
Automatic Creation of

Boundary-Representation Models from

Single Line Drawings

Peter Ashley Clifford Varley

Department of Computer Science

University of Wales College of Cardiff

December 2002

A thesis submitted in partial fulfilment

of the requirement for the degree of Doctor of Philosophy.

DECLARATION

This work has not previously been accepted in substance for any degree and

is not being concurrently submitted in candidature for any degree.

Signed . (candidate)

Date .

STATEMENT 1

This thesis is the result of my own investigations, except where otherwise

stated. Other sources are acknowledged by explicit references. A bibliography

is appended.

Signed . (candidate)

Date .

Signed . (supervisor)

Date .

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for photocopying

and for inter-library loan, and for the title and summary to be made available

to outside organisations.

Signed . (candidate)

Date .

ii

Abstract

This thesis presents methods for the automatic creation of boundary-representation

models of polyhedral objects from single line drawings depicting the objects. This

topic is important in that automated interpretation of freehand sketches would re-

move a bottleneck in current engineering design methods. The thesis does not

consider conversion of freehand sketches to line drawings or methods which require

manual intervention or multiple drawings.

The thesis contains a number of novel contributions to the art of machine in-

terpretation of line drawings. Line labelling has been extended by cataloguing the

possible tetrahedral junctions and by development of heuristics aimed at select-

ing a preferred labelling from many possible. The “bundling” method of grouping

probably-parallel lines, and the use of feature detection to detect and classify hole

loops, are both believed to be original. The junction-line-pair formalisation which

translates the problem of depth estimation into a system of linear equations is new.

Treating topological reconstruction as a tree-search is not only a new approach but

tackles a problem which has not been fully investigated in previous work.

iii

Acknowledgements

I wish to thank my supervisor, Prof. Ralph Martin, firstly for proposing such an

interesting research project, then for his invaluable advice throughout the course

of my research, and finally for helping to translate the results (this thesis) into

comprehensible English.

I also wish to thank my colleagues in the vision laboratories, Ana, Bruce, Chun-

hua, Elena, Frank, Gavin, Gundon and Julia, for their many stimulating discussions

of ideas of mutual interest and for reassuring me that a fascination with computer

vision is not a sign of madness.

I am grateful to the Computer Science Department of Cardiff University for

providing the funding for my research, and to Unigraphics Solutions Inc. for provid-

ing Parasolid for use in this research.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Introduction and Context . 1

1.2 Terminology . 3

1.3 Previous Investigations . 5

1.4 Discussion of Aims . 9

1.5 Thesis Structure . 12

1.6 New Ideas in this Thesis . 13

2 Problem Statement and Proposed Solution Overview 15

2.1 Problem Statement . 15

2.2 Alternatives and Possible Extensions 16

2.3 Solution Overview . 17

2.4 Component: Line Labelling . 18

2.5 Components: Subgraphs and Regions 22

2.6 Component: Parallel Lines . 25

2.7 Component: Two-Dimensional Tidying 25

2.8 Component: Feature Identification 26

2.9 Component: Inflation . 27

2.10 Component: Validation of Labelling 28

2.11 Component: Local Symmetry . 30

2.12 Component: Classification . 31

2.13 Component: Topological Reconstruction 32

v

2.14 Component: Face Loops . 33

2.15 Component: Geometric Finishing . 35

2.16 Component: Splitting and Recombination 36

2.17 Component: Intersecting Faces . 37

2.18 Component: Quality Control . 37

2.19 Chosen Components: Order and Control Structure 38

3 Background Ideas 40

3.1 Sketch to Drawing . 40

3.2 Searching and Heuristics . 41

3.3 Constraints and Optimisation . 44

3.4 Least Squares Fit . 46

3.5 Planar Geometry . 46

3.6 Solid Geometry . 47

3.7 Dual Space . 51

3.8 Miscellaneous . 52

4 Line Labelling 53

4.1 Introduction . 53

4.2 History . 54

4.3 Tetrahedral Junction Catalogue . 62

4.4 Two Labelling Approaches . 70

4.5 Results and Conclusions . 83

5 Parallel Lines 91

5.1 Introduction . 91

5.2 History . 92

5.3 Reproduction of Bucketing . 93

5.4 Partitioning into Bundles . 94

5.5 Corners and Face Planes . 96

5.6 Results and Recommendations . 97

5.7 Special Sets of Parallel Lines . 99

vi

6 Features 100

6.1 Introduction . 100

6.2 History . 101

6.3 Implementation . 102

6.4 Underslots and Valleys . 103

6.5 Cofacial Configurations . 104

6.6 Hole Loops from Cofacial Configurations 107

6.7 Results . 109

7 Inflation 113

7.1 Introduction . 113

7.2 History . 115

7.3 Compliance Functions . 116

7.4 Grimstead’s Linear System Approach 129

7.5 Depth from Labelling . 130

7.6 Results and Conclusions . 133

8 Local Symmetry Detection 146

8.1 Introduction . 146

8.2 History . 147

8.3 Compatibility, Pairing, Propagation 150

8.4 Figures of Merit . 152

8.5 Data Identified . 153

8.6 Mirror Chains . 157

8.7 Results . 158

9 Classification 160

9.1 Introduction . 160

9.2 History . 161

9.3 Classes . 161

9.4 Combining Classes . 168

9.5 Results . 169

vii

10 Reconstruction of Hidden Topology 175

10.1 Introduction . 175

10.2 History . 176

10.3 Number of Possible Completions . 178

10.4 Control Mechanism . 184

10.5 Move Types . 189

10.6 Hypothesising Moves . 195

10.7 Hypothesis Adjudication . 208

10.8 Special-Case Recovery of Topology of Hidden Parts 212

10.9 Results . 214

11 Geometric Finishing 224

11.1 Introduction . 224

11.2 History . 226

11.3 Constraints . 238

11.4 Face Normals—Simple Downhill Optimisation 245

11.5 Face Normals—Enhanced Downhill Optimisation 249

11.6 Face Normals—Geometric Optimisation 257

11.7 Face Normals using a Genetic Algorithm 259

11.8 Face Distances—Simple Downhill Optimisation 262

11.9 Face Distances—Enhanced Downhill Optimisation 265

11.10Intersecting Faces . 268

11.11Special Classes . 268

11.12Results . 273

12 Results 282

12.1 Axis-Aligned Extrusion . 282

12.2 Axis-Aligned Non-Extrusion . 284

12.3 Grimstead’s Block . 284

12.4 Hole Loop . 286

12.5 Extended Trihedral Normalon . 287

12.6 Non-Trihedral Semi-Normalon . 289

12.7 Semi-Normalon . 290

12.8 Semi-Normalon . 292

viii

12.9 Non-Trihedral Semi-Normalon . 293

12.10Non-Trihedral Bracket . 295

12.11Conclusions . 296

12.12Timing . 296

13 Conclusions 298

13.1 Line Drawing Interpretation . 299

13.2 Sketch to Line Drawing . 301

13.3 Curves . 302

13.4 Features . 302

13.5 Psychology . 303

A Glossary 305

B Test Drawings 307

B.1 Trihedral Genus Zero Polyhedra . 307

B.2 Non-Trihedral Genus Zero Polyhedra 315

B.3 Objects with Through Holes . 324

B.4 Multiple Polyhedra . 327

B.5 Figures based on Collections . 327

C Tuning Constants 333

C.1 Tuning: Configurable Constants . 333

C.2 Tuning: Introduction . 336

C.3 Tuning for the Labelling Problem . 339

D Figures of Merit 344

E Junction Catalogue Illustrations 350

E.1 Trihedral Catalogue . 350

E.2 Tetrahedral Catalogue . 351

F Geometric Analysis 360

F.1 Rotation Axis from Start and End Points and Angle 360

Bibliography 364

ix

Chapter 1

Introduction

1.1 Introduction and Context

This thesis describes the automatic creation of boundary-representation models of

polyhedral solid objects from single line drawings depicting the objects. This topic

is important in that automated interpretation of freehand sketches would remove

a bottleneck in current engineering design methods. The thesis does not consider

conversion of freehand sketches to line drawings (this is already well covered in the

literature), or methods which require manual assistance or multiple drawings.

Textbooks on engineering drawing (e.g. [20]) emphasise the importance of free-

hand sketching in the design process. Studies such as Jenkins [59] have shown that

engineers and architects, when creating a new design, start by sketching ideas free-

hand on paper, and follow this, once a satisfactory concept has been found, by

manually copying the design to a CAD package. Automating this process would

remove a bottleneck. In order to achieve this, a freehand sketch must be converted

into a boundary representation solid model of the most plausible 3D interpretation

of the sketch, and in a reasonable time. Manual intervention is undesirable—the

engineer will wish to concentrate on creating an idea, not on the mechanics of using

a computer package. The problem of automatic conversion of a 2D drawing to a 3D

object forms the subject of investigation of this thesis and is stated more precisely

in Chapter 2.

The theoretical impossibility of perfect conversion of a single 2D view of an

object to a full 3D model is both obvious and well-known, but attempts to relate

1

this geometric computation problem to the philosophical debates of past centuries

can be overstated. For example, Mill’s refutation of Hamilton’s philosophy [109]

is sometimes cited as historical background, but that discussion considered only

perception of things, not with perception of pictures as representing things, and it

seems certain that all parties involved in the controversy were well aware that what

is perceived when the eye sees and the mind interprets is not “the thing in itself”.

One of Mill’s points remains noteworthy: that interpretation of any visual scene is

a practical skill learnt from experience, not an arcane art requiring the intervention

of mystical forces.

During the course of the investigations which led to this thesis, it has become

clear that human interpretation of line drawings is similarly a skill which has to

be learnt (Lipson [90] reached the same conclusion). This has two important con-

sequences.

Firstly, an application domain must be defined. Engineers do not necessarily see

the same things in line drawings as do architects or geometers, and certainly make

assumptions (based on experience) when viewing a line drawing which differ from

those made by people without that experience. Even Figure 1.1 can be ambigu-

ous to those lacking any experience of interpreting line drawings (for example, the

“obviously” concave Y -junction may be interpreted as convex, and vice versa), and

interpretation of Figure 1.2 depends on what the viewer perceives the function of

the object to be (does the square hole at the top of the object indicate a through

hole, with the object being designed to slide up and down a square bar, or does it

indicate a pit, with the object being designed to hold the bar in place?).

Figure 1.1: Line Drawing from [194] Figure 1.2: Line Drawing from [128]

Secondly, the rules underlying any skill can in principle be elucidated, and it is

2

upon these rules that any attempt to program the skill into a machine should be

based. Problems should be solved by means which correspond as closely as possible

to geometric intuition. Draper [23], in advocating sidedness reasoning, makes the

interesting statement that it is “more intuitively correct” than gradient and dual

space algorithms, which it displaced. My aim in this thesis is also for methods

which are intuitively correct. Although the methods outlined here sometimes fail,

this should be taken, not as a recommendation for less-intuitive methods, but as

indicating that engineers are subtle, and accustomed to applying more rules, or

more complex rules, than I have been able to identify in the time available.

1.2 Terminology

A 3D object has faces, edges where pairs of faces meet1, and vertices where edges

meet. Faces, edges and vertices are here called the atoms of the object. It is

polyhedral if all faces are planar. It is a normalon [17] if all face normals are aligned

with one of three mutually-perpendicular axes.

A line drawing is a 2D pictorial representation of an object. A natural line

drawing [163] is a line drawing where only the object’s visible edges and parts of

edges are shown. Lines in the drawing represent the object’s edges (sometimes, in

a natural line drawing, visible parts of edges). Lines intersect at junctions, and

cycles of lines subdivide the drawing into regions. A junction where two lines meet

is biconnected; a junction of three lines is triconnected. Regions, lines and junctions

are the atoms of the drawing.

A drawing is from a general viewpoint if no small change in viewpoint changes the

topology of the drawing. From a general viewpoint, no pair of vertices is collinear

with the viewpoint, and no face is coplanar with the viewpoint. Note that some

(e.g. [163]) use a stricter definition of general viewpoint, requiring also that no pair

of edges is coplanar with the viewpoint—such a requirement is intolerant of freehand

sketching errors and cannot reasonably be enforced (see Chapter 5).

A sketch is a freehand drawing. Lines in a sketch may be duplicated for emphasis.

Figures 1.3 and 1.4 are example sketches; Figures 1.5 and 1.6 are the corresponding

line drawings. Figures 1.1 and 1.2 are further examples of line drawings from general

1This thesis considers only manifold objects

3

viewpoint.

Figure 1.3:
Sketch of Cube

Figure 1.4:
Sketch of House

Figure 1.5: Line
Drawing of Cube

Figure 1.6: Line
Drawing of
House

Appendix B shows the complete set of general-viewpoint line drawings used as

test data in this thesis. For example, Figures 1.1 and 1.2 can be found therein as

Figures B.503 (page 329) and B.518.

Each vertex in the object has an underlying vertex type, which depends on the

number, type and configuration of the edges meeting at that vertex; this is discussed

further in Chapter 4. Polyhedral objects are trihedral if exactly three faces meet at

each vertex, extended trihedral [120] if exactly three planes meet at each vertex

(there may be four or more faces provided that some are coplanar) and tetrahedral

if no more than four faces meet at any vertex. For example, Figure 1.7 is trihedral,

Figure 1.8 is extended trihedral, and Figure 1.9 is tetrahedral.

Figure 1.7: Trihedral Figure 1.8: Extended
Trihedral

Figure 1.9: Tetrahedral

A drawing is recognised if the computer uses it to choose one of a finite set of

candidate objects. It is interpreted if the computer uses the drawing to create a new

object from an infinite set of constructible objects. This thesis is concerned only

with interpretation.

4

1.3 Previous Investigations

Although Roberts [139] aims for recognition rather than interpretation, his program

is capable of interpreting “compound” objects as assemblies of primitive objects it

recognises (cuboids and triangular wedges), and can thus be considered the first in

the field of machine interpretation of drawings. The program is aware that the “join”

between two primitives produces no lines, and since it can interpret Figure B.29

correctly, it must also know that a complete face of one primitive may match part

of a face of another.

Guzman’s program SEE [42] takes another approach to Roberts’s problem, using

heuristics rather than numerical analysis to identify both known primitive objects

and the spatial relationship between them. Falk’s program INTERPRET [26] illus-

trates an advantage of this approach. Since it breaks a scene down into occurrences

of a small number of primitives, it requires merely a good match, not a perfect

match, and is thus tolerant of drawing errors.

Despite these early successes, subsequent approaches to line drawing interpret-

ation followed different ideas. Wang and Grinstein [184] describe and assess seven-

teen approaches to interpreting 2D drawings as 3D objects, of which seven are based

on single drawings. The earliest of these is the Clowes-Huffman line-labelling [14, 56],

described in more detail in Chapter 4. Both Clowes and Huffman were more inter-

ested in the problem of whether a line drawing had a polyhedral interpretation than

that of finding the best interpretation; Huffman’s original idea [56] was not formu-

lated as an algorithm, and Clowes’s implementation, OBSCENE [14], was intended

to explore the idea of picture grammars. Malik’s extension to line-labelling [100] is

also described in more detail in Chapter 4.

Waltz [181] extends Clowes-Huffman line-labelling to allow interpretation of

shadows and cracks. This is useful for processing drawings produced from camera

pictures, but less useful for interpreting drawings produced from freehand sketches.

Mackworth’s program POLY [97, 96] builds on Huffman’s use of dual space [56]

(see Chapter 3.7) and introduces the idea of gradient space. By analysing and

checking consistency in gradient space, POLY can not only detect as invalid some

drawings which OBSCENE regards as valid but can also obtain some spatial inform-

ation (relative orientations of visible object faces) from the drawing. Although it

5

remains limited to error-free drawings of trihedral polyhedra, the trihedral limitation

does not appear to be inherent in Mackworth’s method and it is also reported [184]

that Wei [188] extended Mackworth’s method to allow for non-perfect input.

Sugihara observes [159] and proves [162] that the necessary and sufficient condi-

tion for a line drawing to have a valid geometric interpretation is that a consistent set

of vertex depth coordinates and face equations exist for which (i) all non-occluding

vertices lie exactly on their faces and (ii) at each occluding junction, the occluding

face is nearer the viewer than the occluded face2. Sugihara himself observes that

testing this apparently straightforward condition may prove problematic in prac-

tice, as even roundoff errors may make the system of depth coordinates and face

equations “inconsistent”.

Lamb and Bandopadhay [77] start by attempting to identify three bundles of

lines (see Chapter 5) which correspond to three perpendicular axes of the object.

After choosing a reference vertex, it is in many cases then possible to determine

relative spatial locations of the other vertices by propagating distances along lines

in the three chosen bundles. They report that their approach makes semi-normalons

too square, but this is presumably a consequence of their bundling algorithm rather

than a fault inherent in their method. More seriously, the method relies on being

able to determine unambiguously which three bundles of lines correspond to the

three axis directions.

Lamb and Bandopadhay [77] also report the existence of a method for deter-

mining hidden topology, but do not describe it.

Wang and Grinstein [183] produce a CSG representation of the object depicted

in the drawing. Their method was originally restricted to normalons (which are

inherently trihedral or extended trihedral), with the single CSG primitive being a

cuboid. It was later [182] extended to non-normalon polyhedra with the addition

of a second CSG primitive, a tetrahedron. Since this approach requires a labelled

line drawing, the implementation of which used the trihedral catalogue, it is unclear

whether or not these methods can be extended to non-trihedral polyhedra.

Wang also differs by taking an unusual approach to drawing errors. Whereas the

usual assumption is that junctions in the drawing may be slightly misplaced, Wang

assumes that if the drawing has no geometrical interpretation, the error is that a

2Some unexpected drawings turn out to be provably realisable by this criterion—see [160, 164].

6

line is missing.

More recently, Qin et al [137] describe another system which constructs solid

objects from CSG-style primitives which must be entered individually. They assume

exact isometric projection. It is difficult to regard this as an advance on Wang’s

approach.

Lipson and Shpitalni [91, 92] have developed a method for inflating a wireframe

drawing (a drawing where hidden lines are shown) into a 3D object. It is tolerant

of freehand sketching errors, and allows planar and cylindrical faces. It assumes

a single polyhedral object and general viewpoint. Ideas from this approach are

discussed in Chapters 7 and 11. The Regeo project [16, 15, 17] has developed a

similar implementation as part of their investigations into a language of geometry.

Pugh [133] not only requires all lines to be drawn but requires the user to spe-

cify which are hidden and which are visible. His sketches are subject to the same

restrictions as ours, except that he has a labelling method, arc-labelling, which

uses a junction catalogue for tetrahedral objects [132]. He considers extension to

pentahedral and higher junction types to be straightforward, incorporation of hole

loops to be possible but probably not worth the additional processing overhead, and

curved surfaces to be incompatible with the underlying assumptions of the system.

In Pugh’s system, topology is determined before the geometry is adjusted to meet

user-specified constraints. The user must also specify which vertices may be moved

and which remain fixed. The system is interactive in that vertices can be added

and deleted, and even separate objects added and merged to create more complex

objects. The resulting user interface departs from the requirement for a natural,

easy-to-use sketching tool.

Grimstead [38] provides a prototype system based on input of natural line draw-

ings of single trihedral polyhedra. This comprises five stages: incremental line la-

belling; two-dimensional drawing tidying; conversion to 3D using a linear system;

recovery of hidden parts; and three-dimensional drawing tidying. Since Grimstead’s

system makes similar assumptions to those listed in Chapter 2, several comparisons

will be made later between Grimstead’s methods and those described in this thesis.

Moving away from freehand drawing, Barrow and Tenenbaum [2] obtain line

drawings by preprocessing greyscale pictures into region boundaries. Their ob-

jective is to produce depth information on a per-pixel basis, thereby obtaining a

7

“21
2
D” sketch [103]. The system can handle semicircles, cylinders and spheres, us-

ing Chakravarty’s junction catalogue [13]. However, if the input sketch contains

curves, the iterative algorithms used converge too slowly to be useful for an inter-

active system.

Similar methods are also used in analysis of aerial photographs, although as

Mayer’s survey [105] shows, this field has subsequently become more specialised.

Early work analysed single pictures by modelling buildings, firstly as rectangular

prisms [48] and later by grouping rectangular regions and parallel lines [113]. Arte-

facts such as skewed symmetry [63] (see Chapter 7.3.9) are equally applicable to

such pictures and to interpretation of sketches.

Nagendra and Gujar [115] list eleven algorithms reported between 1973 and

1984 for recovering 3D objects from three orthographic 2D views. They make the

point that even given three orthographic 2D views (the ideal starting-point), perfect

recovery is not always possible.

As a recent example of work in this field, the two-stage extrusion process of Shum

et al [150] is worth noting. Initially, the interiors of each 2D view are extruded, and

a solid obtained by intersecting the resulting volumes. Usually, there will be lines

in one or more of the drawings which this initial solid would not produce; a second

stage of extrusion is used to account for these.

Reconstruction from two orthogonal images is not always straightforward even

if there is a template available for the object being viewed. Lee et al [86] use semi-

automatic rather than fully automatic methods for generating models of human

heads (however, their main problem is texture rather than shape).

More distant fields also produce results of interest. One such is the detection of

motion of an object in an image, or of egomotion (movement of the viewpoint with

respect to the image). Useful mathematical results can be found in Kanatani [64].

While previous work in this field has produced useful results, several problems

remain unsolved:

• Most previous work assumes that the drawing is trihedral (some follow

Waltz [181] in allowing a small subset of common non-trihedral junction

types)—no previous work allows for all possible non-trihedral junction types.

As well as being an inconvenient restriction, this means that the validity of

8

much previous work when applied to the domain of non-trihedral objects re-

mains unproven.

• All previous work on single line drawings assumes that there are no hole loops.

Again, as well as being an inconvenient restriction, this means that the valid-

ity of much previous work when applied to the domain of objects containing

cofacial loops remains unproven.

• No satisfactory solution has been found to the problem of determining which

lines in an imperfect drawing are intended to be parallel. Indeed, much previ-

ous work assumes perfect drawings.

• No previous work addresses identification of common machining features in

single line drawings (see, for example, Figure B.445, where unambiguous inter-

pretation of the implied slot feature requires domain-specific knowledge).

• No satisfactory solution has been found to the problem of deducing the hidden

topology of the object.

• No previous work makes use of potential symmetries implied by the line draw-

ing when attempting to deduce the hidden topology of the object.

• Progress in the field of geometric constraint satisfaction has not been applied

to the problem of determining a geometry for the deduced topology of the

object.

This thesis attempts to address all of these problems.

1.4 Discussion of Aims

A point which will be repeated several times in this thesis is that, since the ultimate

aim is to interpret the user’s intended object, the information entered by the user

should be preserved throughout the interpretation process. It should not be “tidied”

in any way before the final stage of matching the program’s interpretation to the

original line drawing. Intermediate “correction” or other manipulation of user input

is undesirable, and choice between methods will in a number of cases be made on

this criterion.

9

Previous line drawing analysers took various types of drawing as input. Some

required drawings showing shaded faces, others simply lines representing edges, and

in the latter case the drawing might be required to show hidden lines, or only the

visible lines. Some assume a single object; others allow cracks (lines indicating a

discontinuity of material); others still allow scenes (multiple objects). Some assume

a parallel projection, while others assume a perspective projection. Many are limited

to drawings of polyhedra (no curved surfaces), and most are limited to drawings of

trihedral objects.

The disadvantage of using sketches with hidden lines visible, that of ambiguity

(Necker reversal), is in principle insoluble, although frequently the symmetry of

the drawn object makes the two potential interpretations the same. There are other

disadvantages of using wire-frame sketches rather than sketches without hidden lines:

it is more natural to draw only that which can be seen, and it is quicker and easier

to draw a smaller rather than a larger number of lines.

A further advantage of interpreting sketches with only visible lines is that this

makes it easier to incorporate work deriving from attempts to recognise real-world

objects. Naturally, if the two-dimensional data is obtained from a photograph of a

real object rather than from a sketch, hidden lines will not be visible. Interpretation

of line drawings derived from photographs is inevitably more complex than inter-

pretation of line drawings derived from sketches, as it cannot enforce assumptions

on the real world in the way that a sketching interface can enforce assumptions

on its user. It must be able to handle multiple objects, only some of which are of

interest; it must be able to convert shading indicating differently-oriented faces into

lines representing edges; it must be able to cope with noisy input. Nevertheless, it

has one advantage which analysis of sketch input does not: it can assume that the

input is valid, that it genuinely represents a real object, and (after allowing for lens

distortion) that the projection is “drawn” correctly.

It is considered that in a quick, natural sketch input system the advantages of

drawing only the visible lines outweigh the disadvantages.

Similarly, the requirement for a quick, natural system mandates that the system

must allow for freehand sketching errors. The idea of snap-to-grid (as used by, for

example, Pugh [133]) is not only less natural than freehand sketching, but presup-

pose that a suitable grid has been specified beforehand, and limit the designer’s

10

subsequent creative freedom. The same requirement rules out menu-based correc-

tion of drawing errors, which although less limiting (the program does not intervene

until asked to) is even further away from the ideal of a natural sketching interface.

Interpretation of drawings containing curved lines presents several unsolved prob-

lems even for perfect drawings. This thesis only investigates interpretation of draw-

ings of polyhedra, and (as will be seen in Chapter 13), considerable further work is

necessary before this problem can be considered solved. Interpretation of drawings

containing curved lines is a far harder problem—many of the simplifying assump-

tions made in this thesis (such as that if two edges meet the same two faces, the

edges must be collinear) do not hold if curved objects are permitted.

Even in the domain of polyhedra, it is found that some facts have non-local

consequences. However, in the domain of curved line drawings, this becomes a

serious obstacle to interpretation, as can be seen by considering Yonas’s curves

(Figure 1.10), in which turning the bottom line from a straight line to a curve

changes the perception of the curved top lines.

Figure 1.10: Yonas’s Curves [2]

Another example given by Barrow and Tenenbaum [2] illustrates the problem of

distinguishing similar drawings which depend on obscure mathematical points for

their interpretation. Both the slice of cake (Figure 1.11 and the rocket nose-cone

(Figure 1.12) are valid drawings; they are distinguished by the “obscure mathemat-

ical difference” that in the rocket nose-cone, the bottom curve is tangential to the

vertical lines.

Where freehand drawing errors are allowed, as is necessary if line information

is produced by processing a freehand sketch, such subtle differences can easily be

missed (Barrow and Tenenbaum are concerned with drawings derived from processed

greyscale information; such drawings may also contain small errors, and their point

remains valid when applied to the domain considered by this thesis).

11

Figure 1.11: Slice of Cake Figure 1.12: Rocket Nose Cone

Thus, the problem investigated in this thesis is to take as input a natural line

drawing of a single manifold polyhedral object, and to produce from it a boundary-

representation model of the object portrayed. The drawing must be from a general

viewpoint and must be topologically correct, but need not be geometrically perfect.

No artificial restrictions (such as snap-to-grid) are imposed on the freehand drawing

process other than that all lines are straight and all lines terminate at junctions of

at least two lines. No user input is required other than the line drawing itself, and

at no stage will the user be prompted for further information.

1.5 Thesis Structure

The problem, as stated, is complex and requires subdivision in order to make it

more tractable. The constituent subproblems are identified in Chapter 2 (which also

covers some subproblems considered but rejected as part of the overall approach)

and described in more detail in Chapters 4–11.

Between them, Chapter 3 gives general overviews of “imports”: results from

outside the field of line-drawing interpretation which are used in the thesis. These

include symmetry (what it is, and why it is relevant) and solid geometry (listing the

results of which use is made).

Except where specifically noted otherwise, ideas described in this thesis have

been implemented in a computer program, RIBALD (Reconstructs Interactively B-

Reps by Analysing Line Drawings). In practice, several other groups have attacked

this or similar problems, and there exists an expanding set of drawings for which

conversion can be achieved; RIBALD is claimed to be the most flexible so far, in

that by incorporating the ideas presented in this thesis, the set of drawings which

it can process is larger than previous programs.

12

Experimental results are presented in Chapter 12, and conclusions (and recom-

mendations for possible future work) are summarised in Chapter 13.

Test drawings shown in Appendix B have been accumulated from a variety of

sources, including line-labelling literature [38, 148, 163], all of the solid objects (but

not the paper objects or wire-frames) from [83] and all of the planar objects from

two engineering drawing textbooks [128, 194]. There has been no selection other

than that if a drawing looks like a polyhedron, it has been included.

Throughout the thesis, timings are in seconds and were obtained on a Sun Ultra

10. Where problem size is quoted without other explanation, it is the number of

lines in the drawing.

1.6 New Ideas in this Thesis

The thesis contains the following novel contributions to the art of machine inter-

pretation of line drawings. Some of these original contributions have been published

or accepted for publication in journals or conference proceedings; where this is the

case, it is indicated by a citation. Where no citation is given, the ideas are described

for the first time in this thesis.

The tetrahedral junction catalogue shown in Appendix E and my automated

method for deriving it described in Chapter 4.3.1 have been published in a journal [175].

Although partial tetrahedral junction catalogues have been used in prior work, and

Huffman [58] suggested a general method for cataloguing junctions, it is believed

that this is the first complete tetrahedral junction catalogue.

An abbreviated description of the heuristics described in Section 4.4.1, used to

choose between alternative valid labellings, was included in a conference paper [177].

These heuristics, and their inclusion in line-labelling algorithms, are believed to

be original. The labelling algorithms given in Chapters 4.4.2 and 4.4.3 are oth-

erwise straightforward extensions of standard computer vision techniques to the

non-trihedral labelling problem. The results of a comparison between them, given

in Chapter 4.5, and the inferences drawn from these results, appeared in the same

conference paper [177] and are original.

The “bundling” method of grouping probably-parallel lines, described in Chapter 5,

is believed to be original and has been described in a conference paper [172].

13

The use of feature detection to solve many of the problems associated with hole

loops is believed to be original, as is the choice of features (the “cofacial configura-

tions”) in Chapter 6.5. This has appeared in a conference paper [177].

Although the idea that junction labels of neighbouring junctions imply relative

depths is not new, its “algorithmisation” as a set of linear equations in Chapter 7.5

is believed to be original. A preliminary version of this idea, restricted to trihedral

junction labels, appeared in a conference paper [172], and a truncated description

of later work appeared as a conference paper [176].

The ideas in Chapter 8 include several incremental improvements on the state

of the art but no original contribution.

Almost all of Chapter 10 is believed to be original (a few ideas are inherited

from Grimstead [38]; these are indicated by citations). A preliminary version of

Chapter 10, restricted to trihedral polyhedra, has appeared as a conference pa-

per [173].

Precedence is difficult to establish for the ideas in Chapter 11. A preliminary

version, restricted to trihedral polyhedra, appeared as a conference paper [174]. The

ideas of a two-stage process fitting face normals and face distances separately, and

of using successive iterations of downhill optimisation to decide whether constraints

can be accommodated, were believed at the time to be original, but essentially the

same ideas appear in [75] and [32] respectively. Chapter 11 includes incremental

improvements on all three, as well as comparative material which does not appear

elsewhere.

14

Chapter 2

Problem Statement and Proposed

Solution Overview

2.1 Problem Statement

The problem studied is that of converting a two-dimensional freehand sketch, with

hidden lines removed, of a single polyhedral object with no cracks or shadows, into

a boundary representation solid model.

Demonstration systems exist which convert freehand sketches to line drawings

(e.g. those in [25, 112, 137]). The problem of deducing the solid object which the

line drawing represents is more difficult, and this is the subject of this thesis.

Some assumptions concerning the drawing are required. It is assumed that the

drawing is of a single manifold polyhedral object—all faces are planar. The object

is assumed to be viewed from a general viewpoint. It is assumed that the object has

been drawn from the “most informative viewpoint”—there is nothing at the rear of

the object which could not reasonably be inferred from the visible part of the object.

It is further assumed that the user is ambidextrous—left-handed and right-handed

versions of chiral objects have equal merit.

For the system to be useful, it must perform the conversion in a “reasonable”

time. A second or less on a powerful personal computer is a reasonable target figure.

There are practical limits to what can be drawn—it is unlikely, for example,

that anyone would draw Figure B.132 (page 313), which has 98 lines. It is therefore

reasonable to assume that drawings will have fewer than 100 lines. As a result,

15

order of algorithms in terms of the problem size (generally the number of lines) is

not of great importance—even O(en) would be acceptable if, when implemented,

the algorithm were to run to completion in less than a second with a problem size

of 100. Orders—actual or expected—of algorithms are sometimes noted in this

section, as they influenced choice of which methods to investigate, but they are not

in themselves a criterion for acceptability.

2.2 Alternatives and Possible Extensions

Alternative input methods and formats are possible. For example, freehand drawing

errors could be eliminated by using a “snap-to-grid” approach when creating the

initial line drawing. This idea has been rejected for the time being, partly because

the objective is to provide as simple and natural an interface as possible, and partly

because until the problems caused by freehand drawing errors are known, and known

to be insoluble, eliminating them is of no proven benefit.

Figure 2.1: Ambiguous Wireframe Drawings

Wireframe line drawings, showing all edges, are a possible alternative input

format to natural line drawings, and would eliminate the need for reconstructing

hidden topology. However, balancing this, there are problems in interpreting wire-

frame line drawings which do not occur for natural line drawings. The best-known

and most obvious is that of resolving Necker ambiguity [116], but another and more

serious problem is illustrated in Figure 2.1. While there is little doubt that, for

example, Figure B.422 shows an object with a boss, and Figure B.438 shows an

object with a shallow pocket, it is far from clear what features are present in the

drawings in Figure 2.1, or even which faces contain the features [130]. Given that

16

either choice for the type of input drawing leaves problems to be solved, the pref-

erence for a simple interface is decisive—natural line drawings have fewer lines and

are thus easier to draw.

The choice of output format—boundary representation (B-rep) model, rather

than constructive solid geometry (CSG) model, is determined by the fact that both

commonly-used CAD kernels, ACIS [18] and Parasolid [168], are based on B-rep.

This choice is more flexible as it imposes no restrictions on the methods used: since

conversion of CSG models to B-rep is straightforward, but not vice versa [5], methods

which use either representation can be used to produce B-rep output. However, the

choice may limit future flexibility, as use of methods which use B-rep representation

(all in this thesis are in this category) precludes production of CSG models.

I suggest that as the large majority of curves in engineering objects are cylindrical

through holes (88% according to [143]), a simple approach to handling these would

be of considerable practical benefit (although not of any great theoretical interest).

Input of ellipses could be added to a freehand drawing package, either by specify-

ing axes or by fitting the best ellipse to a freehand curve. The ellipse would be

interpreted by the system as a cylindrical through hole (as a bonus, the face normal

of the face in which the hole is drilled could be estimated by applying the skewed

symmetry method [63] to the axes of the ellipse). This suggestion has not been

implemented.

An alternative method of inputting cylindrical through holes could be implemen-

ted as a postprocessing stage. For display purposes, RIBALD allows the completed

3D object to be rotated interactively. A drill axis could be specified by rotating the

object to the correct orientation and then indicating the axis and drill radius. This

idea has not been implemented.

2.3 Solution Overview

The remainder of this chapter identifies possible components of a solution to the

problem outlined above, and concludes with a list of the components actually chosen.

For each component, inputs and outputs are listed. Inputs may be either re-

quired (the component cannot function without them) or preferred (the component

can function without them, but performance or reliability are improved if they are

17

available). Outputs are either primary (the component exists in order to produce

this information) or secondary (the component produces this information as a side-

effect, or other ways of obtaining it are as good, if not better).

By matching inputs of one component with outputs from another, it is possible

to determine how a solution can be built from the blocks available.

In many cases, there may be several plausible alternatives during reconstruction.

A figure of merit is assigned to each. This is a numerical value intended to represent

the plausibility of a particular choice; higher values represent more plausible choices.

Out of a set of alternatives, the one with the highest figure of merit will be considered

first. Figures of merit are justified in Chapter 3.2 and described in more detail in

Appendix D.

Some components use heuristics. Balancing the numerical values of competing

heuristics presents problems. In the program RIBALD, used to test the ideas in

this thesis, several heuristics make use of tuning constants designed to make the

balancing process easier. Tuning constants are listed and described in Appendix C.2.

2.4 Component: Line Labelling

Machine vision systems often use the technique of line-labelling [14, 43, 56] to re-

duce the possible 3D interpretations of a line drawing to a processable number.

Line-labelling attempts to identify each line in the drawing as either convex, con-

cave or occluding. A Clowes-Huffman-style line-labeller following the algorithm in

Kanatani [64] is outlined here and described in more detail in Chapter 4. Line

labelling is preceded by the minor task of junction type identification.

As shown in Chapter 4, deterministic labelling algorithms are theoretically O(4n)

in the worst case, although often almost O(n) in practice for drawings of trihedral

objects. For this reason, a faster but potentially less reliable alternative labelling

approach based on relaxation labelling has also been investigated; this too is de-

scribed in Chapter 4. Junction type identification takes low-order polynomial (in

principle, O(n)) time.

18

2.4.1 Notation

A standard notation for trihedral junction labels is emerging—this thesis follows

Wang [182]. Junctions of two lines are termed L-junctions. Junctions of three

lines are T -junctions, W -junctions or Y -junctions according to shape. Notation of

non-trihedral junction labels is not standardised as yet—this thesis adapts notation

from Waltz [181] and Chakravarty [13]. Junctions of four lines are K-junctions, M-

junctions, X-junctions and Z-junctions, again according to shape. See Figure 2.2.

(It will be found that in some cases there is also an “invisible” junction implied by

the structure of the object but not visible in the line drawing; this is termed an

I-junction.)

L T W Y K M X Z

Figure 2.2: Junction Types

Lines are convex, concave or occluding. In diagrams, convex lines are shown as

+, concave lines as −, and occluding lines with an arrow directed such that the

occluding face is on the right and the occluded face on the left when following the

direction of the arrow.

+

+

+

+

+

-

+

+

+

+

+

+

+

+

++

+

-

-

+ +
+

-
-

+

+

+

+

+

+
-

--

+
+

+
+

Figure 2.3: Labelled Line Drawings

In text descriptions it is more convenient to have an alphanumeric label: a for an

arriving arrow (the occluding face is anticlockwise from the edge), b for a departing

arrow (the occluding face is clockwise from the edge), c for a convex line and d for

a concave line. In junction labels, these are read clockwise; in the cases of L-, W -

and M-junctions, the leftmost line when all lines point upwards is the first; in the

cases of T - and K-junctions, the leftmost line when the straight line through the

19

junction is uppermost is the first; in the cases of Y - and X- and Z-junctions, the

ordering is arbitrary. For example, the legal junction labels in a trihedral drawing

are Yccc, Yddd, Yabd (Ybda, Ydab), Wbca, Wdcd, Wcdc, Lac, Lab, Lcb, Lbd, Lba,

Lda, Tbaa, Tbab, Tbac and Tbad.

Vertex types are also classified using this scheme: extended trihedral vertices

are Z-type; tetrahedral vertices are X-type, M-type or K-type, depending on their

appearance when all four faces are visible in the drawing. (The illustrative solids in

Appendix E.2.18 and E.2.19 do not fit this scheme, as there is no viewpoint from

which all four faces at the tetrahedral vertex are visible. They are termed K*-type

vertices and are included with the K-type vertices: they were obtained as part of

the process which produced the K-type vertices. The illustrative solids are built

from the same blocks as those in the immediately preceding sections, and, as with

the K-type vertices, two of the incident edges are collinear.)

2.4.2 Junction Type Identification

This subcomponent labels each junction as L, W , Y , T , M , X, K or Z (see Fig-

ure 2.2). The junction type can be identified purely by considering the number and

relative angles of lines meeting at each junction, so requires no information other

than the vertex-edge graph and the vertex x and y coordinates. This preliminary la-

belling simplifies implementation of region identification and should ideally precede

it. T -junctions must also be labelled as such before the outline of the object can be

identified with confidence. See [178] for a description of the algorithm implemented.

The required inputs are: a list of junctions, with 2D coordinates; a list of lines,

with the junctions they join; a list of intercepts, relating T -junctions and K-junctions

to the lines they intercept.

There are no optional inputs.

The primary output is a junction type for each junction.

As a secondary output, for each junction, a list of the lines meeting at this

junction is produced. This list is ordered clockwise.

20

2.4.3 Line Labelling

Line labelling attempts to identify each line in a line drawing as either convex,

concave or occluding. Figures 2.4 and 2.5 show labelled line drawings.

+

+

+

+ +

+
+

+
-

-

-

-

+
+

A

B

C

D

E

FG

H

Figure 2.4: Labelled Drawing (Ob-
ject B.503)

+

+ +--
+

+
-

+

+

-

++
-

+

+
-

+

+
+

+

Figure 2.5: Labelled Drawing (Ob-
ject B.518)

Successful labelling provides useful information about the object drawn. Firstly,

the line labels indicate which edges bound the visible faces or partial faces of the

object and which merely occlude them. In Figure 2.4, it is evident that two of the

internal regions of the drawing correspond to faces, a part of which in each case is

hidden by the occluding line, and the other regions correspond to fully-visible faces.

Secondly, the junction labels can be used to obtain a depth ordering of visible

vertices [172]. It is, for example, immediately apparent in Figure 2.4 that the Y -

junction A is nearer to the viewer than its neighbours, and the Y -junction B further

away than its neighbours.

Thirdly, the underlying vertex types implied by the junction labels constrain the

possibilities when attempting to reconstruct the hidden topology of the object. In

the example of Figure 2.4, the tetrahedral junction catalogue [175] requires that a

single concave line must be added to complete the vertex at T -junction C, and that

this line is occluded by the occluding line →. Deducing that this meets the concave

edge occluded by the T -junction D to form a quadrilateral face is straightforward.

The four L-junctions (E, F , G, H) each require at least one more edge to

complete the vertex (there could be more); these edges are convex at F , G and

H and concave at E. The simplest (and best) interpretation of the drawing can be

obtained by using the same methods of deduction that were used for completing the

21

T -junctions.

In addition to providing a strong suggestion of the correct topological interpret-

ation, the labelling gives clues about the object’s geometry—nothing in the labelling

in Figure 2.4 contradicts the idea that there is a mirror plane bisecting the octagonal

face. If the assumption is added that parallelograms in the drawing are rectangular

faces of the object, the geometry is effectively determined.

Interpretation of more complex drawings, such as Figure 2.5, is naturally less

straightforward, but it remains evident that these would be much harder to interpret

without the several clues provided by labelling.

The required inputs to line labelling are the inputs to and outputs from junction

type identification and the loop of lines forming the object boundary—if the trihedral

catalogue is used, most trihedral drawings can be labelled consistently and uniquely

given only the assumption that every line on the object boundary occludes the

background.

Secondary inputs to line labelling are lists of candidate features and cofacial con-

figurations, as described in Section 2.8. It will be seen in Chapter 4 that some of the

heuristics useful for choosing between alternative valid labellings require knowledge

of features which might be present in the drawing.

The primary outputs of line labelling are a junction label for each junction and

a line label for each line. Some drawings have no valid labelling; in such cases, the

only output is an error message to the user.

The secondary outputs of line labelling are “runner-up” labellings, which could

be used as alternatives if it proves impossible to reconstruct an object on the basis

of the first chosen labelling; and merit figures (see Chapter 3.2) for each labelling.

2.5 Components: Subgraphs and Regions

Two minor tasks assist in analysing the front of the object: subgraph identification

and region identification. They are outlined here. The techniques for performing

these tasks are straightforward, and are not further considered in later chapters.

Subgraph identification and region identification take low-order polynomial time,

with small constants.

22

2.5.1 Subgraph Identification

A subgraph is a subset of a drawing in which all junctions correspond to vertices

and in which a path exists between any pair of vertices in the subgraph which

does not involve jumping from the occluded to the occluding line (or vice versa)

at an occluding T -junction. Subgraphs are a helpful clue in detecting hole loops

(Chapter 6), although other considerations must also be taken into account.

Figure 2.6 contains a single subgraph. Figure 2.7 contains two subgraphs, and

it is the presence of the second subgraph which provides an initial clue that the

drawing contains a hole loop (in this case, the mouth of a pocket). Figure 2.8 also

contains two subgraphs, but there are no hole loops present; the presence of a second

subgraph merely gives warning that inflation (Chapter 7) may require extra care.

Figure 2.6: Figure 2.7: Figure 2.8:

Identification of subgraphs is trivial for trihedral objects, since all T -junctions

are occluding (the algorithm is given in [178]). For non-trihedral objects, some T -

junctions are occluding T -junctions but others are projections of K-vertices. Which

are which is not always obvious—see for example Figure B.318, where there are two

sensible labellings, one in which the rear chimney reaches the top of the roof (in

which case there is only one subgraph) and one in which it does not (in which case

there are two subgraphs).

Since some of the heuristics used in labelling lines require knowledge of the

(potential) number of subgraphs present, it seems preferable to perform an initial

subgraph count before line labelling, in order that these heuristics are still available.

A revised subgraph count following labelling may be (and in the example given, is)

necessary; in view of the simplicity of the task, this additional overhead is acceptable.

The required inputs to subgraph identification are the inputs to junction type

identification plus the output from junction type identification (the junction type

for each vertex).

23

A preferred input to subgraph identification is a labelling. If this is unavailable,

it is assumed that all T -junctions are occluding.

The primary output from subgraph identification is a subgraph label for each

junction and each line in the drawing. There are no secondary outputs.

2.5.2 Region Identification

Region identification divides the drawing into regions bounded by closed loops of

lines, as a preliminary stage in identifying the visible faces of the object. It starts by

enumerating all half-edges in the drawing. Lines have two half edges, plus one for

each T -junction which intersects the line (occluding and non-occluding T -junctions

need not be distinguished)—for example, the line marked * in Figure 2.9 contributes

fourteen half-edges. Region identification then creates regions, one at a time, alloc-

ating a clockwise loop of half-edges to a region, until no unused half-edges remain.

The “background region” is identified using the same technique.

*

Figure 2.9:

The required input to region identification is the original line drawing data.

Preferred inputs are: a clockwise-ordered list of lines at each junction (this sim-

plifies implementation); a labelling, which makes it possible to distinguish those

lines and junctions which correspond to edges and vertices of the face corresponding

to the region from those lines and junctions which merely occlude that face.

The primary outputs are a list of regions (a region is a cyclically-ordered list of

lines and junctions), and cross-references between junctions, lines and regions.

The secondary output, for which a labelling is required, is an indication for each

line and junction in each region whether that line or junction bounds or occludes

the corresponding face.

In RIBALD, region identification is split into two. Enumeration of half-edges

and identification of the background region, which need no additional information,

24

precede line labelling. Identification of other regions of the drawing can make use

of labelling information and follows line labelling.

2.6 Component: Parallel Lines

In order to make hypotheses based on the symmetries and regularities of a drawing,

it is useful to be able to identify which lines in the drawing are believed to correspond

to edges which are parallel in 3D, and to be able to assign an indication of confidence

in this belief. Chapter 5 describes a method for partitioning lines into bundles, where

any pair of lines in the same bundle is probably intended to correspond to parallel

edges in 3D.

The discussion in Chapter 5 concludes that the bundling process is O(n2) in

theory.

The primary inputs are: the original drawing data, plus knowledge of the under-

lying vertex type of each junction (produced by line labelling).

One preferred input, if used, improves the robustness of the output: the output

of common feature identification (Section 2.8).

The primary output from the component is a list of bundles, as described above.

The secondary outputs from the component are: the mean 2D angle of the bundle

to which the line has been allocated; an indication of which three of the bundles (if

any) are most likely to be aligned with the 3D axes.

2.7 Component: Two-Dimensional Tidying

Sugihara’s method [159] for determining whether a labelling can be realised geomet-

rically suggests a mechanism for identifying and correcting misplaced vertices [160].

Although the initial outline of this method assumed that the object portrayed is a

trihedral polyhedron, the formal proof [162] does not rely on this assumption and is

valid for any general-viewpoint line drawing. This has not been investigated, as this

thesis prefers to leave the user’s input unchanged until a final geometric realisation

is produced for the entire reconstructed object.

After identifying intended 2D line parallelism, Grimstead [38] attempted to ad-

just the drawing to improve it. The purpose was to enhance this regularity in order

25

to make other artefacts which depend on parallelism easier to detect.

A

B
C

D

E

F

G

Figure 2.10: House

I do not recommend 2D drawing tidying, and RIBALD does not include it,

for two reasons. Firstly, as noted in Chapter 1.1, any distortion by intermediate

processes of the user’s input is undesirable. Secondly, regularity may be lost, not

gained, by two-dimensional tidying. For example, consider Figure 2.10. Even if it

can be correctly determined that edges D, E and F should be parallel, problems

can occur. Suppose that lines A, B and C are well-drawn, being both parallel and

of matching lengths, but that line F is misdrawn. A least-squares fit, requiring

D, E and F to be parallel while trying to keep A, B and C parallel too and to

preserve existing vertex locations, will change the orientations of lines D and E,

and therefore change the lengths and possibly the orientations of A and B, while C

remains unaffected.

2.8 Component: Feature Identification

Certain local configurations of lines in a drawing have a natural (to a human)

interpretation—it is not necessary to go through a complex process of reasoning

to see, for example, slots in Figure B.549 or holes in Figure B.420. Any such fea-

tures in an object which can be identified in advance from the drawing will simplify

the process of topological reconstruction. Although this is a departure from the

ideal of “reconstruction rather than recognition”, some features occur so often in

engineering components that this can be justified. It is also possible that some fea-

tures might be so regularly misinterpreted by the topological reconstruction process

that identifying them in advance is necessary.

26

The methods of identifying features discussed in Chapter 6 take O(n3) time.

The required input is a list of junction types.

Preferred inputs which, if used, may improve the reliability of the output are:

the output of line-labelling, and a list of groups of bundles of probably-parallel lines.

The primary output from the feature identification component is a list of can-

didate features.

The secondary output from the component is a figure of merit for each candidate

feature.

It can be noted that there is potential for mutual dependence here. Some of

the heuristics for identifying preferred labellings make use of identified features, but

identification of features is more reliable if it follows line labelling. Identification of

features is also more reliable after bundles of parallel lines have been identified. A

resolution to this problem is suggested in Chapter 6.

2.9 Component: Inflation

Calculation of final spatial locations of vertices must take account of the entire object

structure if it is to consider symmetry and regularities, so must be deferred until

after the topology of the hidden part of the object has been deduced. However,

intermediate stages of processing may find provisional depth coordinates for the

visible part of the object useful or necessary when assessing the merits of their

hypotheses. The geometry produced need not be particularly accurate, but it is

desirable that the depth-ordering of the visible vertices is correct, and necessary

that adjacent vertices are ordered correctly.

Chapter 7 describes an approach for producing such provisional depth values

which is straightforward and intuitively plausible. It creates and solves a system

of equations linear in vertex depth coordinates. In the simplest version of this

approach, the number of equations generated is O(e) for a drawing with e edges.

Assuming that black-box linear system solvers are O(nu2) for a system of n equations

and u unknowns, and that u is also O(e), the method has an overall performance of

O(e3). To maintain this performance for more complicated variants of the approach,

the number of equations must be limited to O(e) for large drawings.

The required inputs to the inflation component are: a list of start and end

27

junctions for each line in the drawing, a line label for each line in the drawing, and

a junction label for each junction in the drawing.

Preferred inputs which, if used, may improve the quality of the output are: a list

of which visible vertices lie on each visible face, and a list of “bundles” of probably-

parallel lines.

The primary output from the inflation component is a depth (z-) coordinate

estimate for each visible vertex.

The secondary outputs from the component are: a z-coordinate estimate for the

point at which each partially-occluded edge disappears from view at an occluding

T -junction; a 3D vector for each bundle of parallel lines, coordinates for the centre

of each face, and a 3D normal vector for each face.

Since the approach requires line and junction labels, this component must fol-

low line labelling. Additionally, if edges are to be made parallel in 3D where lines

are bundled together (this is recommended), inflation must follow bundling. Since

cofacial loops must be made (approximately) coplanar, inflation must follow identi-

fication of face loops and identification of configurations indicating cofacial loops.

2.10 Component: Validation of Labelling

It can happen that labellings which are valid according to the junction catalogue

do not lead to realisable geometry. This occurs, albeit rarely, even in the world

of trihedral drawings, where such exceptions are uncommon and well-known: Fig-

ure B.146 shows Sugihara’s Box [163] and Figure B.148 shows Huffman’s Combs [56],

both of which can be labelled using the Clowes-Huffman catalogue but cannot be

interpreted as polyhedra. Appendix B includes other examples.

Geometric realisation is a greater problem when the non-trihedral catalogue is

used. Figure 2.11 is a labelling of Figure B.466 in which all of the junction labels

appear in the tetrahedral or Clowes-Huffman catalogues. It is also clearly the wrong

labelling—the line marked * should evidently be occluding. Many similar examples

could be given. In this particular case, the labelling shown would be rejected by the

heuristic of minimising the number of non-trihedral junction labels, used by some

but not all of the methods described in Chapter 4.

28

+

+

+

+

+ +
+

+

+

-
-

+

-

+

+

++

-
*

Figure 2.11: Mislabelled Line

An attempted solution to such problems is outlined here. After inflation, ap-

proximate unit face normals are estimated for each face. The sum of the two face

normals at an edge can be used to determine whether the edge is concave or convex.

The algorithm as currently implemented in RIBALD is listed in [178]. Since it uses

3D information, it must follow inflation.

Experimentation suggests that this method is good at choosing the correct inter-

pretation of drawings containing hole loops (for example, it correctly allows Fig-

ure 6.2 on page 103 and rejects Figures 6.3), but poor at selecting the correct

interpretation of non-trihedral drawings without hole loops. It is particularly poor

for drawings such as the Archimedean solids, where there are numerous edges where

the two faces are only just non-coplanar (this poor performance probably results

from the poor quality of depth estimates available for such drawings). In view of its

strengths and weaknesses, RIBALD only uses this method for drawings with more

than one subgraph.

No recovery action has been incorporated in RIBALD—if an error is detected,

it is reported and processing aborted. A more practical remedy would be simply to

discard the labelling and use another one—this is a strong argument in favour of a

labelling method which produces a small set of candidate “good” labellings rather

than a single “best” one.

The method outlined here is unsatisfactory, less because of its occasional failures

than because of its requirements. Geometric validation of a labelling should follow

29

as soon after labelling as possible (ideally, consideration of geometry would be in-

corporated in the labelling process itself), but the method outlined here requires the

non-trivial intervening stages of parallel line identification and inflation.

An improved geometric validation component should be based on an extension of

Draper’s “sidedness reasoning” [23, 24], which uses the topology of the drawing, and

not on the more traditional dual-space/gradient-space methods [56, 58, 96] which

depend on the geometry of the drawing being correct.

2.11 Component: Local Symmetry

It is reasonable that if the user draws an object which is not intended to be sym-

metrical in any way, the asymmetry will be evident in the drawing. Thus, if the

drawing portrays an object which could have a symmetry, any reconstruction which

breaks this symmetry is probably incorrect. It has already been noted that nothing

in Figure 2.4 (page 21) contradicts the idea that the object is mirror-symmetric,

and that topological reconstruction should proceed on this assumption. Similarly,

topological reconstruction from Figure B.449 should give preference to hypotheses

which preserve the mirror symmetry implied by the drawing.

Since the drawing does not show the entire topology, it is not possible to detect

full (whole-object) symmetries at this stage. Instead, local symmetries are sought:

clues localised to part of the object (a single face, the two faces meeting at an edge,

or the faces meeting at a single vertex) from which the presence of whole-object

symmetry can be extrapolated. Chapter 8 describes detection of such clues: faces

which are rotationally symmetric about their centres or which are mirror-symmetric

about a line; edges where the two faces are equivalent under a rotation or reflection;

and vertices where all faces are equivalent under rotation. It also describes how face

and edge mirror planes are chained across all or part of the drawing when reasoning

shows them to be clues to the same global symmetry.

Local symmetry detection as described in Chapter 8 takes O(n) time. Chaining

of mirror planes, also described in Chapter 8, takes O(n2) time. Propagation of sym-

metry, used in assessing the merit of mirror chains, takes O(n4) time as implemented

in RIBALD (this could in principle be reduced to O(n3) by adapting Sugihara’s re-

commended solution [161] to a similar problem), so assuming that there are O(n)

30

candidate mirror chains to assess, the overall process is O(n5).

The required inputs to the local symmetry detection component are the loops of

edges for each face or partial face.

The preferred inputs to this component are a labelling (knowledge of which

edges are convex and which are concave is important), bundles of parallel edges

(some local symmetries imply that certain edges will be parallel) and the depth

coordinate estimates (in order that figures of merit can be based on 3D rather than

2D information).

The primary outputs from this component are: a list for each face of the possible

local rotational symmetry seeds about the face centre; a list for each edge of the

possible local rotational symmetry seeds at its midpoint; a list on each vertex of

the possible local rotational symmetry seeds centred on the vertex; a list for each

face of the possible local mirror planes bisecting the face; a list for each edge of the

possible local mirror planes running along the edge; a list of the possible chains of

mirror planes crossing all or part of the drawing.

The secondary outputs from this component are figures of merit for each of the

hypotheses (rotational symmetry, mirror plane or mirror chain) identified.

There are advantages to be gained if symmetry detection were to precede line la-

belling. For example, in the case of Figure B.318, the single-subgraph interpretation

with non-trihedral vertices should be preferred in order to preserve the symmetry of

the object. However, the advantages of placing symmetry detection after inflation

are greater as parallel edge bundles will be available (a major consideration), and

3D rather than 2D geometric information can be used in assessing figures of merit.

Identification of mirror chains must, of necessity, follow identification of local

mirror symmetry. If mirror symmetry or skewed symmetry information is used to

refine the estimates of frontal geometry, this refinement must obviously be postponed

until after identification of mirror planes.

2.12 Component: Classification

There are advantages to classifying the object portrayed in the drawing into one

of several classes of special shape, such as extrusions or normalons—a successful

classification considerably improves performance and reliability of both topological

31

reconstruction (Chapter 10) and final geometric fitting (Chapter 11). Chapter 9

describes methods for performing such a classification.

Classification takes low-order polynomial time, all parts analysed taking O(n)

time.

The required inputs for the classification component are the original drawing

information plus the outputs of line labelling (Chapter 4), region identification (Sec-

tion 2.5.2), and bundling (Chapter 5), the last being used in identifying normalons

and semi-normalons.

The preferred inputs for this component are the lists of local symmetry elements

as identified by the methods of Chapter 8, which increases the choice of heuristics

available for estimating figures of merit.

The primary output of this component is a set of special-case shape classes which

the drawing matches.

The secondary output of this component is a set of figures of merit, describing

how well the drawing matches any special-case class for which it qualifies.

2.13 Component: Topological Reconstruction

The central stage of this thesis, to which most of the previous stages are preparatory,

is reconstruction of the hidden topology of the object intended by the user. The aim

of this component is to reconstruct the complete vertex/edge framework of the ob-

ject; the list of face loops need not be complete as an effective and reliable algorithm

for adding faces to an existing vertex-edge framework is known (see Section 2.14).

If backtracking is permitted, this component takes exponential time. If back-

tracking is not permitted, with lookahead used to avoid illegal situations, the com-

ponent takes O(n6) time.

The required inputs are the initial user information plus the outputs of the region

identification, labelling (Chapter 4) and inflation (Chapter 7) components.

The preferred inputs are the outputs of parallel line bundling (Chapter 5), local

symmetry detection (Chapter 8) and object classification (Chapter 9).

The primary output of topological reconstruction is a complete vertex-edge

framework: a number of extra vertices; a number of extra edges; and the con-

nectivity information to provide a boundary-representation topological structure.

32

The secondary outputs of topological reconstruction are: new faces, or comple-

tions of visible partial faces, and estimated 3D coordinates for each hidden vertex

added (these may be even less trustworthy than the provisional depth coordinates

of visible vertices, but simplify implementation in that the same data are available

for both visible and hidden vertices).

2.14 Component: Face Loops

Adding additional faces to a complete vertex/edge framework until all vertices have

the same number of faces as edges is straightforward and is not described in a

separate chapter. This completes the topology of the object. A known algorithm

exists for this:

• Repeat, while any vertex is connected to fewer faces than edges

– Choose an unused half-edge (see note 1)

– Find the least expensive loop of unused half-edges including the chosen half-

edge (see note 2)

– Create a new face using this loop of half-edges

Note 1: when possible, RIBALD uses as the starting-point a half-edge for which

the co-half-edge is already part of a face loop, in order to minimise the possibility

of choosing an incorrect loop of edges. In practice, this avoids the internal face

problem noted by Bagali and Waggenspack [1].

Note 2: RIBALD uses Dijkstra’s algorithm [21]; any algorithm for minimum-

cost cyclic paths will do. It is, however, important to choose a good cost function.

An earlier version of RIBALD [173] used a cost function of 1 for each edge in the

loop; this is inadequate, as shown below. Bagali and Waggenspack [1] outline a

similar algorithm for identifying the faces of a trihedral wireframe object; their

cost function is based on line lengths (shorter lines are preferred)—this suffers from

similar problems, albeit less frequently.

The inadequacy of this approach can be illustrated by the completed framework

of Figure B.103 shown in Figures 2.12 and 2.13. A number of face loops must

be added to complete the topology—possibly one pentagonal hidden face and two

33

Figure 2.12: Wrong Figure 2.13: Right

quadrilateral hidden faces at the back of the object (these may or may not have

been created as part of the topological reconstruction process), and the base face,

the small hidden face at the back of the extension built onto the front of the house,

and the front wall of the house (the original visible partial face has been deleted).

In forming the loop for the last of these, with all edges costing the same, RIBALD

finds the topologically-shorter path of unused half-edges shown in Figure 2.12 rather

than the correct path shown in Figure 2.13. Bagali and Waggenspack’s cost function

would choose the correct path in this case, but it is easy to visualise that with a

longer, thinner house, it too would fail.

Instead, a cost function is required which weights choice of half-edges geomet-

rically, preferring half-edges which are as close as possible to the plane of half-edges

preceding it in the path. After experimenting with a number of similar cost func-

tions, I chose as the most promising the figure of merit for perpendicularity between

the half-edge BA and the normal to the plane BCD where BA is the new half-edge

being added to the path and CB and DC are the two preceding half-edges in the

path.

Using this cost function, detection of face loops is fast (O(n2) time), and reli-

able when the output of topological reconstruction is correct. As will be seen in

Chapter 10, topological reconstruction sometimes produces vertex-edge frameworks

for which no valid geometry exists; face loop detection does not identify these erro-

neous frameworks and can produce peculiar results when processing them.

Other algorithms for detection of face loops are known. One such is that of

Liu and Lee [93], which detects faces directly from a 2D wireframe drawing. This

improves on a previous method of Shpitalni and Lipson [149]. In both cases, depth

34

information is not available and therefore cannot affect the results. The algorithm

used in the current version of RIBALD is to be preferred as taking account of

provisional depth information.

An alternative idea, worthy of investigation, arises from recent work by Grosjean

et al [40], who show that adding or deleting faces to maintain a valid solid model

as edges are added to an object is very fast. On this basis, partial faces and the

background region would initially be treated as genuine, albeit non-planar, faces of

the object; extra vertices and edges would be added, and existing faces split, until

all faces of the object are planar. This would be incorporated within topological

reconstruction, removing the need for a separate loop completion component at

the cost of added complexity in the (already complex) topological reconstruction

component. Their method, as described, requires accurate geometry, but appears

easy to adapt to use provisional, potentially inaccurate geometry. This idea has not

been investigated.

2.15 Component: Geometric Finishing

Although topological reconstruction produces a complete topology, the vertex loca-

tions will not be accurate. A final geometric fitting process is required in order to

ensure, firstly, that the object has a geometric realisation (vertices must lie on faces,

which must be planar) and, secondly, that wherever desirable, identified symmetry

constraints are enforced geometrically. Solutions to this problem are described in

Chapter 11. The preferred general-case solution takes O(n6) time.

The required inputs to geometric finishing are the depth information derived in

Chapter 7 and the completed topology as output by topological reconstruction as

described in Chapter 10.

The preferred inputs are bundles of parallel lines (Chapter 5), seeds for local

symmetry (Chapter 8) and drawing classification (Chapter 9).

The primary output of geometric finishing is a list, for each vertex, of vertex

coordinates. The only secondary outputs are error reports produced to the user

when previously-accepted hypotheses are contradictory and cannot be resolved.

35

2.16 Component: Splitting and Recombination

For several reasons, it may be desirable to split a drawing into pieces, reconstruct

the topology (and perhaps fit a geometry) separately for each piece, and finally

recombine the pieces:

• a CSG-style approach has been shown to be effective in reconstructing hidden

topology [182, 183]

• the correctness of topological reconstruction (Chapter 10) is noticeably poorer

with more complicated drawings than with simple drawings

• the methods described in Chapter 10 take exponential-order time—halving

the problem size would clearly be beneficial

• the most natural way of processing objects with bosses is as separate objects

• processing an object as two pieces may allow one or both pieces to be pro-

cessed as a special-case class even though the whole object does not meet the

requirements for such a class.

However, splitting is not, in general, useful for trihedral objects with no hole

loops. In such objects, the presence of junctions of two concave and one convex edge,

such as Wdcd, would be the clue to identifying a natural point of cleavage [51]. Most

of the cases for which this idea might be thought useful, including Figures B.101

and B.6, can be interpreted correctly without this idea. The idea was not pursued

when only objects without hole loops were considered.

The idea should clearly be incorporated as the preferred means of processing ob-

jects with bosses. This being so, it is worth reconsidering its use for objects including

junctions of two or more concave edges, and perhaps also worth searching for reli-

able methods of splitting large objects at a single concave edge (see Figure B.74 for

an example where this would prove useful). There has not been time to investigate

this.

36

2.17 Component: Intersecting Faces

The final stage of Grimstead’s system [38] is a three-dimensional tidying process in

which the x-, y- and z-coordinates of each vertex are recalculated from the equations

of the three faces on which it lies.

The equivalent process in RIBALD is included within the geometric finishing

component, and is described in Chapter 11.10.

2.18 Component: Quality Control

Various ideas for a final stage of processing which performs some sort of quality

check on the completed B-rep model have been considered. By analogy with a

human quality inspector, such a component might:

• simply report problems, offering no clue as to their cause or solution (possible

problems include vertices which do not lie exactly on the appropriate face

planes, visible vertices which have moved unacceptably far from their locations

in the line drawing, and hidden vertices, edges and faces which are in locations

from which they would be visible)

• tidy up as much as is possible while ignoring problems for which there is

no simple fix (for example, if the original drawing implied mirror symmetry

and the object has topological but not geometric mirror symmetry, enforce

geometric mirror symmetry if it is possible to do so by moving one or two

faces, but otherwise do nothing)

• reject the final model, requiring a second attempt (try to identify hypotheses

which have proved incorrect, remove them, and re-run the algorithm from the

appropriate point).

In principle, such quality control is unnecessary—correct methods should not

make mistakes. However, consideration of the drawing in Figure B.421 makes it

clear that a final check of some sort may be a practical necessity—the simplest way

of determining whether the features are holes or a pockets is to reconstruct the

object on the assumption that the features are pockets and then test how thin the

bottoms of the pockets are.

37

When separation (Section 2.16) is investigated, a component which puts the two

halves of the object back together again will be required. Since this component

would have to perform some geometric and topological validation, performing other

checks at the same time would not be out of place.

Quality control has not been investigated. RIBALD only checks for two prob-

lems, vertices not lying on the appropriate face planes, and visible vertices which

have moved significantly from their original coordinates, and reports these problems

rather than attempting to fix them.

Identifying which hypotheses caused the problem is non-trivial. Further research

is needed to determine to what extent this is possible. There has not been time in

the course of the work for this thesis to do this.

2.19 Chosen Components: Order and Control Struc-

ture

A control structure is required in order to assemble the available components defined

above into a system. A sequential structure has been chosen (iterative structures

were rejected for reasons of processing speed, and it will be seen in later chapters,

particularly Chapter 10 and Chapter 11, that even the simple sequential structure

is not always fast enough in the general case). The idea of “lazy evaluation” was

rejected as adding unnecessary complexity—it makes the system less predictable and

increases development time (and it will also be seen in later chapters, particularly

Chapter 11, that even with the simpler sequential control structure, some ideas

remain untested).

The following sequential control structure appears to match outputs of earlier

components to inputs of later ones as well as any:

• Analyse the line drawing:

– Identify Junction Types (see Section 2.4.2)

– Identify Subgraphs (see Section 2.5.1)

– Identify the Background Loop (see Section 2.5.2)

– Identify Candidate Features (see Chapter 6)

38

– Label the Lines and Junctions (see Chapter 4)

– Identify Subgraphs again (see Section 2.5.1)1

– Identify the Face Loops (see Section 2.5.2)

– Identify Parallel Lines (see Chapter 5)

– Identify Genuine Features from Candidates (see Chapter 6)

– Inflate the 2D Coordinates (see Chapter 7)

– Identify Rotational Symmetry Elements (see Chapter 8)

– Identify Mirror Planes and Mirror Chains (see Chapter 8)

– Classify the Object (see Chapter 9)

• Reconstruct the hidden topology framework (see Chapter 10)

• Fill in any missing faces (see Section 2.14)

• Beautify the resulting object (see Chapter 11)

• Perform a quality check (see Section 2.18)

Geometric validation (Section 2.10) should follow immediately after (or be part

of) line labelling; the current component, placed after inflation, is unsatisfactory.

Splitting objects into pieces and later recombination of the pieces (Section 2.16)

has not been investigated in sufficient depth to identify the points at which these

should be included.

1Labelling may identify some T -junctions as non-occluding, and all lines at a non-occluding
T -junction must be in the same subgraph

39

Chapter 3

Background Ideas

This section lists ideas, algorithms and formulae obtained from fields other than

interpretation of line drawings which are used in this thesis or in the RIBALD

program. None of these are new—where no citation is given, it indicates that the

idea is either well-known or obvious.

3.1 Sketch to Drawing

The distinction between a sketch and a drawing was made in Chapter 1.1. Conversion

of sketches to drawings is well-covered in the literature.

Jenkins [59] does not interpret sketches, but describes a 2D sketch input and

tidying package. Symmetry is detected automatically, but parallelism and other

constraints are entered via menu options. Close points and tiny lines are removed

automatically.

Mitani [112] has produced a freehand sketching program, JMSketch, with the

capability of interpreting sketches as line drawings. It was this program which was

used to draw Figures 1.3 and 1.4 (page 4) in Chapter 1.1 and convert them to the

line drawings in Figures 1.5 and 1.6.

The program of Pavlidis and Wyk [122] performs 2D “beautification” of a draw-

ing (which may include points as well as lines) by enforcing constraints. The con-

straints which may be enforced are: equality of side lengths; equality of side slopes;

collinearity of sides; and vertical and horizontal alignment of points. They stress the

40

importance of negative constraints, which they describe as necessary to avoid vari-

ous pitfalls. For example, if two lines cross, a negative constraint may be required

in order that their slopes remain different however close they may be. They use a

simple equation solver developed by one of the authors.

Eggli et al [25] also have a good, full-featured 2D sketching interface. They

discuss user preferences in some detail—they have established different user settings,

which weight constraints differently, according to the profession and skill of the

user. They consider that “Interpreting an arbitrary 2D input as a 3D object is too

ambiguous, in general”. They limit 3D features to specific menu options, the only

current one being extrusions, although freehand curves, as well as polygons, may

be extruded, and 2D input may be extruded along freehand curves as well as along

lines. Features can be added on faces of existing objects. Holes can be made in

existing objects.

In the remainder of this thesis, it is assumed that converting sketches to line

drawings is a proven technique.

3.2 Searching and Heuristics

In many parts of this thesis, it will be necessary to choose between alternatives.

Levy [87] discusses this as two distinct subproblems: position evaluation and search

strategy.

3.2.1 Position Evaluation

Position Evaluation is the process of determining the merit of a position, a static

situation. Any choice between two or more positions will require that the competing

merits of the positions are assessed numerically.

In considering interpretation systems, Hinton [49] argues in favour of “tentative

hypotheses”, where a number of competing hypotheses are maintained. The altern-

atives he rejects are: “hypothesise and test”, in which hypotheses made on the basis

of local cues are tested against the sketch as a whole and accepted or rejected im-

mediately; the “principle of least commitment”, which requires a large number of

vague classifications; and less convincingly against “feature semantics”—he accepts

41

that propagation of constraints generated by interdependent local cues can in prac-

tice be more efficient than “tentative hypotheses”, citing line labelling as an obvious

example (the method of inflation described below is another). Each “tentative hy-

pothesis” is assigned a numerical value; Hinton calls these “probabilities” and uses

the range 0 to 1. The idea of competing and complementing hypotheses has been

adopted in this thesis, as has the convention of assigning numerical values in this

range, but the term figure of merit is preferred as the actual numerical values are

subjective rather than statistical—it is a numerical value intended to represent the

plausibility that the artefact was intentional on the part of the user.

Numerically, figures of merit are manipulated as probabilities:

• a hypothesis with a figure of merit F = 1.0 can be accepted immediately

• a hypothesis with a figure of merit of F = 0.0 can be rejected immediately

• multiplying two figures of merit FA∩B = FA × FB reduces the merit

• mutual reinforcing of two figures of merit

FA∪B = 1.0 − (1.0 − FA) × (1.0 − FB) increases the merit

3.2.2 Search Strategy

Except where the number of alternatives to be considered is small, a search strategy

is required: a method of finding those static situations whose merits are worthy

of assessment. Formally, the static situations are the terminal nodes of a directed

acyclic graph; however, less formal and more intuitive descriptions help to clarify

the problem.

It is conventional, if occasionally misleading, to use arboreal terms to describe a

search space: the starting position is the root, alternatives (when alternatives become

possible) are branches, the various terminating static situations to be evaluated are

leaves, and the overall structure is a tree. The metaphor becomes misleading when it

is possible to reach a leaf or branching-point via two or more sequences of branches

(such a structure is clearly not a tree), and in Chapter 10 this is often the case.

An alternative metaphor is that of a single-player game. As already seen, po-

sitions in the game are nodes of a graph. The possible moves in the game in any

42

position are the arcs of the graph leaving the corresponding node, and the rules of

the game determine which arcs exist.

In general, this thesis will use the tree metaphor.

One simple method of choosing a leaf is the greedy algorithm. Whenever a

branching-point is reached, the merits of the available branches are assessed as

if they were static situations, and the branch with the highest merit is followed.

Provided only that each branch ends either at a leaf or by dividing into “thinner”

branches, the greedy algorithm guarantees that a solution will be found, and it is

likely to be a good one (although there can be no guarantee that it will be the best).

If some branches are dead ends (as happens in Chapter 10), the strategy must be

refined: whenever a dead end is reached, one returns to the last branching-point at

which there was a branch which has not yet been explored, and follows this instead.

This strategy is known as backtracking, and it will always find a solution if there is

one, provided only that there are no loops in the structure (branching-points divide

only into “thinner” branches, never back into “thicker” ones).

There are numerous variants on these two methods described in standard text-

books on searching, e.g. [123]. In general (and in Chapter 10 in particular), searches

are conducted either using a greedy algorithm or with backtracking.

One alternative considered was Stilman’s [155] idea of partitioning a starting

situation into subgames, and determining subgoals for each subgame. This idea is

suspect even in the context of chess endgames, for which it was originally developed.

Stiller [154] points out that with very few exceptions the chessboard is “small”—

it cannot usually be partitioned into subgames, as moves made in one subgame

affect other subgames. The “games” of three-dimensional topology and geometry

can be considered even smaller—changing the topology or geometry of one atom of

an object will inevitably have consequences elsewhere in the object—and the idea

of partitioning into subgoals can be rejected.

Other ideas from the chess literature could usefully be investigated in the context

of search strategies for Chapter 10, but for reasons of time have not been taken

further in this thesis. Levy [87] considers:

• The Killer Heuristic: if a particular change is found to have the highest merit in

one branch of the search tree, that change should be tried first when traversing

43

other branches of the tree;

• Forward Pruning: a branch of the search tree is “obviously” wrong and need

not be traversed;

• Razoring: a variant of forward pruning where a branch of the search tree is

rejected because the change initiating that branch lowers the overall merit;

• Transposition Tables: after evaluating in full a branch of the search tree, the

results are assigned to intermediate nodes in the branch, so that if the same

node occurs by transposition in another branch, it need not be re-investigated.

3.3 Constraints and Optimisation

A constraint is a relationship between variables expressed as a function (an equa-

tion or inequality) of those variables [80]; constraints may be discrete or continuous.

A constraint satisfaction problem (CSP) attempts to find values for the variables

which provide a solution to a system of constraints. Both discrete and continuous

constraint satisfaction problems occur in the approaches considered in this thesis:

line labelling (Chapter 4) is a discrete CSP, and fitting a geometry to a given topo-

logy (Chapter 11) is a continuous CSP.

As well as general solutions, there are specific solutions to the line-labelling

problem; these are discussed in Chapter 4. Of the more general solutions to dis-

crete CSPs, Mackworth [98] recommends node consistency, arc consistency and path

consistency and deprecates backtracking, whereas Kumar’s survey [76] recommends

backtracking and arc consistency.

Node consistency, arc consistency and path consistency can be illustrated by

reference to the junction labelling problem described in Chapter 4. In this problem,

each junction must have a label selected from a limited number of available labels

(each node must satisfy a unary predicate) and each edge must have the same label

at both end vertices (each arc must satisfy a binary predicate relating two nodes). A

path is a more complex predicate relating two or more arcs—path consistency is not

used in standard line-labelling algorithms, but the error in Figure 2.11 (page 29) is

a path consistency error caused by not satisfying the three-arc predicate described

on Page 90.

44

Backtracking has already been described in Section 3.2.2.

It may be noted that, although both Kumar and Mackworth consider general

CSPs, Kumar’s discussion is limited to node and arc consistency, while Mackworth

also allows path consistency.

Notwithstanding Mackworth [98], the methods described above do not transfer

well to solutions to continuous CSPs. Various approaches to the general continu-

ous CSP, and the specific geometric CSP, have been reported in the literature and

are summarised in Chapter 11.2. There, I conclude that geometric CSPs are best

handled using numerical optimisation approaches.

3.3.1 Downhill Optimisation

RIBALD uses the downhill simplex method, generally known as amoeba [117, 131]

for the numerical optimisations required by Chapter 11, which cannot be solved as

linear systems.

According to Press et al [131], there are no theoretical reasons for preferring

either amoeba, variable metric algorithms such as BFGS, or conjugate gradient al-

gorithms for a small to medium number of variables (for a large number of variables,

conjugate gradient algorithms are preferred). BFGS can work better for functions

whose distant behaviour matches their local behaviour, and amoeba can work better

for functions where the distant behaviour differs markedly from the local behaviour.

In principle, any new optimisation process should be tested with all three methods

to determine empirically which works best.

However, use of a single downhill optimisation method has practical advantages,

and RIBALD uses amoeba as (a) I have used it before [170] and found it to be

reliable, (b) the algorithm is compact, and (c) the algorithm is based on geometric

concepts, and thus meets the preference for methods which are intuitively correct.

3.3.2 Genetic Algorithms

Genetic algorithms provide a non-deterministic method for solving CSPs for which

no deterministic algorithm is known, but for which a reliable position evaluation

function is available. Genetic algorithms were first elaborated by Holland [52],

45

although (like neural networks) they were prefigured by Selfridge’s ideas of Pan-

demonium [145]. Goldberg [35] introduced refinements such as mutation. Where

versions of RIBALD have incorporated genetic algorithms (for example, in testing

the ideas of Chapter 11.7), they follow Goldberg’s outline algorithm [35, 84].

3.4 Least Squares Fit

RIBALD uses the black-box routine Ortholin2 [3] for all least-squares fitting, and

in particular depth estimation (Chapter 7) and fitting planes through more than

three points. Initially, two routines were considered, Ortholin2 and SVD [131].

Initial comparisons showed Ortholin2 to be more robust and significantly faster in

all realistic cases tested. Ortholin2 was not robust to three specific user errors:

insufficient equations, duplicated equations, and unknowns not referred to in any

equation, but these are easily avoided.

Ortholin2 comprises two stages, an initial calculation which is O(nu2) for n

equations and u unknowns, and an iterative refinement which is O(nu) for each

iteration.

3.5 Planar Geometry

The area A(a, b, c) of a parallelogram three of whose corners are the points (ax, ay),

(bx, by), (cx, cy):

A(a, b, c) = (ax(by − cy) + bx(cy − ay) + cx(ay − by)).

Although obvious (most basic geometry books give the area of a triangle, 1
2
A(a, b, c)),

the area function A(a, b, c) must be defined as it is used on Page 49.

2D Lines (x, y) · n̂A + dA = 0 and (x, y) · n̂B + dB = 0 cross at

(nBydB − dAnAy), (dAnBx − nAxdB)

nAxnBy − nBynBx

If the denominator is tiny, the lines are parallel or collinear. RIBALD uses this

method throughout in order that parallelism/collinearity can be detected easily.

46

3.6 Solid Geometry

Results from solid geometry are used throughout the thesis.

3.6.1 Euler’s Formula

RIBALD uses the Poincaré version of Euler’s formula to validate completed topolo-

gies (Chapter 10):

V + F − E = L + 2N − 2H

V is the number of vertices, E is the number of edges, F is the number of faces,

L is the number of hole loops, H is the number of through holes, and N is the

number of objects.

3.6.2 Vectors

Although vectors were introduced over a century ago by Gibbs [34] and Heaviside,

their notation remains inconsistent. This thesis follows Weatherburn [185]: a vector

a from the origin to point A has components (Ax, Ay, Az), its modulus is a, and a

unit vector in the same direction is â. The scalar product of two vectors is a · b,

the vector or area product of two vectors is a× b, and the volume product of three

vectors is [abc]. Except where specifically noted otherwise, vectors are 3D.

By extension, for normalising a vector expression (v), this thesis uses the op-

erator notation (̂v). There seems to be no established notation for the common

operation “choose either i or −i, whichever is closer to n”. In this thesis, the nota-

tion (i) ↪→ n is used.

The nearest vector n to a reference vector r which is perpendicular to p is given

by

n = (p× r) × p

The nearest two mutually perpendicular vectors i′ and j′, both lying in a plane

perpendicular to n̂, to two non-collinear vectors i and j, are obtained by setting

i = (i × n̂) × i

j = (j × n̂) × j

47

and then iterating

p = (i × n̂) ↪→ i

q = (j× n̂) ↪→ j

i′ = (̂i + p̂)

j′ = (̂j + q̂).

Note that iteration is required in order to allow for the possibility that the original

vectors i and j do not lie in the plane. The method converges quickly when i and

j are close to the plane—RIBALD always uses two iterations, which is adequate

for demonstration purposes (more may be required in some cases to achieve the

accuracy required by CAD).

The nearest three perpendicular vectors i′, j′ and k′ to three non-coplanar vectors

i, j and k are obtained by iterating

p = (j× k) ↪→ i

q = (k × i) ↪→ j

r = (i × j) ↪→ k

i′ = (̂i + p̂)

j′ = (̂j + q̂)

k′ = (̂k + r̂).

RIBALD always uses four iterations (avoiding the overhead of testing for conver-

gence).

3.6.3 Planes

RIBALD stores a plane P as normal and distance: r · n̂P + dP = 0.

Given three points A, B and C, the plane P through them is found by setting

n̂P = (̂(b− a) × (c − a)) and dP = −a · n̂P.

Fitting a plane through four or more points uses a least-squares fit, as described

in Section 3.4.

48

The point of intersection of three planes, P, Q and R, each defined by a nor-

malised normal vector (n̂P, n̂Q, n̂R) and a distance (dP , dQ, dR), is obtained using

Cramer’s Rule: set a vector d = (dP , dQ, dR) and then calculate

pPQR =
([dn̂Qn̂R] , [n̂Pdn̂R] , [n̂Pn̂Qd])

[n̂Pn̂Qn̂R]

If the bottom volume product is zero, two or more of the planes are parallel.

The intersection point of four or more planes is implemented as intersection point

of the three planes whose normalised normals have the largest volume product.

The perpendicular distance r from a point Q to a plane P is given by [5]:

r = q · n̂P + dP

A 2D point D = (Dx, Dy, 0) can be made coplanar with the plane through three

3D points U , V and W (using the area function defined in Section 3.5 above) as

follows:

• Set x = A(U,D,W)
A(U,V,W)

• Set y = A(U,V,D)
A(U,V,W)

• Set Dz = (1 − x − y)Uz + xVz + yWz

3.6.4 3D Lines

The nearest point P on a line u + sv̂ to a general point G is given by:

p = u + (v̂.(g − u))v̂

The distance r from any point G to the line u + sv̂ is given by:

r = |(u + (v̂.(g − u))v̂ − g)|

The nearest point P on line a + um̂ to line b + vn̂ is calculated by [27]:

• Set c = b − a

• Set J = m̂ · n̂

• If 1 − J2 is tiny, the lines are close to parallel - report an error

49

• p = b + n̂ ((c · m̂) − (c · n̂)J) / (1 − J2)

The shortest perpendicular distance r from line a + sm̂ to line b + tn̂ follows

from this [27]:

• r = |((a+m̂ ((c · n̂) − (c · m̂)J) / (1 − J2)−(b+n̂ ((c · n̂)J − (c · m̂)) / (1 − J2)))|

3.6.5 General Rotation about an Axis

Chapter 11.6 requires calculation of the vector M̂ which is obtained when a vector

N̂ is rotated by a known angle about an axis R̂. From [5]:

M̂ = �(ρ, R̂)N̂ where � is the rotation matrix for rotating through an angle ρ

about R̂:

�(ρ, R̂) =




R2
x + (R2

y + R2
z)c RxRyv − Rzs RxRzv + Rys

RxRyv + Rzs R2
y + (R2

x + R2
z)c RyRzv − Rxs

RxRzv − Rys RyRzv + Rxs R2
z + (R2

x + R2
y)c




where s = sin ρ, c = cos ρ and v = 1 − cos ρ.

3.6.6 Spherical Triangles

Chapter 11.6 requires manipulation of unit face normals around the Gaussian sphere.

Such manipulation makes use of various standard results for spherical triangles.

From [95, 186]:

Consider three points A, B and C on the surface of a sphere of unit radius

centred at point O. Draw the great arcs BC, CA and AB, such that all arcs are

less than π. This divides the surface of the sphere into two; the smaller of the two

subdivisions is a spherical triangle.

• the angle subtended at O by the arc BC is denoted a;

• the angle subtended at O by the arc CA is denoted b;

• the angle subtended at O by the arc AB is denoted c;

• the angle between the planes OCA and OAB is denoted α;

• the angle between the planes OAB and OBC is denoted β;

• the angle between the planes OBC and OCA is denoted γ.

50

From [186]:

Defining l̂ as the vector �OA, m̂ as the vector �OB and n̂ as the vector �OC, it is

known that cos a = m̂ · n̂, cos b = n̂ · l̂ and cos c = l̂ · m̂.

The cosine rule for spherical triangles [186, 95]:

cos a = cos b cos c + sin b sin c cos α

cos b = cos c cos a + sin c sin a cos β

cos c = cos a cos b + sin a sin b cos γ

to which [95] adds:

cos α = cos a sin β sin γ − cos β cos γ

cos β = cos b sin γ sin α − cos γ cos α

cos γ = cos c sin α sin β − cos α cos β

The sine rule for spherical triangles [186, 95]:

sin α

sin a
=

sin β

sin b
=

sin γ

sin c

[95] adds a further result of use:

sin2 (a/2) = (1 − cos a)/2

[95] also quotes the rule for the area of a spherical triangle:

(α + β + γ − π)

3.7 Dual Space

Dual Space [57] is a 3-dimensional space (u, v, w) in which a point (x = a, y = b, z =

c) in normal 3-dimensional (x, y, z) space maps to the plane −au − by + z + c =

0. The mapping is symmetrical—the plane Px + Qy + z + D maps to the point

(u = −P, v = −Q, w = D). The line x = mz + g, y = nz + h maps to the line

u = −f(nw + h), v = f(mw + g) where f = 1/(h(m + g) − g(n + h)). All points

on the normal space line map to planes which pass through the dual space line, and

vice versa.

51

The coordinates of a vertex map to a dual-space plane. The lines of all edges

meeting at the vertex map to dual-space lines which are in this plane. The planes

of all faces which intersect that the vertex map to dual-space points which are in

this plane [57].

Dual Picture Space [57], also known as Gradient Space [97], is a 2D space obtained

by projecting dual space onto the (u, v) plane. One of its more interesting properties

is that lines in (x, y) drawing space map to perpendicular lines in dual picture

space [57].

3.8 Miscellaneous

Random numbers, when required, are generated using ran0 from Press et al [131].

52

Chapter 4

Line Labelling

4.1 Introduction

The technique of line-labelling [14, 43, 56] attempts to identify each line in a line

drawing as either convex, concave, or occluding, in order to reduce the possible inter-

pretations of a line drawing to a processable number. The best-established method

of labelling line drawings is by means of a catalogue of permissible junction labels—

any combination of labelled lines meeting at a junction which does not produce a

junction label listed in the catalogue can be rejected. The Clowes-Huffman catalogue

for line drawings of trihedral polyhedra is well-established—although the limitation

to trihedral vertices is somewhat restrictive, Clowes-Huffman line-labelling has been

used successfully in a number of applications, including the interpretation of nat-

ural line drawings [147] and of freehand sketches [38]. A similar catalogue for line

drawings with hidden lines shown [157] has been used in interpreting such draw-

ings [91, 17]; other catalogues are listed in Section 4.2.

It is not always possible to achieve a unique labelling, but neither is it necessar-

ily desirable [163]—it may be the case that several labellings correspond to sensible

interpretations, and all of these should be retained. However, finding a “best”

labelling remains useful—for example, while there are several reasonable interpret-

ations of Figure 1.2 (page 2), they all correspond to the same labelling.

Section 4.2 describes the history of line labelling, and indicates where previous

work fails to meet the requirements of reconstruction of engineering objects.

In particular, a junction catalogue is required for tetrahedral objects. Section 4.3

53

describes a method for generating this catalogue, and the catalogue itself. Both the

method and the catalogue are new.

Section 4.4 describes two labelling approaches using these catalogues, a determ-

inistic approach which adapts Kanatani’s algorithm [64], and a novel probabilistic

approach based on relaxation labelling [140]. Both use heuristics to choose between

alternative valid labellings, and the deterministic approach also uses heuristics to

speed up its search process. These heuristics are also new.

Section 4.5 summarises the results of investigations into these two approaches.

4.2 History

4.2.1 Junction Catalogues

Although attempts to identify the junctions which may appear in valid line drawings

date back at least as far as Guzman [43], the first systematic catalogues were pro-

duced by Clowes [14] and Huffman [56] (they are identical apart from nomenclature).

They assume polyhedra with trihedral vertices. By considering three perpendicular

planes intersecting at the origin, and analysing the line drawings produced in all

28 possible combinations of solid and empty regions, they showed that the twelve

junction types illustrated in Appendix E.1 are the only possible views of trihedral

vertices.

In addition to the twelve junction types obtained by this procedure, Clowes and

Huffman also listed the four occlusive T -junctions. These occur when an occluding

face occludes an edge, and are artefacts of line drawings, not features of objects.

Since they need not correspond to vertices, they are independent of the types of

vertex which appear in a sketch, and thus should appear in any junction catalogue

for natural line drawings.

The process used to derive the Clowes-Huffman catalogue produces, as a side-

effect, the complete catalogue of junctions possible in drawings of extended trihedral

objects. By adding the six junction types shown in Figures 4.1–4.6 it is possible to

label drawings of any extended trihedral polyhedron [120]. Note that although three

planes intersect at the vertices shown, more than three faces meet at the vertex, and

also more than three edges meet at the vertex (a single line entering and leaving the

54

Figure 4.1:
Tbda

Figure 4.2:
Tbdc

Figure 4.3:
Tdab

Figure 4.4:
Tdac

Figure 4.5:
Zcbda

Figure 4.6:
Zcdcdcd

vertex must be counted as two edges, since such a line may be concave in one part

and convex (as in Figures 4.5 and 4.6) or occluding (as in Figures 4.1–4.4) in the

other).

As Sugihara [163] points out, given independent knowledge of the world of objects

which may appear in line-drawings, a complete catalogue of the junction labellings of

that world can in principle be produced. A similar catalogue to the Clowes-Huffman

catalogue for wireframe drawings [157] has been used in applications to interpret

them [91, 17]. Turner’s catalogue [167], which considers curved objects, reportedly

lists 3000 physical interpretations of trihedral junctions; it includes curved lines

derived from parabolic and elliptical surfaces. Chakravarty’s catalogue [13] handles

general curved objects but remains limited to trihedral vertices. It describes V -,

W - ,Y - ,T - ,A- and S-junctions—the A- and V -junctions are subcategories of L-

junction; understanding the name of the S-junction takes some imagination (it is

a tangent meeting a curve)—and the “invisible” C-junction, obtained by following

a concave curve. Malik [99] has listed errors in this catalogue, and in a simplified

version of it by Lee et al [85], and provided a correct catalogue [100]. Catalogues

have also been produced for interpreting drawings of Origami objects [62] and for

assisting in interpretation of scenes with shadows [181] and of range data [158].

Grimstead [39] investigated the possibility of an incremental line-labelling al-

gorithm which updated labellings whenever a new line was added to a drawing.

He notes that the extra complexity introduced by allowing for incremental line la-

belling does not translate into a significant benefit in terms of processing time—line

labelling takes a small proportion of the total time needed to interpret a drawing.

This proportion would drop further if more “intelligence” were to be built into the

later stages.

A full catalogue of valid tetrahedral junction labels would clearly be considerably

larger than the equivalent Clowes-Huffman catalogue for trihedral junction labels.

55

Its very size may make it less useful in practice, as may the fact that it is far harder to

obtain an unambiguous labelling for a line drawing explicitly or implicitly containing

tetrahedral vertices. This has prompted some to use cut-down catalogues of common

tetrahedral junctions [181] rather than the full catalogue, and others to investigate

other methods of labelling the lines in drawings of objects with tetrahedral vertices

(one of these is Pugh’s arc labelling method [133]).

Others still follow Malik’s work [100], which extends trihedral line-labelling to

curves and also suggests a method, the “local minimum complexity rule”, for dealing

with cases where more than three faces meet at a vertex: use the trihedral catalogue

for L-, W - and Y -junctions, assume that T -junctions are occluding, and accept

whatever this produces at visibly tetrahedral junctions. However, this does not

address the more difficult problem of inferring that a boundary junction where only

two or three lines are visible is non-trihedral in the completed object. This procedure

can find an inferior labelling (as with Figure 4.7, where the topmost junction should

be Wbda, not Wbca) or fail to find any valid labelling (as with Figure 4.8) (there are

many other examples below; see in particular Appendix E.2.18 and E.2.19) while

also failing to avoid the combinatorial explosion when attempting to label drawings

such as Figure 4.9. More subtly, it may obtain the best labelling for Figure 4.10 but

fail to identify that the topmost W -junction should be non-trihedral.

Figure 4.7:
Non-trihedral W
[194]

Figure 4.8: Non-
trihedral Y

Figure 4.9:
Archimedean

Figure 4.10:
House

Malik has shown [99] that one necessary consequence of the local minimum com-

plexity rule is that there is no more than one hidden face at any vertex. Fig-

ures 4.11–4.13 show counter-examples where two hidden faces are required by the

best interpretation, further undermining the validity of this method.

Malik [100] also suggested the following procedure for generating junction cata-

logues: starting with a valid fully-visible vertex type, replace any adjacent pair of

56

Figure 4.11: L Figure 4.12: W Figure 4.13: T

concave edges by an arriving-departing pair of occluding edges. In the trihedral

domain, this method generates a correct catalogue of W - and Y -junctions (but not

L-junctions). In the tetrahedral domain, it suffers from the problem that identifying

valid fully-visible vertex types is non-trivial.

Furthermore, the geometric reasoning used to develop this approach is impli-

citly trihedral, and does not extend infallibly to the tetrahedral domain. When

applied to the 19 underlying vertex types identified in Table 4.1 on page 65, Malik’s

method would identify as valid an additional 13 junction labels: Xabdc, Xabcd,

Xabdd, Mcabc, Mbcca, Mabcd, Mbdca, Mbcda, Mdcab, Kabcd, Kbdca, Kabdc and

Kdabc (it would not, and was not intended to, generate implicitly-tetrahedral L-,

W -, Y - and T -junctions). Eight of these, Xabdc, Xabcd, Xabdd, Mbcca, Mbdca,

Mbcda, Kabcd and Kabdc, are also identified by the methodology given below, and

with the 19 full-view tetrahedral junction labels comprise the complete set. The

remaining five, Mcabc, Mabcd, Mdcab, Kbdca and Kdabc, are either implicitly pen-

tahedral (see Figure 4.14), excluded from the tetrahedral catalogue since they can

only be generated by including hinges (Figures 4.16 and 4.17), or both (Figures 4.18

and 4.19).

Figure 4.14: Mcabc Figure 4.15: The same object
tilted

Huffman [58] advocated analysis of cut sets, the set of edges incident at either a

single vertex or a tight group of neighbouring vertices. For example, in Figure 4.20,

the convex edge between faces A and B implies that at point Φ, the plane of face A

is further away than the plane of face B (zA > zB). The concave edge between faces

57

Figure 4.16:
Kbdca

Figure 4.17:
Kdabc

Figure 4.18:
Mabcd

Figure 4.19:
Mdcab

B and C implies that at point Φ, zB > zC . Similar reasoning shows that zC > zD

and that zD > zA. The existence of such a cyclic inequality demonstrates that this

particular labelling is invalid, and, more generally, the non-existence of any such

Φ-point is a necessary condition for the labelling to be realisable [58].

A

B

C

D

+ -

-+
Φ

Figure 4.20: Cut Set, from [58]

+ +

++

Figure 4.21: Cut Set Counter-
example, from [58]

It is not clear how this can be translated into a fast algorithm (since cut sets

may surround groups of neighbouring vertices as well as single vertices, a natural

implementation would be significantly slower than the algorithm described in Sec-

tion 4.4.2). Huffman’s original idea made use of dual space [57] (see Chapter 3.7),

but this is artificial and unnecessary. Although, as Huffman [58] notes, his idea can

be implemented in such a manner as to make it tolerant of small numerical errors,

it is not naturally tolerant of drawing inaccuracies. Furthermore, Huffman [58] also

showed that the absence of a Φ-point is not a sufficient condition for the labelling

to be realisable, providing Figure 4.21 as a counter-example—all three cut sets pass

the test, but the labelling is nevertheless clearly incorrect (catalogue-based labelling

using the tetrahedral junction catalogue would also accept this labelling as valid).

Huffman’s idea can be used in other ways, for example as a way of generating

or validating junction catalogues. For generating catalogues, I consider it inferior

58

to the method outlined in Section 4.3.1 below, which provides not only the cata-

logue but knowledge of the underlying vertex types implied by each entry. For

validating catalogues, it is correct—it can be noted that the discrepancies between

Huffman’s non-occluding T -junction catalogue [58] and that in Table 4.6 on page 69

are caused by differences in assumptions. Both include the 16 non-occluding tetra-

hedral T -junctions. Table 4.6 also includes the four occluding T -junctions (Tbaa,

Tbab, Tbac and Tbad) whereas Huffman also includes seven non-occluding penta-

hedral T -junctions (Tbaa, Tbab, Tbac, Tcaa, Tbcb, Tdaa and Tbdb).

Draper’s sidedness reasoning [23, 24] is, in essence, an extension of Huffman’s

cyclic inequality idea across an entire drawing, avoiding any need for a junction

catalogue. It is, as Draper claims, intuitively correct, but it is not informative, in

that the junction catalogue provided additional information which line labels alone

do not.

Kanatani [64] has suggested that non-trihedral vertices can be decomposed into

trihedral vertices by splitting them, and if necessary adding a zero-length line. For

example, Figure 4.22 would be processed as if it were Figure 4.23.

Figure 4.22: Drawing Figure 4.23: After De-
composition

Figure 4.24: Quadrilat-
eral Pyramid

This would require care—in order to avoid side-effects in subsequent stages of

processing, the “pretend edge” must be removed as soon as possible after completion

of line labelling.

However, the major concern here is how the splitting would be performed. It

would seem natural, for example, when attempting to split a tetrahedral vertex to

attempt to divide space into four quadrants, and treat the zero-length line as being

in the direction of one of the dividing axes. Consider Figure 4.24. The central vertex

can be split into two trihedral vertices either by a horizontal line or a vertical line.

In either case, two Y -junctions will be produced, and there will be no valid trihedral

labelling. It is possible to find directions for the zero-length line which would achieve

59

the desired result (one Y ccc junction and one Wcdc junction), but it is not clear

how to arrange for this to be the first choice.

It seems likely that this problem is soluble and that Kanatani’s idea is an im-

provement on Malik’s suggestion of allowing anything at visible non-trihedral junc-

tions, but the problem of inferring that apparently-trihedral junctions correspond to

non-trihedral vertices remains (one valid interpretation of Figure 4.24 is an irregular

bipyramid).

4.2.2 Algorithms

Once a junction catalogue has been created, it can be used to label drawings. Com-

binations of labelled lines meeting at a junction which do not produce a junction

label listed in the catalogue can be rejected. The task is translated into a discrete

constraint satisfaction problem, with the constraints that each line must have the

same label throughout its length, and each junction must be allocated a labelling

listed in the catalogue. Several effective algorithms for this discrete constraint sat-

isfaction problem have been proposed.

It has been apparent for some time that although such constraint satisfaction

problems are NP-complete in the worst case [69], in practice many line drawings

can be labelled correctly in almost linear time using deterministic algorithms such

as Waltz’s propagation algorithm [181]. This surprising result is generally believed

to derive from the sparsity of the trihedral junction catalogue and the resulting lack

of ambiguity in the chosen labelling. Fixing the label of one junction will usually

fix the labels of its neighbours.

After testing this conjecture, Parodi et al [120] report that a median-case per-

formance of O(n) can be achieved in practice if random objects are chosen. This

investigation would have been more useful if it had been coupled with an analysis

of structure, as some features (e.g. holes, pockets and bosses) commonly give rise

to line drawings with multiple valid labellings. Since it can be shown that any line

drawing with a single valid labelling can be labelled in low-order polynomial time

(Kanatani’s set-intersection method [64] is demonstrably O(n2) for drawings with

no more than a single valid labelling), it is the possibility of numerous alternative

valid labellings which makes the problem show NP-complete behaviour in the worst

60

case.

By [11] reports that implementing junction and line labels as Prolog body goals

and using the built-in unification of a Prolog interpreter (Quintus 3.1.1) to propag-

ate constraints is faster than an interpreted implementation of Waltz’s original con-

straint propagation algorithm [118, 181]. No mention is made of the order of this

method as problem size increases, and the reported timings are difficult to explain

in terms of a polynomial-order algorithm. The timings of By’s method are reason-

able for drawings of realisable trihedral objects but excessive for drawings with no

realisable trihedral interpretation. This cannot be considered an improvement on

Kanatani’s algorithm.

An attempt to improve on Waltz’s and Kanatani’s algorithms using genetic al-

gorithms was unsuccessful [153].

Since line labelling is theoretically NP-complete, attempts have been made to

determine whether or not a sketch is labellable. One such is Kirousis’s algorithm [68],

which is O(n). This is limited to trihedral polyhedra (in particular, it requires

that there is at least one non-occluding line at every Y -junction) and makes use

of a stronger definition of “general projection” (it requires that lines parallel in 2D

correspond to edges parallel in 3D).

An alternative method of labelling lines, also proposed by Kanatani [64], assumes

not only that vertices are trihedral but that the object is a normalon. It labels lines

according to their concavity/convexity and also uses their orientation to classify

them by axis as i, j or k lines. It is more successful in rejecting impossible objects,

and provides additional useful information for later stages of the recognition process.

The assumption of object orthogonality is, however, a major limitation.

The junction labels computed as part of the line labelling process are themselves

useful, and this may explain why other methods of line-labelling such as gradient

space [96], cut sets [58] and sidedness reasoning [23] have not superseded junction

catalogue approaches (other advantages and disadvantages of these two methods

are discussed elsewhere [24, 163]). For example, junction labels determine (some-

times uniquely) the underlying vertex types, simplifying topological reconstruction

(Chapter 10), and pairs of junction labels can be used in inflation (Chapter 7).

It is Kanatani’s set-intersection method [64] which forms the basis of the al-

gorithm described in Section 4.4.2 below.

61

4.3 Tetrahedral Junction Catalogue

Despite the initial success of line labelling methods, the limitation to polyhedra with

trihedral junctions has proved a problem. Real engineering objects are often not tri-

hedral (Figures 1.1 and 1.2 on page 2 are not). Of the 85 test drawings adapted from

engineering drawing textbooks [128, 129, 194], 53 are trihedral, 29 are tetrahedral,

one (Figure B.478, page 329) is pentahedral and one (Figure B.471) is hexahedral

(it is also extended trihedral). In practice, pentahedral vertices encountered in en-

gineering objects are usually all-convex, as in Figure B.177. Hexahedral vertices

are more common but are usually either all-convex or alternating as in Figure 4.6

(page 55). Figure B.402 is the only occurrence of an extended tetrahedral vertex

in the test drawings. It is therefore worthwhile investigating the full tetrahedral

vertex catalogue, while recognising that the pentahedral, hexahedral and extended

tetrahedral vertex catalogues are of little interest in this application domain.

4.3.1 Generating the Tetrahedral Catalogue

My aim here is twofold: to derive the complete catalogue of junctions which may

appear in line drawings of polyhedra with tetrahedral vertices, and to arrange this

catalogue such that all of the possible junction types which can occur in views of a

single underlying vertex type are grouped together. The method used is to divide

space into regions by creating four planes which intersect at the origin, consider

all sensible combinations (see below) of full and empty regions, and observe the

central vertex from all empty regions. This is first expressed as an algorithm, with

implementation details being described subsequently.

• Split the Gaussian sphere into regions by creating four planes through the origin.

• Repeat for each combination of solid and empty regions which meet the criteria

for a valid single polyhedral object

– View the central vertex from one viewpoint located in each empty region.

For each view:

∗ Count the number of visible edges (if the ray from the intersection of the

62

edge with the Gaussian sphere to the viewpoint passes through a solid

region, the edge is not visible)

∗ Determine the orientation of the visible edges, and order them clockwise

∗ For each visible edge, determine whether it is concave, convex,

clockwise-occluding or anticlockwise-occluding.

∗ Derive the junction label from the number of visible edges and the edge

types

– Output the set of junction labels for the different viewpoints of this vertex

as a single group

As with the Clowes-Huffman procedure for trihedral vertices, it is the topology

of the chosen planes which matters, not the geometry. For simplicity, three of the

planes can be chosen to be the three axial planes. There are two distinct possibilities

for the fourth plane: its normal may be in one of the axial planes (this subdivides

space into twelve regions and creates K-type junctions), or not (this subdivides

space into fourteen regions and creates X-type junctions). The two cases are treated

separately. For simplicity, the fourth planes can be chosen to be X + Y = 0 for the

former case and X + Y + Z = 0 for the latter.

A combination of solid and empty regions is valid providing it meets the following

criteria:

• at least one region must be solid

• at least one region must be empty

• the solid regions must be contiguous, in order for the solid to be manifold

• the empty regions must be contiguous (to exclude degenerate vertices such as

those which could be produced by interpreting Figure B.81)

• points and edges may not be degenerate (e.g. the four regions viewed cyclically

about an edge may not be solid-empty-solid-empty, as this would produce two

degenerate edges)

• none of the planes may divide the sphere into an entirely solid part and an

entirely empty part (there would be no vertex to see)

63

If the object is not viewed from a general viewpoint, an accidental collinearity of

lines could cause (for example) W -junctions and Y -junctions to be misclassified as

T -junctions. As a precaution against this, the viewpoints chosen for each empty

region are offset from the centre of the region by different amounts along the three

axes.

In the same way that the method for cataloguing trihedral vertices also produces

some, but not all, tetrahedral and higher vertices, the approach described above

produces some, but not all, pentahedral and higher vertices. In particular, the

most useful of these, the ones likely to appear in line drawings (all-convex and all-

concave), are not generated. The extra vertices generated were discarded and are

not listed below. In order to provide reassurance that the program implementing

this approach was working correctly, the trihedral vertex results were kept and are

listed also below; they correspond exactly to the Clowes-Huffman trihedral junction

catalogue.

4.3.2 The Tetrahedral Junction Catalogue

Table 4.1 shows the complete tetrahedral junction catalogue (for comparison, Table 4.2

shows the equivalent trihedral junction catalogue). The columns list: the vertex

type; the junction labels which can be produced by viewing this type from different

viewpoints; and an appendix section which contains drawings illustrating the vertex

type. The results are listed in the following order:

• X-type underlying vertex

• M-type underlying vertex

• K-type underlying vertex (and K*—see Chapter 2.4.1)

Within each section, the groups of junction types are listed in order of increasing

concavity of the underlying vertex type.

In some cases, the underlying vertex type has chirality. In such cases, the groups

of junction types for the “left-handed” and “right-handed” versions are shown sep-

arately. Where the underlying vertex type has no chirality only one group is shown

even where the illustrative solid is chiral—it may be reversed without affecting the

64

Vertex Type Junction Types Section

Xcccc Xcccc, Mbcca, Wbca, Lba E.2.1
Xcccd Xcccd, Mbcda, Mbdca, Yabc, Yabd, Yacc, E.2.2

Ybcc, Wbaa, Wbba, Wbca, Wbda, Lba
Xcdcd Xcdcd, Yacd, Ybdc, Yabd E.2.3
Xcddd Xcddd, Yadd, Ybdd E.2.4
Xdddd Xdddd E.2.5

Mccdc Mccdc, Xabcd, Yaab, Yabd, Wcab, E.2.6
Wcac, Wccb, Lac, Lcb, Lab

Mcdcc Mcdcc, Xabdc, Yabb, Yabd, Wabc, E.2.7
Wcbc, Wacc, Lcb, Lac, Lab

Mcddc Mcddc, Xabdd, Wadc, Wcdb, Lac, Lcb, Lab E.2.8
Mdccd Mdccd, Wbcd, Wdca, Lba, Lbd, Lda E.2.9
Mcdcd Mcdcd, Yabd, Yacd, E.2.10

Wcda, Wcbd, Wacd, Wabd, Lbd, Laa
Mdcdc Mdcdc, Yabd, Ybdc, E.2.11

Wbdc, Wdcb, Wdab, Wdac, Lda, Lbb
Mddcd Mddcd, Yadd, Wdbd, Wdda, Lbd E.2.12
Mdcdd Mdcdd, Ybdd, Wdad, Wbdd, Lda E.2.13

Kcccd Kcccd, Kabcd, Yabd, E.2.14
Taba, Tbca, Tbcc, Tcca, Iab

Kccdc Kccdc, Kabdc, Yabd, E.2.14
Tabb, Tcab, Tcac, Tccb, Iab

Kcdcd Kcdcd, Ybdc, Yabd, Tbda, Tbdc, Tcda E.2.16
Kdcdc Kdcdc, Yacd, Yabd, Tdab, Tdac, Tdcb E.2.17
Kcdcd* Wdcb, Wdab, Tbda, Tbdc, Lda, Lbb E.2.18
Kdcdc* Wacd, Wabd, Tdab, Tdac, Lbd, Laa E.2.19
Kddcd Kddcd, Tdda, Ybdd E.2.20
Kdcdd Kdcdd, Tddb, Yadd E.2.21

Table 4.1: Junction Catalogue

65

Vertex Type Junction Types Section

Yccc Yccc, Wbca, Lba E.1.1
Wcdc Wcdc, Yabd, Lcb, Lac, Lab E.1.2
Wdcd Wdcd, Lda, Lbd E.1.3
Yddd Yddd E.1.4

Table 4.2: Trihedral Junction Catalogue

results. Most M-type underlying vertices and all K-type are chiral; two M-type

and all X-type are non-chiral.

Tables 4.3–4.9 on page 67 list all junction labels and underlying vertex types

identified by RIBALD—the full trihedral, extended trihedral and tetrahedral junc-

tion catalogues, and all-convex and all-concave pentahedral and hexahedral vertices.

The method described above not only gives the catalogue, but (since it lists the

combination of solid and empty regions which gave rise to each junction label) it

also gives the information necessary to create an example solid which illustrates each

vertex type and junction label. These illustrative solids are shown in Appendix E.

The solids illustrating the trihedral catalogue are built from cubes, although non-

axially-aligned trihedral polyhedra generate the same junction types. The solids

illustrating the X-type and M-type tetrahedral vertices are built from cubes, tri-

angular pyramids (obtained by choosing a pyramid vertex and slicing a cube in the

plane of the three vertices adjacent to the pyramid vertex—Figure 4.25 is built from

a cube and such a pyramid) and shapes termed oojits (that which is left after re-

moving a triangular pyramid from a cube—see Figure 4.26). The solids illustrating

the K-type tetrahedral vertices are built from cubes and wedges (obtained by slicing

cubes along the plane of diagonally-opposed edges).

Figure 4.25: Cube plus Pyramid Figure 4.26: Oojit

66

Junction Label Vertex Types Junction Label Vertex Types

Kabcd Kcccd Kabdc Kccdc
Kcccd Kcccd Kccdc Kccdc
Kcdcd Kcdcd Kdcdc Kdcdc
Kddcd Kddcd Kdcdd Kdcdd

Table 4.3: K-type Junction Labels

Junction Label Vertex Types

Laa Mcdcd, Kdcdc
Lab Wcdc, Mccdc, Mcdcc, Mcddc
Lac Wcdc, Mccdc, Mcdcc, Mcddc
Lba Yccc, Xcccc, Xccccc, Xcccccc, Xcccd, Mdccd
Lbb Mdcdc, Kcdcd
Lbd Wdcd, Mdccd, Mcdcd, Mddcd, Kdcdc
Lcb Wcdc, Mccdc, Mcdcc, Mcddc
Lda Wdcd, Mdccd, Mdcdc, Mdcdd, Kcdcd

Table 4.4: L-type Junction Labels

From the catalogue, it can be seen that whereas there are only 4 basic trihedral

vertex types, there are 19 basic tetrahedral vertex types (5 X-type, 8 M-type and

6 K-type). In the trihedral case, excluding T -junctions, there are 12 possible valid

junction labellings (14 if different viewpoints of equivalent Y -type junctions are

counted separately); in the tetrahedral case, there are 91 possible valid junction

labellings (127 if different viewpoints of equivalent Y -type and X-type junctions

are counted separately). Of the 64 conceivable labellings for a Y -junction, only

5 are valid in line drawings of trihedral objects, but 32 are valid in line drawings

of tetrahedral objects. The number of valid W -junction labellings increases from

3 to 28, and the number of valid L-junction labellings increases from 6 to 8. In

the trihedral case, each junction label identifies the underlying vertex type (the

number of concave edges) directly, but in the tetrahedral case, 73 of the junction

labels identify the underlying vertex type (the total number of edges, the number of

concave edges and the chirality) unambiguously but 18 do not, the worst being the

Y abd junction type, for which there are 11 possible interpretations.

67

Junction Label Vertex Types

Mbcca Xcccc, Xccccc, Xcccccc
Mbcda Xcccd
Mbdca Xcccd
Mccdc Mccdc
Mcdcc Mcdcc
Mcddc Mcddc
Mdccd Mdccd
Mcdcd Mcdcd
Mdcdc Mdcdc
Mddcd Mddcd
Mdcdd Mdcdd

Mbccca Xccccc

Table 4.5: M-type Junction Labels

Figure 4.27: Non-
Trihedral

Figure 4.28: Non-
Trihedral

Figure 4.29: Non-
Trihedral

The level of ambiguity has effects both on the speed of applications using the

tetrahedral junction catalogue and its usefulness in identifying three-dimensional

structure. To illustrate the former, RIBALD takes about 12 seconds to produce

all of the valid labellings for the line drawings in Appendix B.2.3, compared with

1/3 of a second to label the same number of trihedral line drawings. To illustrate

the problem, the line drawings in Figures 4.27, 4.28 and 4.29 have, respectively, 16,

240 and 10206 valid tetrahedral labellings, whereas the apparently more complex

Figure 4.30: Trihedral Figure 4.31: Trihedral Figure 4.32: Trihedral

68

Junction Label Vertex Types Junction Label Vertex Types

Taba Kcccd Tabb Kccdc
Tbaa occlusion Tbab occlusion
Tbac occlusion - -
Tbad occlusion - -
Tbca Kcccd Tcab Kccdc
Tbcc Kcccd Tcac Kccdc
Tbda Kcdcd, Kcdcd*, Zcdcd* Tdab Kdcdc, Kdcdc*, Zcdcd*
Tbdc Kcdcd, Kcdcd*, Zcdcd* Tdac Kdcdc, Kdcdc*, Zcdcd*
Tcca Kcccd Tccb Kccdc
Tcda Kcdcd Tdcb Kdcdc
Tdda Kddcd Tddb Kdcdd

Table 4.6: T -type Junction Labels

trihedral Figures 4.30, 4.31 and 4.32 can be labelled unambiguously.

A final problem, not found in the trihedral object world, is illustrated in Fig-

ure 4.33. K-type tetrahedral junctions can vanish if viewed from the wrong orient-

ation! There is no way of detecting the presence of a vertex from the junction-line

graph (although this does not affect the labelling itself). No such phenomenon can

occur with trihedral polyhedra.

Figure 4.33: Vanishing K-type tetrahedral junction [175]

A candidate set of 16 possible labellings can be processed in a reasonable time

in interactive applications such as RIBALD, and even 240 might not be considered

excessive for some applications. If a first-choice interpretation is required, the prob-

lem of picking the “correct” one is not insoluble. For drawings such as Figures 4.27

and 4.28, where the number of possible interpretations is moderate, it seems reas-

onable to attempt to validate each possible interpretation by attempting to create

the corresponding frontal geometry and validating the result geometrically.

69

Junction Label Vertex Types Junction Label Vertex Types

Wabc Mcdcc Wcab Mccdc
Wabd Mcdcd, Kdcdc* Wdab Mdcdc, Kcdcd*
Wacc Mcdcc Wccb Mccdc
Wacd Mcdcd, Kdcdc* Wdcb Mdcdc, Kcdcd*
Wadc Mcddc Wcdb Mcddc
Wbaa Xcccd Wbba Xcccd
Wbca Yccc, Xcccc, Xcccd - -

Xccccc, Xcccccc
Wbcd Mdccd Wdca Mdccd
Wbda Xcccd - -
Wbdc Mdcdc Wcda Mcdcd
Wbdd Mdcdd Wdda Mddcd
Wcac Mccdc Wcbc Mcdcc
Wcbd Mcdcd Wdac Mdcdc
Wcdc Wcdc - -
Wdad Mdcdd Wdbd Mddcd
Wdcd Wdcd - -

Table 4.7: W -type Junction Labels

4.4 Two Labelling Approaches

With the tetrahedral catalogue, line labelling can in principle be used with equal

success for drawings of trihedral and tetrahedral objects. However, the dramatic

increase in the number of valid labellings noted in the previous section presents

practical problems. Since it was the sparsity of the junction catalogue which led to

practical low-order timings in the trihedral case, and since the tetrahedral catalogue

is no longer sparse (at least in the cases of L-, W - and Y -junctions), exponential

rather than low-order polynomial behaviour is observed in practice: for example,

Figure B.503 has more than 200000 valid labellings, and evaluating all of them is

clearly impractical.

The approach in this thesis starts with one advantage: since, by assumption, a

drawing shows a single, entire object, all outer boundary lines in the drawing must

be occluding. This assumption is not valid for applications such as identification

of buildings from aerial photographs: in such cases, the potential for ambiguous

labellings is greater, and thus the labelling problem would be even harder.

70

Junction Label Vertex Types

Xabcd, Xbcda, Xcdab, Xdabc Mccdc
Xabdc, Xbdca, Xdcab, Xcabd Mcdcc
Xabdd, Xbdda, Xddab, Xdabd Mcddc

Xcccc Xcccc
Xcccd, Xccdc, Xcdcc, Xdccc Xcccd

Xcdcd, Xdcdc Xcdcd
Xcddd, Xdddc, Xddcd, Xdcdd Xcddd

Xdddd Xdddd

Zcbda Zcdcdcd

Xccccc Xccccc
Xddddd Xddddd

Xcccccc Xcccccc
Xdddddd Xdddddd

Zcdcdcd, Zdcdcdc Zcdcdcd

Table 4.8: X-type and Z-type Junction Labels

Furthermore, whereas in the trihedral case, each junction label determines un-

ambiguously the underlying vertex type of the corresponding vertex, this does not

extend to the non-trihedral case. In the worst case, a single junction label can be in-

terpreted as any of seven underlying vertex types: two convex and one concave edges;

three convex and one concave edges, in K-, M- or X-configuration; two convex and

two concave edges, in K-, M- or X-configuration [175]. The pairs of drawings in

Figure 4.34 show three of these interpretations (in each pair, the left-hand drawing

shows the ambiguous junction label and the right-hand drawing shows the revealed

vertex type).

Figure 4.34: Three objects illustrating different interpretations of a single junction
label [175]

A deterministic algorithm [64] which has been used successfully to label trihedral

drawings [172] has been adapted for the case where multiple valid labellings are

the norm, not the exception. As expected, there are drawings for which its time

performance is unacceptable.

71

Junction Label Vertex Types

Yaab, Yaba, Ybaa Mccdc
Yabb, Ybba, Ybab Mcdcc
Yabc, Ybca, Ycab Xcccd
Yabd, Ybda, Ydab Wcdc, Xcccd, Mccdc, Mcdcc, Kcccd, Kccdc,

Xcdcd, Mcdcd, Mdcdc, Kcdcd, Kdcdc
Yacc, Ycca, Ycac Xcccd
Yacd, Ycda, Ydac Xcdcd, Mcdcd, Kdcdc
Yadd, Ydda, Ydad Xcddd, Mddcd, Kdcdd
Ybdc, Ydcb, Ycbd Xcdcd, Mdcdc, Kcdcd
Ybdd, Yddb, Ydbd Xcddd, Mdcdd, Kddcd

Yccc Yccc
Yddd Yddd

Table 4.9: Y -type Junction Labels

Junction Tri- Extended Tetra- Total
Type hedral Trihedral hedral Valid

L 6 0 2 8/16
T 4 4 12 20/64
W 3 0 25 28/64
Y 5 0 27 32/64
K 0 0 8 8/256
M 0 0 11 11/256
X 0 1 24 25/256

Table 4.10: Number of Entries in Junction Catalogues

The problem can be considered as a search problem, where the space to be

searched is the set of valid labellings, and the search criterion is a heuristic measure

of the merit of a particular labelling. Non-deterministic algorithms have been used

with some success in NP-complete search problems. To investigate this possibility,

a non-deterministic algorithm has also been tested to see if it improves on the

deterministic algorithm.

The non-deterministic algorithm chosen is based on probabilistic relaxation la-

belling [140]. To avoid confusion, the deterministic method, sometimes called “dis-

crete relaxation labelling”, is called set-intersection labelling in this thesis.

72

4.4.1 Heuristics

There are two distinct purposes for which heuristics can be used in improving the

performance of any search: choice heuristics assist in choosing the best interpretation

when there are many valid interpretations, and pruning heuristics help to speed up

the search by lopping off unlikely branches of the search tree.

Heuristics used for line labelling can also be subdivided into global heuristics,

based on measures derived from the drawing as a whole, feature heuristics, measures

derived from a part of the drawing, and local heuristics, measures based on individual

lines or junctions.

RIBALD assigns a figure of merit to each labelling, and the labelling with the

highest figure of merit is the one preferred. This overall figure of merit is the product

of the figures generated by each heuristic.

Global Labelling Heuristics

It seems plausible that the object should be as “simple” as possible. If the object

represented in a drawing has any self-similarity (repetitiveness or symmetry), the

number of different underlying vertex types (the numbers and types of edges in-

cident at the vertices corresponding to junctions) in the object will be small. One

reasonable heuristic is that, as far as possible, the labelling should minimise the

number of different vertex types.

Since some junction labels determine uniquely the underlying vertex type, while

others do not, the merit figure is assessed in a two-stage process. Firstly, those

junction labellings which correspond unambiguously to a single underlying vertex

type are noted, and the minimum set of underlying vertex types established. The

final count is then the sum of the number of underlying types in this set and the

number of ambiguous junction labellings which cannot be interpreted as any of the

labellings in this set (in practice, the second number is almost always zero).

Numerically, this preference is quantified as (Lu+Ls)
−kL, where Ls is the number

of different underlying vertex types required by those junction labels which corres-

pond to unique underlying vertex types, Lu is the number of junction labels which

cannot be interpreted as one of the unique underlying vertex types already required

and counted in Ls, and the sum (Lu + Ls) provides an estimate of the number of

73

distinct underlying vertex types in the object; kL is a tuning constant.

In order to identify an optimum value of the tuning constant kL (and other

tuning constants described below) these were input as parameters to a downhill

optimisation process where the objective function being minimised was the number

of incorrectly-labelled edges in my set of test drawings (see Appendix C). Results

suggest that the optimum value of kL is between 0.5 and 0.6, implying that this

heuristic is reasonably useful in identifying preferred labellings.

It is also plausible that if a drawing is of a single object, it should be as “connec-

ted” as possible1—occluding lines in the interior of the sketch could be considered

undesirable (for example, in Figure 4.35 on page 78, the line marked * should not

be occluding). This is modelled by assigning a figure of merit (1 − Eo

Et
)kE to the la-

belling, where Eo is the number of occluding lines, Et the total number of lines, and

kE a tuning constant. However, investigations suggest that the optimum value of

kE is close to zero, implying that this heuristic is of little use in identifying preferred

labellings.

Feature Labelling Heuristics

RIBALD tests for the presence of certain features—pockets, bosses and slots—as

described in Chapter 6. Each such hypothesised feature has an associated figure

of merit Mh and requires the lines forming part of that feature to be labelled in a

particular way.

RIBALD calculates a feature merit figure for a labelling: the product of the

merit figures Mc for each feature, where Mc = 1 for labellings which match the

expectations for the hypothesised feature, and Mc = (1 − Mh)
Kc for labellings which

do not match the hypothesis (Kc is another tuning constant).

Local Labelling Heuristics

Some junction labels are “better”—more common, or more plausible—than others.

Preliminary investigations show that even simple heuristics such as “interpret as

many T -, W - and Y -junctions as trihedral as possible” identify the favoured inter-

pretation in about half of the cases tested, including those shown in Figures 4.27

1Mackworth’s POLY [96] is an extreme example of this, generating all possible interpretations
of a drawing in decreasing order of connectedness

74

and 4.28 on page 68, and in most other cases left the favoured interpretation in the

first few when arranged in a preference order based on this heuristic.

RIBALD uses a more sophisticated model, assigning a constant figure of merit

to each junction label (determined using the optimisation process described above

and normalised so that the “best” label for any junction type has a figure of merit of

1.0). The contribution of this heuristic to the overall figure of merit for the labelling

is the product of the figures of merit for each individual junction label.

4.4.2 Deterministic Labelling

As a particular deterministic labelling method, RIBALD implements a set-intersection

labelling approach derived from Kanatani’s iterative constraint propagation

method [64]. At its core is the following algorithm:

• (Initialisation)

• For each junction, candidate label set = all valid labels for that junction type;

• For each boundary line, candidate label set = {occluding such that outside is

occluded}

• For each non-boundary line, candidate label set = {occluding to left, occluding to

right, convex, concave}

• Set of junctions to be processed Sj = {all junctions};

• Set of edges to be processed Sl = {all edges};

• (Processing)

• Loop

• – For each junction in Sj

∗ Eliminate from the candidate label sets for neighbouring lines any line

labels inconsistent with the remaining candidate labels for this junction;

∗ If the junction label is unique, remove the junction from Sj; (see Note

2 on Page 78)

75

– For each line in Sl

∗ Eliminate from the candidate label sets for the neighbouring junctions

any junction labels inconsistent with the remaining candidate labels for

this line;

∗ If the line label is unique, remove the line from Sl

– Exit the loop if Sj and Sl are both empty (a unique labelling has been

obtained)

– Exit the loop if the set of candidate labels for any junction or line is empty

(no valid labelling can be obtained given the starting conditions)

– Exit the loop if no candidate labels were eliminated in this iteration

• End Loop

This algorithm is demonstrably O(n2) (with n being the number of lines in the

drawing). In the worst case, each iteration of the loop removes a single candidate

junction or line label; the number of these is proportional to the number of lines.

In practice, the algorithm is sufficient to obtain a unique labelling for the majority

of drawings which meet the simplifying assumptions that the object drawn is a

trihedral polyhedron with no through holes or hole loops (Parodi [120] reports the

same result with a different deterministic algorithm and a far larger set of test

drawings). In cases where these assumptions do not hold, it is likely that there will

be several valid labellings, and further processing required to identify the preferred

one.

The algorithm has three exit conditions: no valid labelling, a unique labelling,

or no further progress. In the first two cases, it need only be called once. In the last

case, it requires a surrounding control structure. At least one junction and at least

one line still have multiple possible labels. It is likely that there will be multiple valid

labellings compatible with the starting conditions (although this is not certain, as

one or more of the remaining possible junction or line labels may be a “dead end”).

To allow for ambiguities, the following control structure is added:

• If the algorithm terminated ambiguously

76

– Choose any junction or line where the set of candidate labels L contains more

than one element; (see Note 1 later)

– Choose any element l of this set;

– Create a labelling A which is identical to the original labelling except that

the label set for the chosen junction or line is {l}

– Label the rest of A by reentering the algorithm at (Processing) above;

– Create a labelling B which is identical to the original labelling except that

the label set for the chosen junction or line is L − {l}

– Label the rest of B by reentering the algorithm at (Processing) above;

• End If

In practice, this extension to the original algorithm is adequate when the number

of alternative labellings is small, as is commonly the case with drawings of trihedral

polyhedra with through holes or hole loops. However, it appears that the worst

case (where each disambiguation step fails to propagate to neighbouring junctions

or lines) is O(4n) and this pessimistic prediction is nearer the truth if the non-

trihedral junction catalogue is used. If it were possible to identify in advance which

apparently-trihedral junctions corresponded to trihedral vertices and which to tet-

rahedral vertices, so that the full non-trihedral catalogue is used only for the latter,

the problem would be alleviated considerably. This does not seem to be possible.

For example, it might be possible to infer on the basis of symmetry that T -junction

A in in Figure 1.1 (page 2) is a reflected K-junction, but deducing that the object is

symmetrical before obtaining the labelling is hard (and not all symmetrically-related

junctions are as close to one another as this pair).

In an attempt to speed up practical labelling, RIBALD (a) tries to search the

most promising branches of the tree of valid labellings first, and (b) tries to lop off

unpromising branches of the tree without processing them.

Note 1: In order to search the most promising branches of the tree first, the choice

of which junction or line to disambiguate, and which candidate label to choose to

investigate first, is made according to a priority list. Prior to labelling, a list of the

“most desirable” junction labels is generated; this is based both on fixed priorities for

the most common junction labels and on the merits of candidate features (Chapter 6)

77

and the resulting junction labels they imply. When the control structure requires

a choice, this list is searched, and the highest-priority junction label which would

produce a disambiguation is chosen.

Note 2: In order to lop off unpromising branches of the tree, the local contribution

to the labelling merit is calculated as each unambiguous junction label is identified.

If the current labelling merit of the branch under investigation is already seriously

worse than the merit of the best labelling so far, the branch is lopped off. (“Seriously

worse” is implemented as Ln < 2L0−1, Ln being the current labelling merit and L0

the best so far; if a single “best” labelling is wanted rather than a choice of reasonably

good ones, performance could be improved further by using Ln < L0 instead.) (Note

that slightly-unpromising branches will not be lopped off: Ln is based solely on the

local contributions to the labelling merit, whereas L0 also includes the global and

feature measures.)

Even this approach can be unacceptably slow for interactive response times, so

RIBALD forces the algorithm to return the best labelling it can find in a specified

time by limiting the number of tree nodes examined. In any branch of the tree, at

most N labellings are examined; these are subdivided whenever the tree branches

again, so that the most promising branch is allocated pN nodes and the remaining

alternatives (1−p)N nodes. (The results in Section 4.5 were obtained using p = 0.7

and an initial N = 2000.)

*

Figure 4.35: One Ob-
ject or Two? [194]

Figure 4.36: The Tetrahedral Catalogue must be
used to label these drawings correctly

For several test drawings there is a valid labelling using a more restrictive junc-

tion catalogue, but a better labelling can be obtained using a less restrictive cata-

logue. For example, Figure 4.35 can be labelled using the trihedral catalogue (as

two unconnected objects), but the labelling obtained using the extended trihedral

78

catalogue is clearly preferable. Similarly, the drawings in Figure 4.36 have valid

labellings using the extended trihedral catalogue, but a clearly superior labelling

can be obtained using the tetrahedral catalogue. While it is possible to create

heuristics to choose the non-trihedral interpretation once it has been generated, it

seems impossible to know, without generating non-trihedral interpretations, that

the trihedral interpretation is not the best.

However, it is also observed that the less restrictive junction catalogue may result

in an inferior labelling when the superior labelling can be obtained using the more

restrictive catalogue—for example, the superior labelling may be in an unpromising

branch of the tree which has been lopped off. It is not intuitively obvious which is

the more common occurrence, so for purposes of comparison, RIBALD implements

various options for the junction catalogue (the labels in brackets refer to rows of

Table 4.13 on page 86):

• (SI-Full) use the full catalogue (all trihedral, extended trihedral and tetra-

hedral junction labels plus the common symmetrical 5-hedral and 6-hedral

labels);

• (SI-LWY) use the trihedral catalogue for L-, W - and Y -junctions, and the full

catalogue for other junction types; if no valid labelling is obtained, use the

full catalogue instead (several drawings, including Figures 1.1 and 1.2, can be

labelled using this method);

• (SI-X3h) use the extended trihedral catalogue; if no valid labelling is obtained,

use the full catalogue instead;

• (SI-3h) use the trihedral catalogue; if no valid labelling is obtained, try again

using the extended trihedral catalogue and if necessary the full catalogue.

If non-trihedral junctions occur in drawings of plausible engineering objects,

rather than in the simple illustrative solids shown here, some method of localising

the non-trihedrality would prevent the generation of large numbers of implausible

labellings which will inevitably be discarded. Ideally, the initial set of valid labellings

should be the non-trihedral set only for those junctions “close” to the centre of non-

trihedrality; elsewhere, the trihedral set should be used. My initial investigations

79

showed that defining “close” as one or two edges away from a visibly non-trihedral

vertex was inadequate (for example, it takes no account of object symmetry), and

this idea has not been pursued.

4.4.3 Probabilistic Labelling

As a particular non-deterministic labelling method, RIBALD implements a relaxa-

tion labelling algorithm. Relaxation methods have been used successfully in several

machine vision processes from scene labelling [140] to object recognition in robotic

systems [136], and probabilistic relaxation can be viewed as a natural extension of

constraint propagation, so probabilistic relaxation was therefore my first choice.

Alternative approaches are possible. Genetic algorithms might be worth revis-

iting. The disappointing results in [153] were obtained several years ago. More

recently, Myers [114] reports successful results in labelling trihedral scenes with

genetic algorithms; he stresses the advantage of producing a population of valid la-

bellings, rather than a unique labelling. He gives no timings but indicates that the

order of the algorithm is the same as the order of the fitness function, i.e. polyno-

mial. Ant systems [22] also appear worthy of investigation, although it is not clear

at this point whether an implementation would differ significantly from probabil-

istic relaxation labelling, and if the analogy with crystallisation used below is valid,

simulated annealing [67, 108] might also be a method worth investigating.

The algorithm as implemented is as follows:

• (Initialise)

• For each junction, allocate a probability (see text) for each candidate junction

label for junctions of that type, such that each probability is greater than 0 and

the sum of all probabilities at the junction is 1.

• For each boundary edge, set the probability that the edge occludes the outside to

1 and the probabilities that the edge occludes the inside, is convex, or is concave,

to 0.

• For each non-boundary edge, allocate a probability for each candidate label (oc-

cluding to left, occluding to right, convex or concave), such that each probability

80

is greater than 0 and the sum of all probabilities is 1.

• Set of junctions to be processed Sj = {all junctions};

• Set of edges to be processed Sl = {all edges};

• (Processing)

• Loop

• – For each junction in Sj

∗ Multiply the probability of each candidate label by each of the neigh-

bouring line label probabilities which support this label

∗ Re-normalise the probabilities

∗ If the probability of any label for this junction exceeds a threshold

(0.9999), set the probability for this label to 1 and the probabilities

for all other labels to 0, and remove the junction from Sj;

– For each line in Sl

∗ Multiply the probability of each candidate label by each of the sums of

the neighbouring junction label probabilities which support this label

∗ Re-normalise the probabilities

∗ If the probability of any label for this line exceeds a threshold (0.9999),

set the probability for this label to 1 and the probabilities for all other

labels to 0, and remove the line from Sl

• Exit the loop if Sj and Sl are empty (a unique labelling has been obtained)

• Exit the loop if a specified maximum number of iterations has been exceeded (see

text)

• End Loop

One theoretical problem with relaxation is that if there is no limit to the num-

ber of iterations it cannot be proved to converge [195]. To overcome this, RIBALD

abandons the relaxation labelling algorithm if it has not achieved a unique labelling

after a fixed maximum number of iterations. On this basis, the algorithm as de-

scribed above is O(n); the exact order in practice will depend on how set operations

81

(and in particular “remove member from set”) are implemented, and is likely to be

better than O(n2).

If relaxation labelling fails to converge, labelling then proceeds using the set-

intersection method described in the previous section, preset with any unambiguous

junction or line labels obtained during relaxation. This is not ideal (if O(n) relax-

ation fails, RIBALD must resort to O(4n) set-intersection), but the timings given

in Section 4.5 below suggest that even when relaxation fails to converge it makes

enough progress to leave set-intersection with a manageable task.

My initial experimentation showed that in the majority of cases where relaxa-

tion converged, it did so in four to six iterations, and in almost all cases where it

converged, it did so in fewer than thirteen iterations. I therefore collected results for

differing fixed maximum numbers of iterations (the labels in brackets refer to rows

of Table 4.13)

• (Rel-6) six (whereupon several drawings dropped through to the set-intersection

method);

• (Rel-10) ten (a few drawings dropped through to the set-intersection method);

• (Rel-20) twenty (only those drawings where relaxation was unlikely to converge

dropped through to set-intersection).

There remains the difficulty of identifying the initial probabilities to assign to

each candidate junction label. There appears to be no way of deriving these from

any theoretical principle; instead, the chosen set of probabilities was obtained by

optimising the number of correctly-labelled lines in the set of test drawings.

This optimal set of probabilities contains surprises: for example, the most com-

mon L-junction label has the lowest initial probability, and the least common edge

label (concave) has the highest initial probability. It may be possible to explain

this by analogy with a crystallisation process: if actual frequencies of occurrence

are used as probabilities, some parts of drawings will crystallise too quickly, before

information from more distant parts of the drawing has arrived.

It seems plausible that a more scientific method of generating the initial probab-

ilities could improve the performance of this method (for example, by basing them

on the actual frequency of occurrence of the various junction labels). Also, for

82

comparison with set intersection, I wished to try labelling L-, W - and Y -junctions

with the trihedral catalogue and others with the full catalogue. To test these ideas,

RIBALD implements three further options:

• (Rel-Junc) the initial junction probabilities are based on the actual frequency

of occurrence of junction labels when the drawings from Appendix B are cor-

rectly labelled; the initial line probabilities are as in (Rel-20);

• (Rel-Line) the initial junction probabilities are as in (Rel-20); the initial line

probabilities are based on the actual frequency of line labels for the particular

pair of junction types joined by the line when the drawings from Appendix B

are correctly labelled;

• (Rel-LWY) all initial probabilities are as in (Rel-20), except that non-trihedral

junction label probabilities for L-, W - and Y -junctions are zero.

Results suggest that none of these is an improvement. Option (Rel-LWY), which

ignores a large part of the tetrahedral catalogue, is significantly worse than any

other option.

4.5 Results and Conclusions

For the purposes of this thesis, good labellings must be obtained in interactive

time. This section therefore compares the algorithms using two criteria, timing

and correctness (an ideal method would be both faster and more correct than the

alternatives). These results were obtained using the 535 test drawings of the 558 in

Appendix B which can be labelled correctly using only trihedral, extended trihedral

and tetrahedral labels.

4.5.1 Timings

The timings in Table 4.11 are those which version (SI-Full) of the algorithm in

Section 4.4.2 takes to terminate, i.e. either one candidate labelling is identified as

“best” and a number of reasonable runners-up are stored, or it is reported that

the drawing has no valid labellings. The timings in Table 4.12 are those version

(Rel-20) of the labelling process takes to terminate, i.e. either relaxation labelling

83

No. of Lines Minimum Median Maximum

1–8 0.00 0.00 0.02
9–16 0.00 0.04 0.31
17–24 0.04 0.18 0.82
25–32 0.06 0.65 6.10
33–40 0.03 1.68 4.13
41–48 1.66 3.20 6.41
49–56 2.16 6.30 9.13
57+ 4.89 6.18 28.48

Table 4.11: Set Intersection Labelling: Summary of Average Timings (s)

identifies a “best” labelling within 20 iterations, or the process drops through to

set-intersection, as above. All are in seconds.

No. of Lines Minimum Median Maximum

1–8 0.00 0.00 0.01
9–16 0.00 0.00 0.01
17–24 0.00 0.00 0.01
25–32 0.00 0.01 0.03
33–40 0.00 0.01 0.05
41–48 0.01 0.03 0.07
49–56 0.01 0.02 0.18
57+ 0.02 0.08 0.41

Table 4.12: Relaxation Labelling: Summary of Average Timings (s)

Drawings are grouped into batches according to the number of lines in the draw-

ing. Each table shows the minimum, median and maximum times taken by the

labelling process for drawings in each batch.

Relaxation labelling is very much quicker for all but simple trihedral drawings.

The timings in Table 4.12 are similar to (perhaps slightly less than) the time taken

by deterministic methods using the Clowes-Huffman catalogue to label drawings of

trihedral objects. For example, both variants (SI-3h) and (Rel-20) label Figure B.91

in less time than can be measured (i.e. significantly less than 0.01 seconds) on the

test machine. For comparison, Grimstead [38], using Waltz’s algorithm and the

trihedral catalogue, labelled Figure B.91 in 0.018 seconds on a machine slower by

about a factor of 8.

84

(It may be noted, as an aside, that the apparent outlier at 30 edges for set

intersection labelling occurs for Figure 4.37. The chain of occluding T -junctions

along a single line acts as a propagation boundary.)

Figure 4.37: Original Drawing Figure 4.38: From [194]

4.5.2 Correctness of Labelling

Tests have also been performed to determine how often the methods described above

produce correct results. In Table 4.13,
√

indicates the number of drawings where

the desired labelling was found, X indicates the number of drawings in which a

wrong (but valid) labelling was found, and – indicates that no valid labelling was

found. It is clear from the results that option (SI-Full) is more often correct than

the other variations of set-intersection (it is also considerably slower), and that

option (Rel-20) is at least as good as any other variation of relaxation labelling.

Set-intersection is clearly superior at obtaining the desired labelling. However, the

number of incorrectly-labelled lines is much closer between the two most promising

variants—relaxation often gets a single line label wrong, whereas set intersection

errors are clumped.

Given the large number of possible labellings for some of the line drawings in

the test set, it is unrealistic to expect any method to identify the preferred labelling

for all of them. Ideally, the method should produce the preferred labelling for the

majority of cases and a reasonable (if sub-optimal) interpretation of the rest. In

practice, even this is not achieved. For example, set-intersection does not find a

valid labelling for Figure 4.38—all valid labellings are in branches of the search tree

which were lopped off as “unpromising” (Figure B.507 is the simplest drawing in

which this happens). Relaxation also does not find a valid labelling for Figure 4.38,

85

Method
√

X –

SI-Full 428 104 3
SI-X3h 384 92 59
SI-3h 367 77 91

SI-LWY 400 85 50

Rel-6 387 129 19
Rel-10 384 130 21
Rel-20 388 128 19
Rel-Junc 355 69 111
Rel-Line 321 135 79
Rel-LWY 314 68 153

Table 4.13: Summary of Correct Labellings Achieved

although the reason is different—isolated subgroups of junctions and lines begin

to be labelled unambiguously in different parts of the drawing. It is only when

these subgroups expand so as to overlap that it is discovered that the partial local

labellings are globally incompatible (Figure B.520 is another, simpler example).

Figure 4.39: Both methods label these drawings correctly

Some generalisations can be made concerning which drawings can be labelled

with set intersection and which with relaxation labelling. All variants of both

methods succeed in labelling correctly the drawings in Figure 4.39, and most other

drawings of trihedral polyhedra. Trihedral junctions are both the most common in

drawings (this determines pruning heuristics) and the highest-merit (this determines

choice heuristics). The set intersection algorithm takes 1–2 seconds for these two,

and relaxation labelling takes 10–20 milliseconds.

All variants of set intersection succeed, and all variants of relaxation fail, for

86

the drawings in Figure 4.40. Extended trihedral junctions, while uncommon (oc-

cluding T -junctions are more common), are high-merit when they do occur (many

engineering objects are extended trihedral). The reason for the relative success of

deterministic methods with drawings containing mixed-vexity M-junctions is less

well-understood.

Figure 4.40: Set intersection labels
these drawings correctly

Figure 4.41: Relaxation labels these
drawings correctly

All variants of the relaxation method succeed, and all variants of set intersection

fail, for the drawings in Figure 4.41. In the left-hand drawing, there is one unusual L-

junction, all the other junction labels being from the trihedral catalogue. The success

of relaxation methods can be explained here by the crystallisation analogy: two

separate crystals start to form, and the point where they meet must fit both, however

strange it looks when viewed in isolation. The generally superior performance of

relaxation methods in labelling drawings containing mixed-vexity K-junctions is

significant but less well-understood.

There are also drawings which are not labelled correctly by any of the variants

tested. A common source of failure is illustrated by the modified cubes in Fig-

ure 4.42, where there are two pairs of topologically-identical figures distinguishable

only by geometry. It is evident to the eye which lines should be convex in the left-

hand figure of each pair and concave in the right-hand one, but any algorithm based

purely on topology will get one or the other wrong. Mislabelling a single line in this

manner does not have a serious impact on further processing.

More damaging are the occasions when an occluding line is labelled as non-

occluding or vice versa, as with the drawing in Figure 4.43. The rotational symmetry

of the implied object suggests that the line segment marked * should be concave,

87

Figure 4.42: Variants of a Cube

not occluding, but neither algorithm takes any account of symmetry. Similarly, in

Figure 2.11 (page 29), it is geometrically impossible for the edge marked * to be

concave—it must be occluding—but two of the relaxation labelling variants make

this mistake. The mislabellings will have the effect of introducing spurious vertices

when the hidden parts of the objects are reconstructed.

+

+

+

--

++
+ ++ +

*

Figure 4.43: Both methods pro-
duce this incorrect labelling

+
+

+

+

*

Figure 4.44: Occluding in wrong direction

Another problem, observed less frequently, occurs when a line is labelled as

occluding the wrong region. The obvious incorrectness of the label marked * in

Figure 4.44 does not translate into a simple heuristic which could be applied to

prevent such faults occurring.

4.5.3 Conclusions, Recommendations and Future Work

The labelling problem remains non-trivial, especially when non-trihedral vertices

are allowed, and no perfect solution has been found. Two approaches have been

presented, set-intersection labelling, where only discrete information is propagated

88

from a junction to its neighbouring edge and vice versa, and relaxation labelling,

where probabilistic information is also propagated.

Set-intersection can be slow for larger drawings unless the trihedral catalogue

is used for the majority of junctions, and cannot be recommended for drawings

with more than 50–70 lines. A method (algorithm or heuristic) for determining

which junctions require the full catalogue and which require merely the trihedral

catalogue would improve performance considerably, but no such method has as yet

been identified.

Relaxation labelling is quick, but the output is too often incorrect for it to be

recommendable. Nevertheless, it succeeds in some cases where set-intersection fails.

If general characteristics of drawings which work with one method or the other can

be identified, the appropriate method can be used, increasing the likelihood of a

correct labelling. Some such general characteristics have been identified here, but

as yet not enough to form the basis for a reliable choice.

For relaxation labelling, the set of seed probabilities which produces the greatest

number of correct results is not derived from actual vertex label frequencies or edge

label frequencies in the correctly-labelled test set and differs (in some cases, quite

significantly) from them. This suggests that relaxation is, of itself, not an appro-

priate technique to use here, since moving some way away from “ideal” relaxation

actually improves performance.

The relaxation algorithm implemented gives only one output labelling, not a set

of reasonably good ones, and this is in itself a reason for preferring an alternative

method. Despite previous failures with genetic algorithms and the good general

reputation of relaxation as a way of tackling other labelling problems in computer

vision, it appears that genetic algorithms are a more promising line of investigation

(although there remains doubt about whether they are fast enough for an interactive

application).

A further practical disadvantage of all of the new methods suggested in this

Chapter is that, using heuristics or probabilities, they require tuning constants.

The optimal values of such constants may vary from one set of drawings to another,

and determining them is a time-consuming process.

It is apparent that labelling is neither an entirely local problem nor entirely a

combinatorial problem. For example, considering the geometry makes it evident

89

that, in the absence of occluding T -junctions, for any three consecutive edges d, e

and f bounding a region, if e occludes the corresponding face, at least one of d and f

must also occlude the corresponding face, since it is not possible for both end vertices

of e to lie in the plane of the face. Current labelling algorithms do not use this path-

consistency fact, with the result that errors such as the one in Figure 2.11 cannot

be ruled out. Further investigations should consider the influence of geometry and

of neighbouring junctions on the choice of labelling method.

90

Chapter 5

Parallel Lines

5.1 Introduction

Groups of lines in the drawing which are intended to be parallel in 3D are identified,

in order that the merits of candidate symmetries and regularities in the drawing can

be evaluated, and in order to generate a 3D geometry with edges parallel where the

corresponding lines are parallel.

This problem is non-trivial. Consider the drawing in Figure 5.1. It is evident

that edges A, B and C should be parallel, and any reasonable process will detect

this. It is also evident that edges D, E and F should be parallel; however, depending

on the quality of the drawing, D and E may be closer to G than to F , and a näıve

algorithm may make D, E and G parallel instead.

A

B
C

D

E

F

G

Figure 5.1: House

A

B

C

Figure 5.2:
Hexagonal
Frustum

Figure 5.3: L-
Block

A

A

AB

B

B

C

C

D

Figure 5.4: In-
complete Bund-
ling

In Figure 5.2, even if the 2D lines A, B and C are parallel, the corresponding

3D edges may not be. Other similarly-oriented lines (even if closer in angle to A or

91

C in the drawing) correspond to edges parallel to B.

There is also the less clear-cut problem of determining intention. Did the user

who drew Figure 5.3 intend the top and bottom faces of the object to be parallel,

or is the difference in angle deliberate?

Section 5.2 outlines some previous work in this area. Section 5.3 describes an

attempt to reproduce one recent method for grouping parallel lines. Section 5.4 in-

troduces a new idea for grouping parallel lines based on satisfying expectations.

Section 5.5 introduces the relationship between junction labelling, edge convex-

ity/concavity, turns at corners, and face planes; this is used both in bundling and

later in this thesis (notably Chapter 10). Section 5.6 gives results of investigation

into these ideas. Section 5.7 describes one use of parallel line grouping: an attempt

to identify the groups of parallel lines which correspond to the three coordinate axes

of a partially axis-aligned object.

5.2 History

Some authorities, notably Sugihara [163], define this problem away by strengthening

the definition of general viewpoint to require that all pairs of lines parallel in 2D

correspond to edges parallel in 3D. This implicitly disallows freehand drawing errors,

and is rejected here.

Line parallelism is detected and used in other systems [38, 59, 90, 91].

Lipson and Shpitalni [90, 91] plot an “Angular Distribution Graph”, a histogram

of line angles, and detect the peaks by comparing their shape with Gaussian distribu-

tions. In all of the examples they give (derived from freehand drawings of normalons

and semi-normalons) the peaks are distinct; since they specifically allow freehand

drawing errors, it may reasonably be assumed that methods exist which distinguish

overlapping hills from single hills with two summits. These are not described.

2D line parallelism was the only regularity identified by Grimstead’s system [38].

The algorithm used for this process allocated angles of 2D lines to buckets, and

merged nearby buckets until it was evident which lines should be parallel. It ap-

pears to be a discrete version of the method used by Lipson and Shpitalni. Again,

detail is missing and it is not possible to reproduce Grimstead’s work exactly. A

straightforward attempt to reproduce this work led to an unreliable method which

92

introduced problems with some types of drawing—see Section 5.3.

As well as determining which edges may be parallel, there is the problem of

determining a level of confidence in the hypothesis that they are. Traditionally

in computer graphics [127] this confidence is quantified as a figure of merit for

parallelism (in the range 0..1):

F (A ‖ B) = (â.b̂)Mp,

where â and b̂ are unit vectors along lines or edges A and B, and Mp is an arbitrary

constant. Other equations are possible (e.g. Lipson [90] uses a half-Gaussian curve

which also produces a figure in the range 0..1). The solid modelling tradition has

been followed here; no experiments have been performed to compare the various

equations, as I anticipate that differences are slight. RIBALD uses Mp = 50 for

both 2D parallelism and 3D parallelism (adjusting Mp could in principle provide a

method of tuning the system to allow for differences in the users’ sketching ability;

this has not been tested). It will be noted that calculation of this figure does not

require that bundles of parallel lines have already been identified, so this idea can

be used in stages of processing which precede bundling.

Figures of merit for other hypothesis are listed in Appendix D.

5.3 Reproduction of Bucketing

In order to be able to compare the ideas in this thesis with previous work, it was

necessary to attempt to reproduce Grimstead’s bucketing approach. Some assump-

tions were necessary. In this investigation, bucketing required lines which are to be

grouped as parallel to be no more than 15◦ apart, and each group to be at least 15◦

from any other group. These angles are arbitrary, but sufficient to permit at least

six groups of parallel lines in any drawing (Figure B.114, page 313, has six lines,

none of them parallel to one another), and up to twelve in well-drawn drawings.

Variations on this method were investigated, but none avoided the fundamental

problem with the method. For example, consider Figure 5.1. Depending on threshold

settings, it is possible that F and G may be within the allowed angle below which

buckets are merged, and made parallel; this is clearly nonsense geometrically.

On the basis of a comparison between this implementation and the ideas in the

93

next section, bucketing has been rejected. Details of this comparison are to be found

in [172]. Bucketing was less reliable, and it can be noted that when bucketing fails,

it gives no useful information about the sketch, whereas incomplete bundling (see

for example Figure 5.4) still gives some useful information.

5.4 Partitioning into Bundles

The preference in this thesis is for methods which correspond to geometric intuition,

and it is such a method which is introduced here. As before, lines are grouped

together which are nearly parallel in 2D and which are expected to correspond to

edges which are parallel in 3D. These groupings are made on the basis of expectation

as well as on the fact of 2D parallelism, and take into account the drawing topology.

The algorithm for this is:

• Repeat

– if any unbundled edge must be parallel to a bundled edge then put it in the

same bundle (see below)

– if any unbundled edge is very close to being parallel to a bundled edge then

put it in the same bundle providing that this is possible (see below)

– for each face with unbundled edges

∗ if an unbundled edge is close to parallel with a bundled edge, and the

topology suggests that they should be parallel (see below), then put it

in the same bundle providing that this is possible

– if nothing has been bundled in this iteration but edges remain unbundled,

then pick any remaining edge and allocate it to a new bundle

• Until all edges have been bundled

The topology requires that edges must be parallel if they derive from a single line

split at an extended trihedral junction (see Figure 5.5), K-junction or non-occluding

T -junction.

The topology suggests that edges should be parallel if:

94

• they appear separated by exactly one side on any face which contains exactly

four more convex than concave corners (e.g. simple quadrilaterals, L-hexagons,

T-octagons) as in Figure 5.6

• they appear separated by exactly one side on any pentagonal face as in Fig-

ure 5.7

• they appear on opposite sides of a simple 2n-gon (hexagon, octagon, ...) as in

Figure 5.8

• they appear in a candidate feature instance in locations which are parallel in

the corresponding generic feature template (see Chapter 6)

Figure 5.5: Ex-
tended Trihedral
Junction

A
B

A
B

A

B

Figure 5.6: L-
hexagon

A A

Figure 5.7:
pentagon

A
B

C

A
B

C

Figure 5.8: 2n-gon

Two edges cannot be parallel if:

• bundling them together would cause two edges meeting at a vertex (other than

a K-vertex or extended trihedral vertex) to be in the same bundle,

• bundling them together would cause an edge leaving a face (at a vertex other

than a K-vertex or extended trihedral vertex) to be in the same bundle as an

edge which is part of that face,

• bundling them together would cause two edges leaving a face on the same side

of the face plane but in opposed directions in the drawing (such as A and C

in Figure 5.2) to be in the same bundle.

The overall algorithm as described here contains three loops: (a) the worst case

number of iterations of the main loop is the same as the number of edges, if each

bundle size is 1, (b) each iteration considers each unbundled edge, (c) detecting

95

whether adding a new edge to a bundle is permitted is proportional to the bundle

size, which in the worst case is proportional to the number of edges. Since worst

cases (a) and (c) are mutually exclusive, it could be argued that the algorithm is

theoretically O(n2)—(bundle size times number of bundles) is proportional to the

number of edges—but this argument is unconvincing. However, a limit of O(n2)

can be justified on other grounds. The test within the third loop is whether or not

two edges can be in the same bundle. If the results of this test are stored for future

reference, the test need only be made O(n2) times irrespective of the surrounding

control structure.

Some lines may escape bundling as the expectation which would make them par-

allel is not amongst those listed. A postprocessing stage which considers “singletons”

(lines not bundled with any other line) and attempts to bundle them with similarly-

oriented lines (the rules determining when bundling is not permitted apply here too)

may improve results. This is investigated in Section 5.6.

5.5 Corners and Face Planes

One of the criteria required for assessing whether two edges can be in the same

bundle requires knowledge of whether an edge is above or below the plane of a face

it leaves. In the trihedral domain, this can be deduced from the labelling. Table 5.1

exhausts the possibilities: the columns consider a loop of sides of a face, where two

edges form incoming and outgoing sides at a corner, and the third edge leaves the

face (either above or below the plane of the face) at the corner.

label incoming outgoing turn leaving line direction

Lba,Wbca,Yccc convex convex right convex below
Lab,Lac,Lcb,Wcdc,Yabd convex convex left concave below
Lab,Lac,Lcb,Wcdc,Yabd convex concave right convex above
Lab,Lac,Lcb,Wcdc,Yabd concave convex right convex above

Lbd,Lda,Wdcd concave concave left convex above
Lbd,Lda,Wdcd concave convex right concave below
Lbd,Lda,Wdcd convex concave right concave below

Yddd concave concave right concave above

Table 5.1: Corners and Face Planes

96

At the time of writing, extension of this idea into the tetrahedral domain has

not been completed. RIBALD detects many of the more common situations, but

does not include an exhaustive list of possibilities. Again, this information is derived

from the labelling.

This information is also useful in topological reconstruction—see Chapter 10.

5.6 Results and Recommendations

5.6.1 Correctness

Variant Close Very Close

Strict â.b̂ > 0.99 â.b̂ > 0.9999

Normal â.b̂ > 0.98 â.b̂ > 0.999

Lax â.b̂ > 0.95 â.b̂ > 0.99

Table 5.2: Bundling Variants

To investigate the performance of the idea of bundling, RIBALD implements

three variants which differ in their definitions of “close” and “very close”—see

Table 5.2. Attempted singleton removal was also implemented as an option. The

test set comprised all drawings for which any labelling variant (Chapter 4) produced

the preferred result, minus Figure B.149, for which there is no correct answer.

Results are summarised in Table 5.3.

Variant Sing. < -2 -2 -1 0 0* 1 2 > 2

Strict N 2 1 3 374 7 40 14 40
Normal N 3 5 6 403 3 23 14 24

Lax N 6 10 23 399 10 15 5 12
Strict Y 5 0 19 361 10 37 14 35

Normal Y 6 4 27 386 4 21 17 16
Lax Y 8 12 42 380 12 12 8 6

Table 5.3: Bundling Results

The columns indicate the difference in number of bundles produced from the

number present in a human interpretation of the drawing (i.e. the column headed

97

“2” lists the number of times bundling produced two more groups of parallel lines

than were expected). The column headed “0” indicates correct results; the column

headed “0*” indicates the number of times that the number of groups was correct

but the group members wrong.

The results could be considered misleadingly optimistic, as about half of the

test drawings were produced as illustrations and lines are parallel where edges are

intended to be parallel; these test the cases where lines cannot be parallel for the

reasons outlined above, but not the cases where lines must be deduced to be parallel.

Even so, it is clear that the “strict” version performs less well than the “normal” or

“lax” versions.

It appears that singleton removal does more harm than good—when it makes a

difference, it more often bundles together lines which should not be parallel than

lines which should be.

All six of the drawings which always appear in the right-hand column are Archi-

medean solids—Figure B.132 and others like it would also defeat any of the other

approaches outlined in Section 5.2. More seriously, all variants identified the two

lines marked * in Figure 5.9 as being parallel, which indicates that there are fur-

ther logical restrictions on which lines can be parallel in addition to those already

identified (and also shows the difficulty of avoiding accidental coincidences).

*
*

Figure 5.9: Accidental Coincidence

Otherwise, to a large extent, deviations from perfect results can be attributed to

the unsolved problem of determining intention. Some lines, intended to be parallel,

are too far apart in orientation; the “normal” version of the program fails to bundle

these correctly, but the “lax” version produces the intended output. Other lines,

not intended to be parallel, are too close in orientation; the “normal” version of

the program incorrectly bundles these, but the “strict” version produces the correct

98

output.

Results in subsequent chapters are obtained using the “normal” version of par-

allel line bundling without singleton removal.

5.6.2 Timings

RIBALD takes 0.14 seconds to bundle Figure B.132, the drawing with most lines.

It takes 0.03 seconds to bundle Figure B.74, the drawing with the largest bundles

of parallel lines; for Figure B.456, with slightly fewer lines but also fewer clues, it

takes 0.04 seconds, the longest for any realistic engineering drawing. Since timing is

clearly fast enough for an interactive system, no experiments have been performed

to determine how close bundling is to O(n2) in practice.

5.7 Special Sets of Parallel Lines

It can be noted that many objects are designed and drawn in such a way that they

rest on a horizontal plane. This is particularly true of normalons and semi-normalons

such as the ones portrayed in Figures B.486 and B.491. Such objects usually also

have a vertical axis, perpendicular to the plane; this axis is often drawn vertically

in the sketch, as it is in these two figures.

To make use of this observation, three special bundles are identified: V , which

corresponds to “vertical”, and B0 and B1, which correspond to the “base” of the

object. These are used later to make geometric hypotheses—see Chapter 11. Fig-

ures 5.10 and 5.11 illustrate the four cases detected by the algorithm for identifying

V , B0 and B1; the full algorithm is given in [178].

VB0
B1 VB0 B1

Figure 5.10: W -junction Lowest

V
B0 B1 V

B0

B1

Figure 5.11: L-junction Lowest

99

Chapter 6

Features

6.1 Introduction

It was noted in Chapter 2, without any definition of “feature”, that any identifica-

tion of features implied by the line drawing will simplify the process of topological

reconstruction of the object, and possibly also make this process more robust.

For the purposes of this thesis, a feature is a commonly-occurring localised con-

figuration of lines with a recommended interpretation; it is in effect a form feature.

Han [44, 45] distinguishes form features, descriptions of shape with no implied rela-

tion to function or manufacturing method, and which may be additive or subtractive,

from machining features, which are produced by a specific machining process and

thus necessarily subtractive, noting that engineering research has concentrated on

the latter (rapid prototyping devices, an apparent exception, do not in general use

feature-based models [84]). Han [44] also notes the conceptual advantage of using

form features during the design process and subsequently converting the finished

design to manufacturing features.

This chapter describes two types of localised configurations which can usefully be

identified, corresponding to hole loop features (bosses, pockets and through holes)

and slots.

Section 6.2 describes previous relevant work in feature recognition. Section 6.3

describes how feature recognition may be used in a system based on the other ideas

in this thesis. Section 6.4 describes slot features. Sections 6.5 and 6.6 describe

methods for detecting and classifying hole loop features; this is the major new idea

100

in this chapter, and the results of testing it are presented in Section 6.7.

6.2 History

There is considerable literature on recognising features from complete CAD models,

but much of it is not relevant here. Detecting the presence of a particular feature

in a complete CAD model is straightforward—Han [44] lists numerous algorithms

for feature detection, classifying the most promising into four general categories:

graph pattern matching, convex hull decomposition, cell-based decomposition and

hint-based reasoning. Qamhiyah et al [135] use repeated graph pattern matching

to extract multiple features, reconstructing the CAD model of the remainder of the

object at each stage, until left with a CAD model of the “featureless” object. Gupta

et al [41] note that the number of alternative feature-based descriptions of an object

is exponential in the number of features identified, and attempt to obtain a set of

primary features from which more complex features can be built. Han et al [47]

emphasise that the choice between alternative feature-based descriptions cannot be

divorced from the problem of manufacturing the object modelled, nor even [46]

from the particular manufacturing equipment available, and these considerations

are clearly beyond the scope of this thesis.

It should be noted that the problems addressed in this literature are not ones

with which this thesis is concerned—they assume a complete solid model of the

object. Also, one of the form features considered in this chapter, the boss, is an

additive feature and thus not considered by work on machining features.

However, it is clear that the problem which much recent work on machining fea-

tures is intended to address, that of multiple interpretations [41, 45], is one which

could also occur with form features. It follows that form features should only be iden-

tified if, by doing so, a specific problem of interpretation can be solved or avoided;

form features should not be identified merely because it is possible to do so.

Identification of machining features in two-dimensional drawings is an item of

current research. Meeran and Taib [107] list ten systems prior to their own, and

identify their limitations (most only recognise rotational parts or extrusions) and

deficiencies.

With their own system, Meeran and Taib [107] take as input three orthogonal

101

2D views of an object. They attempt to locate three sorts of machining features,

which they call type I (slots, and also steps and notches), type II (hole loop features,

restricted to holes and pockets), and type III (side pockets). These features must be

parallel to the base plane and aligned with one of the remaining two principal axes.

Since their algorithm is graph-based, and ignores the object geometry, the object

may contain curved faces (their examples include objects with axially-aligned edge

blends). The algorithm proceeds by creating a graph of the object, eliminating first

outer edges and then leaf nodes (vertices with only one remaining edge). It uses

heuristics to match what remains against profiles for their three feature types. It

is fast, and moderately reliable, and capable of distinguishing multiple features in

the same object. In one example reported, their system detected 20 features (5

type I, 13 type II and 2 type III) from three 3D orthographic views of an object in

0.5 seconds. Some objects defeat their system—this occurs most commonly when

alternative interpretations are possible of the original 2D views, but they also report

occasional unexplained interpretation of type III features as type I.

Although not directly relevant to the problems of this thesis, Meeran and Taib’s

work provides useful insight, firstly into the types of feature which occur suffi-

ciently often in engineering practice for automated recognition to be worthwhile,

and secondly in that feature recognition is a local template-matching process which

(almost inevitably) involves heuristics.

6.3 Implementation

As noted in Chapter 2, ordering the components of a line drawing interpretation sys-

tem presents a problem. Clearly, feature information helps the labelling process—

feature figures of merit are used both in choice heuristics and in pruning heurist-

ics (see Chapter 4.4.1). Without cofacial configurations, junction labels cannot be

propagated across the empty space which separates the outer edges of a face from

a hole loop. For example, in Figure 6.1, the edges form two separate subgraphs. It

is visually obvious which edges of the boss should be concave and which occluding

(Figure 6.2), but a purely topological labelling process would give equal merit to the

labellings in Figure 6.3 (a fourth trihedral labelling, in which there are no concave

edges, can be discarded as representing two objects rather than one).

102

Figure 6.1: Boss

--

++

+

+

+

+

Figure 6.2: Cor-
rect

+

+

+

+
-

++
-

+

+

+

+

-++

-

Figure 6.3: Incorrect

With all feature types identified in this chapter (slots, holes/pockets and bosses),

candidate features are identified before labelling, and a figure of merit assigned to

each. The figure of merit of a candidate feature reflects the likelihood that the

drawing shows a skewed view of the hypothesised feature—junction angles will be

distorted, but parallel lines should appear approximately parallel. The frequency

of occurrence of a feature in engineering objects should also contribute towards the

figure of merit.

Labellings which match the line labels required by a candidate feature are given

extra merit based on the merit of the candidate feature (see Chapter 4). Candidate

feature templates are also used as parallel line suggestions (see Chapter 5).

Later, after both line labelling and bundling of parallel lines, candidate features

are discarded if they require line labels which do not match those in the preferred

labelling or require impossible groupings of parallel lines.

Thus, for both slots and hole loop features, RIBALD divides the feature iden-

tification process into two. Candidate features are identified after identification of

the background region (a line which must be occluding because it lies on the back-

ground region should not be included in a candidate feature in which the line is

expected to be concave or convex) and after line labelling (for hole loop features,

this is described in Section 6.5). Candidate features are accepted or rejected, and

their implications determined, after line labelling and bundling of parallel lines and

before inflation (for hole loop features, this is described in Section 6.6).

6.4 Underslots and Valleys

Slots are common in engineering objects. Identification of such features improves

the reliability of topological reconstruction in Chapter 10—in particular, without

103

special-case knowledge of how to handle underslots, reconstruction from drawings

containing them is particularly unreliable—and this is the justification for the in-

clusion of slots as features to be recognised. In practice, slot features would usually

be labelled and bundled correctly even without being treated as a special case, but

since the information is available it is also used in labelling heuristics (Chapter 4)

and in bundling parallel lines (Chapter 5).

For manufacturing purposes, it matters little whether slots are on the top or

the bottom of the object. However, this clearly affects the appearance as seen in a

line drawing, so the two are distinguished as underslots and valleys (see Figures 6.4

and 6.5). RIBALD looks for these two types of features by trying to match the

region around each T -junction in the drawing with the templates shown in these

two figures; if one is found, it is given a figure of merit which is the product of a

tuning constant (Fu or Fv) and the figures of merit for parallelism of edge pairs

which are parallel in the template.

Figure 6.4: Templates for Underslots Figure 6.5: Templates for Valleys

Since each T -junction is analysed once to determine whether its neighbourhood

matches a template, and template matching takes (at most) a fixed time, identifying

underslots and valleys takes O(n) time.

6.5 Cofacial Configurations

Two problems to be solved are: “how to detect hole loops?” and “what to do

about them?”. Even if a hole loop can be identified (which is not necessarily

straightforward—for example, Figure B.429 (page 326) would defeat Puppo’s al-

gorithm [134], which does not distinguish occluding and non-occluding T -junctions),

the question arises whether the hole loop corresponds to a boss, a pocket or a through

hole (or perhaps to none of these).

These problems are addressed by identifying (and allocating figures of merit to)

104

0.57

+ +

0.10

+

+
-

+

0.57

+ +

0.10

+
-

+

+

0.75

+
-

+

0.96

+

+

+

0.89 0.19

-
+ - +

0.19

-

+ - +

Figure 6.6: Templates for Holes and Pockets

0.30

-

+

0.30

+

-

0.44

+
+

0.44

+
+

+

++

- -+

0.58

Figure 6.7: Templates for Bosses

candidate cofacial configurations. A candidate cofacial configuration is a config-

uration of junctions and lines which matches one of the templates in Figures 6.6

and 6.7. These templates centre on an inner junction jA which is within the angle

of two specified lines meeting at an outer junction jB. Candidate cofacial configur-

ations are sought for any drawing with more than one subgraph, and must meet all

of the following conditions:

• The subgraph GA containing junction jA and the subgraph GB containing junction

jB must be different

• GA must not be known to be behind GB (i.e. occluded by it at a T -junction

anywhere in the drawing)—see Figure 6.8

• An imaginary line between jA and jB does not cross any actual line in the

drawing—see Figure 6.9

• jA and jB must match the junction types of the inner and outer junctions shown

in one of the templates

• jA is within the angle of the appropriate two lines leaving jB

• No other junction is within the parallelogram bounded by jB, the two lines leaving

jB, and jA—see Figure 6.10 (in practice, to allow for roundoff error in geometric

tests, the two junctions at the other end of the lines from jB must also be allowed

to be in the box, even though ideally they cannot be)

In practice, it is usually the case that sides of the pocket or boss are parallel to

sides in the outer loop of the face. This is necessarily the case where the face and

105

B
A

Figure 6.8: A behind B

A

B

Figure 6.9: Line Crosses
Template

A

B

Figure 6.10: Junction in
Parallelogram

feature are axis-aligned (see, for example, Figure B.438, a stylised drawing taken

from life of a house with a recessed balcony), and is common even when they are

not (see, for example, Figures B.458 and B.495). This can be used as a clue to the

merit of a candidate feature. Another clue is how often the configuration indicates

the feature in practice. Each template identifies which lines should be parallel for

a “perfect” pocket or boss, and how often the configuration indicates the feature

in the set of test drawings in Appendix B (the number shown in the Figures 6.6

and 6.7). RIBALD uses as the figure of merit for a candidate cofacial configuration

the product of the number in the template and the figures of merit for parallelism

for the corresponding actual lines in the drawing. The predicted labellings in the

templates are the basis of one of the most successful heuristics used in selecting

junction labellings in Chapter 4.

The combinatorial contents of these figures could be generalised to just two rules,

which in principle could remove the need for templates:

• two parallel lines, one convex and the other concave, from different subgraphs

and with nothing between them suggest a boss

• two parallel lines, one convex and the other occluding, from different subgraphs

and with nothing between them, suggest a hole or pocket.

However, determining frequencies of occurrence for parts of drawings matching tem-

plates is straightforward, whereas deriving a generalised frequency of occurrence

measure is not, so RIBALD uses the template-matching approach.

Since each pair of junctions in the drawing is matched against templates, and

geometric tests associated with template-matching require that each junction and

line in the drawing is tested to ensure that it does not conflict with the template,

106

there are O(n2) candidate cofacial configurations and identification of them takes

O(n3) time.

6.6 Hole Loops from Cofacial Configurations

Obviously, a drawing with only one subgraph cannot contain a hole loop feature.

However, as seen in Chapter 2.5.1, the presence of more subgraphs does not always

imply that a hole loop feature is present. The problem to be solved is to identify

whether a subsidiary subgraph in the drawing implies an object with a boss, a hole

or a pocket, or something else.

The cofacial configurations identified in the previous section can be used as clues

in making this decision. The presence of candidate cofacial configurations matching

hole/pocket or boss templates suggests that the subsidiary subgraph is a hole/pocket

or boss; the absence of such template matches is an indication that it is not. Other

clues are: that at least one subgraph is not a hole loop; that if the subsidiary

subgraph is contained entirely within a single region of the drawing, a hole loop

must be present; and that if lines in the subsidiary subgraph are on the drawing

boundary, the subgraph cannot be a pocket and is somewhat less likely to be a

boss—the higher the proportion of drawing boundary lines the subgraph contains,

the less likely it is to correspond to a boss (in Figure B.429 it is evident which of

the five subgraphs is not a boss).

RIBALD currently assumes that hole loops correspond to holes, pockets or

bosses, and cannot cope correctly with counterexamples such as Figures B.430

and B.431 (in practice, RIBALD cannot label Figure B.430 and confidently identi-

fies a pocket in Figure B.431); any subsidiary subgraph which is neither a hole or

pocket nor a boss (such as Figure B.553) is assumed not to be a hole loop. After edge

bundling and before inflation, and after removing candidate cofacial configurations

which do not match the preferred labelling, RIBALD identifies three merit figures

for each subgraph s, the figures for it being a pocket or hole (Ps), a boss (Bs) or

something else, not a hole loop (Os).

Each subgraph is classified as indicating a hole/pocket, a boss, or something

else, using the following algorithm (where Fo, Fb and Fc are tuning constants,

chosen because they work reasonably well rather than derived from any theory—see

107

Appendix C):

• For each candidate cofacial configuration (as identified in Section 6.5)

– if the expected labelling (as determined by the template) for both the inner

and outer junctions match those actually produced by line-labelling, accept

this cofacial configuration; otherwise delete it

• Count the number of boundary edges nBs
in each subgraph s

• For each subgraph s

– If nBs
is non-zero, set o = nBs

nE
, Os = 1+o

2
, Ps = 0, Bs = 1−o

2

– Else if the subgraph is contained entirely within one region of the drawing,

set Os = 0 and Ps = Bs = 1
2

– Else (nBs
is 0 but the subgraph extends to a region boundary of another

subgraph) set Os = Ps = Bs = 1
3

– Adjust merit for Os by adding Fo (see [178])

• For each accepted cofacial configuration

– Determine outer and inner subgraphs o and i and merit M

– Adjust merit for Oo by adding MFc

– Adjust merit for Bi or Pi according to template by adding M

• For each subgraph s

– if nBs
is non-zero, set Ps = 0, divide Bs by F

(nBs)
b and renormalise Os +

Ps + Bs

– determine whether the subgraph indicates a pocket or hole, a boss, or a

non-hole-loop interpretation, according to which of Ps, Bs or Os is highest

• For each accepted cofacial configuration

– if the outer subgraph is not a hole loop and the inner subgraph indicates a

pocket, make a pocket mouth from this configuration by reidentifying the

108

face containing the inner junction and its associated lines as an inner loop of

the face containing the outer junction and its associated lines (see [178] for

details)

– if the outer subgraph is not a hole loop and the inner subgraph indicates a

boss, make a boss from this configuration by reidentifying the face contain-

ing the inner junction and its associated lines as an inner loop of the face

containing the outer junction and its associated lines (see [178] for details)

Since there are O(n2) candidate cofacial configurations, this process takes O(n2)

time.

The problem of distinguishing holes from pockets remains unresolved. Where the

bottom of the feature is visible in the drawing, the problem is essentially geometric in

that it depends on the depth of the feature—for example, the feature in Figure B.413

is clearly a through hole, but if it were less deep it would be a pocket. Neither

the template-matching described here, nor the labelling algorithms described in

Chapter 4, refer to geometry in this way. Where the bottom of the feature is not

visible, even this clue is absent. RIBALD assumes that hole/pocket features in the

end caps of extrusions and frusta are holes, and that all other hole/pocket features

are pockets; this assumption, although often wrong, has the merits of simplicity and

predictability.

6.7 Results

Identification of underslots and valleys is straightforward—either a drawing contains

such a configuration or it does not. As seen above, classification of hole loops

as bosses, holes/pockets, or “other” is less rigorous, and has been investigated in

more detail. RIBALD classifies a hole loop according to which of Bs (boss), Ps

(hole/pocket) or Os (“other”) is numerically greatest. The results are presented in

Tables 6.1, 6.2 and 6.3.

In addition to those cases listed in Table 6.3, Figures B.74, B.487, B.141, B.547,

B.223, B.90, B.108 and B.109 also contain multiple subgraphs; there is no indication

in any of these that either holes, pockets or bosses are present, and in all cases all

subgraphs are correctly classified as “other”.

109

The failures with Figures B.420 and B.460 occur when nothing in the drawing

matches any of the templates (in Figure B.420, the central hole loop does not match

any template because lines from the other holes are within the parallelograms of each

potential template). “Switches” such as Figure B.431, being simultaneously pockets

and bosses, are beyond the capabilities of the method described in this chapter. The

configuration from which RIBALD produces a pocket in Figure B.89 is clearly not a

pocket according to the criteria given here—this must be an implementation error.

RIBALD takes 0.44 seconds to identify the candidate cofacial configurations in

Figure B.538, but for more typical drawings timings are satisfactory. The second-

worst case is Figure B.420, with six subgraphs; RIBALD takes 0.22 seconds to

identify the cofacial configurations in this case. In general, the time taken is a

function both of the number of lines in the drawing and the number of subgraphs—

the other time-consuming cases are Figure B.456 (0.08 seconds), Figure B.429 (0.06

seconds) and Figures B.460, B.454, B.455 and B.419 (all 0.05 seconds). In no case

does classifying subgraphs as holes/pockets or bosses take measurable time.

As noted in Chapter 4, trying to match the expected configurations is a good

heuristic for choosing between labellings.

110

Drawing Feature Os Ps Bs Correct?

B.421 Hole 0.000508 0.989576 0.009915
√

B.438 Pock 0.000020 0.999583 0.000397
√

B.536 Hole 0.000020 0.999583 0.000397
√

B.538 Hole 0.000000 1.000000 0.000000
√

B.540 Hole 0.000020 0.999583 0.000397
√

B.513 Hole 0.001343 0.972472 0.026185
√

B.469 Hole 0.000005 0.999892 0.000102
√

B.472 (1) Hole 0.023528 0.517679 0.458793
√

B.458 Hole 0.023827 0.511543 0.464630
√

B.460 (1) Hole 0.000804 0.983525 0.015672
√

B.454 (1) Hole 0.022500 0.538750 0.438750
√

B.455 (1) Hole 0.022500 0.538750 0.438750
√

B.456 Hole 0.000005 0.999893 0.000101
√

B.495 Hole 0.002801 0.942570 0.054629
√

B.498 Hole 0.001064 0.978178 0.020758
√

B.425 Hole 0.022500 0.538749 0.438751
√

B.426 (1) Hole 0.001099 0.977476 0.021425
√

B.426 (2) Hole 0.000021 0.999572 0.000407
√

B.415 Hole 0.001064 0.978183 0.020753
√

B.416 Hole 0.001064 0.978183 0.020753
√

B.433 Hole 0.000020 0.999582 0.000397
√

B.434 Hole 0.000020 0.999582 0.000397
√

B.435 Hole 0.010417 0.786451 0.203132
√

B.436 (1) Hole 0.000020 0.999582 0.000397
√

B.436 (2) Hole 0.000020 0.999582 0.000397
√

B.413 Hole 0.000020 0.999583 0.000397
√

B.414 Hole 0.000030 0.999377 0.000593
√

B.419 Hole 0.013103 0.986897 0.000000
√

B.420 (1) Hole 0.001184 0.975730 0.023087
√

B.420 (2) Hole 0.000433 0.991125 0.008443
√

B.420 (3) Hole 0.000430 0.991185 0.008385
√

B.420 (4) Hole 0.001182 0.975759 0.023059
√

B.420 (5) Hole 0.025000 0.487500 0.487500 ×
B.439 Hole 0.000508 0.989576 0.009915

√
B.440 Hole 0.000185 0.996210 0.003606

√
B.441 (1) Hole 0.024525 0.497233 0.478242

√
B.441 (2) Hole 0.024525 0.497233 0.478242

√

Table 6.1: Detection of Holes/Pockets

111

Drawing Feature Os Ps Bs Correct?

B.422 Boss 0.000080 0.001568 0.998352
√

B.423 Boss 0.000488 0.009516 0.989996
√

B.437 Boss 0.125602 0.000000 0.874398
√

B.460 (2) Boss 0.025000 0.487500 0.487500 ×
B.424 (1) Boss 0.378699 0.000000 0.621301

√
B.424 (2) Boss 0.003148 0.061388 0.935464

√
B.427 (1) Boss 0.122194 0.000000 0.877806

√
B.427 (2) Boss 0.337473 0.000000 0.662527

√
B.428 (1) Boss 0.118849 0.000000 0.881150

√
B.428 (2) Boss 0.333651 0.000000 0.666349

√
B.428 (3) Boss 0.333651 0.000000 0.666349

√
B.429 (1) Boss 0.116620 0.000000 0.883380

√
B.429 (2) Boss 0.331102 0.000000 0.668898

√
B.429 (3) Boss 0.331102 0.000000 0.668898

√
B.429 (4) Boss 0.331102 0.000000 0.668898

√

Table 6.2: Detection of Bosses

Drawing Feature Os Ps Bs Correct?

B.472 (2) n/a 0.542969 0.000000 0.457031
√

B.451 n/a 0.772318 0.000000 0.227682
√

B.454 (2) n/a 0.737500 0.000000 0.262500
√

B.455 (2) n/a 0.737500 0.000000 0.262500
√

B.553 n/a 0.715625 0.000000 0.284375
√

B.431 n/a 0.003711 0.689830 0.306460 ×
B.442 (1) n/a 0.634375 0.000000 0.365625

√
B.442 (2) n/a 0.695312 0.000000 0.304688

√
B.89 (1) n/a 0.686607 0.000000 0.313393

√
B.89 (2) n/a 0.686607 0.000000 0.313393

√
B.89 (3) n/a 0.026764 0.954025 0.019211 ×
B.405 n/a 0.925078 0.037461 0.037461

√

Table 6.3: Other Drawings with Multiple Subgraphs

112

Chapter 7

Inflation

7.1 Introduction

It is desirable to inflate the visible part of the object—to add approximate depth

coordinates for each vertex appearing in the line drawing—before reconstructing the

back of the object. In later stages of processing, depth information will be used in

estimating the merit of various hypotheses made about the drawing.

The 2D coordinates xv, yv of each vertex v are known (these coordinates are those

in the original drawing and may or may not be accurate), as are the vertex pairs

joined by each edge, and the loops of edges forming each face. Additionally, which

pairs of edges are presumed to be parallel in 3D may be known. Inflation uses any

of this information which may be relevant, translates it into compliance functions

which can be expressed as equations, and finds the best solution to the resulting

system of equations. The outputs are depth (z-)coordinates for each visible vertex

and for each point at which a partially-occluded edge disappears from view.

The methods which have been tried can be classified into two basic approaches.

Firstly, information may be limited to that which can be translated into a linear sys-

tem of equations, and the optimum solution found by linear algebra. Alternatively,

non-linear equations may be included, with the solution being found using an iterat-

ive optimisation process. There are also two possible targets. Here, an approximate

geometry is preferred, being the “best” fit (usually, as here, a least squares fit) to

all compliance functions. A fully-correct geometry in which, for example, all faces

are exactly planar may require adjustment of the xv, yv coordinates to enforce this

113

and may require analysis to detect and eliminate incompatible compliance functions

from the solution; neither of these is desirable at this stage.

The requirements for the output of an inflation component, in descending order

of desirability, are:

• the depth ordering of adjacent pairs of visible vertices must be correct;

• depth ordering must not be sensitive to inaccuracies in the drawing;

• depth information must be calculated in a fraction of a second for drawings of

typical engineering components;

• depth information should be based on as little prior processing of the drawing

as possible (depth information is to be used to test hypotheses, so it should

not presuppose these hypotheses if this can be avoided)

• depth information should be as good an interpretation of the drawing as is

possible while achieving the other objectives.

This chapter does not describe “beautification”, in which an existing 3D model

is improved by adjustment of face equations or vertex coordinates. All optimisa-

tion methods which rely on a preprocessing stage to identify approximate depth

coordinates (thereby ensuring that downhill methods start in the right valley) are

included in the latter category, described in Chapter 11, as are all methods which

iteratively detect and remove incompatible compliance functions and all methods

which change the x and y coordinates of junctions visible in the drawing. Many

past systems contain only one stage which determines z-coordinates and therefore

do not make this distinction. Here, discussion is split between Chapter 11 (which

emphasises optimisation-based methods) and the description below (which emphas-

ises analytical methods).

Section 7.2 summarises prior work in general terms.

Section 7.3 considers compliance functions in more detail. With the exception

of Junction Label Pairs (JLP, Section 7.3.17), all of the compliance functions listed

here have been used successfully in other systems. The JLP approach, which is

new, is preferred because it can be used directly in a system of linear equations in

which the unknowns are the values sought, and because the results are intuitively

plausible.

114

Section 7.4 considers a single recent depth estimation component in more detail,

identifying weaknesses which make it inappropriate for initial inflation.

Section 7.5 describes a component which is better-suited to the specific require-

ments of preliminary inflation. Use of JLP as the primary compliance function in any

inflation system is new (it also appears that a z-coordinate linear least-squares ap-

proach using corner orthogonality (Section 7.3.8) and line parallelism (Section 7.3.5)

is new).

Section 7.6 demonstrates that JLP gives acceptable results and compares its

effectiveness with corner orthogonality, which shares its merits of simplicity and

intuitive plausibility. The effects of some secondary compliance functions on the

quality of output are also analysed.

7.2 History

The simplest linear method, described below, is to use a system of equations linear

in just one set of variables zv, where zv is the depth coordinate of vertex v.

A more complex method, due to Grimstead [38], is to include coefficients in each

face equation Pfxv + Qfyv + zv + Cf = 0 for any combination of vertex v and face

f where the vertex lies on the face; the output variables are Pf , Qf and Cf for each

face and zv for each vertex.

Optimisation aims to minimise an objective function (a weighted sum of compli-

ance functions) describing the drawn object. Optimisation methods can be further

subdivided into those which adjust all vertex depths simultaneously [16, 15, 83, 101]

(usually using a black-box optimisation algorithm) and those which adjust the vertex

depths one by one [91, 92]. A further refinement, originated by Leclerc and Fisc-

hler [83], is to introduce into the objective function a parameter λ which increases

from 0 to 1 as the optimisation process progresses; the overall objective function

becomes F = FA + (1 − λ)FB + λFC , where FA are those parts of the objective

function which must always be satisfied, FB are those parts of the objective func-

tion used to inflate the flat line drawing into 3D, drawing the solution towards the

global minimum, and FC are those parts of the objective function used to fine-tune

the solution once it is securely close to the global minimum. Although successful

in practice, this refinement blurs the distinction between the problems of inflation

115

(FB) and beautification (FC).

Barrow and Tenenbaum [2] use an iterative optimisation scheme which slides

the z coordinates of vertices in and out along the z-axis in order to maximise or

minimise a single compliance function. They prefer one of three global measures of

regularity:

• sum of squares of angles between faces

• sum of squares of cosines of angles between faces

• sum of squares of (2π− sum of angles at a vertex)

They report that all three measures produce similar results.

Lipson and Shpitalni [91] provide a list of compliance functions which they have

used: face planarity; line parallelism; line verticality; isometry; corner orthogonality;

skewed facial orthogonality; skewed facial symmetry; line orthogonality; minimum

standard deviation of angles; face perpendicularity; “prismatic face”; line collinear-

ity; planarity of skewed chains. These are described in the following section. The

compliance functions are weighted according to their degrees of accuracy in free-

hand drawings. Their system produces depth values by performing a least-squares

fit against these. They examined several optimisation methods and prefer cyclic

application of Brent’s method [6] to each vertex in turn. They stress the need for

reasonable preliminary estimates in order to minimise optimisation time.

7.3 Compliance Functions

This section describes individual compliance functions, including those listed above.

Mathematical detail is included only for those which are self-contained or which

could form part of a linear system.

7.3.1 Approach: Distance Propagation along Three Axes

Lamb and Bandopadhay [77] point out that if three bundles of lines (see Chapter 5)

can be identified as corresponding to three perpendicular axes of the object, the

relative spatial locations of vertices in the object can often be determined simply by

116

propagating distances along those axes. They note that occluding T -junctions and

non-axially-aligned edges form barriers to distance propagation.

This sound and intuitively correct method works for all single-subgraph nor-

malons and for many single-subgraph semi-normalons. However, it has not been

investigated further in this thesis as (a) it is of limited applicability, and the cases

for which it works are those handled well by more general methods, (b) it relies

on the assumption of isometry (see Section 7.3.7) and (c) by switching to object-

axis-relative rather than viewer-relative coordinates, it goes against the ideal of

maintaining the original user input data throughout the interpretation process.

7.3.2 Approach: Direct Use of Mirror Symmetry

Vetter and Poggio [180] note that if a polyhedral object is known to have an axis

of bilateral symmetry, the entire object can be recognised from one 2D drawing,

given the general viewpoint assumption, and providing that at least four pairs of

bilaterally symmetric points can be determined. This is not true of reconstruction—

hidden atoms bisected by the mirror plane cannot be deduced from mirror symmetry

alone. For example, although it is obvious that there should be an edge descending

behind the object from vertex A in Figure 7.1, neither the original drawing nor its

reflected equivalent contains this edge. Other methods must be used to deduce its

presence.

A

Figure 7.1: J-Block Figure 7.2: X Block

A

B1

B2

Figure 7.3: L Block

My observations on implementing this approach found that it is not an improve-

ment on the more general methods described here and in Chapter 11. Errors in the

generated reflected geometry magnify inaccuracies in the original drawing. It is pos-

sible to include the z-coordinates predicted by this approach in a linear system, but

117

in view of the generally poor performance of mirror planes in predicting geometry,

this idea is not regarded as promising and has not been investigated in detail.

7.3.3 Approach: Planar Constraints

Sturm and Maybank [156] obtain depth information from 2D line drawings in per-

spective projection by enforcing constraints between faces. Three types of con-

straints are enforced: coplanarity, parallelism and perpendicularity. They show that

this choice of constraints leads to a system of equations which can be solved ana-

lytically by matrix methods (they use singular value decomposition). Their method

is not fully automatic—their system does not attempt to deduce from the drawing

which faces in a drawing are intended to be parallel, so this information must be

entered manually.

7.3.4 Compliance Function: Facial Planarity

Let each face f lie in the plane Pfx + Qfy + Rfz + Cf = 0, and each vertex v

have coordinates (xv, yv, zv). Since, by the general projection hypothesis, no face

is parallel to the projection direction, Rf �= 0, so it is possible to set Rf = 1 to

normalise the equation: Pfxv + Qfyv + zv + Cf = 0. This equation forms the basis

of Grimstead’s linear system method [38] (see Section 7.4 below).

Alternatively, for any four vertices A, B, C and D on a face, an equation can be

generated in zA, zB, zC and zD to make A coplanar with the other three. Providing

BC and BD are non-collinear, BA can be expressed as a linear combination of the

two, i.e. so (A − B) = m(C − B) + n(D − B), where m and n can be calculated

from the known x and y coordinates of the vertices; rearranging this gives

zA + (m + n − 1)zB − mzC − nzD = 0

which could be used in any linear system in which the unknowns include depth

coordinates.

This does not extend uniquely to non-quadrilateral faces, for which more than

one equation must be generated. As Lipson and Shpitalni [91] point out, enforcing

coplanarity of any four points on a face does not enforce global face planarity.

118

An alternative approach is to enforce facial planarity after inflation by taking

face equations as the input data and placing vertices at the intersections of the

appropriate faces. Face equations could be obtained directly (using Grimstead’s

linear system method) or by finding the best fit to vertices lying on the face (following

use of the z-coordinate linear system method).

Evidently, any use of facial planarity requires knowledge of which vertices lie on

which faces. For natural line drawings of trihedral polyhedra, this is straightforward

since all T -junctions in the drawing are occluding. For non-trihedral polyhedra, a la-

belling is required in order to distinguish occluding from non-occluding T -junctions.

If the drawing is also permitted to contain hole loops, further prior processing is

required in order to ensure that cofacial loops are identified (all loops belonging to

a face must be coplanar).

This compliance function will not inflate a drawing into 3D by itself—clearly,

Pf = Qf = Cf = zv = 0 for all (f, v) solves one linear system and zA = zB = zC = zD

for all (A, B, C, D) solves the other—so, if used at all, it must be combined with an

inflationary compliance function.

7.3.5 Compliance Function: Parallel Lines

If it is believed that lines AB and CD should be parallel in 3D, it is straightforward

to generate equations to encourage this. The lengths m of line AB and n of line

CD can be calculated from the x and y coordinates, giving the equation

nzA − nzB − mzC + mzD = 0

which is linear in z-coordinates.

This function requires either knowledge of which pairs of lines in 2D correspond

to edges which are parallel in 3D, or a weighting which should be applied to the

equation reflecting confidence in the assumption of parallelism.

Again, this function will not inflate a drawing by itself. It is however useful as

a secondary component of an inflation system, both for tidying the output and for

ensuring that the system includes equations in occluded line coordinates (see, for

example, Figure 7.11 on page 141).

119

7.3.6 Compliance Function: Vertical Lines

Lipson and Shpitalni [91] suggest that a line which is vertical in the drawing should

correspond to an edge which is vertical in 3D space. This suggestion is rejected,

with the cube in Figure B.10 (page 308) being given as a counter-example which

emphasises the difference between “vertical in 3D space” (i.e. parallel with the y-

axis) and “perpendicular to a base plane” (by the assumption of general viewpoint,

the base plane is not the x-z plane).

7.3.7 Compliance Function: Isometry

Lipson and Shpitalni [91] observe that lines which are the same length in the draw-

ing should correspond to edges which are the same length in 3D space. This is

not useful in initial depth estimation, where it is the qualitative issue of which ver-

tices are nearer than their neighbours, rather than the quantitative issue of by how

much, which is important. The idea will be reconsidered in final geometric fitting

(Chapter 11).

7.3.8 Compliance Function: Corner Orthogonality

A cubic corner [125] is a trihedral vertex of a solid object at which the three faces

are aligned with the three coordinate axes. The criteria for determining whether

a W -junction or Y -junction can be an accurate drawing of a cubic corner were

established by Perkins [125]: for a W -junction, the two smaller angles must both

be acute; for a Y -junction, all three angles must be obtuse. The proof of this result

involved equations for the ratio of depth change along a line to the 2D length of

any line V A at a cubic corner V which is a W -junction or Y -junction and which is

linked by edges to vertices A, B and C:

|zA − zV |
m

=

√
− cos β cos γ

cos α
,

where m is the 2D length of line V A, and α, β and γ are the 2D angles BV C, AV C

and AV B.

Rearranging and simplifying provides an equation which could be used in a linear

system:

|zA − zV | = m
√

(tanβ tan γ) − 1.

120

In order to use this method, there must be a separate mechanism for determining

whether A is in front of or behind V . The method fails for junctions which do not

meet the Perkins criteria, such as may be found in oblique projections. Experimental

results in Section 7.6 show that the quality of output can be poor if the object drawn

is not a normalon.

This approach has also been used successfully for normalons by fixing a single

vertex and propagating depth knowledge along edges [17].

7.3.9 Compliance Function: Skewed Facial Orthogonality

This is Kanade’s method [63] for calculating the normal (P, Q, R) of a face given

two axes on the face which are believed to be perpendicular in the 3D world, applied

to those corners of faces which could be right-angles. The result is general for any

two lines at angles α and β to the horizontal (for example, in Figure 7.3), α is the

angle between line A and the horizontal and β is the angle between line B and the

horizontal, chosen chosen such that the angle between α and β is obtuse) providing

that the lines are in the plane of the face and perpendicular in 3D.

Kanade [63] notes that the vectors a and b, corresponding to the actual 3D

directions of lines α and β respectively, must obey a.(P
R
, Q

R
, 1) = b.(P

R
, Q

R
, 1) = 0,

and the belief that they are perpendicular translates to a.b = 0. From this, he

obtains the result:

(cosα cos β + sin α sin β) +
(

P

R
cos α +

Q

R
sin α

) (
P

R
cos β +

Q

R
sin β

)
= 0

and it follows that

P

R
= ρ cos

α + β

2
,
Q

R
= ρ sin

α + β

2
, ρ =

√
− cos (α − β)

cos α−β
2

(Grimstead [38] uses a similar expression).

The derivation assumes a correct orthographic projection, as would be the case

for a photographic image of a real object. However, inaccurate or non-orthogonal

projections, such as are often found in line drawings, can cause problems.

Skewed facial orthogonality, and deskewing methods in general, produce two

possible face normals for each face. Choice between these must be based on other

reasoning.

121

This method fits easily into an extended linear system incorporating Pj and

Qj , but does not fit naturally into the minimal linear system in zi. Skewed facial

orthogonality thus has no advantages over corner orthogonality, and is both more

complex and less flexible, so is not recommended.

7.3.10 Compliance Function: Skewed Facial Symmetry

This method uses Kanade’s original idea [63], which was to apply the equations

given in the previous section to a face believed to show a skewed version of mirror

symmetry, such as that in Figure 7.3, where lines B1 and B2 are perpendicular to A.

In addition to the problems noted above, this would require that potential symmetry

is identified before initial inflation, which contravenes one of the stated purposes of

inflation (depth information will be used to assess candidate symmetries).

7.3.11 Compliance Function: Line Orthogonality

Lipson and Shpitalni [91] suggest that consecutive lines in the same face, other

than those which are evidently collinear, should be made perpendicular in 3D space.

The assumption itself is questionable, its implementation using the skewed facial

orthogonality equations would suffer from all of the disadvantages noted in the

previous two sections, and a more restricted version would reduce to the corner

orthogonality equations described above.

As “minimum sum of dot products” at a vertex, this compliance function has

been used with success to provide initial inflation in a λ-style optimisation, but that

approach has already been rejected in Section 7.1.

7.3.12 Compliance Function: MSDA

It was noted by Marill [101] that the natural interpretations of convex polyhedra

tended to be those with the minimum standard deviations of angles (MSDA) at

corners on faces. This method is relatively successful for drawings which meet his

assumptions, but the assumption of convexity is too limiting for the method to be

of general use.

Since MSDA is a property of the object as a whole, not a local property, it

cannot be incorporated in a linear system approach. It is not ideal even for the

122

optimisation approach which adjusts a single vertex at a time, since the MSDA for

the entire object must be recalculated after each adjustment.

7.3.13 Compliance Function: Face Perpendicularity

Lipson and Shpitalni [91] suggest that all dihedral angles should initially be made

90◦. This could be regarded as an improvement on cubic corners in that, as it

uses edges rather than vertices, it is unaffected by the presence of non-trihedral

vertices. This compliance function would evidently be a useful way of providing

initial inflation in a λ-style optimisation, but that approach has already been rejected

here.

7.3.14 Compliance Function: Prismatic Face

Under the title “prismatic face”, Lipson and Shpitalni [91] include the various factors

which contribute to a right extrusion, and in particular planar end caps and rectan-

gular side faces. The geometric implications of these are not qualitatively different

from face planarity and line parallelism. Weightings for these compliance functions

could be increased for potential extrusions, but this contradicts the requirements by

prejudging that the object drawn is indeed an extrusion rather than a frustum.

7.3.15 Compliance Function: Line Collinearity

Lipson and Shpitalni [91] suggest that lines which are collinear in the drawing should

correspond to edges which are collinear in 3D space. This is intuitively plausible

(and a stronger definition of general viewpoint would make it necessary), but it

is unclear whether inflation should enforce this. For example, in Figure 7.14 on

page 137, line collinearity is a consequence of the object’s mirror symmetry, and the

presence or otherwise of such symmetry is one of the things depth information will

be used to assess; it could be argued that in such cases including line collinearity

equations is premature. It is clear that line collinearity equations could potentially

improve inflation of Figure B.38, but to no practical benefit: neither identification

of mirror symmetry nor classification of the object as a normalon extrusion will

be affected. A good case could be made for inclusion of line collinearity equations

123

where the lines are in different subgraphs, as in Figure B.553, as a means of relating

depth coordinates of the two subgraphs; there has not been time to investigate the

merits of this idea. Line collinearity will be reconsidered in Chapter 11.

7.3.16 Compliance Function: Planarity of Skewed Chains

As will be seen in Chapter 8, adjacent faces sharing an edge with mirror symmetry

can be chained. This imposes additional constraints on the geometry of the object.

Since these constraints are non-linear in depth coordinates, require identification of

symmetry before they can be generated, and depend on the topology of the object

as a whole, they are more suited to final geometric fitting and are discussed in

Chapter 11.

7.3.17 Compliance Function: Junction Label Pairs

Although geometrically sound, existing compliance functions take little account of

human perception. The junction label pair (JLP) function, introduced here, is an

attempt to remedy this. While it is impossible to calculate the depth of junctions

in a single line drawing, humans can and do interpret line drawings and can, in

general, reach a consensus about the depth implications—there is, for example,

little ambiguity about what Figures 7.2–7.3 on page 117 represent. This consensus

forms the basis of the new compliance function.

In Figure 7.4, a drawing of a cube in isometric projection, all lines are either Lba

to Wbca or Wbca to Y ccc. It is clear that the Y ccc junction is nearer than the Wbca

junctions, which in turn are nearer than the Lba junctions. In either case, the ratio

of change of depth to 2D line length is 1/
√

2. Depth information for the visible part

of a cube, or any other axis-aligned drawing in exact isometric projection which uses

only these three junction types, can be recovered precisely from this knowledge.

The logic given above can be extended for the JLPs in Figures B.1–B.9. Further

JLPs can be found in drawings of objects which can be built from a small number of

cubes, such as Figures B.43, B.42, B.87, B.66 and B.62, and of the simplest trihedral

objects with hole loops, Figures B.422 and B.413. Handling of JLPs including

extended trihedral junction labels is straightforward, from Figures B.156, B.158,

B.159 and B.161.

124

Figure 7.4: Standard Iso-
metric

Figure 7.5: Slanted Iso-
metric

Figure 7.6: Diagonal Iso-
metric

It is not clear whether or not lines terminating in occluding T -junctions should

be included in this analysis. It is certainly the case that in normalons all lines leaving

Lba junctions approach the viewer, even those terminating at T -junctions; this could

be used as an argument in favour of including the junction label pairs Lba–Tbaa

and Lba–Tbab. Against this, it can be argued that since nothing is known about

what lies at the occluded end of an edge when the line terminates at a T -junction,

no use should be made of “knowledge” about this occluded vertex. The argument

generalises to other frequently-occurring combinations involving T -junctions. This

has been investigated, and the results are discussed in Section 7.6 below.

Not all drawings are in perfect isometric projection, or indeed in any mathe-

matically-correct projection. It is not intuitively obvious whether JLP is more or

less sensitive to different projections or drawing inaccuracies than (for example)

corner orthogonality, particularly when used in combination with other compliance

functions; a comparison is given in Section 7.6 below.

The JLP approach can be extended to non-normalons. Although some JLPs

which cannot appear in drawings of normalons can and do appear in drawings of

non-normalons, this can be handled in many cases simply by ignoring the unknown

JLPs (one JLP per vertex is sufficient). A more robust solution is to generate a

low-weight equation making the depth coordinates equal for the two vertices of an

unrecognised JLP.

Extension to K-type tetrahedral vertices is straightforward, but it is at this point

that the law of diminishing returns sets in—only those from Figures B.260, B.268,

B.276 and B.282 have been included in RIBALD. Similar logic can also be used for

the occluding M-L pairs in Figures B.117 and B.182. Since these values are of less

125

universal validity, RIBALD includes an arbitrary weighting factor W (range 0..1) in

the equations in order to give priority to the more trustworthy values. The equations

thus become

W × (zi1 − zi2) = W × Li × K

(Li is the length of edge i; K is the depth/length ratio for the JLP).

Line Type Nearer Junc. Further Junc. K W Figure

Convex Yccc Wbca 0.7071 1.0000 B.1
Convex Yccc Wcdc 0.7071 1.0000 B.2
Convex Lac Wbca 0.7071 1.0000 B.3
Convex Lcb Wbca 0.7071 1.0000 B.4
Convex Yccc Wdcd 0.7071 1.0000 B.6
Convex* Wbca Tbaa 0.7071 1.0000 B.43
Convex* Wbca Tbab 0.7071 1.0000 B.43
Convex Lac Wcdc 0.7071 1.0000 B.42
Convex Lcb Wcdc 0.7071 1.0000 B.42
Convex Yccc Tbdc 0.7071 0.75 B.158
Convex Yccc Tdac 0.7071 0.75 B.161
Convex Yccc Kcccd 0.7071 0.50 B.260
Convex Kcccd Wbca 0.7071 0.50 B.260
Convex Yccc Kcccd 0.7071 0.50 B.268
Convex Kccdc Wbca 0.7071 0.50 B.268
Convex Yccc Kcccd 0.7071 0.50 B.276
Convex Yccc Kcccd 0.7071 0.50 B.282
Convex Mbcca Wbca 0.7071 0.50 I
Convex Yccc Kabcd 0.7071 0.50 I
Convex Yccc Kabdc 0.7071 0.50 I
Convex Yccc Mccdc 0.7071 0.50 I
Convex Yccc Mcdcc 0.7071 0.50 I
Convex Yccc Mbcda 0.7071 0.50 I
Convex Yccc Mbdca 0.7071 0.50 I
Convex Xcccc Wbca 0.4030 0.28 V
Convex Xcccc Mbcca 0.3928 0.28 V
Convex Yccc Mbcca 0.1414 0.10 V
Convex Wcdc Wbca 0.0345 0.02 V
Convex (any) (same) 0.0 0.4000
Convex (any) (other) 0.0 0.0100

Table 7.1: Constants and Weights for Depth Estimation

The complete set of junction label pairs as implemented in RIBALD and used to

obtain the results shown below are tabulated in Tables 7.1–7.3. As well as entries for

126

Line Type Nearer Junc. Further Junc. K W Figure

Concave Wcdc Yabd 0.7071 1.0000 B.2
Concave Wdcd Yabd 0.7071 1.0000 B.6
Concave Wcdc Lbd 0.7071 1.0000 B.7
Concave Wcdc Lda 0.7071 1.0000 B.8
Concave Wcdc Yddd 0.7071 1.0000 B.9
Concave Wdcd Yddd 0.7071 1.0000 B.87
Concave Wdcd Lbd 0.7071 1.0000 B.422
Concave Wdcd Lda 0.7071 1.0000 B.422
Concave Wcdc Tbda 0.7071 0.75 B.156
Concave Tbdc Yabd 0.7071 0.75 B.158
Concave Wcdc Tdab 0.7071 0.75 B.159
Concave Tdac Yabd 0.7071 0.75 B.161
Concave Kcdcd Yabd 0.7071 0.50 B.276
Concave Kdcdc Yabd 0.7071 0.50 B.282
Concave Kcccd Yabd 0.7071 0.50 I
Concave Kccdc Yabd 0.7071 0.50 I
Concave Wcdc Kabcd 0.7071 0.50 I
Concave Wcdc Kabcd 0.7071 0.50 I
Concave Mbcda Mdcdd 0.7071 0.50 I
Concave Mbcda Mddcd 0.7071 0.50 I
Concave Mbdca Mdcdd 0.7071 0.50 I
Concave Mbdca Mddcd 0.7071 0.50 I
Concave* Tbad Wcdc 0.0304 0.02 V
Concave (any) (same) 0.0 0.4000
Concave (any) (other) 0.0 0.0100

Table 7.2: Constants and Weights for Depth Estimation

JLPs deduced from geometric reasoning, some were derived experimentally, either

from pairs which invariably produced the same depth ordering (marked I in the

tables), or from pairs whose implications were unclear1 but which occurred suffi-

ciently often to make doing something explicit worthwhile (marked V in the tables).

For these latter, the depth ratio is K = C/
√

2 and the confidence W = C/2, where

C = cA−cB

cA+cB+cE
and cA is the frequency with which vertex A is clearly closer than

1Two examples illustrate the uncertainty. It seems in Figure B.310 that the Y ccc junction is in
front of the Mbcca junction, but that a change of viewpoint could alter this. This impression of
uncertainty is reinforced by examining Figures B.495 and B.497, where the same pair of junction
labels occur but with implications which disagree with one another. Similarly, in Figure B.58 it
appears that the Lba junction is in front of the Y abd junction, and the Wbca junction in front
of the Wcdc junction (although all of these junction types appear in trihedral objects, these pairs
of junction types do not occur in normalons, making any deduction from first principles difficult).
That there is uncertainty about these can be seen by comparing Figures B.470 and B.476.

127

Line Type Nearer Junc. Further Junc. K W Figure

Occluding Wbca Lba 0.7071 1.0000 B.1
Occluding Wbca Yabd 0.7071 1.0000 B.2
Occluding Wbca Lac 0.7071 1.0000 B.3
Occluding Wbca Lcb 0.7071 1.0000 B.4
Occluding* Tbab Lba 0.7071 1.0000 B.3
Occluding* Tbaa Lba 0.7071 1.0000 B.4
Occluding Lab Lba 0.7071 1.0000 B.5
Occluding Wbca Lbd 0.7071 1.0000 B.7
Occluding Wbca Lda 0.7071 1.0000 B.8
Occluding Lab Lac 0.7071 1.0000 B.43
Occluding Lab Lcb 0.7071 1.0000 B.43
Occluding Lab Yabd 0.7071 1.0000 B.66
Occluding* Tbab Yabd 0.7071 1.0000 B.413
Occluding* Tbaa Yabd 0.7071 1.0000 B.413
Occluding Wbca Tbda 0.7071 0.75 B.156
Occluding Tbda Lba 0.7071 0.75 B.156
Occluding Wbca Tbdc 0.7071 0.75 B.158
Occluding Wbca Tdab 0.7071 0.75 B.159
Occluding Tdab Lba 0.7071 0.75 B.159
Occluding Wbca Tdac 0.7071 0.75 B.161
Occluding Mbcca Lba 1.4142 0.50 B.117
Occluding Mbcda Lba 0.7071 0.50 B.182
Occluding Mbdca Lba 0.7071 0.50 B.182
Occluding Kabcd Lba 0.7071 0.50 I
Occluding Kabdc Lba 0.7071 0.50 I
Occluding Wbca Kabcd 0.7071 0.50 I
Occluding Wbca Kabdc 0.7071 0.50 I
Occluding Mbcca Wbca 0.1872 0.13 V
Occluding Lba Yabd 0.0848 0.06 V
Occluding (any) (same) 0.0 0.4000
Occluding (any) (other) 0.0 0.0100

Table 7.3: Constants and Weights for Depth Estimation

128

vertex B, cB is the frequency with which vertex B is clearly closer than vertex A,

and cE is the frequency of them being about the same. (Frequencies were measured

from the subset of test drawings which can be labelled correctly.)

This compliance function fits easily into either linear system approach and could

also be useful either as a part of an optimisation approach or as a preprocessing

stage to avoid the “local minimum trap”. Entries in the JLP tables can be used

directly to predict (with very few exceptions) the depth ordering of neighbouring

vertices, so this combination could therefore be used as a preprocessing stage for the

corner orthogonality method described above.

JLP requires junction and line labels.

7.4 Grimstead’s Linear System Approach

Using equations of the form Pfxv + Qfyv + zv + Cf = 0, Grimstead generated the

frontal geometry of the object using a system of linear equations with the unknowns

Pf , Qf , Cf and zv.

Face planarity equations were generated for each vertex-face pair. Line parallel-

ism equations were generated for each pair of 2D parallel lines identified. Equations

for P and Q were generated for each skewed symmetry artefact detected.

The system was then solved to give equations for each face using a weighted

least-squares algorithm. The solution process was iterative, with the equation with

the largest residual error being dropped at each subsequent iteration. Weightings

of equations with large residuals were reduced on the next iteration; the original

weightings of each equation were arbitrary. Eventually, a self-consistent set of equa-

tions remained. The performance was assessed using right-angle fit and minimum

standard deviation of angles in order to determine whether the process was conver-

ging towards a 3D solid or towards the redundant (flat) solution. In the former case,

the output of the linear system gave P , Q and C values for each face, and vertex

coordinates were obtained by intersecting faces.

The approach as a whole suffered from several disadvantages, of which a number

are relevant here:

• It is an iterative process, O(e4) or worse. This is not insurmountable—the

129

output of the first iteration could be used for preliminary depth coordinates;

• It changes vertex x- and y-coordinates, an idea which has already been re-

jected. This too is not insurmountable—the linear system gives vertex z-

coordinates as part of its output, and these could be used directly instead of

recalculating vertex coordinates from face equations;

• Grimstead’s recommended weightings are arbitrary, being the values which

were empirically found to work best for the test drawings used.

• The variables being optimised are of different kinds, thus creating doubt as to

whether the fit really is “best”.

• The skewed symmetry equations for P and Q were decoupled—a single geo-

metric constraint is represented by multiple constraint equations (iterative

least-squares fitting might drop one and retain the other when rejecting incon-

sistent equations, and iterative weighting adjustment might make one more

important than the other).

Also, a hidden weighting is also given to skewed symmetry estimates of ‘front-

on’, rather than ‘side-on’, faces, through the representation of the face normal as

[P, Q, 1] rather than [P, Q, R]. This is justifiable—it is easier for the user to draw

“front-on” faces, so they will be more accurate.

7.5 Depth from Labelling

RIBALD uses a linear system where the only unknowns are the vertex z-coordinates.

The number of unknowns is given by the number of junctions in the drawing. In the

simplest form of this approach, the number of equations is one more than the number

of lines in the drawing, these equations being generated using the JLP compliance

function. The additional equation fixes an arbitrary vertex at an arbitrary depth

in order to locate the object in space. Where a JLP is not explicitly tabulated, the

depth difference is assumed to be zero and the weighting very low—this guarantees

that each unknown will be represented in the system. A black-box linear system

solver is invoked to find the least-squares fit to the resulting overconstrained system

of equations.

130

For a simplistic method, this approach works surprisingly well in practice for

most junction types. It is even possible to obtain a correct depth ordering for

Sugihara’s Box, Figure B.146. The method fails entirely for drawings which are

not graph-complete, such as Figures 7.7 and 7.8—it is not possible to find a path

between every pair of edges without making use of occluding T -junctions, and the

resulting linear system cannot be solved.

Figure 7.7: No Visible
Vertices on Back Line

Figure 7.8: Cannot
Reach Back From Front

Figure 7.9: Too Many
Parallel Line Pairs

Various refinements have been investigated. Equations from line parallelism are

easily incorporated into the linear system (the equations are linear in z-coordinates)

and in many cases improves the frontal geometry significantly, so are recommen-

ded. It is found in practice that the computational overhead is acceptable for most

drawings of engineering objects but becomes unacceptable if all possible parallel line

pairs of drawings such as Figure 7.9 are included in the linear system. Recall that

the number of equations should be O(e) for large e: a threshold is applied; if the

number of lines n in a parallel bundle is below the threshold, all n(n − 1) possible

line pairs generate equations; if n is above the threshold, (n− 1) equations are gen-

erated to make the longest line in the bundle parallel to all of the others. Setting

the threshold to 20 is a satisfactory compromise.

RIBALD sets the weightings for parallel line pair equations proportional to the

product of the lengths of the two lines and to the figure of merit for parallelism. The

relative weightings of parallel line pairs and JLPs are such that if the two longest

lines are exactly parallel then the weighting for the equation making them parallel

is the same as the weighting for the equation giving the direction of an Lba–Wbca

line.

If line parallelism is not included, some other mechanism must be used to ensure

that the edges resulting from interrupted lines at K-type vertices and extended

131

trihedral T -junctions are collinear in 3D.

Face planarity is a more difficult issue. Enforcing face planarity as a postpro-

cessing stage can be rejected—it sometimes improves well-drawn sketches, but can

also make poorly-drawn sketches significantly worse, and conflicts with the prefer-

ence for leaving the x and y coordinates for each vertex unchanged from the original

drawing for as long as possible.

For drawings including hole loops, such as Figure 7.10 (page 137), some mechan-

ism is needed to make cofacial loops coplanar. This is best achieved by incorporating

the four-vertex version of the face planarity function into the linear system.

Use of four-vertex coplanarity for the general case of four or more vertices lying

on a face has been examined, with results shown in Section 7.6 below.

Various solutions are possible to the problems posed by Figures 7.7 and 7.8, but

none are ideal. An equation placing the point at which the line vanishes from view a

fixed arbitrary depth behind the corresponding point on the line which occludes it is

linear in z-coordinates, and could be incorporated. These are sometimes needed for

drawings where the subgraph count is greater than 1, but if included unnecessarily

the quality of the output deteriorates. As implemented in RIBALD, such equations

are, by default, not included, but if the linear system cannot be solved and the

subgraph count is greater than 1, such equations are added to the system, and the

linear system solver invoked a second time.

It can be seen in Figures 7.10, 7.11 and 7.14 that lines terminating at occluding

T -junctions are often parallel to other lines in the drawing. If this is so, use of

entries in the JLP tables referring to occluding T -junctions is not required.

Since corner orthogonality can be used in linear systems, and is preferable for iso-

metric projections of normalons, RIBALD includes an auto-selection process which

uses corner orthogonality equations in place of the default JLP for objects with

exactly three bundles of parallel lines and where all W -junctions and Y -junctions

meet the Perkins criteria. Alternatively, either compliance function can be invoked

specifically. Section 7.6 analyses the output produced.

Although there is a theoretical justification for choosing the value K = 1/
√

2 in

the JLP table, it is not clear that this is the value which produces best results. It

is even possible that, in place of a fixed table of JLPs, the table could be produced

by analysis of finished geometrical objects (for example, using an iterative process

132

where the finished geometric object output by one iteration is used to generate the

JLP table for the next). This idea has not been investigated, and there are potential

objections. The suggested analysis process might or might not converge, and might

converge to a local minimum (although this is not necessarily a problem as the local

minimum might be one which works well for an individual user—this could even be

one way of tuning the system to suit an individual user).

7.6 Results and Conclusions

The derivation of the JLP approach assumed a drawing in isometric projection. Its

performance in non-isometric projections is compared here with corner orthogon-

ality, which does not make this assumption. Furthermore, the derivation of both

compliance functions assumed a drawing in a correct orthogonal projection. The

performance of both in incorrect projections is also investigated.

Choice between JLP and corner orthogonality, and choice concerning which sec-

ondary compliance functions should be used in combination with them, is investig-

ated with reference to six test drawings selected partly to be a representative sample

of test drawings and partly to investigate specific points.

7.6.1 JLP vs Corner Orthogonality

A preliminary investigation [172] was sufficient to reject skewed facial symmetry.

With parallelism of lines incorporated, RIBALD produced dihedral angles for the

three cubes shown in Figures 7.4–7.6 (page 125) of 90.0◦, 90.0◦, 90.0◦ for Figure 7.4,

87.3◦, 80.8◦, 80.4◦ for Figure 7.5, and 84.3◦, 84.3◦, 71.3◦ for Figure 7.6. By way of

comparison, skewed symmetry would produce angles of 90◦ for Figures 7.4 and 7.5,

both of which are correct projections, but fails entirely for Figure 7.62. Distort-

ing the projection by moving the right-hand lines 10◦ closer to the horizontal gives

inter-facial angles of 89.4◦, 84.5◦, 83.9◦ for Figure 7.4 (skewed symmetry would give

99.1◦, 89.4◦, 81.7◦) and 87.9◦, 82.0◦, 74.5◦ for Figure 7.5 (skewed symmetry would

give 101.5◦, 71.4◦, 69.5◦). Although better in some circumstances, skewed facial sym-

metry is inappropriate for initial inflation because there are valid drawings for which

2although cos 90◦ is 0, cos π

2
will never be exactly 0 as π cannot be represented exactly as a real

number; it will be positive as often as not, and when it is,
√− cosπ will fail

133

α β JLP worst JLP mean JLP best CO worst CO mean CO best

30 30 89.999 90.000 90.000 89.999 90.000 90.000

29 32 88.851 89.223 89.409 89.245 89.558 89.882
28 34 87.713 88.429 88.787 88.503 89.096 89.698
27 36 86.587 87.620 88.136 87.772 88.614 89.453
26 38 85.473 86.794 87.455 87.052 88.115 89.153
25 40 84.369 85.951 86.743 86.340 87.600 88.801
24 42 83.276 85.092 86.000 85.636 87.068 88.401
23 44 82.195 84.216 85.227 84.938 86.523 87.954
22 46 81.124 83.323 84.423 84.246 85.963 87.463
21 48 80.063 82.413 83.588 83.558 85.389 86.930
20 50 79.014 81.486 82.722 82.873 84.803 86.357
19 52 77.974 80.541 81.825 82.191 84.203 85.746
18 54 76.945 79.580 80.898 81.510 83.592 85.097
17 56 75.925 78.602 79.941 80.831 82.969 84.574
16 58 74.916 77.608 78.954 80.153 82.334 84.131
15 60 73.917 76.598 77.938 79.474 81.688 83.684
14 62 72.927 75.572 76.894 78.795 81.032 83.235
13 64 71.946 74.530 75.823 78.115 80.365 82.783
12 66 70.975 73.475 74.725 77.433 79.689 82.328
11 68 70.013 72.405 73.601 76.749 79.003 81.870
10 70 69.060 71.322 72.453 76.063 78.308 81.409
9 72 68.116 70.227 71.283 75.375 77.605 80.945
8 74 67.181 69.121 70.091 74.683 76.895 80.477
7 76 66.255 68.004 68.879 73.988 76.176 80.006
6 78 65.337 66.879 67.650 73.289 75.452 79.531
5 80 64.427 65.745 66.404 72.587 74.721 79.053

Table 7.4: Sensitivity of Inflation to Projection

it fails entirely, and because it is roughly twice as sensitive as JLP to typical freehand

drawing errors.

Comparison of depth ratios derived from JLP with those derived from corner

orthogonality is less consistent. The tests in Tables 7.4–7.6 were run on variants

of Figure 7.10 in which all lines were drawn parallel with one of three axes, one

of the axes being vertical, and the other two axes were at angles of α and β with

the horizontal. Distortions in Table 7.4 approximate correct non-isometric projec-

tions; distortions in Tables 7.5 and 7.6 represent two typical ways of deviating from

isometric projection. The RIBALD options used were to generate depth equations

from all vertex pairs, including the two Y –T pairs, and from parallel lines bundled

134

α β JLP worst JLP mean JLP best CO worst CO mean CO best

30 30 89.999 90.000 90.000 89.999 90.000 90.000

29 31 89.420 89.613 89.995 89.618 89.801 89.999
28 32 88.834 89.223 89.978 89.236 89.601 89.995
27 33 88.242 88.828 89.948 88.839 89.396 89.973
26 34 87.644 88.429 89.908 88.432 89.187 89.936
25 35 87.040 88.026 89.855 88.014 88.974 89.886
24 36 86.430 87.620 89.792 87.585 88.758 89.822
23 37 85.813 87.209 89.716 87.144 88.539 89.744
22 38 85.191 86.794 89.629 86.691 88.317 89.650
21 39 84.562 86.375 89.531 86.225 88.093 89.541
20 40 83.927 85.951 89.420 85.746 87.866 89.422
19 41 83.286 85.524 89.299 85.255 87.638 89.288
18 42 82.638 85.092 89.166 84.749 87.408 89.138
17 43 81.984 84.656 89.022 84.229 87.178 88.971
16 44 81.324 84.216 88.866 83.695 86.948 88.785
15 45 80.658 83.772 88.699 83.146 86.719 88.886
14 46 79.985 83.323 88.521 82.582 86.493 89.088
13 47 79.305 82.870 88.332 82.004 86.272 89.359
12 48 78.619 82.413 88.132 81.412 86.056 89.711
11 49 77.927 81.951 87.921 80.807 85.798 89.839
10 50 77.228 81.486 87.698 80.192 85.417 89.270
9 51 76.523 81.016 87.465 79.569 85.006 88.553
8 52 75.812 80.541 87.222 78.945 84.560 87.647
7 53 75.094 80.063 86.967 78.329 84.072 86.496
6 54 74.370 79.580 86.702 77.736 83.532 85.173
5 55 73.640 79.093 86.427 77.193 82.926 85.214

Table 7.5: Sensitivity of Inflation to Projection

together. The JLP columns show the worst, mean and best perpendicular dihedral

angles obtained using a fixed depth ratio of 1/
√

2, and the CO columns show the

equivalent results obtained using variable depth ratios calculated using corner or-

thogonality. In Table 7.4, corner orthogonality is clearly preferable to JLP; in the

other two tables, it is somewhat preferable on average.

7.6.2 Illustrative Results

Further analysis is needed to establish whether JLP or corner orthogonality is to be

preferred more generally, and which (if any) secondary compliance functions should

135

α β JLP worst JLP mean JLP best CO worst CO mean CO best

30 30 89.999 90.000 90.000 89.999 90.000 90.000

30 31 89.420 89.613 89.995 89.533 89.722 89.996
30 32 88.834 89.223 89.977 89.060 89.447 89.999
30 33 88.242 88.828 89.948 88.581 89.168 89.984
30 34 87.644 88.429 89.907 88.097 88.889 89.957
30 35 87.040 88.026 89.855 87.610 88.608 89.918
30 36 86.430 87.620 89.791 87.120 88.327 89.867
30 37 85.813 87.209 89.716 86.628 88.045 89.801
30 38 85.191 86.794 89.629 86.136 87.762 89.720
30 39 84.562 86.375 89.530 85.644 87.479 89.769
30 40 83.927 85.951 89.420 85.154 87.196 89.858
30 41 83.286 85.524 89.299 84.667 86.912 89.971
30 42 82.638 85.092 89.166 84.185 86.592 89.891
30 43 81.985 84.656 89.022 83.709 86.254 89.726
30 44 81.324 84.216 88.866 83.242 85.908 89.533
30 45 80.658 83.772 88.699 82.786 85.554 89.311
30 46 79.985 83.323 88.521 82.344 85.191 89.057
30 47 79.305 82.870 88.332 81.919 84.819 88.768
30 48 78.619 82.413 88.132 81.516 84.439 88.440
30 49 77.927 81.951 87.920 81.058 84.051 88.069
30 50 77.228 81.486 87.698 80.424 83.654 87.648
30 51 76.523 81.016 87.465 79.756 83.249 87.170
30 52 75.812 80.541 87.221 79.049 82.836 86.621
30 53 75.094 80.063 86.967 78.293 82.415 85.988
30 54 74.370 79.580 86.702 77.476 81.990 85.402
30 55 73.640 79.093 86.426 76.576 81.563 86.025

Table 7.6: Sensitivity of Inflation to Projection

be used in combination with them. This is illustrated here with reference to six test

drawings (see Figures 7.10–7.15).

The results are tabulated below. In the tables, column ⊥ indicates the method

used for creating perpendicularity, column ll indicates whether or not line parallelism

was used, column 4vp indicates whether or not four-vertex planarity was used, and

column T⊥ indicates whether or not lines terminating at T -junctions produced

perpendicularity equations. The remaining columns vary depending on what is

examined.

Table 7.7 shows the worst, mean and best perpendicular dihedral angles after

inflation of Figure 7.10, and the mean and worst deviations from planarity. Dihedral

136

Figure 7.10: O Block Figure 7.11: O Block Figure 7.12: Bracket

Figure 7.13: Wedge Figure 7.14: A Block Figure 7.15: Snub Cube

angles for each edge were estimated by calculating a best-fit face equation for the

faces meeting the edge. Deviations from planarity were estimated by calculating

a best-fit face equation for each face and the distance of the vertex coordinates

from this plane (the absolute values, in pixels, are arbitrary but the relative values

significant). Several points can be noted. Firstly, because of the presence of a hole

loop, some face planarity equations were present in the system regardless of the

options selected in order to make the inner and outer loops of the O-face coplanar.

Secondly, none of the methods give dihedral angles of 90◦—although the drawing

looks reasonable, it is not a perfect projection. Thirdly, although best dihedral angle

results are obtained using just corner orthogonality, the differences are slight—all

variants of the method give reasonable results. Fourthly, line parallelism equations

are as effective as face planarity equations in enforcing face planarity—one or other

should be included, but using both is superfluous.

Table 7.8 shows the dihedral angles after inflation of Figure 7.11, and the de-

viations from planarity, using various options. Although the quality of output is

significantly worse than that obtained from Figure 7.10, differences between vari-

ants are slight. The variants fail about equally at the impossible task of producing

coplanar faces without adjusting any x- or y-coordinates. There is no justification

137

methods dihedral angles deviations from planarity
⊥ ll 4vp T⊥ worst mean best mean worst

JLP N N N 80.657 84.575 88.999 5.621 36.3523
CO N N N 83.390 86.029 89.619 9.968 27.4684
JLP Y N N 80.657 83.772 88.699 0.000 0.0021
CO Y N N 82.728 85.543 89.225 2.832 5.6158
JLP N Y N 80.657 84.575 88.999 5.621 36.3523
CO N Y N 83.036 85.887 88.881 6.602 27.2313
JLP Y Y N 80.657 83.772 88.699 0.000 0.0021
CO Y Y N 82.924 85.433 88.606 1.660 5.3446
JLP N N Y 80.657 83.772 88.699 0.000 0.0000
CO N N Y 81.867 85.511 89.619 5.691 13.9337
JLP Y N Y 80.657 83.772 88.699 0.000 0.0000
CO Y N Y 82.591 85.501 89.186 2.745 5.6111
JLP N Y Y 80.657 83.772 88.699 0.000 0.0000
CO N Y Y 82.427 85.371 88.881 2.473 7.7982
JLP Y Y Y 80.657 83.772 88.699 0.000 0.0000
CO Y Y Y 82.788 85.392 88.567 1.631 5.3402

Table 7.7: Results for the well-drawn O-Block

here for going beyond the basic linear system.

Figure 7.12 appears in several textbooks, notably Shirai’s [148], where it il-

lustrates the difference between freehand line drawings and mathematically-correct

drawings. The figure is not mathematically-correct, since the two edges which divide

the top face from the front face must be collinear, and the corresponding lines are

not. Ideally, after inflation, all dihedral angles should be either 90◦ or 45◦ (although

it could be argued that making the convex hull of the top face an equilateral triangle

would also be a reasonable interpretation). The final six columns of Table 7.9 show

the worst and best right-angles, the worst and best 45◦ angles, and the mean and

worst deviations from planarity. It is clear from the columns “worst 90” and “best

90” that JLP is preferable to corner orthogonality, both in terms of dihedral angles

and face planarity, confirming the initial impression that corner orthogonality does

not produce good results for non-normalons. Otherwise, there is little to choose

between the variants. Analysis of dihedral angles suggests that it is preferable to

use the simplest version of the method, since this is the one in which the two di-

hedral angles which should be 45◦ are most nearly equal. Face planarity equations

138

methods dihedral angles deviations from planarity
⊥ ll 4vp T⊥ worst mean best mean worst

JLP N N N 56.228 77.487 89.957 11.481 69.5183
CO N N N 56.887 77.739 89.615 11.445 69.4618
JLP Y N N 55.704 76.606 89.159 10.542 70.2891
CO Y N N 56.190 76.891 89.403 10.509 70.5823
JLP N Y N 55.438 76.619 88.661 10.069 69.1658
CO N Y N 55.940 76.929 88.901 9.719 69.5663
JLP Y Y N 55.267 76.114 88.520 9.775 69.6663
CO Y Y N 55.695 76.399 88.753 9.819 70.1685
JLP N N Y 54.799 76.782 89.957 11.366 68.3666
CO N N Y 55.453 77.033 89.615 11.329 68.3044
JLP Y N Y 54.263 75.884 89.159 10.426 69.1273
CO Y N Y 54.736 76.169 89.403 10.392 69.4072
JLP N Y Y 53.995 75.904 88.661 9.952 67.9961
CO N Y Y 54.487 76.214 88.901 9.601 68.3863
JLP Y Y Y 53.821 75.387 88.520 9.658 68.4952
CO Y Y Y 54.235 75.672 88.753 9.701 68.9837

Table 7.8: Dihedral Angles for the badly-drawn O-Block

have some effect in achieving their objective.

The wedge in Figure 7.13 was included in order to examine results for objects

with non-axis-aligned faces and no helpful mirror symmetry. If the idea of line iso-

metry is accepted, the “sloping roof” should make an angle with the L-shaped front

face of arctan 4
3
, 53.13◦. The rightmost columns in Table 7.10 show the worst and

best perpendicular dihedral angles and the angle between the sloping roof and the

L-shaped front face, and the mean and worst deviations from planarity. Surpris-

ingly, corner orthogonality is consistently preferable to JLP in achieving the correct

dihedral angle, although the difference is not always large. Four-vertex planarity

is almost essential for a good interpretation. The vertex which is most seriously

misplaced if face planarity equations are not included is the one where the concave

line meets the L-shaped front face. This gives few clues concerning which feature

present in Figure 7.13 makes use of face planarity equations necessary.

In Figure 7.14, the dihedral angle between the square top and the sloping side

should be 60◦ if line isometry is accepted. The dihedral angle between the sloping

side and the vertical side should therefore be 30◦. If line parallelism is accepted, the

139

methods dihedral angles deviations from planarity
⊥ ll 4vp worst 90 best 90 worst 45 best 45 mean worst

JLP N N 84.032 87.945 49.316 46.025 17.440 40.6833
CO N N 73.132 88.562 58.292 49.494 23.341 156.3602
JLP Y N 84.643 88.204 52.905 42.458 12.802 43.5912
CO Y N 74.347 89.809 55.720 50.002 12.633 55.8313
JLP N Y 84.166 89.993 52.134 42.793 6.105 34.0688
CO N Y 77.057 89.297 59.107 43.848 9.004 39.2854
JLP Y Y 84.338 88.819 53.263 41.456 6.642 35.9234
CO Y Y 77.312 89.046 59.443 43.247 8.575 39.9671

Table 7.9: Dihedral Angles for the Angle Bracket

methods dihedral angles deviations from planarity
⊥ ll 4vp worst 90 best 90 roof mean worst

JLP N N 67.623 87.121 76.570 22.097 53.5437
CO N N 73.418 85.196 72.811 22.715 71.8669
JLP Y N 77.060 87.256 71.505 15.635 43.9723
CO Y N 78.283 86.798 66.865 14.253 51.5327
JLP N Y 70.907 87.903 60.294 6.828 17.5546
CO N Y 79.500 88.506 55.368 3.129 10.9773
JLP Y Y 78.094 88.539 59.345 3.695 5.7795
CO Y Y 82.980 87.886 54.814 2.492 10.5396

Table 7.10: Dihedral Angles for the Wedge

internal dihedral angle in the triangular through hole should be 60◦. The rightmost

columns of Table 7.11 list, respectively, these three angles, the worst and best per-

pendicular dihedral angles, and the mean and worst deviations from planarity. Since

this drawing was included because it illustrates a common type of problem junction

(an occluding T -junction completing a triangular partial face) for which only line

parallelism generates a reasonable equation, it is to be expected that line parallelism

is almost essential for good dihedral angles, and this is so. Four-vertex planarity

does more harm than good to dihedral angle values, but its incorporation can still

be justified for its significant effect in making faces planar. It can be noted that here

the improvement of JLP over corner orthogonality on deviations from planarity is

almost as large as that achieved using the face planarity function.

It can be noted that in neither this drawing nor any of the preceding ones does

140

methods dihedral angles dev. from plan.
⊥ ll 4vp T⊥ T(60◦) F(30◦) I(60◦) Worst ⊥ Best ⊥ mean worst

JLP N N N 59.248 36.660 86.411 60.674 89.505 7.234 47.373
CO N N N 61.523 37.440 86.411 59.849 89.795 9.135 81.887
JLP Y N N 60.310 35.722 77.466 84.125 89.644 6.066 44.208
CO Y N N 62.089 37.408 78.139 78.761 89.432 7.475 82.506
JLP N Y N 65.221 27.754 86.019 56.057 89.402 3.613 18.771
CO N Y N 65.307 28.083 82.644 51.349 89.534 5.390 51.428
JLP Y Y N 65.723 27.197 78.024 79.780 89.854 2.904 15.759
CO Y Y N 65.844 27.574 80.403 70.211 89.965 5.485 52.259
JLP N N Y 59.248 36.660 84.815 59.184 89.505 6.327 47.373
CO N N Y 61.523 37.440 84.815 58.326 89.795 9.135 81.887
JLP Y N Y 60.310 35.722 77.470 84.125 89.644 6.066 44.208
CO Y N Y 62.089 37.409 78.144 78.760 89.433 7.475 82.506
JLP N Y Y 65.221 27.754 84.431 54.532 89.402 2.709 13.886
CO N Y Y 65.307 28.083 80.961 49.822 89.534 5.390 51.428
JLP Y Y Y 65.723 27.197 78.027 79.781 89.853 2.902 15.759
CO Y Y Y 65.844 27.574 80.409 70.210 89.966 5.485 52.259

Table 7.11: Dihedral Angles for the A-Block

presence or absence of occluding T -junction entries in the JLP tables make any

significant difference.

Figure 7.15 is a snub cube, an Archimedean regular solid in which all dihedral

angles should be either 26.8◦ or 37.0◦ The rightmost columns in Table 7.12 show

the smallest, mean and largest dihedral angles and the mean and worst deviations

from planarity. Corner orthogonality cannot be used here as there are no trihedral

vertices.

None of the variants tested produce good frontal geometry for this drawing, and

methods dihedral angles deviations from planarity
⊥ ll 4vp small mean large mean worst

JLP N N 0.028 17.737 71.918 2.342 69.5815
JLP Y N 2.257 17.636 67.669 1.501 28.5971
JLP N Y 1.203 21.189 54.495 0.359 4.9473
JLP Y Y 3.978 19.343 62.795 0.424 5.7120

Table 7.12: Dihedral Angles for the Snub Cube

141

did not necessarily achieve correct depth ordering of adjacent vertices. In view of

the global regularity of the object, a global approach such as Marill’s MSDA would

be more appropriate here than any approach based on accumulation of local data.

7.6.3 Overall Results

Table 7.13 lists the number of drawings for which all neighbouring vertices were

ordered correctly in depth by the variants listed above. In producing this table, all

481 drawings which can be labelled correctly using any of the labelling algorithms

described in Chapter 4 were used as test data. Since different methods may be

preferred for normalons and non-normalons, results are also presented separately for

those drawings where bundling identified three bundles and those where it identified

four or more bundles.

methods overall 3-bundle 4+bundle
⊥ ll 4vp

√ × √ × √ ×
JLP Y Y 295 186 128 7 167 179
JLP Y N 307 174 131 4 176 170
CO Y Y 257 224 103 32 154 192
CO Y N 256 225 100 35 156 190
JLP N Y 144 337 55 80 89 257
JLP N N 138 343 62 73 76 270
CO N Y 155 326 51 84 104 242
CO N N 144 337 54 81 90 256

Table 7.13: Correct and Incorrect Neighbour Ordering

The results confirm that use of parallel line information in inflation is almost

essential.

The apparent advantage of JLP over corner orthogonality comes from the inab-

ility of corner orthogonality to handle correctly drawings in the projection used for

the drawings in Appendix B.5.3.

It appears from the tabulated results that it is slightly preferable to omit four-

vertex planarity equations. This could be an artefact of the assessment criterion

chosen, that of correct depth ordering of adjacent vertices. Since JLP is specifically

designed to produce correct depth ordering of adjacent vertices, it is plausible that

a combination with other compliance functions will make it less effective at meeting

142

this specific criterion even if it improves results in a more general but less easily-

quantified way. In drawings with more than one subgraph, such as Figure B.553,

four-vertex planarity equations are the best way of ensuring that the depth coordin-

ates of the two subgraphs are related.

*

Figure 7.16: House

*

Figure 7.17: Setting Piece [128]

It can be noted that in many of the cases for which the best variant (JLP, using

parallel lines but not 4-vertex planarity) produced “incorrect” results, depth ordering

produced by the algorithm is tolerable but is not the one I expected. Figures 7.16

and 7.17 show the misdirected edges in two such cases.

The Archimedean solids defeat RIBALD’s inflation approach—even the best

variant produced incorrect depth ordering for all but one of them.

7.6.4 Timings

Only limiting cases have been investigated.

With Figure B.132, the drawing with most lines, depth estimation using JLPs

only takes approximately 0.10 seconds. Adding parallel line pair equations increases

the time to 0.26 seconds. Adding face planarity equations instead increases the time

to 0.18 seconds. Adding both increases the time to 0.34 seconds.

Figure B.74 has the largest number of parallel lines. Depth estimation using

the Perkins equations only takes approximately 0.05 seconds. Adding parallel line

pair equations increases the time to 0.19 seconds. Adding face planarity equations

increases the time to 0.07 seconds. Adding both increases the time to 0.22 seconds.

It can be concluded that the ideas in this chapter lead to an implementation

which runs acceptably quickly.

143

7.6.5 Conclusions

This Chapter emphasises the distinction between initial inflation, where minimal

interference with the original x- and y-coordinates is important, and beautification,

where the objective is perfect geometrical output. In concentrating on the specific

requirements of inflation, it introduces one new compliance function (JLP), and an

overall approach which also appears to be new, that of finding a least-squares fit to a

linear system in which the only unknowns are z-coordinates, and in which inflation is

achieved using a single primary compliance function (JLP or corner orthogonality)

derived from considerations of orthogonality at vertices, supported by secondary

compliance functions (line parallelism and/or four-vertex planarity).

Experimental results justify the overall approach. For drawings of typical en-

gineering objects, correct depth ordering is often achieved and reasonable geometry

obtained in acceptable time. While there are some special cases (e.g. Platonic and

Archimedean solids) where the approach fails to achieve its objectives, these special

cases do not correspond to common engineering objects and are easily identified.

Selection between JLP and corner orthogonality is less clear-cut. It was expected

that corner orthogonality would produce better results for normalons and JLP for

non-normalons; this is often true, but there are exceptions such as Figure 7.13

(page 137). Use of JLP can nevertheless be justified in that it is more robust and

versatile—corner orthogonality can only be used for trihedral vertices which meet

the Perkins criteria.

Of the options investigated, use of line parallelism is strongly recommended—

there are drawings for which good output can only be achieved if line parallelism

is used. Four-vertex planarity equations are required for drawings with hole loops;

their use in other circumstances can result in minor benefits but is not essential.

The presence or absence of T -junction entries in the JLP table is irrelevant.

In obtaining results in subsequent chapters, corner orthogonality is used for draw-

ings with exactly three bundles of lines and where the 2D angles between bundles

are all less than 75◦, and JLP (without T -junction entries in the table) is used for

all other drawings; line parallelism is used for all drawings; four-vertex planarity

equations are used only for those drawings with more than one subgraph; and equa-

tions to place occluded lines behind occluding lines at T -junctions are omitted by

144

default but if the overall set of equations cannot be solved and there is more than

one subgraph these equations are then included.

145

Chapter 8

Local Symmetry Detection

8.1 Introduction

In defining symmetry, two concepts are necessary: an atom, which may be anything

which is indistinguishable except by location from any other atom of the same kind1,

and an operation, which changes the locations (and possibly orientations) of atoms.

Following Kettle [66], symmetry is characterised by the fact that it is possible to carry

out operations which, whilst interchanging the locations of some or all of the atoms,

give arrangements of atoms which are indistinguishable from the initial arrangement.

Rotation, reflection and inversion are thus symmetry operations. Rotation axes and

mirror planes are termed symmetry elements. Other artefacts which give clues to the

structure of an object, such as parallelism or extrusion, which do not meet the strict

definition of symmetry are here termed regularities. Identification of a symmetry

element or regularity in an object produces one or more constraints, which limit the

possible locations of the atoms.

Lockwood [94] describes the aesthetic appeal of symmetry. Martin and Dutta [104]

give various technical reasons why the possession of symmetry may be beneficial in

designing shapes, and consider various approaches for making almost-symmetric

shapes symmetric. It is therefore plausible that objects are intended to be symmet-

rical in some way. Symmetry and regularities implied by a drawing are used in two

ways in later stages: in assisting the process of generating the topology of hidden

parts, and in producing constraints to be met by the 3D geometry.

1As noted already, the atoms of a solid object are its vertices, edges and faces.

146

While it is not possible to determine the symmetry of an entire object from a

drawing which only shows part of it, clues to the structure of the object can be

gained by considering the symmetry of each region. Each region is a skewed view

of all or part of the corresponding 3D face—line lengths may not be preserved, and

junction angles may be distorted, but parallel lines remain parallel within sketching

tolerance. In the case of clues which suggest mirror (reflection) symmetry, these

clues can be combined to deduce the presence or absence of reflection symmetry in

the object—such combination is termed chaining.

Section 8.2 considers the history of symmetry detection, and explains how it is

related it to the problem of graph isomorphism. Section 8.3 defines terminology

and introduces ideas used later in the chapter, Section 8.4 describes figures of merit

for the geometrical aspect of symmetry identification, Section 8.5 makes recom-

mendations for implementing local symmetry detection, Section 8.6 makes recom-

mendations for combining local mirror symmetry elements to detect object mirror

symmetry, and Section 8.7 presents results obtained using these recommendations;

this is the new work in this chapter.

8.2 History

As well as identifying many of the reasons why symmetry is beneficial, Martin and

Dutta [104] classify the measures which must be taken to enforce it, distinguishing

topological and geometric problems (see Figures 8.1 and 8.2). They also analyse

some of the consequences of enforcing symmetry and some of the problems which

may be encountered when an attempt is made to enforce a doubtful symmetry op-

eration. Since many of the algorithms they consider derive from graph isomorphism

and thus take no account either of geometry or of convexity/concavity of corners or

edges, it is these problems which dominate their discussion.

Following on from this work, Mills et al [111] have solved the problem of identi-

fying and enforcing global symmetry where a complete set of vertex coordinates is

known but both topological and geometric errors may exist; the algorithm does not

require prior knowledge of the symmetry element being sought, and does not require

input tolerances (required tolerances are identified by the algorithm), but does re-

quire that the input data contains at least one data point relating to each vertex—it

147

Figure 8.1: Rectify Topology Figure 8.2: Rectify Geometry

does not allow hidden vertices. Langbein et al [78, 79] have indicated methods for

detecting partial global symmetries and regularities in similar data; rectification is

an item of continuing research.

Neither approach is applicable to this thesis, where the assumptions are different

(not all of the topology is known, but what is known is correct; 2D geometric

information is reasonably accurate but the third, depth, coordinate is provisional).

The approach of Parry-Barwick and Bowyer [121], which uses set theoretical models,

can also be rejected on these grounds.

A polyhedron can be represented as a graph, with the vertices and edges of the

polyhedron corresponding to the vertices and edges of the graph (Sugihara [161]

calls the latter nodes and arcs in order to make the distinction clear). It is obvious

that the graph can be embedded in the surface of a solid object of the same genus

as the original polyhedron; it is also well-known that for the special case of genus

zero polyhedra, the graph can be embedded in a plane.

Symmetry detection in polyhedra can therefore be translated to a graph iso-

morphism problem, where only the special case of graphs which can be embedded

in a suitable surface need be considered. The general graph isomorphism problem

is believed to be NP-hard (although no proof of this exists as yet), and no polyno-

mial algorithm is known [28, 70]. However, polynomial-order algorithms are known

for triply-connected planar graphs (corresponding to trihedral polyhedra with no

through holes or hole loops): Weinberg’s [189], which is O(n2), Hopcroft and Tar-

jan’s [54], which is O(n logn), and Hopcroft and Wong’s [55], which is O(n). The

subgraph isomorphism problem, which is more directly relevant to this thesis as it

corresponds to the situation where only part of an object is visible, is known to be

NP-complete [31, 169].

148

Jiang and Bunke’s algorithm [60] for rotational symmetry detection is based

on graph automorphism. It creates and compares cyclic directed paths which tra-

verse each half-edge once. It is fast—O(n2) with a small constant—and simple to

implement. It allows for geometric as well as topological symmetry, but since it

makes use of a geometric rotation matrix calculated from the first three vertices in

the potential automorphism, it is severely intolerant of errors in subsequent vertex

locations. Also, although the graph-theoretical aspects of the algorithm have been

proved correct for objects with non-trihedral as well as trihedral vertices, in view

of the way the rotation matrix is calculated, the algorithm will fail if the first three

vertices in the automorphism are collinear, as could happen if the second vertex is

extended trihedral or K-type tetrahedral. Jiang et al address this problem in a later

paper [61], which also extends the idea to mirror symmetry detection. However,

the algorithm remains restricted to connected graphs (i.e. polyhedra with no hole

loops) and, most seriously of all for this thesis, it is restricted to entire polyhedra,

not partial polyhedra, so cannot be used to identify partial automorphisms.

Sugihara [161] has extended the approach of Hopcroft and Tarjan [54] and has

produced an O(n logn) algorithm for congruity of polyhedra which allows for non-

trihedral vertices and through holes such as those in the objects in Appendix B.3,

but not disconnected hole loops, as the requirement for a connected graph remains.

Although the published algorithm does not allow for coordinate errors, Sugihara

indicates a modification which would allow for these without affecting the order of

the algorithm.

In attempting to extend this to partial isomorphisms, Sugihara observes that

the NP-completeness arises when it is not known which parts of the two graphs

are present and which are “hidden” (corresponding to parts of the object which are

visible in the drawing but whose symmetrical equivalents are not visible). Sugihara

proves that, given only the knowledge that one arc of the graph (one edge of the

partial polyhedron) can be mapped to a visible arc of the corresponding isomorphic

graph, a partial isomorphism can be found in O(n2) time. Finding the seed edge

(where it and its symmetrical equivalent must be visible in both the original draw-

ing) remains problematic—if all edges in the drawing are tried, the time obviously

increases to O(n3). Furthermore, since the proof assumes use of standard graph the-

ory techniques, the partial isomorphism, once found, will ignore non-graph-theory

149

considerations such as edge concavity/convexity.

Myers [114] has used genetic algorithms to solve practical partial isomorphism

problems, but these are too slow for use in an interactive system.

The algorithm I have devised (outlined in [178]), while theoretically of higher

order than Sugihara’s idea, takes more account of the topological properties of poly-

hedra and thus may be closer to meeting the preference in this thesis for intuitively-

correct methods. Geometry is not used in detecting the automorphism, but instead

in assessing its merit once it has been found.

8.3 Compatibility, Pairing, Propagation

For two arrangements of atoms to be indistinguishable, the atoms occupying the

corresponding locations in the two arrangements must be compatible. Compatibility

must be defined for each type of atom, as follows.

For rotational symmetry, two vertices are compatible if, in the final object, they

have the same underlying vertex type2. For mirror symmetry, two vertices are

compatible if, in the final object, one underlying vertex type is the mirror image of

the other (note that all trihedral, and many tetrahedral, underlying vertex types are

their own mirror images). Where the underlying vertex type of one or both vertices

has not been determined unambiguously, the vertices are compatible if any subset

of the possible underlying vertex types indicates compatibility.

Two corners of a face are compatible if they are both convex turns or both

concave turns.

Edge compatibility takes account of direction—i.e. edge AB may only be com-

patible with edge CD if vertices A and C are compatible and vertices B and D

are compatible, and may only be compatible with edge DC if vertices A and D are

compatible and vertices B and C are compatible. Additionally, two edges are only

compatible if, in the final object, they are both convex or both concave (occluding

edges in the drawing will become convex).

Two faces are compatible in a particular orientation if they have the same number

of edges, their edges when paired are compatible, and their corners when paired are

compatible—see Figures 8.3 and 8.4.

2Possible underlying vertex types were determined in Chapter 4.

150

A

A

Figure 8.3: Incompatible

A

A

Figure 8.4: Compatible

Compatibility is a topological phenomenon, not necessarily related to geometric

symmetry (for example, the object in Figure B.18, page 308, has the topological,

but not the geometric, symmetry of a cube).

A pairing is an attempt (not necessarily a successful one) to identify corres-

ponding atoms before and after a symmetry operation. Pairings are produced by

seeding the pairing with an initial atom compatibility, and then propagating the

consequences through the rest of the drawing. The pairing may be complete (each

before atom is paired with exactly one after atom and vice versa), successful but

incomplete (some atoms are paired, some are not, but no before atom is paired with

two after atoms or vice versa) or unsuccessful (a before atom has been paired with

two or more after atoms or vice versa).

An impure form of compatibility, which takes no account of edge vexity, is also

useful in some circumstances—for example, reconstruction of the object in Figure 8.5

from a pairing seeded with an impure mirror plane (partial mirror symmetry marked

in dotted lines) would produce the correct topology for the entire object (albeit

with confusion as to whether the hidden edges should be convex or concave). The

similarity to graph theory is evident—a complete impure pairing is the same as

graph isomorphism in standard graph theory.

Figure 8.5: Z Block

151

RIBALD only uses pure atom compatibilities as seeds but impure compatibilities

elsewhere do not stop propagation.

The algorithm I have devised for this is given in [178]. It is not optimal—

from Sugihara’s argument, a O(n2) algorithm should exist, whereas the algorithm

in RIBALD is O(n4). Neither is it complete—there has not been time for geometric

reasoning at non-trihedral vertices to be incorporated. Timings in Section 8.7 show

that it is fast enough for the purposes of local symmetry detection; however, it is

also used to implement ideas in Chapter 10, and for this a faster algorithm would

be preferred.

8.4 Figures of Merit

The figure of merit for a candidate symmetry seeded by a face is an estimate of the

likelihood that the region on which the symmetry is centred is a skewed view of the

hypothesised symmetrical 3D face. Other factors which could contribute towards the

figure of merit are: the frequency of occurrence of that type of artefact in freehand

sketches; how well the artefact fits in with other knowledge about the sketch; and

the complexity of the artefact.

The figure of merit for parallelism of two lines A and B has already been defined.

Other primitive figures of merit are required, and are described in Appendix D.

Figures of merit for symmetries where the seed is an edge or a vertex are based

on similar considerations.

In some cases, such as partially-occluded faces, it is not possible to determine

whether or not the completed face has a particular symmetry or regularity. RIBALD

assumes in such cases that the artefact is present, but assigns it a low figure of merit.

An alternative approach might consider artefacts to have three states—completely

present and thus likely; partially present and thus possible; and demonstrably absent

on the basis conflicting evidence. This has not been pursued, as it is not clear that

this is a sufficiently-detailed classification. For example, it has already been seen that

an artefact present locally, but contradicted by evidence elsewhere in the drawing,

can still be of use in local reconstruction of hidden parts; such an artefact should

neither be rejected immediately nor accepted unequivocally.

Unlike compatibility, which is purely topological, figures of merit reflect the

152

likelihood of geometric symmetry.

8.5 Data Identified

Both rotational and mirror symmetry can be localised to a seed (inversion cannot,

and is not detected), and this seed can be a face centre, an edge midpoint or a

vertex.

8.5.1 Rotational Symmetry about a Vertex

Not all vertices need be analysed. Vertices can only be candidates for C3 symmetry

if their possible underlying vertex types include Y ccc, Y ddd, Xcccccc, Xdddddd or

Zcdcdcd. Those underlying vertex types identified in Chapter 4 which could lead to

other rotational symmetries are shown in Table 8.13. In addition, their faces must

be compatible in the orientations which pair the vertex with itself (Lba junctions

are provisionally assumed to be candidates for all symmetry operations). Occluding

T -junctions cannot be seeds for symmetries—there will usually be a hidden vertex

terminating the occluded line; since nothing is known about this vertex, nothing can

be deduced about its symmetry implications.

Symmetry Vertex Types

C2 Xcccc, Xcdcd, Xdddd, Xcccccc, Xdddddd
C3 Y ccc, Y ddd, Xcccccc, Xdddddd, Zcdcdcd
C4 Xcccc, Xdddd
C5 Xccccc, Xddddd
C6 Xcccccc, Xdddddd

Table 8.1: Symmetrical Vertex Types

The figure of merit for rotational symmetry at a vertex meeting these criteria

is obtained by multiplying the ratio of the number of faces visible at the vertex to

the number which the symmetry would require by the figure of merit for the ratio

of the 3D lengths of the longest and shortest edges meeting at the vertex.

Vertex rotational symmetry detection takes O(n) time, since in the worst case it

must consider (a) each vertex, and (b) each edge arriving at that vertex.

3Note that vertices of type Zcdcd cannot have C2 symmetry as they are chiral.

153

It is not clear that identification of vertex rotational symmetry is helpful in

reconstructing the complete topology, so RIBALD includes it as an option.

In testing whether faces are compatible for vertex rotational symmetry, RIBALD

assumes that partial faces are incompatible with any other face. Attempting to

match the visible part of the partial face would in principle be better.

8.5.2 Rotational Symmetry about an Edge Midpoint

Where both faces bounded by an edge are visible, the faces are compatible, and

the vertices at either end of the edge are also compatible, a candidate C2 rotational

symmetry operation can be identified located at the mid-point of the edge.

It is not clear that identification of edge midpoint rotational symmetry is helpful—

useful occurrences of this type of symmetry are rare. RIBALD includes it as an

option. No attempt is made to identify midpoint rotational symmetry for occluding

lines.

8.5.3 Rotational Symmetry about a Face Centre

Candidate rotational symmetry operations C2, C3, C4, C5, C6, ... for each face are

identified (RIBALD stops arbitrarily at C6).

Firstly, a particular symmetry operation Cn is only a candidate if the face has

n, 2n, 3n, ... vertices. Since the number of vertices of a partially-occluded face is

unknown, these faces can generate candidate rotational symmetries provided that

the visible part contains nothing to contradict the hypothesis, but these symmetries

are given a low figure of merit (an object can be rotationally symmetric even if the

axis of symmetry does not pass through at least one wholly-visible face or vertex—

Figure B.455 is one example).

The candidate operation is rejected if the face in its original orientation is not

compatible with itself in its rotated orientation—for example, C4 is only a candidate

symmetry operation for an octagonal face if the corners are either all convex or

alternately convex and concave.

Similarly, the candidate operation is also rejected if edges on equivalent sides are

not either all concave or all convex.

154

Even-numbered candidate symmetry operations C2, C4, C6, ... should also be re-

jected if opposing edges are not parallel to within the tolerance allowed for sketching

inaccuracies. For a face of 5j corners to have C5 symmetry, each set of five corners

around the face Vi, Vj+i, V2j+i, V3j+i, V4j+i where 0 ≤ i < j must be a skewed regular

pentagon: the undrawn line joining corners Vj+i to V4j+i must be parallel to the

base of the pentagon (the line joining V2j+i to V3j+i), and so on for each edge taken

as base in turn. Similar rules are used for C6 symmetry.

The base figure of merit F of any rotational symmetry hypothesis meeting the

convexity and connectivity criteria is 1. This is multiplied by a factor representing

how well the geometry meets the hypothesis. This could be based on the 2D geo-

metry of the sketch, but if, as recommended, the frontal geometry is estimated before

detection of local symmetry, additional information becomes available, and this is

used instead. For each pair, cyclically, of vertices (V0, Vj), (Vj, V2j), etc., around the

object, F is multiplied by the figure of merit for the ratio of the 3D lengths of lines

from the centre to the vertex. This is simpler and quicker than an alternative tried,

the figure of merit for parallelism between the vector from the face centre to vertex

i and the vector from the face centre to vertex 0 rotated by (360i/n)◦. In the cases

tested, the ratio of edge lengths also gave a subjectively better estimate of the merit

of the symmetry.

For even-sided faces, F is also multiplied by the figure of merit for parallelism

between opposite sides of the region. The resulting bias towards odd-sided symmetry

hypotheses (where F is not reduced by this factor) is in principle undesirable (it is

expected that objects of interest are more likely to have even rotational symmetry

than odd) but in practice appears to cause no harm.

Using a factor based on the figure of merit for parallelism between opposite

spokes has also been tried for even-numbered symmetries; this causes no problems

but gains no benefits, and adds further bias to odd-sided symmetry hypotheses, so

has not been retained.

Face rotational symmetry detection is O(n), since in the worst case it must

consider (a) each face, and (b) each edge on that face.

155

8.5.4 Mirror Symmetry through a Vertex

Explicit detection of vertex mirror symmetry has not been implemented. A vertex

implicitly has mirror symmetry if a face mirror chain passes through the vertex

(see Section 8.5.6). RIBALD does not handle non-trihedral vertices correctly here:

RIBALD will not chain a face mirror symmetry terminating at a vertex to another

face mirror symmetry—this is correct for trihedral vertices, but for some tetrahedral

vertex types, chaining would be valid.

8.5.5 Mirror Symmetry about an Edge

In view of the doubtful utility of identifying line C2 symmetry, identification of line

mirror symmetry was not a priority and RIBALD does not detect it.

This omission could cause problems at a later stage if the following circumstances

apply: two faces Fa and Fb each have mirror symmetry terminating in vertices Va and

Vb respectively, and an edge connects Va and Vb (Figure B.105 is one example of this).

The decision as to whether or not this constitutes a mirror chain (see Section 8.5.6)

should be decided by whether or not there is a plane of mirror symmetry along this

edge. The omission could also make a difference in interpretation of drawings where

there is mirror symmetry about a line but not about either of the regions which the

line leaves.

8.5.6 Mirror Symmetry across a Face

Face-based mirror planes can be subdivided into vertex-to-vertex planes and edge-

to-edge planes in faces with an even number of sides, and vertex-to-edge planes in

faces with an odd number of sides. Partial faces are not considered—mirror planes

across partial faces are deduced from other reasoning (see Section 8.6).

A face is a candidate mirror symmetry seed if all vertices, other than those

(if any) which are in the symmetry plane, can be paired sequentially across the

mirror axis (A in Figure 7.3, page 117), and lines joining these pairs (B1 and B2 in

Figure 7.3) are approximately parallel with one another and centred on the mirror

axis. The angle of the axis, and the average angle of the lines joining sequential

pairs, are recorded—they are the input angles (α, β) required by skewed symmetry

156

for estimating face normals [63], an option which, although not part of the current

version of RIBALD, has been used with success elsewhere [38].

The figure of merit for face mirror symmetry is the product of the figures of

merit for the ratios of distances either side of the line of matched vertices and the

figures of merit for parallelism between the lines joining these pairs of vertices and

a line at the estimated angle β.

Face rotational symmetry detection is O(n), since in the worst case it must

consider (a) each face, and (b) each edge on that face.

8.6 Mirror Chains

Candidate mirror planes can be chained: where a face mirror plane terminates at an

edge mid-point, it can be chained with another face mirror plane terminating at the

same edge as in Figure 8.5. Where a face mirror plane terminates at a vertex, it can

be chained with a mirror plane along the edge leaving the face at that vertex, and

vice versa, as in Figure 7.3 (see Section 8.5.4). Note that this is specific to trihedral

vertices—RIBALD does not include a full extension to non-trihedral vertices.

The base figure of merit Fc for a chain is calculated from the reinforced merit

for all mirror planes in the chain. This is reduced where expectations concerning

the mirror chain are contradicted when the mirror pairing is propagated across the

entire sketch:

• The fewer unpaired vertices this leaves, the more convincing is the evidence for

the mirror chain. In addition, the longer a mirror chain is, the more convincing

a successful propagation is as evidence of the mirror chain. Fc is multiplied by

a factor (Vp/V)2/C , where Vp is the number of paired vertices, V is the total

number of vertices in the sketch, and C is the number of faces in the mirror

chain.

• If the mirror chain ought to cross a fully-visible face, but that mirror plane has

not been identified, the chain becomes doubtful. If an expected continuation

mirror plane is missing, Fc is multiplied by a factor 1/2.

• Incompatible line pairings (convex vs. concave) make a mirror plane suspect.

Fc is multiplied by a factor 1/(eL) where L is the number of incompatible line

157

pairs (e (=2.718....) is chosen arbitrarily; it is “a number greater than 2”, as

this problem is considered more convincing evidence of the incorrectness of a

mirror chain than the previous one).

It was intended that if a mirror chain terminates at an edge which also bounds

a partial face, RIBALD should attempt to find the “best” mirror plane across this

partial face to continue the chain by considering all possible mirror planes—see

Figure 8.6. The criteria which would contribute to the merit of each potential

mirror plane are listed in [178].

Figure 8.6: Extending Mirror Chain Figure 8.7: Problem Extending
Mirror Chain

At the time of writing, this idea had been removed from RIBALD as the im-

plementation introduced a serious problem: the mirror chain in Figure 8.7 was

completed by hypothesising that the partial face was a seven-sided face with an

edge-to-vertex mirror plane. This is clearly not “best”, and it seems likely that the

idea can be retrieved with a more careful evaluation of figures of merit.

8.7 Results

In testing these ideas, the principle requirement is to show that the more plausible

it is that a symmetry exists, the higher the figure of merit produced.

Sample results suggest that this is the case for mirror planes. In the three

drawings of Grimstead’s bracket, Figures B.91, B.92 and B.93, the merit figure for

the obvious mirror plane is 0.7335, 0.7072 and 0.6355 respectively; by contrast, the

merit figures for the second-choice mirror plane, vertex-to-vertex diagonally across

the front L-shaped face, are 0.0422, 0.0488 and 0.0565 respectively.

158

The merit figures for C5 rotations in the decagonal faces of Figure B.132, which

is not well-drawn, range from 0.0050 to 0.4011; the merit figures for C6 rotations

in the hexagonal faces range from 0 to 0.0186. By contrast, the merit figures for

C5 rotations in the pentagonal faces of the better-drawn Figure B.120 range from

0.1088 to 0.9940, and those for C6 rotations in the hexagonal faces from 0.1245 to

0.5902. This suggests that even-number rotations are indeed penalised unduly, both

by comparison with odd-number rotations and with mirror chains, but that within

a symmetry operation, good rotations are correctly preferred to bad ones.

Results for Figure B.173 show that there are problems outstanding with vertex

rotational symmetry. RIBALD identifies that C2, C3 and C6 symmetries are possible

at the central vertex, giving each a figure of merit of 0.4760. However, it also

identifies that all five rotational symmetries are possible at the boundary vertices,

assigning them merit figures from 0.4510–0.6489 (C2 and C3), 0.3383–0.4867 (C4),

0.2706–0.3894 (C5) and 0.2255–0.3245(C6). By comparison, the merit figures for the

C3 face-centre rotations are in the range 0.4018–0.4997. It is clear that merit figures

based on symmetries which make assumptions about hidden faces are still too high

and should be reduced further.

RIBALD takes no longer than 0.01 second (the shortest time interval it can

measure) to identify local symmetry elements (rotations and mirror planes) in any

of the test drawings.

The longest time taken by RIBALD to form and assess the chains of mirror

symmetry for any test drawing is 2.13 seconds for Figure B.132. Apart from other

Archimedean solids, the time taken is reasonable—0.22 seconds for Figure B.74,

0.16 seconds for Figure B.554, 0.15 seconds for Figure B.454 and 0.11 seconds for

Figure B.429 being amongst the most time-consuming. Almost all of this time is

taken by propagating the pairings across the rest of the object in order to produce

a figure of merit for the chain—pairing propagation is O(n4), and must be done for

each mirror chain, making the process O(n5), whereas forming the chains is O(n2)

with a small constant.

159

Chapter 9

Classification

9.1 Introduction

Although, ideally, this thesis is concerned with general methods of interpreting draw-

ings, some special classes of object are both so common, and so much easier to

interpret than the general case, as to make it worthwhile trying to identify them.

For example, 24% of the drawings in Appendix B which can be labelled correctly

are (or could be) extrusions, and 26% are normalons. Accordingly, I attempt to

classify the object portrayed in the drawing into one of several such classes. A

successful classification makes topological reconstruction (Chapter 10) more robust

(and faster), and is especially useful in final geometric fitting (Chapter 11), where

the general-case methods found so far are not yet robust enough nor fast enough to

meet fully the aims of this thesis.

Classification hypotheses are based on an agglomeration of the local artefacts

identified in Chapter 8 and the groups of parallel lines identified in Chapter 5. Since

an object may meet the requirements of more than one of the classes, a figure of

merit is assigned for each classification.

Section 9.2 outlines previous work in object classification from line drawings.

Section 9.3 describes recommended classes and the criteria which a drawing must

meet in order for the object to be included in each class, Section 9.4 describes how

classes may be combined, and Section 9.5 summarises the results of implementing

these ideas; these are the new work in this chapter.

160

9.2 History

Orthogonality of the faces of the sketched solid has been used as an optimisation

criterion in other systems (and is even assumed by some). Lipson and Shpitalni [92]

suggest that if a histogram of line angles is plotted and there are only three peaks,

these probably correspond to the three perpendicular axes and the object is axis-

aligned.

The Regeo project [15] also detect normalons as a special case; since their im-

plementation interprets drawings with hidden lines shown, and does not allow for

freehand drawing errors, identification of normalons is trivial.

Mills’s algorithm [111] for global symmetry identification in point sets could be

used for identifying regular solids and mirror-symmetric objects in hidden-line draw-

ings, but has not been incorporated as part of any larger system. Since this method

assumes that the entire object is known, it is not appropriate for interpretation of

natural line drawings.

9.3 Classes

The special shape classes which may usefully be identified are discussed here. In

addition to these, RIBALD implements a “none of the above” class, for which the

figure of merit is the product of the figures of merit for the object not meeting each

particular class.

9.3.1 Normalons

Normalons—objects where all face normals are aligned with one of the three co-

ordinate axes—are reasonably common in engineering practice (one survey [143]

suggests that 30% of parts are normalons). Identifying these simplifies topological

reconstruction (Chapter 10) and makes the process of fitting face normals trivial

(Chapter 11).

For the object to be a normalon, all edges must be aligned with one of the

coordinate axes, so if the bundling process (Chapter 5) has identified more than

three groups of parallel lines the object cannot be classified as a normalon. Also, in

a normalon, there are four more convex turns than concave turns in the outer loop

161

of any fully-visible face (so, for example, the object in Figure 5.2, page 91, cannot

be axis-aligned). For this purpose, collinear lines at extended trihedral vertices such

as those in Figure B.156 on page 315 (and also at K-type vertices) are neither right

turns nor left turns; although one of the faces in the figure has five vertices, the

object portrayed is a normalon.

If the drawing meets these criteria, the base figure of merit for the object being

a normalon is 1.0.

In principle, every junction in a drawing of a normalon must meet the Perkins

criteria (Chapter 7). This is true of accurate projections but not necessarily of

freehand line drawings—Perkins also observed that, empirically, drawings appear

axis-aligned to the human eye if one set of faces is drawn rectangularly and the

third axis as a diagonal—for example, Figure 9.1 meets the empirical but not the

mathematical criteria for a normalon, and should be classified as such. Perkins went

on to report [126] that while the human eye will reject assumptions which contradict

these criteria if other, valid assumptions of rectangularity or symmetry are found

elsewhere, it will sometimes impose rectangularity in defiance of the mathematical

criteria if doing so creates some order in a non-rectangular and asymmetric drawing.

Figure 9.1: Technically Invalid Axis-Aligned Drawing

Since the object may still be a normalon even if the drawing fails to meet the

Perkins criteria, the figure of merit for axis-alignment is reduced for each line which

breaks these criteria (by multiplying by the figure of merit for parallelism between

the line and the nearest mathematically-correct line), but the hypothesis is not

rejected entirely.

The figure of merit is also decreased if the assumption of parallelism is uncertain—

it is multiplied by the parallelism figure of merit between each line and the mean

162

orientation of lines in that bundle.

Identification of normalons as described here takes O(n) time. No alternative

methods of identifying normalons or assessing figures of merit have been tested

(alternatives involving generating face normals were considered but rejected as they

involve extra processing and provide no obvious benefit).

9.3.2 Semi-Normalons

The requirements for semi-normalons relax the requirements for a normalon—most,

but not all, face normals must be aligned with one of the three coordinate axes.

Semi-normalons are common in engineering practice—one survey [143] showed that

although only 30% of the parts covered could be described using axially-aligned

blocks and cylinders, 85% could be described using axially-aligned blocks, wedges

and cylinders (it is assumed that the axially-aligned cylinders are mostly drilled

holes). Adding axially-aligned wedges to a normalon will in general give a semi-

normalon, as in Figure B.91.

Semi-normalons are identified as follows:

• if there are more than N bundles of parallel lines, exit—the object is not a normalon

(RIBALD uses N = 6)

• list the sets of three bundles which meet at junctions of three lines

• count the number of junction bundle set occurrences (at junctions of three lines)

or potential occurrences (at junctions of two lines) of each set

• if no set occurs more than any other, exit—the object is not a normalon

• the object might be a normalon—estimate the figure of merit

If the object is a semi-normalon, the three bundles which occur together more of-

ten than any other three are obviously the three mutually-orthogonal special bundles

V , B0 and B1 (vertical and two in the base plane) described in Chapter 5.7; if V , B0

or B1 was originally some other bundle, it is updated to reflect this new knowledge

about the object.

163

Initially, the figure of merit is calculated as for normalons. It is multiplied by

the proportion of junctions which contributed to the count of the best set of three

bundles.

Identification of semi-normalons, as described here, takes O(n) time.

9.3.3 Semi-Normalons with Mirror Symmetry

Classifying an object as a semi-normalon is of only moderate utility—it can help

in reconstructing the topology, but it does not of itself give any clues about the

geometry of non-axially-aligned hidden faces. In practice, many semi-normalons

have a single predominant mirror symmetry which reflects axis-aligned edges to axis-

aligned edges—55% of the test drawings in Appendix B which can be labelled meet

this requirement. Since this combination provides enough information to deduce the

face normals of many hidden faces, it is detected as a special case. The figure of

merit is the product of that for semi-normalons (as above) and the highest figure of

merit of any mirror chain (see Chapter 8).

If the drawing meets the requirements for this class, the figure of merit for this

class, once calculated, is then subtracted from the figure of merit for the previous

class (that of semi-normalon without mirror symmetry).

It would be simple to extend this idea further to a combination of semi-normalon

with either a C2 or C4 rotation, which would also provide enough information to

deduce the face normals of many hidden faces, but such objects appear to be less

common in engineering practice. RIBALD does not identify semi-normalons with

rotational symmetry as a class.

9.3.4 Artefact-Axis-Aligned Solids

Similar to the concept of a normalon is one where the mirror planes and rotation axes

define three mutually-orthogonal axes—see for example Figure 9.2. Such objects

seem to be relatively rare, and RIBALD does not identify such objects as a special

class.

164

Figure 9.2: Tapered Wedge Figure 9.3: A Frustum

9.3.5 Extrusions

Right extrusions are a particularly common class of engineering objects (one cata-

logue [12] consists entirely of extrusions), and the topology and geometry are easily

deduced—a right extrusion has two identical, parallel end cap faces joined by rect-

angles. More general extrusions are possible, but much less common.

The requirements for an extrusion are:

• no more than one fully-visible face (the front end cap) is other than a convex

quadrilateral

• all vertices can be labelled as trihedral

• each vertex has at least one interpretation with no more than one concave edge

• all edges leaving the front end cap (the side edges) are in the same bundle

• all vertices are either on the front end cap or on side edges (occluding T -junctions

need not be—Figures B.44 and B.413 show extrusions)—this may seem obvious,

but cannot be omitted (for example, Figure B.108 meets all of the other require-

ments)

• each partial face may, when reconstructed, be a convex quadrilateral (i.e. no more

than four visible vertices and no concave corners)

Note that, exhaustive as they appear, there is still a problem with these require-

ments, in that Figure B.223 meets them and is identified as an extrusion.

If these requirements are met, the figure of merit is the product of

165

• the figures of merit for each side line being parallel in 2D to the average

orientation of this bundle

• the figures of merit for each line on the front end cap being parallel in 2D to

the corresponding line on the back end cap (where this line is visible)

For drawings containing only quadrilaterals, RIBALD assumes that each region

in turn is the front end cap of an extrusion, and picks the interpretation which

produces the best figure of merit.

Identification of extrusions, as described here, takes O(n) time—although iden-

tification of quadrilateral extrusions appears to require O(n2) time, these are all

topologically equivalent to a cube and are not the limiting case for large n.

9.3.6 Extrusions with Side Holes

The class of extrusions, as described above, includes objects with through holes in

the direction of extrusion, such as Figure B.413, but not objects with side-to-side

holes, such as Figure B.498 or Figure B.513. Although there are several figures in

the test set with side-to-side holes, this is an artefact of the way the test data was

generated—most of the through holes were cylindrical in the originals.

RIBALD does not identify extrusions with side holes as an additional class, partly

because of the low frequency of such objects, and partly because of the difficulty of

distinguishing drawings such as Figure B.415 from those such as Figure B.438—in

the latter case, it is clear to a human that a pocket, not a through hole, is intended.

This recommendation may need to be reviewed in future work if cylindrical holes

are to be permitted. A more general class, that of extrusion with a single additional

feature (boss, pocket, side-to-side hole, or slot), may be more useful—there has not

been time to investigate this idea.

9.3.7 Frusta

Right frusta such as Figure 9.3 can be identified by similar criteria to those used

for extrusions, although in this case, the lines joining the visible front face and the

back face should, if extended, meet at a single point rather than being parallel. The

figure of merit for the hypothesis that the object is a frustum depends on how close

166

to a single point these lines come, and is reduced if the object is likely to be an

extrusion (this is in order to prevent the system misclassifying an extrusion as a

frustum where the nearly-parallel lines meet a long way away).

For drawings containing only quadrilaterals, RIBALD assumes that each region

in turn is the front end cap of a frustum, and picks the interpretation which produces

the best figure of merit.

The figure of merit for an object being a frustum is the product of

• 1 − Fx, where Fx is the figure of merit for the object being an extrusion

• the figures of merit for each side line being parallel in 2D to a line joining its

start junction to the apex of the extended frustum

• the figures of merit for each line on the front end cap being parallel in 2D to

the corresponding line on the back end cap

Identification of frusta, as described here, takes O(n) time—although identifica-

tion of quadrilateral frusta appears to require O(n2) time, these are all topologically

equivalent to a cube and are not the limiting case for large n.

9.3.8 Platonic and Archimedean Solids

Although the Platonic and Archimedean solids such as Figures B.116 and B.119

are useful test cases for the ideas in Chapters 10 and 11 for handling general-case

rotations, it is preferable in practice to treat them as a special class of object,

particularly since neither bundling (Chapter 5) nor inflation (Chapter 7) handles

them well. This class is identified as follows:

• If any face is only partially visible, exit—the object is not regular

• If any edge is concave, exit—the object is not regular

• If any vertex has no all-convex interpretation, exit—the object is not regular

• Initial set of possible regular objects = { all Platonic and Archimedean solids }

• For each vertex

167

– determine the number of corners of each face touching this vertex

– eliminate from the set of possible regular objects any for which the required

numbers of faces is not a superset of the numbers at this vertex

• If the set of possible regular objects is not empty, the object might be regular—

assess the merit

RIBALD does not check the requirement for alternating faces such as would

be required for a drawing to be interpreted as (for example) Figure B.127; errors

resulting from this omission are noted in Section 9.5.

The base figure of merit for any drawing which meets the requirements is 1.0.

This is multiplied by the mean merit for each face being a regular polygon: for

odd-sided faces, this is the product of the figure of merit for parallelism of an edge

and the undrawn line linking the two vertices either side of the opposite vertex; for

even-sided faces, it is the product of the figures of merit for parallelism of opposite

edges.

Identification of Platonic and Archimedean solids, as described here, takes O(n)

time.

9.3.9 Rotationally Symmetric Solids

If the entire drawing is consistent with Cn symmetry, n > 4, the object could be

classified as rotationally symmetric. However, the set of test drawings includes

no examples in this class which could not equally well be classed as extrusions

(Figure B.50 etc) or Platonic or Archimedean solids. Thus, RIBALD does not

identify rotationally-symmetric objects as a special class.

9.4 Combining Classes

If an object meets the requirements for more than one of the above classes, a judge-

ment must be made about the best way of dealing with it. Some combinations of

classes are possible, while other combinations are impossible, as listed in Table 9.1

(
√

indicates compatible classes and × indicates incompatible classes).

Where combinations of classes are impossible, an adjudication must be made.

RIBALD makes this adjudication on the basis of figures of merit—although these

168

Class N S M X F R

N Normalon . × × √ × √
S Semi-normalon × . × × × ×
M Semi-normalon + mirror × × .

√ × ×
X Extrusion

√ × √
. × √

F Frustum × × × × . ×
R Platonic or Archimedean

√ × × √ × .

Table 9.1: Compatible and Incompatible Classes

figures are produced by different methods, in practice, as the results in Section 9.5

show, a numerical comparison is usually sufficient.

Where two classes are incompatible (for example, extrusion and frustum), the

class with the higher figure of merit is chosen.

Where three classes are all mutually exclusive (for example, semi-axis-aligned,

frustum and Platonic/Archimedean solid), again the class with the highest figure of

merit is chosen.

Where two of three classes may be combined and the third is incompatible with

either of the other two (for example, axis-aligned extrusions and frusta), the rein-

forced merit of the two compatible classes is compared with the figure of merit for

the third in order to determine the best class combination.

More complex cases are adjudicated in similar fashion, with the merit of com-

patible classes being reinforced and the highest class or group of compatible classes

being chosen.

Ideally, where two incompatible classes have similar figures of merit, a back-

tracking mechanism should be available so that if the preferred class resulted in

an interpretation which was not the user’s intention, a request for an alternative

interpretation would produce one based on the second class. However, this idea has

not been investigated in practice.

9.5 Results

Since the figures of merit for various classes are calculated by widely different meth-

ods, it is possible that some method of scaling them might be needed to make them

169

comparable. The investigation in this section concentrates on those drawings which

meet the requirements for mutually-exclusive classes, in order to determine those

classes for which the figure of merit is an under- or over-estimate relative to the

others. Cases where the choice is solely between a semi-normalon with and without

a mirror plane are not analysed, as this depends purely on the figure of merit for

the mirror plane. Note, however, that RIBALD classifies Figure B.403 as semi-axis-

aligned with mirror plane on the basis of the chain of mirrors across the front faces,

indicating that there is further work to be done before this choice can be considered

robust.

Results are presented in the following tables, in which columns Fi are the figures

of merit for classes i in Table 9.1, e.g. FX is the figure of merit for class X, inter-

pretation as an extrusion. F0 is the figure of merit for the object not belonging to

any class. In each table, column C shows the class (or combination of classes) to

which RIBALD allocates the drawing, and column I shows the class intended when

the drawing was produced.

Drawing FX FF F0 C I

B.537 0.97932 0.03635 0.01992 X X
B.51 0.63871 0.42642 0.20723 X X
B.52 0.17833 0.19304 0.66305 − X

Table 9.2: Extrusion or Frustum?

Table 9.2 lists those drawings where the choice is simply between classification

as an extrusion and as a frustum. Nothing has been placed in an incorrect class, but

the failure to identify Figure B.52 as an extrusion suggests that extrusion figures of

merit are unduly low—it is not obviously badly-drawn.

Extrusions can be normalons, and frusta cannot be, so identification that a po-

tential extrusion or frustum might be a normalon is usually enough to ensure that

the object is classified as an axis-aligned extrusion. Table 9.3 lists these drawings.

Again, it appears that extrusions are undervalued, and this time two misclassifica-

tions result from this. Although neither Figure B.30 nor Figure B.46 is perfectly-

drawn, in neither case should such drawing errors as are present result in the object

being classed as a frustum rather than an axis-aligned extrusion. Note that although

170

Drawing FN FX FF F0 C I

B.542 0.99891 0.99342 0.01298 0.00001 NX NX
B.25 0.96886 0.90813 0.05916 0.00269 NX NX
B.23 0.96082 0.87552 0.21925 0.00381 NX NX
B.24 0.17036 0.00006 0.04886 0.78906 − NX
B.30 0.37194 0.22544 0.84754 0.07417 F NX
B.38 0.87618 0.69781 0.45423 0.02042 NX NX
B.40 0.20526 0.51692 0.28414 0.27484 NX NX
B.37 0.67656 0.52051 0.38900 0.09476 NX NX
B.34 0.94123 0.72275 0.38932 0.00995 NX NX
B.35 0.51903 0.31301 0.62965 0.12237 NX NX
B.45 0.66804 0.67332 0.36897 0.06843 NX NX
B.46 0.35253 0.11019 0.80957 0.10971 F NX
B.237 0.27982 0.32148 0.28825 0.34780 NX −
B.246 0.27982 0.32148 0.28825 0.34780 NX −

Table 9.3: Normalon Extrusion or Frustum?

Figure B.237 is incorrectly classed as an axis-aligned extrusion (the combination fig-

ure of merit is 0.51134) this is not necessarily a classification problem, as it results

from a bundling error.

Drawing FN FX FF FR F0 C I

B.17 0.88664 0.79063 0.35158 0.91180 0.00136 NXR NX
B.11 0.95579 0.94015 0.08909 0.95821 0.00010 NXR NXR
B.12 0.68180 0.52362 0.35878 0.70083 0.02908 NXR NXR
B.14 0.68676 0.58544 0.65554 0.86110 0.00621 NXR NXR
B.18 0.71296 0.52702 0.57456 0.76925 0.01333 NXR NX
B.19 0.57161 0.91168 0.16378 0.81664 0.00580 NXR NX

B.21 0.00022 0.98551 0.02847 0.98781 0.00580 XR X

B.22 0.00000 0.00000 0.01812 0.09243 0.89113 − −

Table 9.4: Regular Normalon Extrusion or Frustum?

Extrusion normalons can also be regular (the only regular extrusion is the cube).

Table 9.4 considers drawings meeting these requirements. Clearly, Figures B.17,

B.18 and B.19 do not show cubes; RIBALD should (but as yet does not) include a

means of identifying that although a combination of classes is permitted it is not

preferred. Furthermore, in five of the first six drawings, the single class with the

highest figure of merit is that of regular solid, indicating that a further geometric

171

factor in addition to line parallelism is required in assessing the figures of merit of

regular solids with quadrilateral faces.

Figure B.21 illustrates a further deficiency in RIBALD’s current mechanism, in

that in view of high figures of merit for the object being a regular solid and an

extrusion, the object is classified as a regular extrusion; however, since the only

regular extrusion is a cube, which is also a normalon, the fact that the object is

clearly not a normalon should prevent this combination classification. Again, it

can be noted that the figure of merit for regular solids with quadrilateral faces is

overestimated.

Drawing FS FM FX FF F0 C I

B.61 0.00000 0.81488 0.03408 0.74296 0.04596 MX MX
B.57 0.00000 0.73261 0.06474 0.72377 0.06908 MX MX
B.528 0.08886 0.66114 1.00000 0.00000 0.00000 MX MX
B.529 0.29637 0.34000 0.99956 0.00017 0.00020 MX MX
B.470 0.00000 0.71737 0.92103 0.14904 0.01899 MX MX
B.450 0.07914 0.73905 0.99780 0.00077 0.00053 MX MX
B.452 0.01280 0.78720 0.95804 0.03667 0.00849 MX MX
B.137 0.00000 0.57516 0.00000 0.90155 0.04183 F F
B.138 0.08541 0.31459 0.00005 0.97838 0.01355 F F
B.31 0.00000 0.77893 0.00010 0.45161 0.12122 MX NX
B.54 0.17183 0.32817 1.00000 0.00000 0.00000 MX MX
B.55 0.17214 0.32786 0.36988 0.51562 0.16984 MX MX
B.56 0.17143 0.32857 0.36988 0.51562 0.16980 MX MX
B.58 0.05578 0.27756 0.93798 0.10939 0.03768 MX MX
B.414 0.08964 0.57702 0.15848 0.27026 0.23646 MX NX
B.49 0.00000 0.77068 0.97759 0.04338 0.00492 MX MX
B.439 0.25140 0.30415 1.00000 0.00000 0.00000 MX MX
B.440 0.27882 0.27673 1.00000 0.00000 0.00000 MX MX
B.50 0.00000 0.54487 0.76266 0.32581 0.07283 MX MX
B.36 0.42647 0.44020 0.00133 0.07853 0.29546 MX NX
B.111 0.14661 0.35339 0.11215 0.00000 0.48992 − −
B.60 0.00000 0.58882 0.25894 0.73269 0.08145 F MX

Table 9.5: Semi-Normalon Extrusion or Frustum?

Extrusions can also be semi-normalons, while again frusta cannot. Obviously,

a semi-normalon extrusion must have a mirror plane, so in those cases where the

four possible individual classes are extrusion, frustum, and semi-normalon with or

without mirror plane, the only combination class is (extrusion and semi-normalon

172

with mirror plane), and this is likely to be preferred for this reason. Table 9.5 shows

drawings meeting these requirements. Only one is misclassified—Figure B.60 was

intended to be a semi-normalon extrusion, not a frustum, and such drawing errors

as are present should not be enough to alter its classification. In the misclassified

drawing, as well as several others, it again appears that it is the extrusion figure of

merit which is too low. The misclassification of Figure B.414 as a semi-normalon

rather than a normalon is a bundling error, not a classification problem, and classi-

fication of the poorly-drawn Figures B.31 and B.36 as semi-normalons with mirror

planes is about the best that can be expected.

Drawing FS FM FX FF FR F0 C I

B.127 0.08407 0.31593 0.00000 0.00000 0.99998 0.00001 R R
B.13 0.00000 0.60573 0.04395 0.03824 0.19711 0.29107 MX MXR
B.308 0.27138 0.39528 0.00000 0.00000 0.76236 0.10470 R MX
B.474 0.00000 0.83436 0.00000 0.00000 0.25019 0.12420 MX MX
B.139 0.00000 0.49997 0.00000 0.25765 0.14740 0.31648 MX F
B.312 0.12354 0.30504 0.00000 0.00000 0.75000 0.15228 R MX
B.315 0.00000 0.65436 0.00000 0.00000 1.00000 0.00000 R MX
B.267 0.00000 0.78211 0.02290 0.99948 0.67430 0.00004 F MX
B.275 0.00000 0.78211 0.02290 0.99948 0.67430 0.00004 F MX
B.179 0.03175 0.96825 0.00000 0.00000 1.00000 0.00000 R R
B.115 0.00794 0.24206 0.00000 0.00000 1.00000 0.00000 R R
B.20 0.00000 0.78210 0.33090 0.37939 0.41450 0.05298 MX MX
B.167 0.00794 0.24206 0.00000 0.00000 1.00000 0.00000 R MX
B.112 0.00000 0.69954 0.03137 0.56149 0.45669 0.06934 MX −
B.185 0.00000 0.78211 1.00000 0.00000 0.66667 0.00000 MX MX

Table 9.6: Semi-Normalon Extrusion, Regular Extrusion or Frustum?

Regular solids complicate the issue—an extrusion can be either regular or a semi-

normalon, but not both. The fact that it is not a normalon should be a clue to it

not being regular either, but RIBALD’s omission of this inference appears to cause

no harm (and actively helps in the case of Figure B.13). Table 9.6 shows drawings

meeting these requirements. Figure B.267 is misclassified as a frustum because

of an extremely low extrusion figure of merit. Figure B.112 illustrates RIBALD’s

determination to class everything as something if at all possible—it is in fact a well-

drawn representation of a rectangular bar cut by an unaligned plane so as to leave

an object with no symmetry, but RIBALD prefers any of three more symmetrical

173

interpretations to the intended asymmetrical interpretation.

Figure B.315 and the topologically-equivalent Figure B.308 are both identified

incorrectly as being the regular solid shown in Figure B.127. Detecting face ordering

would fix this problem (in Figures B.315 and B.308, two triangular faces at a vertex

are adjacent; in Figure B.127 they are not), but it is noticeable that again the merit

figures for regular interpretations of rectangular but obviously non-square faces are

too high. Similarly, Figure B.312 is identified incorrectly as the regular solid in

Figure B.128.

Figure B.167 is interpreted as an octahedron rather than a square pyramid (a

semi-axis-aligned object with mirror plane); this, although legitimate, is undesir-

able, as Figure B.179 shows another way of drawing an octahedron but there is no

alternative unambiguous way of drawing a square pyramid.

Figure B.139 is incorrectly classified as a semi-normalon with mirror plane rather

than as a frustum, the intended interpretation. This will have no effect on topological

reconstruction (except to slow it down), and may even improve final geometric fitting

by ensuring that geometric constraints based on planes of mirror symmetry are

enforced.

It can be concluded that classification is effective and in general correct, but

that further work is needed to make the figures of merit for the various classes

commensurate before selection of the preferred class or combination of classes can

be considered robust. Three clear improvements on the current implementation in

RIBALD can be noted. Firstly, the figures of merit for extrusions are undervalued.

Secondly, the figures of merit for regular solids with quadrilateral faces should be

reduced whenever it appears that the faces are not square. Thirdly, combination

class figures of merit should take account of negative as well as positive inferences

(e.g. an object cannot be a regular extrusion if it is not also a normalon).

Timing for object classification is satisfactory (RIBALD takes no longer than 0.01

second to classify any test drawing) and has not been investigated in any detail.

174

Chapter 10

Reconstruction of Hidden

Topology

10.1 Introduction

Previous stages of processing make inferences concerning the visible part of a draw-

ing: junctions and lines are labelled, a preliminary estimate is made of the visible

3D geometry, inferences are made about local symmetries and regularities, and the

possible classes to which the object as a whole may be allocated: each such hypo-

thesis has a figure of merit. The next (and most central) stage is to construct a

topology which includes the hidden part of the object—as noted in Chapter 2, this

topology must include a complete and consistent vertex-edge framework but need

not include all face loops as adding these is straightforward. Section 10.2 describes

previous work in this area.

Seeking the most plausible topology can be viewed as a search through the tree

of possible topologies. Section 10.3 presents an analysis which shows that consid-

ering all possible topologies is impractical even for trihedral objects. It is therefore

necessary to define: a control mechanism for the search (Section 10.4); the nature of

a branch (Section 10.5); the means by which branches are generated (Section 10.6);

and the means by which selection between branches is made (Section 10.7). Sec-

tion 10.8 describes how the special classes identified in Chapter 9 allow all or part

of the general-case mechanism to be bypassed. All of this work is new, except for

those portions of Grimstead’s work [38] which have been incorporated. Section 10.9

175

presents some results.

10.2 History

The problem of reconstructing topology from a natural line drawing was first ad-

dressed by Roberts [139]. The purpose of his system was to identify occurrences

in drawings of three primitive objects, a cuboid, a wedge (an extruded right-angled

triangle) and an axis-aligned L-block, and their spatial relationship with respect to

one another (e.g. A is behind B, or A is supported by B). As Roberts’s system

allowed for lines to be omitted when faces of two primitives were contiguous and

coplanar, it was capable of determining CSG representations from line drawings of

polyhedra built from a small number of such primitives.

Wang and Grinstein [183] also produce a CSG representation of an object de-

picted in a drawing. This was originally restricted to normalons, with the single

CSG primitive being a cuboid. Interpretation proceeds by the simple but effective

means of adding cuboids until all visible edges are accounted for. Wang [182] later

proved this approach to be correct in theory and demonstrated that it was effective

in practice—it will always produce a valid CSG model from a valid drawing of a

trihedral normalon. Wang does not describe safeguards against the error illustrated

in Figure 10.21 in Section 10.9.2, where RIBALD produces a valid but incorrect

interpretation. Although hole loops are allowed, he (like RIBALD’s general case

reconstruction) interprets all negative hole loop features as shallow pockets, not

through holes, and does not describe how false labellings such as those in Figure 6.3

(page 103) are to be avoided. Oddly, although Wang incorrectly states that nor-

malons must be trihedral, one of his illustrative examples, Figure B.432 (page 326),

is extended trihedral1.

Wang’s extension [182] of this work to general polyhedra adds a second CSG

primitive, a tetrahedron. This is less convincing. Firstly, it is not clear that a

tetrahedron is a useful primitive—axis-aligned wedges as used by Roberts [139] are

far more useful in practice [143]. Secondly, he allows non-trihedral vertices for

general polyhedra and follows Malik’s approach for labelling (see Chapter 4). It

1Wang appears to use the Huffman-Clowes catalogue [14, 56] for labelling normalons, and does
not indicate how this drawing was labelled—none of the variants tested in Chapter 4 labels this
drawing correctly.

176

appears that Wang’s ideas for general polyhedra were not implemented—no test

results are presented.

Wang [182] also outlined how his ideas could be extended to allow simple curved

primitives: axially-aligned cylinders, axially-aligned cones, and spheres. Again, it

appears that these ideas have not been tested.

The perception that Wang’s work has solved the problem of constructing CSG

representations from natural line drawings, except for a few details, seems to have

pre-empted further research into this area, and more recent work has concentrated

on constructing B-rep models.

Grimstead’s system [38] assumed that every hidden face in the object met an

occluding edge. The resulting topological reconstruction of the hidden part of the

object thus produced the simplest possible object, not necessarily the most plaus-

ible. Where three or more points on a hidden face existed in the 3D conversion

of the visible drawing, the equation of the hidden face could be obtained directly.

Where only two points existed, the equation was deduced on the basis of topological

information. Edges were extended through T -junctions, and new edges created be-

hind the visible object from visible L-junctions. Groups of three such edges were

then tested for consistency—if the three edges were allocated to three faces, an ad-

ditional hidden vertex was created where the three faces intersected, and the three

edges were removed from the set of edges requiring completion.

Grimstead’s algorithm for recovery of hidden parts was successful in the test

cases he used. However, Grimstead acknowledges that knowledge of the algorithm

makes it simple to find drawings for which the algorithm does not work correctly—

Figures 10.4 and 10.5 on page 187 illustrate one such case.

Additionally, the assumption that all hidden faces have at least two visible ver-

tices is not always plausible—it is simple to construct objects where a more complex

but symmetrical reconstruction is psychologically preferable to the minimal recon-

struction given by Grimstead’s system. However, the minimal approach may enable

the system to produce an interpretation (albeit an undesired one) of a drawing

where a more complex system may fail altogether (for example, the dodecahedron

in Figure B.116).

177

10.3 Number of Possible Completions

Superficially, the following outline algorithm appears simple and straightforward

provided only that the number of acceptable topological completions can be limited

in some way:

• Find each acceptable topological completion

• Assess each topological completion using a merit function

• Pick the completion with the highest merit value

Defining a limit to the number of acceptable topological completions is not diffi-

cult, as will be seen later in this Chapter. The number of possible topological com-

pletions is factorial in the number of additional atoms to be added, but this does

not in itself rule the idea out. The question which must be answered is whether the

number becomes unacceptably large for typical drawings. This section demonstrates

that it does.

For simplicity of analysis, I consider drawings of trihedral objects, and recon-

struction only of the vertex-edge framework, and ignore geometry. Completion of

the framework can be treated as a single-player game, in which the player starts with

a partial framework and must make a sequence of moves, each of which makes the

framework “more complete”, until the player wins (by producing a valid framework)

or loses (by reaching a dead-end position which is incomplete but from which no

further progress can be made). In trihedral frameworks, there are two indications of

incompleteness, L-vertices (with two edges rather than three) and T -vertices (with

one edge rather than three)2; reducing either the number of either constitutes pro-

gress, as does converting a T -vertex to an L-vertex (L-vertices are nearer complete

than are T -vertices).

The legal moves available to the player, as illustrated in Figure 10.1, are:

A Add an L-vertex and two edges, making two existing L-vertices trihedral. This

reduces by 1 the number of L-vertices, and adds 1 to the number of vertices

and 2 to the number of edges in the framework. Note that this cannot be the

move which completes the framework, as it leaves an L-vertex.

2The T -vertex is the true vertex at which the occluded edge at a T -junction terminates.

178

B Add a trihedral vertex and three edges, making three existing L-vertices trihedral.

This reduces by 3 the number of L-vertices, and adds 1 to the number of

vertices and 3 to the number of edges in the framework. (This is a combination

of the next move type with the preceding one.)

C Add an edge joining two L-vertices. This reduces by 2 the number of L-vertices,

and adds 0 to the number of vertices and 1 to the number of edges in the

framework.

D Extend the partial edge arriving at a T -vertex to an existing L-vertex, and remove

the T -vertex from the framework. This reduces by the number of L-vertices

by 1 and the number of T -vertices by 1, and adds nothing to the framework.

E Turn a T -vertex into an L-vertex by adding an edge connecting it to an exist-

ing L-vertex (which becomes trihedral). This removes 1 T -junction from the

framework, leaves the L-vertex count unchanged, and adds one edge to the

framework. Note that this move cannot complete the framework, as it leaves

an L-vertex.

F Merge the partial edges arriving at two T -junctions. This removes two T -vertices

and one edge from the framework, and leaves the L-vertex count unchanged.

It adds nothing new to the framework.

G Replace two T -vertices by a single L-vertex by extending the partial edges ar-

riving at the two T -vertices until they join. This removes two T -vertices from

the framework, and adds 1 to the L-vertex count (since two T -vertices are re-

moved, movement is still towards completion). One vertex has been removed

from the framework.

Adding an edge and a T -vertex to a single existing L-vertex is not allowed—it

is a move away from completion, as T -vertices are less complete than L-vertices.

From the above, a partially-completed framework with exactly one L-vertex and

no T -vertices loses the game, as does a partially-completed framework with exactly

one T -vertex and no L-vertices: from neither position can progress be made.

179

A B C

D E F G

Figure 10.1: Allowed Moves

10.3.1 Cube

Illustrating the framework completion game as played with the cube in Figure B.11

demonstrates, firstly, a result important to the endgame theory of this game, and

secondly, that analysing “toy” problems leads to misleadingly optimistic results.

The framework in Figure B.11 has seven vertices, nine edges and three faces.

There are no T -junctions. Three of the vertices are L-vertices. In terms of the

framework game, the starting position can be notated “3L,0T”. Since a single edge

cannot join three vertices, there must be at least one hidden vertex.

The options for the completed framework are therefore:

• Add one trihedral vertex and three edges, reducing the number of L-vertices

to 0 and winning the game. The resulting framework has eight vertices and

twelve edges, and thus six faces.

• Add one L-vertex and two edges, reducing the number of L-vertices to 2, giving

a partial framework with eight vertices (2 L-vertices) and eleven edges. Then:

– Adding a trihedral vertex and three edges is impossible as there are only

two L-vertices.

– Adding an L-vertex and two edges loses the game as it leaves the partial

framework with one L-vertex, an irrecoverable position

– Adding a single edge to join the two remaining L-vertices is thus the only

winning move. This produces the same topology (eight vertices, twelve

edges and six faces) as before.

180

• Adding a single edge to join two of the original L-vertices loses the game, as

it leaves the partial framework with one L-vertex.

Thus the simplest possible interpretation of Figure B.11 is as an object with eight

vertices, twelve edges and six faces, and this is provably the only interpretation using

the game rules outlined above—all routes lead to the same destination. This result

applies to any other partial framework with three L-vertices and no T -junctions.

Since adding a triconnected vertex and three edges can be decomposed into other

move types, it is ignored in the remainder of this section.

10.3.2 Other Endgame Results

Section 10.3.3 will list the number of ways of producing a complete framework from

various starting positions. This was calculated recursively by listing each possible

move in the position and summing the number of ways of producing a complete

framework from the resulting positions after making each such move. In order to

ensure that this method terminates, various other endgame positions were analysed,

and the results are listed in this section.

Obviously, a “2L,0T” position has just one completion, obtained by adding a

single edge to link the two L-vertices.

There are two possible approaches to completing a “4L,0T” position. The four

L-vertices can be paired in three distinct ways. Either each pair is linked by adding

an edge, or each pair is linked by adding a new L-vertex and two edges, and the

two new L-vertices are linked by adding an edge. As a result, there are six distinct

completions available from a “4L,0T” position, three of which have the same number

of vertices as the original and three of which have two more vertices than the original.

A “1L,1T” position has just one completion, reached by extending the edge

through the T -vertex to join it to the L-vertex.

A “2L,1T” position also has just one completion—although there are three pos-

sible routes, they arrive at the same destination. Either an L-vertex and two edges

(linked to the existing L-vertices) are added first, and the edge through the T -vertex

then extended to this new L-vertex, or the edges are added to join the T -vertex to

first one and then the other of the L-vertices.

181

A “3L,1T” position has six completions, although there are many more routes

to them. Three can be reached by extending the edge through the T -vertex to one

of the three L-vertices, and adding a single edge to join the other two L-vertices;

these have one vertex fewer than the starting framework. The other three can be

reached by converting the T -vertex to an L-vertex by adding an edge to link it to

one of the three original L-vertices, and adding a final trihedral vertex and edges

linking it to the three current L-vertices; these completions have one vertex more

than the starting framework.

A “0L,2T” position has a single completion, reached by merging the edges

through the two T -vertices.

A “1L,2T” position has a single completion which can be reached by three routes,

one of which is to merge the two T -vertices into a single L-vertex and then add an

edge linking the two current L-vertices. The completion has one vertex fewer than

the starting framework.

A “2L,2T” position has six possible completions, reached by a variety of routes.

Two can be reached by treating the position as two “1L,1T” positions; these have two

vertices fewer than the start framework. Another two can be reached by converting

one of the T -vertices to an L-vertex by adding an edge joining it to one of the

original L-vertices; there are two ways of doing this, and each resulting “2L,1T”

position has a single completion; the completion has the same number of vertices

as the start framework. A fifth completion can be reached by treating the position

as separate “2L,0T” and “0L,2T” positions; this has two vertices fewer than the

start framework. The sixth completion can be reached by adding an L-junction and

edges connecting it to the original two L-junctions; the resulting “1L,2T” position

has a single completion; the completion has the same number of vertices as the start

position.

A “0L,3T” position has a single completion—whichever T -vertices are merged

first, the final framework is obtained by merging all three T -vertices into a single

trihedral vertex.

A “1L,3T” position has six completions, with many routes to them. Three can

be reached by merging the L-vertex with one of the three T -vertices and merging

the edges through the remaining two T -vertices; these have three vertices fewer

than the start framework. The other three can be reached by merging two of the

182

T -vertices into a single L-vertex and then solving the resulting “2L,1T” position;

these completions have one vertex fewer than the start framework.

A “0L,4T” position has six completions, with many routes to them. Three can

be reached by merging a pair of T -vertices to form an L-vertex, and solving the

resulting “1L,2T” position; these completions have two vertices fewer than the start

framework. The other three can be reached by pairing the T -vertices and merging

the edges through each pair; these completions have four vertices fewer than the

start framework.

10.3.3 More Incomplete Vertices

The number of alternative routes to producing a complete framework from different

starting positions has been calculated, assuming that the results in the previous

section are used for endgame positions, but ignoring converging routes otherwise.

These are shown in Table 10.1. The columns show the initial number of T -vertices,

and the rows the initial number of L-vertices. ∞ indicates that the number is larger

than 231. Since different routes towards completion may converge, the numbers could

be reduced significantly by modifying the approach so that results of positions which

had already been analysed were cached.

. 0T 1T 2T 3T 4T 5T
0L n/a n/a 1 1 6 70
1L n/a 1 1 6 70 1140
2L 1 1 6 70 1140 25410
3L 1 6 70 1140 25410 743400
4L 6 70 1140 25410 743400 27677160
5L 70 1140 25410 743400 27677160 1278925200

6L 1140 25410 743400 27677160 1278925200 ∞
7L 25410 743400 27677160 1278925200 ∞ ∞
8L 743400 27677160 1278925200 ∞ ∞ ∞
9L 27677160 1278925200 ∞ ∞ ∞ ∞
10L 1278925200 ∞ ∞ ∞ ∞ ∞

Table 10.1: Interpretations for Different Levels of Incompleteness

From the figures in Table 10.1, the number of interpretations increases factorially,

so for large levels of incompleteness this simplistic approach is clearly inappropriate.

183

However, for many drawings which have been used as test cases, the number of

possible completions is not large—Figure B.34 is a “4L,1T” problem, Figure B.91

is a “5L,1T” problem, and Figure B.66 is a “6L,1T” problem; for the last of these,

analysing all possible completions could be onerous.

Figure B.71 is comparatively simple compared with most real engineering ob-

jects. It has 9 L-vertices and 2 T -junctions. Even this has more than 231 interpret-

ations—probably around 7 × 1010.

Figure B.488 appears to be typical of engineering objects. It has 10 L-vertices

and 4 T -junctions, and an estimated 4 × 1016 possible completions. Testing all of

these is not a practical possibility.

Figure B.119 is about as complex a drawing as can normally be expected. It

has 10 L-vertices and no T -junctions. Testing all 109 possible interpretations is

undesirable but not completely absurd. However, none of the completions generated

using the listed moves is the correct one—this drawing is one which requires moves

which can add two hidden vertices at a time.

Figure B.74 has 25 L-vertices and 7 T -junctions. The total number of possible

topological completions is probably greater than 1050, and testing all of these is

clearly not possible. The drawing is rather more complex than would generally be

expected of freehand line drawings, but is not so unlikely that a system which cannot

cope with it is acceptable.

It can therefore be concluded that generating all completions possible given a set

of moves and picking the best one according to a figure of merit gives misleadingly

good results for “toy” drawings such as those often used to test algorithms and

ideas. It is out of the question for real engineering objects.

10.4 Control Mechanism

The idea of generating all reasonable topological completions and then picking the

best as determined by assessing a figure of merit for each was shown in Section 10.3

to be impracticable even in the trihedral domain: generating all completions is

factorial in the number of incomplete vertices and for realistic objects the number of

possible completions is huge. For the general reconstruction problem, in which non-

trihedral vertices are also allowed, there are clearly many more possible completions

184

(in the domain analysed using the line-labelling catalogue described in Chapter 4,

in which hidden vertices or vertices deriving from junctions where one or more

line is occluding may be tetrahedral or extended trihedral, even the cube has over

26 thousand possible interpretations). It is therefore necessary to search through

the space of possible completions selectively. Several possibilities for the control

mechanism of such a search are examined in this section.

10.4.1 Recognition of Known Objects

Several systems exist for choosing an object from a database of known objects given

an input drawing ([146] is a recent example). This conflicts with the requirement

in this thesis for reconstruction rather than recognition, but since it is possible that

there will be common object topologies which defeat any method, for pragmatic

reasons it may be preferable to recognise these particular topologies as special cases,

extract their completed topological form from a database and adjust the geometry

to match the drawing.

Reconstruction of parts of objects from common fragments, such as the features

identified in Chapter 6, is discussed in Section 10.5.

10.4.2 Reconstruction Based on Classification

Given that most objects meet the requirements for special classes, as described in

Chapter 9, it is possible to attempt to use different methods for reconstructing the

topology depending on the object classification. For example, the topology of an

extrusion can be completed simply from the visible end-cap.

There are two obvious problems with this approach. Firstly, several combinations

of classes may simultaneously be valid. It is not always the case that special-case

reconstruction completes the object—for example, in the case of semi-normalons

with a mirror plane, hidden edges crossing the mirror plane will not be added. In

attempting to use all the clues provided by different classes to the hidden topology,

as the number of special classes increases, there may be a combinatorial explosion

and using special-case methods for each valid combination will then be impractical.

Secondly, some drawings resist classification entirely—there must therefore be a

general-case method to interpret these.

185

Ideally, the general-case method should handle as wide a variety of drawings

as possible, minimising the need for special-case methods. However, special case

methods may be faster and more robust, and may thus be a practical necessity in a

realistic system.

10.4.3 Greedy Method with Fixed List of Choices

Straightforward greedy methods have been used successfully in simple systems such

as Grimstead’s [38]. Consider a process with a list of methods for making a sequence

of moves towards completing the object. The list is ordered, such that if a move

of type M1 is possible it is made; thus a move of type Mn is made if and only if

no moves of types M1 to Mn−1 are possible in the current state of the partially-

completed object. After each move, the partially-completed object should be “more

complete” (or at least no less complete) by some measurable criterion.

Various deterministic lists of moves ordered in this way have been investigated.

For at least the moves considered, no ordering was found which works for all test

cases, and it seems likely that human ingenuity in devising counter-examples will

prove sufficient to defeat any which are proposed.

To illustrate this, consider the T Block (Figure 10.2) and the J Block (Fig-

ure 10.4). Two move types are used. T -junction completion extends the partial line

through the T -junction to a hidden vertex, which is connected by hidden edges to

the next visible edge around the partial face, and to the next L-junction around

the background. Vertex completion by intersection connects two or three existing

L-junctions with missing edges along differing axes by adding a hidden vertex and

connecting it to the L-junctions using hidden edges.

If T -junction completion takes priority, the T-block is completed successfully:

after T -junction completion, there are only three remaining L-junctions, and these

can be linked by adding a single hidden vertex. However, if vertex completion by

intersection takes priority, one of the vertices required for T -junction completion can

be used mistakenly (see Figure 10.3).

In the case of the J-block (Figure 10.4), if vertex completion by intersection takes

priority, the object will be completed successfully. It is only if T -junction completion

takes priority that it fails: the background vertex to which the new hidden vertex

186

1

2

3

4

5

6

7
A

B

C

Figure 10.2: T Block Figure 10.3: T Block Error

should be connected does not yet exist (see Figure 10.5).

A
B

C

Figure 10.4: J Block Figure 10.5: J Block Error

10.4.4 Greedy Method with Merit-Based Choices

Choice of move, if not determined by a predefined order of preference, can be gen-

eralised as merit-based, and is related to the idea of “pandemonium” [145], where

demons looking for specific clues each shout their suggestions with varying degrees of

enthusiasm, and the loudest suggestion is adopted. More formally, while the object

remains incomplete, various possible moves towards completion are suggested on the

basis of clues such as those identified in Chapters 5–9. These moves are assessed on

the basis of figures of merit, the highest-rated is chosen, and the clues are re-assessed

in case they are invalidated by the newly-made move. As with fixed-list methods,

each move is designed to leave the partially-completed object nearer to, or at worst

no further from, completion by some measurable criterion. Moves are described in

more detail in Section 10.5 below.

187

The number of iterations required by a greedy approach is limited by the number

of missing atoms which have to be added to the drawing to produce the completed

object; it is assumed that this is no worse than proportional to the problem size, the

number of edges in the drawing (the back is no more complex than the front, and

may be simpler). Thus, if move generation, arbitration and execution take O(ni)

time, topological completion using a greedy approach will take O(ni+1) time.

10.4.5 Backtracking

With the greedy methods described above, it is possible that the process may reach

a state where it can be identified that it is no longer possible to reconstruct a valid

object—for example, if the object contains only two incomplete junctions and there

is already an edge linking them, no number of further additions can create a valid

object, and something must be removed. Immediate dead-ends such as this can

be detected explicitly, but identifying unavoidable future dead-ends is impractical.

In order to guarantee that the process always produces a valid object from a valid

drawing, a backtracking mechanism is required. A backtracking mechanism allows a

chosen move to be rejected not only immediately, if after making the move the object

is invalid (see Section 10.7 for some examples of this), but also if after following all

branches of the resulting tree of moves, none of these results in a valid object. The

former has been found useful, but the latter is only sporadically useful—it is more

common for the system to produce an incorrect topological completion (one which

is valid, but not the one expected by the user). This would not cause backtracking

to be invoked, as the system would be unaware that anything was wrong.

Backtracking slows topological reconstruction, sometimes unacceptably so—in

principle, the entire search space may be traversed, and as shown in Section 10.3,

this is of factorial order.

10.4.6 Recommendations

Since the system must be able to attempt a reconstruction of arbitrary drawings

which fall into no predefined class, it must include something resembling the merit-

based greedy method described in Section 10.4.4. Although backtracking is easily-

implemented and its inclusion is recommendable, an interactive system must only

188

use it as a last resort for unusually hard drawings.

In implementing the merit-based greedy method, to avoid the potential for a tree

growing indefinitely, hypothesis formation should be abandoned if, while the object

remains incomplete, there are already more hidden atoms than visible ones. If this

occurs, RIBALD deems the completion to be in violation of the assumption that

the object is drawn from its most informative viewpoint, the current topological

completion is rejected, and RIBALD backtracks to the last state at which there was

a plausible alternative.

The ideas of incorporating recognition of specific known objects and reconstruc-

tion based on classification for specific special cases of object is considered further

in Section 10.8.

10.5 Move Types

My early experimentation [173], restricted to trihedral objects, distinguished between

vertex-based moves as described in Section 10.3, aimed at completing the vertex-

edge framework, and face-based moves, aimed at adding a complete face at a time

to the partial object. The conclusion reached there was that, although vertex-based

moves are more generally reliable, there are some classes of drawing which cannot

be reconstructed using these moves, so a single mechanism should be used which is

capable of handling all useful types of move. This recommendation applies equally

well to the more general non-trihedral domain, and is adopted here (despite the

problems it creates for move arbitration, described in Section 10.7). Several use-

ful move types have been identified, and are described in this section. A figure of

merit is associated with each move; the numerical value depends on how the move

is generated (see Section 10.6), and use of these figures or merit is described in

Section 10.7.

After acceptance and execution of a move, the topology is reassessed. For ex-

ample, at any potentially-incomplete vertex with the same number of edges and

faces, if each edge is adjacent to two existing faces, the vertex is now complete and

its underlying type is known unambiguously.

189

10.5.1 Creation of a New Vertex

As the aim is to reconstruct the vertex-edge framework of the object, the most

obvious move towards completion is to add a new vertex and sufficient edges to link

it to two or three existing incomplete vertices, as described in Section 10.3. Adding

a new vertex and one edge to link it to one existing incomplete vertex is not a move

towards completion and is not used.

Assuming that the number of incomplete vertices is proportional to the problem

size, there will be O(n2) such moves available where two edges are to be added and

O(n3) such moves available where three edges are to be added, so there is a good

case to be made for not using the latter except in special circumstances such as

when the framework can be completed in a single move.

Addition of a vertex and two edges can be subdivided into three variants, de-

pending on whether (and how many) occluding T -junctions are involved. In the

basic case, a new vertex is created, and two edges are added to link it to two in-

complete vertices (not necessarily L-vertices, in the general case). Alternatively, one

of the edges may be one terminating at an occluding T -junction; this is extended

to the location of the new vertex, which replaces the T -junction, and a single new

edge is added to link the new vertex to an existing incomplete vertex. In the case

where both edges terminate at occluding T -junctions, the new vertex replaces both

T -junctions, both existing edges are extended, and no new edge is added. (Vertex-

plus-3-edge moves would require four variants—this is a further practical incentive

to avoid using them.)

Whenever a new hidden vertex is hypothesised, a prediction is made concerning

its location (as with z-coordinates of visible vertices, this is a provisional estimate; if

the hypothesis is accepted, the provisional vertex location may be used in assessing

the merit of subsequent hypotheses; it will also be used as a starting-point for the

geometric fitting methods described in Chapter 11). Since it is found that some

hypotheses are better than others at predicting vertex locations accurately, this

prediction has its own figure of merit. For trustworthy hypotheses, this may be

equal to the figure of merit of the hypothesis as a whole; for hypotheses such as

mirror chains, which are good at predicting topology but poor at geometry, it may be

considerably lower. Whenever equivalent hypotheses are merged (see Section 10.7),

190

the predicted locations are also merged taking account of this latter figure of merit.

When a hypothesis is accepted, any new vertices created are placed in the location

corresponding to the prediction.

As will be seen in Section 10.6, it is sometimes the case that a vertex-plus-2-

edge move is produced by a hypothesis which requires this new topology in order

to complete a face; this being so, it is simplest to create the face too at this point.

RIBALD only implements this idea for quadrilateral faces.

10.5.2 Creation of a New Edge

Creation of a single new edge linking two incomplete vertices is also obviously a

useful move towards completing the vertex/edge framework. There will be O(n2)

such moves available.

As with moves creating a new vertex, there are three variants of the move creating

a new edge, depending on the involvement of occluding T -junctions. In the basic

case, a single new edge is added, linking two incomplete vertices. Where an existing

edge terminates at an occluding T -junction, the T -junction is removed and the edge

is replaced by one linking the originating vertex with an incomplete vertex. Where

two existing edges terminate at occluding T -junctions, both T -junctions and both

edges are removed and replaced by a single edge linking both originating vertices.

Again, as with moves creating a new edge, moves creating a single edge can be

produced by a hypothesis which requires this edge in order to complete a face, and

it is simplest to create the face too at this point. RIBALD only implements this

idea for quadrilateral faces.

10.5.3 Creation of a New Face

As noted in Chapter 2.14, adding face loops to a complete vertex/edge framework

is straightforward, reliable and quick, so in making a case for deferring all face

creation until the vertex/edge framework is complete it can be pointed out that

creating these using the low-order polynomial algorithm described there is preferable

to creating them using the much higher-order general topological reconstruction

algorithm. However, there will be situations where it is obvious that a face should

be created from a particular loop of vertices or edges, and it is possible that creating

191

this face as soon as it is obviously required will reduce the potential for mistakes

later in the search for the best topology.

In order to investigate which method works better in practice, RIBALD imple-

ments moves which create a single new face from a loop of four, five or six vertices,

adding any new edges which may be required. Since, as implemented, these candid-

ate moves are only generated from applying hypothesised symmetry operations (of

which there are O(n)) to existing face loops (of which there are also O(n)), there

are O(n2) such moves available. As noted in Section 10.3, the frameworks of some

partial objects cannot be completed by the new vertex and new edge moves already

described, but (as described in [173]) can be completed by adding new face loops

which include new vertices.

In order to be able to complete such objects, RIBALD implements two types of

move for adding a face plus edges and vertices.

Firstly, a parallelogram face can be created given one edge linking two incomplete

vertices and a single hypothesised vertex location; two new vertices and three new

edges will be added, and a face created from the resulting loop of edges. Although

there are an infinite number of possible vertex locations, all candidate moves creating

a parallelogram face starting from the same edge will be merged (as described in

Section 10.7), so there are O(n) such moves. The base figure of merit for such a

move is given by tuning constant Tq.

Secondly, a face matching an existing face can be created given at least three

existing vertices on the face to be created which match the corresponding vertices on

the template face. The remaining vertices, and any edges required, are created, and a

face created from the resulting loop of edges. Since, as implemented, these candidate

moves are only generated from applying hypothesised symmetry operations (of which

there are O(n)) to existing face loops (of which there are also O(n)), there are O(n2)

such moves available.

10.5.4 Reconstruction from a Symmetry Element

A “macro-move” which reconstructs as much topology as possible from a single sym-

metry element will obviously improve performance in terms of speed, and will also

improve performance in terms of robustness (provided that the symmetry element

192

identified is genuine).

If such a macro-move is accepted, the symmetry element is propagated across

the entire object (as described in Chapter 8.3), and new atoms (vertices, edges

and faces) are created wherever an existing atom has no equivalent already in the

framework.

The current version of RIBALD does not complete partial faces which form part

of the mirror chain—an earlier version which tried to do this did so incorrectly (for

example, producing an odd-sided face in Figure B.443), and there has not been time

to produce a correct implementation.

RIBALD implements macro-reconstruction from a symmetry element only for

mirror chains. An earlier version of RIBALD [173] performed macro-reconstruction

for mirror chains before entering the main topology reconstruction mechanism; this

idea is no longer preferred, as implementing this as a move allows other, even higher-

merit, moves to be performed first (in which case the result will either reinforce or

contradict the hypothesis of a mirror chain), and also allows macro-reconstruction

from more than one mirror chain in objects with multiple symmetries.

This move type will not deduce hidden faces or edges bisected by the mirror

plane; these must be added by later iterations.

10.5.5 Pre-interpreted Sketch Fragments

Draper [23] suggests making use of pre-interpreted picture fragments in drawing

reconstruction—for example, in the case of the T-piece problem illustrated in Fig-

ure 10.21 on page 218, the correct solution could be hypothesised as a single move.

RIBALD implements macro-moves corresponding to slot and pocket features

identified in Chapter 6.

The topology implied by a rectangular underslot is completed by adding four

vertices which form the hidden end of the slot, four edges (all in the same bundle)

joining these hidden vertices to the corresponding four visible vertices at the visible

end of the slot, three edges joining the hidden vertices (the edges are in the same

bundle as the corresponding edges at the visible end of the slot), and three faces

(two slot walls and a slot ceiling).

The only contentious issue associated with underslot completion is the length

193

of the four parallel edges—although this is not a topological question, a reasonable

estimate of the geometry is required as geometric information may be used in as-

sessing the merits of subsequent moves. RIBALD assumes that these edges are the

same length as the nearest wholly-visible edge in the same bundle to a visible vertex

of the underslot; no alternatives have been investigated.

Completion of the topology of a valley is similar but easier, in that the length of

the valley is usually known.

Chapter 6 did not distinguish holes and pockets—in either case, the mouth is a

hole loop. RIBALD’s macro-hypothesis assumes a pocket, completing it by creating

an identical loop of vertices and edges, side-edges joining the mouth vertices with the

bottom vertices, and side and bottom faces. Bottom vertices and edges may already

exist. Where the subgraph includes a genuine vertex other than those forming the

mouth of the pocket, this is assumed to be at the bottom of the pocket. In this case,

the depth of the pocket is known. Where the depth of the pocket is not known, it is

estimated in the same way that the length of underslots was estimated—RIBALD

uses the length of the nearest wholly-visible edge in the same bundle to the pocket

mouth.

RIBALD does not try to create through holes; the problem of determining the

topology of a second hole mouth is as yet unresolved (in general, the second hole

mouth will form a hole loop within a hidden face, and testing geometrically which

face it emerges in is not difficult; however, in some objects, the emerging hole will

split edges, as can be imagined by inverting the object portrayed in Figure B.408).

There is no move type corresponding to bosses—it was intended that these would

be dealt with by splitting the object into two (or more) pieces, as described in

Chapter 2.16. There has not been time to test this idea.

10.5.6 Complete Already

In general, since non-trihedral vertices are allowed, it is not be possible to determine

with certainty whether or not the vertex/edge framework is complete. It will, in gen-

eral, be legitimate to add an extra edge to a complete framework (for example, one

which splits a quadrilateral loop into two triangles). The hypothesis that the frame-

work is already complete must therefore be weighed against competing hypotheses,

194

and to this end RIBALD treats it as a move type.

10.6 Hypothesising Moves

Candidate moves are generated on the basis of hypotheses about the unknown part

of the object deduced from what is already known—each hypothesis may generate

one or more moves (inappropriate hypotheses may even generate none). This section

describes how hypotheses are used to generate moves.

Figures of merit specific to hypotheses are described here. Some adjustments

made to figures of merit are common to all hypotheses. These are described in

Section 10.7.

10.6.1 Edge Extrapolation Hypotheses

Given the immediate objective of completing the vertex/edge framework, it is desir-

able that there should be at least one move generated wherever there is an obviously

incomplete vertex. To this end, 2D lines are extended from incomplete vertices, in

the same manner as in Grimstead’s system [38]. These lines are extended both (i)

from true incomplete (or potentially incomplete) vertices, in which case the vertex

itself is the originating vertex for the line and several alternative lines may be gen-

erated in different directions, and (ii) from T -junctions, in which case the vertex at

the other end of the defining line of the T -junction is the originating vertex, and a

single line is extended only along the existing edge.

As can be seen in Figure 10.6, this is comparatively simple when only trihedral

vertices are allowed (see [173]). It is more complex when non-trihedral vertices are

allowed for two reasons: firstly, it is not always clear how many additional edges

are required at a vertex; and secondly, in the cases of K-vertices and Z-vertices,

additional edges will be extensions of existing edges, and thus bundled together

with an edge already arriving at the vertex (something impossible with trihedral

vertices).

The former concern is addressed by ensuring that the figures of merit for lines

extrapolated at a potentially-incomplete vertex sum to (Emin−E)+Te(Emax−Emin),

where E is the current number of edges at the vertex, Emin is the minimum number

195

Figure 10.6: Extrapolated Lines for J Block

of edges required by the vertex type, Emax is the maximum number of edges required

by the vertex type, and Te is a tuning constant.

Where the incomplete vertex cannot be a K-vertex or Z-vertex, RIBALD extra-

polates lines along all bundles not already used by edges arriving at the vertex, and

divides the total figure of merit amongst them in proportion to the number of edges

in each such bundle.

Where the incomplete vertex is known to be a K-vertex or Z-vertex, and an

extension of an existing edge is clearly required, the figure of merit for this is 1;

remaining merit (if any) is divided equally amongst extrapolated lines along other

bundles, as above.

Where the incomplete vertex may or may not be a K-vertex or Z-vertex, the

figure of merit for extending an existing edge is Tz (another tuning constant); re-

maining merit is divided equally amongst extrapolated lines along other bundles, as

above.

The figure of merit for an edge through a T -junction is 1. Since the z coordinates

of T -junctions are unreliable, the mean 3D direction for edges in this bundle is used

rather than the 3D direction of the defining edge of the T -junction.

Geometrically, an extrapolated line is defined by the coordinates of its origin-

ating vertex and the 3D vector associated with the bundle of parallel lines (see

Chapter 2.9).

Moves are generated by considering each pair of extrapolated lines. If the two

lines are bundled together, the hypothesis is that they are really the same edge;

a new-edge move is generated to connect the two originating vertices. The initial

new-edge figure of merit is the product of the two extrapolated line figures of merit

196

and the figure of merit for 3D parallelism between a vector joining the two vertices

and the mean vector for edges in the bundle. This initial figure of merit will be

adjusted, as described below, for geometric plausibility and numbers of crossings.

Otherwise, a new-vertex move is generated where the two lines intersect. The

predicted x- and y-coordinates of the hypothesised vertex are the coordinates of the

intersection; the z-coordinate is predicted by taking the mean of values obtained by

extending 3D lines along the bundle vectors from the two originating vertices. The

initial new-vertex figure of merit is the product of the two line figures of merit, a bias

for crossings including known lines (1 if either line is extended through a T -junction,

tuning constant Sx otherwise), and the two figures of merit for parallelism between

the mean bundle vectors and the actual vectors between the two originating vertices

and the hypothesised new vertex. Again, this initial figure of merit will be adjusted

for geometric plausibility and numbers of crossings.

When a crossing location occurs outside the object boundary, it is likely that

the hypothesis generating it is incorrect—this is common to all hypotheses, and is

discussed in Section 10.7 below.

However, some moves can be ruled out geometrically before being generated and

without considering all faces of the object. Consider, for example, Figure B.45. It

is clear that however many new edges are to be created at any of the Lba junctions,

they must all leave their originating vertex in a direction which is within the angle of

the L. Similarly, however many new edges are created at the Lab junction, they must

all leave the vertex in a direction which is outside the angle of the L. This concept

can be extended to all visible vertices—see Tables 10.2–10.6 for those junction labels

for which RIBALD tests for sensible arcs (arc identifiers are shown in Figures 10.7–

10.11). Whenever the target (the other end for a new-edge move or the new vertex

for a new-vertex move) is outside the sensible arc, the move is abandoned.

RIBALD implements a similar concept for lines through T -junctions. For these,

it is required that n · t̂ > |t|, where n is the vector from the originating vertex to the

target and t is the vector from the originating vertex to the T -junction—the target

is in the same general direction from the originating vertex as is the T -junction, and

the true edge is at least as long as the part of it which is visible in the drawing.

It was suggested in [173] that moves based on lines which cross many other

lines should be lower-merit than moves which cross few other lines. To this end,

197

A

B

C

D

Figure 10.7: Arc Labels
for L-junctions

A B

C

DE

F

Figure 10.8: Arc Labels
for W -junctions

A B

C

DE

F

Figure 10.9: Arc Labels
for Y -junctions

A B

CD

Figure 10.10: Arc Labels
for T -junctions

A

B

CD

E

F

Figure 10.11: Arc Labels
for Z-junctions

RIBALD multiplies the merit of moves from crossing and merging hypotheses by

(mAmB)/(
∑

miA
∑

mjB), where for every pair of lines A and B, mA is the merit of

line A, mB is the merit of line B,
∑

miA is the sum of the merits of all lines crossing

or merging with line A, and
∑

mjB is the sum of the merits of all lines crossing or

merging with line B. It is not clear that this is necessary or desirable—it is possible

that omitting this stage entirely would have no damaging effect on results, and a

sound case can be made for multiplying only by the factor for the less-crossed line

Label Arc A Arc B Arc C Arc D

Lba Y N N N
Lab N Y Y Y
Lac N N N Y
Lcb N Y N N
Lbd Y N N N
Lda Y N N N
Laa Y N N Y
Lbb Y Y N N

Table 10.2: Sensible Arcs for L-Junction Labels

198

Label A B C D E F

Wbca Y Y N N N N
Wbda Y Y N N N N
Wbcd Y Y N N N N
Wdca Y Y N N N N
Wbaa Y N N N N N
Wbba N Y N N N N
Wbdc Y N N N N N
Wcda N Y N N N N
Wcac Y N N N N N
Wcbc N Y N N N N
Wdac Y N N N N N
Wcbd N Y N N N N
Wdad Y N N N N N
Wdbd N Y N N N N
Wacc N N N N N Y
Wccb N N Y N N N
Wadc N N N N N Y
Wcdb N N Y N N N
Wdcb N N Y Y N N
Wacd N N N N Y Y
Wabd N N Y Y Y Y
Wdab N N Y Y Y Y

Table 10.3: Sensible Arcs for W -Junction Labels

(the higher of mA/
∑

mjB and mB/
∑

miA). Since the optimum values of tuning

constants would inevitably be different for these alternatives, and determining such

optimum values is time-consuming, they have not been investigated.

Since the resulting geometry is relatively reliable for normalons but less so for

non-normalons, the figure of merit for the hypothesised vertex coordinates depends

on this, being FGx

T for normalons and F
Gy

T for non-normalons (where FT is the

figure of merit for the topological move and Gx and Gy are tuning constants).

In practice, if lines are extended wherever a vertex’s permitted underlying vertex

type might be non-trihedral (for example, a Wbca junction can be interpreted as

all-convex trihedral, all-convex tetrahedral, or 3-convex+1-concave tetrahedral), the

number of lines extended is unduly large, the number of line crossing hypotheses is

excessive, and topological reconstruction becomes slow and (since the chance of a

particularly bad hypothesis being accepted is increased) less robust. Various options

199

Label A B C D E F

Yabd N N Y Y Y Y
Yaab N N N N Y Y
Yabb N N N N Y Y
Yacc N N N N N Y
Yacd N N N N N Y
Yadd N N N N Y Y
Ybdd Y Y N N N N
Ybcc Y N N N N N
Ybdc Y N N N N N
Yabc N N Y Y Y Y

Table 10.4: Sensible Arcs for Y -Junction Labels

for reducing the number of lines extended have been investigated.

One such idea is for the set of permitted underlying junction types to be chosen

to be the trihedral types plus the set of the single simplest interpretations of each

evidently non-trihedral vertex (for example, all Wbca junctions must be interpreted

as all-convex trihedral unless there are junctions for which the single simplest inter-

pretation is all-convex tetrahedral or 3-convex+1-concave tetrahedral; if there is an

all-convex tetrahedral vertex anywhere in the drawing, every Wbca junction may,

but need not, be interpreted as all-convex tetrahedral). This cuts down the num-

ber of extended lines, but produces unacceptable results. Figure B.279 shows one

example where the idea of only allowing non-trihedral underlying types implied by

something visible fails; Figures B.189 and B.336 are others.

Limiting the final underlying types of vertices to those implied by the chosen

labelling (i.e. if the chosen labelling can be satisfied assuming 3-hedral and 4-

hedral vertex types, then 5-hedral and 6-hedral vertex types are not allowed in

the topological completion) is safe, but does not necessarily reduce the number of

extrapolated lines to a sensible level.

Another idea, incorporated in the current version of RIBALD, is to allow all

K-type and Z-type underlying vertex types if the labelling of any vertex implies

unambiguously any K-type or Z-type underlying vertex type, and none otherwise,

and to allow all X-type and M-type underlying vertex types if the labelling of any

vertex implies unambiguously any X-type or M-type underlying vertex type, and

none otherwise. This appears at the time of writing to be the best compromise

200

Label A B C D

Occluding T Y Y N N
Tbda Y Y N N
Tbdc Y Y N N
Tdab Y Y N N
Tdac Y Y N N
Tbca Y Y N N
Tcab Y Y N N
Taba N N Y N
Tcca N N Y N
Tcda N N Y N
Tdda N N Y N
Tabb N N N Y
Tccb N N N Y
Tdcb N N N Y
Tddb N N N Y
Tcac N Y N N
Tbcc Y N N N

Table 10.5: Sensible Arcs for T -Junction Labels

Label A B C D E F

Zcbda N Y Y Y Y N

Table 10.6: Sensible Arcs for Z-Junction Labels

between flexibility and robustness.

Assuming that the number of bundles does not depend on the number of lines in

the original drawing (not necessarily a good assumption), O(n) lines are extrapol-

ated, and therefore O(n2) moves are generated per iteration, and the process takes

O(n2) time per iteration.

10.6.2 Local Topology Hypotheses

Inspection of the test drawings shows that quadrilateral, usually rectangular, faces

occur frequently in engineering practice. RIBALD generates moves which create

or imply rectangular faces, in order to bias selection of moves towards rectangular

construction. Two local configurations of vertices lead to useful hypotheses.

Firstly, given any two incomplete vertices A and B separated by a single complete

201

vertex C, adding a new vertex D to form a parallelogram ACBD is plausible. The

figure of merit is based on a fixed value for this type of move (tuning constants

Th, Ti, Tt or Tu) multiplied a factor based on the proportion of quadrilateral faces

in the partially-completed object and a fixed minimum value (tuning constant Tx)

to encourage such moves even where no quadrilateral faces are present. By way of

illustration, this hypothesis would generate the back face of Figure B.91 and the

two back faces of Figure B.96.

If two incomplete vertices A and B are separated by two complete vertices C and

E, adding an edge to join A and B to form the quadrilateral ACEB is plausible.

The figure of merit is based on a fixed value for this type of move (tuning constants

Tj , Tk, Tv or Tw) multiplied by a factor based on the product of the proportion of

quadrilateral faces in the partially-completed object and the figure of merit for 3D

parallelism of the supposedly parallel lines AC and BD, also with a fixed minimum

value (tuning constant Ty). By way of illustration, this hypothesis would complete

the front, partially-occluded face of Figure B.91.

In principle, the neighbourhood of each complete vertex can be examined in

constant time to see if it matches the templates for these two move types, so this

process could take O(n) time per iteration.

10.6.3 Occluding T -Junction Hypotheses

Hypotheses can be made for occluding T -junction completion, extending the meth-

ods used by Grimstead [38], who used both local and distant T -junction completion.

Local occluding T -junction completion is illustrated in Figure 10.12. A true

vertex must exist somewhere further along the defining edge of the T -junction. It

is plausible that this vertex is connected to the first non-occluding vertex reached

by following the occluded region around along the occluding line. This would, for

example, join vertices T to vertices A in Figures 10.2 (page 187) and 10.4 (page 187).

The connection may be achieved by adding a single edge, as in the right-hand figure,

or it may be achieved by adding a vertex and two edges, as in the left-hand figure. In

either case, the figure of merit is the tuning constant Tf multiplied by the proportion

of known faces in the object which would have the same number of sides as this

method would predict.

202

Figure 10.12: T Junctions—Local Al-
ternatives

Figure 10.13: T Junctions—Distant
Alternatives

For arrow occluding T -junctions (Tbaa as in Figure 10.4 or Tbab as in Fig-

ure 10.2), one pair of moves is generated, obtained by following the occluded region

in the appropriate direction (clockwise or anticlockwise, respectively). For non-arrow

occluding T -junctions (Tbac and Tbad), both such pairs are generated.

It is also worth generating moves from distant occluding T -junction completion—

the hypothesis that for arrow T -junctions, the true vertex is connected to the next

incomplete junction in the other direction around the object boundary (this would

join vertices T to vertices B in Figures 10.2 and 10.4). This may or may not be true

in practice, so has a separate tuning constant, Tg, for its figure of merit. Again, pairs

of moves are generated, one which connects by adding a single edge, and another

which connects by adding a vertex and two edges.

Generating the first sort of move takes O(n) time per iteration of generating,

arbitrating and executing moves. Assuming that the size of the object boundary is

O(n), generating the second sort of move takes O(n2) time per iteration.

10.6.4 Symmetry Hypotheses

Chapter 8 described production of a list of mirror chains, where each mirror chain

tracks a potential plane of mirror symmetry across one or more visible faces. For

each such chain which has been identified, an attempt is made to create a list

of correspondences between the current partially-complete object and the mirror-

image which would be generated by reflection. Each atom (vertex, edge or face)

in the mirror chain is matched to its equivalent after the reflection operation, and

then an attempt is made to propagate the matches through the existing part of the

partially-completed object (RIBALD uses the propagation mechanism in [178]).

203

Atoms in the mirror-image which have no correspondence to atoms in the original

are assumed to correspond to extra atoms which will be required, and the appropri-

ate moves for creating them are generated (RIBALD generates moves for vertices

and edges, and for quadrilateral faces where the loop of edges already exists).

Single atom hypotheses based on chains of mirrors are allocated figures of merit

based on the figure of merit of the chain, as described in Chapter 8. This is mul-

tiplied by tuning constant Tl and divided by the number of new atoms required to

create a complete pairing. If, when propagated, the pairings pair incompatible edge

types, the merit is halved for each such incompatibility (the resulting topological

hypotheses sometimes provide useful local information even though it cannot lead

to a consistent global solution).

The provisional coordinates of newly-created vertices are determined from the co-

ordinates of the unmatched vertices and the equation of the mirror plane (see [178]).

As mirror chains are better at generating topology than geometry, the figure of merit

for hypothesised vertex geometry is lower than that for the hypothesised topology

(RIBALD uses the square of the topology figure of merit).

In addition to the single-atom hypotheses, RIBALD also generates a macro-move

(Section 10.5.4) for each mirror chain for which no macro-move has already been

accepted. The figure of merit for the macro-move is the figure of merit for the mirror

chain multiplied by tuning constant Tm.

To prevent mirror hypotheses being re-made on every iteration, if there is some-

thing wrong with the pairing, the merit of the chain as well as that of the hypothesis

is reduced.

Once a mirror macro-move is accepted, the hypothesis which generated it will

not be used in generating either single-atom moves or macro-moves in subsequent

iterations of topological reconstruction. In practice, the remaining topology required

will usually be that which is implied but not required by the symmetry operation,

and single-atom moves should be generated for these instead. RIBALD only makes

one such inference: where the symmetry operation pairs two vertices which require

at least one more edge, a move to create an edge linking them is generated (providing

no such edge already exists). The figure of merit for this is the product of the merit

of the symmetry hypothesis multiplied by tuning constant Sw.

204

Similarly, single-atom hypotheses derived from rotational symmetries are pro-

duced from pairings of equivalent vertices, edges and faces before and after the

symmetry operation. In the case of rotations about a face centre, this process is

seeded by noting that the face is its own equivalent, and storing the equivalent ver-

tices and edges before and after the operation for each vertex and edge on the face;

the axis of rotation is calculated by finding the best plane through the vertices on

the face, and extending a normal to this plane from a point in the centre of the

face. In the case of C2 rotations about an edge mid-point, the equivalence process

is seeded by noting that the edge is its own equivalent, the vertices at either end

of the edge are equivalent to one another, and the faces adjacent to the edge are

equivalent to one another; the axis of rotation is as close as possible to the sum of

the face normals of the adjacent faces while being constrained to be perpendicular

to the edge direction. In the case of rotations about vertices, the equivalence process

is seeded by noting that the vertex is its own equivalent, and storing the equivalence

relations of the edges and faces adjacent to the vertex; the axis of rotation is the

sum of the face normals of the adjacent faces.

Equivalence is propagated through the object in a similar way to mirror pairing

propagation as described above, the only difference being the size of the appropriate

symmetry group cycle (e.g. for C3, if A1
→ A2 and A2
→ A3 then A3
→ A1).

The base figure of merit for a hypothesis based on rotational symmetry is the

figure of merit for the symmetry element. As with mirror planes, this is multiplied

by tuning constant Tl, divided by the number of moves generated by the symmetry

element, and halved whenever the pairings pair incompatible line types,

Rotations about edge centres are included for completeness, and it may be better

to omit reasoning based on them from a practical system: there are few if any draw-

ings for which these give any additional topological information (for example, the

two hidden faces of Figure 10.14 which can be deduced from edge-centred rotation

hypotheses can also be deduced by other means), and the calculation which produces

geometric location estimates for hidden vertices is relatively slow and comparatively

inaccurate.

If pairing of vertices and edges is complete, and all vertices have at least the

minimum number of edges required, it is plausible that the vertex/edge framework

is already complete. In this case, RIBALD reinforces the completeness hypothesis

205

by the symmetry operation figure of merit.

There are O(n) symmetry elements, and producing a pairing takes O(n4) time,

so generating symmetry moves takes O(n5) time per iteration.

10.6.5 Feature Hypotheses

Each feature hypothesis from Chapter 6 which remains valid generates a correspond-

ing feature macro-move (feature hypotheses become invalid if the topology of any

vertex in the feature template has been changed by a previously-accepted move).

The figure of merit of the move is the figure of merit of the feature.

RIBALD does not generate new-vertex, new-edge or new-face moves which would

produce part of the feature—this is partly because time to implement this idea

was not available, and partly because such moves would reinforce identical moves

generated by other hypotheses and thus always be chosen in preference to the feature

macro-move.

10.6.6 Classification Hypotheses

Early versions of RIBALD generated moves on the basis of classification identified

by the methods of Chapter 9, in order that when a drawing qualified for two or more

classes, moves suggested by both classes would reinforce one another. Identification

of compatible and incompatible classes, as described in Chapter 9.4, supersedes this

idea.

10.6.7 Nearly-Complete Hypotheses

When it can be recognised that the problem of constructing a topology is near a

solution, moves which lead towards the solution should be preferred to those which

lead away from it. To this end, moves are also generated by analogy with some of

the simpler endgame positions described in Section 10.3.

If an object contains no necessarily incomplete vertices and no T junctions, it

is reasonable to conclude that all vertices and edges have been found. In these

circumstances, the base merit for the “already complete” move is 1/nF , where nF is

the number of additional faces (as predicted by Euler’s formula) required to complete

206

the topology (N.B. if there are no additional faces required, no more topology can be

added and the object is automatically complete). This is multiplied by the figures

of merit for completeness of each vertex.

In any object which contains exactly two necessarily incomplete vertices and

these vertices are not connected by an existing edge, it is reasonable to add a single

hidden edge connecting them to complete the vertex/edge framework. It is not

always a good hypothesis for non-trihedral objects, as Figure 10.15 shows. This

move, if generated, has a fixed figure of merit Ta.

Figure 10.14: Edge-Centred Rotation Figure 10.15: A Good Move?

The same deduction can be made in any object which contains exactly one ne-

cessarily incomplete vertex and exactly one T junction, and the vertex is located

approximately on a continuation of the edge defining the T junction. It is reasonable

to extend this edge to the biconnected junction to complete the vertex/edge frame-

work. The figure of merit is the product of Tb and the figure of merit for parallelism

between the original edge vector and the new edge vector.

If there are exactly three necessarily incomplete vertices remaining, it can be

hypothesised that there exists a single trihedral hidden vertex connected to all three.

The figure of merit is a tuning constant, Tc. The coordinates of the new vertex are

the mean of the coordinates of the closest points of approach of pairs of vectors

extended along unused bundles from the three incomplete vertices.

Finally, if there are exactly four necessarily incomplete vertices remaining, some-

times the best way of completing the vertex/edge framework is to add two new edges

to join these vertices in pairs; unless edges already exist joining these vertices, there

will be three ways of doing this. All six new-edge moves are generated, with a fixed

figure of merit given by the tuning constant Td.

207

These moves have no affect on the order of the overall algorithm as the situations

which cause them to be generated occur once only.

10.7 Hypothesis Adjudication

Since each move has an associated figure of merit, selecting a move should simply

be a matter of choosing the one with the highest figure of merit (the more complex

ideas suggested in [173] have been discarded). It is possible that the generating

mechanisms favour one or other type of move disproportionately—the inclusion of

various tuning constants is intended to overcome this. There are also general con-

siderations which apply to all moves, irrespective of the hypotheses which generated

them, which must be evaluated before selecting the best move. Some moves can

be rejected outright; other moves may have their merit reduced because their con-

sequences contradict beliefs about the object; and moves which appear to represent

the same additional topology can be combined.

10.7.1 Rejected Moves

Hypothesis adjudication should store the hypotheses and their figures of merit in

order that if the top recommendation is rejected, either immediately or later, the

next recommendation can be tried instead.

RIBALD rejects a move if, while the object remains incomplete, the resulting

tree of subsequent moves is empty. It also rejects a move if, after making the move,

the object becomes invalid (the object has exactly two vertices to which further

edges are to be added, and these vertices are already linked by an edge) or too

complex (the object remains incomplete, but there are already more hidden faces

than visible faces—this prunes out long tree-searches which can occur when a poor

choice of initial move results in more and more detail added to the back of the object

in an attempt to produce a valid object).

10.7.2 Undesirable Moves

RIBALD reduces move figures of merit if the hypothesised move conflicts with beliefs

about the object as a whole, or for other reasons which reduce their plausibility.

208

As described above, whenever a new hidden vertex is hypothesised, a prediction

is made of its geometric location, and this geometric prediction has its own figure

of merit FG.

Any hypothesis which places a new vertex in a location in which it would

be visible given the existing faces should have its figures of merit reduced—it is

probably invalid (if the frontal geometry estimates were perfect, this would be cer-

tain). RIBALD reduces the merit of both the move and the hypothesised location

(F ′

T = TpFT ; F ′

G = Tp
2FG) when it detects this case. This is intended to allow for

the fact that the geometry of the partial object is at best provisional, and thus loca-

tions derived from it are inaccurate, without rejecting better hypotheses which place

the new vertex in a hidden location. For reasons of speed, the test is implemented

by comparing the hypothesised location with the minimum and maximum x- and

y-coordinates and minimum z-coordinate of the object, not as a (higher-order and

slower) test that a visible face can be found which would occlude the new vertex.

RIBALD should, but does not, make this adjustment for macro-moves (completion

from a mirror chain, or completion of a feature) as well as for discrete additions to

the topology.

Similarly, on the basis that most objects are drawn as if they were resting on

a flat plane, any move which hypothesises a vertex “underneath” this base plane

should have its merit reduced, as above. RIBALD should, but does not, implement

this.

Moves which would generate edges which are clearly out of place in the object

by virtue of being unusually short or unusually long have their merit reduced. In

addition, it is reasonable that shorter edges are generally to be preferred to longer

edges, as adding a long edge is a more drastic change to the topology (this seems

to work reasonably well in general, although it aggravates the problem noted below

concerning Figure B.71). New-edge moves are adjusted as follows (Ts and Tr are

tuning constants):

• If the length LE of a new edge is shorter than the length LS of the shortest

visible edge, multiply by
(

LE

LS

)Ts

• If the length LE of a new edge is longer than the length LL of the longest

visible edge, multiply by Tr

(
LL

LE

)Ts

209

• Otherwise, multiply by LE(1−Tr)+LSTr−LL

LS−LL

Moves which generate two new edges (and a new vertex) have their merit multi-

plied by the geometric mean3 of these factors for the two edges. As with adjustments

for vertex coordinates, RIBALD should, but does not, multiply macro-move merit

figures by edge length adjustments.

If a hypothesised edge (either on its own or part of a vertex+edges move) passes

suspiciously close to an existing vertex (particularly an incomplete existing vertex),

it is likely that the hypothesis is wrong and the edge should terminate at the nearby

vertex. To illustrate the concept, consider Figure B.448 after completion of the

underslot: an edge connecting the far bottom corners is a valid addition, but two

shorter edges connecting the far bottom corners to the far ends of the underslot is

preferable.

RIBALD includes a test for this: when it detects that a hypothesised edge AB

(with merit FE) passes close to an incomplete vertex V , it generates moves to create

edges AV and BV (both with merit TnFE) and lowers the merit of the move gener-

ating AB to (1−Tn)FE. This test should, but does not, include a merit adjustment

based on exactly how close the longer edge gets to the incomplete vertices. Care

has to be taken to avoid infinite recursion, which can happen when a third vertex is

close to one of the vertices linked by the hypothesised edge. For example, new edge

AB is hypothesised, and B is close to C, AC is hypothesised instead, but since C

is close to B, ...

It was noted in Chapter 2.8 that the presence of more than one subgraph in a

drawing sometimes (but not always) indicates the presence of a hole loop feature

in the object. For this reason, hypotheses which would create edges which join

vertices from different subgraphs should be discouraged but not forbidden. RIBALD

multiplies the figure of merit for any such move by tuning constant Sy; in addition,

where the subgraphs have been identified as of different types (e.g. one is a pocket,

and the other is a boss) the figure of merit is further multiplied by tuning constant

Sz.

In an early version of RIBALD [173] which only processed trihedral drawings, if

the figure of merit for the complete object being a normalon was non-zero, any move

3If either edge factor is small, the combined factor should also be small.

210

which clearly implies an odd-sided face was downgraded (F ′

T = FT (1−Fnormalon)).

Although this test could in principle be adapted to the non-trihedral domain, it is

less straightforward (consider, for example, the “pentagonal” faces of Figures B.159

and B.265), and it has not been retained.

It is always possible to complete topology by adding triangles to the hidden part

of the object, but it is usually a bad idea to do this (Figure B.365 is a rare counter-

example). The merit of any new-edge or new-vertex hypothesis which introduces a

triangular loop of edges when the frontal geometry contained no complete triangular

faces is multiplied by To, a tuning constant.

In the earlier, trihedral version of RIBALD [173], when two or more hypotheses

generate moves with the same connectivity but with incompatible edge types (one

convex, the other concave), choice between them was deferred until a later iteration

(by which time one or other of the hypotheses may have been abandoned) providing

there were other reasonable moves. This has not been retained—the non-trihedral

interpretations of junction labels such as Wbca are ambiguous and likely to remain

so however much else of the object is reconstructed, and deferring the best hypo-

thesis until later is likely to do more harm than good. It could be argued that this

idea should nevertheless apply to other cases where there are two or more similar

hypotheses and choice between them can sensibly be deferred while there is other

reconstruction work to do. RIBALD does not include any such tests.

10.7.3 Combining Moves

Where two or more hypotheses suggest the same move, the moves are merged and

the figure of merit reinforced. Whenever equivalent moves are merged, the predicted

locations are merged by calculating a weighted mean location, the weights being the

geometric figures of merit.

RIBALD should, but currently does not, increase figures of merit where different

moves suggest different but compatible hypotheses which would create vertices in

more or less the same place, e.g. one move generates a vertex V and edges connecting

it to A and B, and another move generates a vertex in the same place and edges

connecting it to A and C. Adding this would be straightforward, but optimising the

necessary tuning constants would be time-consuming.

211

RIBALD should, but does not, reinforce figures of merit where entirely different

move types would have the same consequences. An example of this would be a new

vertex move (Section 10.5.1) which, incidentally, also creates a quadrilateral face,

and a quadrilateral new face move (Section 10.5.3) which includes three existing

vertices in the loop.

10.8 Special-Case Recovery of Topology of Hid-

den Parts

Reconstruction of the topology of special classes of objects is important for two

reasons. Firstly, quick and robust methods exist for some classes (particularly ex-

trusions), improving average performance even if general-case methods are used for

irregular objects. Secondly, it may be the case (Section 10.9 appears to indicate

this) that no wholly-reliable general-case mechanism exists; if this is so, attempting

to decompose objects (as outlined in Chapter 2.16) until a successful classification

can be made of each piece provides an alternative route for attacking the general

reconstruction problem; there has not been time to investigate this idea.

For comparison purposes, RIBALD includes an option to force use of the general-

case mechanism for classes where it would not normally be used.

10.8.1 Right Extrusions and Frusta

The topology of an extrusion or frustum is easily reconstructed by creating a back

end cap with the same topology as a mirror-image of the front end cap, and joining

equivalent vertices in the two end caps by side edges and faces. There are bene-

fits both in terms of speed (special-case topological recovery for extrusions is very

quick, and extrusions are common) and in reliability (the general-case hypothesis

mechanism is given no chance to make mistakes).

For simplicity, RIBALD processes as an extrusion any drawing which has been

classified as an extrusion and as also belonging to some other compatible class, in-

cluding prisms, cubes and other axis-aligned extrusions. RIBALD also uses this

mechanism for extrusions with through holes in the direction of extrusion (topolo-

gical completion of extrusions with side-to-side holes or pockets is more complex and

212

RIBALD uses the general-case mechanism for these). In addition, it is a reasonable

assumption that drawings which might be extrusions or frusta but are not classified

as such, such as Figures B.514 and B.111, are topologically equivalent to extrusions

and frusta; RIBALD completes the topology as if the object were an extrusion and

then adjusts vertex x- and y-coordinates to match the drawing.

10.8.2 Normalons

RIBALD uses the general-case mechanism already described for normalons. Before

doing so, it limits the underlying vertex types of all vertices to the set of types found

in normalons: the trihedral types plus Zcdcd and Zcdcdcd (note that although Y abd

junctions cannot be Zcdcd vertices in normalons, they can be Kcdcd vertices in non-

normalons). This limitation, plus the fact that there are only three edge bundles

in normalons, significantly reduces the number of extrapolated lines. Section 10.9

shows the resulting improvement in speed and reliability.

10.8.3 Single Symmetry Dominates

RIBALD uses the general-case mechanism to complete the vertex/edge framework

of drawings classified as semi-axis-aligned with mirror plane, since the general-case

mechanism already includes a macro-move for reconstructing topology from a mirror

plane (this will usually be the highest-merit move on the first iteration). Since the

resulting framework will often not be complete (for example, constructing topology

from a mirror plane will not create an edge bisected by the mirror plane), some

general-case processing is in any case required for most such objects.

10.8.4 Platonic and Archimedean Solids

Only the simplest of the Platonic and Archimedean solids can be reconstructed

using the general mechanism: the tetrahedron (Figures B.114 and B.115), octa-

hedron (Figure B.117), truncated tetrahedron (Figure B.125) and truncated cube

(Figures B.121 and B.122). Failures do not necessarily indicate a deficiency in the

ideas in this chapter—it has already been noted that the Platonic and Archime-

dean solids are those which most often defeat parallel line bundling (Chapter 5) and

inflation (Chapter 7).

213

Even if the topology of Platonic and Archimedean solids can be completed using

the general case ideas, there is no benefit in doing this if (as is usually the case) the

geometry must then be reconstructed as a special case. Thus, in a practical system,

both the topology and the geometry of a Platonic or Archimedean solid should be

read from a database of the known finite set of such solids.

Note, however, that the regular solids make useful test cases to determine whether

RIBALD handles objects with multiple high-merit symmetries correctly.

10.8.5 Multiple Symmetries

The only test drawings which meet the criteria of multiple high-merit symmetries

are the Platonic and Archimedean solids and highly-symmetric axis-aligned solids.

RIBALD handles these as described above.

10.9 Results

Analysing the methods outlined in this chapter, it would appear that topological

reconstruction always terminates, but may be very slow, particularly if backtracking

occurs. It may terminate because it has produced a complete framework, or because

it has no valid way of doing so. Even if it has produced a complete framework, there

is no guarantee that it is the one the user wanted. The test results in this section

therefore consider the problems of time, and of predictability and reliability.

The test cases analysed were all test drawings for which any labelling method

analysed in Chapter 4 produced the correct output and for which a valid polyhedral

interpretation exists (i.e. drawings such as Figures B.149 and B.146 are excluded,

but Figure B.147 is included as it could be a non-normalon polyhedron). Note that

the test cases specifically include figures with bosses such as Figure B.429—although

it is already known that RIBALD will not interpret these correctly (there has not

been time to implement the ideas of Chapter 2.16) it remains to be demonstrated

that a valid (albeit necessarily incorrect) interpretation of such drawings will be

produced in a reasonable time. Where any bundling option (see Chapter 5) produced

correct results, that option was used; otherwise, the default option was used. The

default option for inflation (see Chapter 7) was used in all cases.

214

It was found that the topology completion process terminates for all test cases

(however, if the general-case mechanism is used for the Archimedean solids in Fig-

ures B.132 and B.126 or the extrusion in Figure B.538, it does not terminate—this

is probably an implementation problem). In most cases, it terminates in interactive

time—see Section 10.9.3. In many cases, RIBALD produces the expected output; in

most cases, RIBALD produces topologically valid solids (in a few cases, these solids

are not geometrically realisable in 3D); in some cases, RIBALD found no interpret-

ation or was unable to make progress. Reliability is analysed in Section 10.9.1.

10.9.1 Predictability and Reliability

Three factors must be considered in analysing predictability and reliability: whether

or not the process produces the desired output, whether or not the process produces

any acceptable (topologically-valid) output, and how sensitive these results are to

variations in the process.

Where RIBALD recognises a drawing as an extrusion, it always reconstructs the

topology correctly (RIBALD classifies all but one of the 96 drawings of extrusions

correctly; the exception is Figure B.420 which is not classified as an extrusion be-

cause RIBALD is unsure whether the central hole loop is a hole or a boss). If forced

to use the general-case mechanism, 67 extrusions are reconstructed correctly; RIB-

ALD produces incorrect but geometrically-valid interpretations of 13 other drawings,

and fails to produce any interpretation for 16 drawings.

RIBALD reconstructs all 6 drawings of frusta tested correctly. If forced to use the

general-case mechanism, 5 are reconstructed correctly; the exception is Figure B.141

(see next section).

RIBALD reconstructs all 19 drawings of Platonic and Archimedean solids cor-

rectly. If forced to use the general-case mechanism, 6 are reconstructed correctly;

RIBALD produces unexpected but topologically valid interpretations of 8 other

drawings, and fails to produce any interpretation for 5 (including Figures B.132

and B.126).

Using the ideas in this chapter, 64 of the 80 drawings of non-extrusion normalons

can be interpreted correctly, although in many cases this requires hand-chosen val-

ues of tuning constants. With the best fixed set of tuning constant values so far

215

(those listed in Appendix C), RIBALD reconstructs 41 correctly, produces valid

but unexpected interpretations of another 7 (including Figure B.74), and fails to

produce any interpretation of 32 drawings.

Using the ideas in this chapter, 211 of the 271 remaining drawings have been

interpreted correctly; again, doing so sometimes required hand-chosen values of

tuning constants. With the tuning constant values listed in Appendix C, RIBALD

reconstructs 102 correctly, produces valid but unexpected interpretations of another

85, and fails to produce any interpretation of 84 drawings.

10.9.2 Problems Encountered

In testing complex drawings, it was found that most of the problem cases—failure

to find a valid framework, finding a valid but implausible framework, and taking too

long—resulted from a few causes.

The most common, and most serious, classifiable error results from the idea of

reconstructing the vertex/edge framework without filling in face loops. It was seen in

Chapter 5.5 that the direction of turn at a corner on a face, the convexity/concavity

of edges leaving the face at that corner, and the direction (above or below) in

which they leave the plane of the face are related. Where the face loop has not been

completed, the plane of the face is unknown, so it is not possible to reject hypotheses

which could, if the plane of the face were known, be rejected as absurd. However,

since in many cases only the vertex/edge framework is known, and filling in face

loops has been deferred, a crucial datum is missing and RIBALD cannot deduce

that the move should be rejected.

For example, when hypothesising a convex edge joining two vertices which are

placed at convex turns on existing face loops, it is known that the edge must be

below both face planes. If, geometrically, the edge is above one or both face planes,

the hypothesis is absurd and should be rejected. Consider Figures 10.16 and 10.17.

If it is known that lines A, B and C are convex, the edges to be added at the

incomplete vertices at the ends of lines A and B must leave those vertices below the

planes of the faces, so adding edge D is wrong. (If, however, lines A, B and C were

concave, adding a convex edge D would be valid and probably correct.)

216

A

B

C

Figure 10.16: Before

D

Figure 10.17: After

A

Figure 10.18: Isolation Error Figure 10.19: No Polyhedral Geo-
metry

A move adding a single edge should not be accepted if the edge splits the ver-

tex/edge graph of the object such that one half contains a single incomplete vertex—

see Figure 10.18, where vertex A would be isolated if the edge indicated by the dotted

line were to be added. Detecting problems of this sort is not straightforward, and a

literature search [33, 37, 106] did not find a known method for this.

With some drawings, lines are extrapolated from incomplete vertices but they

do not cross, so no moves are generated. Consider, for example, Figure B.407.

After accepting the obvious initial moves, completing the quadrilateral base and

adding an edge to join it to the topmost vertex, there remain four extrapolated

lines, all parallel. Obviously, where there are four parallel concave lines, it would be a

reasonable hypothesis to terminate them all by adding a quadrilateral face normal to

the lines to form a pocket, and introducing such a hypothesis into RIBALD would not

be difficult. It would, however, only remove the problem in this particular case—the

14 other drawings where a similar problem occurs would require other solutions. The

most extreme case is Figure B.89, where, after completing the obviously cuboidal

end-pieces, there remain seven extrapolated lines (two groups of three parallel lines

217

Figure 10.20: Extrapolated Lines do not Cross

and a vertical line down from the central vertex), none of which cross—see the

right-hand side of Figure 10.20.

At times, RIBALD can produce a topology which has no valid non-self-intersecting

geometric realisation as a polyhedron. One such cases is illustrated in Figure 10.19

(deriving from Figure B.336). This is still under investigation.

One common fault with earlier versions of RIBALD which still appears with some

objects is that it splits perfectly good quadrilateral faces into triangles by adding

an edge joining opposite corners, when ambiguous underlying vertex types permit

this. The “framework is complete” hypothesis alleviates this problem, as does the

avoidance of triangular loops when none are visible in the drawing. It may be that a

finer balance between tuning constants is required, but more often, the extraneous

edge is not added last, so the balance between completeness and adding an extra

edge is not tested.

Figure 10.21: Feature and Interpretations

218

Less seriously, RIBALD frequently interprets the local feature shown in Fig-

ure 10.21 (top) incorrectly, as shown on the left, rather than as shown on the right.

Depending on the values of tuning constants used, this occurs frequently when com-

pleting Figures B.71 and B.74, and a similar problem sometimes occurs when com-

pleting Figure B.69. The problem is not so much that the resulting object will be

incorrect (the geometry will be almost right, and capable of being “healed ” [10]),

as that symmetry and regularity artefacts are lost by accepting the poor hypothesis,

thus increasing the time taken to find the best completion and the likelihood that a

poor completion will be chosen instead.

10.9.3 Timings

The time taken (in seconds) for the general-case topological completion process to

terminate for normalons is shown in Table 10.74.

No. of Lines Minimum Median Maximum

9–16 0.02 0.04 0.08
17–24 0.00 0.04 0.81
25–32 0.04 0.30 0.58
33–40 0.32 1.26 2.50
41–48 0.37 1.69 1.70
49–56 – 1.81 –
57+ 3.54 – 12.87

Table 10.7: Normalons: Summary of Average Timings (seconds)

Where valid output is produced, timings for normalons are in general satisfactory—

in the extreme case, Figure B.74, RIBALD takes 12.87 seconds to produce a valid

normalon (albeit not the one expected), but the only other drawing for which

RIBALD takes more than a second to produce valid output is Figure B.554 (1.81

seconds), which it interprets correctly. In general, RIBALD takes longer when it

fails, because of the backtracking involved in searching for a valid solution.

The time taken (in seconds) for the general-case topological completion process

to terminate for non-normalons is shown in Table 10.8.

4Where there is only one drawing in a group, no minimum or maximum timings are shown;
where there are only two drawings in a group, no median timing is shown.

219

No. of Lines Minimum Median Maximum

1–8 0.00 0.01 0.48
9–16 0.00 0.04 0.50
17–24 0.00 0.07 5.30
25–32 0.08 1.00 14.20
33–40 0.51 1.35 3.99
41–48 0.63 2.36 6.09
49–56 – – –
57+ – 13.47 –

Table 10.8: Non-normalons: Summary of Average Timings (seconds)

Similar, but even more pronounced, differences are observed with non-normalons.

Again, it is found that RIBALD takes longer when it fails than when it reconstructs

the desired object. In only one case where it produces correct results does RIBALD

takes longer than a second: 1.66 seconds for Figure B.509 (and in only one other

case more than half a second, 0.66 seconds for Figure B.466). Where RIBALD

produces valid but unexpected output, it takes longer—5.32 seconds in the case

of Figure B.451, and 1.94 seconds in the case of Figure B.488. Where RIBALD

produces no valid interpretation of the drawing, it takes even longer—it takes more

than a second before admitting defeat for 21 non-normalon drawings, taking over

13 seconds on Figure B.147 and over 4 seconds on Figures B.513, B.469 and B.459.

About three-quarters of the drawings of extrusions can be reconstructed correctly

both by special-case methods and by the general-case method. Timings for some of

these drawings are shown in Table 10.9.

Only the simplest two regular solids, Figures B.114 and B.115, are reconstructed

correctly using the optimal tuning constants. The rest lead to valid but irregu-

lar polyhedra (except when one of RIBALD’s internal limits, maximum number of

vertices = 120, is exceeded). Comparative timings would be meaningless.

10.9.4 Summary and Recommendations

Without backtracking, topological reconstruction takes O(n6) time, the rate-deter-

mining step being pairing propagation (the algorithm described in Chapter 8.3 is

also used here), performed once for each symmetry element for each iteration of

220

Drawing Special-Case General-Case

Figure B.29 0.00 0.00
Figure B.58 0.00 0.00
Figure B.37 0.00 0.00
Figure B.60 0.00 0.00
Figure B.54 0.00 0.01
Figure B.545 0.00 0.01
Figure B.51 0.00 0.02
Figure B.39 0.00 0.02
Figure B.529 0.00 0.02
Figure B.470 0.01 0.02
Figure B.36 0.00 0.03
Figure B.43 0.00 0.05
Figure B.42 0.00 0.05
Figure B.543 0.00 0.05
Figure B.25 0.00 0.06
Figure B.504 0.00 0.07
Figure B.551 0.00 0.09
Figure B.525 0.00 0.13
Figure B.506 0.00 0.16
Figure B.46 0.01 0.20
Figure B.61 0.01 0.28
Figure B.38 0.01 0.40

Table 10.9: Comparison of Special and General-Case Timings (seconds)

generating, arbitrating and executing moves. A lower-order algorithm for this would

improve matters. An incremental pairing mechanism, storing the results of pairing

propagation from previous iterations and adding any new topology to them, would

reduce the time taken to O(n5) at the cost of considerable additional complexity

of implementation. If an incorrect choice is made and backtracking invoked, the

process takes exponential-order time.

In practice, topological reconstruction is usually fast enough when it works, but

slow when it fails. It is notable that, although the ideas in this chapter have been

used to reconstruct about 80% of the test drawings successfully, the best fixed set

of tuning constants (determined as described in Appendix C) reconstructs correctly

only about 50% of normalons and 40% of non-normalons. In order to improve on

this, it is necessary either to be able to determine from the drawing which heuristics

are most likely to be successful (adjusting the tuning constants accordingly) or to

221

introduce additional means of ruling out bad choices of move.

The values of this best fixed set of tuning constants allow some analysis of which

ideas are most useful in topological reconstruction. It can, for example, be noted

that adding a vertex and two edges to complete a quadrilateral face, and adding a

single edge to complete a quadrilateral face, are both very successful hypotheses for

non-normalons but less convincing for normalons—this apparently counter-intuitive

result can be explained since the principal alternative, extrapolating lines and not-

ing intersections, is more reliable for normalons but less reliable for non-normalons.

Similarly, creating faces from quadrilateral loops of edges is a reliable method, pro-

ducing benefits in terms of reliability to counteract the losses in terms of speed.

Another reliable method is that of adding a vertex and three edges to complete

the object when only three necessarily incomplete vertices remain. This, although

not infallible for non-trihedral objects, remains an effective move. Other methods

based on the idea that the object is nearly complete are less reliable.

It can be noted that the base figure of merit for discrete hypotheses based on

mirror chains is significantly higher than the base figure of merit for the mirror

macro hypothesis—piecewise addition of topology from deductions based on mirror

chains is noticeably more robust (albeit slower) than adding as much as possible as

soon as possible.

The relatively low merit figure for local occluding T -junction completion suggests

that this is not especially useful—in general, line extrapolation makes the same

suggestions about topology to be added—and the even lower merit figure for distant

occluding T -junction completion suggests that this idea could safely be omitted in

most cases.

At the moment, RIBALD does not include CSG-style concepts such as half-

spaces. Some of the common problems noted above, particularly those caused by

lack of knowledge of the local neighbourhood of a vertex, could be removed by

regarding face planes as half-spaces, one solid and one empty, and edges as half-

space operators (convex edges as intersection and concave edges as union). By this

means, it could be made clear whether edge locations in relation to face planes were

sensible.

It is plausible that introduction of CSG-style half-spaces would provide a solution

to the problems illustrated in Figure 10.20—obviously, in the case of Figure B.407,

222

whatever happens to the four extrapolated lines, it happens when (or before) they

cross the plane of the base face. Whether this would remove similar problems with

other drawings which show the same symptoms requires investigation.

The solution to the problem of producing a topology with no polyhedral geomet-

ric interpretation, as illustrated in Figure 10.19, is not obvious. It is not sufficient

to identify cases where the provisional geometry is incorrect—with some test draw-

ings, topological reconstruction initially produces incorrect geometry (in particular,

intersecting faces) but the following geometric finishing stage is able to correct this.

Neither is simple enforcement of Euler’s formula a solution. Topologies which fail

to meet this criterion are rejected. However, this by itself does not guarantee that

it is possible for the realised solid object to have convex and concave edges where

these have been identified, or for all faces to be made planar simultaneously.

Ideally, a topological reasoning method must identify and discard those topolo-

gies which cannot be realised using planar geometry with appropriate convex and

concave edges. In the absence of this, a substitute approach would be to produce a

figure of merit for the topological completion. This could be based on geometrical

considerations such as self-intersecting geometry as well as topological considera-

tions such as how well the constructed topology matches predicted symmetry and

regularity artefacts. If the figure is below a threshold value, the completion is stored

but one or more alternative topologies are sought, and the one with the highest

merit is the one passed on to the geometric finishing stage. This idea has not been

tested.

The process of filling in face loops (Chapter 2.14) sometimes fails, reporting that

there is no loop of unused edges which returns from the end of an unused edge to its

start. This is still under investigation (it happens for Figure B.303), but is believed

to be a fault with the output of topological reconstruction rather than an omission

in the algorithm for detecting face loops. The solution seems to be to backtrack to

the frontal geometry stage and set the merit of the most likely class to zero. At

the moment, RIBALD can backtrack within topological reconstruction, or from one

stage of processing to another, but not from a subsequent stage of processing to a

point within topological reconstruction.

223

Chapter 11

Geometric Finishing

11.1 Introduction

This stage of processing takes a topologically-correct object and a group of sym-

metry and regularity hypotheses, turns these into constraints, and aims to produce

geometric information which satisfies as many of the plausible constraints as pos-

sible. Specifically, it seeks the set of face equations and vertex coordinates which

“achieves as much merit” as possible (see Appendix D). The output of this stage is a

complete list of geometric data for vertices, edges and faces which together with the

previous topological information determines a boundary representation solid model.

In order to make the problem more tractable, it can be subdivided into determ-

ination of face normals and determination of face distances from the origin (once

face equations are known, vertex coordinates may be determined by intersection).

Both RIBALD and Kumar and Yu [75] subdivide the face equation problem in this

way, for the same reason—changing face normals can destroy satisfied distance con-

straints, but changing face distances cannot destroy satisfied angular constraints.

There are theoretical doubts about this subdivision, related to the resolvable

representation problem described in Section 11.2.2. It is known that (a) determining

face normals first, and then face distances, achieves a resolvable representation for

many objects, including all trihedral polyhedra; (b) there are objects which have

resolvable representations, but for which determining face normals first, and then

face distances, does not achieve a resolvable representation; and (c) there are objects

for which no first-order resolvable representation exists. The frequency of occurrence

224

of objects in the second category has yet to be determined; if it is low, the sequential

method used here and by Kumar and Yu [75] can be justified.

The alternative of processing angular and distance constraints simultaneously

by methods similar to those described in this chapter can be discarded as too slow

for interactive use—briefly, face distance constraints are numerous, and face normal

constraints slow to process, so processing them together is impractical. Instead,

RIBALD includes a geometric error-detection postprocessing stage which looks for

non-trihedral vertices which do not lie on all of their adjacent faces, and adjusts one

of the faces to fit. This is not theoretically satisfactory, but it suffices for practical

purposes.

The overall algorithm is:

• Make initial estimates of face normals

• Use object classification from Chapter 9 (if any) to restrict face normals

• Identify constraints on face normals

• Adjust face normals to match constraints

• Make initial estimates of face distances

• Identify constraints on face distances

• Adjust face distances to match constraints

• Obtain vertex locations by intersecting three face planes for each

• Detect vertex/face failures and adjust faces to correct them

Section 11.2 describes previous and ongoing work in this area. Section 11.3

lists the types of constraints which RIBALD attempts to enforce. Section 11.4

describes a simple downhill optimisation method for determining face normals. Sec-

tion 11.5 describes improvements to this method which take account of geometric

knowledge—this represents the current state of the art, and is the method imple-

mented in RIBALD. Section 11.6 describes an alternative iterative optimisation

method, using geometry to predict the updated face normals; when implemented in

practice, it performs better than the simple idea in Section 11.4 but not as well as

225

the improved version in Section 11.5. Section 11.7 describes an attempt to use a

genetic algorithm for the face normal problem; the results were not encouraging. Sec-

tion 11.8 describes a simple downhill optimisation method for face distances which

produces satisfactory results for trihedral objects. Section 11.9 describes ideas for

refining this method to allow for geometric distance constraints and non-trihedrality;

there has not been time to incorporate a complete implementation of these ideas

in RIBALD. Section 11.10 describes how RIBALD obtains vertex coordinates from

face equations. Section 11.11 describes how some of the more time-consuming ideas

in this chapter can be bypassed for objects which fall into one or more of the special

classes described in Chapter 9. Section 11.12 shows some results of geometric fitting.

Some, but not all, of Section 11.3, is new. All of the work in Sections 11.4–

11.12 was believed new at the time. It has since emerged that Ge et at [32] were

working on ideas similar to those in Section 11.4, and Kumar and Yu [75] on ideas

similar to those in Sections 11.4 and 11.8, concurrently—precedence is not clear,

and (particularly as the simple ideas in these two Sections do not constitute an

adequate solution to the problem addressed by this Chapter) no strong claims are

made for the novelty or otherwise of these two Sections. As geometric beautification

is an active area of current research, it is likely that there is other similar work in

progress which has not yet appeared in the literature.

11.2 History

Beautification of solid models is an important area of current research with a history

of its own. Alongside (and often independently of) this, detection and enforcement

of geometric constraints has received considerable attention. Finally, general work

on constraint enforcement (independent of 3D geometry) is also of relevance. These

topics are considered separately, with the most general discussed first.

11.2.1 General Constraints

A constraint is a relationship between variables expressed as a function (an equation

or inequality) of those variables [80]. A continuous constraint satisfaction problem

(continuous CSP) attempts to find values for the variables which provide a solution

226

to a system of constraints. Such a problem may be well-constrained, over-constrained

or under-constrained [81].

In a well-constrained problem, there are exactly as many constraints as are re-

quired in order to find a solution. For example, the equation x = 1 is a (trivial)

well-constrained problem. So, it may be noted, is the equation x2 = 1 (assuming

real x)—a well-constrained problem does not guarantee a unique solution. What

distinguishes a well-constrained problem is that there are exactly as many equations

as are required to reduce the number of degrees of freedom in the system to zero—in

the case of the equation x2 = 1, there are zero degrees of freedom, as there is no

path away from either solution along which the constraint remains satisfied.

In an over-constrained problem, there are more constraints than are required to

find a solution. Where there are redundant constraints, there may still be a solution

(for example, the system of constraints x = 1; y = 1; x = y has more equations than

unknowns but has a unique solution). Where there are incompatible constraints,

there is no solution (for example, x = 1; y = 2; x = y has no solution)—at least one

of the constraints must be removed before a solution can be found.

In an under-constrained problem, there are not enough constraints to remove all

degrees of freedom. For example, there is one degree of freedom in the system of

constraints x2 + y2 = 1; x may be changed continuously as long as y changes to

follow suit.

Comparing the number of constraints and the number of variables does not

provide a method of determining whether or not a system is over- or under-constrained,

since it is possible for a system to be both [81]. For example, the system x2 + y2 =

1; z = 1; z = 2 is both over- and under-constrained.

In a valued constraint satisfaction problem (VCSP) [144], a numerical value is

assigned to each constraint. VCSPs are usually over-constrained, and the numerical

values, which are typically either priorities assigned to each constraint or cost pen-

alties for failing to satisfy the constraint, determine which constraints are satisfied

in the optimum solution [144].

Continuous CSPs are, in general, more difficult to solve than discrete CSPs. It

was seen in Chapter 4, and can also be seen in some of the examples in Kumar’s

survey [76], that search methods incorporating arc-consistency and backtracking,

227

although in principle taking exponential-order time, are often fast enough for prac-

tical use when applied to discrete CSPs. However, with discrete CSPs, the domain

being searched is finite (its size is the product of the domain of each variable). With

continuous CSPs, the domain size is (in principle) infinite, and any method which

could in principle need to search the entire domain can be rejected.

Lazard [82] describes four general approaches to solution of continuous CSPs.

The first two, Gröbner bases and the Wu-Ritt decomposition algorithm [193], are

grouped together as “prime decomposition” methods. In dismissing Gröbner bases,

Lazard cites one case where calculation of the Gröbner basis took 15 days; the

resulting basis was too big to be used in the calculation for which it was intended.

The third approach, cylindrical algebraic decomposition, is of limited applicability,

and the fourth, “asymptotically-fast algorithms”, had not been implemented at the

time of writing. It appears that all of these, except possibly the last, can only be

used for CSPs expressible as polynomials. Lazard concluded that there were no

fully-satisfactory general methods for solving continuous CSPs.

11.2.2 Geometric Constraints

Adapting the definitions in the previous section, a geometric constraint is a geo-

metric relationship between geometric entities (2D or 3D) expressed as one or more

functions (equations or inequalities) of those geometric entities [80], and a geomet-

ric constraint satisfaction problem attempts to find values (locations and possibly

magnitudes and orientations) for those geometric entities which provide a solution

to a system of geometric constraints. As such, it is related to the general con-

tinuous constraint satisfaction problem, but the knowledge that constraints embody

geometric hypotheses introduces additional restrictions based on the properties of

three-dimensional space. A geometric constraint system is solved (and the result-

ing object said to be rigid) if all degrees of freedom, other than those required for

location and orientation, have been removed.

For example, if vectors a and b are both perpendicular to two non-collinear

vectors c and d, then a and b are parallel. It can therefore be seen that the

constraint system

a · c = 0; a · d = 0;b · c = 0;b · d = 0

228

tacitly requires that a = kb, although this is not expressed explicitly in any con-

straint. Any solution to a 3D geometric constraint problem must satisfy these tacit

additional constraints as well as the explicit constraints of the problem itself.

Two particular consequences of these tacit constraints have been investigated in

detail: the problem of counting degrees of freedom, and the problem of finding a

resolution sequence. Work in these areas is summarised later in this section.

Methods for solving geometric constraint systems can be classified into four gen-

eral approaches: symbolic, rule-based, graph-based and numerical.

Symbolic approaches to geometric constraint systems such as those of Kondo [72]

and Gao and Chou [30] use Gröbner bases to manipulate algebraic expressions of

geometric constraints. Kondo [72] has implemented a 2D geometric constraint solver

which uses Buchberger’s algorithm [9] to find a Gröbner basis for constraint equa-

tions. Although more general than a previous geometric constraint solver based on

constraint propagation [71], the symbolic approach is very slow even for simple 2D

problems. The method should in principle be extensible to 3D problems, but the

added number of variables would slow the method down further [72]. As part of

a general investigation into various methods of solving geometric CSPs, Gao and

Chou [30] have produced a 2D constraint solver similar to Kondo’s and, in ad-

dition, investigated an alternative to Gröbner bases, the Wu-Ritt decomposition

algorithm [193], which appears to be preferable. They note that this method is

exponential in both the number of variables and the degree of the polynomial in

constraint equations (which is clearly discouraging if one wants to approximate a

trigonometric function by taking the first few terms of the polynomial expansion).

These approaches are extremely slow and can be rejected for use in interactive sys-

tems (neither could they be recommended for batch systems). A somewhat faster

alternative based on Dixon resultants has been suggested by Kapur et al [65], who

point out that although this method initially appears unpromising as involves com-

putation of a matrix which for most geometric problems is singular, there exist

fully-automatic methods for producing non-singular matrix representations of prob-

lems. They report that their approach can solve in minutes comparatively simple

problems for which Gröbner basis methods take days of computation (when they

succeed at all), but acknowledge that a great deal of further investigation is needed

to produce general-case solutions using Dixon resultants. This remains the most

229

promising of the symbolic approaches. No reference has been found to any investig-

ation of cylindrical algebraic decomposition in the context of geometric constraints.

Rule-based approaches attempt to deduce from the constraint system a sequence

of rules for fitting geometry to the given topology. Gao and Chou [29] have produced

a rule-based 2D constraint solver which runs in interactive time on over 90% of their

test cases; however, the rules described are specific to 2D. Verroust et al [179], who

demonstrate the capabilities of a 2D rule-based approach, nevertheless note that a

rule-based method for fitting a geometry to all possible 2D topologies would require

an infinite number of rules; since this presumably also applies in 3D, rule-based

methods are clearly inappropriate for the purposes of this thesis. As a further dis-

incentive to their use, it is generally believed (e.g. [191]) that rule-based approaches

are inefficient for large systems of constraints even when all required rules are avail-

able. Much of the success of Gao and Chou’s implementation [29] seems to derive

from the decision to build a database of geometric information about the problem

before attempting to derive rules.

Graph-based approaches create a graph representation of the variables affected

by each constraint in the constraint system; each graph-vertex corresponds to a

variable, and each graph-edge corresponds to a constraint.

Kramer [73, 74] describes algorithms which search for rigid groupings of atoms

within an object. Owen [119] extends this idea to producing a hierarchy of ri-

gid groupings of atoms, with larger groupings being assembled by applying inter-

grouping constraints to rigid smaller groupings; although Owen’s algorithm is limited

to 2D, it is reported [80] that an unpublished 3D version exists. Bouma et al [4]

describe ideas similar to those of Owen, although as they make use of Gröbner bases

their approach could be considered a hybrid; since they explicitly consider only those

geometric constraint systems describing 2D drawings which can be produced by a

ruler and compass, it is reasonable that the resulting constraints can be grouped

into a hierarchy, at the bottom of which is the original line or point; it is not clear

that the idea can be extended simply to general 3D geometry.

Latham and Middleditch [81] extend previous work in this area to allow con-

straints which restrict more than one degree of freedom (rotation constraints are an

example of this) and to choose correctly between prioritised constraints when the

system is over-constrained.

230

The graph constructive method of Li et al [88] uses dependency analysis to break

a constraint system down into clusters. This assumes that such clustering is pos-

sible; as their interest is in linkages where most constraints are distance constraints

between neighbouring vertices in the linkage, this is usually the case. Their illus-

trative example, a CAD model of a bicycle, illustrates an application for which

dependency analysis is ideal: everything is to be constrained relative to a simple

basic framework.

Latham, an advocate of graph-based algorithms, nevertheless notes its limita-

tions [80]. Firstly, as they consider which constraints are functions of which variables

but not numerical function values, graph-based algorithms may misidentify whether

or not the geometry resulting from satisfying the constraint system is rigid (Latham

also gives a 2D example where rigidity is misdiagnosed as a direct result of graph

analysis, not through ignoring function values). Also as a result of ignoring func-

tion values, graph-based algorithms cannot detect inconsistent constraints (although

Latham points out that if inconsistency can be detected by other means, graph-based

algorithms can locate the cause). The constraint system may not be one which is

easily-partitioned by graph analysis (it is found, in practice, that the constraint

systems generated by RIBALD do not have simple loose ends which can be pulled

to unravel the entire system). For these reasons, this thesis avoids a graph-based

approach to constraint satisfaction.

Hence, this thesis takes the numerical approach to solving geometric CSPs. As

an example of the pure form of numerical approach, Ge, Gao and Chou [32] use a

downhill method (using BFGS [7] as a black-box downhill optimiser) to find solutions

to a number of 2D geometric CSPs. On these problems, results are obtained in

interactive time; however, the problems are simple ones and they make no mention

of the order of the algorithms involved, so although the method could be adapted to

3D CSPs, the results might be disappointing. Ge, Gao and Chou [32] also note that

their numerical approach can fail when the downhill optimiser becomes trapped in

a local minimum.

It will be seen later that this pure approach is unsatisfactory for more complex

drawings, and domain-specific knowledge is required in order to make the problem

231

more tractable. This produces clusters of geometric variables which can be manipu-

lated together rather than individually. Li et al [89] call such methods graph reduc-

tion in view of the similarity between the effects of this domain-specific knowledge

and the graph-based approaches already described, and prove the unsurprising result

that use of graph reduction accelerates numerical approaches to geometric CSPs.

Angular Degrees of Freedom

Methods of calculating the number of degrees of freedom after satisfying a number of

geometric constraints have been the subject of several studies—Sugihara [163] lists

a number of these. More recently, Owen’s algorithm [119] and its implementation

are fast enough, but are restricted to 2D and cannot guarantee to find a solution

for underconstrained systems. Kramer [74] has shown the difficulty of allowing for

geometrical coincidences in two dimensions. Whiteley’s [192] extension to 3D of a

method which is successful in 2D is unsatisfactory in that it is intolerant of sketching

inaccuracies and that it is limited to triangular and quadrilateral faces. Latham [80]

acknowledges that graph-based methods can misdiagnose the presence of geometric

degrees of freedom.

Essentially, the problem here is that of degeneracy. Through the consequences

(some of them subtle) of tacit constraints, different combinations of explicit con-

straints may reduce to the same information, and existing constraints may become

equivalent when a later constraint is accepted.

A method for detecting degeneracy has recently been suggested by Li et al [89]:

given a solution to a system of a number of constraints, perturb one of the con-

straints; if the perturbed system also has a solution, that constraint is not degen-

erate. This method is not in itself useful for the purposes of this thesis—once a

solution has been found to a constraint system, it matters little whether or not the

system contains degenerate constraints. However, it suggests a line of investigation

for the angular degrees of freedom problem which future work should pursue.

Even when the number of degrees of freedom required for a set of constraints is

known (for example, each rotation constraint reduces the total number of degrees

of freedom in three planar faces by two) there appears to be no satisfactory method

for determining which specific variables lose their freedom when a constraint is

enforced. For example, in the above case, there appears to be no satisfactory method

232

for deciding which of the three face normals lose degrees of freedom when such a

constraint is accepted.

Resolvable Representations

In principle, constraint satisfaction problems are solved by removing degrees of free-

dom until a solution is found. In trivial problems, the order in which degrees of

freedom are removed is unimportant—in solving the system (x = 1; y = 1) either x

or y may be determined first. This is not always the case with geometric constraint

systems, as will be shown. In such cases, there is not only the primary problem,

that of finding a solution, but the secondary problem of finding a route towards the

solution. Such a route is termed a resolution sequence, or resolvable representation.

To illustrate the problem, consider what happens when the methods of this

chapter—firstly determine face normals, and then face distances—are applied to a

topological model of an octahedron (assuming that although the object is topolo-

gically identical to the regular octahedron it may not have the geometric symmetry

of an octahedron). Face normals may be derived for each of the eight faces, but

(for example) opposite faces may not be parallel. The question to be considered is

whether it is possible, with any arbitrary set of face normals, to find a sequence in

which the face distances and vertex coordinates can be fixed.

This can be analysed as a simple game where:

• each move towards completing the geometry comprises fixing a face distance

or fixing a vertex location

• since the face normals have already been determined, fixing a vertex location

fixes the distances of all faces on which that vertex lies

• fixing the face distances of any three faces on which the vertex lies fixes the

vertex location

• fourteen moves must be made to complete the object

• to win this game, a sequence of moves is required in which no vertex location

is fixed after fixing the face distances of three of the faces on which the vertex

lies, and no face distance is fixed after fixing the vertex location of any vertex

on that face.

233

It follows that there is no way to win this game. The final move cannot be to fix

a vertex location—each vertex lies on four faces; the vertex location will have been

fixed when the distances of three of these faces are fixed, so fixing the distance of the

fourth face must follow fixing the vertex location. The final move cannot be fixing

a face distance—each face contains three vertices, and fixing the location of any one

of these vertices fixes the face distance, so fixing the locations of two vertices must

follow fixing the face distance. Since there is no possible final move in the sequence,

there is no possible sequence. At least in the case of the octahedron, it may not

be possible to determine all face normals in advance, and then find vertex locations

and face distances which produce a consistent geometry.

However, if the rules of the game are relaxed to allow vertex coordinates to be

determined before face normals, then there is clearly a resolution sequence for the

octahedron: determine all vertex coordinates, and everything else follows as all faces

are triangular and it is always possible to fit a plane through three points. Thus

the octahedron has at least one resolvable representation, which is to fix all vertex

coordinates first and compute face equations from them.

Obviously, fixing face normals first, and then face distances, provides a resolvable

representation for all trihedral polyhedra. Similarly, but less usefully, fixing vertex

coordinates first provides a resolvable representation for all deltahedra [165].

Sugihara has shown [165] that all genus-zero polyhedra have resolvable represent-

ations, and notes that these can be found using the Hopcroft-Tarjan algorithm [53]

for trivalent decomposition of graphs. However, for some non-trihedral genus-zero

polyhedra, fixing face normals first fails to achieve a resolvable representation. The

octahedron is one example of this.

Sugihara has also shown [165] that some polyhedra with through holes have

no resolvable representation, using the solid illustrated in Figures B.410–B.412

(page 325) to demonstrate the point. Mills [110] demonstrates that by use of

“scaffolding” (temporary faces or vertices added to the resolution sequence but not

forming part of the object) second-order resolution sequences can be found for Sugi-

hara’s example and many other objects with no first-order resolvable representation.

However, finding such solutions relies on human ingenuity—no algorithm is known.

Additionally, although it is plausible that second-order resolution sequences exist

for all polyhedra, this has not as yet been proved.

234

11.2.3 Beautification

Beautification takes a valid solid model and adjusts its geometry (and in some cases

its topology) to produce a “more beautiful” object (although, proverbially, beauty

is in the eye of the beholder, there is a consensus that, for example, 90◦ angles

are more beautiful than 89◦ angles, and squares are more beautiful than rectangles

with an aspect ratio of 1.01). Beautification need not proceed by identification

and enforcement of constraints, but in practice (e.g. [78, 79]) it usually does, and

it can therefore be treated as a special case of geometric constraint satisfaction

problem. The availability of a starting point—a valid solid model—helps matters in

that downhill optimisation methods are more reliable—they are likely to start in the

desired valley, and unlikely to move so far away as to become trapped elsewhere [131].

Werghi et al [191] have investigated how solutions to geometric CSPs can be

applied to beautification, concentrating on numerical approaches. Although most of

their test results are for curved objects, their investigations provide helpful inform-

ation for the more restricted case of polyhedra (elsewhere [190], the same authors

point out that, paradoxically, beautification of polyhedra is often harder than beau-

tification of curved objects—planar surfaces are usually intended to be functional,

and must therefore be machined to a much higher accuracy than freeform curves,

which are usually intended to be decorative).

Werghi et al [191]:

• Note that since geometric CSPs are in general non-linear, finding analytical

solutions to all but the simplest geometric CSPs is impractical. Numerical

approaches, being simplest, are recommended.

• In discussing algorithms, they consider both deterministic optimisation meth-

ods and evolutionary methods, concentrating on genetic algorithms as an

example of the latter. Observing that genetic algorithms are significantly

slower than more traditional optimisation methods, they note that although

use of genetic algorithms may be justified when the objective function is non-

differentiable or has no explicit form, geometric CSP objective functions are

normally well-behaved and the overhead of using genetic algorithms cannot be

justified.

235

• The deterministic algorithm they investigate is the Levenberg-Marquardt al-

gorithm [102], enhanced by some ideas of Broyden’s [8] and some of their own;

effectively, this is related to BFGS [7] but the choice of objective function is

limited to least-squares. As this thesis uses amoeba [117] for non-linear optim-

isations, RIBALD avoids the problems of ill-conditioned Hessians encountered

by Werghi et al.

• A good initial variable vector is important. They recommend that this should

use those values which, in the absence of any constraints, would fit the data

best. This is clearly sensible and has been adopted in this thesis.

• Importantly, when constraints are processed sequentially, addition of a new

constraint does not affect the satisfaction of previously-enforced constraints.

• Constraint validity and consistency checking must be done before starting

the optimisation process (I disagree with this conclusion—see Section 11.4

onwards).

• The times taken, on equipment similar to that used in this thesis, are of the

order of a few minutes for comparatively simple objects. Such times, although

satisfactory for reverse engineering, are unacceptable for an interactive design

system.

Although Werghi et al [191] used an objective function based on least-squares

for their initial investigations, this is a consequence of their optimisation algorithm,

not a deliberate choice, and indeed a case can be made for other functions. Where

data contain outliers, other objective functions have been recommended, such as

least median squares [141] (which has been used with success in other vision applic-

ations, e.g. [151]) or least trimmed squares [142]. This might be especially useful in

geometric constraint fitting, if combined with the suggestion that more than half of

the constraints under consideration at any time are genuine, and the bad ones are

“outliers” to be discarded. In this thesis, another alternative, based on the figures

of merit defined in Appendix D, has been investigated.

As I have noted elsewhere [172, 171], use of a single symmetry element (such

as a mirror chain) to derive geometry directly is particularly sensitive to freehand

drawing inaccuracies. It is also inappropriate to many drawings, either because they

236

contain no symmetry element or because they contain several. This approach can

be rejected.

Turner [166] has suggested that beautification is a process of adjusting location

estimates by translation or rotation to satisfy constraints, and that providing initial

location estimates are good, such adjustments will be small enough that in any

rotations by angle θ, the approximations sin θ = θ and cos θ = 1 will be valid. By

this means, beautification becomes a linear optimisation problem. This suggestion

would fit in well with the ideas of Section 11.6, but there has not been time to

investigate this.

As noted in Chapter 7, the problems of beautification and inflation are not always

distinct. For example, Grimstead [38] uses the same linear system of equations

Pfxv + Qfyv + zv + Cf = 0 to enforce geometric constraints as he uses for inflation

of frontal geometry. His system attempts to iteratively delete constraints which

disagree most with the overall best fit, thereby achieving a fit to a consistent set

of constraints (there is, as Grimstead admits, no guarantee that “bad” constraints

rather than “good” ones are deleted). Finally, it uses the face equations to give

the 3D locations of each vertex by intersection (the values of xv and yv from the

drawing and zv from the linear system are discarded). Given the restriction to

trihedral vertices, this ensures a self-consistent boundary representation model.

Grimstead’s approach is unsatisfactory for a number of reasons:

• It does not distinguish between constraints which must be met and equations

for which a best-fit approach is adequate. Even the constraint that ensures

that vertices lie on faces is only approximately satisfied, and has to be en-

forced explicitly at a later stage. Others, such as making two faces parallel or

orthogonal, are also only approximately enforced.

• By using a linear system to solve the constraint system, Grimstead limits

the set of constraints which can be considered to those which translate into

equations linear in his variables (Pj , Qj and Cj for each face j and zi for

each vertex i). This is a serious limitation as several useful constraints do not

translate into equations linear in these variables. For example, the assumption

of corner orthogonality, first suggested by Mackworth [97] and used successfully

in several systems, does not translate into a linear equation and so is not used.

237

• The equations of hidden faces are derived from locations of visible vertices,

themselves derived from a least-squares fit of various constraints, not all of

which are fully-satisfied. Numerical errors are propagated at each stage, and

using these error-prone values to calculate the locations of hidden vertices

further compounds the error.

Grimstead’s approach frequently produces objects with edges which are nearly,

but not quite, parallel, and corners which are nearly, but not quite, cubic corners.

Despite these disadvantages, the approach has one major advantage in that it runs

sufficiently quickly to be interactive for drawings such as Figure B.91.

11.3 Constraints

As stated in the previous section, hypotheses about the geometry of an object be-

come constraints when expressed as equations or inequalities. This section considers

both the types of constraint available and the hypotheses which lead to them.

Constraints are allocated a figure of merit. In RIBALD, this is based on three

contributory factors: the figure of merit for the hypothesis, a fixed value for the

particular type of hypothesis and constraint, and a figure of merit for how well the

constraint is met in the provisional geometry. As with topological hypotheses which

generate the same move, when two or more geometric hypotheses lead to the same

constraint, RIBALD reinforces the merit of the first constraint rather than generate

a second constraint. An attempt is made to satisfy constraints in descending order

of merit, with constraints being accepted if there are enough degrees of freedom left

in the object to accommodate them, or if a geometry can be found which agrees

with both the current and all previously-accepted constraints.

The fixed factor in each figure of merit should, ideally, be a tuning constant.

There has not been time to perform tuning, so arbitrary values are used.

Mirror planes can be treated in the same way as faces: they have normals and

distances, and can be constrained using the constraint types listed.

It will be seen in the remainder of the section that the number of constraints can

be limited to O(n2).

238

11.3.1 Parallelism Constraint

A parallelism constraint requires two faces M and N to be parallel (i.e. their normals

n̂M and n̂N must satisfy n̂M = ±n̂N). There are O(n2) such constraints possible.

Parallelism constraints affect only face normals, not face distances. For all parallel-

ism constraints, the measure of how well the constraint fits the provisional geometry

is the figure of merit for parallelism between the two normals hypothesised to be

parallel.

In Chapter 5, lines in the drawing are allocated to bundles, in each of which all

lines are nearly parallel and expected (very occasionally, bundling is misleading) to

correspond to edges which are parallel in 3D. For each face, the bundles to which

its edges have been allocated are tabulated. The normals of any pair of faces with

two or more bundles of edges in common are parallel if bundling is successful, so a

parallelism constraint is generated. The fixed merit factor for each such constraint

is 0.99.

Three bundles are “special”, in that two of them (labelled B0 and B1) are be-

lieved to correspond to lines in a plane parallel with the base of the object, and the

third (V) is believed to define a vertical axis perpendicular to the base plane. Each

face is classified as “vertical”, “horizontal” or other, according to whether there

are edges in the face allocated to the vertical bundle, both of the base bundles, or

otherwise. Parallelism constraints are generated between each pair of faces classi-

fied as horizontal. Perpendicularity constraints (see Section 11.3.2) are generated

between each vertical and each horizontal face. The fixed merit factor for each such

constraint is 0.97—the assumption that the object rises vertically from a flat base

is generally a good one, but it is not a certainty.

In some cases, earlier stages of processing will have deduced that a face must

be perpendicular to a particular edge. The face normal can then be allocated to

the bundle of the line corresponding to this edge. This is always the case with

normalons, and often the case with many of the faces in semi-normalons. For each

pair of faces with normals successfully allocated to the same bundle, a parallelism

constraint is generated. The fixed merit factor for this is 1.

The proposed method above generates n(n− 1)/2 constraints where there are n

faces with normals bundled together. An alternative, which would generate fewer

239

constraints but which may be less robust, is to define a “desired direction” for each

bundle, and generate n constraints requiring each face in turn to be parallel to the

desired direction. This would be somewhat quicker if all constraints are accepted,

but not greatly quicker, since in the case with n(n − 1)/2 constraints, the later

constraints can be deduced to be true using logical reasoning (see section 11.5).

More importantly, if some face normals cannot be made parallel to the desired

direction, but could be made parallel to one another, the proposed method can

enforce this, whereas the alternative cannot.

Since axis-aligned faces are common, RIBALD generates either a parallelism

constraint or a two-way perpendicularity constraint (see Section 11.3.2)—whichever

has the higher merit—for each pair of faces in the object. This is intended as a

safety net, to ensure that there are some constraints to enforce even in the most

irregular object. The figure of merit is that for parallelism between the two face

normals.

Parallelism constraints can also be generated from face-centred rotation hypo-

theses: see Section 11.3.6 below.

11.3.2 Two-way Perpendicularity Constraint

A two-way perpendicularity constraint requires two faces M and N to be perpen-

dicular (i.e. n̂M · n̂N = 0). There are O(n2) such constraints possible. Two-way

perpendicularity constraints affect only face normals, not face distances. For all

perpendicularity constraints, the measure of how well the constraint fits the provi-

sional geometry is the figure of merit for perpendicularity between the two normals

hypothesised to be perpendicular.

Currently, no hypothesis generates only two-way perpendicularity constraints.

Such constraints are generated by the “safety-net” (see Section 11.3.1 above), from

mirror chains (see Section 11.3.5 below) and from cubic corners (see Section 11.3.3).

11.3.3 Three-way Perpendicularity Constraint

A three-way perpendicularity constraint requires three faces M , N and O to be mu-

tually perpendicular (i.e. n̂M · n̂N = n̂M · n̂O = n̂N · n̂O = 0). In principle, there are

240

O(n3) such constraints possible, so the number of three-way perpendicularity con-

straints must be limited by the generating hypotheses. Three-way perpendicularity

constraints affect only face normals, not face distances.

For each vertex which could be a cubic corner [125], one three-way perpendicu-

larity constraint and three two-way perpendicularity constraints are generated. The

hypothesis merit factor for each constraint is that for the object being a normalon or

semi-normalon. As this is the only source of three-way perpendicularity constraints,

the number of these is thus O(n).

11.3.4 Face Angle Constraint

A face angle constraint of angle ρ requires two faces M and N to be at a defined,

non-perpendicular angle (i.e. n̂M · n̂N = cos ρ). I found during early experimenta-

tion that very implausible perpendicularity constraints were enforced between faces

which were clearly not perpendicular in the drawing or the preliminary frontal geo-

metry, because after the “correct” constraints were satisfied, enough degrees of free-

dom remained for one more constraint to be accepted. Rather than circumvent this

by introducing an arbitrary numerical merit threshold below which all constraints

are rejected, RIBALD includes face angle constraints which requires two faces M and

N to have a fixed “common” angle ρ between them. As with parallelism and per-

pendicularity, there are O(n2) such constraints possible, and face angle constraints

affect only face normals, not face distances.

RIBALD assumes ρ to be acute. Extension to obtuse angles would would be

straightforward but unnecessary—if, for example, any face A is at 120◦ to another

face B, it is likely to be at 60◦ to a face B′ parallel to B, and this will constrain

its orientation. Although the constraint type definition makes no other assumption

about ρ, it will in practice be 30◦, 45◦ or 60◦, or other angles whose tangent is the

ratio of integers each in the range 1–6, as these are the only angles RIBALD looks for

when generating constraints. The latter cases arise commonly in semi-axis-aligned

wedges, a common design feature according to [143].

RIBALD generates a face angle constraint for each pair of faces in the object,

considering the angles 30◦, 45◦, 60◦, and angles the tangent of which is a ratio of

two small integers in the range 1–6. The constraint is generated for whichever angle

241

produces the highest merit figure. This is another safety net, to avoid spurious

parallelism and perpendicularity constraints being enforced. The figure of merit is

0.9× the figure of merit for the angle being correct—parallelism and perpendicularity

constraints are somewhat to be preferred, but not if the angle strongly suggests

something else.

11.3.5 Mirror Constraint

A mirror constraint requires two faces M and N to be related via a mirror chain C

such that reflection through the mirror plane defined by C moves M to the location

occupied by N and vice versa. There are O(n2) such constraints possible, since there

are O(n) mirror chains and O(n) initial faces and each mirror chain will reflect each

source face into one and only one destination face. Mirror reflection constraints

affect both face normals and face distances.

For each mirror chain (Ci) in the object, RIBALD identifies the pairs of dis-

tinct faces (Nij, Mij) which are reflected into one another by the mirror chain

and generates a constraint. This will normally be a mirror constraint linking

N = Nij , M = Mij , C = Ci, except for the special case where Mij = Nij (this

includes all faces in the mirror chain and possibly others), where Mij must be per-

pendicular to the mirror plane Ci and a two-way perpendicularity constraint is

produced instead.

The base figure of merit for a mirror constraint is (P 2/nc
c) ×H2

c , where Pc is the

figure of merit of the mirror chain estimated when the chain was identified [172],

nc is the number of faces in the mirror chain, and Hc is the proportion of faces in

the object paired by the mirroring operation. The power terms add further bias in

favour of mirrors which (a) propagate through the entire object and (b) reflect the

entire object—locally-effective mirror chains can be useful, but are not as reliable or

important as globally-effective mirror chains. This is multiplied by 0.8 for single-face

mirror chains which terminate at a vertex (those terminating at edge mid-points are

more reliable). If the mirror chain is the principal one for an object classified as a

semi-normalon with mirror chain, the figure of merit is reinforced by that for the

classification.

The merit figure for each constraint is multiplied by a measure of how well it fits

242

the preliminary estimates: the figure of merit for parallelism between normal n̂M

and the vector obtained by reflecting normal n̂N through the mirror plane.

Additionally, the mirror plane C is perpendicular to each face in the chain,

C1, C2, ... Two-way perpendicularity constraints are generated for these, making

n̂C · (n̂C)1 = n̂C · n̂C2
= ... = 0. Since there are O(n) mirror chains and the length

of any chain is O(n), there are O(n2) such face/mirror perpendicularity constraints.

11.3.6 Rotation Constraint

A rotation constraint requires three faces M , N and R to be related such that a

rotation through an angle ρ about a perpendicular axis through the centre of R

moves the centre of face N to the location and orientation occupied by the centre of

face M . There are O(n2) such constraints possible, since there are O(n) face-based

rotation axes and O(n) initial faces and each rotation will rotate each source face

into one and only one destination face. Rotation constraints affect both face normals

and face distances.

As a consequence of the way rotation constraints are generated, ρ will always be

one of the following: 60◦, 72◦, 90◦, 120◦ or 180◦.

For each face (Ri) in the object containing an axis of rotation, RIBALD identifies

the face (Mij) to whose location each face (Nij) is rotated and (providing Mij �= Nij)

generates a rotation constraint linking R = Ri, N = Nij , M = Mij . Faces unchanged

by the rotation (Mij = Nij) are perpendicular to and centred on the axis of rotation,

so a parallelism constraint linking Nij and Ri is generated instead, except for the

trivial case Mij = Nij = Ri which is ignored.

The base figure of merit for a rotation constraint is Kc×Pc×H2
c , where Kc is 0.8

for C2, 0.85 for C3, 0.9 for C4, 0.95 for C5 and 1.0 for C6, giving some encouragement

to higher-order symmetry, Pc is the figure of merit for the rotational symmetry axis

estimated when the axis was identified [172], and Hc is the proportion of faces in

the object paired by the rotation operation.

The merit figure for each constraint is multiplied by a measure of how well it fits

the preliminary estimates: the figure of merit for parallelism between normal n̂M and

the vector obtained by rotating normal n̂N around the rotation axis. Hypotheses

based on rotations are allocated figures of merit based on a fixed probability for

243

each type of rotation, with C4 and C6 being given higher probabilities. The assess-

ment is decreased by a factor based on the number of unmatched vertices left after

attempting to match the object with its rotated equivalent—the more unmatched

vertices which remain, the greater the decrease.

RIBALD does not include geometric constraints based on vertex-centred or edge-

centred rotations; these were considered to be less useful and thus lower-priority, and

there was not time to incorporate them.

11.3.7 Face Distance Constraint

A face distance constraint requires that the distances of four faces A, B, C and D

are related such that dA −dB = dC −dD. There are, in principle, O(n4) general face

distance constraints, so these must be limited further by restricting the hypotheses

which lead to them. Face distance constraints affect only face distances, not face

normals.

RIBALD does not currently generate face distance constraints. These should be

generated from mirrors, in order to enforce the distance relationship between faces

1 and 3, and 6 and 7, shown in Figure 11.2 on page 263.

11.3.8 Face Coplanarity Constraint

A face coplanarity constraint requires that the distances of two faces M and N are

equal, dM = dN . There are O(n2) possible coplanarity constraints.

RIBALD currently generates face coplanarity constraints from two sources. Firstly,

where a mirror chain Ci reflects face Nij into face Mij and either of the two face

normals is known to be perpendicular to the mirror normal, the two faces must be

coplanar. Secondly, where two faces M and N are approximately coplanar in the

provisional geometry, they may be intended to be coplanar.

11.3.9 Edge Length Ratio Constraint

An edge length ratio constraint requires the ratio of lengths of two edges E1 and E2 to

be (n1)/(n2), where n1 and n2 are small integers. The most common such constraints

will be equi-length constraints, specifying n1 = n2 = 1. For any predetermined set

244

of values for n1 and n2, there are O(n2) possible edge length ratio constraints. Edge

length ratio constraints affect only face distances, not face normals.

Since line lengths in other small integer ratios are not a common feature of parts,

such constraints have lower merit.

Whether equi-length constraints between edges bundled together should have

higher merit than equi-length constraints between edges in different bundles is un-

resolved; cases can be made for and against the idea.

Currently, RIBALD generates an equi-length constraint and one other length

ratio constraint (using the nearest small-integer ratio) for each pair of edges, relying

on logical reasoning to rule out low-merit constraints.

11.3.10 Non-Trihedral Vertex Constraint

A non-trihedral vertex constraint forces all faces meeting at vertex V to pass through

a single point. There are O(n) possible non-trihedral vertex constraints. Since

the presence of a non-trihedral vertex rarely, if ever, provides a useful clue to face

orientations, and it is always possible to ensure that all faces meeting at a vertex pass

through a single point by adjusting face distances while preserving face orientations,

non-trihedral vertex constraints affect only face distances, not face normals.

For each non-trihedral vertex in the object, a non-trihedral vertex constraint is

generated. The merit figure for such a constraint is 1, and is not adjusted—the

planes of all faces meeting at the vertex must pass through the vertex.

11.4 Face Normals—Simple Downhill Optimisa-

tion

This section aims to use the vertex coordinates generated during topological recon-

struction to provide preliminary estimates of face normals, and adjust these normals

until as many high-merit constraints as possible are satisfied. As stated, this is an

NP-complete knapsack problem. Instead of attempting a rigorous solution, RIB-

ALD uses a “greedy” approach. Constraints are enforced in descending order of

merit until they specify a unique object, initially using the naive algorithm:

245

• the constraint with the highest figure of merit is always accepted and enforced

• for each other constraint, in descending order of merit:

– if the constraint is already satisfied numerically by the object, it is accepted;

– attempt to adjust the existing face normals numerically to accommodate the

new constraint as well as all previous accepted constraints—if this succeeds,

the new face normals are stored and the constraint is accepted; otherwise,

the constraint is rejected and the previous face normals are restored;

As the numerical processing required is considerable, this is slow—faster and

more sophisticated refinements are described in the next Section. This Section de-

scribes necessary parts of the algorithm—initial conditions (the preliminary estimate

of face normals), the objective function, and some implementation details.

There is one iteration of the loop per constraint; if the number of constraints

is limited to O(n2), there will be O(n2) iterations of the loop. Within the loop,

the rate-determining step is adjustment of existing face normals, performed using

a black-box optimiser amoeba [117, 131]. As seen in Chapter 3, in the worst case,

when amoeba fails to converge, it makes a fixed maximum number of calls of the

objective function, and its internals take O(v2) time, where v is the number of

variables. Assuming that it takes a fixed time to assess how well or badly a single

constraint is met, since there are O(n2) constraints to be considered, and the number

of variables is proportional to the number of faces and therefore O(n), both calls to

the objective function and amoeba’s internals take O(n2) time. Thus, overall, the

face normal process outlined here takes O(n4) time, albeit with an uncomfortably

large constant.

11.4.1 Preliminary Estimates of Face Normals

The optimisation process requires a preliminary geometry (a) as a basis for comput-

ing the numerical estimates of merit of constraints, which depends upon how well

they match the preliminary geometry, and (b) as a starting-point for the iterative

optimisation process which determines the final geometry. A good initial estimate

will both lead to a quicker solution and increase the likelihood of finding the correct

global solution.

246

Preliminary estimates of face normals are calculated from the vertex coordinates

generated by inflation (Chapter 7) and topological reconstruction (Chapter 10).

For all but triangular faces (which can be solved directly) RIBALD uses a least-

squares linear system [3] with weightings which give priority to visible vertices. The

algorithm is described in detail in [178].

11.4.2 Objective Function

The objective function measures how well constraints are met by a set of face nor-

mals, and is the function to be minimised by the optimisation process. A value of

zero indicates that all constraints are met perfectly. It is computed as the numerical

sum of terms for each constraint under consideration, as listed here:

• the term for a parallel constraint is 1 − F (M ‖ N)

• the term for a perpendicularity constraint is 1 − F (M ⊥ N)

• the term for a mirror constraint is 1 − F (M ‖ M ′(N, C)), where M ′(N, C) is

face M relocated using current estimates of N and C

• the term for a rotation constraint is 1−F (M ‖ M ′(R, N, ρ)), where M ′(R, N, ρ)

is face M relocated using current estimates of N and R

• the term for an angular constraint is 1−F (M ‖ M ′(N, ρ)), where M ′(N, ρ) is

face M relocated using current estimate of N

where figures of merit F are as listed in Appendix D1.

11.4.3 Implementation Details

Choosing the maximum number of iterations to apply when trying to adjust the

geometry to satisfy a constraint is not simple—if it is too low, valid constraints can

be rejected, and if too high, speed is affected as each unsatisfiable constraint takes

this number of iterations to discard. RIBALD uses 1000 iterations as the maximum;

this is not quite free from either problem but is a reasonable compromise.

1It could be objected that the 1− terms are redundant, but this overhead does not affect the
conclusions reached in this Chapter.

247

The threshold used for success in the objective function is arbitrary too. Too

low a value might result in valid constraints being rejected through accumulation

of numerical errors, and too high a value might allow unsatisfiable constraints to

be accepted. Also, a lower value produces a more accurate geometry at the cost of

increasing processing time. RIBALD use 1/1000 (the numerical value is meaningful

only in terms of the objective function).

In principle, either of these constants could be tuned to meet user preferences.

11.4.4 Alternatives Investigated

Two variants of the method of simple downhill optimisation of face normals were

investigated in an attempt to overcome a problem observed in practice. Although

amoeba always moves downhill, it can become trapped in a local minimum. When

this happens, some “good” constraints are rejected because they cannot be satisfied

within the locality, and in some but not all cases this affects the resulting geometry

(sometimes a later constraint, expressing the same geometrical relationship in a

different way, may be accepted).

In an attempt to remove the local minimum problem, I used a version of amoeba

incorporating simulated annealing [131]. It was not significantly quicker and was

observed to reject valid constraints as early, high-entropy stages of the annealing

process took the geometry away from its best fit. This approach was rejected.

Another non-deterministic alternative is described in Section 11.7.

I also attempted to refine the initial normal estimates using skewed symmetry [63].

I found no benefit in doing this. Even without skewed symmetry, the estimates are

accurate enough to be used as input to the remaining stages of the process. The

effect of improving them would be to reduce the time taken by the iterative op-

timisation. Since skewed symmetry generally improves the normal estimates for

well-drawn sketches but can actually make them worse for poorly-drawn sketches,

the expected effect of incorporating it would be to make the worst (and thus slow-

est) cases take longer, which is not helpful. In practice, I found the resulting time

differences to be negligible.

248

11.5 Face Normals—Enhanced Downhill Optim-

isation

The time-consuming part of the method in the previous Section is numerical ad-

justment of face normals using a downhill optimiser. To improve on it, the more

sophisticated algorithm outlined below is designed to use logical reasoning to bypass

numerical processing as often as possible. Although the order of the algorithm is

unchanged, significant work is only done for constraints requiring a numerical com-

putation, which except in extreme cases is much smaller than the total number of

constraints.

• the constraint with the highest figure of merit is always accepted and enforced

• for each other constraint, in descending order of merit:

– if logical reasoning using known information about the face normals can show

that the constraint is necessarily valid, it is accepted;

– if logical reasoning can show that the constraint is necessarily invalid, it is

rejected;

– if the constraint is already satisfied numerically by the object, it is accepted;

– if enough angular degrees of freedom remain in the affected faces, the con-

straint is accepted;

– if the object has enough angular degrees of freedom elsewhere, an attempt is

made to adjust all movable face normals to accommodate the new constraint

as well as all previous accepted constraints; if this succeeds, the new face

normals are stored and the constraint is accepted; otherwise, the previous

face normals are restored and the constraint is discarded;

– otherwise, the constraint is discarded.

This section discusses the additional methods required by this more sophistic-

ated algorithm: logical reasoning which can in certain circumstances show that a

constraint is necessarily valid or invalid, and an attempt to calculate the number of

degrees of freedom left both at a particular face and in the object as a whole. Two

249

types of logical reasoning are considered: that concerning the relationship between

pairs of face normals, and that concerning the relationship between each face normal

and the main axes of the object.

11.5.1 2-Face Relationships

A considerable improvement in performance is possible if deduction can determine

whenever two faces are of necessity either parallel or perpendicular to one another—

the performance improvement is particularly significant for semi-normalons. In

many cases, parallelism and perpendicularity constraints can be accepted or re-

jected without any numerical processing, and in some cases mirror constraints and

rotation constraints (particularly from C2 and C4 symmetry) can also be accepted

or rejected immediately.

To carry out this logical process, two faces are considered to be in one of three

mutually-exclusive states: they are either parallel, perpendicular, or at some other

angle. A set of the three possible relationships is stored for each pair of faces.

Initially, all three relationships are possible, except that faces sharing an edge cannot

be parallel, and faces meeting at a vertex can only be parallel if that vertex is extended

trihedral or K-type. If the object is a normalon no pair of faces can be at some other

angle. Accepting a constraint of a given type (e.g. M and N parallel) narrows down

the relationship (e.g. to parallel). As processing continues, the remaining states may

enable deduction of whether a given relationship is necessary (the only remaining

state) or invalid (not in the set of remaining states).

Interrogating the status of relationships (known to be true, possible but uncer-

tain, or known to be false) is straightforward. To help the process along, extra

inference rules embodying the tacit constraints of 3D space can be used to restrict

the set of states further. RIBALD includes the following:

• two faces are necessarily parallel if they might be parallel and a third face is

known to be parallel to both of them

• two faces are necessarily parallel if they might be parallel and both are per-

pendicular to two other mutually-non-parallel faces

• two faces are necessarily perpendicular if they might be perpendicular and a

250

third face is known to be parallel to one and perpendicular to the other.

• if a constraint is accepted requiring two faces M and N to be parallel, then

any third face R which is known to reflect M into N and vice versa must be

either parallel or perpendicular to M and N

In some cases, when a constraint is accepted, it may be possible to re-interpret

existing constraints—it may, for example, be possible to convert accepted mirror

or rotation constraints to parallelism and perpendicularity constraints, in which

case the knowledge could be added to the two-face database and the constraints

removed from the degrees of freedom database (Section 11.5.4). This has not been

investigated.

11.5.2 Face-Axis Alignment

The relationship between each face normal and the three main axes (I, J, K) of the

object must logically be one of the following:

• The face normal lies along the I axis

• The face normal lies along the J axis

• The face normal lies along the K axis

• The face normal lies in the plane of the I and J axes, but not along an axis

• The face normal lies in the plane of the I and K axes, but not along an axis

• The face normal lies in the plane of the J and K axes, but not along an axis

• The face normal lies somewhere else entirely

Initially:

• The normal of the arbitrarily-chosen reference face (see Section 11.5.3) is

aligned along the I axis.

• The normal of the second reference face (see Section 11.5.3) is either along the

J axis or in the IJ plane.

• Every other face has all seven possibilities

251

It would require considerable effort (and many inference rules) to keep this data-

base in step with the two-face database (Section 11.5.1). However, it is not necessary

to ensure a perfect match, as long as the two do not contain contradictory inform-

ation.

Whenever a constraint is accepted, the databases are compared so that (for

example) when the two-face database lists that two faces are necessarily parallel, the

alignment database contains the same possibilities for each face. Currently, RIBALD

updates the two-face database whenever a change is made to the alignment database,

checking known parallelism, known perpendicularity, known other-angleness, and

known non-parallelism, but not vice versa.

Note that each of the two databases contains information not in the other. For

example, if it is known that two faces are parallel to one another but their orientation

relative to the fixed face is still unknown, the fact of parallelism appears in the two-

face database. Conversely, the alignment database is the more useful when assessing

mirror constraints (for which purpose the two-face database is usually of little use).

In particular, the alignment database allows determination of whether or not the

normals of all faces in a mirror chain can be coplanar (if they cannot, the mirror

constraint must necessarily be rejected).

One particularly effective inference rule should be noted in the context of the

alignment database: in semi-normalons with a predominant mirror chain, if the

mirror bundle is axis-aligned, then any face containing an edge bundled in the mirror

bundle must be coplanar with its reflection.

I suggest as a further improvement that for drawings classified as semi-normalons,

logical reasoning alone could be used to determine which constraints to enforce.

Axis-aligned face normals could be aligned to the main axes, as in Section 11.11,

and any remaining face normals determined either by a single numerical optimisation

(which would be very quick) or by deskewing whichever face or faces will give the

best estimates of the non-axis-aligned normals (which would be even quicker). As

an illustration of the latter, consider Figure B.91—the two non-axis-aligned face

normals could be determined simply by deskewing the end cap. There has not been

time to produce a working implementation to test this idea.

252

11.5.3 Angular Degrees of Freedom I

It was seen in Section 11.2 that the problem of calculating the total number of degrees

of freedom left in an object after a number of constraints have been enforced has not

been fully solved, and the problem of calculating the number of degrees of freedom of

a particular face has hardly been addressed. Even the best currently-available graph-

based approaches to determining degrees of freedom sometimes make mistakes [80].

Recognising that attempting to improve on the state of the art in the time available

was impractical, early versions of RIBALD [174] used a stochastic method which,

however theoretically unsound, worked reasonably well in practice.

Firstly:

the object has remaining degrees of freedom if, using the methods to be described,

any face has remaining degrees of freedom.

The upper limit for the number of angular degrees of freedom of a face can be

determined from the relationship sets used for logical reasoning:

• face 0, chosen arbitrarily, has no degrees of freedom—it is used as a reference

datum;

• face 1, chosen arbitrarily from those faces sharing an edge with face 0, has at most

one degree of freedom—this prevents the object spinning around the normal to

face 0;

• other faces have at most two degrees of freedom;

• any face which is parallel to a lower-numbered face has no degrees of freedom

• any face which is perpendicular to two lower-numbered faces which are not parallel

to one another has no degrees of freedom

• any other face which is perpendicular to a lower-numbered face has at most one

degree of freedom

To obtain the actual number of degrees of freedom remaining this must then be

reduced to allow for previously-accepted mirror, rotational and angular constraints;

this is the non-trivial problem to which no perfect solution is available. The solution

adopted by RIBALD is:

253

• repeat a number of times (RIBALD uses 6, an arbitrary small integer)

– initialise all DoF values to the ones given by the logical data

– for each constraint already considered and accepted

∗ allocate the DoF required for this accepted constraint, choosing at ran-

dom from those faces affected by the constraint with remaining DoF

– if this gives more DoF in the faces currently being constrained than any other

try so far, note this as the candidate best solution

• return the number of DoF in the best solution

This method is known to be flawed—it is possible that, when a new constraint

produces a re-interpretation of existing constraints (e.g., accepting a perpendicular-

ity constraint may allow a previously-accepted rotation constraint to be expressed

in terms of parallelism and perpendicularity), the number of degrees of freedom

around a face may increase, and a lower-merit constraint could thus be accepted

after a high-merit constraint was rejected. Occurrences of this phenomenon are rare

in practice.

11.5.4 Angular Degrees of Freedom II

The following ideas, developed initially for the purpose of reducing the number of

variables in (and thus the time taken by) numerical optimisation, also bear on the

problem of angular degrees of freedom.

Faces are categorised as being fixed, wobbly, free, or unknown. Initially, all but

two are unknown. Any face which is fixed, wobbly or free is generatable.

• A fixed face normal can be generated by a defined generating method (these

will be detailed in due course).

• A wobbly face N has a normal which moves freely in plane perpendicular to

a vector p̂, which must be generatable. It has one degree of freedom, U ; the

value of the normal (n̂N)i is recalculated on each iteration of the downhill

optimiser from U and from its initial value (n̂N)0:

q̂ = (n̂N)0 × p̂; r̂ = p̂ × q̂; (n̂N)i = r̂ cos U + q̂ sin U .

254

• A free face has a normal which moves anywhere around the surface of a sphere.

It has two degrees of freedom, U and V , from which the value of the normal

is recalculated on each iteration of the downhill optimiser:

(n̂N)i = (n̂N)0 cos U cos V + ((n̂N)0 × p̂) sin U cos V + ((n̂N)0 × q̂) sin V .

p̂ and q̂ are arbitrary unit vectors perpendicular to one another and to (n̂N)0.

The algorithm for making all faces generatable is as follows:

• Choose a visible face, giving preference to faces believed to be axis-aligned and to

larger rather than smaller faces. Label this face A and set this face fixed. The

generating method for n̂A is to preserve the initial value.

• Choose another visible face adjacent to face A, again giving preference to faces

believed to be axis-aligned and to larger rather than smaller faces. Label this face

B. If the dihedral angle between face A and face B is known (i.e. perpendicular

or known-angle constraints have been accepted), set this face fixed, and otherwise

set it wobbly with its plane of rotation defined by its starting value and n̂A.

• set all other faces to unknown

• while any face is unknown

– If any unknown face N is parallel to a generatable face F , set it fixed. The

generating method is (n̂N)i = (n̂F)i.

– Else, if any unknown face N is perpendicular to two non-coplanar generatable

faces F and G, set it fixed. The generating method is (n̂N)i = (n̂F)i×(n̂G)i.

– Else, if any unknown face N is perpendicular to a mirror chain C (i.e. n̂N

is parallel to n̂C) in which two consecutive faces F and G in C are both

generatable, set it fixed. The generating method is (n̂N)i = (n̂F)i × (n̂G)i.

– Else, if any unknown face N is the reflection of a generatable face F in

a mirror chain C in which two consecutive faces G and H in C are both

generatable, set it fixed. The generating method is to reflect (n̂F)i through

the mirror defined by the normal (n̂G)i × (n̂H)i.

– Else, (use rotation symmetry along the same lines as above)

255

– Else, if any unknown face N is perpendicular to a generatable face F , set

it wobbly. The generating method is based on two vectors, one being the

nearest vector to (n̂N)0 perpendicular to (n̂F)i, and the second being the

cross-product of this and (n̂F)i and requires a single parameter U .

– Else, choose an arbitrary face and set it free. The generating method requires

two parameters, U and V , as described above.

The total number of variables required in the optimisation process is the sum

of the number of parameters required for each face normal. Since a total of zero

indicates that the face normal structure is rigid, this clearly has a bearing on the

angular degrees of freedom problem, and presents a number of options.

Firstly, the ideas of Section 11.5.3 could be discarded. Zero variables indicates

that there are no angular degrees of freedom, and can thus be used as the termination

test for constraint enforcement.

This is academically the most respectable, but does not work all that well in

practice (it is also noticeably slower than other options). Early on, where some

faces remain completely unconstrained, the variables defining their face normals

change freely. This (a) gives them absurd values and (b) reduces the ability of the

optimiser to make small adjustments to the faces which should be moved, with the

result that the objective function never drops below the acceptance threshold and

the constraint is rejected.

In principle, this problem could also occur with other alternatives considered

here, but in practice it does not, as it is only a problem when there are unconstrained

faces whose normals do not affect the objective function in any way. In sensible

objects, this only happens early on, when there are many angular degrees of freedom

left, and constraints can be accepted automatically.

Secondly, as an improvement on this idea, the optimiser could only adjust those

normals which are entangled in some way with the constraint under consideration.

This improves not only robustness but also speed.

Particularly early on, this can lead to some optimisations having only one vari-

able. The use of amoeba is inappropriate for these, and adding special-case code

for 1-dimensional optimisation is justified. Although downhill optimisation is still

used for any case with two or more variables, “golden mean” optimisation [131] is

256

used when there is only one variable (the objective function remains unchanged from

Section 11.4).

Determination of which variables affect a particular constraint is not simple. For

example, if the aim is to make a free face A parallel to face B and it is known

that faces B and C are perpendicular, the remaining degree of freedom in face C is

irrelevant even though a constraint relating it to one of the faces under consideration

has already been accepted, and including it is actively harmful to the optimisation

process. It seems that a face is only “entangled” with a constraint if it is included

directly in the constraint, or if constraints have been accepted relating it to two or

more faces included directly in the constraint.

This option is the default in the current version of RIBALD, and is the one with

which the timings in Section 11.12 were obtained. However, as it is not clear that the

implementation is bug-free (or even that all possible problems have been considered),

RIBALD also includes a third choice, which is to retain the ideas of Section 11.5.3

for counting angular degrees of freedom and to use the ideas in this section solely

for their original purpose, to reduce the time taken by numerical optimisation.

11.6 Face Normals—Geometric Optimisation

The black-box optimiser amoeba is ignorant of geometry. It may reasonably be

asked whether an optimisation process which uses geometric knowledge would be

more effective—faster or more robust.

To test this, RIBALD includes an option to select an alternative iterative optim-

isation process which uses accepted constraints plus the constraint under consider-

ation to predict updated values of face normals. On each iteration i + 1, RIBALD

adjusts the face normal n̂N of each face N which can move to try to meet the accep-

ted constraints and the constraint under consideration. It estimates (n̂N)i+1 based

on each constraint and the values of other normals calculated in iteration i, and

uses a weighted average for the overall estimate of (n̂N)i+1, the weights being the

figures of merit for each constraint divided by the number of faces affected by that

constraint which can still move.

A parallelism constraint between faces M and N predicts a new value (n̂M)i+1 =

± (n̂N)i and vice versa (the estimate nearer (n̂M)i is chosen). If this constraint were

257

the only constraint affecting the two faces, they would swap normals and never

converge. Such behaviour has not been observed in practice, but the alternative of

setting both normals to a mean value looks natural and should be investigated.

A perpendicularity constraint between faces M and N predicts a new value

(n̂M)i+1 = ± (̂((n̂N)i × (n̂M)i)× (n̂N)i) and vice versa. In principle there should be

defensive programming to protect against the possibility that M and N are parallel;

in practice, if the situation occurs, something is already drastically wrong.

A mirror constraint between faces M and N and mirror chain C predicts as a

new value for n̂M the vector obtained by reflecting n̂N through the mirror plane:

(n̂M)i+1 = ±((n̂N)i − 2((n̂N)i · (n̂C)i) (n̂C)i), where Ĉ is the mirror plane normal.

The predicted new value of the normal for any face A in the mirror chain is found

as (n̂A)i+1 = ± (̂((n̂C)i × (n̂A)i) × (n̂C)i) as described above.

For a rotation constraint, rotating face N an angle ρ about a normal n̂R through

the centre of face R to obtain face M :

• if n̂R is known, n̂M and n̂N can be estimated using standard geometry:

(n̂M)i+1 = ±�(ρ, (n̂R)i) (n̂N)i where �(ρ, (n̂R)i) is the rotation matrix for

rotating through an angle ρ about n̂R.

• the method for estimating n̂R when it is n̂M and n̂N that are known is de-

scribed in Appendix F.1.

An angular constraint predicts as the estimate for (n̂M)i+1 the vector in the

plane of n̂M and n̂N which is at an angle ρ from n̂N, i.e.

(n̂M)i+1 = (n̂N)i cos ρ + (̂((n̂N)i × (n̂M)i) × (n̂N)i) sin ρ.

Iterations terminate either when the objective function returns a value below a

given threshold, or when the face normals are effectively stationary.

This method is unsatisfactory in that there is no guarantee that the iteration

is working towards, rather than away from, the optimal solution. The objective

function is used solely to identify a successful terminating condition of the optim-

isation, and does not influence the way normals are adjusted by guiding the process

downhill. The process of adjusting normals could be taking the object away from

the optimum geometry (in principle, it could even be oscillatory, although I have

not observed this in practice).

258

Section 11.12 compares the time taken by this idea with that taken by the

geometrically-ignorant downhill optimisation of Section 11.4.

Following the ideas of Turner [166], it has been suggested that the speed prob-

lems encountered throughout this chapter stem from the fact that 3D geometric

constraints are non-linear. It is, in principle, possible that non-linearity could be

ignored in an attempt to speed the process up. For example, although the perpen-

dicularity constraint expression n̂A · n̂B = 0 is clearly non-linear if both n̂A and

n̂B are variables, if there is reasonable certainty that the current set of normals are

fairly close to the final solution, the perpendicularity constraint could be expressed

as two linear equations (n̂A)1 · (n̂B)0 = 0 and (n̂A)0 · (n̂B)1 = 0 where (n̂A)1 and

(n̂B)1 are variables but (n̂A)0 and (n̂B)0 are constants, being the current values.

There has not been time to investigate this idea, or even to derive the correspond-

ing expressions for face-angle, mirror and rotation constraints. Presumably, when

this idea is tested, equations of the form (n̂A)1 = (n̂A)0 should be included in the

linear system in order to preclude the possibility of oscillation.

11.7 Face Normals using a Genetic Algorithm

In Chapter 4, a non-deterministic algorithm was found to be very much faster,

but also somewhat less reliable, than the corresponding deterministic algorithm at

solving a discrete constraint satisfaction problem. Since the main problem in solving

the continuous constraint satisfaction problem posed in this chapter is speed, it is

possible that a non-deterministic algorithm could provide an acceptable solution.

This has been investigated using a genetic algorithm [35, 52]. This section describes

the outline algorithm, some implementation details, and the initial results, which

were sufficiently discouraging that the idea was not pursued.

11.7.1 Overall Algorithm

It is clear that a genetic algorithm will be slower than amoeba for a single downhill

optimisation; thus, using the genetic algorithm in place of the downhill optimisation

step in the algorithm outlined in Section 11.4 will inevitably be slow. Instead,

the idea tested was to replace the entire process of considering (and accepting or

259

rejecting) constraints individually in descending order of merit by a genetic algorithm

which used a single figure of merit to assess how well the geometry matched all

constraints. Note that this has the disadvantage of being a best-fit rather than a

selective approach. The algorithm used was:

• Generate the starting population (the problem of what constitutes a population is

considered below)

• Evaluate the merit of each of the population

• Remember (as “fittest ever”) the best of the population

• Loop

– Breed two of the population, chosen at random, to produce a new individual

– Replace the weaker of the two parents by the new individual

– Evaluate the merit of the new individual

– If the new individual is better than the fittest ever, remember the new one

instead

– If the maximum number of iterations has been reached, or ten thousand new

individuals have been created since the current fittest ever was generated,

then exit the loop

• End loop

• Interpret the fittest ever member of the population as a geometry, and use this

Traditionally [35, 52], information is encoded as “genes” which are bit strings.

Encoding face normal information as a bit string was not straightforward—it must

be relatively concise, in order that no bits in the gene are irrelevant, but it must

also be flexible enough to allow for realistic geometric information. The compromise

chosen used 15 bits per face:

• Choose face 0 and face 1 as described in Section 11.5; their face normals are n̂0

and n̂1 respectively

• Set vector p̂ equal to the nearest vector to n̂1 which is perpendicular to n̂0

260

• Set vector q̂ equal to n̂0 × p̂

• For each face f ,

– Interpret the lower seven bits of the gene as an angle θ, where 0◦ <= θ <

180◦.

– Interpret the upper eight bits of the gene as an angle φ, where 0◦ <= φ <

360◦.

– The normal for the face is then n̂f = n̂0 cos θ cos φ+ p̂ sin θ cos φ+ q̂ sin θ).

Constraint identification remained unchanged: NC constraints Cx have already

been listed and assigned a figure of merit Mx to each, and there is a function F (G, C)

for assessing how well each geometry G matches a particular constraint Cx. The

merit function2 is
∑NC

j=1(F (G, Cx) × Mα
x).

Each new individual was generated by uniform crossover of the parents. My-

ers [114] appears to recommend using uniform crossover in early, exploratory phases

of the genetic algorithm but switching to multipoint crossover as “areas of optimal-

ity” evolve—I did not investigate this idea.

The mutation rate, 1 bit per new individual, was chosen because initial exper-

iments failed through premature convergence. Although it is possible to justify a

high mutation rate on the basis that not all bits are equally significant, this rate may

still be too high. It can be noted that although on theoretical grounds Myers [114]

recommends starting with a low mutation rate and increasing it during the course

of the algorithm, his experimental results suggest that mutation rate strategy is not

generally a major factor affecting the performance of genetic algorithms.

The method described above breeds around 32,000 individuals for each drawing.

Most test results were obtained using Figure B.476. Processing this took approx-

imately 30 seconds, and produced results which varied from mediocre to dreadful

depending on values of α. With Grimstead’s bracket, Figure B.91, the method took

over two minutes and the results were even worse.

Speed could, potentially, be improved by being more selective about which con-

straints are generated—poor constraints have little impact on RIBALD’s speed as

they will generally be rejected by logical reasoning, but with the genetic algorithm

2α was a tuning constant; I found that different values of α worked better for different drawings.

261

outlined poor constraints have as much impact on running time as good constraints.

It is also possible that filtering out poor constraints would improve the quality of

output, as even with low figures of merit they will have some effect on the out-

put. However, in view of the poor results obtained with even very simple drawings

(the genetic algorithm was slower and produced worse results even than the naive

algorithm in Section 11.4) this was not investigated.

Goldberg’s [35] “hybrid algorithm”, where in each generation selected individuals

are improved by non-genetic methods such as downhill optimisation, may be a more

promising approach than a “pure” genetic algorithm. This was not investigated.

If the ideas in this Section are revived, a different selection strategy should be

tried, a lower mutation rate is recommended, and Myers’s idea [114] of switching to

multipoint crossover during the course of the algorithm could also be investigated.

11.8 Face Distances—Simple Downhill Optimisa-

tion

Once the face normals have been fixed, a unique geometry can be produced by

allocating distances (from the origin) for each face. The objective here is to provide

values of face distances for each face which fit the faces of the object as closely as

possible to the visible vertices while enforcing accepted constraints.

Its simplest form is an n-dimensional iterative optimisation [117, 131] where

n is the number of faces in the object and the variables being optimised are the

face distances. The objective function being optimised is the sum of the squares

of the 2D distances between the predicted x and y coordinates of each vertex and

its actual location in the original sketch—this is chosen in order to spread changes

from the drawing evenly throughout the solid object, an approach recommended by

Grimstead [38]. It can be noted that if one part of the object is particularly badly

drawn (such as the misplaced vertex A in Figure 11.1), this objective function will

effectively hide the error by spreading it evenly through the object rather than by

correcting the error locally; according to Grimstead [38], such errors are less common

in practice than sketches where all junctions are close to, but not precisely at, their

proper locations. It can also be noted that the consequences of choosing to move

262

the wrong vertex to “fix” the error are undesirable.

A

Figure 11.1: Misplaced Vertex

1

2

3

4

5

6

7

Figure 11.2: T Block

This simplest method does not take account of constraints, and suffers from a

number of other deficiencies. Most seriously, it does not constrain faces containing

no visible vertices. As implemented in RIBALD, the distances of these faces are not

changed from the preliminary estimates calculated in Section 11.4.1. This is not

entirely satisfactory—it would be preferable to adjust these distances after taking

account of symmetry elements—but it may be observed that most of the drawings

tested so far which produce objects with faces containing no visible vertices are the

Platonic and Archimedean solids, which are handled as a special case as described

in Section 11.11.6.

The objective function could be modified to take account of constraints as well

as of visible vertex locations. In this method, only those constraints which were ac-

cepted during the face normal optimisation process would be used in the objective

function (this is not necessarily correct, as consideration of Figure B.454 shows—one

topological mirror plane constraint is met by face normals but would be inappro-

priate for face distances). This variant of the method has not been investigated, as

it is clearly both slower and less accurate in enforcing constraints than the variant

described next.

This is to reduce the number of variables n after consideration of symmetry,

basing this on a subset of the constraints on face normals:

• any constraint rejected during the process of adjusting face normals is dis-

carded;

263

• parallelism, perpendicularity and angularity constraints have no effect on dis-

tances and are not used in distance optimisation;

• any mirror or rotation constraint which, when propagated through the object,

pairs a convex edge with a concave edge is geometrically incorrect and is

discarded;

• of the remaining constraints, if the mirror plane or rotation axis constrained

is perpendicular to the two faces M and N , and M and N are parallel, then

they must also be coplanar: the distance for N is then dropped from the

optimisation (the number of variables is decremented) and set equal to that

for M on each iteration (see faces 2 and 5 in Figure 11.2)

• of the remaining constraints, if faces M and N are parallel, and two other

paired faces M ′ and N ′ are also parallel to one another and to M , then the

distances obey the equation DM−DM ′ = DN ′−DN . The distance for N ′ is then

dropped from the optimisation (the number of variables is again decremented)

and DN ′ is set equal to DM + DN − DM ′ on each iteration (see faces 1 and 3,

and 6 and 7, in Figure 11.2)

• the use of rotational symmetry in adjusting face distances remains to be

studied—this would be needed if the method were to be applied to draw-

ings such as the dodecahedron, Figure B.116, which has a completely hidden

face for which visible vertex locations provide no information.

This variant, implemented in RIBALD, is found to be acceptable in practice

for topologically-valid trihedral objects. The time taken is also acceptable provided

that the process is seeded with plausible initial values—RIBALD uses the mean

predicted for a face from applying the equation d = −(px + qy + rz) to each vertex

in turn ((p, q, r) is the face normal, (x, y, z) the vertex coordinate as output from

topological completion).

This latter variant is an improvement on its predecessor, in that constraints,

if enforced at all, are enforced exactly. It nevertheless retains the inherent prob-

lems of all variants of the method in this section: faces with no visible vertices and

no accepted mirror or rotation constraints are not constrained, and the choice of

264

constraints to enforce—those enforced on face normals—may not be appropriate.

Another weakness is that there is as yet nothing constraining edges which are “al-

most” the same length to be exactly the same length in the finalised geometry—this

is a consequence of the use of face normal constraints, not of the choice of algorithm.

Finally, this method does not address the resolvable representation problem. To ad-

dress these matters requires more complex (and slower) ideas such as those in the

next section.

11.9 Face Distances—Enhanced Downhill Optim-

isation

By analogy with the face normal problem considered in Section 11.5, a general

solution to the face distance problem could follow this outline algorithm:

• the constraint with the highest figure of merit is always accepted and enforced

• for each other constraint, in descending order of merit:

– if logical reasoning using known information about the face distances can

show that the constraint is necessarily valid, it is accepted;

– if logical reasoning can show that the constraint is necessarily invalid, it is

rejected;

– if the constraint is already satisfied numerically by the object, it is accepted;

– if enough linear degrees of freedom remain in the affected faces, the constraint

is accepted;

– if the object has enough linear degrees of freedom elsewhere, an attempt is

made to adjust the existing face distances to accommodate the new con-

straint as well as all previous accepted constraints; if this succeeds, the new

face distances are stored and the constraint is accepted; otherwise, the pre-

vious face distances are restored and the constraint is discarded;

– otherwise, the constraint is discarded.

The principal problems here are: that different types of constraint embody dif-

ferent knowledge, and that of finding a resolution sequence when analysing linear

265

degrees of freedom. There is also the awkward problem of knowing when to stop

considering constraints. To illustrate this, consider Figures B.18 and B.17. If all

possible symmetry operations are enforced, these will be interpreted as square ex-

trusions (if not as cubes), as C4 rotations of the end-cap are possible, even though

not likely. However, if only the highest-merit symmetry operation is enforced, Fig-

ure B.50 will not be interpreted as a hexagonal prism as its highest-merit symmetry

operation is a mirror plane. Use of edge length ratio constraints, even if not justified

by intentional edge length ratios in the drawing, is justified by the need to avoid

such incorrect interpretations.

This section considers knowledge about three types of constraint: face distance

relationships (of which face coplanarity is a special case), edge length ratios (of which

edge length equality is a special case) and non-trihedral vertices. It then discusses

linear degrees of freedom and the unsolved problem of resolution sequences.

Consideration of the constraint types in Section 11.3 shows that unlike face nor-

mal constraints, which are always specified in terms of the faces being constrained,

constraints on face distances may be specified in terms of vertices, edges or faces,

thereby complicating the problem of satisfying them.

RIBALD does not currently identify those faces which do not affect the set of

constraints under consideration. This is a serious deficiency. Face distances which

make no contribution to the objective function can be moved drastically during the

optimisation process, leading to absurd final geometries. Additionally, implementing

this will also improve speed somewhat.

11.9.1 Face Distance Relationships

Currently, RIBALD stores a list of accepted face distance constraints. This informa-

tion is used to reduce the number of variables being optimised, and to enable logical

rejection of face distance constraints which clearly contradict accepted constraints.

The effects of face coplanarity in reducing the number of linear degrees of freedom

are difficult to assess and have not been resolved. Consider Figure B.328. Between

them, the two non-trihedral vertices touch six faces, so the number of degrees of

freedom for those six faces is reduced to four. The coplanarity constraint between

vertical faces does not reduce this further—there are still four degrees of freedom.

266

However, the coplanarity constraint between horizontal faces does reduce the number

of degrees of freedom.

11.9.2 Edge Length Ratios

Currently, RIBALD stores a list of accepted edge length ratio constraints (equi-

length constraints are a special case of this, with the ratio being 1). This information

is used to enable logical rejection of incompatible edge length ratio constraints. It

is clearly possible to use edge length information to reject face distance constraints,

and vice versa, but there has not been time to implement this idea.

There are unresolved problems here. Clearly, in drawings such as Figure B.44,

there are edges which are almost the same length but which, because of the topology,

cannot be exactly the same length. It should, in principle, be possible to deduce

this given the knowledge already available.

The extent to which logical reasoning can be used to make deductions about face

distance relationships from accepted edge ratio constraints, and vice versa, has not

been investigated—there has not been time. Clearly, for example, face coplanarity

and edge length equality are related (see, for example, Figure B.91), so there are

potentially useful deductions to be made.

It is not clear how much logical reasoning is required. For example, it might

seem obvious that if two edges are parallel and join the same pair of parallel faces

then the edges must be the same length. However, this conclusion is not helpful—

RIBALD’s existing mechanisms already handle it implicitly, as the numerical error

for the constraint is inevitably zero.

Interestingly, it is when identifying edge length ratio constraints that RIBALD

finally realises that Figure B.146 is erroneous—two of the edges must be zero-length.

11.9.3 Non-Trihedral Vertices

Currently, RIBALD stores a list of accepted non-trihedral vertex constraints, listing

which three faces are to be used as the reference faces and which other face distances

are derived from these.

Non-trihedral vertex constraints, if present, must be enforced first.

Even ignoring the resolvable representation problem, there are limits on which

267

three faces can be used as the reference faces—two of the faces meeting at a non-

trihedral vertex may be coplanar, or three might meet along a common line. It seems

to be a practical necessity to choose the three “most orthogonal” (e.g. largest volume

product of normals) as the basis set from which the vertex location is calculated and

derive the face distances for other faces at the vertex from that.

The extent to which logical reasoning can be used to make deductions about face

distance relationships and edge ratio constraints from accepted non-trihedral vertex

constraints has not been investigated—there has not been time.

11.9.4 Linear Degrees of Freedom

There has not been time to address the linear degrees of freedom problem. It is

suggested that a stochastic approach similar to that described for face normals in

Section 11.5.3 would in practice be acceptable, but I have no test results to support

or disprove this.

11.10 Intersecting Faces

The final stage of Grimstead’s system [38] is a three-dimensional tidying process in

which the x-, y- and z-coordinates of each vertex are recalculated from the equations

of the three faces on which it lies.

This requires minor adaptation when non-trihedral vertices are allowed. Al-

though it is to be hoped that intersecting any three non-coplanar faces on which

the vertex lies will give the same coordinates, this cannot be guaranteed in view of

the resolvable representation problem described in Section 11.2.2. The most robust

method of those tested, as when processing non-trihedral vertex constraints, is to

choose the three faces whose unit normals have the largest volume product.

11.11 Special Classes

For some of the more complex test cases, the general-case optimisation process

described in previous sections is too slow to be considered interactive. There are also

theoretical concerns about the general-case algorithm for face normals and serious

268

doubts about general solutions to the face distance problem. Object classification

(Chapter 9) is therefore used to take short cuts through the process for some classes

of object.

Special-case methods for normals and distances are inevitably faster, and are

also demonstrably more robust. These advantages may outweigh the disadvantages

of special-case methods for commonly-occurring classes.

11.11.1 Normalons

For normalons, three perpendicular axes are formed, as close as possible to the

average values of the appropriate face normals (which at this stage are not necessarily

perpendicular), and each face normal is constrained to the appropriate axis. The

general-case face normal process is bypassed, but mirror and rotation constraints are

still generated for use during distance optimisation—this is required, for example, in

order to ensure that the sides of the T-block (Figure B.34 etc) are the same height

and length.

In normalons, each face normal should be aligned with the appropriate ortho-

gonal axis. The three axes are estimated by grouping the face normals and taking the

mean value of each. These are then made mutually orthogonal using the algorithm:

• Input three non-coplanar vectors Â, B̂, Ĉ

• reorder (Â, B̂, Ĉ) if necessary to form a right-handed coordinate system

• iterate

– set Âi+1 = (̂B̂i × Ĉi)

– set B̂i+1 = (̂Ĉi × Âi)

– set Ĉi+1 = (̂Âi × B̂i)

RIBALD use four iterations, which is sufficient to produce axes perpendicular to

within 3.6 × 10−8 degrees from any set of non-coplanar vectors.

The assumption of axis alignment has no effect on face distances, which are

optimised using general-case methods.

269

11.11.2 Semi-Normalons

This classification does not provide enough information to bypass the general case

entirely, but additional information is available.

For semi-normalons, three perpendicular axes are formed, as for normalons (in

the event that an axis has no face normal to it, the estimate is made by using the

cross-product of the other two). Each face normal which should be axis-aligned

is constrained to the appropriate axis. No part of the general-case process is

bypassed—optimisation of face normals takes place as for the general case, in order

that relationships between non-axis-aligned faces can be established, but will be

quicker by virtue of the knowledge already gained concerning parallelism and per-

pendicularity of axis-aligned faces and the relationships between non-axis-aligned

faces and the mirror plane.

All constraint types listed for the general case are still generated, including par-

allelism and perpendicularity (to allow for the possibility that the sketch represents

a normalon but was not identified as such because of sketching inaccuracies). All

face distances are computed using the general-case face distance method.

11.11.3 Semi-Normalons with Mirror Symmetry

Semi-normalons with mirror symmetry follow the same route as those without mirror

symmetry, but extra information is deduced from the mirror plane prior to the

general-case face normal adjustment.

In enumerating the bundles to which edges of a particular face belong, any face

which maps to itself across the mirror plane can be treated as including an edge using

the mirror bundle whether or not any such edge actually exists; if its edges include

one other axis-aligned edge, the axis-alignment of the face can be determined.

Where a hidden or partial face M can be paired across the mirror plane with

an axis-aligned face N , the axis-alignment of M can be deduced given knowledge

of the alignment of the mirror plane (earlier processing [172] identifies this as one

of four possibilities, listed in Table 11.1 using the notation of Chapter 5.7). The

logical datasets are preset with this information.

Additionally, any face in the mirror chain must be perpendicular to any face

with a face normal grouped with the mirror bundle.

270

i B0
→ B0 B1
→ B1 V
→ V
ii B0
→ B1 B1
→ B0 V
→ V
iii B0
→ V B1
→ B1 V
→ B0

iv B0
→ B0 B1
→ V V
→ B1

Table 11.1: Semi-Axis-Aligned Mirror Planes

11.11.4 Right Extrusions

If the object is believed to be a right extrusion, the end caps are made parallel

and the sides are made perpendicular to the end caps. In order to complete the

geometry, it is still necessary to find the orientations of the sides with respect to one

another, and to determine the aspect ratio of sides to end caps.

If the front end face is believed to have mirror or rotational symmetry, the face

normals of the sides are adjusted to preserve this symmetry. Since there are no

further constraints on face distances, no further constraints are generated for extru-

sions, and the general-case process is bypassed entirely. Otherwise, the general-case

method is used for determining face normals, but with a significantly reduced num-

ber of constraints. The only constraints generated are angular constraints between

adjacent sides and constraints from any mirror and rotational symmetry of the end

caps. The mirror and rotational symmetry of the sides has no effect on their relative

orientation, so no constraints are generated for these symmetries.

In terms of processing time, it would be somewhat quicker to have special-case

code which deskews the front end cap (perhaps using skewed symmetry [63] if the

front end cap has an axis of mirror symmetry or a “cubic corner”) to obtain rough

estimates of the side face normals, and then impose plausible symmetries and reg-

ularities to generate the final normals. Vertices are also moved, as appropriate, to

make the face being deskewed either axis-aligned or semi-axis-aligned, and to en-

force any appropriate symmetry operations. This idea was considered but rejected

as adding yet another special case. However, as this idea may also be useful for

semi-normalons, it could be revived.

RIBALD determines the aspect ratio (and all other face distances) by the general-

case distance optimisation method. As an alternative, it would be possible to use the

assumption of isometry of the projection to determine an aspect ratio—this might

271

produce more plausible results, and would complement the approach of obtaining

the front end cap geometry by deskewing.

11.11.5 Right Frusta

The method for right frusta is similar to that for extrusions, except that here, the

end caps are known to be parallel to one another and known to be neither parallel

nor perpendicular to the sides. Again, this knowledge can be preset as logical

relationships rather than used to generate constraints.

11.11.6 Platonic and Archimedean Objects

The general-case method for finalising geometry is particularly slow for Platonic

and Archimedean objects, since the “quick” logical operations for parallelism and

perpendicularity apply to none of the faces, and all relationships must be determined

by the “slow” operations for rotational and mirror symmetries. The general-case

method is too slow to be considered interactive for these objects.

In addition, the simple distance-optimisation method assumes that at least one

vertex on every face is visible. This is not the case, for example, for the completed

dodecahedron: the position of the back face of this can only be determined by

special-purpose code using the symmetry of the object.

Since special-case code is needed, it is recommended that this take the form of

choosing the appropriate finalised geometry from the known finite set of Platonic

and Archimedean objects, bypassing general-case geometry altogether.

11.11.7 Summary

The special-case methods listed above are successful in proportion to the extent to

which they bypass the general case: finishing the geometry of axis-aligned objects

is quick and produces accurate results, and the performance (and sometimes the

geometrical accuracy) for semi-normalons is improved too.

The principal disadvantage is the lack of generality. Different methods are used

for different types of objects, and a new special-case class would require new meth-

ods. We believe that normalons and semi-normalons are common in engineering

272

practice, and a survey supports this view [143], but this is not a guarantee that

these will be a common feature of the sketches input by any particular user.

11.12 Results

The test results presented here concentrate on timing, as this is the major problem

experienced with previous geometric CSP solvers such as those described in Sec-

tion 11.2. Rather than provide a comprehensive survey, I analyse in more detail the

results of fitting geometry to nine drawings, chosen from the most complex objects

for which RIBALD can reliably reproduce the desired topology in order to test the

methods of this chapter in conditions as close as possible to real-life use. In each

of the following sections, the left-hand drawing shows the initial line drawing, the

middle drawing shows the output of topological reconstruction, and the right-hand

drawing shows the output of face normal optimisation.

Although the number of face distance constraints identified is listed for each

object, the effects of trying to enforce them are not shown as there has not been

time to complete implementation of this. Results of a more limited attempt to

adjust face distances, placing visible vertices as close as possible to their locations

in the original line drawing while enforcing mirror symmetry, have already been

published [174] and are not repeated here.

11.12.1 Normalon

Figure 11.3: Normalon

The original drawing on the left of Figure 11.3 has 49 lines. RIBALD identifies

48 face normal constraints (which are ignored) and 3411 possible constraints on face

distances.

273

Fixing face normals using downhill optimisation takes 0.11 seconds regardless of

which RIBALD options are selected, as normalons are treated as a special case.

The need for face distance constraints (either edge equality or face coplanarity)

is shown clearly by the right-hand figure, where the wings of the object are clearly

not the same thickness.

11.12.2 Grimstead’s Bracket

Figure 11.4: Grimstead’s Bracket [38]

Grimstead [38] used the left-hand drawing in Figure 11.4 as the final test of

his ideas. Topological completion is straightforward, but the geometry of the to-

pological completion is visibly in need of correction. The original drawing has 31

lines. RIBALD identifies 472 possible constraints on face normals and 1263 possible

constraints on face distances. Of the face normal constraints, 185 are actively con-

sidered (with 81 being accepted and 104 being rejected) before all angular degrees

of freedom are removed. Of these, 181 can be accepted or rejected using logical

reasoning, leaving 4 which require numerical processing.

Fixing face normals using downhill optimisation takes 0.04 seconds (0.12 seconds

if logical reasoning is not used). Fixing face normals using geometric optimisation

takes 0.05 seconds (0.14 seconds if logical reasoning is not used). Since timings

depend on the provisional geometry output by topological reconstruction, they are

particularly sensitive to small changes (such as adjustment of tuning constants) in

topological reconstruction.

It can be seen that constraint enforcement has been over-enthusiastic, making

faces perpendicular which should not be.

Preliminary timings suggest that individual distance constraint enforcement without

a domain-specific knowledge base is too slow, but that all other options are adequate.

274

11.12.3 Semi-Axis-Aligned

Figure 11.5: Semi-Axis-Aligned Object [194]

The original drawing on the left of Figure 11.5 has 38 lines. RIBALD identi-

fies 1038 possible constraints on face normals and 2694 possible constraints on face

distances. Of the face normal constraints, 346 are actively considered (with 150

being accepted and 196 being rejected) before all angular degrees of freedom are re-

moved. All of these were accepted or rejected using logical reasoning—no numerical

processing was required.

It is evident from the right-hand drawing that a “bad” constraint has been

enforced—a quadrilateral face at the top of the right column has collapsed, with

two opposed edges now being collinear. The source of this error has not been iden-

tified, but it appears that constraints enforcing mirror symmetry, and constraints

enforcing parallelism between non-axis-aligned faces, are undervalued in comparison

with constraints enforcing axis-alignment.

Furthermore, the regularity of the left-hand column has also been lost, showing

that local mirror planes which do not propagate across the entire object are also

undervalued in this case.

Fixing face normals using downhill optimisation takes 0.14 seconds (0.40 seconds

if logical reasoning is not used). Fixing face normals using geometric optimisation

takes 0.14 seconds (0.28 seconds if logical reasoning is not used).

11.12.4 Semi-Axis-Aligned

The original drawing on the left of Figure 11.6 has 39 lines; it is included here for

comparison purposes (the next drawing is similar but without the mirror symmetry).

275

Figure 11.6: Semi-Axis-Aligned Object

RIBALD identifies 895 possible constraints on face normals and 2551 possible con-

straints on face distances. Of the face normal constraints, 327 are actively considered

(with 177 being accepted and 150 being rejected) before all angular degrees of free-

dom are removed. Of these, 321 were accepted or rejected using logical reasoning,

and one was accepted because it fit the existing geometry, leaving 5 which require

numerical processing.

Fixing face normals using downhill optimisation takes 0.12 seconds (0.27 seconds

if logical reasoning is not used). Fixing face normals using geometric optimisation

takes 1.10 seconds (approximately 140 seconds if logical reasoning is not used).

Again, the need for face coplanarity or edge length equality constraints can be

seen: the output of face normal optimisation has lost geometric mirror symmetry.

11.12.5 Semi-Axis-Aligned

Figure 11.7: Semi-Axis-Aligned Object [194]

The original drawing on the left of Figure 11.7 has 35 lines. RIBALD identifies

751 possible constraints on face normals and 2257 possible constraints on face dis-

tances. Of the face normal constraints, 271 are actively considered (with 140 being

276

accepted and 131 being rejected) before all angular degrees of freedom are removed.

Of these, 267 can be accepted or rejected using logical reasoning, leaving 4 which

require numerical processing.

Fixing face normals using downhill optimisation takes 0.19 seconds (0.45 seconds

if logical reasoning is not used). Fixing face normals using geometric optimisation

takes 0.21 seconds (0.35 seconds if logical reasoning is not used). The need for face

coplanarity constraints can again be seen.

11.12.6 Semi-Axis-Aligned

Figure 11.8: Semi-Axis-Aligned Object

The original drawing on the left of Figure 11.8 has 13 lines. The increased

difficulty here is that there are two sets of deviations from axis-alignment. RIBALD

identifies 155 possible constraints on face normals and 306 possible constraints on

face distances. Of the face normal constraints, 49 are actively considered (with

19 being accepted and 30 being rejected) before all angular degrees of freedom

are removed. Of these, 30 were accepted or rejected using logical reasoning, and

none were accepted because they already fit the geometry, leaving 19 which require

numerical processing.

It can be seen that in this example mirror symmetry has been enforced, but

axis-alignment has not.

Fixing face normals using downhill optimisation takes 0.04 seconds (0.09 seconds

if logical reasoning is not used). Fixing face normals using geometric optimisation

takes 0.03 seconds (0.08 seconds if logical reasoning is not used).

277

Figure 11.9: Non-Trihedral Object

11.12.7 Non-Trihedral, Convex

The original drawing on the left of Figure 11.9 has 11 lines. RIBALD identifies 153

possible constraints on face normals and 273 possible constraints on face distances.

Of the face normal constraints, 51 are actively considered (with 20 being accepted

and 31 being rejected) before all angular degrees of freedom are removed. Of these,

35 can be accepted or rejected using logical reasoning, leaving 16 which require

numerical processing.

It is clear that the “finished” geometry is wrong, as one face is not planar, and

the two collinear edges meeting at the T -junction are no longer collinear. This is

thought to be an problem with the implementation in RIBALD (edges meeting at a

vertex are somehow prevented from being collinear even when, as here, they should

be) rather than anything inherent in the method.

Fixing face normals using downhill optimisation takes 0.03 seconds (0.10 seconds

if logical reasoning is not used). Fixing face normals using geometric optimisation

takes 0.03 seconds (0.09 seconds if logical reasoning is not used).

11.12.8 Non-Trihedral, Concave

The original drawing on the left of Figure 11.10 has 19 lines. RIBALD identifies 202

possible constraints on face normals and 507 possible constraints on face distances.

Of the face normal constraints, 98 are actively considered (with 33 being accepted

and 65 being rejected) before all angular degrees of freedom are removed. Of these,

78 can be accepted or rejected using logical reasoning, and 3 can be accepted because

they match the existing geometry, leaving 17 which require numerical processing.

As with the previous example, the two collinear edges meeting at the T -junction

are no longer collinear.

278

Figure 11.10: Non-Trihedral Object

Fixing face normals using downhill optimisation takes 0.05 seconds (0.18 seconds

if logical reasoning is not used). Fixing face normals using geometric optimisation

takes 0.07 seconds (0.17 seconds if logical reasoning is not used).

11.12.9 Semi-Axis-Aligned

Figure 11.11: Non-Trihedral Object [194]

The original drawing on the left of Figure 11.11 has 21 lines. RIBALD identifies

313 possible constraints on face normals and 760 possible constraints on face dis-

tances. Of the face normal constraints, 108 are actively considered (with 38 being

accepted and 70 being rejected) before all angular degrees of freedom are removed.

Of these, 106 were accepted or rejected using logical reasoning, and none were ac-

cepted because they already fit the geometry, leaving 2 which required numerical

processing.

Fixing face normals using downhill optimisation takes 0.03 seconds (0.09 seconds

if logical reasoning is not used). Fixing face normals using geometric optimisation

279

takes 0.03 seconds (0.06 seconds if logical reasoning is not used).

11.12.10 Summary

The results presented here suggest that further work is required before the meth-

ods described in this chapter can be considered robust. However, the only method

which is provably inadequate is determination of angular degrees of freedom (Sec-

tions 11.5.3 and 11.5.4).

The faults in Figures 11.9 and 11.10 result from an implementation problem

which could easily be corrected given more time.

Figure 11.11 can be considered satisfactory. The angle between the slanting face

and the others has changed visibly from the original line drawing—this results from

treating vertex z-coordinates as being equally as valid as vertex x- and y-coordinates

when generating the three main axes of a semi-normalon from the output of inflation

(Chapter 7). Changing this would be straightforward, but improvements in inflation

would make such changes unnecessary.

Figure 11.8 (Section 11.12.6) illustrates a common problem. As shown, a correct

mirror constraint is enforced in preference to (equally-correct) perpendicularity con-

straints. With small changes to numerical constants, the output can be changed so

that perpendicularity constraints, including one between the two sloping roof faces,

are enforced but mirror symmetry is not. Although it is obvious visually that the

two constraints do not conflict, the current (inadequate) algorithm for degrees of

freedom only permits enforcement of the higher-merit constraint.

Sensitivity of this sort is observed frequently with more complex drawings. Other

examples are Figure 11.4, where unconvincing perpendicularity constraints are en-

forced in preference to face angle constraints, Figure 11.5, where entirely erroneous

perpendicularity constraints are enforced in preference to a variety of other, more

valid, constraints, and Figures 11.6 and 11.7, where the V-notch at the top of the

object is distorted because perpendicularity constraints are enforced in preference

to face angle constraints. These last two examples highlight one omission from RIB-

ALD, which is that if a face angle constraint is accepted, it becomes more plausible

that the same face angle appears elsewhere in the object—other face angle con-

straints requiring the same face angle should be reassessed.

280

Many of the constants in this Chapter are arbitrary—there was insufficient time

to optimise tuning constants, unlike in other Chapters. It is possible that an optimal

set of tuning constants would have overcome many of the problems noted in this

Section. It is also possible, however, that no fully satisfactory set of tuning constants

exists, and if this proves to be the case, the decision to separate face normal and

face distance optimisation may need to be reconsidered (face distances could provide

useful clues to the merit of face normal constraints).

Assuming RIBALD implements correctly the ideas of Section 11.5 (this assump-

tion is not necessarily good), Figure 11.8 also provides evidence that better solutions

are required to the problem of angular degrees of freedom. Clearly, it is possible

to enforce both mirror and perpendicularity constraints, but RIBALD’s method of

determining angular degrees of freedom does not allow for this.

Timings are, in general, acceptable, but this situation is also not robust. Unac-

ceptable timings such as those with Figure 11.6 (Section 11.12.4) occur sporadically

and, as yet, unpredictably.

11.12.11 Face Distance Constraints

As RIBALD’s implementation of face distance constraints is incomplete, no res-

ults are presented. One preliminary observation concerning edge length equality

constraints may however be worth noting.

In Figure B.503 a false constraint shows up quite early on (in amongst the

ones which can be accepted automatically and well before many desirable ones),

constraining the slanting edge at the front of the object to be the same length as

the base of the object. Giving edge length constraints between parallel edges higher

merit than edge length constraints between non-parallel edges solves the problem

in this case and leads to a good geometry. However, this is not necessarily a good

general solution, as part of the purpose of edge length constraints is to make near-

cubes cubic, which necessitates enforcing them between non-parallel edges.

281

Chapter 12

Results

Previous chapters included analyses of the various components based on their per-

formance in processing the entire set of test drawings in Appendix B. However, the

motivation behind this work is the interpretation of line drawings of engineering ob-

jects. This chapter selects ten “typical engineering objects” from the test drawings

and analyses how well RIBALD reconstructs the topology of the corresponding solid

objects. Geometric fitting (see Chapter 11) is not discussed here as work on this

did not reach a satisfactory conclusion in the time available. The chapter concludes

with general remarks about accuracy of interpretation and timings.

12.1 Axis-Aligned Extrusion

Figure 12.1 is the most difficult axis-aligned extrusion to process, as it includes a

line both ends of which are T -junctions. The drawing comprises 22 lines.

Figure 12.1: Extrusion Figure 12.2: Axis-Aligned

Set-intersection methods (see Chapter 4) always label this drawing correctly;

relaxation methods label the drawing correctly provided that the full catalogue is

282

used for all junction types including L-junctions, W -junctions and Y -junctions (why

this should make a difference here is unclear).

Bundling of parallel lines (see Chapter 5) always operates correctly, producing

three bundles of lines.

RIBALD finds no cofacial configurations or slot features (see Chapter 6) in this

drawing; this is correct.

Inflation (see Chapter 7) produces correct depth ordering for neighbouring ver-

tices if and only if the options to generate depth equations from bundles of parallel

lines and to use JLP rather than corner orthogonality are selected. Without us-

ing parallel line information, the direction of the double-T -junction line cannot be

determined. The assumptions behind corner orthogonality do not apply to this

projection, and it fails for those vertices which do not meet the Perkins criteria.

For each quadrilateral face, RIBALD identifies potential mirror symmetries (see

Chapter 8) from edge to edge (merit 0.97) and from vertex to vertex (merit 0.40).

The dominant reflection planes (merit 0.63) are the two obtained from chaining pairs

of single-face mirror symmetries along the sides of the extrusion; all other candidate

reflection planes have very low merit.

Attempts to find candidate rotation axes illustrate problems also found with

several other objects considered in this Chapter. Firstly, the object has no rotational

symmetry. Secondly, for the two faces for which C2 and C4 candidate symmetries

are correctly found, the merit figures (0.80 for C2 and 0.90 for C4) are far too high,

particularly that for the C4 rotation as the faces are visibly not square. Thirdly, the

two side faces which occlude T -junctions are incorrectly categorised as pentagonal,

and considered as candidates for C5 rotations.

RIBALD classifies (see Chapter 9) the object as a trihedral normalon extrusion.

The merit figures for the object being a normalon and it being an extrusion are both

1.00, and merit figures for any alternatives are all 0.00.

Having identified that the object is an extrusion and which face is the end-cap,

RIBALD reconstructs the complete object topology correctly.

283

12.2 Axis-Aligned Non-Extrusion

Figure 12.2 shows two perpendicular beams joined by a cross-beam. The drawing

comprises 25 lines.

All labelling variants label this drawing correctly. Bundling of parallel lines

always operates correctly, producing three bundles of lines.

RIBALD finds no cofacial configurations or slot features in this drawing; this is

correct.

If depth equations are generated from bundles of parallel lines, inflation always

produces correct ordering of adjacent vertices regardless of which other options are

chosen. If parallelism equations are not used, there are always errors, with one or

both of the lines ending at T -junctions being misdirected.

RIBALD identifies face mirror planes as before. It correctly identifies both major

planes of reflection of the object; one, starting at the front and crossing four faces,

has merit 0.87, and the other, running along the front of the object and crossing

two faces, has merit 0.29 (this seems somewhat low).

Candidate C2 and C4 rotational symmetry axes are identified for three faces.

The C2 merits are all close to 0.80; the C4 merits are 0.99 for the two small squarish

faces and 0.90 for the (clearly non-square) fully-visible rectangular face; this last

figure is clearly too high.

RIBALD classifies the object as a trihedral normalon (merit 1.00), with the merit

figures for all other special classes being 0.00.

With the optimal set of tuning constants for topological reconstruction, RIB-

ALD produces the correct topology of the desired object. However, optimising the

tuning constants took time, and during development, reconstruction was sometimes

marred by the T-piece problem discussed in Chapter 10.9.2. The correct topology is

symmetrical about both of the two major planes of reflection; the valid but incorrect

topology only about the first of them.

12.3 Grimstead’s Block

Figure 12.3 is Grimstead’s test drawing [38]. Although apparently complex (the

drawing comprises 31 lines), interpretation should present little difficulty as there

284

are only two hidden vertices to find and their topology and geometry should be

obvious.

Set-intersection methods label this drawing correctly. Relaxation methods some-

times fail (labelling the line indicated “*” as concave rather than occluding), depend-

ing on the initial values used and the number of iterations allowed.

*AA

B
B

Figure 12.3: Grimstead’s Block Figure 12.4: Hole Loop

Continuing with a correctly-labelled drawing, bundling of parallel lines normally

results in four bundles, but using the “strict” option produces five: the two pairs of

lines “A” and “B” in the diagram are not bundled together. These lines are not quite

parallel in the drawing, the clue which suggests that they ought to be parallel is the

mirror symmetry of the object, and object symmetry is determined after bundling

of parallel lines.

RIBALD finds no cofacial configurations or slot features in this drawing; this is

correct.

Inflation produces correct depth ordering of adjacent vertices if either of two

options is selected: parallelism equations from bundles, or inclusion of entries for

lines terminating in T -junctions in the JLP tables. Failing this, the line terminating

in a T -junction is usually misdirected.

RIBALD identifies face mirror planes as before. It correctly identifies that the

dominant plane of reflection (merit 0.73) is that cutting the top of the object, al-

though this crosses only one face; the two chains of three mirror planes crossing the

arms of the object have merit figures of less than 0.01.

Candidate axes of rotation are identified for the two squarish front faces, with

merit 0.79 for C2 and 0.64 for C4; these are again too high as these rotations provide

no clue to the topology of the object. There is also an erroneous candidate C5

rotation axis for the face which occludes the T -junction.

285

RIBALD classifies the object as a trihedral semi-normalon with mirror symmetry

(merit 0.69); as a result of this, the merit of the dominant plane of reflection is

increased to 0.92.

With the optimal set of tuning constants for topological reconstruction, RIBALD

produces the correct topology of the desired object. As with the previous example,

a problem encountered during development (in this case, a valid topology with a

“step” at the bottom of the left-hand end of the bracket) does not appear with

the tuned version of the program. The correct topology is symmetrical about the

reflection plane; the valid but incorrect one is not.

12.4 Hole Loop

Figure 12.4 is a simple drawing including a hole loop, portraying an L-block with a

through hole. The drawing comprises 20 lines.

All labelling variants label this drawing correctly. Bundling of parallel lines

always operates correctly, producing three bundles of lines.

RIBALD identifies that the cofacial configuration in this drawing corresponds to

a hole or pocket, and that there are no slot features; this is correct.

Inflation produces correct depth ordering of adjacent vertices if either of two

options is selected: parallelism equations from bundles, or generation of equations

to place the occluded lines at T -junctions a fixed distance behind the occluding lines.

Failing this, the line down into the hole terminating in a T -junction is misdirected.

RIBALD identifies face mirror planes as before, and also a vertex-to-vertex mir-

ror plane (merit 0.80) crossing the L-shaped face. It correctly identifies that the

dominant plane of reflection (merit 0.79) is that crossing the top four faces of the

object, with the plane formed by chaining the concave edge with the vertex-to-vertex

mirror plane being another plausible candidate (merit 0.38).

Candidate axes of rotation are identified for the two squarish faces at the top

and front of the object, with merit 0.79 for C2 and 0.67–0.71 for C4.

RIBALD classifies the object as a trihedral normalon (merit 0.998); the merit

figures for other special classes, including “extrusion”, are 0.00.

Topological reconstruction illustrates a known limitation of RIBALD. RIBALD

cannot reconstruct through holes (determination of which rear face or faces are

286

penetrated by a through hole is left for future research), so this drawing’s feature

is reconstructed as a pocket. Furthermore, as the bottom of the pocket is not

visible in the drawing, the depth of the pocket is arbitrary. The resulting object is

topologically correct, but not the best interpretation of the drawing: if the feature

were a pocket rather than a hole, the most informative viewpoint would be one

which showed the pocket bottom.

12.5 Extended Trihedral Normalon

Figure 12.5 illustrates an extended trihedral normalon, two L-blocks joined by a

cross-beam. The drawing comprises 31 lines.

*

*

Figure 12.5: Extended Trihedral Nor-
malon

?

?

?
*

Figure 12.6: Extended Trihedral
Semi-Normalon

All labelling variants label this drawing correctly (when asked to use trihedral

labelling, RIBALD automatically uses extended trihedral because of the presence of

tetrahedral and hexahedral junctions).

Bundling of parallel lines always operates correctly, producing three bundles of

lines.

RIBALD finds no cofacial configurations or slot features in this drawing; this is

correct.

If bundles of parallel lines are used to generate equations, inflation always pro-

duces correct depth ordering of neighbouring vertices. With other combinations of

options, RIBALD sometimes achieves correct results but more often does not—lines

terminating at T -junctions are sometimes misdirected, as are lines terminating at

the non-trihedral junctions.

287

RIBALD identifies face mirror planes as before, and also a vertex-to-vertex mir-

ror plane (merit 0.80) crossing the fully-visible L-shaped face. It finds no dominant

plane of reflection, the best (merit 0.18) being that formed by chaining the long con-

cave/convex/concave edge with the vertex-to-vertex mirror plane; two others (merit

0.06), each formed by chaining four faces along the tops of the Ls, are evaluated as

inferior even to this.

Candidate axes of rotation are identified for the four squarish faces at the tops

and fronts of the Ls, with merit 0.80 for C2 and 0.42–0.52 for C4. There is also two

erroneous candidate C5 rotation axes for the faces which occlude the T -junctions.

RIBALD classifies the object as a non-trihedral normalon (merit 0.999); the

merit figures for other special classes are 0.00.

Despite the apparent simplicity of this drawing, RIBALD does not reconstruct

the topology of the object correctly. In reconstructing the vertex/edge framework,

it starts by mistakenly adding a new vertex and edges connecting it to the two L-

junctions marked “*”. This is not detected as erroneous because, having made this

mistake, it nevertheless manages to find a self-consistent topology by adding further

edges to link the various incomplete vertices. The resulting topology is certainly not

axis-aligned and appears to be impossible to interpret geometrically, but examined

purely as a topology it is valid, so backtracking is not invoked.

It is not clear that reconstructing the object using face planes, rather than by

reconstructing the vertex/edge framework first, would avoid the initial error—the

two “*” L-junctions clearly lie on the same face, and vertices must be added some-

where to complete this face. However, it is clear that analysis of face planes would

detect that the topology RIBALD actually obtains is incorrect.

Even using the methods of this thesis, it should be possible to reject the topology

obtained on the grounds that it conflicts with the strong (merit 0.999) assumption

that the object is a normalon (it also conflicts with the two planes of reflection of

the object, but these have much lower merit). The clues to this invalidity are not

obvious (for example, in the object obtained, all trihedral vertices have one edge

allocated to each bundle, as would be required of a normalon), and RIBALD does

not as yet include this refinement.

288

12.6 Non-Trihedral Semi-Normalon

Figure 12.6 illustrates an extended trihedral semi-normalon resembling a bookshelf.

The drawing comprises 17 lines. Interpretation ought to be straightforward—like

Grimstead’s block, there are only two hidden vertices to be deduced, and their topo-

logy and geometry should be obvious, and (also like Grimstead’s block) the object’s

mirror symmetry should act as supporting evidence for the correct interpretation.

None of the labelling methods tried labelled this drawing correctly. All methods

tried produce label convex lines as concave and vice versa for the three lines marked

“?”. Set intersection labels the line marked “*” as convex and relaxation methods

label it as occluding (it should be concave). Both interpretations are incorrect—in

particular, the result from set intersection is a geometrically possible interpretation

but ignores the obvious symmetry of the object. The problem occurs because the

heuristic which minimises the number of types of non-trihedral vertex in the final

object cannot distinguish between the 3-convex+1-concave K-junctions obtained by

RIBALD and the 3-convex+1-concave K-junctions in the correct labelling.

Continuing with a correctly-labelled drawing produced by hand, bundling of

parallel lines always operates correctly, producing four bundles of lines.

RIBALD finds no cofacial configurations or slot features in this drawing; this is

correct.

Depth ordering of neighbouring vertices is erratic. Using the two options (a) to

use JLP and (b) to generate equations from bundling information, RIBALD obtains

a correct depth ordering more often than not, depending on which other options are

selected; if either of these options is not selected, RIBALD only occasionally obtains

a correct depth ordering. JLP is required because corner orthogonality does not

cope so well with corners which are not axis-aligned. Bundling is required in order

to generate correct orientation both for the line terminating at a T -junction and also

for the other two lines meeting the concave trihedral junction (although it is visually

obvious which direction a Kcdcc–Y ddd line takes, such lines are so uncommon in

practice that no entry was included for this in the JLP tables). There is a further

problem which makes JLP unreliable here. In an isometric projection, ends of the

diagonal lines would be equidistant from the viewer. The projection here is not

quite isometric, and the right-hand ends of the lines genuinely are slightly closer to

289

the viewer, but JLP, being based on labellings and the assumption of isometricity,

does not enforce this with any weight and indeed generates equations to make the

ends of symmetrical lines (Y ccc–Y ccc etc) equidistant.

RIBALD identifies face mirror planes as before, and also four vertex-to-edge

mirror planes, one (merit 0.90) crossing the pentagonal end face and three (all merit

0.75) crossing the fully-visible internal triangular face. Two planes of reflection,

formed by chaining a vertex-to-edge mirror plane with an edge-to-edge mirror plane,

are regarded as almost certain (merit figures 0.997 and 0.993)—although the finished

object is topologically symmetrical about this plane, it is not clear from the drawing

that it should be geometrically symmetrical, so these merit figures are somewhat

high. The incomplete internal faces prevent the two face mirror planes detected

along the true plane of rotation from being chained together; these, separately, each

have merit 0.62.

Candidate axes of rotation are identified for the two rectangular faces at the top

and front of the object, with merit 0.80 for C2 and 0.59 for C4; these are, as before,

too high, as is the merit figure (0.70) for a C5 rotation of the pentagonal end face.

RIBALD classifies the object as a tetrahedral semi-normalon with mirror sym-

metry (merit 0.73); as a result of this, the merit of the assumed dominant plane of

reflection is increased to 0.999.

As with the previous object, a poor choice of first move results in an incorrect

(and apparently invalid) topology.

12.7 Semi-Normalon

Figure 12.7 is a mirror-symmetric semi-normalon, adapted from [194] (the original is

not mirror-symmetric). The drawing comprises 39 lines. Analysis of this drawing is

confused by the presence of an underslot feature (see Chapter 6) with two reasonable

interpretations.

Set-intersection methods always label this drawing correctly; relaxation methods

label the drawing correctly provided that the full catalogue is used for all junction

types including L-junctions, W -junctions and Y -junctions.

Bundling of parallel lines always operates correctly, producing five bundles of

lines.

290

Figure 12.7: Semi-Normalon

*

*

Figure 12.8: Semi-Normalon

RIBALD correctly identifies the or slot features on the underside of the object

portrayed in this drawing, and also that there are no cofacial loops.

Inflation produces correct depth ordering of adjacent vertices if both of two

options are selected: parallelism equations from bundles, and omission of equations

to place the occluded lines at T -junctions a fixed distance behind the occluding

lines. Failing this, the line towards the left of the drawing from a Y -junction to a T -

junction is frequently misdirected, and other lines are also occasionally misdirected.

RIBALD identifies face mirror planes as before, and additionally two others, a

vertex-to-edge mirror (merit 0.86) corresponding to the true reflection plane of the

object, and a vertex-to-vertex mirror (merit 0.77) vertically down the concave edge

at the right-hand front of the object. It recognises that the vertex-to-edge mirror

corresponds to the dominant reflection plane of the object; the only mirror planes

which can be chained (the two crossing the indentation at the top of the object)

together have a negligible merit as this cannot be propagated in either direction.

There are no candidate axes of rotation.

RIBALD classifies the object as a trihedral semi-normalon with mirror symmetry

(merit 0.77); as a result of this, the merit of the dominant plane of reflection is

increased to 0.94.

RIBALD reconstructs a valid and sensible topology for the object, albeit not

quite the best interpretation of the drawing. The natural interpretation of the

drawing would be that, as the slot on the top of the object runs all the way from

front to back, the slot on the underside of the object should do too; in the object

actually produced, the slot terminates mid-way through the object, and the rear face

touches the “ground” along its entire length. During development, with different

values of topological tuning constants, it has been possible to produce the preferred

291

interpretation.

12.8 Semi-Normalon

Figure 12.8 is a mirror-symmetric semi-normalon taken from a drawing exercise [194].

The drawing comprises 39 lines. Despite the different appearance of the two draw-

ings, the object portrayed here is topologically close to that in the previous example,

and similar results could be expected. Again, the underslot feature presents the main

problem of interpretation.

Set-intersection methods always label this drawing correctly; relaxation methods

label the drawing correctly provided that the full catalogue is used for all junction

types including L-junctions, W -junctions and Y -junctions.

The “lenient” versions of bundling correctly produce four bundles of parallel

lines; the “normal” and “strict” versions produce five. The short line at the bottom

of the drawing, ending in a T -junction, is not drawn correctly (if it were, there

would be an accidental coincidence of lines). The topological clue that it should be

bundled with other similarly- oriented lines is the mirror symmetry of the object,

which has not been determined at this stage. In the absence of this clue, only the

“lenient” version of bundling allows a wide-enough range of orientations for it to be

included in the bundle.

RIBALD correctly identifies the or slot features on the rear of the object por-

trayed in this drawing (feature detection ignores orientation), and also that there

are no cofacial loops.

As with Figure 12.6, depth ordering of neighbouring vertices is erratic. Using the

two options (a) to use JLP and (b) to generate equations from bundling information,

RIBALD obtains a correct depth ordering more often than not, depending on which

other options are selected; if bundling is not selected, RIBALD only occasionally

obtains a correct depth ordering, and if corner orthogonality is selected in place of

JLP, RIBALD never obtains a correct depth ordering. Again, corner orthogonality

does not cope well with corners which are not axis-aligned. Bundling information

is required in order to direct correctly lines terminating in T -junctions, but with

the “normal” bundling options one of these lines has not been bundled properly, so

some additional means of directing this line is required.

292

RIBALD identifies face mirror planes as before, and additionally one low-merit

(0.28) vertex-to-vertex mirror plane crossing the quadrilateral face with two concave

and two convex edges. It finds two plausible planes of reflection by chaining pairs of

edge-to-edge mirror planes, one (merit 0.50), the true one, at the front of the object

(at the right of the drawing), and the other (merit 0.25) from the two faces at the

bottom left in the drawing.

Candidate axes of rotation are identified for the two small faces at the top of the

object (at the left of the drawing), with merit 0.69–0.72 for C2 and 0.69–0.75 for C4.

There is also one erroneous candidate C5 rotation axes for a faces which occludes a

T -junction.

RIBALD classifies the object as a trihedral semi-normalon (merit 0.35) rather

than a trihedral semi-normalon with mirror symmetry (merit 0.28); the merit of the

(correct) plane of reflection is increased to 0.64.

RIBALD produces an incorrect but apparently valid topology for this object.

After completing the slot feature as a first move, a very poor choice of second move

(reversing the direction of the line marked “*” so as to complete a quadrilateral face

by adding an edge meeting the vertex marked “*”) means that even after sensible

additions on subsequent moves, RIBALD cannot reach an object with a plane of

reflection. The resulting topology is self-consistent and even meets the requirements

of Euler’s formula, but it is difficult to see how a consistent geometry could be fitted

to it.

With hand-chosen values of topology tuning constants, it has been possible to

produce the correct interpretation, but these are not the values which produce op-

timal results over the entire set of test drawings.

12.9 Non-Trihedral Semi-Normalon

Figure 12.9 appeared in Chapter 1.1 as an illustration of a simple line drawing, the

interpretation of which is straightforward to anyone from an engineering background.

The drawing comprises 21 lines.

No set-intersection labelling method labels this drawing correctly—the line marked

“-” is labelled as concave when it should clearly be convex (it does not seem possible

to fit a frontal geometry to the drawing in which the line is concave). Relaxation

293

-

Figure 12.9: Non-Trihedral Semi-
Normalon

+

?

?

Figure 12.10: Non-Trihedral Bracket

methods label the drawing correctly provided that the full catalogue is used for all

junction types including L-junctions, W -junctions and Y -junctions.

Continuing with a correctly-labelled drawing, bundling of parallel lines always

operates correctly, producing four bundles of lines.

RIBALD finds no cofacial configurations or slot features in this drawing; this is

correct.

Inflation produces correct depth ordering if and only if equations are generated

from bundles of parallel lines and equations are not generated to place the occluded

lines at T -junctions a fixed distance behind the occluding lines. If either of these

conditions is not met, the line terminating at a T -junction is misdirected. Other

options do not affect the depth ordering.

It is worth remarking that the correct depth ordering is not visually obvious. The

drawing is in isometric projection, and (although it may not appear so) the bottom-

most junction in the drawing is further away from the viewer than the Y ccc junction

immediately above it. The closest junction to the viewer is the Y ccc junction at the

front of the top face.

RIBALD identifies face mirror planes as before, and additionally one vertex-to-

vertex mirror plane (merit 0.25) across the L-shaped face and three vertex-to-edge

mirror planes (merit 0.75) crossing the visible internal triangular face. The dominant

plane of reflection (merit 0.82), formed by chaining two face mirror planes, is the

true plane of reflection of the object; no other candidate has a merit greater than

0.01.

There are no candidate axes of rotation.

294

RIBALD classifies the object as a tetrahedral semi-normalon with mirror sym-

metry (merit 0.56); as a result of this, the merit of the dominant plane of reflection

is increased to 0.92.

RIBALD reconstructs the expected topology for the object.

12.10 Non-Trihedral Bracket

Figure 12.10 illustrates a problem with the “most informative viewpoint” rule. The

front of the object is not greatly different from those portrayed in Figures 12.6

and 12.9, but drawing a front view would leave no clues as to the topology of the

back of the object. The drawing comprises 22 lines.

Set intersection produces a suboptimal but plausible labelling in which the line

segment marked “+” is occluding rather than convex—this results from giving higher

merit to trihedral than to non-trihedral interpretations. Relaxation labelling also

does this and adds a further error: the lines marked “?” are convex when they

should be concave and vice versa.

Continuing with a correctly-labelled drawing produced by hand, the “normal”

and “strict” versions of bundling correctly produce five bundles of parallel lines. The

“lenient” versions produce four, making incorrect groupings in doing so.

RIBALD finds no cofacial configurations or slot features in this drawing; this is

correct.

Inflation usually produces correct depth ordering of neighbouring vertices if equa-

tions are generated from bundles of parallel lines (if they are not, there are always

errors, for reasons similar to those noted with other drawings). The sole failure is

when options are selected for corner orthogonality and occluded lines a fixed distance

behind occluding at T -junctions; this results in the L–T line in the top left-hand

corner of the drawing being misdirected.

RIBALD identifies face mirror planes as before, including three vertex-to-edge

mirror planes (merit 0.75) crossing the visible triangular face. The only plausible

plane of reflection found (merit 0.20) is the one corresponding to the true mirror

symmetry of the object.

Candidate axes of rotation are identified for the two rectangular faces of the

buttresses (at the right of the drawing), with merit 0.79–0.80 for C2 and 0.63 for

295

C4. These merit figures are, as with most other objects considered in this Chapter,

too high.

RIBALD classifies the object as tetrahedral with “no special class” (merit 0.52)

rather than as a semi-normalon (merit 0.33); as a result of this, the merit of the

dominant plane of reflection is increased to 0.47.

Reconstruction of hidden topology produces an uncompletable object which

causes filling-in of face loops (Chapter 2.14) to fail.

12.11 Conclusions

The set of drawings which can be interpreted plausibly as solid objects, and for

which a topological model with provisional geometry can be produced, improves on

Grimstead’s method.

Objects which meet one of the special-case classes are in general classified cor-

rectly. More commonly, objects will meet the requirements of several of the special-

case classes, and the class to which they are allotted can be arbitrary. This can also

vary depending on how well-drawn the sketch is—different versions of Figure B.54

(page 310) are classified as a frustum, a semi-axis-aligned sketch with a mirror plane,

or an extrusion.

12.12 Timing

As discussed in the previous chapters, all of the algorithms used in Chapters 4–10 are

provably polynomial except for line labelling and topological reconstruction. Line

labelling is polynomial if (and only if) there is a single sensible labelling. Topological

reconstruction is polynomial if (and only if) the greedy approach finds a satisfactory

solution.

On the whole, the system meets the goal of interactive response times. Most

exceptions occur when a poor choice of move is made during the early stages of

topological reconstruction. This can make the process very slow—of the order of

several seconds or even minutes—before backtracking brings the system back to a

more sensible choice.

Line labelling is less problematic—even the worst case of the slowest method (set

296

intersection) takes approximately 28 seconds, and this is exceptional. Most other

difficult cases take a few seconds using the slowest method, and all cases take less

than a second using relaxation methods.

For each of the drawings considered in this Chapter, the entire process from

line labelling to topological reconstruction takes place in a time which could be

considered interactive. In most cases, RIBALD takes longer to draw the full object

than it takes to construct it.

297

Chapter 13

Conclusions

This chapter draws conclusions from the results presented in the preceding Chapters,

and makes recommendations for future work.

In each of Chapters 4–11, the ideas presented advance the state of the art.

In two cases, the generation and listing of the tetrahedral junction catalogue in

Chapter 4.3 and Appendix E [175] and the elaboration and analysis of Junction

Label Pairs presented in Chapter 7 [176], specific ideas have led to published papers,

and the overall approaches to frontal geometry (Chapters 4–9) [172], hidden topology

(Chapter 10) [173] and geometric fitting (Chapter 11) [174] have also been published

as conference papers. These are summarised in Section 13.1. Within this area,

several areas require further research, and these too are described in Section 13.1.

Conversion of sketches to line drawings is not the topic of this thesis, which as-

sumes that such conversion is possible. This assumption is evaluated in Section 13.2

in the light of the results summarised in Chapter 12.

The most obvious deficiency of the ideas in this thesis is that they are restricted

to polyhedra. Section 13.3 considers the merits of attempting to interpret curved

line drawings.

Concerning future work related to, but outside the scope of, this thesis, Sec-

tion 13.4 makes recommendations concerning features, and Section 13.5 lists (without

attempting to answer) questions of psychology which have a bearing on line drawing

interpretation.

298

13.1 Line Drawing Interpretation

In each of Chapters 4–11, the ideas presented advance the state of the art. In all cases

there remain areas still to be resolved. In some cases, incremental improvements

would be sufficient to produce reliable methods, but in other cases, new ideas are

required.

In order to meet the requirement for interactive performance, a faster algorithm

for propagating vertex, edge and face pairings (page 151) is required. This is required

both for initial detection of local symmetry (Chapter 8) and for evaluating the

merits, consequences and implications of those hypotheses in Chapters 10 and 11

which depend on local symmetry. O(n3) time should be possible in theory, but the

algorithm I have reported in [178] is O(n4).

The line-labelling methods described in Chapter 4 improve on the state of the

art, in that they not only label trihedral drawings correctly (as do many previous

methods), but also (more often than not) label non-trihedral drawings correctly (a

more difficult problem which previous methods do not attempt to solve). Never-

theless, they are insufficiently reliable: using relaxation labelling, the output is too

often incorrect, and although set intersection labelling is somewhat more reliable, it

still produces an incorrect labelling about 20% of the time, and it is unacceptably

slow for drawings of 50 or more lines. These results seem to be approaching the limit

of what is possible when line-labelling is treated purely as a combinatorial problem.

As line labels (and in particular, the junction labels also produced as part of this

process) are so useful, attempts should be made to overcome these problems. It is

recommended that further investigation into line-labelling should start by investig-

ating how geometric inferences can be incorporated into labelling algorithms (see

Figure 4.42, page 88); attempts to take account of potential symmetries would also

be useful (see Figure 4.43, page 88).

Bundling of parallel lines (Chapter 5) is more robust than Grimstead’s bucket-

ing [38] and more flexible than Sugihara’s assumption [163] that edges are parallel in

the object if and only if the corresponding lines are parallel in the drawing. Bund-

ling appears to be reaching the limits of what is possible given the requirement of

allowing for freehand drawing errors. There may be further inferences which can

299

be drawn which allow incorrect bundlings to be rejected, but such incremental im-

provements are unlikely to make a dramatic difference. It is recommended that, as

in RIBALD, bundling of parallel lines is treated as a hypothesis, not as a fact.

The ordering of line-labelling and bundling of parallel lines was constrained by

the use of line labels in bundling to reject impossible bundlings. However, it is clear

that parallel line information could be of use in the labelling process. Where there

are only three bundles of parallel lines, use of the extended trihedral catalogue rather

than the full catalogue is clearly justified. It is also plausible that in drawings with

four or more bundles of lines, junctions which use only the three primary bundles

should be restricted to the extended trihedral catalogue—this may fail in some cases,

but could be a useful heuristic and should be investigated.

The inflation methods described in Chapter 7 improve on the state of the art

by adding the Junction Line Pair (JLP) compliance function. The methods de-

scribed appear satisfactory. Even though the results obtained are far from perfect,

the methods described are flexible as (a) the use of a linear system makes addition

of extra compliance functions, or varying the weighting of existing compliance func-

tions, easy, and (b) it is also easy to change weightings and add extra entries to

the JLP tables. There is therefore room for significant improvement without any

requirement for radically new ideas.

The ordering of line-labelling and inflation is constrained by the use of the JLP

compliance function and by the intuitive requirement that one should attempt to

gain topological information (“which lines are concave?”) before trying to fit a

geometry (“what is the dihedral angle?”). However, since the main problem en-

countered in line-labelling is the lack of geometric information, it is worth investig-

ating how the two components may be combined. I suggest, as two possibilities, (a)

interleaving iterations of relaxation labelling and inflation, and (b) using a genetic

algorithm in which the genes determine inflation geometry, and fitness is assessed

using line-labelling heuristics such as those in Chapter 4.

Reconstruction of hidden topology (Chapter 10) improves on Grimstead [38]

by evaluating the merits of competing hypothesis rather than working through a

fixed list of possible moves. As a result, a valid topology is produced for draw-

ings for which Grimstead’s method cannot even attempt to construct a topology,

and the correct topology is produced for some drawings which Grimstead’s method

300

produces implausible results. Nevertheless, topological reconstruction still presents

serious unsolved problems. Although it is possible that reliability may be improved

somewhat by further tuning, it is unlikely that this alone will be sufficient. Further

ideas are needed, and two promising approaches are recommended. The first is that

by treating face planes as half-spaces, and edges as half-space operators (union or in-

tersection), obviously incorrect hypotheses can be rejected without further analysis.

The second is that, since topological reconstruction is robust for simple objects,

splitting a complex object into two or more simple ones and constructing the hid-

den topology separately for these would increase reliability (it should also increase

speed).

The results of geometric finishing (Chapter 11) are inconclusive. The ideas

presented are intuitively sound, but there is no experimental confirmation of their

validity. This was due (a) partly to lack of time (tuning constants were not op-

timised), and (b) partly because the algorithm (presented in Chapter 11.5.3) for

distributing angular degrees of freedom through the faces of an object after enfor-

cing orientation constraints is unsatisfactory both theoretically and in practice. An

improved algorithm is required. There is also, as yet, no solution to the resolvable

representation problem, but it is not clear how serious this omission is in practice.

13.2 Sketch to Line Drawing

For the purpose of the thesis, it has been assumed that conversion of freehand

sketches to line drawings is straightforward. However, some ideas in this thesis go

beyond what is currently available in the area, so this process could usefully be

reinvestigated.

The approach of Qin et al [137, 138] is interesting and successful in achieving

their aims, but their interventionist ideas and their choice of using wireframe input

are incompatible with the assumptions behind RIBALD.

JMsketch [112], a state-of-the-art sketching program which can produce line

drawings as output, is slow when compared with the frontal geometry components

of RIBALD, and does not handle T -junctions satisfactorily.

In detection of lines intended to be parallel in line drawings, the ideas of Chapter 5

approach the limits of what is possible. If it is accepted that parallelism must be a

301

hypothesis, it may be possible to form a more reliable assessment of the merit of the

hypothesis from the sketched lines drawn by the user than from the “tidied” lines

of a line drawing.

13.3 Curves

An obvious extension to the ideas of this thesis is a system which can deal with

simple curved objects. This is perhaps a less pressing problem than it may seem,

since many surfaces in engineering objects are either blends or cylindrical (drilled)

holes, and both of these are easily added within CAD packages.

If this problem is investigated, several of the ideas in this thesis will require

modification as they embody assumptions which no longer hold. For example:

RIBALD assumes that edges join two vertices. This is not necessarily the case

for curved objects—even such a simple curved object as a cylinder has edges but no

vertices. Invalidating such a fundamental assumption also invalidates most of the

algorithms in this thesis.

In addition, in polyhedra, the geometry of an edge is easily determined. As seen

in Figure 1.10 (page 11), not only is it more difficult to determine a geometry for a

curved edge, but such determinations must be subject to repeated validation in the

light of knowledge of the rest of the object.

The line labelling algorithms of Chapter 4 assume arc consistency–a line has

the same label throughout its length. As noted by Huffman when first proposing

line labelling [56], this is not always true of drawings of curved objects. This also

invalidates most of the methods described in this thesis.

Much of Chapter 11 relies on being able to express relationships (such as parallel

and perpendicular) between two face normals. Curved faces do not have single-value

face normals, so expressing such relationships is problematic at best and impossible

in the general case.

13.4 Features

Feature hypotheses (Chapter 6) are found to improve interpretation considerably,

both by acting as an aid to line-labelling (Chapter 4) and (in particular) assisting in

302

the problematic area of deducing hidden topology (Chapter 10). These advantages

would be lost if the wrong feature set were incorporated.

It is an axiom of this thesis that interpretation of line drawings is a learned skill.

Extending this, I hypothesise that the skill is learned by encountering examples of

object features which become so familiar that they are recognised unconsciously

when they occur in line drawings. This hypothesis is more contentious, and should

be investigated. If accepted, it implies that different users, learning different skills,

recognise different features in drawings.

Although RIBALD demonstrates the concept, it is limited to hole-loop features

and varieties of slot. Before a commercial equivalent is produced, a survey should

be performed of the intended application area to identify other common features.

13.5 Psychology

During the course of the research in this thesis, several interesting questions have

arisen which are more related to psychology than to geometry or computer science:

• Do people normally draw things in any standard projection (e.g. isometric)?

– Does this vary with profession?

• Do people draw things as if they lie on an invisible table?

• Is there any general rule about what people draw first when doing line draw-

ings?

– If there is, what information can be gleaned from drawing order?

– Again, does this vary with profession?

• Do left-handed and right-handed people draw things differently?

– If so, how? Is it simple lateral inversion, or are there other, more subtle,

differences?

– Which version of a line-drawing is the left-handed one?

• Are there statistically-favoured interpretations of the “problem” drawings?

303

– Does interpretation vary with profession or handedness?

Although beyond the scope of this thesis, these questions should be investigated.

This thesis suggests that it is, in principle, possible for a machine to duplicate

the performance of a human in interpreting line drawings. Before going too much

further, it would be sensible to determine what it is that we are trying to duplicate.

304

Appendix A

Glossary

The following terms and abbreviations have defined meanings when used in this

thesis:

Atom: anything which is indistinguishable except by position from any other

atom of the same kind; in a boundary representation model, these are vertices,

edges and faces.

Coordinate: used in its normal geometric sense.

Corner: a vertex, considered only as something which bounds a face (so a corner

is always connected to two sides, one preceding it and the other following it in a

loop) (c.f. junction,vertex).

CSP: Constraint Satisfaction Problem.

Edge: the locus of intersection of two faces of a polyhedral object (c.f. line,side).

Extended trihedral: a vertex is extended trihedral if the (four or six) faces meet-

ing at it lie in exactly three planes; an object is extended trihedral if all of its vertices

are either trihedral or extended trihedral.

Face: a face of a polyhedral object, bounded by loops of sides and corners (c.f.

region).

Figure of Merit: a real number indicating confidence in a hypothesis, ranging

from 0.0 (the hypothesis is clearly untrue) to 1.0 (the hypothesis is clearly true).

FoM: abbreviation for Figure of Merit, q.v.

General Viewpoint: a drawing is made from a general viewpoint if no small

change in the location of the viewpoint results in a change in the topology of the

drawing.

305

Geometry: the continuous data associated with an object, describing the loca-

tions of vertices, edges and faces in space; this conforms (roughly) to CAD usage.

Junction: a point in the 2D drawing at which two or more lines meet (c.f. vertex).

Line: (i) a (visible) line between two junctions in a 2D drawing (c.f. edge,side);

(ii) more generally, the everyday usage (the shortest distance between any two 2D

or 3D points).

Location: a location in 2D (xy) or 3D (xyz) space, specified by two or three

coordinates.

Loop: a cyclic alternating sequence of corners and sides.

Normalon: an object in which all edges and all face normals are parallel to one

of the three coordinate axes.

Oojit: a seven-sided polyhedron with seven vertices obtained by removing a

triangular pyramid from a cube.

Point: any location in 2D or 3D space, irrespective of the presence of a junction

or vertex.

Position: a static situation to be evaluated.

Region: an area of a 2D drawing bounded by lines (c.f. face).

Semi-normalon: an object in which most edges and most face normals are parallel

to one of the three coordinate axes.

Side: an edge, considered only as something which joins two corners and bounds

a face (effectively the same as a half-edge) (c.f. edge,line).

Topology: the discrete data associated with an object, describing how vertices,

edges and faces combine; this conforms (roughly) to CAD usage (except that in this

thesis edge vexity is considered to be part of the topology); it is clearly distinct from

the mathematical usage.

Trihedral: a vertex is trihedral if exactly three edges meet at it; an object is

trihedral if all of its vertices are trihedral.

T-vertex: the true vertex at which the occluded line at an occluding T -junction

terminates.

Vertex: a point on a polyhedral object at which three or more edges meet (c.f.

junction).

Vexity: an abbreviation for convexity/concavity.

306

Appendix B

Test Drawings

These test drawings can be found in electronic form at http://ralph.cs.cf.ac.uk/Data/Sketch.html.

B.1 Trihedral Genus Zero Polyhedra

B.1.1 Trihedral Junction Catalogue

These drawings illustrate all possible trihedral junction labels (the labelled versions

can be found in Appendix E).

B.1 B.2 B.3 B.4

B.5 B.6 B.7 B.8 B.9

307

B.1.2 Single Cubes

Various drawings which should ideally be interpreted as cubes.

B.10 B.11 B.12 B.13

B.14 B.15 B.16

B.1.3 Not Cubes

Various sketches, topologically equivalent to cubes, which should not be interpreted

as cubes.

B.17 B.18 B.19 B.20 B.21 B.22

B.1.4 Axis-Aligned Extrusions

Beams and channels are standard engineering components. The remaining drawings

are inspired by letters (e.g. the L-, T- and X-blocks) or are extrapolations of these

ideas. Figure B.44 illustrates the point that drawings of extrusions can include lines

both ends of which are occluding T -junctions.

B.23 B.24 B.25 B.26 B.27 B.28

308

B.29 B.30 B.31 B.32 B.33

B.34 B.35 B.36 B.37 B.38

B.39 B.40 B.41 B.42 B.43 B.44

B.45 B.46 B.47 B.48

B.1.5 Right Extrusions of Non-axis-aligned End-caps

Prisms are common geometric objects. Figures B.54–B.57 can cause problems if the

merit for rotational symmetry is too high—they are clearly not intended to be regular

pentagonal prisms. Figure B.53 is a simplification of Figure B.452; Figure B.58 takes

the idea further. Figure B.61 was inspired by the Anthracene molecule.

B.49 B.50 B.51 B.52 B.53

309

B.54 B.55 B.56 B.57

B.58 B.59 B.60 B.61

B.1.6 Axis-Aligned Non-Extrusions

The Z-block, Figure B.62 appears in many previous investigations as being the

simplest normalon with no other “clues”—it is not an extrusion and has no axis

of mirror symmetry. Other figures were inspired by other letters of the alphabet.

Figure B.87 illustrates a particular uncommon trihedral junction label pair. Fig-

ures B.85 and B.86 show that hidden topology can sometimes be at the front, not

the back, of the object. Figure B.84 illustrates Kanatani’s suggestion for labelling

non-trihedral vertices. Note that the proper interpretation of Figure B.65 is non-

trihedral and a geometrically-accurate interpretation of Figure B.81 would contain

degenerate vertices.

B.62 B.63 B.64 B.65

B.66 B.67 B.68 B.69 B.70

310

B.71 B.72 B.73 B.74

B.75 B.76 B.77 B.78

B.79 B.80 B.81 B.82 B.83

B.84 B.85 B.86 B.87

B.88 B.89 B.90

B.1.7 Semi-Axis-Aligned with Mirror Plane

Grimstead’s bracket (Figures B.91 to B.93) was the figure chosen to demonstrate the

capabilities of his system [38]. The poorly-drawn Angle bracket (Figure B.98) ap-

pears in [163] and other references to illustrate a common drawing error. Figure B.99

is a problem drawing—should it be mirror-symmetric or semi-axis-aligned with one

non-axis-aligned face? Architecture can often be approximated by semi-axis-aligned

311

drawings with mirror planes.

B.91 B.92 B.93 B.94 B.95

B.96 B.97 B.98 B.99 B.100

B.101 B.102 B.103 B.104 B.105

B.106 B.107 B.108 B.109

B.1.8 Semi-Axis-Aligned without Mirror Plane

Semi-axis-aligned drawings without mirror planes are surprisingly uncommon.

B.110 B.111 B.112 B.113

B.1.9 Regular and Semi-Regular

Although best handled as special cases, drawings of Platonic and Archimedean solids

also make useful test cases for topological reconstruction using symmetry. Fig-

ures B.134 and B.135 show two views of one of the semi-regular convex solids (all

312

faces are regular pentagons or squares, but not all vertices are interchangeable);

there are several others (see [19]).

B.114 B.115 B.116 B.117 B.118

B.119 B.120 B.121 B.122

B.123 B.124 B.125 B.126

B.127 B.128 B.129

B.130 B.131 B.132 B.133

313

B.134 B.135

B.1.10 Right Frusta (by definition, not axis-aligned)

Inaccurate versions of Figure B.136 appear in several references, usually to illustrate

the point that strictly mathematical approaches are intolerant of freehand drawing

errors. Figure B.140 is a useful illustration of which edges can, and which edges

cannot, be parallel.

B.136 B.137 B.138 B.139 B.140 B.141

B.1.11 Other Trihedral

B.142 B.143

B.1.12 Impossible Objects and Invalid Drawings

The square (Figure B.144) contravenes either the general viewpoint or the most in-

formative viewpoint assumptions. The impossible objects, Penrose’s frustum (Fig-

ure B.145 [124]), Sugihara’s Box (Figure B.146 [163]), Escher’s Tower (Figure B.147),

Huffman’s Combs (Figure B.148 [56]) and Cowan’s Ring (Figure B.149), are a re-

minder that not every valid topology can be realised geometrically. The degenerate

objects (Figures B.150–B.155) illustrate why certain junction labels should not be

included in the tetrahedral catalogue.

314

B.144 B.145 B.146 B.147

B.148 B.149

B.150 B.151 B.152 B.153 B.154 B.155

B.2 Non-Trihedral Genus Zero Polyhedra

B.2.1 Extended Trihedral

Figures B.156–B.163 illustrate the entire extended trihedral junction catalogue. The

trefoil, Figure B.164 [19], tests line labelling and topological reconstruction more

seriously.

B.156 B.157 B.158 B.159 B.160 B.161

B.162 B.163 B.164 B.165 B.166

B.2.2 Non-Trihedral Pyramids

These drawings illustrate the view that all-convex pyramid vertices are commonly

found in engineering objects, but single-concave pyramid vertices (Figures B.169–

B.171 are not. Figure B.175 is an interesting optical illusion—the central vertex

315

appears concave (compare with Figure B.79), but the best geometric realisation is

as an all-convex pyramid which is shallower at the top than the bottom.

B.167 B.168 B.169 B.170 B.171

B.172 B.173 B.174 B.175

B.176 B.177

B.2.3 Tetrahedral Junction Catalogue

These drawings illustrate the tetrahedral junction catalogue—see Appendix E for

context. Their inclusion ensures that the implementation of each possible tetrahed-

ral junction label is tested.

B.178 B.179 B.180 B.181

B.182 B.183 B.184 B.185 B.186

316

B.187 B.188 B.189 B.190

B.191 B.192 B.193 B.194 B.195

B.196 B.197 B.198

B.199 B.200 B.201 B.202 B.203

B.204 B.205 B.206 B.207 B.208

B.209 B.210 B.211 B.212 B.213

317

B.214 B.215 B.216 B.217 B.218

B.219 B.220 B.221 B.222

B.223 B.224 B.225 B.226 B.227

B.228 B.229 B.230 B.231

B.232 B.233 B.234 B.235 B.236

B.237 B.238 B.239 B.240

318

B.241 B.242 B.243 B.244 B.245

B.246 B.247 B.248 B.249

B.250 B.251 B.252 B.253 B.254

B.255 B.256 B.257 B.258 B.259

B.260 B.261 B.262 B.263 B.264

B.265 B.266 B.267 B.268 B.269

319

B.270 B.271 B.272 B.273 B.274 B.275

B.276 B.277 B.278 B.279 B.280 B.281

B.282 B.283 B.284 B.285 B.286 B.287

B.288 B.289 B.290 B.291 B.292 B.293

B.294 B.295 B.296 B.297 B.298 B.299

B.300 B.301 B.302 B.303 B.304 B.305

B.2.4 General Non-trihedral Objects

Figures B.306–B.309 illustrate an unsolved problem line labelling, that of incorporat-

ing geometric information. Although architecture usually remains semi-axis-aligned

320

and usually retains its mirror plane, non-trihedral vertices are common. Other draw-

ings in this section illustrate non-trihedral vertices in engineering contexts (not all

of the drawings in the previous section could be considered “common engineering

objects”) or are variants of those in the previous section.

B.306 B.307 B.308 B.309

B.310 B.311 B.312 B.313 B.314 B.315

B.316 B.317 B.318 B.319

B.320 B.321 B.322 B.323 B.324 B.325

B.326 B.327 B.328 B.329 B.330 B.331

321

B.332 B.333 B.334 B.335 B.336

B.337 B.338 B.339 B.340 B.341

B.342 B.343 B.344 B.345

B.346 B.347 B.348 B.349 B.350

B.351 B.352 B.353 B.354

B.355 B.356 B.357

322

B.358 B.359 B.360 B.361

B.362 B.363 B.364 B.365

B.366 B.367 B.368

B.369 B.370 B.371 B.372

B.373 B.374 B.375 B.376 B.377 B.378

B.379 B.380 B.381 B.382

323

B.383 B.384 B.385 B.386 B.387 B.388

B.389 B.390 B.391

B.392 B.393 B.394 B.395

B.396 B.397 B.398 B.399

B.400 B.401 B.402 B.403

B.3 Objects with Through Holes

B.3.1 Through Holes Without Hole Loops

These drawings test object validation—in applying Euler’s formula, it cannot be

assumed that an object with no hole loops has no through holes. The Hannoid (Fig-

ure B.409) was taken from [152]. Figures B.410–B.412 illustrate another problem

with line labelling (what object do they represent?); one interpretation is the ob-

ject used by Sugihara [165] to illustrate a polyhedron with no first-order resolvable

324

representation.

B.404 B.405 B.406 B.407 B.408

B.409 B.410 B.411 B.412

B.3.2 Axis-Aligned with Hole Loops

Distinguishing holes from bosses is usually straightforward (Figures B.430 and B.431

are counterexamples). Distinguishing holes from pockets is not (e.g. Figure B.419).

Identifying where a hole stops can also present problems when the face in which the

hole terminates is not visible, as in Figures B.433–B.436. Figure B.432 shows an

object more easily reconstructed by CSG methods [182] than B-rep.

B.413 B.414 B.415 B.416

B.417 B.418 B.419 B.420 B.421

325

B.422 B.423 B.424 B.425

B.426 B.427 B.428 B.429

B.430 B.431 B.432

B.433 B.434 B.435 B.436

B.3.3 Non-Axis-Aligned with Hole Loops

The method for distinguishing holes/pockets from bosses was derived for the axis-

aligned case. These drawings test whether it works for non-axis-aligned drawings.

B.437 B.438 B.439 B.440 B.441

326

B.4 Multiple Polyhedra

RIBALD assumes that a drawing shows a single polyhedron.

B.442

B.5 Figures based on Collections

B.5.1 Figures based on Yankee [194]

As isometric projection can produce coincidences which break the “general view-

point” rule, the viewpoints of most of these drawings have been changed slightly.

Some drawings which originally included curves have been included: cylindrical

through holes were either omitted from the object or converted to square or oc-

tagonal through holes, and corner blends were either omitted from the object or

converted to octagonal corners. Where such simple adjustments were not available,

the drawing was omitted. Some drawings have been duplicated, either in well-drawn

and poorly-drawn versions, or (in the case of Figure B.449) to add a plane of mirror

symmetry.

B.443 B.444 B.445 B.446 B.447

B.448 B.449 B.450 B.451 B.452

327

B.453 B.454 B.455 B.456

B.457 B.458 B.459 B.460

B.461 B.462 B.463 B.464

B.465 B.466 B.467 B.468

B.469 B.470 B.471 B.472

B.473 B.474 B.475 B.476 B.477

328

B.478 B.479 B.480 B.481

B.482 B.483 B.484 B.485

B.486 B.487 B.488 B.489

B.490 B.491 B.492 B.493 B.494

B.495 B.496 B.497 B.498

B.499 B.500 B.501 B.502 B.503

329

B.5.2 Figures based on Pickup and Parker [128, 129]

As isometric projection can produce coincidences which break the “general view-

point” rule, the viewpoints of most of these drawings have been changed slightly.

Drawings which originally included curves have been omitted.

B.504 B.505 B.506 B.507 B.508

B.509 B.510 B.511 B.512 B.513

B.514 B.515 B.516 B.517 B.518

B.519 B.520 B.521 B.522

B.523 B.524 B.525 B.526

330

B.527 B.528 B.529 B.530

B.5.3 Figures from an Extrusion Catalogue [12]

These extrusions appear in a catalogue [12] of standard parts. Figure B.537 illus-

trates one way in which RIBALD could process “curved” objects—although neither

elegant nor ergonomic, it works.

B.531 B.532 B.533 B.534

B.535 B.536 B.537 B.538

B.539 B.540 B.541 B.542

B.543 B.544 B.545

B.5.4 Figures from Other Sources [91], [107] and [148]

Figures B.546–B.550 are test drawings from Lipson and Shpitalni [91], included to

provide a comparison between their methods and RIBALD’s. Figures B.551–B.556

are from Meeran and Taib [107], whose interest is feature detection. Figure B.558

331

comes from Shirai [148]; the simplification in Figure B.557 looks more like an en-

gineering component, but still includes a pentahedral (extended tetrahedral) vertex

with two concave edges.

B.546 B.547 B.548 B.549 B.550

B.551 B.552 B.553 B.554

B.555 B.556 B.557 B.558

332

Appendix C

Tuning Constants

In various algorithms in this thesis, numerical estimates are made of hypotheses

suggested by heuristics. Many of these numerical estimates are multiplied or di-

vided by arbitrary values in order to take some account of their relative importance.

In most places, these arbitrary values have been implemented in RIBALD as tun-

ing constants, run-time constants for which the default value can be changed as a

command-line option.

Some attempt has been made to optimise these tuning constants, as described

in Section C.2 below. The initial values for this optimisation process were guessed;

it is to be hoped (but cannot be guaranteed) that the results of these guesses were

sufficiently close to the global minimum.

C.1 Tuning: Configurable Constants

The default values and the use of each tuning constant are listed.

Fb (1.06), page 107: higher values provide more discouragement for interpreting

subgraphs with boundary edges as bosses.

Fc (3), page 107: lower values provide more encouragement for non-hole-loop

interpretation of outer subgraphs in cofacial configurations.

Fo (0.025), page 107: a bias to favour non-hole-loop interpretations of subgraphs.

Fu (0.995), page 104: the base figure of merit for an underslot feature.

Fv (0.516), page 104: the base figure of merit for a valley feature.

Gx (0.0), page 199: used in calculating geometric figures of merit for normalon

333

vertex locations given topological figures of merit (low values correspond to increased

confidence)

Gy (2.5), page 199: used in calculating geometric figures of merit for non-

normalon vertex locations given topological figures of merit (low values correspond

to increased confidence)

kE (0.000), page 74: used in assessing the merit of a labelling, based on the

proportion of lines labelled as occluding.

Md (1.0412), page 345: used in the figure of merit for two points being in the

same location (the higher the value, the stricter the test)

Mp (47.4), page 93: used in the figure of merit for line or edge parallelism (the

higher the value, the stricter the test)

Mr (1.032), page 345: used in the figure of merit for equality of commensurate

quantities (the higher the value, the stricter the test)

Sw (0.750), page 204: figure of merit multiplier for cross-mirror edges.

Sx (0.790), page 197: figure of merit multiplier for crossings of hypothesised (i.e.

non-extended-T -junction) lines.

Sy (0.850), page 210: figure of merit multiplier for hypothesised edges connecting

different subgraphs.

Sz (0.850), page 210: figure of merit multiplier for hypothesised edges connecting

different subgraph types.

Ta (0.600), page 207: base figure of merit for an edge between the last two

incomplete vertices.

Tb (0.238), page 207: base figure of merit for adding a vertex and two edges when

only two necessarily incomplete vertices remain.

Tc (0.936), page 207: base figure of merit for adding a vertex and three edges

when only three necessarily incomplete vertices remain.

Td (0.267), page 207: base figure of merit for hypothesising two edges when only

four necessarily incomplete vertices remain.

Te (0.558), page 195: figure of merit for hypothesising an edge at a vertex allows

but does not require an extra edge.

Tf (0.430), page 202: base figure of merit for local occluding T -junction comple-

tion

334

Tg (0.246), page 203: base figure of merit for distant occluding T -junction com-

pletion

Th (0.719), page 202: base figure of merit for adding a vertex and two edges to

complete a quadrilateral face, if the object is a normalon and both edges will be

convex

Ti (0.497), page 202: base figure of merit for adding a vertex and two edges to

complete a quadrilateral face, if the object is a normalon but one or both edges will

be concave

Tj (0.606), page 202: base figure of merit for adding a single edge to complete a

quadrilateral face, if the object is a normalon and the edge will be convex

Tk (0.510), page 202: base figure of merit for adding a single edge to complete a

quadrilateral face, if the object is a normalon and the edge will be concave

Tl (0.884), page 204: base figure of merit for discrete hypotheses based on mirror

chains

Tm (0.655), page 204: base figure of merit for the mirror macro hypothesis

Tn (0.412), page 210: figure of merit for splitting edge hypotheses when the

hypothesised edge passes close to an incomplete vertex.

To (0.563), page 211: figure of merit multiplier for a hypothesis which introduces

a triangular loop of edges where no triangles are visible in the original drawing

Tp (0.144), page 209: figure of merit multiplier for improperly-placed vertices

Tq (0.923), page 192: base figure of merit for the quadrilateral loop hypothesis

Tr (0.695), page 209: edge length dropoff, used in the figure of merit for long

edges

Ts (0.747), page 209: edge length power, used in the figure of merit for long and

short edges

Tt (0.975), page 202: base figure of merit for adding a vertex and two edges to

complete a quadrilateral face, if the object is not a normalon and both edges will be

convex

Tu (0.918), page 202: base figure of merit for adding a vertex and two edges to

complete a quadrilateral face, if the object is not a normalon but one or both edges

will be concave

Tv (0.997), page 202: base figure of merit for adding a single edge to complete a

quadrilateral face, if the object is not a normalon and the edge will be convex

335

Tw (0.949), page 202: base figure of merit for adding a single edge to complete a

quadrilateral face, if the object is not a normalon and the edge will be concave

Tx (0.244), page 202: figure of merit bias for adding a single edge to complete a

quadrilateral face

Ty (0.084), page 202: figure of merit bias for adding a vertex and two edges to

complete a quadrilateral face

Tz (0.554), page 196: figure of merit for choosing K-vertex and Z-vertex inter-

pretations when X-vertex and M-vertex interpretations are also possible.

Constants for relaxation labelling are shown in Tables C.1– C.5. The columns

are, respectively, frequencies derived from shape pair statistics, label frequencies

derived from correct labelling of the test drawings in Appendix B, and the best set

of tuning constants for six, ten and twenty iterations of relaxation labelling.

Label Shape Pair Statistical Rel-6 Rel-10 Rel-20

Convex 0.25 0.25 0.246 0.246 0.246
Concave 0.25 0.25 0.300 0.300 0.300

Table C.1: Constants for Relaxation Labelling—Lines

Label Shape Pair Statistical Rel-6 Rel-10 Rel-20

Lba 1.000 0.097 0.040 0.051 0.044
Lab 0.157 0.157 0.070 0.073 0.062
Lac 0.313 0.313 0.337 0.340 0.331
Lbd 0.056 0.056 0.182 0.184 0.181
Laa 0.004 0.004 0.264 0.268 0.271

Table C.2: Constants for Relaxation Labelling—2-Edge Junctions

C.2 Tuning: Introduction

In several parts of the sketch interpretation system, it has been found necessary to

use numerical heuristics to choose between alternatives. Each alternative is alloc-

ated a figure of merit, and the alternative with the highest figure of merit is chosen.

Figures of merit for alternatives (e.g. “which is the best labelling?”, “which is the

336

Label Shape Pair Statistical Rel-6 Rel-10 Rel-20

Tbaa 1.000 0.174 0.184 0.211 0.188
Tbac 0.109 0.109 0.108 0.107 0.109
Tbad 0.356 0.356 0.246 0.254 0.247
Tbda 0.009 0.009 0.060 0.046 0.063
Tbdc 0.021 0.021 0.099 0.096 0.096
Taba 0.002 0.002 0.160 0.141 0.153
Tbca 0.002 0.002 0.001 0.001 0.001
Tbcc 0.009 0.009 0.033 0.033 0.036
Tcca 0.030 0.030 0.126 0.145 0.124
Tcda 0.012 0.012 0.108 0.126 0.136
Tdda 0.007 0.007 0.050 0.044 0.043

Wbca 1.000 0.219 0.274 0.276 0.268
Wcdc 0.621 0.621 0.221 0.205 0.195
Wdcd 0.090 0.090 0.251 0.268 0.266
Wabc 0.003 0.003 0.177 0.200 0.190
Wabd 0.003 0.003 0.144 0.125 0.123
Wacc 0.003 0.003 0.105 0.111 0.115
Wacd 0.003 0.003 0.001 0.003 0.001
Wadc 0.005 0.005 0.001 0.006 0.014
Wbaa 0.001 0.001 0.009 0.002 0.002
Wbcd 0.004 0.004 0.089 0.091 0.087
Wbda 0.001 0.001 0.001 0.001 0.001
Wbdc 0.004 0.004 0.197 0.194 0.190
Wbdd 0.003 0.003 0.172 0.165 0.161
Wcac 0.003 0.003 0.137 0.137 0.142
Wcbd 0.003 0.003 0.172 0.158 0.157
Wdad 0.002 0.002 0.008 0.002 0.002

Y ccc 0.915 0.915 0.456 0.438 0.462
Y ddd 0.038 0.038 0.110 0.110 0.111
Y abd 0.026 0.026 0.348 0.391 0.346
Y aab 0.001 0.001 0.129 0.177 0.153
Y abc 0.001 0.001 0.126 0.127 0.101
Y acc 0.002 0.002 0.164 0.155 0.163
Y acd 0.004 0.004 0.068 0.062 0.067
Y add 0.005 0.005 0.055 0.050 0.064

Table C.3: Constants for Relaxation Labelling—3-Edge Junctions

337

Label Shape Pair Statistical Rel-6 Rel-10 Rel-20

Kabcd 1.000 0.013 0.262 0.258 0.274
Kcccd 1.000 0.316 0.453 0.460 0.440
Kcdcd 0.105 0.105 0.301 0.308 0.313
Kddcd 0.066 0.066 0.275 0.280 0.132

Mbcca 1.000 0.178 0.139 0.141 0.158
Mbcda 0.014 0.014 0.111 0.109 0.126
Mccdc 0.123 0.123 0.074 0.074 0.091
Mcdcd 0.096 0.096 0.019 0.021 0.038
Mcddc 0.068 0.068 0.146 0.148 0.165
Mdccd 0.068 0.068 0.182 0.177 0.194
Mdcdd 0.110 0.110 0.007 0.002 0.019

Xabcd 1.000 0.001 0.308 0.246 0.236
Xabdd 0.001 0.001 0.002 0.018 0.003
Xcbda 0.013 0.013 0.069 0.108 0.117
Xcccc 0.642 0.642 0.403 0.385 0.426
Xcccd 0.254 0.254 0.518 0.455 0.495
Xcdcd 0.039 0.039 0.300 0.276 0.282
Xcddd 0.022 0.022 0.001 0.006 0.002
Xdddd 0.022 0.022 0.001 0.013 0.018

Table C.4: Constants for Relaxation Labelling—4-Edge Junctions

Label Shape Pair Statistical Rel-6 Rel-10 Rel-20

Xccccc 1.000 0.972 0.242 0.242 0.242
Xddddd 0.014 0.014 0.001 0.001 0.001
Xabccc 0.014 0.014 0.136 0.136 0.136

Xcccccc 1.000 0.556 1.000 1.000 1.000
Xcdcdcd 0.333 0.333 1.000 1.000 1.000
Xdddddd 0.111 0.111 1.000 1.000 1.000

Table C.5: Constants for Relaxation Labelling—Other Junctions

338

most plausible way of extending the topology of this object?”) are generally cal-

culated from figures of merit for lower-level concepts which the hypotheses embody

(e.g. “how likely is it that this vertex is trihedral?”, “is this extension predicted

by rotational symmetry?”). The figures of merit for these lower-level concepts may

themselves be derived from concepts at a still lower level (“are these lines likely to

be parallel?”), but at some point actual numbers are used, and the choice of these

numbers is arbitrary.

It seems likely that the performance of the system could be improved by a more

astute choice of these numerical values. The more of them there are, the more likely

it is that a good choice will produce benefits. In many cases, there are so many of

them that it is effectively certain that the initial arbitrary choices will not be the

set which produces the best results. This applies to line labelling, which is discussed

further here. It also applies to object classification and topological reconstruction;

the methods described here were also applied to optimise those.

C.3 Tuning for the Labelling Problem

As described in Chapter 4, labelling of non-trihedral sketches is rarely unambigu-

ous. Even for simple sketches, there may be hundreds of interpretations. In order to

progress, it is necessary to identify a small number (ideally, one) of preferred inter-

pretations. “Preference” is by definition heuristic, not algorithmic, so heuristics are

required for assessing the merits of competing interpretations.

Worse, the number of possible interpretations increases exponentially with the

number of junctions. Quite “sketchable” sketches may have millions of interpret-

ations, and some test case line drawings (e.g. the most complex Archimedean solids)

have absurdly large numbers of interpretations. It is not possible either to store each

competing interpretation nor even to generate and assess each one in a reasonable

time. Methods of pruning the tree of interpretations are required; these methods too

must be heuristic. Ideally, they should also be very quick, and capable of pruning

off entire branches of the search tree.

To ensure that the method terminates in a reasonable time, it has also been found

necessary to limit the number of labellings assessed by the slower, more thorough

heuristic to a fixed maximum number.

339

The heuristics can thus be divided into three groups:

• A: heuristics which contribute to the assessment and which are based on the

labelling as a whole; these heuristics cannot be used to prune the labelling

tree.

• B: heuristics which contribute to the assessment and which are based on indi-

vidual junction or line labels; these heuristics can sometimes be used to prune

the labelling tree.

• C: heuristics for determining which branch of the labelling tree to investigate

first.

The resulting algorithm is thus:

• Start Here

• If there are already too many labellings, do nothing and drop through to the

end.

• Label as far as possible using the Clowes-Huffman line-labeller. Whenever a

junction or line is labelled unambiguously, assess it using heuristics (B). If the

merit drops below the acceptable threshold, discard it and drop through to

the end.

• If the merit is above the acceptable threshold:

– No valid labellings: discard the current labelling.

– Unambiguous labelling: complete the merit assessment using heuristics

(A). If the merit is still above the acceptable threshold, store the current

labelling, otherwise discard it. If the labelling is the best so far, re-assess

the acceptable threshold.

– Labelling still ambiguous: Create a duplicate of the current labelling.

Use heuristics (C) to identify a preferred labelling of a chosen ambigu-

ous edge or vertex. Set the current labelling of this edge or vertex to

the preferred labelling and the duplicate labelling of the same edge or

vertex to all previous possibilities except the preferred labelling. Divide

340

the remaining number of allowed labellings between the current and the

duplicate. Follow the procedure (from “Start Here” to “End”) recursively

for both the current and duplicate.

• End or Pop to previous recursion level

C.3.1 Heuristics Considered

For group A heuristics (assessing the object as a whole) see Chapter 4.4.1.

Currently group B heuristics are implemented only for junctions. Each of the

common (trihedral) junction labels has an associated merit figure; there is also a

collective merit figure for non-trihedral labellings. Whenever a junction is labelled

unambiguously, the merit for the labelling is multiplied by the junction label merit

figure.

Currently the group C heuristic, identifying preferred branches, is implemented

in two stages.

• list the possible common interpretations of all ambiguous junctions, and choose

as the preferred interpretation the one with the highest merit

• if no ambiguous junctions have common interpretations, choose an arbitrary

ambiguous edge, and choose as the preferred interpretation: convex (if this is

possible), otherwise concave (if this is possible), otherwise an arbitrary direc-

tion.

The “tuning constants” for group C heuristics are not merit figures but merely

provide a preference order for the various common vertex types. The labellings

considered are:

• Boundary L: Lba

• Non-boundary L: Lba, Lac, Lcb

• Any T: Tbaa, Tbab

• Boundary W: Wbca

• Non-boundary W: Wcdc, Wdcd, Wbca

341

• Boundary Y: Y abd

• Non-boundary Y: Y ccc, Y ddd

• Non-boundary X: Xcccc

The proportion in which allowed labellings are split between the preferred and

alternative branches of the tree is also a tuning constant.

Currently, the number of stored labellings and the maximum number of labellings

which will be assessed are fixed, at 20 and 2000 respectively. The threshold below

which partial labellings will automatically be rejected is (2 × M1) − 1 where M1 is

the merit of the best labelling so far.

C.3.2 Methodology

The “correct” labellings for each of a set of test drawings (numbering 444 at the

time) was determined by hand.

A set of tuning constants is assessed by running the labelling part of the RIBALD

program and then comparing the results with the “correct” interpretation. If they

are identical, this scores zero; discrepancies result in positive scores (see below). The

objective function is the sum of the scores achieved for each test drawing.

An optimal set of tuning constants (for this set of test drawings) is determined

by using a standard downhill optimisation routine [117] to minimise the objective

function.

Originally, each discrepancy (junction or line label not as expected) was scored

as 1.

Implementation problems with other parts of the system indicate that it is im-

portant that the preferred interpretation identifies occluding and non-occluding T -

junctions correctly. With this exception, correct identification of individual junction

and line labels is not vital—the correct labelling need not be the first-choice labelling,

but should appear somewhere in the list of stored labellings.

Therefore, the score for discrepancies was modified as follows:

• a discrepancy in the number of edges (such as would result from an identific-

ation of an occluding T -junction as non-occluding or vice versa) scores 10;

342

• a discrepancy in the vertices which an edge joins (such as would result from a

double misidentification of T -junctions) also scores 10;

• a mislabelling of a junction or edge scores 3.

These constants are arbitrary: it is hoped that their exact values are comparat-

ively unimportant. However, in view of the indication that there were two minima,

with choice alternating between them as new drawings were added to the test data,

it is possible that the values of scoring constants also makes a difference.

C.3.3 Results

Experimentation suggests that there is no “best” set of tuning constants: some work

well with some types of drawing, others with others. It is not possible to claim that

global optimum values for the various tuning constants have been found, but on the

basis of the (possibly only local) minima found so far it is possible to make some

comments.

Heuristics A are described in Chapter 4.4.1.

Heuristics B: the output values from the optimisation process do not differ sub-

stantially from the original guesses. This suggests that either the original guesses

were implausibly good or that any reasonably sensible values which give priority to

trihedral interpretations are adequate.

Heuristics C: optimising these has reduced the number of mislabellings by about

60%. Unfortunately, it seems that there are (at least) two minima of roughly equal

depth. Small changes in the objective function or the set of test sketches are enough

to flip the optimum from one minimum to the other. There was not time to invest-

igate which groups of drawings “pulled” the overall minimum towards one or other

local minimum.

It is possible that a more flexible set of heuristics for C is required. It is also

likely that extra test drawings will be required in order to bias the results towards

“typical engineering objects”.

343

Appendix D

Figures of Merit

Figures of merit are in the range 0–1. Standard figures of merit for certain opera-

tions, used repeatedly, are defined here.

Combinations

Figure of merit for two hypotheses A and B both being true:

FA∩B = FAFB

Figure of merit for at least one of hypotheses A and B being true:

FA∪B = 1 − (1 − FA)(1 − FB)

Parallelism and Perpendicularity

Figure of merit for parallelism between two lines or edges A and B or vectors or

face normals â and b̂:

F (A ‖ B) = (â · b̂)Mp

The figure of merit for perpendicularity of two 3D lines A and B is calculated

as the figure of merit for parallelism of lines B and C where line C is perpendicular

to line A and in the plane formed by lines A and B

F (A ⊥ B) = F (((Â× B̂) × Â) ‖ B).

344

For 2D lines, this simplifies to

F (A ⊥ B) = F ((A + 90◦) ‖ B).

Ratios

The figure of merit for the ratio of any two commensurable values A and B being

equal is

F (A/B) = (min(|A| , |B|)/max(|A| , |B|))Mr

This is specifically used for length ratios of two lines or edges A and B where

the lines or edges are hypothesised to be of equal length

Distances

The figure of merit for any two points A and B being in the same location when the

actual distance between them is D is

F (A = B) = MD
d

Collinearity

Figure of merit for two lines A and B being collinear in 2D is the figure of merit for

the distance between the starting-point of A and their crossing-point C being zero.

Note that this is arbitrary—where the lines are not collinear, different numerical

values will usually be obtained for collinearity of A and B, and collinearity of B and

A.

Figure of merit for two lines A and B being collinear in 3D is the figure of merit

for the shortest distance between line B and the starting-point of line A. Note that

this is arbitrary—where the lines are not collinear, different numerical values will

usually be obtained for collinearity of A and B, and collinearity of B and A.

345

Coplanarity

Figure of merit for a vertex V being coplanar with a face F is the figure of merit

for the shortest distance between V and the plane of face F being zero.

Figure of merit for four vertices A, B, C and D being coplanar is the figure of

merit for the vector BA being perpendicular to the normal of the plane through

BCD. Note that this is arbitrary—when the vertices are not coplanar, different

numerical values will usually be obtained for different orderings of the parameters.

Crossing

Figure of merit for two 3D lines A and B crossing is the figure of merit for the

shortest 3D distance between the two lines being zero.

Constraints

2-Way Perpendicularity

Figure of merit for a two-way perpendicularity constraint (faces M and N are per-

pendicular):

F (M ⊥ N) = F (n̂M ⊥ n̂N).

3-Way Perpendicularity

Figure of merit for a three-way perpendicularity constraint (faces M , N and O are

mutually perpendicular):

F ⊥ (M, N, O) = (F (n̂N × n̂M ‖ n̂O) + F (n̂O × n̂M ‖ n̂N) + F (n̂O × n̂N ‖ n̂M))/3.

Angle

Figure of merit for an angle constraint (angle between faces M and N is θ):

• v = vector in plane of n̂N and n̂M, with angle between n̂N and v = θ,

• F (ang(N, M, θ)) = F (v ‖ n̂M).

346

Mirror

Figure of merit for a mirror constraint (reflection through mirror chain C moves face

N to the current location of face M):

• v = n̂N,

• reflect v through mirror chain C,

• F (ref(C, N, M)) = F (v ‖ n̂M).

Rotation

Figure of merit for a rotation constraint (rotation of angle ρ about a perpendicular

axis through the centre of face R rotates face N to the current location of face M):

• v = n̂N,

• rotate v by angle ρ about an axis through the centre of R,

• F (rot(R, N, M)) = F (v ‖ n̂M).

Labelling

Figure of merit for line labels in a labelling (see Page 74):

(1 − Eo

Et
)kE , where Eo is the number of occluding lines, Et the total number of

lines, and kE a tuning constant.

Figure of merit for a vertex being complete:

F (complete(v)) = (e + 1 − n)/(x + 1 − n)

where e is the current number of edges meeting at the vertex, x is the maximum

number of edges possible at the vertex, and n is the minimum number of edges

possible at the vertex.

Note that this could be improved: it should (but does not) take account of the

frequency of different underlying vertex types.

347

Completeness

Figure of merit for the hypothesis that an object is complete

F (complete) = (1/max(1, A)) ∗ Πi=nV
0 (F (complete)(i))

Figure of merit for vertex completeness of a vertex with E edges, where the set

of underlying vertex types suggests a range of edges Emin–Emax:

• 0 if E < Emin

• 1 − Te(Emax − E), if this is greater than 0

• 0 otherwise

Y -junction Obtuse

Figure of merit for a Y -junction being obtuse

F (Y obtuse) = Πline 3
line 1 (1.0 if angle is obtuse, F (A ⊥ B) otherwise).

Subgraph Connection

Figures of merit for adding topology to connect two vertices A and B should be

multiplied by a figure of merit SAB for them being in the same subgraph, as follows:

• set SAB = 1

• if there is more than one subgraph in the object and A and B are in different

subgraphs

– multiply SAB by Sy

– if the subgraph types are different (e.g. one is a pocket, the other is a

boss) multiply SAB by Sz

New Edge of Given Length

Given N , the length of the new edge, S, the length of the shortest edge in the object,

and L, the length of the longest edge in the object,

348

• if N < S, merit is (N/S)Ts

• if N > L, merit is Tr(L/N)Ts

• otherwise, merit is (N(1 − Tr) + STr − L)/(S − L)

349

Appendix E

Junction Catalogue Illustrations

This Appendix illustrates the trihedral and tetrahedral junction labels recognised by

RIBALD, and the relationship between junction label and underlying vertex type.

Each section shows differing views of the same object, with correspondingly different

junction labels for a chosen vertex.

The trihedral catalogue [14, 56] is well-established. It can be seen from the

illustrations that all entries in the tetrahedral catalogue are correct; both the meth-

odology by which it was produced (see Chapter 4.3) and practical experience suggest

that it is also complete.

The titles refer to the underlying vertex type, so (for example) “All Convex”

means that all edges at the vertex are convex; the lines at the junction may be

convex, occluding or even invisible, depending on viewpoint.

E.1 Trihedral Catalogue

E.1.1 Yccc, Wbca, Lba

Trihedral: All Edges Convex. The illustrative solid is a single cube.

350

E.1.2 Wcdc,Yabd,Lac,Lcb,Lab

Trihedral: Two Edges Convex, One Concave. The illustrative solid is built

from three cubes.

E.1.3 Wdcd,Lbd,Lda

Trihedral: One Edge Convex, Two Concave. The illustrative solid is built

from five cubes in two layers.

E.1.4 Yddd

Trihedral: All Edges Concave. The illustrative solid is built from seven cubes

in two layers.

E.2 Tetrahedral Catalogue

E.2.1 Xcccc,Mbcca,Wbca,Lba

X-Type Tetrahedral: All Edges Convex. These are illustrated by a single

oojit.

351

E.2.2 Xcccd etc

Xcccd, Mbcda, Mbdca, Lba, Wbaa, Wbba, Wbca, Wbda, Yabd, Yabc,

Yacc, Ybcc

X-Type Tetrahedral: Three Edges Convex, One Concave. The illustrat-

ive solid is built from a cube and a pyramid.

E.2.3 Xcdcd,Yacd,Ybdc,Yabd

X-Type Tetrahedral: Two Edges Convex, Two Concave, Alternating.

The illustrative solid is built from a base layer of three cubes forming an L-shape,

to which are added an oojit and a pyramid.

E.2.4 Xcddd,Yadd,Ybdd

X-Type Tetrahedral: One Edge Convex, Three Concave. The illustrative

solid is built from a base layer of four cubes forming a square, to which are added

a second layer of two cubes and an oojit.

352

E.2.5 Xdddd

X-Type Tetrahedral: All Edges Concave. The illustrative solid is built from

a base layer of four cubes forming a square, to which are added a second layer of

three cubes and a triangular pyramid.

E.2.6 Mccdc etc

Mccdc, Xabcd, Yaab, Wcab, Wcac, Wccb, Yabd, Lac, Lcb, Lab

M-Type Tetrahedral: One Edge Concave, Three Convex. The illustrat-

ive solid is built from a base layer of two cubes to which an oojit is added.

E.2.7 Mcdcc etc

Mcdcc, Xabdc, Yabb, Wabc, Wcbc, Wacc, Yabd, Lcb, Lac, Lab

M-Type Tetrahedral: One Edge Concave, Three Convex, Mirrored.

The illustrative solid is the mirror image of the previous one—the resulting junction

labels are different.

353

E.2.8 Mcddc, Xabdd, Wadc, Wcdb, Lac, Lcb, Lab

M-Type Tetrahedral: Two Concave Edges Between Two Convex Edges.

The illustrative solid is built from a single layer of three cubes and a triangular

pyramid.

E.2.9 Mdccd, Wbcd, Wdca, Lba, Lbd, Lda

M-Type Tetrahedral: Two Convex Edges Between Two Concave Edges.

The illustrative solid is built from a layer of four cubes to which one oojit is added.

E.2.10 Mcdcd etc

Mcdcd, Wcda, Wcbd, Wacd, Wabd, Yabd, Yacd, Lbd, Laa

354

M-Type Tetrahedral: Two Convex Edges, Two Concave, Alternating

Convexity. The illustrative solid is built from a layer of three cubes to which one

triangular pyramid is added.

E.2.11 Mdcdc etc

Mdcdc, Wbdc, Wdac, Wdcb, Wdab, Yabd, Ybdc, Lda, Lbb

M-Type Tetrahedral: Two Convex Edges, Two Concave, Alternating

Convexity, Mirrored. The illustrative solid is the mirror image of the previous

one—the resulting junction labels are different.

E.2.12 Mddcd, Wdbd, Wdda, Yadd, Lbd

M-Type Tetrahedral: One Edge Convex, Three Concave. The illustrative

solid is built from a layer of four cubes to which one cube and a triangular pyramid

are added.

355

E.2.13 Mdcdd, Wdad, Wbdd, Ybdd, Lda

M-Type Tetrahedral: One Edge Convex, Three Concave, Mirrored. The

illustrative solid is the mirror image of the previous one—the resulting junction

labels are different.

E.2.14 Kcccd etc

Kcccd, Kabcd, Taba, Tbca, Tbcc, Tcca, Yabd, Iab

K-Type Tetrahedral: One Edge Concave, Three Convex. The illustrative

solid is built from two cubes and a wedge.

E.2.15 Kccdc

Kccdc, Kabdc, Tabb, Tcab, Tcac, Tccb, Yabd, Iab

K-Type Tetrahedral: One Edge Concave, Three Convex, Mirrored.

The illustrative solid is the mirror image of the previous one—the resulting junction

labels are different.

356

E.2.16 Kcdcd, Tbda, Tbdc, Tcda, Yabd, Ybdc

K-Type Tetrahedral: Two Convex, Two Concave, Alternating. The illus-

trative solid is built from a base layer of three cubes and a triangular prism, to

which is added a single cube.

E.2.17 Kdcdc,Tdab,Tdac,Tdcb,Yabd,Yacd

K-Type Tetrahedral: Two Edges Convex, Two Concave, Alternating

Convexity, Mirrored. The illustrative solid is the mirror image of the previous

one—the resulting junction labels are different.

E.2.18 Kcdcd*

Wdcb, Tbda, Tbdc, Wdab, Lda, Lbb

357

K-Type Tetrahedral: Two Edges Convex, Two Concave, Some Oc-

cluded. The illustrative solid is again built from a base layer of three cubes and

a wedge, to which is added a single cube. The difference is the orientation of the

wedge, which is such that it is impossible to see all four edges meeting at the central

vertex whatever the viewpoint.

E.2.19 Kdcdc*

Wacd, Tdab, Tdac, Wabd, Lbd, Laa

K-Type Tetrahedral—Two Edges Convex, Two Concave, Some Oc-

cluded, Mirrored. The illustrative solid is the mirror image of the previous one—

the resulting junction labels are different.

358

E.2.20 Kddcd, Tdda, Ybdd

K-Type Tetrahedral: One Edge Convex, Three Concave. The illustrative

solid is built from a base layer of four cubes, to which is added a single cube and

two collinear wedges.

E.2.21 Kdcdd, Tddb, Yadd

K-Type Tetrahedral: One Edge Convex, Three Concave, Mirrored. The

illustrative solid is the mirror image of the previous one—the resulting junction

labels are different.

359

Appendix F

Geometric Analysis

F.1 Rotation Axis from Start and End Points and

Angle

The method presented in Chapter 11.6 requires iterative estimation of face normals

given a constraint and the face normal values after the previous iteration. In most

cases, geometric methods for making these estimates are either straightforward or

available in the literature. However, the problem of obtaining an estimate for a

rotation axis given a constraint which rotates one face to another, and the centre

points of the start and end rotating faces, is less straightforward.

R

N
M

Figure F.1: Rotation about Unknown Axis

Formally, the problem is: given a rotation constraint Cr(R, N, M, ρ) which states

that a rotation of an angle ρ about an axis normal to and through the centre of face

R moves a vector normal to and through the centre of face N to the position which

(prior to the rotation) was that of a vector normal to and through the centre of face

360

M , and given values of face normals n̂M and n̂N, estimate the value of face normal

n̂R.

Consider R, M and N as points on the Gaussian sphere, and add point D, a

point on the sphere mid-way along the shortest curve between M and N , and point

G, a point 90◦ from D around a great circle including R and D. If the angle σ

between �OD and �OR can be found, then clearly n̂R = Ĝ sin σ ± D̂ cos σ (rotation

about either axis will move N to M).

To find σ, take the cosine rule for spherical triangles [95, 186]: given points

A, B and C on the surface of a sphere centred on the origin, and angles Â, B̂

and Ĉ being the angles between the planes meeting at those points, and vectors

l̂, m̂ and n̂ their respective location vectors, we can define angles α, β and γ so

that cos(α) = m̂ · n̂, cos(β) = n̂ · l̂, cos(γ) = l̂ · m̂ and obtain the expression

cos(α) = cos(β) cos(γ) + sin(β) sin(γ) cos(Â).

By construction, the planes ORD and OMN (which includes D) are perpendic-

ular, so by taking the spherical triangle RDM we obtain

cos(θ) = cos(σ) cos(δ), where cos θ = n̂R · n̂M, cos δ = n̂M · D̂, and cos σ = n̂R · D̂.

It can be shown by a second application of the spherical triangle rule that cosφ =

1 + sin2 θ(cos ρ − 1) where: φ is the angle between face normals n̂M and n̂N, so

cos φ = n̂M · n̂N, and θ is the angle between face normals n̂R and n̂M, so cos θ =

n̂R · n̂M = n̂R · n̂N.

Rearranging this result, we obtain: sin θ =
√

(cosφ − 1)/(cos ρ − 1).

By construction, δ = φ/2.

Combining results, we obtain

cos2 σ = 2(cos ρ − cos φ)/((cosφ − 1)(cos ρ − 1))

from which cos σ and sin σ are easily obtained.

RIBALD therefore estimates (n̂R)i+1 as follows:

• Set D̂ = (̂(n̂M)i + (n̂N)i);

• Set Ĝ = (̂(n̂M)i × D̂);

• Set cos φ = (n̂M)i · (n̂N)i;

• Set cos2 σ = 2(cos ρ − cos φ)/((cosφ − 1)(cos ρ − 1));

361

• Estimate the two values (n̂R)i+1 = Ĝ sin σ ± D̂ cos σ;

• Choose the nearer estimate of (n̂R)i+1 to (n̂R)i

Special-case code is needed where ρ is 180◦ since ((n̂M)i + (n̂N)i) may be zero,

in which event the algorithm above breaks down (and the estimate of (n̂R)i+1 is the

nearest vector to (n̂R)i perpendicular to (n̂N)i). There is also use special-case code

to speed up the calculation where ρ is 90◦ or 180◦.

I also tested an alternative approach to the problem of estimating the axis of

rotation given the start and end locations of a face normal and the rotation angle,

using a method based on quaternions. Define quaternions m and n to represent the

face normals n̂M and n̂N, and r to represent a rotation ρ about the rotation axis n̂R.

Since m = r.n.r−1, one can estimate ri+1 as mi.ri.ni
−1. The estimated quaternion

r represents an angle (which is discarded) and a vector, the new estimate of n̂R.

This approach could be more robust, in that it does not require choosing the

nearer of two vectors to the starting value of face normal n̂R, and it could also be

marginally quicker for the same reason (though this would depend on the respective

implementations). The deciding factor is the accuracy of the predicted value of

(n̂R)i+1. In some test cases, n̂N and n̂M are accurate and both perpendicular to

the true n̂R, and (n̂R)i is inaccurate by a predetermined angle in the range 5◦

to 30◦, and measured the resulting inaccuracy in (n̂R)i+1 predicted using the two

methods. The geometric approach invariably gave correct estimates (to 6 significant

figures), while the quaternion approach gave inaccurate estimates, with the output

error sometimes being as large as the input error. On the basis of these results, the

geometric approach is preferred.

362

Angle ρ Error in (n̂R)i Geometric Method Quaternion Method

60◦ 5◦ 0◦ 2.50◦

60◦ 10◦ 0◦ 4.98◦

60◦ 15◦ 0◦ 7.44◦

60◦ 20◦ 0◦ 9.85◦

60◦ 25◦ 0◦ 12.21◦

60◦ 30◦ 0◦ 14.50◦

72◦ 5◦ 0◦ 3.09◦

72◦ 10◦ 0◦ 6.14◦

72◦ 15◦ 0◦ 9.15◦

72◦ 20◦ 0◦ 12.07◦

72◦ 25◦ 0◦ 14.89◦

72◦ 30◦ 0◦ 17.60◦

90◦ 5◦ 0◦ 4.98◦

90◦ 10◦ 0◦ 9.85◦

90◦ 15◦ 0◦ 14.51◦

90◦ 20◦ 0◦ 18.88◦

90◦ 25◦ 0◦ 22.91◦

90◦ 30◦ 0◦ 26.57◦

120◦ 5◦ 0◦ 4.99◦

120◦ 10◦ 0◦ 9.93◦

120◦ 15◦ 0◦ 14.75◦

120◦ 20◦ 0◦ 19.43◦

120◦ 25◦ 0◦ 23.91◦

120◦ 30◦ 0◦ 28.19◦

180◦ 5◦ 0◦ 5.00◦

180◦ 10◦ 0◦ 10.00◦

180◦ 15◦ 0◦ 15.00◦

180◦ 20◦ 0◦ 20.00◦

180◦ 25◦ 0◦ 25.00◦

180◦ 30◦ 0◦ 30.00◦

Table F.1: Errors for Rotation Axis Prediction

363

Bibliography

[1] S.Bagali and W.N.Waggenspack Jr. A Shortest Path Approach to Wireframe

to Solid Model Conversion. In ed. C.M.Hoffmann and J.Rossignac, SMA 95:

Proceedings of the Third Symposium on Solid Modeling and Applications, 339–

350, ACM Press, 1995.

[2] H.G.Barrow and J.M.Tenenbaum. Interpreting Line Drawings as Three-

Dimensional Surfaces. Artificial Intelligence 17(1–3), 75–116, 1981.

[3] L.Bauer. Elimination with Weighted Row Combinations for Solving Linear

Equations and Least Squares Problems. Contribution I/9 in ed. J.H.Wilkinson

and C.Reinsch, Handbook for Automatic Computation, volume II of Linear Al-

gebra, 119-133, Springer-Verlag, 1971

[4] W.Bouma, I.Fudos, C.M.Hoffmann, J.Cai and R.Paige. Geometric Constraint

Solver. Computer-Aided Design 27(6), 487–501, 1995.

[5] A.Bowyer and J.Woodwark. Introduction to Computing with Geometry, Inform-

ation Geometers, 1993.

[6] R.P.Brent. Algorithms for Minimization without Derivatives, Prentice-Hall,

1973.

[7] K.W.Brodlie. Chapter III.1. in ed. D.A.H.Jacobs, The State of the Art in Nu-

merical Analysis, 3–6, London Academic Press, 1977.

[8] C.G.Broyden. A Class of Methods for Solving Nonlinear Simultaneous Equa-

tions. Mathematics of Computation 19, 577–593, 1965.

364

[9] B.Buchberger. Gröbner Bases: an Algorithmic Method in Polynomial Ideal

Theory. In ed. N.K.Bose, Recent Trends in Multidimensional System Theory,

184–232, D Reidel, 1985.

[10] G.Butlin and C.Stops. CAD Data Repair. In Proceedings of 5th International

Meshing Roundtable, Sandia National Laboratories, 7–12, 1996.

[11] T.By. Line Labelling by Meta-programming. Technical Note CS-97-07, Sheffield

University, 1997.

[12] Capalex. Catalogue of Standard Profiles, Capital Aluminium Extrusions Ltd,

2000.

[13] I.Chakravarty. A Generalised Line and Junction Labelling Scheme With Ap-

plications To Scene Analysis. IEEE Pattern Analysis and Machine Intelligence

1(2), 202–205, 1979.

[14] M.B.Clowes. On Seeing Things. Artificial Intelligence 2, 79–116, 1970.

[15] P.Company, J.M.Gomis and M.Contero. Geometrical Reconstruction from

Single Line Drawings using Optimization-based Approaches. In ed. V.Skala,

Proceedings of WSCG99 7th International Conference in Central Europe on

Computer Graphics, Visualization and Interactive Digital Media’99, University

of West Bohemia, Plzen, Vol. II, 361–368, 1999.

[16] P.Company, J.M.Gomis and M.Contero. An Optimization-Based Algorithm to

Reconstruct 3D Models from Single Line Drawings. In II Seminario Italo-

Spagnolo, Vol. 2, 952–958, 1998.

[17] J.Conesa Pastor, P.Company Calleja and J.M.Gomis Marti. Initial Modeling

Strategies for Geometrical Reconstruction—Optimization-Based Approaches.

In Proceedings of 11th International Conference on Design Tools and Methods

in Industrial Engineering, 161–171, 1999.

[18] J.Corney. 3D Modeling with the ACIS Kernel and Toolkit, Wiley, 1997.

[19] P.R.Cromwell. Polyhedra, Cambridge University Press, 1997.

[20] H.T.Davey and R.J.Wilkins. Engineering Drawing, MacDonald and Co., 1952.

365

[21] E.W.Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische

Mathematik I, 269–271, 1959.

[22] M.Dorigo, V.Maniezzo and A.Colorni. Ant System: Optimization by a Colony

of Cooperating Agents. IEEE Transactions on Systems, Man and Cybernetics

26B(1), 29–41, 1996.

[23] S.W.Draper. Reasoning about Depth in Line-Drawing Interpretation. PhD

Thesis, Sussex University, 1980.

[24] S.W.Draper. The Use of Gradient and Dual Space in Line-Drawing Interpret-

ation. Artificial Intelligence 17, 461–508, 1981.

[25] L.Eggli, C-Y.Hsu, B.Brüderlin and G.Elber. Inferring 3D Models from Freehand

Sketches and Constraints. Computer-Aided Design 29(2), 101–112, 1997.

[26] G.Falk. Interpretation of Imperfect Line Data as a Three-Dimensional Scene.

Artificial Intelligence 3, 101–144, 1972.

[27] G.E.Farin and D.Hansford. The Geometry Toolbox for Graphics and Modeling,

A.K.Peters, 1998.

[28] S.Fortin. The Graph Isomorphism Problem. Technical Report 96-20, University

of Alberta, 1996.

[29] X.S.Gao and S.C.Chou. Solving Geometric Constraint Systems I: A Global

Propagation Approach. Computer-Aided Design 30(1), 47–54, 1998.

[30] X.S.Gao and S.C.Chou. Solving Geometric Constraint Systems II: A Symbolic

Approach and Decision of Reconstructability. Computer-Aided Design 30(2),

115–122, 1998.

[31] M.R.Garey and D.S.Johnson. Computers and Intractability, Freeman, San Fran-

cisco, 1979.

[32] J.X.Ge, S.C.Chou and X.S.Gao. Geometric Constraint Satisfaction using Op-

timization Methods. Computer-Aided Design 31(14), 867–879, 1999.

[33] A.Gibbons. Algorithmic Graph Theory, Cambridge University Press, 1985.

366

[34] J.W.Gibbs. Elements of Vector Analysis. Technical Report, Yale University,

1881.

[35] D.E.Goldberg. Computer-Aided Gas Pipeline Operation using Genetic Al-

gorithm and Rule Learning. PhD Thesis, University of Michigan, 1989.

[36] R.Goldman. Intersection of Three Planes. In ed. A.S.Glassner, Graphics Gems

I, 305, Academic Press, 1990.

[37] M.Gondran and M.Minoux. Graphs and Algorithms, Wiley-Interscience, 1986.

[38] I.J.Grimstead. Interactive Sketch Input of Boundary Representation Solid Mod-

els. PhD Thesis, Cardiff University, 1997.

[39] I.J.Grimstead and R.R.Martin. Incremental Line Labelling for Sketch Input of

Solid Models. Computer Graphics Forum 15(2), 155–166, 1996.

[40] J.Grosjean, T.Stein and S.Coquillart. Incremental Conversion of 3D Wire

Frame Models to Polygonal Surface Models. In Proceedings of the 8th Inter-

national Conference in Central Europe on Computer Graphics, Visualisation

and Interactive Digital Media 2000, 2000.

[41] S.K.Gupta, W.C.Regli and D.S.Nau. Manufacturing Feature Instances: Which

Ones to Recognize? In ed. C.M.Hoffmann and J.Rossignac, SMA 95: Pro-

ceedings of the Third Symposium on Solid Modeling and Applications, 141–152,

ACM Press, 1995.

[42] A.Guzman. Decomposition of a Visual Scene into Three-Dimensional Bodies. In

ed. A.Grasselli, AFIPS (American Federation of Information Processing Societ-

ies) Proceedings of Fall Joint Computer Conference, Vol. 33, 291–304, Academic

Press, New York, 1968.

[43] A.Guzman. Computer Recognition of Three-Dimensional Objects in a Visual

Scene. Tech Rept MAC-TR-59, M.I.T., Cambridge USA, 1968.

[44] J.H.Han. Survey of Feature Research. Technical Report IRIS-96-346, University

of Southern California Institute for Robotics and Intelligent Systems, 1996.

367

[45] J.H.Han. On Multiple Interpretations. In ed. C.Hoffmann and W.Bronsvort,

Proceedings: Fourth Symposium on Solid Modeling and Applications, 311–321,

ACM Press, 1997.

[46] J.H.Han and M.J.Kang. Geometric Reasoning and Search Algorithms for

Manufacturing Cost Optimization. In ed. H.I.Choi, M.S.Kim, K.W.Lee and

R.R.Martin, 1st Korea-UK Joint Workshop on Geometric Modeling and Com-

puter Graphics, 47–54, Kyung Moon Publishers, 2000.

[47] J.H.Han and A.A.G.Requicha. Integration of Feature Based Design and Feature

Recognition. Computer Aided Design 20(5), 393–403, 1997.

[48] M.Herman and T.Kanade. The 3D MOSAIC Scene Understanding System:

Incremental Reconstruction of 3D Scenes from Complex Images. In ed.

M.A.Fischler and O.Firschein, Readings in Computer Vision: Issues, Problems,

Principles, and Paradigms, 471–482, Kaufmann, 1987.

[49] G.E.Hinton. Relaxation and its Role in Vision. PhD Thesis, Edinburgh Univer-

sity, 1978.

[50] C.M.Hoffman and K.J.Kim. Towards Valid Parametric CAD Models.

Computer-Aided Design 33(1), 81–90, 2001.

[51] D.D.Hoffman and W.A.Richards. Parts of Recognition. Cognition 18, 65–96,

1984.

[52] J.H.Holland. Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor, 1975.

[53] J.E.Hopcroft and R.E.Tarjan. Dividing a Graph into Triconnected Components.

SIAM Journal of Computing 2(3), 135–158, 1973.

[54] J.E.Hopcroft and R.E.Tarjan. A V log V Algorithm for Isomorphism of Tricon-

nected Planar Graphs. Journal of Computer and System Sciences 7, 323–331,

1973.

[55] J.E.Hopcroft and J.K.Wong. Linear Time Algorithm for Isomorphism of Planar

Graphs. In Proceedings, 6th Annual ACM Symposium on Theory of Computing,

172–184, 1974.

368

[56] D.A.Huffman. Impossible Objects as Nonsense Sentences. In ed. B.Meltzer and

D.Michie, Machine Intelligence, Vol. 6, 295–323, Edinburgh University Press,

1971.

[57] D.A.Huffman. A Duality Concept for the Analysis of Polyhedral Scenes. In ed.

E.W.Elcock and D.Michie, Machine Intelligence, Vol. 8, 475–492, Ellis Hor-

wood, 1977.

[58] D.A.Huffman. Realizable Configurations of Lines in Pictures of Polyhedra. In

ed. E.W.Elcock and D.Michie, Machine Intelligence, Vol. 8, 493–509, Ellis Hor-

wood, 1977.

[59] D.L.Jenkins. The Automatic Interpretation of Two-Dimensional Freehand

Sketches. PhD Thesis, University of Wales College of Cardiff, 1992.

[60] X.Y.Jiang and H.Bunke. A Simple and Efficient Algorithm for Determining

the Symmetries of Polyhedra. CVGIP Graphics Models and Image Processing

54(1), 91–95, 1992.

[61] X.Jiang, K.Yu and H.Bunke. Detection of Rotational and Involutional Sym-

metries and Congruity of Polyhedra. Visual Computing 12(4), 193–201, 1996.

[62] T.Kanade. A Theory of Origami World. Artificial Intelligence 13, 279–311, 1980.

[63] T.Kanade. Recovery of the Three-Dimensional Shape of an Object from a Single

View. Artificial Intelligence 17, 409–460, 1981.

[64] K.Kanatani. Group-Theoretical Methods in Image Understanding, Number 20

in Springer Series in Information Sciences, Springer-Verlag, 1990.

[65] D.Kapur, T.Saxena and L.Yang. Algebraic and Geometric Reasoning using

Dixon Resultants. In Proc. ACM International Symposium on Symbolic and

Algebraic Computation, 99–107, 1994.

[66] S.F.A.Kettle. Symmetry and Structure, Wiley, 1985.

[67] S.Kirkpatrick, C.D.Gelatt and M.P.Vecchi. Optimization by Simulated Anneal-

ing. Science 220, 671–680, 1983.

369

[68] L.M.Kirousis. Effectively Labelling Planar Projections of Polyhedra. IEEE

Transactions on Pattern Analysis and Machine Intelligence 12(2), 123–130,

1990.

[69] L.M.Kirousis and C.H.Papadimitriou. The Complexity of Recognising Polyhed-

ral Scenes. Journal of Computer Systems Science 37, 14–38, 1988.

[70] J.Kobler, U.Schoning and J.Toran. The Graph Isomorphism Problem: Its Struc-

tural Complexity, Birkhauser Boston Inc, Boston MA, 1993.

[71] K.Kondo. PIGMOD: Parametric and Interactive Geometric Modeller for Mech-

anical Design. Computer-Aided Design 22(10), 633–644, 1990.

[72] K.Kondo. Algebraic Method for Manipulation of Dimensional Relationship in

Geometric Models. Computer-Aided Design 24(3), 141–147, 1992.

[73] G.A.Kramer. Using Degrees of Freedom Analysis to Solve Geometric Constraint

Systems. In ed. J.Rossignac and J.Turner, Proc. Symposium on Solid Modeling

Foundations and CAD/CAM Applications, 371–378, ACM Press, 1991.

[74] G.A.Kramer. Solving Geometric Constraint Systems, MIT Press, 1992.

[75] A.V.Kumar and L.Yu. Sequential Constraint Imposition for Dimension-Driven

Solid Models. Computer-Aided Design 33, 475–486, 2001.

[76] V.Kumar. Algorithms for Constraint Satisfaction Problems: A Survey. AI

Magazine 13(1), 32–44, 1992.

[77] D.Lamb and A.Bandopadhay. Interpreting a 3D Object From a Rough 2D Line

Drawing. In ed. A.E.Kaufman, Proceedings of the First IEEE Conference on

Visualization ’90, 59–66, IEEE, 1990.

[78] F.C.Langbein, B.I.Mills, A.D.Marshall and R.R.Martin. Recognizing Geomet-

ric Patterns for Beautification of Reconstructed Solid Models. In Proc. Interna-

tional Conference on Shape Modelling and Applications, Genova, Italy, 10–19,

IEEE Computer Society, Los Alamitos, CA, USA, 2001.

370

[79] F.C.Langbein, B.I.Mills, A.D.Marshall and R.R.Martin. Finding Approximate

Shape Regularities in Reverse Engineered Solid Models Bounded by Simple Sur-

faces. In ed. D.C.Anderson and K.Lee, Proc. 6th ACM Symp. Solid Modelling

and Applications, Ann Arbor, MI, USA, 206–215, 2001.

[80] R.S.Latham. Combinatorial Algorithms for the Analysis and Satisfaction of

Geometric Constraints. PhD Thesis, Department of Computer Science, Brunel

University, 1996.

[81] R.S.Latham and A.E.Middleditch. Connectivity Analysis: A Tool for Pro-

cessing Geometric Constraints. Computer-Aided Design 28(11), 917–928, 1996.

[82] D.Lazard. Resolution of Polynomial Systems. In ed. X.S.Gao and D.M.Wang,

Computer Mathematics: Proceedings of the Fourth Asian Symposium (ASCM

2000), 1–8, World Scientific, 2000.

[83] Y.G.Leclerc and M.A.Fischler. An Optimization-Based Approach to the Inter-

pretation of Single Line Drawings as 3D Wire Frames. International Journal of

Computer Vision 9(2), 113–136, 1992.

[84] K.W.Lee. Principles of CAD/CAM/CAE Systems, Addison Wesley, 1999.

[85] S.J.Lee, R.M.Haralick and M.C.Zhang. Understanding Objects with Curved

Surfaces from a Single Perspective View of Boundaries. Artificial Intelligence

26, 145–169, 1985.

[86] W.Lee, P.Kalra and N.Magnenat-Thalmann. Model Based Face Reconstruc-

tion for Animation. In Proc. Multimedia Modeling (MMM’97), 323–338, World

Scientific, Singapore, 1997.

[87] D.Levy. The Chess Computer Handbook, Batsford, 1984.

[88] Y.T.Li, S.M.Hu and J.G.Sun. A Constructive Approach to Solving 3D Geo-

metric Constraint Systems using Dependence Analysis. Computer-Aided Design

34(2), 97–108, 2002.

371

[89] Y.T.Li, S.M.Hu and J.G.Sun. On the Numerical Redundancies of Geometric

Constraint Systems. In ed. H.Suzuki, A.Rockwood and L.P.Kobbelt, Ninth Pa-

cific Conference on Computer Graphics and Applications (PG’01), 118–123,

IEEE Comp Soc Press, 2001.

[90] H.Lipson. Computer Aided 3D Sketching for Conceptual Design. PhD Thesis,

Technion-Israel Institute for Technology, Haifa, 1998.

[91] H.Lipson and M.Shpitalni. Optimization-Based Reconstruction of a 3D Object

from a Single Freehand Line Drawing. Computer Aided Design 28(8), 651–663,

1996.

[92] H.Lipson and M.Shpitalni. An Interface for 3D Conceptual Design Based on

Freehand Sketching. In IFIP WG5.2 Workshop on Geometric Modeling in

Computer-Aided Design, 139–148, 1996.

[93] J.Z.Liu and Y.T.Lee. A Graph-Based Method for Face Identification from a

Single 2D Wireframe Object. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 23(10), 1106–1119, 2001.

[94] E.H.Lockwood and R.H.Macmillan. Geometric Symmetry, Cambridge Univer-

sity Press, 1978.

[95] W.H.Macaulay. Solid Geometry, Cambridge University Press, 1930.

[96] A.K.Mackworth. Interpreting Pictures of Polyhedral Scenes. Artificial Intelli-

gence 4, 121–137, 1973.

[97] A.K.Mackworth. On the Interpretation of Drawings as Three-Dimensional

Scenes. D.Phil Thesis, University of Sussex, 1974.

[98] A.K.Mackworth. Consistency in Networks of Relations. Artificial Intelligence

8, 99–118, 1977.

[99] J.Malik. Interpreting Line Drawings of Curved Objects. Technical Report

STAN-CS-86-1099, Computer Science Department, Stanford University, 1985.

[100] J.Malik. Interpreting Line Drawings of Curved Objects. International Journal

of Computer Vision 2(1), 73–103, 1987.

372

[101] T.Marill. Emulating the Human Interpretation of Line-Drawings as Three-

Dimensional Objects. International Journal of Computer Vision 6(2), 147–161,

1991.

[102] D.W.Marquardt. An Algorithm for Least-squares Estimation of Nonlinear

Parameters. SIAM Journal on Applied Mathematics 11, 431–441, 1963.

[103] D.Marr. Representing Visual Information. In ed. A.Hanson and E.M.Riseman,

Computer Vision Systems, 61–80, Academic Press NY, 1978.

[104] R.R.Martin and D.Dutta. Tools for Asymmetry Rectification in Shape Design.

Journal of Systems Engineering 6, 98–112, 1996.

[105] H.Mayer. Automatic Object Extraction from Aerial Imagery—A Survey Fo-

cusing on Buildings. Computer Vision and Image Understanding 74(2), 138–

149, 1999.

[106] J.A.McHugh. Algorithmic Graph Theory, Prentice-Hall, 1990.

[107] S.Meeran and J.M.Taib. A Generic Approach to Recognising Isolated, Nested

and Interacting Features from 2D Drawings. Computer-Aided Design 31(14),

891–910, 1999.

[108] N.Metropolis, A.Rosenbluth, M.Rosenbluth, A.Teller and E.Teller. Simulated

Annealing. Journal of Chemical Physics 21, 1087–1092, 1953.

[109] J.S.Mill. An Examination of Sir William Hamilton’s Philosophy and of The

Principal Philosophical Questions Discussed in his Writings. Volume IX of Col-

lected Works of John Stuart Mill, University.of.Toronto.Press, 1979.

[110] B.I.Mills. Private Communication. 2001.

[111] B.I.Mills, F.C.Langbein, A.D.Marshall and R.R.Martin. Approximate Sym-

metry Detection for Reverse Engineering. In ed. D.C.Anderson and K.Lee, Proc.

6th ACM Symp. Solid Modelling and Applications, Ann Arbor, MI, USA, 241–

248, 2001.

[112] J.Mitani, H.Suzuki and F.Kimura. 3D SKETCH: Sketch Based Model Re-

construction and Rendering. In ed. U.Cugini and M.J.Wozny, From Geometric

373

Modeling to Shape Modeling, IFIP TC5 WG5.2 Seventh Workshop on Geomet-

ric Modeling: Fundamentals and Applications, October 2-4, 2000, Parma, Italy,

85–98, Kluwer, 2001.

[113] R.Mohan and R.Nevatia. Using Perceptual Organisation to Extract 3D Struc-

tures. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(11),

1121–1139, 1989.

[114] R.O.Myers. Genetic Algorithms for Ambiguous Labelling Problems. PhD

Thesis, University of York, 1999.

[115] I.V.Nagendra and U.G.Gujar. 3D Objects From 2D Orthographic Views. Com-

puters and Graphics 12(1), 111–114, 1988.

[116] L.A.Necker. Observations on Some Remarkable Optical Phenomena Seen in

Switzerland. Philos. Mag. Third Series 1(5), 329–337, 1832.

[117] J.A.Nelder and R.Mead. A Simplex Method for Function Minimization. Com-

puter Journal 7, 308–313, 1965.

[118] P.Norvig. Paradigms of Artificial Intelligence Programming, Morgan

Kaufmann, 1992.

[119] J.C.Owen. Algebraic Solution for Geometry from Dimensional Constraints. In

ed. J.Rossignac and J.Turner, Proc. Symposium on Solid Modeling Foundations

and CAD/CAM Applications, 397–407, ACM Press, 1991.

[120] P.Parodi, R.Lancewicki, A.Vijh and J.K.Tsotsos. Empirically-Derived Estim-

ates of the Complexity of Labeling Line Drawings of Polyhedral Scenes. Artifi-

cial Intelligence 105, 47–75, 1998.

[121] S.Parry-Barwick and A.Bowyer. Symmetry Analysis and Geometric Model-

ling. In ed. K.K.Fung and A.Ginige, Dicta 93 Proc. Digital Image Computing

Conference, Vol. 1, 39–46, Australian Pattern Recognition Society, 1993.

[122] T.Pavlidis and C.J.van Wyk. An Automatic Beautifier for Drawings and Il-

lustrations. Computer Graphics 19(3), 225–234, 1985.

374

[123] J.Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solv-

ing, Addison-Wesley, 1984.

[124] L.S.Penrose and R.Penrose. Impossible Objects: A Special Type of Visual

Illusion. British Journal of Psychology 49, 31–33, 1958.

[125] D.N.Perkins. Cubic Corners. Quarterly Progress Report 89, 207–214, MIT

Research Laboratory of Electronics, 1968.

[126] D.N.Perkins. How Good a Bet is Good Form? Perception 5, 393–406, 1976.

[127] B.T.Phong. Illumination for Computer-Generated Images. CACM 18(6), 311–

317, 1975.

[128] F.Pickup and M.A.Parker. Engineering Drawing with Worked Examples, Vol.

1, 3rd Edition, Hutchison and Co, 1979.

[129] F.Pickup and M.A.Parker. Engineering Drawing with Worked Examples, Vol.

2, 2nd Edition, Hutchison and Co, 1980.

[130] A.Piquer. Private Communication. 2001.

[131] W.H.Press, S.A.Teukolsky, W.T.Vettering and B.P.Flannery. Numerical Re-

cipes in C, The Art of Scientific Computing, Second Edition, Cambridge Uni-

versity Press, 1994.

[132] D.Pugh. Interactive Sketch Interpretation using Arc-labelling and Geometric

Constraint Satisfaction. Technical Report CMU-CS-91-181, Carnegie Mellon

University, 1991.

[133] D.Pugh. Designing Solid Objects Using Interactive Sketch Interpretation.

ACM/SIGGRAPH Computer Graphics—Special Issue: 1992 Symposium on In-

teractive Computer Graphics 23(2), 117–126, 1992.

[134] E.Puppo. On the Topological Representation of Line Drawings. Pattern Re-

cognition Letters 18, 575–582, 1997.

[135] A.Z.Qamhiyah, R.D.Venter and B.Benhabib. Geometric Reasoning for the Ex-

traction of Form Features. Computer-Aided Design 28(11), 887–903, 1996.

375

[136] C.Qin and J.Y.S.Luh. Ambiguity Reduction by Relaxation Labelling. Pattern

Recognition 27, 165–180, 1994.

[137] S.F.Qin, D.K.Wright and I.N.Jordanov. From On-Line Sketching to 2D and

3D Geometry: a System Based on Fuzzy Knowledge. Computer-Aided Design

32(12), 851–866, 2000.

[138] S.F.Qin, D.K.Wright and I.N.Jordanov. A Conceptual Design Tool: A Sketch

and Fuzzy Logic Based System. Proceedings of the I MECH E Part B: Journal

of Engineering Manufacture 215, 111–116, 2001.

[139] L.G.Roberts. Machine Perception of Three-Dimensional Solids. PhD Thesis,

MIT, 1963.

[140] A.Rosenfeld, R.A.Hummel and S.W.Zucker. Scene Labelling by Relaxation

Operations. IEEE Transactions on Systems, Man and Cybernetics 6, 420–433,

1976.

[141] P.J.Rousseeuw and A.M.Leroy. Robust Regression and Outlier Detection,

Wiley, 1987.

[142] P.J.Rousseeuw and S.van Aelst. Positive-Breakdown Robust Methods in Com-

puter Vision. Computing Science and Statistics 31, 451–460, 1999.

[143] M.M.Samuel, A.A.G.Requicha and S.A.Elkind. Methodology and Results of

an Industrial Parts Survey. Technical Memorandum 21, Production Automation

Project, University of Rochester NY USA, 1976.

[144] T.Schiex, H.Fargier and G.Verfaillie. Valued Constraint Satisfaction Problems:

Hard and Easy Problems. In ed. C.Mellish, Proceedings of the 14th International

Joint Conference on Artificial Intelligence (IJCAI-95), 631–637, 1995.

[145] O.G.Selfridge. Pandemonium: A Paradigm for Learning. In Mechanisation of

Thought Processes: Proceedings of a symposium held at the National Physical

Laboratory, November 1958, Vol. 1, 511–527, HMSO, 1959.

[146] A.Selinger and R.C.Nelson. A Perceptual Grouping Hierarchy for Appearance-

Based 3D Object Recognition. Computer Vision and Image Understanding

76(1), 83–92, 1999.

376

[147] I.Shimshoni and J.Ponce. Recovering the Shape of Polyhedra using Line-

Drawing Analysis and Complex Reflectance Models. In CVPR94, 514–519,

IEEE Computer Society Press, 1994.

[148] Y.Shirai. Three-Dimensional Computer Vision, Springer-Verlag, 1987.

[149] M.Shpitalni and H.Lipson. Identification of Faces in a 2D Line Drawing Pro-

jection of a Wireframe Object. IEEE Trans. Pattern Analysis and Machine

Intelligence 18(10), 1000–1012, 1996.

[150] S.S.P.Shum, W.S.Lau, M.M.F.Yuen and K.M.Yu. Solid Reconstruction from

Orthographic Views using 2-Stage Extrusion. Computer-Aided Design 33(1),

91–102, 2001.

[151] S.S.Sinha and B.G.Schunck. A Two-Stage Algorithm for Discontinuity-

Preserving Surface Reconstruction. IEEE Transactions on Pattern Analysis and

Machine Intelligence 14(1), 36–55, 1992.

[152] M.G.L.Sommerville, D.E.R.Clark and J.R.Corney. Viewer-Centred Feature

Recognition. In ed. C.M.Hoffmann and J.Rossignac, Proceedings of the Third

ACM Symposium on Solid Modeling and Applications, 125–130, ACM Press,

1995.

[153] L.A.E.Stevens. Genetic Algorithm to Optimise Line Labelling. MSc Disserta-

tion, Cardiff University, 1994.

[154] L.Stiller. Multilinear Algebra and Chess Endgames. In ed. R.J.Nowakowski,

Games of No Chance: Combinatorial Games at MRSI, 1994, 151–192, Cam-

bridge University Press, 1996.

[155] B.Stilman. Linguistic Geometry from Search to Construction, Kluwer Aca-

demic Publishers, 2000.

[156] P.F.Sturm and S.J.Maybank. A Method for Interactive 3D Reconstruction of

Piecewise Planar Objects from Single Images. In ed. A.Pridmore and D.Elliman,

Proc. British Machine Vision Conference, Nottingham, 265–274, 1999.

[157] K.Sugihara. Picture Language for Skeletal Polyhedra. Computer Graphics and

Image Processing 8, 382–405, 1978.

377

[158] K.Sugihara. Range Data Analysis Guided by a Junction Dictionary. Artificial

Intelligence 12(1), 41–69, 1979.

[159] K.Sugihara. Mathematical Structures of Line Drawings of Polyhedrons—

Towards Man-Machine Communication by Means of Line Drawings. IEEE

Transactions on Pattern Analysis and Machine Intelligence PAMI-4(5), 458–

469, 1982.

[160] K.Sugihara. An Algebraic Approach to Shape-from-Image Problems. Artificial

Intelligence 23, 59–95, 1984.

[161] K.Sugihara. An n log n Algorithm for Determining the Congruity of Polyhedra.

Journal of Computer and Systems Science 29(1), 36–47, 1984.

[162] K.Sugihara. A Necessary and Sufficient Condition for a Picture to Repres-

ent a Polyhedral Scene. IEEE Transactions on Pattern Analysis and Machine

Intelligence PAMI-6(5), 578–586, 1984.

[163] K.Sugihara. Machine Interpretation of Line Drawings, Cambridge, Massachu-

setts: MIT Press, 1986.

[164] K.Sugihara. Three-Dimensional Realization of Anomalous Pictures—an Ap-

plication of Picture Interpretation Theory to Toy Design. Pattern Recognition

30(7), 1061–1067, 1997.

[165] K.Sugihara. Resolvable Representations of Polyhedra. Discrete and Computa-

tional Geometry 21(2), 243–255, 1999.

[166] D.A.Turner. The Approximation of Cartesian Co-ordinate Data by Parametric

Orthogonal Distance Regression. PhD Thesis, University of Huddersfield, 1999.

[167] K.Turner. Computer Perception of Curved Objects using a Television Camera.

PhD Dissertation, Edinburgh University, 1974.

[168] UG Solutions, Inc. Parasolid—Powering the Digital Enterprise.

http://www.ugsolutions.com/products/parasolid/.

[169] J.R.Ullman. An Algorithm for Subgraph Isomorphism. Journal ACM 23, 504–

519, 1976.

378

[170] P.A.C.Varley. Computer Modelling of Seasonal Storage of Solar Thermal En-

ergy for District Heating Systems in the UK. MSc Dissertation, Cardiff Univer-

sity 1995.

[171] P.A.C.Varley and R.R.Martin. A System for Constructing Boundary Repres-

entation Solid Models from a Two-Dimensional Sketch. In ed. W.Wang and

R.R.Martin, Proc. GMP 2000, 13–32, IEEE Press, 2000.

[172] P.A.C.Varley and R.R.Martin. Constructing Boundary Representation Solid

Models from a Two-Dimensional Sketch—Sketch Categorisation and Frontal

Geometry. In ed. H.I.Choi, M.S.Kim, K.W.Lee and R.R.Martin, 1st Korea-

UK Joint Workshop on Geometric Modeling and Computer Graphics, 113–128,

Kyung Moon Publishers, 2000.

[173] P.A.C.Varley and R.R.Martin. Constructing Boundary Representation Solid

Models from a Two-Dimensional Sketch—Topology of Hidden Parts. In ed.

H.I.Choi, M.S.Kim, K.W.Lee and R.R.Martin, 1st Korea-UK Joint Workshop

on Geometric Modeling and Computer Graphics, 129–144, Kyung Moon Pub-

lishers, 2000.

[174] P.A.C.Varley and R.R.Martin. Constructing Boundary Representation Solid

Models from a Two-Dimensional Sketch—Geometric Finishing. In ed. H.I.Choi,

M.S.Kim, K.W.Lee and R.R.Martin, 1st Korea-UK Joint Workshop on Geo-

metric Modeling and Computer Graphics, 145–158, Kyung Moon Publishers,

2000.

[175] P.A.C.Varley and R.R.Martin. The Junction Catalogue for Labelling Line

Drawings of Polyhedra with Tetrahedral Vertices. International Journal of

Shape Modelling 7(1), 23–44, 2001.

[176] P.A.C.Varley and R.R.Martin. Estimating Depth from Line Drawings. In ed.

K.Lee and N.Patrikalakis, Proc. 7th ACM Symposium on Solid Modeling and

Applications, SM02, 180–191, ACM Press, 2002.

[177] P.A.C.Varley and R.R.Martin. Deterministic and Probabilistic Approaches to

Labelling Line Drawings of Engineering Objects. Accepted for publication in

International Journal of Shape Modelling, 2003.

379

[178] P.A.C.Varley. Algorithms supporting Reconstructing Interactive B-Reps

to Analyse Line Drawings. Cardiff University, 2002. Download from

http://ralph.cs.af.ac.uk/papers/Geometry/varleyphdalgorithms.pdf.

[179] A.Verroust, F.Schonek and D.Roller. Rule-Oriented Method for Parameterized

Computer-Aided Design. Computer-Aided Design 24(10), 531–540, 1992.

[180] T.Vetter and T.Poggio. Symmetric 3D Objects are an Easy Case for 2D Object

Recognition. Spatial Vision 8(4), 443–453, 1995.

[181] D.M.Waltz. Generating Semantic Descriptions from Drawings of Scenes with

Shadows. Tech Rept AI-TR-271, M.I.T., Cambridge USA, 1972.

[182] W.Wang. On the Automatic Reconstruction of a 3D Object’s Constructive

Solid Geometry Representation from its 2D Projection Line Drawing. DSc Dis-

sertation, University of Massachusetts at Lowell, 1992.

[183] W.Wang and G.G.Grinstein. A Polyhedral Object’s CSG-rep Reconstruction

from a Single 2D Line Drawing. In Proceedings of 1989 SPIE Intelligent Robots

and Computer Vision III: Algorithms and Techniques, Vol. 1192, 230–238, 1989.

[184] W.Wang and G.G.Grinstein. A Survey of 3D Solid Reconstruction from 2D

Projection Line Drawings. Computer Graphics Forum 12(2), 137–158, 1993.

[185] C.E.Weatherburn. Elementary Vector Analysis, Bell, 1921.

[186] C.E.Weatherburn. Differential Geometry, Vol. I, Cambridge University Press,

1927.

[187] C.E.Weatherburn. Differential Geometry, Vol. II, Cambridge University Press,

1927.

[188] X.Wei. Computer Vision Method for 3D Quantitative Reconstruction from a

Single Line Drawing. PhD Thesis, Department of Mathematics, Bejing Univer-

sity, China, 1987. (In Chinese).

[189] L.Weinberg. A Simple and Efficient Algorithm for Determining Isomorphism

of Planar Triply Connected Graphs. IEEE Transactions on Circuit Theory CT-

13, 142–148, 1966.

380

[190] N.Werghi, R.B.Fisher, A.Ashbrook and C.Robertson. Improving Model Shape

Acquisition by Incorporating Geometric Constraints. In Proc. British Machine

Vision Conference BMVC97, 520–529, 1997.

[191] N.Werghi, R.B.Fisher, C.Robertson and A.Ashbrook. Object Reconstruction

by Incorporating Geometric Constraints in Reverse Engineering. Computer-

Aided Design 31, 363–399, 1999.

[192] W.Whiteley. Matroid and Rigid Structures. In ed. N.White, Matroid Applic-

ations, 1–53, Cambridge University Press, 1991.

[193] W.T.Wu. Basic Principles of Mechanical Theorem Proving in Geometries, Vol.

I, Springer-Verlag, 1993.

[194] H.W.Yankee. Engineering Graphics, Prindle, Weber and Schmidt, 1985.

[195] S.W.Zucker, E.Krishnamurthy and R.Harr. Relaxation Processes for Scene

Labelling: Convergence, Speed and Stability. IEEE Transactions on System,

Man and Cybernetics SMC-8(1), 41–48, 1978.

381

