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ABSTRACT 8 

Previous studies have suggested predominant extensional tectonics acting, at present, on the Nankai 9 

Accretionary Prism (NAP), and following a parallel direction to the convergence vector between the 10 

Philippine Sea and Amur Plates. However, a complex set of thrusts, pop-up structures, thrust anticlines and 11 

strike-slip faults is observed on seismic data in the outer wedge of the NAP, hinting at a complex strain 12 

distribution across SE Japan. Three-dimensional (3D) seismic data reveal three main families of faults: (1) 13 

NE-trending thrusts and back-thrusts; (2) NNW- to N-trending left-lateral strike-slip faults; and (3) WNW-14 

trending to E-W right-lateral strike-slip faults. Such a fault pattern suggests that lateral slip, together with 15 

thrusting, are the two major styles of deformation operating in the outer wedge of the NAP. Both styles of 16 

deformation reflect a transpressional tectonic regime in which the maximum horizontal stress is 17 

geometrically close to the convergence vector. This work is relevant because it shows a progressive change 18 

from faults trending perpendicularly to the convergence vector, to a broader partitioning of strain in the form 19 

of thrusts and conjugate strike-slip faults. We suggest that similar families of faults exist within the inner 20 

wedge of the NAP, below the Kumano Basin, and control stress accumulation and strain accommodation in 21 

this latter region. 22 

Keywords: Convergent margins; SE Japan; accretionary prism; strike-slip; transpression. 23 
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1. INTRODUCTION 24 

The Nankai Trough is one of the most studied subduction zones in the world and delineates an active, 25 

seismogenic convergent margin under which the Philippine Sea Plate is being subducted under the Amur 26 

Plate at a variable rate of 2 to 6.5 cm/year (Miyazaki and Heki, 2001; Tsuji et al., 2014). Recent work 27 

identified a dominantly compressional area of the accretionary prism, controlled by a large “Megasplay Fault 28 

Zone” (MSFZ), on the upper continental slope of the Nankai Trough (Moore et al., 2007; Kimura et al., 29 

2011; Moore et al., 2015). In the published literature, the MSFZ is associated with a WNW- directed (~ 30 

N120°–N125°) convergence vector that is deviated ~ 15°- 45° counter-clockwise from a direction orthogonal 31 

to the trench (e.g. DeMets et al., 2010; Tsuji et al., 2014).  32 

Submarine accretionary prisms and associated structures are usually described by the classical critical-wedge 33 

and dynamic Coulomb-wedge theories (Davis et al., 1983; Dahlen et al., 1984), with the Nankai Accretionary 34 

Prism (NAP) being no exception (Wang and Hu, 2006). These two theories suggest a transition between a 35 

highly compressional outer wedge and a less compressional and moderately seismogenic inner wedge. As a 36 

result, Wang and Hu (2006) described the outer wedge of the NAP as comprising a series of imbricate thrust 37 

faults (i.e. reflecting a zone of low shear strength), while the inner wedge forms a zone of accreted sediment, 38 

normally acting as a backstop. The inner wedge of the NAP is characterized by the absence of active 39 

compressional structures. Reference to important strike-slip movements in the landward part of the MSFZ 40 

was made by Martin et al. (2010) and Tsuji et al. (2014), who justified these movements as reflecting a 41 

transtensional tectonic regime. Such a regime allowed the formation of small to regional-scale trench-parallel 42 

and right-lateral strike-slip faults with associated normal offsets. The same authors stated that present-day 43 

transtension is associated with oblique subduction at obliquity values as little as 15°. However, Byrne et al. 44 

(1993) also stated that a detailed picture of an underlying backstop could not be determined from surface 45 

information alone.  46 
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The theoretical interpretation of a predominantly compressional accretionary prism offshore Nankai was 47 

developed further by Byrne et al. (2009), Moore et al. (2013) and Lin et al. (2015), who confirmed the 48 

existence of a component of extension acting near the sea floor. In fact, extensional tectonics accounts for 49 

most of the modern deformation recorded in the forearc basin that overlies the inner wedge of the NAP. 50 

According to Wang and Hu (2006), Byrne et al. (2009) and Lin et al. (2015), this extensional regime is 51 

particularly active during inter- seismic cycles. Nevertheless, Lin et al. (2015) show evidence for 52 

compression at Integrated Ocean Drilling Program (IODP) Sites C0004 and C0010, seaward from the MSFZ, 53 

with a σ1 parallel to the convergence vector. Alternative interpretations consider stress decoupling between a 54 

shallow regime of normal faulting and a deeper regime of strike-slip faulting and thrusting in both the inner 55 

and outer wedges of the NAP (Moore et al., 2013; Van Tuyl et al., 2015). 56 

Previous reference to strike-slip faults and flower structures in the outer wedge of the northeast NAP (Zenisu 57 

area) was made by Le Pichon et al. (1992; 1996). In the Nankai Trough region, flower structures and 58 

associated strike-slip faults were identified by Takahashi et al. (2002). In parallel, microseismicity studies 59 

documented the rupture of a major NW-trending, right-lateral strike-slip fault crossing the outer wedge of the 60 

NAP during the 2004 earthquake off the Kii Peninsula (M = 7.4) (Obana et al., 2005). Obana et al. (2005) 61 

proved the existence of several N- to NE-trending strike-slip fault systems operating within the Shikoku 62 

Basin. Similar strike-slip faults in the seaward part of the MSFZ, and outer wedge of NAP, have been 63 

interpreted as inherited structures from the subducted crust (Shikoku Basin) (Kodaira et al., 2006). Moore et 64 

al. (2013, 2015) focused on the Kumano Basin, which overlies the inner wedge of the NAP, to interpret two 65 

major WNW-trending strike-slip faults offsetting both the outer wedge of the NAP and the MSFZ. Not- 66 

withstanding all this work, most of recent research has been focused on the landward (Kumano Basin) and 67 

most seaward (Frontal Thrust Zone) parts of the NAP, where in-situ stresses measured at several IODP Sites 68 

have demonstrated that extension predominates at present (Lin et al., 2015). 69 
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In order to understand the structural evolution of the outer wedge of the NAP and, ultimately, of the NAP 70 

itself, it is necessary to assess: (1) where and how tectonic stresses accumulate in the prism, and (2) how 71 

shallow and deep structures relate across distinct sub-surface units. Strike-slip faulting that is not associated 72 

with the MSFZ, and within the outer wedge of the NAP, was mentioned in previous work but never fully 73 

characterized or studied, resulting in a relative under-re- presentation of this tectonic regime in the published 74 

literature. The outer wedge is considered to be the zone most actively deforming in accretionary prisms, and 75 

where the response to tectonic stresses is better expressed (MacKay et al., 1992; Park et al., 1999). Several 76 

questions remain to be addressed, some of which will have a large impact on the present understanding of 77 

NAP's tectono-stratigraphic evolution. Hence, the key aims of this work are: 78 

1. To describe the structural framework of the outer wedge of the NAP; 79 

2. To investigate the tectonic regime operating in the outer wedge of the NAP, as well as its related stress 80 

field(s), based on structural analyses of 3D seismic data; 81 

3. To compare and discuss our interpretations with published information on the inner wedge of the NAP and 82 

older accretionary prisms. 83 

 84 

2. REGIONAL GEOLOGICAL SETTING 85 

2.1 Stress field and associated deformation styles 86 

Knowledge on the stress state(s) at accretionary prisms is of paramount importance to assess how strain is 87 

accommodated inside them and, subsequently, to determine their deformation style(s). Taking into account 88 

that the study area is divided in an inner and outer wedge, with a transitional area that is mainly controlled by 89 

the MSFZ (Wang and Hu, 2006; Kimura et al., 2011), we follow the dynamic wedge theory of Wang and Hu 90 
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(2006) to individualize the stress states in the NAP. We use this latter theory, instead of the classic wedge 91 

concepts in Davis et al. (1983), as this latter is known to generalize the stress states for the study area. 92 

According to Wang and Hu (2006), the mechanics of the inner and 93 

outer wedges of the NAP are different due to the distinct behavior of their décollement, or subduction fault. 94 

In the inner part of the wedge, the décollement has a velocity weakening behavior (downdip zone) that locks 95 

it, allowing stress to accumulate until a critical point, leading to its rupture. It thus comprises a seismogenic 96 

zone. However, the inner wedge rarely ruptures compressively due to its relatively low basal friction, a 97 

character allowing for significant slip along its décollement. This means the décollement does not lock in the 98 

entire section of the NAP. In the outer wedge of the NAP (updip zone), the décollement has a velocity 99 

strengthening behavior that does allow stress to build up to a critical state, and generates a highly 100 

compressional region at the toe of the continental slope (Fig. 2A and B). 101 

Wang and Hu (2006) argue that wedge mechanics also varies with the seismic cycle due to changes in the 102 

stress state during and after an earthquake. During an earthquake, σ1 is subhorizontal and the décollement 103 

slips, pressurizing the outer wedge into elastic or permanent compressive deformation. In contrast, the inner 104 

wedge is in a stable extensional state, as shear stress is null due to slip in the décollement. After an 105 

earthquake, the outer wedge records interseismic relaxation that is accompanied by a decrease in shear stress, 106 

seaward movement of this part of the NAP, and an increase in the dip of σ1, whereas the inner wedge starts 107 

to become more compressional as shear stresses start to build up again. 108 

Several methods have been applied to IODP data to define the stress field and deformation style(s) currently 109 

operating across the NAP, and on the incoming Philippine Sea Plate (Shikoku Basin) (Wu et al., 2013; Lin et 110 

al., 2015; Huffman and Saffer, 2016; Chang and Song, 2016). These papers not only show important changes 111 

in the stress field and deformation style(s) across the NAP, and between the NAP and Shikoku Basin; they 112 

also show results that are not consistent for the same IODP sites. This is due to the fact that different methods 113 
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have been applied to define these stress field(s) and associated deformation regime(s), and that measurements 114 

were taken at different depths and scales of observation. 115 

Wu et al. (2013) used a compilation of Formation Micro Imager (FMI), Logging While Drilling (LWD) and 116 

core data to calculate the magnitudes of maximum (σHmax) and minimum (σhmin) horizontal stresses. The 117 

magnitudes were constrained in stress polygons to derive the field stress in different areas of the NAP and 118 

Shikoku Basin. At IODP Site C0009, in the inner wedge of the NAP and at ∼1540 metres below sea floor 119 

(mbsf), Wu et al. (2013) showed that σHmax and σhmin correspond to σ1 (maximum stress) and σ3 (minimum 120 

stress), respectively. Here, σ1 is perpendicular to the trench direction (which is NE-trending), and the 121 

deformation style is strike-slip faulting. However at IODP Site C0002, in the seaward part of the inner wedge 122 

(at ∼ 1000 mbsf), the same authors estimated a NE-trending σHmax where σv > σHmax, a configuration that 123 

reflects a normal faulting regime. At IODP Site C0006, in the Frontal Thrust Zone (∼476 mbsf), Wu et al. 124 

(2013) interpreted a normal faulting regime with a vertical σ1 (σv), but close to strike-slip faulting due to 125 

σHmax being NW-trending and only 0.5 MPa lower than σv. In the Shikoku Basin, at IODP Site C0011 (~610 126 

mbsf), the stress field and deformation styles are similar to IODP Site C0002, but again very close to strike-127 

slip faulting due to the minor difference in magnitude between σv and σHmax. Despite these results, Wu et al. 128 

(2013) state that their stress analysis was limited by the total drilling depth, borehole conditions and 129 

deviations in the slip deficit method, thus returning less reliable results at relevant depths. 130 

Lin et al. (2015) used a similar approach to Wu et al. (2013) in a larger number of IODP Sites across the 131 

NAP and Shikoku Basin, together with hydraulic fracturing experiments and anelastic strain recovery (ASR) 132 

measurements on retrieved cores. This approach allowed a detailed investigation of stress states across the 133 

NAP and Shikoku Basin, in three dimensions, leading to the conclusion that, overall, the NAP is currently 134 

undergoing a (inter-seismic) extensional regime. 135 
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According to Lin et al. (2015), the sediment cover overlying the inner wedge of the NAP (Kumano Basin) 136 

has a vertical σ1 and expresses a normal faulting regime. However, the strikes of σHmax at IODP Sites C0009 137 

and C0002 agree with the results in Wu et al. (2013). The transition from the Kumano Basin strata to the 138 

inner wedge of the NAP is accompanied by a change in σ1 from vertical to sub-horizontal, where σHmax = σ1, 139 

and by a change from normal to strike-slip and thrust faulting. At the MSFZ, IODP Site C0001 shows a 140 

similar stress distribution (and deformation style) to that of IODP Site C0009 with depth, with the change 141 

occurring at ∼500 mbsf. However, at IODP Sites C0004 and C0010, where the hanging-wall of the MSFZ 142 

was drilled, σ1 is interpreted to be sub-horizontal and parallel to the plate convergence vector, reflecting 143 

thrust and strike-slip faulting regimes. In the shallower part of the hanging-wall of the Frontal Thrust Zone, 144 

drilled at IODP Sites C0006 and C0007, Lin et al. (2015) interpreted a similar stress field and deformation 145 

style to the shallow part of IODP Site C0001. Finally, in the Shikoku Basin, the interpretation of IODP Site 146 

C0011 coincides with the results in Wu et al. (2013), while at IODP Site C0012 ASR analyses show evidence 147 

for strike-slip and reverse faulting with a NE-trending σHmax. In such a setting, Lin et al. (2015) state that, at 148 

present, the overall NAP is dominated by a shallow ex- tensional regime and a relatively deep strike-slip to 149 

reverse faulting regime, mainly due to stress field reorganization in the areas where σ1 becomes σHmax. This 150 

transition between different tectonic regimes at depth is often referred to as Extension-Compression Depth 151 

(ECD) and there is consistent data suggesting that the ECD is highly variable along the entire NAP, in both 152 

the inner and outer wedges, depending on the thickness of the overlying sediment cover (Lewis et al., 2013; 153 

Van Tuyl et al., 2015; Lin et al., 2015). Lin et al. (2015) refer that principal stresses permute in the deeper 154 

levels of the NAP, but that sediment cores have yet to be recovered at such depths. 155 

Recently, Chang and Song (2016) integrated borehole breakouts, drilling-induced tensile fractures and leak-156 

off tests at IODP Site C0002 to interpret tectonic stresses (up to a depth of ~2000 mbsf) at the seaward limit 157 

of the inner wedge of the NAP. They concluded that deformation in this latter region varies between strike-158 

slip and normal faulting as a result of σHmax and σv having similar magnitudes. They stress that σHmax is NE-159 
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trending above the MSFZ. The same authors postulate that strike-slip and extensional structures are found in 160 

both core and regional seismic data. 161 

In the Muroto Transect, outside our study area but still in the NAP, Huffman and Saffer (2016) showed 162 

similar results and interpretations to the authors previously mentioned. Stress states at the toe of NAP are 163 

likely associated with strike-slip or thrust faults across the active Frontal Thrust Zone down to a depth of 164 

∼800 mbsf. The uppermost 300 mbsf are near thrust failure, where σHmax > σv. However, Huffman and Saffer 165 

(2016) conclude that the stress state in the upper 300 mbsf changes into a normal faulting regime at depth, 166 

where σv > σHmax. These authors recognize the large uncertainties associated with the parameters used in their 167 

stress analysis. 168 

It is important to highlight that limitations such as the depth and location of the boreholes, and conditions in 169 

which data were acquired, can influence the analysis of regional stress states. Nevertheless, there seems to be 170 

an overall consensus that the NAP is a compressional structure currently dominated by shallow normal (Wu 171 

et al., 2013; Lin et al., 2015; Chang and Song, 2016) and strike-slip (Huffman and Saffer, 2016; Chang and 172 

Song, 2016) faulting regimes. Borehole data are clear that shallower stress conditions differ from those 173 

affecting deeper strata, but the lack of deep measurements does not allow definite conclusions about the 174 

stress field and deformation styles operating at depth, and on the relationship between the shallow and deep 175 

settings of the NAP. Furthermore, it is clear that strike-slip is an important deformation style within the NAP 176 

that is yet to be characterized in detail. 177 

Against this backdrop, three-dimensional interpretations of stress magnitudes and tensors along the NAP are 178 

not unequivocal at some drilling sites. Furthermore, stress field studies have not been performed in the outer 179 

wedge of the NAP due to the lack of borehole data in this region, and at higher depths within the inner wedge 180 

(below the sediment cover of the Kumano Basin). This means that extrapolations based on few localized 181 

wells in the MSFZ and inner wedge are not fully reliable, and a detailed analysis of 3D pre-stack depth 182 
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migration (PSDM) seismic data from the outer wedge of the NAP can be crucial to understand its structural 183 

and stress evolutions. 184 

 185 

2.2 Seismic stratigraphy 186 

Most lithological information acquired in the NAP derives from core and well-log data gathered by the 187 

NanTroSeize Project. IODP Sites C0018A (Figs. 1, 2B and C) and C0006 (Fig. 1A), which are respectively 188 

located seaward of the MSFZ (in the outer wedge of the NAP) and in the Frontal Thrust Zone, provide 189 

valuable lithological and stratigraphic information on the shallow sedimentary cover, uppermost part of the 190 

accretionary prism, and underthrusted sediments from the Philippine Sea Plate. Multiple IODP campaigns 191 

reached strata within the outer wedge of the NAP, and collected stratigraphic evidence to show that the study 192 

area is mainly composed of a relatively thin Unit I (Expedition 315 Scientists, 2009; Expedition 316 193 

Scientists, 2009; Kimura et al., 2011; Strasser et al., 2014). Slope sediments were accumulated above an 194 

angular unconformity separating them from an underlying Unit II, this latter comprising strata belonging to 195 

the upper part of the accretionary prism (Kimura et al., 2011) (Fig. 2D). In addition, cores collected at IODP 196 

Site C0006 drilled through a deep Unit III composed of underthrusted deep-marine sediment from the 197 

subducting Shikoku Basin. 198 

Unit I can be up to 2.4 Ma old and comprises slope-apron fine- grained turbidite facies spanning the latest 199 

Pliocene-Holocene. Data from IODP Sites C0008 and C0018A (Expedition 315 Scientists, 2009; Expedition 200 

316 Scientists, 2009; Expedition 333 Scientists, 2012) di- vided Unit I into Units Ia, Ib and Ic, which mark a 201 

gradual transition from upper-slope apron facies to base of slope apron facies. Unit Ia comprises hemipelagic 202 

mud and silty-clay sequences intercalated with multiple ash layers. Unit Ib is composed of hemipelagic mud, 203 

silty clay and silty turbidites with ash layers. Finally, Unit Ic reflects sediment deposited above Unit II and it 204 
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is characterized by turbiditic sand and sandy silt intercalated with mud and ash layers (Expedition 315 205 

Scientists, 2009; Kimura et al., 2011; Alves et al., 2013; Strasser et al., 2014). 206 

IODP Sites C0006, C0008 and C0018 (Expedition 315 Scientists, 2009; Expedition 316 Scientists, 2009) 207 

define Unit II as reflecting the uppermost part of the accretionary prism. This unit is considered to be 208 

Pliocene in age or older (Expedition 315 Scientists, 2009; Expedition 316 Scientists, 2009; Alves et al., 209 

2013). It comprises accreted sediments with mudstone- to sand-dominated lithologies (Expedition 315 210 

Scientists, 2009; Kimura et al., 2011; Alves et al., 2013; Strasser et al., 2014). 211 

Unit III was identified below Unit II in the Frontal Thrust Zone, at IODP Sites C0006 and C0007 (Expedition 212 

316 Scientists, 2009), and comprises hemipelagic mud interbedded with volcanic ash and tuffs. Unit III is 213 

deformed by thrust faults and transitions at depth into Unit IV, which represents underthrusted Shikoku Basin 214 

sediment (Expedition 316 Scientists, 2009). 215 

In the inner wedge of the NAP, the presence of an overlying forearc basin (Kumano Basin), and underlying 216 

thrust-and-fold accretionary prism, agrees with the stratigraphic units defined by IODP Expeditions 315 and 217 

316. However, slope sediments are relatively thin and dis- continuous in the outer wedge of the NAP, having 218 

been removed by erosion at places (Van Tuyl et al., 2015). This means that Unit I may not exist in most of 219 

the outer wedge. Furthermore, it is difficult to characterize the strata inside the outer wedge of the NAP due 220 

to the lack of borehole data crossing the complex, folded sequences that form this same prism. In the study 221 

area, 3D seismic data show that the accretionary prism should be divided in several tectono-stratigraphic 222 

units instead of being classified as Unit II and Unit III (Fig. 2B). 223 

As the focus of this work is the structural interpretation of the outer wedge of the NAP, we used published 224 

information on Unit I (due to the extensive core/log data acquired in this latter) to propose an adaptation of 225 

the tectono-stratigraphic division of the outer wedge of the NAP in Park et al. (2010). In our work, the upper 226 

part of Unit A comprises the overthrusting package that includes Unit II. Unit B is the Low Velocity Zone 227 
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(LVZ) identified by Park et al. (2010) and Kamei et al. (2012). Unit C is the underthrusting part of the 228 

accretionary prism (Figs. 2A and B). The deepest unit in the study area corresponds to subducted oceanic 229 

crust in which seismic resolution is significantly lower. Based on Park et al. (2010), Unit C represents 230 

underthrusted sediments that under- plate Unit A as defined in this work, while maintaining a critical taper in 231 

the modern accretionary prism. This geometry allows the seaward growth of Unit A to produce the LVZ and 232 

associated Unit B. In contrast, Kamei et al. (2012) propose a thicker LVZ that includes both Units B and C 233 

from Park et al. (2010), with a décollement on top of Unit C. 234 

The seismic data used in this work show clear evidence for two units of low reflectivity separated by a strong 235 

seismic reflection (décollement), strengthening the idea that Units B and C represent similar lithologies, i.e. 236 

Unit B originating from the underthrusting or underplating of Unit C (Bangs et al., 2009; Park et al., 2010; 237 

Kamei et al., 2012). Bangs et al. (2009) discussed the possibility of the décollement being initially at the top 238 

of the LZV (Unit B), changing later to its present-day position. Such a character suggests a similar lithology 239 

across Units B and C, but with both units reflecting distinct tectonic and rheological behaviors. 240 

 241 

3. STUDY AREA AND METHODOLOGY 242 

The study area is located in the southeast coast of Japan, just off the Kii Peninsula, within what is known as 243 

the Kumano Transect (Fig. 1A). In this transect, a 3D pre-stack depth migrated (PSDM) seismic volume was 244 

acquired across the Nankai continental slope as part of the Nankai Trough Seismogenic Zone Experiment 245 

(NanTroSEIZE) (Figs. 1B and 1C). The study area comprises the southern half of the acquired 3D PSDM 246 

seismic block, imaging the Imbricate Thrust and Frontal Thrust Zones just seaward of the MSFZ (Moore et 247 

al., 2001; Park et al., 2002; Tobin and Kinoshita, 2006) (Fig. 1B-C). This region is also known as the outer 248 

wedge of the NAP. 249 
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Mapping and interpretation of seismic horizons, complemented by the compilation of attribute maps, form 250 

the basis of our structural analysis (Figs. 2 and 3). The interpreted seismic volume has an inline spacing of 251 

12.5 m, a crossline spacing of 18.75 m, and was acquired using a 2-source array with four receiver cables at a 252 

distance of 150 m. Each receiver cable was 4500 m long, with 360 receiver groups spaced 12.5 m, and was 253 

able to acquire nominal 60-fold data. Data processing included pre-stack multiple removal and data 254 

conditioning (e.g., amplitude recovery, time-variant filtering, and predictive deconvolution) followed by 3D 255 

pre-stack depth migration (Moore et al., 2009). Seismic resolution can reach < 5 m at the depth of the 256 

shallower faults in this paper, for a range of 6–10 m in the deeper strata based on the dominant wavelength of 257 

~24 m observed on synthetic logs and seismic profiles. The main limitation of this method results from the 258 

fact that it is only possible to observe, map and interpret structures that are within this latter range in seismic 259 

resolution. 260 

According to Roberts (2001) and Chopra and Marfurt (2005, 2007a, 2007b), attribute data such as coherence 261 

and curvature have crucial importance to the 3D interpretation of seismic data. Both attributes are 262 

particularly helpful in structural analyses, as they enhance faults that are often not recognized on vertical 263 

seismic profiles or time-structure maps alone. Volumetric curvature is a property that measures lateral 264 

changes in dip-magnitude and dip-azimuth waveforms (Mai et al., 2009). The presence of fractures and small 265 

faults is closely related to reflection curvature. In this work, maximum curvature is used to visualize small-266 

scale faults and later obtain measurements of maximum horizontal displacements from them. In addition, 267 

coherence comprises a technique cross-correlating seismic amplitudes in adjacent traces, and has a proven 268 

record of efficiently portraying faults by measuring lateral changes in waveform (Chopra and Marfurt, 2005; 269 

Mai et al., 2009). These attributes are automatically extracted from specialized seismic interpretation 270 

software, such as Schlumberger's Petrel® used in this work, but it is necessary to choose a horizontal time- or 271 

depth-slice that is deep enough to intersect a wide range of well-resolved structures. After careful 272 
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interpretation of the 3D PSDM seismic volume, we selected an area that had been significantly affected by 273 

thrust-and-fold structures at a depth of 3840 m. 274 

In this work, we classify the interpreted faults based on their strikes as there is a direct relationship between 275 

their geometry and the observed deformation styles in the outer wedge of the NAP. Strike measurements are 276 

automatically undertaken by the seismic interpretation software after faults are mapped. For curved faults and 277 

fractures one measurement is taken as the average strike, which coincides with the best fitting straight line to 278 

the curve. Taking into consideration that several authors agree with the interpretation of distinct deformation 279 

regimes at shallow and deep levels of the NAP (e.g. Lin et al., 2015; Van Tuyl et al., 2015; Chang and Song, 280 

2016), a classification based on the length of imaged faults, and their depth, can also be used. However, such 281 

a classification will bear no relation to either the geometry or the deformation styles of such structures, as the 282 

boundary between shallow and deep structures occurs at a variable depth. 283 

Van Tuyl et al. (2015) explain that the depth of the ECD surface on 3D seismic data is markedly variable, 284 

being shallower in the outer wedge than in the inner wedge, and clearly related to the thickness of overlying 285 

slope sediment (Unit I). Therefore, in order to classify the different families of faults in terms of length and 286 

depth they reached, we consider shallow structures as affecting the uppermost part of the NAP (Units A and 287 

B), and deep structures as those propagating from the décollement, intersecting the décollement, or offseting 288 

Unit C and oceanic crust. 289 

Seismic attribute mapping provides the basis for statistical analyses of geometry, kinematics and dynamics of 290 

the main faults in this work (Fig. 3). The strikes of thrusts and conjugate sets of strike-slip faults were 291 

measured prior to the estimate of stress and paleostress fields from dihedral angles (Hancock, 1985). This 292 

latter estimate provided the basis for our structural analysis, allowing the 3D mapping of small- and large- 293 

scale faults and fractures, and detailed descriptions of their geometry, kinematics and dynamics. Our 294 
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approach included the quantitative characterization of faults' strike and their throws and horizontal (strike- 295 

slip) displacements, together with quatitative analyses of fault dips.  296 

 297 

4. STRUCTURAL ANALYSIS 298 

The Imbricate Thrust and Frontal Thrust Zones chiefly comprise NE- striking thrusts formed by horizontal 299 

shortening, dipping to the NW (in- sequence) or SE (out-of-sequence and back-thrusts) (see Moore et al., 300 

2001; Gulick et al., 2004; Strasser et al., 2011). Nevertheless, seismic attribute maps reveal the existence of 301 

at least two more families of faults with conjugate geometries; a first trending WNW to E-W and a second 302 

trending N to NNW (Fig. 3). Two major NW-trending faults, belonging to the first of the two fault families 303 

have already been mapped and described by Moore et al. (2013) as displacing surface ridges within the 304 

Imbricate Thrust Zone. 305 

 306 

4.1 NE-trending faults (shallow-deep) 307 

Main structures within the NAP comprise curved NE-trending (azimuth: 40° to 60°) thrusts and back-thrusts 308 

dipping toward the NW and SE (Moore et al., 2001) (Figs. 2A–B, 3A–C, 4A and 4C). Thrust faults are 309 

clearly associated with the formation of SE-verging anticlines with bathymetric expression on the sea floor 310 

(Figs. 1, 2A–B, 3 and 4). Kinematic indicators in these thrusts reveal a secondary right-lateral component in 311 

the form of: (1) an increase in the number of back-thrusts in the larger anticlines toward NE, a character 312 

denoting accumulation of strain in this same direction; (2) possible horse-tail splay terminations of thrusts 313 

occurring at their NE tips (Fig. 3A–B); and (3) slight vergence of hanging-wall anticlines toward the NE 314 

(Fig. 4C). Note that kinematic indicators are not observed in all thrusts. 315 
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Most of the shallow and shorter NE-trending thrusts are clearly primary structures, as they are intersected by 316 

or offset other faults with different trends (Fig. 4A). Yet, the deep and large-scale thrusts do not seem to be 317 

affected by the same structures (Fig. 4A and C). Whether the deep thrusts are older structures displaced by 318 

younger faults with different trends, or these younger faults propagate from deeper thrusts, is a point under 319 

discussion as we cannot ascertain clear cross-cutting relationships among all interpreted structures. Either 320 

way, the observed geometries suggest that faults are diachronous; the larger, deeper thrusts moved before and 321 

after the time of formation of the remaining faults with different trends. 322 

The deep thrust faults root in (or start from) the décollement, usually at a depth between 6.5 and 8 km, only 323 

intersecting it in the frontal part of the NAP (Fig. 2A–B). In addition, the deep thrusts usually show synthetic 324 

(but shallow) thrust faults and antithetic back-thrusts (Fig. 2A–B, 4A and 4C). 325 

 326 

4.2 WNW- to E-W-trending faults (shallow-deep) 327 

One of the most striking features in the NAP is the steeply dipping WNW-trending F1 fault (azimuth: 110° - 328 

115°), a structure ~8 km long and ~3km high, at places intersecting the basal décollement and subduction 329 

channel (Fig. 1, 3A–C and 4B–C). The geometry and dip direction of F1 are not constant, suggesting linkage 330 

of WNW-trending faults during its formation. Fault F1 displaces the majority of thrust anticlines imaged on 331 

seismic data and exhibits a right-lateral strike-slip movement in map view (Fig. 1 and 3A–C). In contrast, 332 

vertical seismic profiles reveal normal throws for this same fault (Figs. 4B–C). Its NW tip shows multiple 333 

faults with similar trends and slip directions (Fig. 3A–C and 4B). It is not possible to define if these minor 334 

faults are branching out of a deeper fault, or if they reflect a highly deformed zone near the sea floor as 335 

revealed by the presence of several minor faults (Fig. 4B). Nevertheless, the SE tip of F1 splays out in 336 

several branching faults that join or stop against other thrusts (Fig. 3A–C). Similar fault geometries to F1 337 
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have been described as negative flower structures in which the horizontal component is dominant (Harding, 338 

1985). 339 

The F1 fault separates two distinct structural domains: (1) a domain to the N where left-lateral slip 340 

predominates, and (2) a domain to the S where right-lateral motion is significant (Fig. 3C). At a smaller 341 

scale, there are structures with similar kinematics to F1, trending WNW-ESE to E-W (azimuth: 85°–115°), 342 

with variable lengths (Fig. 3A–C). These structures comprise a range of pure strike-slip to oblique-slip faults. 343 

Their normal slip component (Figs. 3 and 4) can result from normal (dip-slip) movement or comprise an 344 

apparent displacement associated with strike-slip motion. The variable throw values recorded, usually 345 

increasing toward the surface, together with contrasts between total offset and its bathymetric expression 346 

(Fig. 3D), indicate that the observed normal slip can be an apparent slip from right-lateral faults intersecting 347 

an inherited fold-and-thrust structure dipping to the NW (Fig. 4C). Furthermore, trend-parallel horizontal 348 

offsets are much larger than fault throws, up to a factor of 2 to 3 (Fig. 3C–D). It is important to highlight that 349 

not all WNW to E-W structures show lateral movement, suggesting that strike-slip motion is recent or 350 

periodically alternates in response to the reactivation of deep structures in the NAP. 351 

Despite F1 being a deep structure that reaches, and seemingly intersects, the décollement, not all WNW to E-352 

W faults propagate beyond a depth of 1 km below the sea floor. However, when compared with other strike-353 

slip faults, WNW to E-W faults are much deeper. Similar fault patterns have been found on other convergent 354 

margins, but at larger scales of observation (Lewis et al., 1988; Platt et al., 1988). 355 

 356 

4.3 NNW- to N-trending faults (predominantly shallow) 357 

In the outer wedge of the NAP there are several NNW- and N- trending structures (azimuth: 345°–10°) 358 

dipping toward the W or sub- vertical, rarely reaching the sea floor (Fig. 3A–C and 4). These faults normally 359 



 

17 

exhibit a left-lateral strike-slip motion, and a variable normal throw (Fig. 3C). Faults trending N to NNW 360 

show variable lengths but usually occur in thrust anticlines, rarely extending into their adjacent synclines. 361 

Their vertical extension is variable, from a few meters to hundreds of meters, seldom affecting the sea floor. 362 

In some cases, similar structures are observed on both the hanging-wall and footwall of major thrust faults, 363 

intersecting some of the deeper thrusts in the NAP (Fig. 4A and C). 364 

 365 

4.4 Normal faults 366 

Minor normal faults on the scale of tens of meters have been observed and are normally confined to the 367 

uppermost part of the sediment cover, as previously described by Strasser et al. (2011) and Van Tuyl et al. 368 

(2015). These minor faults tend to follow the trends of strike-slip faults, but seldom those of thrust faults 369 

(Fig. 5). The normal faults following the trend of strike-slip faults have been classified as normal as they 370 

show minor throws without any evidence for horizontal movement. However, they can comprise oblique-slip 371 

faults in which their horizontal displacement is below the horizontal seismic resolution of the 3D PSDM 372 

volume. 373 

 374 

4.5 Deep structures 375 

Some of the structures previously identified by Tsuji et al. (2013) as affecting the décollement or units below 376 

were also mapped in this work. These deep structures normally show a larger complexity in their geometry 377 

and kinematics (Figs. 2B, 6 and 7). According to Tsuji et al. (2013), some of the deep faults imaged on 378 

seismic data are inherited structures from Philippine Sea Plate's oceanic crust. These inherited structures do 379 

not only control the thickness of the accretionary prism, but also its structural framework. These structures 380 

include active intra- oceanic thrusts (Fig. 2B) and some strike-slip faults resulting from lateral movement at 381 
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the edges of the thicker parts of the NAP. In the outer wedge of the NAP, these intra-oceanic thrusts will 382 

control the location of main thrust faults within the Imbricate Thrust Zone. How- ever, in this work we 383 

identified several deep-rooted faults with similar directions to the previously described strike-slip faults. 384 

Despite their larger structural complexity, deep structures show similar trends to features observed in the 385 

NAP, especially when referring to strike-slip fault families (Fig. 6). It is equally important to highlight that 386 

these deep structures reach depths larger than 6 km below the sea floor, rooting at and displacing the 387 

décollement and underlying units. Some of these structures show relative displacements that do not laterally 388 

or vertically agree with a pure extensional or compressional regime of deformation (Fig. 6). Thus, only a 389 

strike-slip or a combined regime of deformation can justify such a displacement pattern. This combined 390 

regime often generates distributed deformation zones in which strike-slip motions may not be the same as the 391 

regional strike-slip movement (McKenzie and Jackson, 1986). In addition, branching and splaying of deep 392 

structures are observed and increase upward, resulting in a continuous decrease in the displacement of these 393 

splays/branches and, consequently, in a shallower chaotic zone of fracturing that rarely offsets the sea floor 394 

(Fig. 6). The fact that these branched faults (and fault F1) reach the sea floor, suggests they may be active or 395 

were recently active. 396 

As previously discussed, fault F1 is a deep fault that roots in the décollement or in deeper strata. However, 397 

the near-seafloor extension of this fault seems to vary along strike (compare Fig. 4C and Fig. 6). In Fig. 4C, 398 

which is located a few kilometers NW from Fig. 6, we observe a sharp fault F1 cutting through the outer 399 

wedge of the NAP, reaching the sea floor without any major branching or splaying (see also Fig. 6). This 400 

geometry can be related to differential movement of different sets of the minor faults that compose fault F1, 401 

or to the geometrical interaction between this and other faults, such as fault F2 (Fig. 3). 402 

Significant displacement is observed in Unit C in other areas of the outer wedge of NAP, in addition to the 403 

area shown in Fig. 6, and con- firms a positive correlation between deformation in the décollement and 404 
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underlying units, and deformation in Unit A (Fig. 7). Thus when the oceanic crust, Unit C and, consequently, 405 

the décollement are folded and fractured, Unit A usually presents a much greater deformation and structural 406 

complexity (see Tsuji et al., 2013). 407 

In Fig. 7B two faults follow the same strike (and are in the same position) of strike-slip fault F1, displacing 408 

Unit B and branching upward into a chaotic deformation zone within the entire overlying Unit A. These deep 409 

structures have a throw of 500–1000 m, which is significantly larger than the throws of any other thrust in the 410 

outer wedge of the NAP, and larger than the horizontal displacement of F1 (ca. 600 m). These thrust faults 411 

were previously interpreted as a single major intra-oceanic thrust (Tsuji et al., 2009; Tsuji et al., 2013). Once 412 

more, it is possible to observe an upward decrease in their throws, probably occurring in association with 413 

splaying/branching towards shallower strata. The observed geometry suggests a variation from a deep regime 414 

where dip-slip displacement is larger than horizontal dis- placement, to a shallow regime where dip-slip 415 

displacement is smaller than horizontal displacement. 416 

 417 

5. DISCUSSION 418 

5.1 Significance of strike-slip faulting in the outer wedge of NAP 419 

Despite clear evidence for primary compressional deformation across the NAP (Moore et al., 2007; Kimura 420 

et al., 2007; Kimura et al., 2011), the analysis in this paper reveals that strain in this region is also 421 

accommodated by secondary strike-slip deformation. This observation has a significant impact in the 422 

structural framework of the NAP and the way(s) stress release and accumulation occur in the region. 423 

Therefore, the outer wedge of the NAP is being affected by two main families of strike-slip faults; WNW-424 

trending to E-W right-lateral faults, and NNW- to N-trending left-lateral faults. Their spatial distribution is 425 

controlled by F1, which divides two different structural domains. The fact that: (1) the horizontal 426 
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displacement (120–600 m) is two or three times larger than dip-slip displacement (< 40 m), (2) fault throws 427 

are variable in both its magnitude and nature of movement, and (3) normal slip in faults does not have the 428 

same expression on the sea floor, lead us to consider these structures to be strike-slip faults (Fig. 3). We 429 

interpret that most of the normal slip observed is an apparent slip developed in a fold-and-thrust sequence 430 

dipping to the NW, itself affected by strike-slip faulting with significant lateral motion (Fig. 4). Lateral 431 

movement is particularly noted on structural maps, where the WNW- to E-W trending and the NNW- to N-432 

trending strike-slip faults are conjugate (Fig. 3). 433 

Fig. 4B exhibits a likely negative flower structure with an associated normal-slip component suggesting that, 434 

within a dominant transpressional regime, there could be local zones in which transtension is favored in a 435 

distributed deformation pattern (McKenzie and Jackson, 1986). This ‘flower structure’ can also result from 436 

the combined effect of strike-slip and thrust movements as: (1) the structural domain to the N of F1 exhibits 437 

larger horizontal shortening and tilting than the S domain (Fig. 8), and (2) the curved shape of the NW tip of 438 

F1 exhibits a larger throw and horizontal slip as its angle approaches a direction perpendicular to the trench. 439 

This is the first mention of flower structures in the Imbricate Thrust and Frontal Thrust Zones of the NAP, al- 440 

though other flower structures have been identified in parts of the Nankai Trough and associated with a 441 

lateral component of motion (Le Pichon et al., 1996; Takahashi et al., 2002). 442 

There are several structures that follow the same orientation as these conjugate strike-slip faults, but without 443 

revealing lateral slip. These structures are relatively shallow and exhibit small normal slips to no dip-slip 444 

displacement (Figs. 4C and 5). Also, they do not have any bathymetric expression. These latter structures can 445 

result from one of two scenarios: (1) blocks bordered by well-developed strike-slip faults experienced some 446 

torsion/rotation that is accommodated by extension, (2) accommodation of lateral movement in blocks 447 

bordered by strike- slip faults is no longer possible, or is significantly hindered, with new strike-slip or 448 

oblique-slip faults being formed as a result. 449 
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The observation that deep structures affecting the décollement and underlying units follow the direction of 450 

shallow structures (Figs. 1, 6 and 7), highlights the fact that the uppermost strata in the outer wedge of the 451 

NAP (Unit A) is influenced by deeper faults. Some of these latter faults have been identified as inherited 452 

structures from the subducted Philippine Sea Plate (Tsuji et al., 2013). The fact that some strike-slip faults 453 

branch upward, affecting the sea floor, indicates that the outer wedge is slipping during inter-seismic periods 454 

and strain is accommodated as transpressional deformation. Fig. 1 shows that some of the thrusts offsetting 455 

Unit C and the décollement may not be related to an inherited structure from the Philippines Sea Plate. 456 

Considering that some of these thrust faults reach the sea floor, affecting the local bathymetry, they may not 457 

be entirely associated with tectonic activity along the MSFZ but, instead, with faulting in Unit C and 458 

overlying décollement. 459 

The interpreted seismic volume points to a compressional accretionary prism where synthetic and antithetic 460 

thrusts and strike-slip faults are the major structures responsible for deformation in the outer wedge of the 461 

NAP, and provides scant evidence for extensional de- formation. However, a dominant strike-slip or 462 

compressional de- formation can be responsible for the formation of near-seafloor extensional structures due 463 

to gravitational collapse or through the accommodation of deformation at shallower levels of the NAP (Fig. 464 

5), as recorded in other compressional settings (Shelton, 1984; Burchfiel and Royden, 1985). Therefore, we 465 

corroborate the presence of a variable ECD within the NAP that is strictly associated with the thickness of 466 

the sediment cover (Van Tuyl et al., 2015). In the NAP, the dominant deformation style is not extensional 467 

and the shallower extensional regime is a consequence of a dominant transpressional regime. 468 

 469 

5.2 Estimates of maximum horizontal stress  470 

Thrust and strike-slip faults identified on seismic attribute maps had their strikes measured for statistical 471 

purposes, and to identify the range of strikes for each fault family (Fig. 3). The measured range of strikes was 472 
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simplified to a mean azimuth so we could apply a dihedral angle method (Hancock, 1985) to interpret the 473 

maximum horizontal stress or paleostress responsible for the structures described in this paper. We recognize 474 

this latter method as simplistic, but still comprising a valid approach for determining the principal stresses at 475 

the time of failure. According to Hancock (1985), an extension fracture is initiated perpendicularly to σ3 in 476 

the principal stress plane containing σ1 and σ2, and conjugate hybrid or shear fractures enclose an acute 477 

bisector parallel to σ1 (Hancock, 1985). When applying this method, we used two-dimensional strike data 478 

from attribute seismic maps and, as a result, we only estimate the maximum horizontal stress. 479 

The mean azimuth of the NE-trending thrusts and back-thrusts is 50°. If we were to consider a pure 480 

compressional regime for the formation of the NAP, we would infer a maximum horizontal stress trending 481 

perpendicularly to this fault family, i.e. 130°. However, as previously discussed in this work, the NAP 482 

accretionary prism is characterized by a dominant strike-slip fault regime arranged in a conjugate geometry, 483 

where one of the families (NNW- and N-trending) has a mean azimuth of ~357.5° and the other (WNW-ESE 484 

to E-W trending) has as a mean azimuth of ~100°. The calculated bihedral/bisector (θ) angle of this conjugate 485 

system is ~38.75°, a value that is larger than the 30° generally defined by the Anderson's Theory (Anderson, 486 

1905). How- ever, Anderson (1905) and Hancock (1985) postulate that in natural conditions θ should be < 487 

40°–45°, depending on the confining pressure 488 

and resistance to failure of deformed strata, as the value θ = 30° was calculated in laboratorial conditions for 489 

isotropic and mainly non-natural material. The existence of an abnormal pore-fluid pressure within the NAP 490 

(Tsuji et al., 2008; Kodaira et al., 2004) justifies the larger dihedral angle calculated here, as it normally 491 

increases proportionally to the confining compressive pressure (Ramsey and Chester, 2004). Ismat (2015) 492 

defends that the dihedral angle can also increase within the hinge regions of folds, which is one of the main 493 

structural features of the NAP. 494 
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The bihedral angle of ~38.75° calculated in this work places the maximum horizontal stress at an average 495 

azimuth of 138.75°. This is not far from the mean azimuth of 130° inferred from thrust and back- thrust faults 496 

in the study area, thus representing a difference of 8.75°. It also represents a difference of < 20° from the 497 

general convergence vector of azimuth 120°–125° defined by DeMets et al. (2010). However, Tsuji et al. 498 

(2014) state that the convergence vector can deviate up to 30° from the orthogonal direction to the trench, 499 

meaning that the calculated mean azimuth for the maximum horizontal stress can also be influenced by this 500 

angular relationship. 501 

The minor difference between the azimuths inferred from NE- trending thrusts, and the strike-slip conjugate 502 

system, can be related to: (1) a minor rotation of the stress field due to either progressive de- formation or 503 

alternating seismic and inter-seismic periods, as suggested by Wang and Hu (2006), or (2) related to the 504 

existence of a pre-existing NE-trending structures in the anticlines and (deep) structures inherited from the 505 

subducting Philippines Sea Plate (Tsuji et al., 2013). In this latter case, deep structures may have controlled 506 

the strain accommodation and stress response within the NAP, particularly when strike- slip becomes the 507 

favored regime of deformation. 508 

It was not possible to calculate the exact azimuth of the convergence vector in the study area, but our analysis 509 

still provides a mean azimuth for the maximum horizontal stress. Despite the high probability of a σHmax 510 

parallel to the convergence vector between the Amur and the Philippine Sea Plates, we must assume they do 511 

not match. We must also assume that any mismatches between the calculated azimuth for maximum 512 

horizontal stress, and the azimuth for the convergence vector, may be due to structural complexity in the 513 

NAP or angular errors associated with our geometric analysis - which was purely based on the interpretation 514 

of 3D seismic data. Structural complexity is related to the diffuse accommodation of strain in the outer 515 

wedge of the NAP, caused by the presence of inherited deep structures (Tsuji et al., 2013) that control the 516 

deformation in the upper part of the outer wedge, even with a main convergence vector of azimuth 120°-517 

125°. 518 
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We recognize that our estimations for the stress state in the outer wedge of the NAP represent a past average 519 

stress state. However, the fact that some of the strike-slip faults offset the sea floor, and that strike-slip and 520 

thrust faults mutually intersect and offset each other, suggests that this stress state may still be active. Such a 521 

postulate implies that the outer wedge is not experiencing a period of coseismic relaxation and, instead, is 522 

being compressed by possible aseismic slip of subduction faults (Wang and Hu, 2006). 523 

 524 

5.3 Deformation styles in the outer wedge of the NAP and comparison with other accretionary prisms 525 

In the Kumano Basin, Moore et al. (2013) identified four populations of normal faults in strata overlying the 526 

NAP. They share similar trends to faults interpreted in this paper (Figs. 9A–B). Phase 1 normal faults 527 

correspond to our NE-trending thrust and back-thrust faults, whereas phase 2 and phase 3 normal fault 528 

populations respectively match the orientation of NNW- to N-trending left-lateral strike-slip faults and 529 

WNW-trending to E-W right-lateral strike-slip faults. This character suggests that normal faults generated in 530 

the sediment cover of the NAP, and in Kumano Basin sediment, can be the near-surface expression of 531 

gravitational collapse or local adjustments from structures active at deep levels, imposing anisotropic 532 

conditions in both the inner and outer wedges of the NAP. Similar syn-sedimentary normal faults have been 533 

described for the Makran accretionary prism as responding to prism overthickening caused by underplating 534 

(Platt et al., 1988). 535 

According to Boston et al. (2016), the inner wedge of the NAP inherited a pre-existing structural framework 536 

that is chiefly composed of thrusts similar to those interpreted in the outer wedge. Compression remains the 537 

main deformation style operating in the NAP. The structural data collected by Boston et al. (2016) in the 538 

inner wedge also agree with the trends of structures and fault families in this work; the majority of the 539 

structural data in Boston et al. (2016) correlate with our synthetic thrust faults. The few deep structures 540 
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identified by Boston et al. (2016) are geometrically related to our strike-slip families (Fig. 9A and C). 541 

However, no reference to strike-slip is made in their work. 542 

Taking into consideration Moore et al. (2013) and Boston et al. (2016) interpretations, structures within the 543 

inner wedge and the Kumano Basin are geometrically similar to structures identified and mapped in this 544 

work, and variations in strikes and faulting regimes can be entirely related to strain partitioning from the 545 

Frontal Thrust Zone to the inner wedge or related to the MSFZ. This interpretation suggests that structures 546 

across the NAP somewhat reflect the same tectonic setting, but result in different structural expressions 547 

depending on the local geological and physical conditions. In the outer wedge, there is no evidence for a 548 

dominant extensional deformational style, especially when considering that all normal faults are small and 549 

follow the same trend of deeper strike-slip (and thrust) faults. Instead, evidence points toward the co-550 

existence of both compressional and strike-slip styles of deformation. 551 

Cross-cutting relationships between strike-slip faults and thrusts are not always easy to observe due to the 552 

NAP's structural complexity and poorer seismic resolution at depth. However, structural data in this work 553 

suggests a primary fold-and-thrust framework that is later intersected by relatively recent thrust and strike-554 

slip structures. The chronology between these latter strike-slip and thrust faults is not conclusive as they seem 555 

to have been reactivated simultaneously: 1) as a con- sequence of a transpressional regime, where both 556 

thrusting and strike- slip faulting coexist, or 2) due to alternations between co-seismic and inter-seismic 557 

periods favouring the generation of thrusts and strike-slip structures in discrete tectonic pulses. 558 

We favor the first hypothesis above due to the fact that a transpressional regime, in which both thrusting and 559 

strike-slip can develop, corroborates the information discussed in Section 5.2. Furthermore, the chronological 560 

order proposed by Moore et al. (2013) for the normal fault populations in the Kumano Basin matches the 561 

postulate of an initial fold-and-thrust regime followed by a transpressional regime where thrust and strike-562 

slip faulting coexist, similarly to what is observed in the Shumagin region of the Aleutian Trench (Lewis et 563 



 

26 

al., 1988). The present-day tectonic setting in the NAP is, in fact, very similar to those of the Aleutian Trench 564 

and Makran accretionary prism, where Lewis et al. (1988) and Platt et al. (1988) proposed three evolution 565 

stages: (1) folding along an axis perpendicular to the plate-convergence direction in the region, (2) thrust 566 

faulting in the direction of plate convergence, and (3) oblique strike-slip faulting along conjugate right-lateral 567 

and left-lateral faults. These conjugate strike-slip faults clearly post-date the initial fold-and-thrust geometry 568 

in both the Aleutian Trench and off- shore Makran, but evolved simultaneously with the major thrusts in the 569 

later stages of tectonic shortening. This suggests some overlap between the stages 2 and 3 previously 570 

described. 571 

Some of the strike-slip faults in the study area (mainly fault F1) are associated with deeper inherited 572 

structures affecting the décollement (Tsuji et al., 2013). Most of the left-lateral NNW- to N-trending strike- 573 

slip faults are confined within the thrust anticlines and can be associated with a flat-and-ramp setting, where 574 

the lateral component of the oblique displacement of thrusts (flat) is transferred as left-lateral dis- placement 575 

in strike-slip faults (ramp) (Platt et al., 1988; Cunningham, 2005). 576 

The presence of negative flower structures, when considered together with the branching of faults on seismic 577 

and attribute data (Fig. 4B and 8), suggests the occurrence of a transtensional regime (Sanderson and 578 

Marchini, 1984). As faults are very localized, and no major normal faults are observed in the study area, we 579 

interpret transtension as a consequence of the accommodation and partitioning of all transpressional 580 

deformation in the outer wedge of the NAP. The fact that there are no major normal faults within the outer 581 

wedge of the NAP, and that strike-slip is more common, indicates that strike-slip faulting is still 582 

accommodating the shortening of the outer wedge of the NAP, and that the maximum horizontal stress is, in 583 

fact, the direction of maximum compression (σ1) for the study area (Fig. 9A). 584 

 585 

6. CONCLUSIONS 586 
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This work shows that the outer wedge of the NAP is a compressional region broadly affected by folding-and-587 

thrusting and a secondary, but still important, strike-slip faulting regime. In particular, the study area is 588 

affected by three major types of structures: (1) a regional fold-and- thrust setting of synthetic thrusts, 589 

antithetic thrusts and corresponding anticlines; (2) localized conjugate families of strike-slip faults 590 

comprising left-lateral NNW- to N-trending faults and right-lateral WNW- to E-W trending faults. Within 591 

this latter family there is a major regional right-lateral strike-slip fault (F1) that separates two different 592 

structural domains. This strike-slip fault is associated with pre-existing structures affecting the décollement 593 

and the upper part of the outer wedge. 594 

Maximum horizontal stress inferred from structures interpreted on seismic data is geometrically close to the 595 

convergence vector between the Eurasian and Philippine Sea Plates. Despite being clearly associated with 596 

past average stresses, maximum horizontal stress in the outer wedge may still represent the main direction of 597 

shortening in the NAP which is, at present, accommodated by strike-slip faults. In this rapidly evolving 598 

accretionary system, convergence was initially responsible for widespread compression in the NAP and 599 

formation of a fold-and-thrust setting, which progressed into a transpressional regime with thrust and strike-600 

slip faulting occurring simultaneously, or in alternation. There is no evidence for a dominant extensional 601 

regime, or a transition from a shallow extensional regime to a deeper compressional or strike-slip regime. 602 

Extensional structures and stress decoupling are only visible in regions with significant sediment cover, thus 603 

comprising the superficial expression of deeper transpressional tectonics or localized areas of larger 604 

structural complexity. The recognition of a transpressional regime operating in the outer wedge of the NAP at 605 

present has a significant impact in the stress distribution and consequent accommodation of strain offshore 606 

Nankai. 607 
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FIGURES 



 

Fig. 1. A) Relief map of the Kumano Basin region of the Nankai Trough as modified from Moore et al. 

(2013). The figure shows the location of the 3D seismic volume (white dashed box), maximum horizontal 

stress directions (red lines and blue line), the location of JAMSTEC 2-D seismic lines (white lines) and 

convergence vectors between the Philippine Sea Plate and Japan (yellow arrows). Also highlighted in the 

figure are the study area (yellow lines) and distinct tectonic regions in the NAP as shown in Kimura et al. 

(2011). The inset shows a regional tectonic map with the present day configuration of the Nankai Trough. 

MSF - Megasplay Fault; ITZ - Imbricate Thrust Zone; FTZ - Frontal Thrust Zone; KPR- Kyushu-Palau 

Ridge; FSC - fossil spreading center; PSP - Philippine Sea Plate; IBT - Izu-Bonin Trench. Red box shows 

the location of the study area in SE Japan. B) Tectonic interpretation from Moore et al. (2013) showing 

the area interpreted in Fig. 1C. KBEFZ = Kumano Basin Edge Fault Zone; SWU = southwestern uplift. 

C) Bathymetric map derived from the Kumano 3D seismic volume showing the direction of seismic 

profiles in this paper and IODP Sites C0001, C0004, C0008C, C0010 and C0018A. The study area 

comprises the southern limit of the Kumano Transect, up to the MSFZ.  



 



 

Fig. 2. A & B) Depth-migrated seismic profile (Inline 2315) across thrust-and-fold structures in the NAP. 

The figures also show interpreted (colored and shaded) tectono-stratigraphic units and the location of 

IODP Site C0018A. Unit I (yellow) represents relatively undeformed slope sediment (Expedition 315 

Scientists, 2009; Kimura et al., 2011; Alves et al., 2013; Strasser et al., 2014), whereas Units A (green), B 

(blue), C (purple) and oceanic crust (colorless) are interpreted based on Park et al. (2010). IODP Site 

C0006 is 3–4 km distant from the SE end of the seismic profile, meaning that the interpreted seismic units 

show lateral continuity with the tectono-stratigraphic units shown in Fig. 2D for IODP Site C0006, 

further southeast. The area labeled as seismic units B/C is open to interpretation as the seismic resolution 

significantly decreases further SE. (black lines – major thrust and back-thrust faults; arrows – vergence of 

anticlines and thrusts; white line – décollement fault; dashed white lines – possible décollement paths; 

dashed red lines – possible faults within the subducted oceanic crust; yellow lines – splays of the MSFZ; 

MSFZ – Megasplay Fault Zone; ITZ – Imbricate Thrust Zone; FTZ – Frontal Thrust Zone). C) Close-up 

of IODP well C0018A highlighting the subdivision of Unit I in Units Ia, Ib and Ic based on Strasser et al. 

(2014). D) Well log from IODP Site C0006 (Expedition 316 Scientists, 2009) tied to the seismic units 

interpreted in this work. According to Expedition 316 Scientists (2009), Unit III is consistent with 

deposition in the Shikoku Basin.  



 

 

Fig. 3. A & B) Coherence and maximum curvature maps (at a depth of 3840 m) with corresponding 

zoomed insets showing main structural lineaments and interpreted faults. Red half-arrows – relative right-

lateral movement; yellow half-arrows – relative left-lateral movement C) Schematic interpretation of the 

geometry and kinematics of main faults based on coherence maps, volumetric curvature maps and seismic 

data. Lower right-hand corner: table showing the maximum horizontal displacement (max. HD) and the 

type of horizontal displacement in faults F1 to F6. Three families of faults were identified: NE-trending 

thrusts (yellow), NNW- to N-trending left-lateral strike-slip faults (blue) and WNW- to E-W right- lateral 

strike-slip faults (green). D) Graph showing the amount and nature of throw (or vertical separation) in 

three NNW- to N-trending faults (F2 to F4). Throws of faults F2, F3 and F4 were measured every 50 m in 

their middle part and along their full height. The graph shows a sharp variation in the throw of the faults, 

and type of vertical offset, providing evidence for horizontal motion. Furthermore, in most faults lateral 

slip is much larger than vertical (dip) slip. 

 



 

 

Fig. 4. In this figure, the maps on top show detailed seismic horizons that follow the main thrust 

anticlines identified in Fig. 3. The seismic profiles below intersect the main thrust anticlines and highlight 

the geometry of interpreted faults and their kinematics within Unit A. Yellow line - location of the 

seismic profile below; Green line – seismic horizon of map view above; Blue – strike-slip fault; Black – 

thrust fault; Grey – antithetic thrust fault. Dashed line – probable fault. A) Seismic crossline 1671. Strike-

slip faults intersect and displace primary thrust faults in this profile, whereas larger scale thrusts do not 



 

seem to be affected. B) Seismic crossline 1571. Negative flower structure likely associated with local 

transtension. C) Seismic crossline 1251. Right-lateral and left-lateral strike-slip faults with variable 

throws. Some faults are observed on both the hanging-wall and footwall of the thrust anticlines.  

 

Fig. 5. Depth-migrated seismic profile (crossline 1920) across the landward section of the outer wedge of 

the NAP showing the tectono-stratigraphic units described in Fig. 2. The inset above shows thrust faults 

(black lines) within Unit A, where some reach the contact between Units I and A. A few normal faults 



 

(blue lines) within Unit I are associated with the gravitational collapse/stress readjustment that results 

from local tectonic uplift caused by the deeper thrusts.  

 

Fig. 6. Depth-migrated seismic profile (crossline 1320; with original profile on the left and interpreted 

section on the right) showing irregular relative displacements between blocks that are horizontally and 

vertically adjacent. This disagreement among fault displacements cannot be explained by pure extensional 

or compressional regimes. Black arrows show the relative displacement between adjacent blocks of 

strike-slip faults (black lines). Dashed red ellipse highlights a shallower zone of random fractures with 

minor displacement(s), probably branching from major faults. Some of these minor branches reach the 

sea floor, affecting the local bathymetry. Green horizon – a seismic horizon of Unit A; Purple horizon – 

Unit C; IL - Inline  



 

 

Fig. 7. Depth-migrated crossline 1571 (A) and 1139 (B) showing main tectono-stratigraphic units as 

described in Fig. 2 and the base of the subduction channel zone (SCZ). A) Unit C and underlying 

décollement present laterally continuous smooth bases, whereas the overlying Unit A deformed 

accordingly to the structure described in Fig. 4B. B) Here, both Unit B and the décollement below are 

folded and displaced by faults that follow the same trend as fault F1. Note the larger structural complexity 

in Unit A that results from the faults shown in B).  

 



 

Fig. 8. Schematic block diagram summarising the structural framework of the outer wedge of the NAP 

(SE of the MSFZ and NW of the FTZ). The figure highlights the observed branching of fault F1 as 

reflecting a ‘flower structure’ separating two different structural domains. The NE domain is mainly 

characterized by well-developed thrust-and-fold structures with left- lateral strike-slip faulting occurring 

within the major anticlines. The SW domain is characterized by right-lateral strike-slip faults. The relative 

vertical displacement is not constant in the strike-slip faults within the NAP, meaning these latter are 

associated with important lateral motion. Red lines – axial planes of thrust anticlines; black lines – 

synthetic and antithetic thrust faults and corresponding anticlines; pink lines – WNW-trending right-

lateral strike-slip faults; orange lines – E-W trending right-lateral faults; blue lines – NNW- to N-trending 

left-lateral strike-slip faults; grey lines – normal faults in Unit I; white line – décollement fault; half-

arrows – relative movement of faults identified on seismic data; pair of circles - relative movement of 

faults identified on seismic data, where the circle with a dot indicates movement of block toward the 

reader, and the circle with the cross indicates movement away from the reader. 

 

Fig. 9. A) Rose diagram highlighting the range in trends for fault families in the NAP. B) Rose diagram 

with the trends of each family of normal faults, and their chronological order, according to Moore et al. 

(2013). C) Lower-hemisphere Schmidt Stereonet with structural data from IODP Site C0002P as analysed 

in Boston et al. (2016) (note: trends in rose diagrams are rotated 90o from those shown in the stereonets). 
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left-lateral strike-slip faults. Orange – range of strikes of WNW- to E-W trending right-lateral strike-slip 

faults. 


