ‖) the spectral density of the isotropic and homo-

geneous random field T̃j , being a decreasing function of ‖λ‖ ∈ (0, ε], ε > 0. Using the
self-similarity of Gaussian white noise, and the Itô formula (see, for example, [4] and
[18]), we obtain[
− KL

1 (ν)√
2qL(r)r2−α

] q∑
j=1

∫

s2(r)

H2

(
T̃j(x)

)
σ̃r(dx)

 = − KL
1√
2q

q∑
j=1

Srj =

= − KL
1 (ν)|s2(r)|

γ(α)
√

2qr2−αL(r)
×

×
q∑

j=1

∫ ′′

R4

Y3(‖λ1 + λ2‖)

(
γ(α)

2∏
k=1

[
f
T̃j
0

]1/2

(‖λk‖)

)
Z1j(dλ1)Z2j(dλ2) =

d

=
d
− KL

1 (ν)|s2(1)|
γ(α)

√
2qr2−αL(r)

×

×
q∑

j=1

∫ ′′

R4

Y3(‖λ1 + λ2‖)

(
γ(α)

2∏
k=1

[
f
T̃j
0

]1/2

(‖λk‖/r)

)
Z1j(dλ1)Z2j(dλ2). (78)

By the isometry property of multiple Wiener–Itô stochastic integrals, for j = 1, . . . , q,

E

[
Srj −

|s2(1)|
γ(α)

∫ ′′

R4

Y3(‖λ1 + λ2‖)
Z1j(dλ1)Z2j(dλ2)

‖λ1‖
2−α

2 ‖λ2‖
2−α

2

]2

=

=

∫

R4

|Y3(‖λ1 + λ2‖)|2
[
|s2(1)|
γ(α)

]2

Qrj(λ1, λ2)
dλ1dλ2

‖λ1‖2−α‖λ2‖2−α
, (79)

where, for j = 1, . . . , q, Srj has been introduced in (78), and

Qrj(λ1, λ2) =

([
‖λ1‖(2−α)/2‖λ2‖(2−α)/2

γ(α)

r2−αL(r)

2∏
k=1

[
f
T̃j
0

]1/2

(‖λk‖/r)

]
− 1

)2

. (80)

Under Assumptions BII and BIV, by Tauberian theorems (see, for example, [10]), for
j = 1, . . . , q, Qrj(λ1, λ2) converges to 0, pointwise as r → ∞. From Lemma 2, we can
apply Lebesgue’s Dominated Convergence Theorem, to prove the convergence to zero of
the integral in equation (79), for j = 1, . . . , q. �

Remark 3. Note that, in [11], one can find results on the limit distributions of the
first Minkowski functional for Student and Fisher–Snedecor random fields, in terms of
multiple Wiener–Itô integral representations, but the spherical random field case has not
been addressed yet.

From Theorem 3, a series expansion of the limit spherical Rosenblatt-type random
variable R can be derived, as given in the following corollary.
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Corollary 1. Assume that the conditions of Theorem 3 hold. Then, the limit random
variable R, appearing in such a theorem, admits the following series representation:

R =
d
− |s2(1)|√

2qγ(α)

q∑
j=1

∑
n≥1

µn(Y3)
(
ε2
n − 1

)
=

q∑
j=1

∑
n≥1

ξn(R)
(
ε2
n − 1

)
, (81)

where {εn} are independent and identically distributed standard Gaussian random vari-
ables, and

µn(Y3) = −
√

2qγ(α)ξn(R)

|s2(1)|
, n ≥ 1,

is a sequence of positive real numbers, which are the eigenvalues of the self-adjoint

Hilbert–Schmidt operator, given by, for all h ∈ L2

(
R2, Gα(dx)

)
= L2

(
R2, 1

‖x‖2−α dx
)
,

Y3(h)(λ1) =

∫

R2

Y3(‖λ1 − λ2‖)h(λ2)Gα(dλ2), (82)

with

Gα(dx) =
1

‖x‖2−α
dx, (83)

and L2(R2, Gα(dx)) denoting the collection of linear combinations, with real-valued coeffi-
cients, of complex-valued and Hermitian functions, that are square integrable with respect
to Gα(dx) = 1

‖x‖2−α dx. Note that L2(R2, Gα(dx)) is a real Hilbert space, endowed with

the scalar product

〈ψ1,ψ2〉Gα
=

∫

R2

ψ1(x)ψ2(x)Gα(dx)

(see [22, pp. 159–161]).

The proof is similar to the proof of Corollary 1 in [13], considering d = 2 and D = s2(1)
(see also [12]).

We would like to thank the anonymous referee for his meticulous and rigorous reading
of the manuscript and his numerous suggestions that greatly improve the presentation
of the present paper.
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ÇÁIËÜØÓÂÀÍI ÐÀÇÎÌ Ç ÎÁËÀÑÒÞ ÀÑÈÌÏÒÎÒÈÊÈ ÄËß
ÏÅÐØÎÃÎ ÔÓÍÊÖIÎÍÀËÀ ÌIÍÊÎÂÑÜÊÎÃÎ ÂIÄ ÑÔÅÐÈ×ÍÈÕ

ÂÈÏÀÄÊÎÂÈÕ ÏÎËIÂ

Ì. Ì. ËÅÎÍÅÍÊÎ, Ì. Ä. ÐÓ�Ç-ÌÅÄIÍÀ

Àíîòàöiÿ. Îäíîðiäíå òà içîòðîïíå âèïàäêîâå ïîëå, çâóæåíå íà ñôåðó, âèçíà÷à¹ ñôåðè÷íå içîòðî-
ïíå âèïàäêîâå ïîëå. Ó öié ñòàòòi äîâîäÿòüñÿ öåíòðàëüíi òà íåöåíòðàëüíi ãðàíè÷íi òåîðåìè äëÿ
ïåðøîãî ôóíêöiîíàëà Ìiíêîâñüêîãî, ïiäïîðÿäêîâàíîãî ãàóññiâñüêîìó àáî õi-êâàäðàò îäíîðiäíîìó
âèïàäêîâîìó ïîëþ, çâóæåíîìó íà ñôåðó â R3. Îáèäâà ñöåíàði¨ ìîòèâîâàíi öiêàâèìè çàñòîñóâàííÿ-
ìè äî àíàëiçó êîñìi÷íîãî ðåëiêòîâîãî ìiêðîõâèëüîâîãî âèïðîìiíþâàííÿ.

ÓÂÅËÈ×ÈÂÀÞÙÈÅÑß ÂÌÅÑÒÅ Ñ ÎÁËÀÑÒÜÞ ÀÑÈÌÏÒÎÒÈÊÈ
ÄËß ÏÅÐÂÎÃÎ ÔÓÍÊÖÈÎÍÀËÀ ÌÈÍÊÎÂÑÊÎÃÎ ÎÒ ÑÔÅÐÈ×ÅÑÊÈÕ

ÑËÓ×ÀÉÍÛÕ ÏÎËÅÉ

Í. Í. ËÅÎÍÅÍÊÎ, Ì. Ä. ÐÓÈÇ-ÌÅÄÈÍÀ

Àííîòàöèÿ. Îäíîðîäíîå è èçîòðîïíîå ñëó÷àéíîå ïîëå, ñóæåííîå íà ñôåðó, îïðåäåëÿåò ñôåðè-
÷åñêîå èçîòðîïíîå ñëó÷àéíîå ïîëå. Â äàííîé ñòàòüå äîêàçûâàþòñÿ öåíòðàëüíûå è íåöåíòðàëü-
íûå ïðåäåëüíûå òåîðåìû äëÿ ïåðâîãî ôóíêöèîíàëà Ìèíêîâñêîãî, ïîä÷èíåííîãî ãàóññîâñêîìó èëè
õè-êâàäðàò îäíîðîäíîìó ñëó÷àéíîìó ïîëþ, ñóæåííîìó íà ñôåðó â R3. Îáà ñöåíàðèÿ ìîòèâèðîâàíû
èíòåðåñíûìè ïðèìåíåíèÿìè ê àíàëèçó êîñìè÷åñêîãî ðåëèêòîâîãî ìèêðîâîëíîâîãî èçëó÷åíèÿ.


