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S U M M A R Y  
We applied the stochastic method of Gudmundsson, Davies & Clayton (1990) 
(which was applied to ISC P-wave data) to teleseismic ISC S-wave data to obtain an 
independent estimate of mantle structure. We inverted the variance of S-wave 
traveltime residuals of bundles of rays to obtain a description of the spectrum of 
lateral heterogeneity as a function of depth through the mantle. The technique 
yields robust estimates of the traveltime scattering power (the product of a 
characteristic scalelength of heterogeneity and the mean square of slowness 
perturbations). We can estimate the characteristic scalelength (half-width), from the 
autocovariance; which can be reconstructed from the spectra. Hence by division, we 
can estimate the root mean square slowness. By extrapolating the variance of 
bundles of rays to bundles of zero cross-sectional area we can also estimate the 
scale-incoherent signal (which is a plausible estimate of the noise in the data), which 
is removed from the data. 

We find that most of the structure generating shear wave traveltime residuals is 
located in the uppermost mantle. About half of the structure is short scale 
(harmonic degree 1 > 50). The large-scale structure (1 < 50) has a half-width of about 
500 km in the upper half of the mantle. This S-wave half-width is consistent with the 
P-wave half-widths determined by Gudmundsson et al. (1990). The S-wave 
half-width in the lower half of the mantle is poorly constrained. It varies from 500 to 
3000km, which spans the better constrained value of 1200 km found by Gud- 
mundsson et al. (1990) for P-waves. The incoherent scatter suggests that the 
signal-to-noise ratio of the S-wave data set is around 1.5. 

Assuming that the compressional and shear wave velocity variations are corre- 
lated then the signal weighted value of the ratio d In ( y . ) l d  In (y,)  is =2, as also 
found in normal mode studies. This is much larger than the value of ~ 0 . 8 - 1 . 4  
suggested by laboratory experiments undertaken at atmospheric pressure. There is 
no evidence of periodicity in the traveltime autocovariance; this suggests little or no 
periodicity in the underlying convection. The short half-width through most of the 
mantle suggests high Rayleigh number convection, with its attendant small-scale 
structures. The power decreases by an order of magnitude or more in going from the 
upper mantle to the lower mantle, the same as found by Gudmundsson et al. (1990) 
for P-waves. This large difference suggests either a change in convective regime 
and/or a difference in the temperature sensitivity of elastic constants in both layers. 
The increased short-scale structure at the top of the mantle suggests that a large part 
of the seismic signature at this boundary is compositional, since one would expect a 
red spectrum for a thermal boundary layer. The derived spectra between 1 = 10 and 
I = 50 are similar in shape to spectra from the mantle convection simulations of 
Glatzmaier (1988) with a Rayleigh number of 106-107, which would suggest layered 
convection, if the comparison is valid. 
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1 INTRODUCTION 

Since the inception of plate tectonics, we have been unable 
to elucidate the details of how it is powered by mantle 
convection. With the advent of deterministic (tomographic) 
models of lateral seismic variations (Dziewonski 1984; 
Clayton & Comer 1983; Hager & Clayton 1989) we have the 
first chance of imaging directly the driving forces of mantle 
convection and hence constraining mantle convection and 
establishing how plate tectonics is powered. The body wave 
tomography models quoted above have in principle a higher 
spatial resolution than surface wave or free oscillation 
studies because of the shorter wavelengths of body waves. 
However, current lower mantle body wave studies suffer 
from poor variance reduction, and there are many questions 
related to  the reliability of these tomographic models, 
including the following. How much random noise is there in 
the data and how well is it eliminated from the model? How 
much aliasing is there, due to  the finite parametrization 
[Dziewonski (1984), f ~ 6 ;  Clayton & Comer (1983), cell 
size 2250 km, 1 5  36]? How well d o  the station corrections 
account for the crustal and upper mantle structure? How are 
the results affected by the uneven sampling? 

Gudmundsson et af .  (1990), hereafter referred to  as GDC, 
presented a theory to  invert the scatter in the traveltimes of 
seismic waves to  obtain the spectra of lateral seismic velocity 
variations through the mantle. Following Davies, Gud- 
mundsson & Clayton (1988), we also estimate the error in 
the ISC data set. This estimated error is subtracted from the 
data and does not enter the model, while the model 
parametrization is extended to  the smallest scale avoiding 
aliasing. The method models the whole mantle and attempts 
to account for the clustered sampling. Hence the stochastic 
models can be used t o  answer some of the questions 
introduced above regarding the results of deterministic 
inversions. 

Convection models have advanced, but they are still 
generic in that they d o  not claim to know the initial or 
boundary conditions well enough to  be able to simulate the 
behaviour of the actual Earth. Hence deterministic seismic 
models are of limited direct use (with the possible exception 
of planform) to constrain convection simulations, while 
stochastic seismic models provide directly spectral informa- 
tion which can be used as constraints. The ISC data set 
contains very large numbers of data ( P  = 4 million, 
S = 0.5 million) of a very heterogeneous nature (arrivals 
picked by different observers, on different seismometers, at 
unique sites); hence the data are well suited for a statistical 
treatment. Since we are also combining greater numbers of 
data to  evaluate fewer parameters, we should more 
effectively reduce the effect on the model of any random 
error left in the data. All of the body wave lower mantle 
models discussed above have derived the mantle P-wave 
velocity structure. In this paper we use S-waves to  obtain an 
independent estimate of mantle structure; i.e. its shear 
velocity structure. 

Seismic estimates of the ratio d In ( V , ) / d  In (y,)  in the 
literature have been suggested to be about 2 (Dziewonski & 
Woodhouse 1987). This value is much higher than that 
obtained by experiments at room temperature and pressure. 
Anderson (1987) has suggested that such values in the lower 
mantle can be explained as the result of the effect of 

compression on the elastic properties. He has been 
supported by the molecular dynamics calculations of Agnon 
& Bukowinski (1989), but this explanation has been 
questioned by the theoretical calculations of Reynard & 
Price (1990) and from shock-wave experiments (Duffy & 
Ahrens 1990). Previous seismic evaluations have involved 
comparisons of different period data (Dziewonski & 
Woodhouse 1987). or data with an unknown noise level 
(Davies & Clayton 1986). Here we compare P and S data 
sets of the same period range and estimate the noise. 

The heart of this stochastic method is evaluating the 
scatter in traveltime residuals of rays that travel similar 
paths. Consider two earthquakes occurring at the same 
location. They should have the same traveltime to all 
stations. Any difference between the traveltimes to  the same 
station must be a reflection of errors in picking the arrival 
time, errors in locating the source, errors in the clocks at the 
stations etc. Consider now an Earth with laterally uniform 
velocities at all depths except for one layer, where the 
velocity is lower by a constant amount in one region. 
Consider two rays that are sufficiently close together, that 
they both travel equal distances through the anomalous 
region. They will record the same residual. Next let the rays 
be spaced sufficiently far apart, such that only one goes 
through the anomalous region. In this case the two residuals 
will be different. By discovering at what separation the 
difference appears we can estimate the size of the 
anomalous region. From the magnitude of the difference 
between the residuals we can also evaluate the magnitude of 
the regional velocity perturbation, assuming that we know 
the ray length through the region. We can investigate the 
depth variations of velocity variations in the lower mantle by 
comparing the scatter in bundles of rays that travel different 
distances, since rays that travel further penetrate deeper 
into the Earth. Equally bundles with deep source depths 
sample only half the upper mantle compared to bundles with 
shallow source depths, hence this allows us to  investigate the 
depth variations of velocity variations in the upper mantle. 

2 EVALUATION OF TRAVELTIME 
VARIANCE 
As discussed above, the heart of the stochastic method 
involves evaluating the scatter in the traveltime residuals of 
a bundle of rays. We define the bundle of rays, by means of 
an unique source and receiver cell on the surface of the 
Earth. We follow the procedure outlined in GDC, where we 
divided the earth into a grid of equal area cells. Grids were 
generated at scales varying from one box for the whole 
Earth to  boxes which are 2" on a side. Rays are binned 
together if they fall in the same epicentral distance (A) 
range (the distance between source and receiver) and also 
into the same source depth (Z) bin. A summary ray is a 
collection (a bundle) of rays that share the same epicentral 
distance and source depth bins, and also the same receiver 
and source grid cells. The bins are 4" wide in epicentral 
distance, extending from 31" to  75". The bins in source 
depth are 0-32, 34-60, 60-100, 100-200, 200-400 and 
400-700 km. The scale of a grid is defined as the angular 
radius of a circle on the Earth's surface, which has the same 
surface area as the average cell in the grid. This measure is 
denoted by 0 and reported in degrees. We use data 
collected by the ISC from 1964 to  1986. We select S-wave 
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Figure 2. Variance of a selection of reference rays plotted versus 
grid size. Note the logarithmic scale for the grid size axis. The 
variance decreases regularly as scale of grid decreases, and the data 
from the deepest depth bins (open symbols) are lower than the 
shallower data; e.g. the filled squares, circles and triangles. 

behaviour and are reasonably coherent from curve t o  curve. 
This gives us hope that the data can be reasonably modelled 
in terms of Earth structure. 

We estimate the intercept by extrapolating all the data for 
a given depth bin of a scale smaller than 5", assuming that 
the decay is linear and that the slope is fixed as 
b = B/cos(i), where i is the angle of incidence at the 
receiver. The linear decay is supported by the fact that the 
data at the smallest scales are well described by a straight 
line, as seen in Fig. 3. Assuming that most of the small-scale 
signal is located at shallow depths close to the receiver, we 
weight the slope by l/cos(i), which is proportional to the 
path length near the surface. The different source depth bins 
require different intercept estimates. This suggests that the 
incoherent signal is not solely due to different estimates of 
the smallest scale signal for different depth bins, but reflects 
a real decrease in noise with increasing source depth. 
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Figure 3. Variance of a selection of data plotted versus the scale of 
grid size, for small grid sizes. Note scale axis is linear. 

In Fig. 4 we illustrate the intercept estimates for all the 
reference rays. We find that the estimates decrease with 
source depth and are relatively constant as a function of 
epicentral distance. The average variance for the intercepts 
for sources shallower than 100 km is =8 s2 as compared to a 
maximum total signal at the largest scales of =18s2. The 
uncertainty in estimating the intercept is high. Hence, the 
residual data arising from subtracting the intercepts from the 
original data have a proportionately higher uncertainty. The 
extrapolation of the intercept could be done logarithmically 
rather than linearly. The straight line that the data describe 
at larger scales in Fig. 2 supports this choice. The 
logarithmic intercepts are shown in Fig. 4(b). We have used 
both sets of intercepts estimates in our inversion of the 
residual variance for the statistics of Earth structure. We 
observed that the differences in the results are restricted to 
small-scale structure. The residual variance data that result 
from the subtraction of linear intercept estimates (Fig. 4a) 
are shown in Fig. 5. It is the residual variance data, 
following the subtraction of linear intercept estimates, that 
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are used to constrain the spectrum of mantle heterogeneity 
via a linearized inversion procedure. Note that the intercept 
estimates include errors arising from incorrect hypocentral 
parameters, hence their contamination of estimates of 
structure is limited. Before developing the inversion 
procedure though we must derive a forward model to relate 
the variance to the lateral variations of velocity structure; 
this is outlined next. 

3 LINEAR MODEL RELATING 
TRAVELTIME V A R I A N C E  T O  SPECTRA 
OF MANTLE STRUCTURE 

Using ray theory we develop a linear theory to relate the 
variance of the traveltime residuals of the different bins of 
rays at different grid sizes to the spectra of the seismic 
heterogeneity as a function of depth through the mantle. We 
do this in two stages; first we relate the variance of the 
summary rays to the autocovariance of traveltime residuals, 
and second we relate the autocovariance of the traveltime 
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Figure 5. Data after removal of the linearly extrapolated intercepts 
of Fig. 4(a). 

residuals to the autocovariance of the slowness perturba- 
tions in the medium. Since the details of the derivation of 
the forward model have been given previously in GDC, we 
shall only outline the derivation. 

The relationship between the variance of the summary 
rays a*(@, I ,  Z) and the autocovariance of the traveltime 
residuals [ T ( p ) ,  where p is the separation of the endpoints] 
is geometrical, and is represented by a weighting function 
[w(@, A)]. To account for non-uniform sampling we also 
introduce the autocovariance of the sampling function 
[B(O, I)]. By assuming that the sampling is independent of 
the structure, we can separate w and B ,  and hence we get 

0%) = p w(a,  P ) [ T ( O )  - T(p)lB(a, P )  dp. (3) 

By using ray theory, and assuming that our reference 
model is linearly close to the real Earth, we can apply 
Fermat's principle and linearly relate the traveltime residual 
linearly to the slowness perturbations along the ray path 

6 t (q )  = 1 6U(X) dS 
ray path 

(4) 
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where 61 is the traveltime residual, U is the slowness 
(l/velocity) and S is the path length. Hence the 
autocovariance of the traveltime residuals, T ( p ) ,  can be 
related to the autocovariance of the medium, R ( x )  (which is 
assumed to be a function of separation only and not of 
direction, i.e. we assume isotropy) as follows: 

J .  H .  Davies, 0. Gudmundsson and R .  W .  Clayton 

T ( P )  = E[6t(Vl)6t(VZ)l (5) 

where p = )ql - q2) is the separation of the endpoints, and 
E is the expectation operator. By substitution of Fermat’s 
equation we get 

(6) 

(7) 

To evaluate one of the integrals we approximate the ray 
geometry by two parallel rays and assume that the radius of 
curvature of the rays is greater than the scalelength of the 
anomalies; then it can be shown that 

where C is a constant of order 2; its exact value depends 
upon the medium autocorrelation function but is exactly 
(x/ln2)”’ if it is Gaussian, while x , , ~  is the half-width of 
R ( p ) ,  i.e. R ( x l I 2 )  = 0.5R(O). 

For the spherical Earth we have parametrized the 
slowness perturbations as follows: 

- 1  

W r ,  8, +) = C C A t m ( r ) K m ( o r  +), (9) 
I=Q m =  -1  

where &,,,(8, +) are the fully normalized spherical 
harmonics, 8 is the colatitude and + is the longitude. At, 
are the coefficients of the appropriate spherical harmonic, I 
is harmonic degree and m is harmonic order. Hence the 
medium autocorrelation function can be written as 

. u  

R(A, r )  =L (21 + l)Ql(r)Pl(cos A) 4n I =O 

where 

where * denotes complex conjugate, A is the angular 
separation of the two points and P, is the Legendre function 
of degree 1. 

Hence by combining the equations above we find the 
equation relating residual summary ray variance, u2, (with 
the estimated intercepts removed) at scale 0, to  the power 
spectrum, Q l ,  of the structure: 

X [ l  - PI(cos A)] dS dA. ( 1 1 )  

D = GXFT (12) 

The above equation can be cast in matrix form as 

where 

c 2 e l  el =G ~(0,) A)B(Q,, - Pl(cos A)] dA, 

x k i  = (21 -k 1)Xi/z(rk)Qi(rk)g 

which states that the data, D, can be related to  the model, 
X, by two kernel matrices. One  is G,k, which relates the 
variance of the ith reference ray to the value of the model at 
the kth depth. The second if el, which relates the variance 
at scale 0, to the model’s Ith harmonic degree. 

An intuitive explanation for why the variance of 
traveltimes is proportional to  the product of the variance of 
slowness variations and a scalelength of the variations 
integrated along the ray length can be developed by analogy 
to  the random walk of a drunkard. Consider a 1-D medium 
consisting of equal length segments in which the slowness 
perturbations are of constant magnitude, but random in 
sign. A ray path through such a medium can be thought of 
as a random walk. We can think of a ray as stepping from 
one anomaly to  the next with the cumulative traveltime 
residual increasing or decreasing by a fixed amount. This is 
equivalent to  the 1-D random walk, where the drunk can go 
to the right (positive residual) or to the left (negative 
residual). The most probable result is a zero residual (no 
digression), but the variance of the residuals is proportional 
to the number of steps times the square of the residual of a 
single step, as in a random walk. The residual of a single 
step is proportional to  the product of the slowness 
perturbation and its width (scalelength). The number of 
steps is proportional to  the ray length divided by the 
perturbation width. Hence, the expected traveltime variance 
is proportional to the ray length, the scalelength and the 
square of the slowness perturbation. 

4 INVERSION 

In the previous section we have developed a linear 
formulation for the forward problem describing the effect of 
lateral heterogeneity, x k l  (the product of the half-width of 
the correlation function of slowness variations and the mean 
of the square of the slowness perturbations, hereafter 
referred to as the scattering power) on the variance of 
summary rays, Dij. Hence we can invert equation (1 1) using 
any one of a number of linear inversion techniques. We 
chose to use a damped least-squares method, which gives 

x = ( G G ~  + ( u 2 ~ ) - L ~ T ~ ~ ( ~ ~ T  + p2i)-’ (13) 

which can also be written as  

X = GT(GGT + a21)-’D(FFT + p21)-’F. (14)  

This is a 2-D inverse problem with two rather than one 
kernel matrix and a model matrix rather than a model 
vector. The damping parameters are (Y and @. 

We singular value decompose the kernel matrices, G and 
F, 

G = UAVT, (15) 
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and 

F = RRSr, (16) 

where U,V,R,S are the matrices of the left and right 
eigenvectors corresponding to  non-zero singular values and 
A, R are the diagonal matrices of the singular values. Using 
equations (15) and (16), (14) can be rewritten as 

x = VA(A' + W ~ I ) - ' U ~ D R ( ~ ~  + p2i)-'nsT (17) 

where we have used that RTR = UTU = VTV = STS = I, and 
a similar transformation to  the one that is used to  relate 
equation (13) to  equation (14). Notice that the only matrices 
which need to  be inverted are diagonal. and hence, can be 
inverted trivially. This reduces the cost of computations that 
require repeated inversion, such as a search for suitable 
damping parameters. 

Least-squares inversion minimizes the prediction error, 
i.e., the sum of the squares of the differences between the 
data and the data as predicted by the model. Damped 
least-squares inversion minimizes a linear sum of the 
prediction error and the L2 norm of the model (in this case 
we can think of our model matrix disassembled into a single 
long vector, in order to define an L2 norm). The damping 
parameters determine the relative importance of data 
prediction and model minimization. We selected the 
damping parameters such that model error was minimized, 
while depth and spectral resolution were maximized. We 
investigated a number of different linear combinations of the 
above model measures and found that the trade-off surface 
changed little. An example of a trade-off surface is shown in 
Fig. 6. Solutions from within its well (defined by the smallest 
contour) were investigated and found to  be largely 
insensitive to the exact choice of damping. The small cross 
with vertical and horizontal bars shows the damping 
parameters chosen for the presented solution. The cross 

3 4 

log alpha 

Figure 6. Trade-off surface for inversion. The contoured surface 
illustrates how a sum of the model error and the resolution lengths 
of both the depth and spectral matrices varies with the depth (alpha 
a) and spectral (beta /3) damping parameters. The cross with the 
horizontal and vertical bars shows the position of the favoured 
solution (Fig. 9) while the diagonal cross shows the damping 
parameters for the alternate solution (Fig. 10); both are obviously 
close to the minima. Since the normalizations and weighting of the 
different components are slightly arbitrary it is obviously 
meaningless to search for an exact minima. Solutions from this 
region of parameter space were similar. An exception is shown in 
Fig. 10. 

with diagonal bars shows the damping parameters used in an 
alternate solution to illustrate which features of the solution 
are robust. This choice of damping effectively limits the 
solution to nine spectral degrees of freedom and 5-6 radial 
degrees of freedom. 

Notice that damped least-squares modelling leads to 
global damping, i.e. the same value of the damping 
parameters is used in deriving the whole model. We have 
poor depth resolution in the upper mantle (since no rays 
bottom there), while we have relatively large error variance 
in the lower mantle (since the model is small there). Thus, 
we would prefer to tune the trade-off differently in these two 
parts of the model. This problem can be partly alleviated by 
a suitable choice of parametrization. Given the large 
uncertainties in the finely parametrized model STPl  of GDC 
we use a coarse depth parametrization in our model, similar 
to that of model STP2 of GDC. The depth boundaries in the 
model, giving the radial parametrization are a t  0, 61, 300, 
540, 670, 970, 1470 and 2450km depth, i.e. seven depth 
layers. 

The spectral parametrization was chosen to be parabolic, 
i.e., we combine a number of harmonic degrees to  give one 
spectral model parameter, with the number of harmonics 
summed into a single model parameter increasing 
approximately parabolically with the harmonic degree of the 
mid-point. We invert for 50 such parameters, the first 11 
representing single harmonics, with the following para- 
meters representing more than one harmonic degree, with 
the number increasing parabolically until the last parameter 
represents 40 harmonic degrees, from 460 to 500. Notice 
that the smallest grid that we use has a scale of 2". Hence, 
our data d o  not constrain any power present below this 
scale. 

We define a simple measure of resolution length in both 
depth and spectra for display purposes as follows: 

1 

l - [ ( l -Res,) '+  I =Oandr#I Resf 

where L, is the simple measure of the resolution length of 
the j th  element, AMJ is the size of the element, i.e. when 
considering spatial resolution this is the thickness of the 
corresponding layer in km, while when considering spectral 
resolution it is the number of harmonic degrees combined in 
the spectral parameter, and finally Resi is the sum of all the 
elements of the ith column of the appropriate resolution 
matrix as defined below. 

The spectral and spatial (radial) resolution matrices are 

Spectral resolution = SR2(n2 + P2I)-'ST 

Radial resolution = UR2(R2 + cr21)-'UT. 

(19) 

and 

(20) 

The spectral resolution (see Fig. 7a) behaves nearly 
linearly with harmonic degree. This is due to  the uneven 
sampling of the scale axis. The depth resolution (see Fig. 
7b) is nearly identical to  the radial parametrization in the 
lower mantle. The poorest resolution occurs just above the 
670 km discontinuity and in the shallowest layer. The 
resolution is relatively poor in the upper mantle, but 

 at A
cquisitions on February 19, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/
http://gji.oxfordjournals.org/


872 J .  H .  Davies, 0. Gudmundsson and R .  W .  Clayton 

3000 

2000 

3 
5 c n 

1000 

0 
0 

Y 

M 
e 
d 

I 

a 

- -'<-I 
JJ 

1000 2000 3000 

500 

400 

300 

200 

100 

0 
0 100 200 300 400 500 

Dcgce 

0 

a /  
1 I 

1 I 

350 700 1050 1400 

Resolution (km) 

Figure 7. Radial (a) and spectral (b) resolution matrices, on the left, with the simpler measure of resolutions as given by equations (19) and 
(20) on the right. Note both radial figures (a) have the same vertical depth axis, while both of the spectral (b) figures have the same vertical 
harmonic degree axis. 

because of the coarse parametrization of the lower mantle, 
each model parameter is nearly perfectly resolved. 

In evaluating the F matrix, the clustering of stations and 
events was taken into account, i.e. B(O, A) was evaluated. 
This was done by evaluating the frequency of event pairs 
and station pairs of a given separation, which is proportional 
to B(O, A)w(O, A). Hence, we can derive B by dividing the 
histograms by the known kernel functions, w(O, A). This 
was repeated over different scales. Much like GDC we 
found that the functions, B, are reasonably described by 
power laws of separation (see Fig. 8) with the exponent 
decreasing as scale increases (at vanishing scales the 
exponent must be infinite). The variation in the exponent 
with scale was found to  be well fit by a linear relation. Since 
this is computationally very expensive the distribution was 
evaluated for the data of a single reference ray (51"-55" and 
1-32 km), and was assumed to hold for all other reference 
rays. The distribution for the S-waves was found t o  be a 
weaker function of scale than for the P-waves (GDC). This 
is not unexpected since the P-wave data set is approximately 
5 to 6 times larger, while the pattern of seismicity and 
station distribution is little changed between the two data 
sets. 

Using kernels based upon a uniform sampling distribution 
would lead to overestimates of correlation length, and 

log scale 

Figure 8. Plot of the normalized log pair frequency as a function of 
separation of the stations and events for different scales. This is 
evaluated for the data in the epicentral distance bin from 51" to 55", 
and the shallowest epicentral depth bin. The scales are labelled in 
degrees above the curves while the negative numbers below 
represent the least-squares estimates of the linear gradients of the 
curves. 
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Mantle shear wave velocity structure 873 

hence, underestimates of slowness perturbations. The 
S-waves show a marked deviation from a power-law relation 
at the largest scales, see the curve for scale 90" in Fig. 8. The 
curve shows a large deficiency of pairs at large separations. 
Therefore, we have few data at large scale, which are 
related to large separations. Hence, sensitivity to the largest 
scale heterogeneities is limited. This follows from the fact 
that no major zones of seismicity are antipodal; equally 
there are no antipodal continents. 
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5 RESULTS 

The results of our  inversion of residual variance for the 
statistics of Earth structure are presented in Figs 
9(a), (b), (c), (d), (e) and (f). In  Fig. 9(a) we present the 
total scattering power (the product of half-width and the 
slowness variance). It is highest in the upper mantle and 
decreases with increasing depth. There are two exceptions 
to this behaviour. The surface value is low. and there is an 

6540 

fil90 

5950 

5765 

/ 
5150 

4410 

.~ - _  - _ _  _ _  _ _  
0 5 10 15 20 25 

Harmonic Degree 

d o  a . 

- lo00 
E 
Y 
5 a 
O 2 o O o .  

3ooo 
0 4 8 12 16 20 

Long wavelength Power (O.Ool)(s*s/krn) 

f 
0 

loo0 
E -z 
5 n 

2000 

3000 I 
2Mx) 4000 6000 
Half-width (km) 

Figure 9. Results. (a) Total scattering power (the product of half-width and the square of the mean slowness); the width of the box represents 
one standard deviation error. (b) Normalized spectra; the dashed line represents negative power and the number in each box represents the 
mean radius of that model bin. (c) Short-scale scattering power (I > S O ) ;  notice power concentrated in uppermost mantle. (d) Large-scale 
scattering power (I < 50). Power is concentrated in the upper mantle and decays with depth in the lower mantle. Notice more power below 
than above 670 km discontinuity. (e) Slowness perturbations away from reference model. Notice pattern similar to large-scale power. (f) 
Half-width estimates of large-scale correlation function, around 300-600 km for uppermost mantle. Poorly constrained in lower mantle. 
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increase in power across the 670km discontinuity. Both 
exceptions occur in regions of poor depth resolution. 

In Fig. 9(b) we present the lowest 25 harmonic degrees of 
the spectra for all seven depth bins. They are normalized to  
unit height. Dashed curves signify negative power, an 
unphysical result. The negative values are small. Their 
magnitude is probably a fair indication of the real 
uncertainty in our solution (including random and 
systematic data errors and forward modelling errors). 

Since the spectral resolution deteriorates with increasing 
harmonic degree, we decided to  split the spectrum into two 
parts; a long-wavelength part and a short-wavelength part. 
We believe that we can make a reasonable estimate of the 
half-width of the long-wavelength part, whereas the estimate 
derived from the whole spectrum would probably not be as 
meaningful. The cut-off between the two parts was 
arbitrarily chosen at harmonic degree 50. 

In Fig. 9(c) we present the short-scale power, the part of 
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Figure 10. (a) Half-width of model resulting from the inversion of 
data with different damping parameters (the diagonal cross of 
trade-off surface in Fig. 5). (b) Half-width of original results. Notice 
that the value obtained for the half-width of the lowermost mantle 
is not robust. 

the total power that is due t o  structure of harmonic degree 
>50. Nearly all this power is concentrated in the second 
depth bin (60-300 km depth). There is very little small-scale 
power in the lower mantle. Some of the values (i.e., the 
third depth bin) are negative. In Fig. 9(d) we present the 
integral long-scale power, due to  structure of harmonic 
degree 4 0 .  It is largest in the third layer (i.e., from a depth 
of 300-540 km), and decays through the lower mantle. The 
layer just below the 670 km discontinuity has more power 
than the layer above. The negative small-scale power and 
the huge large-scale power in the third layer suggests that 
the spectrum for this layer is extremely focused in the low 
harmonic degrees. A comparison with the other layers of 
both the P-wave study (GDC) and the present S-wave study 
suggests that this is aberrant. 

In Fig. 9(f) we present the half-width, which is estimated 
by evaluating the scale a t  which the large-scale correlation 
function has fallen to  half its peak value. By ‘large-scale 
correlation function’, we mean a correlation function that is 
constructed from only the large-scale portion of the power 
spectrum. By dividing this estimate of the half-width into 
the large-scale power (Fig. 9d) we obtain the estimates of 
root mean square RMS slowness, shown in Fig. 9(e). 

The main difference between solutions with alternate 
values of the damping parameter is that the long-wavelength 
half-width in the lowermost mantle is now 400km as 
opposed to  3000 km; otherwise the results are very similar. 
Hence, the large half-width in the lower mantle in Fig. 10 is 
not a robust feature. It is probable that the long-wavelength 
half-width in the lowermost mantle is close to the better 
constrained estimate of 1200km obtained by G D C  from 
P-wave data. 

In Fig. 11 we compare the data predictions of the model 
and the original residual variance data. The predicted data 
lie within the error bars of the data, but in Fig. l l ( b )  they 
appear to be offset by a constant, i.e., a different intercept 
estimate could lead t o  a better data fit. 

The variance reduction by the model in Fig. 9 is 94 per 
cent. The chi squared value (x ’ )  is approximately equal to 
the number of degrees of freedom (945) [number of data 
(66 x 15 = 990), effective number of model parameters 45 
(five degrees of freedom in depth and nine spectral degrees 
of freedom)]. Hence, the model fit is significant and highly 
unlikely to  be the result of a random distribution of data. 
Note that there is a potential confusion in comparing the 
variance reduction of this model with that of deterministic 
models since our initial data are already variances of 
traveltimes. 

A significant part of the original signal is taken up in the 
intercept estimates and does not enter into the structural 
model. The intercepts and model are not evaluated 
simultaneously but sequentially. This leads t o  a simpler and 
more stable inversion scheme. Different schemes of 
estimating the intercepts can lead to  large differences in the 
estimates. To see how these differences affect the structural 
model, we inverted a data set where the intercepts were 
evaluated using logarithmic rather than linear extrapolation. 
These intercept estimates are lower and the variance left to 
be inverted is higher (average variance is 6 . 5 ~ ~  as against 
4 . 4 ~ ~ ) .  The variance reduction (95 per cent) and x z  value 
are similar to  the model derived from data using linear 
intercept estimates. The primary effect on the model is an 

 at A
cquisitions on February 19, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/
http://gji.oxfordjournals.org/


Mantle shear wave velocity structure 815 

10.0 
a I 

5 
P 

d 
Scnle (degrees) 

7.5 - . - - 
g 5.0 

2.5 
; 

0.0 

I '  
'Scale (degrees) 

10.0 

7.5 - . 
d 
g 5.0 
m 

2.5 

0.0 

0 

1000 

2000 

1 

.... . . . . . . . . . . 

a 
3000 I I I , 

0 6 12 18 24 30 

Small Scale Power (0.001) (s*s/km) 

b 
I I I I 

0 3 6 9 12 15 

Scnle (degrees) 

Figure 11. Comparison of data predicted by model to actual data. 
All with intercepts removed. They are epicentral distance bin 
51"-55"; (a) epicentral depth bin 0-32 km, (b) epicentral depth bin 
60-100 km and (c) epicentral depth bin 200-400 km. 

increase in short-scale power in the depth range from 50 to 
300km (see Fig. 12). The short-scale power in the lower 
mantle is also slightly increased. The large-scale power is 
virtually unchanged (see Fig. 13), except for the half-width 
in the poorly resolved shallowest depth bin. These 
differences demonstrate the trade-off between intercept 
estimates and small-scale power due to the lack of data at 
small scales. 

The model error variance is low throughout the model. 
We note, however, that it is possible that the data contain 
errors which are spatially coherent, and thus depend on 
scalelength. These errors would not contribute to the 
intercept estimates, which are measures of the incoherent 
noise, and are indistinguishable from the residual variance, 
which we interpret as structural. The only way to confirm 
the absence of appreciable coherent noise (systematic error) 
is to obtain an equivalent model using an independent data 
set. Our results will be shown to be consistent with previous 
work, suggesting that systematic errors are not a severe 
problem; this is reinforced by the limited amount of 

Small Scale Power (0.001) (s*s/km) 

Figure U. (a) Small-scale scattering power of data with 
logarithmically extrapolated intercepts removed. (b) Small-scale 
power of original results, which have linearly extrapolated estimates 
of intercepts removed from data. Notice that there is more 
small-scale power when the logarithmically extrapolated intercepts 
are used; notice the different scale! Given that one can make 
reasonable arguments for both extrapolations, the difference 
between the two is a measure of the impact of the uncertainty. 

unphysical negative power (Fig. 9b). Negative power arises 
from trying to fit data where the variance decreases as scale- 
or path length increases. 

Because of the large damping in the upper mantle due to 
the poor resolution we attempted to model the data using 
only shallow structure, to see whether we were under- 
estimating upper mantle structure and whether the data 
required structure in the lower mantle. Good data fits were 
obtained provided that at least two layers were included (91 
per cent variance reduction, chi squared slightly greater than 
the number of degrees of freedom). The small-scale 
structure was unchanged, while the large-scale structure 
increased by up to 50 per cent and RMS slowness by up to 
20 per cent. Thus, little is sacrificed in data fit as we simplify 
the model greatly and restrict it to the upper mantle. This 
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Figure 13. (a) Large-scale scattering power for model resulting 
from inversion of data with the dip at large grid scales removed by 
lifting the data curves at the largest scales such that they are flat. (b) 
Large-scale power from original data. The difference is probably an 
indication of the uncertainty arising from the imperfect assumption 
of parallel rays at the largest scales. 

suggests the possibility of overestimating the degree of 
heterogeneity in the lower mantle by power leakage as a 
result of poor vertical resolution in the upper mantle. Note 
though that the RMS slowness in the lower mantle is already 
low, within two standard deviations of zero, and that this 
test did favour, if only slightly structure in the lower mantle 
from the increased value of x2. This does illustrate the 
difficulties facing traveltime inversions for lateral hetero- 
geneity of the lower mantle, the core-mantle boundary and 
the core. 

Before discussing implications arising from these results, 
we should like to  remind the reader of their limitations. 
First, the theory is based on ray theory which is valid only in 
the high-frequency limit while we use finite-frequency data. 
Hence, we have intrinsic averaging and a minimum 
resolution, which generally deteriorates with depth. We 
would have to  consider diffraction to  obtain the whole 

structure. However, the sparseness of data at the small 
separations is probably a more severe limitation to our 
resolution at  small scales. 

Second, the assumption that rays in a summary ray can be 
modelled as parallel is questionable at large scale. Only an 
expensive synthetic study of a wide range of models using 
the actual ray distribution could verify its validity. If it is a 
problem, it should be restricted to  the lowest harmonics. We 
also have incomplete sampling, which could manifest itself 
in the correlation of structure and sampling. In particular, 
most of the deep seismic sources are in a few subduction 
zones, which are known to have a unique seismic signature, 
i.e. seismically fast. Hence, our results may be biased 
towards these parts of the Earth. 

Caution is also suggested by certain features in the data 
that are unexplainable by the theory of GDC. At  the largest 
scale the variance frequently decreases. To explain this, the 
theory requires unphysical negative model power at large 
scales. We suggest that this may be explained, as mentioned 
above, by deviations in the ray geometry from parallel as 
assumed by the theory, at scales larger than the maximum 
epicentral distance. A second possible explanation is that 
the sampling is biased, e.g., more towards oceanic structure 
as scales increase. A third feasible, but in our opinion 
unlikely explanation, is that the dip at  large scale is a 
reflection of a very large-scale (harmonic degree 2 or 3) 
periodic convection pattern. We studied the effect of this 
feature by artificially increasing the large-scale data, such 
that the variance became flat. The resulting model is very 
similar to the preferred model. There are some differences, 
primarily in the long-wavelength power illustrated in Fig. 
13, especially near the 670 km discontinuity. The increase in 
large-scale power is expected. It gives a quantitative 
indication of the potential effect of biased sampling and 
imperfect ray geometry on our results, i.e., 20 per cent for 
the depths where the resolution is good and the model 
appreciable. 

The low level of power in the shallowest layer in our 
model may be artificial. It may be caused by artificially large 
intercept estimates for the shallowest data depth-bin, which 
results in low residual variance, or it could be due to  biased 
sampling. Shallow earthquakes are distributed globally, 
while deep earthquakes are restricted t o  collision zones. 
Collision zones may be more heterogeneous than other 
provinces of the Earth. 

Rather than giving a pessimistic impression of these 
results, we should like to remind the reader that the simple 
model presented here gives an excellent fit to  the data, as do 
the P-wave results of GDC. Furthermore, the statistical 
models derived from both S and P data are similar in 
pattern. We should also like to  remind the reader that the 
problems of uneven, structure-dependent sampling, poor 
resolution of shallow heterogeneity and limited spectral 
resolution are also (potentially greater) problems in 
deterministic surface and body wave inversions. The 
accuracy of the scattering power results are probably of 
order 20-30 per cent (as estimated from differences due to 
different damping parameters, different intercept estimates, 
negative power etc.); but this is to be contrasted with higher 
precision (from error bars estimated from estimates of e m .  
in data), and an order of magnitude difference in power 
between the upper and lower mantle. 
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All seismic waves are affected by anisotropy. Our 
summary ray formulation is largely oblivious to  azimuthal 
anisotropy, since most component rays of summary rays 
travel the same direction. At the very largest scales though 
we consider many orientation, hence, a part of the scatter at 
these scales could be due to  azimuthal anisotropy. 

6 DISCUSSION 

We have inverted the variance of S-wave traveltime 
residuals of bundles of rays to  obtain a description of the 
spectrum of lateral heterogeneity as a function of depth 
through the mantle. The technique yields robust estimates 
of the traveltime scattering power (the product of a 
characteristic scalelength of heterogeneity and the square of 
the RMS slowness variations). The method also yields 
estimates of the characteristic scalelength from the 
spectrum, although with less confidence, and by division, 
the RMS slowness. By extrapolating the scatter to  zero area, 
we can also estimate the scale-incoherent signal, which is a 
plausible lower bound on noise in the data. 

6.1 Intercepts 

The teleseismic S-wave intercept estimates are relatively 
constant as a function of epicentral distance. Similarly the 
P-wave intercepts of G D C  are constant over teleseismic 
distances, but increase dramatically where complexities 
occur on the traveltime curve of P-waves. 

The data from deeper source depths have lower 
intercepts. We suggest that this is partly due to  a smaller 
degree of small-scale structure at depth. This is evidenced in 
the data as a sharper drop in variance as we approach the 
origin for the curves corresponding to shallower source 
depths. There is some evidence of this in the smallest scale 
data (see Figs 1 and 2). As pointed out by G D C  a more 
subtle effect of small-scale structure arises from the fact that 
the component rays of a summary ray originate at different 
source depths inside a given source depth bin. If there is 
heterogeneity a t  the scalelength of the path difference, then 
this will introduce scale-independent scatter. Also, it is 
reasonable to  expect more scatter from shallow events than 
deep events, since their arrivals are frequently complex and 
emergent, while deep events generally have simpler 
impulsive arrivals. 

If we assume that the depth variation of the intercept is 
primarily due to  small-scale structure and finite depth 
binning, then it is reasonable to  take the deep intercept 
estimates as a measure of the non-structure noise in the 
data. For teleseismic P-waves this is =0.25s2 (GDC) and for 
S-waves it is =4sz. Estimates of the structural variance are 
around ls2 for P-waves (GDC) and 8s2 for S-waves. 
Hence, we estimate the signal-to-noise ratio of teleseismic 
ISC S-wave data as m= 1.4 as opposed to the 
d i 3 j C Z = 2  estimate of (GDC) for P-waves. If we use 
logarithmic intercept estimates (Fig. 4b) the signal-to-noise 
ratio changes to  

6.2 Discussion of seismic velocities 

Two striking features of the shear-wave velocity hetero- 
geneity are its concentration in the upper mantle compared 
to  the lower mantle, and its similarity to  the results of GDC 

= 2.3 for the S-wave data. 

for P-waves. The results suggest that the large-scale 
slowness fluctuations in the mid-upper mantle are more than 
an order of magnitude larger than the large-scale 
fluctuations in the mid-lower mantle. The half-widths of the 
P- and S-wave studies are similar throughout the uppermost 
mantle, and in the lowermost mantle where the S-wave 
half-width is not robust we suggest that the P-wave 
half-width of around 1200km might be a reasonable 
estimate; i.e. about 2-3 times larger than the 400-600 km of 
the upper half of the mantle. 

Tanimoto ( 1990) derived a long-wavelength, whole- 
mantle shear velocity model using surface waves. He finds a 
minimum in power at around a depth of 2000km, with 
variations of the order of 0.7 per cent peak to peak, i.e., 
RMS amplitude variations of 0.2 per cent. In his study, the 
shear velocity is expanded in spherical harmonics to degree 
6 (scalelength of order 5000 km). Our results suggests RMS 
variations of order 0.4 per cent (assuming a half-width of 
1200 km from GDC);  these are larger as expected given that 
our model extends to higher harmonic degree. 

The distribution of seismicity over the Earth prohibits a 
global, upper mantle, shear velocity model based on 
teleseismic first arrival body waves. However, a number of 
regional shear velocity models have been derived using 
high-resolution waveform modelling. For instance, Grand & 
Helmberger (1984) derived a model for the Canadian shield 
(SNA) and another model (TNA) appropriate for younger 
oceanic structures and the more tectonic parts of western 
North America. These differ by 11 per cent at around 
100 km depth, which implies RMS slowness variations of 2.5 
per cent. Grand & Helmberger (1984) similarly derived a 
model for old ocean in the North Atlantic (ATL). This 
differs most from model SNA at depth of =150 km. These 
differences correspond to  RMS slowness variations of 1.5 
per cent. Differences between oceanic, tectonic and shield 
models decrease linearly from 1 per cent at 220 km to zero 
at 400 km. These results were confirmed in cross-sections 
from oceanic and tectonic to  shield regions (Graves & 
Helmberger 1988; Helmberger, Engen & Grand 1985) and 
in a tomographic analysis of the mantle below the North 
American plate (Grand 1988). Our results suggest RMS 
slowness variations of 1.6 per cent, between 70 and 300 km, 
and 2.9 per cent from 300 to  600 km depth. The difference 
between our results and these previous regional studies is 
probably due to  the uneven distribution of power across the 
spectra in these two radial bins which is probably the result 
of imperfect spectral and radial resolution in our study. 
Nearly all the power between 300 and 600 km depth is in the 
low harmonic degrees ( I<50) ,  while most of the power 
between 60 and 300 km depth is in the high harmonic 
degrees (I > 50). 

The above high-resolution shear body wave studies were 
regional. Global comparisons can be made with the global, 
upper mantle, shear velocity models derived from surface 
waves. Our RMS slowness estimates (for f 5 5 0 )  of 
0.006 s km-' correspond to  about 3 per cent. This implies 10 
per cent peak-to-peak variations as opposed to  the 1-3 per 
cent peak-to-peak variations found in surface wave studies 
(Dziewonski & Woodhouse 1987; Nataf, Nakanishi & 
Anderson 1986; Tanimoto 1986, 1987, 1988, 1990; 
Woodhouse & Dziewonski 1984). This is expected, since the 
stochastic models extend t o  higher harmonics. 
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Free oscillations have also been used to estimate 
heterogeneity. The study of spheroidal, fundamental mode, 
and free oscillations by Masters et al. (1982) suggests a large 
quadrupolar pattern in the transition region. Splitting of free 
oscillation multiplets has also been used to invert for 
aspherical structure (e.g., Ritzwoller, Masters & Gilbert 
1986). They found perturbations in density in the lower 
mantle of up to 0.35 per cent. Using their correlation of 
density variations and shear velocity variations they suggest 
variations of up to 0.9 per cent in S-wave velocities. This is 
for the longest wavelengths only, and they have poor depth 
resolution in the lower mantle. They do have the advantage 
of averaging global volumes, and hence, provide a useful 
comparison to higher resolution studies, e.g., body wave 
studies, where potential problems with biased sampling are 
more prominent. Giardini, Li & Woodhouse (1988), 
similarly looked at the splitting of long-period normal 
modes. They show that the splitting functions are consistent 
with a number of models of heterogeneity in the mantle 
(Dziewonski 1984; Woodhouse & Dziewonski 1984) 
provided that d In ( V , ) / d  In (V,) is 2.0-2.5. 

The small-scale power is large in the upper 300 km. If we 
suggest that a reasonable estimate of half-width for these 
heterogeneities is on the order of 10-50 km as suggested by 
array studies (Aki 1973; Capon 1974), then we find that the 
small-scale power is equivalent to velocity heterogeneity of a 
few per cent for S-waves. This compares favourably with the 
heterogeneity found in array studies. 

Both our results from S-waves and the results of GDC 
from P-waves suggest that the level of small-scale structure 
in the lower mantle is nearly indistinguishable from zero. 
This may not be a true reflection of the real Earth, but 
rather of wave propagation, i.e., due to intrinsic averaging 
and wavefront healing because of low-frequency effects. 
Nolet (1987, p. 10) gives the approximation for the 
maximum width of a seismic ray, width = d m ,  where 1 
is the wavelength (-25 km), and L is the ray length 
( ~ 3 7 0 0  km when bottoming at the top of the lower mantle 
and -8000 km when bottoming in the deep mantle). We 
estimate the ray width at the top of the lower mantle to be 
around 110 km (equivalent to harmonic degree 325). The 
estimate for the deep mantle is 160 km (harmonic degree 
155). Note that the period of short-period S-waves (4s) is 
about four times longer than the period of short-period 
P-waves (1 s) (Duda 1971). Hence, from these estimates of 
ray width we suggest that some but not all small-scale 
structure (harmonic degree >50) in the lower mantle could 
be imaged by this technique. Mantle plumes associated with 
hotspots are estimated to be about 150km in diameter 
(Loper & Stacey 1983; White 8i McKenzie 1989) and hence 
are probably too small to substantially affect our data. 

6.3 Comparison with GDC 

A comparison of our S-wave results to the P-wave results of 
GDC is interesting. Most striking is the consistency in the 
pattern of the radial variation of the strength of 
heterogeneity between the two studies. Both show strong 
heterogeneity in the upper 600 km, decreasing as we 
approach the lowermost mantle. Both studies have a 
decrease in the scattering power just above the 670 km 
discontinuity and an increase just below it. The region 

above the 670 km discontinuity is poorly resolved (see Fig. 
7), and hence heavily damped. It is only the consistency of 
this feature in both studies that makes it worthy of mention. 

Because of the difference in resolution (spectral and 
depth) of the P- and S-wave data sets, the inversions are 
damped differently. Thus, a quantitative comparison of the 
local value of the ratio d In (V,)/d In (V,) may be 
inappropriate in some regions of the Earth. In particular, 
the heavy damping of the shallowest layers in the S-wave 
study, where the P-wave study has relatively more scattering 
power, distorts any direct quantitative comparison. Also, 
the S-wave study has a different allocation of power 
between long- and short-wavelength components compared 
to the P-wave study, especially between 60 and 540km 
depth. The raw data, with and without the intercepts 
removed, suggest d In (V,) /d  In (V,) j= 1.8, if P and S are 
correlated. Hence, the global average of this ratio integrated 
along a ray is around 1.8. 

Other studies have also found values of d In V,/d In V, = 
2. These include comparison of lower mantle P and S 
velocity models (Davies & Clayton 1986). comparison of P 
and S station statics (Doyle & Hales 1967; Davies & Clayton 
1986) and the optimal conversion factor to convert a lower 
mantle P-wave model to an S-wave model to give the best 
match for free oscillation splitting functions (Giardini et al. 
1988). Li, Giardini & Woodhouse (1991) constrain 
d In K / d  In V, to be greater than 1.82 from free oscillation 
data at the 95 per cent confidence level. 

The fundamental point is that traveltime residual 
variances of order 10s’ must be modelled for S-waves and 
of order 1s’ for P-waves. Hence, if the shear and 
compressional velocity fields are correlated, this suggests 
that the ratio is of order 2. Dziewonski & Woodhouse 
(1987) claim that the S and P velocities are correlated. We 
cannot prove that the fields are correlated, since we have 
thrown away all positional information. If they are not 
correlated, that would be just as interesting, since it would 
imply the importance of effects other than temperature such 
as mineralogy or composition. The value of 2 is high 
compared to the results of experiments on mantle minerals 
at atmospheric conditions. One explanation proposed for a 
ratio as high as 2 in the upper mantle is that the mantle is 
partially molten. Giardini et al. (1988) obtained a value of 
2.5-3 for this ratio in the lower mantle and mentioned the 
possibility that the high value for the ratio could be the 
result of comparing data at different periods; short-period 
(1 Hz) body waves and long-period free oscillations. We 
compare data of the same period range; and still get a high 
ratio. Hence, we suggest that the ratio is not a strong 
function of period. Anderson (1987) and Agnon & 
Bukowinski (1989), have suggested that such a high value of 
the ratio is the natural consequence of high pressure. 
Reynard & Price (1990) have also addressed the effect of 
high pressure and find no evidence for a high ratio at lower 
mantle pressures. 

Our S-wave half-widths are similar to the P-wave 
half-widths of GDC. They are constant through the upper 
half of the mantle, while they appear to increase in the 
lower half of the mantle. Given the poor resolution the 
exact values are questionable, especially in the lower half of 
the mantle, where the model power (product of half-width 
and mean square of slowness perturbations) is low. Also, 
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remember that the upper mantle contains considerable 
small-scale structure, which is ignored in the half-width 
estimates. We get half-widths of 350-600 km in the upper 
half of the mantle, and poorly constrained values in the 
lower mantle (400-5000 km) that straddle the 1200 km 
half-width estimate of GDC.  The half-widths for P-waves 
(GDC) vary between 450 and 550 km in the upper mantle. 
Hence, the results are consistent with identical scalelengths 
of P and S velocities throughout the mantle. 

6.4 Implications for deterministic seismic inversions 

These stochastic results have implications for deterministic 
inversions. First, for inversions using the ISC P and S-wave 
data sets, the incoherent variance is an estimate of intrinsic 
noise. This statistical technique can also measure the 
structural noise by estimating the variance that is present at 
the scalelength of the inversion. This information can be 
used to decide the degree t o  which to  damp a solution. 
Furthermore, the variance as a function of scale can be 
computed at various stages in a data reduction process and 
the reduction of the variance at different scales observed 
(Zhou 1988). Noise and signal estimates as a function of 
scale can be used to select appropriate grid sizes and to  
estimate the data covariance. 

The results of our inversions give estimates of spectra as 
functions of depth. This provides information with which 
one can design the best model parametrization for the 
objective in mind. One  can then evaluate problems due to  
aliasing that arise from structures smaller than the smallest 
scalelength of an inversion. Also, one can estimate problems 
due to  contamination arising from poor resolution and 
uneven ray coverage. 

Both the P models of G D C  and our S models have much 
more power in the upper mantle than in the lower mantle. 
This suggests that unless the upper mantle structure is well 
resolved, slight leakage into the lower mantle could lead to  
appreciable contamination in the lower mantle. This effect 
has been investigated synthetically by Gudmundsson (1989) 
and Gudmundsson & Clayton (1991). H e  found that lower 
mantle models are severely affected by upper mantle 
structures and that traveltime images of the core-mantle 
boundary are completely obscured. Using 'waves' with large 
wavelengths (e.g. surface waves, and long-period free 
oscillations) can alleviate these problems, since they 
intrinsically average the structure at larger scales. But these 
generally have poor vertical resolution, and hence, can still 
lead to  contamination. Note that surface-wave modelling 
requires a crustal correction (Woodhouse & Dziewonski 
1984; Nataf et al. 1986). 

6.5 Temperature variations? 

It is interesting to  speculate that the large-scale seismic 
variations are due to  temperature variations. Our stochastic 
inversion for S-wave heterogeneity can then be used to  infer 
the amplitude and length scale of temperature fluctuations 
in the mantle. If the upper mantle is primarily comprised of 
olivine, then the estimate of the temperature derivative of 
shear velocity is dV,/dT = - 0.3 x km s-l K-'  from 
laboratory experiments a t  room temperature and atmos- 
pheric pressure (Sumino & Anderson 1984). Their 

measurements were obtained below the Debye temperature. 
Isaak, Anderson & Goto (1989a) suggest that for forsterite 
it decreases from -0.49 x kms- '  K- '  at 300K to 
-0.69 X lO-'km s-' K- '  at 1700 K. Theoretical calculations 
suggest that these temperature derivatives increase with 
pressure (decrease in absolute magnitude), such that 
temperature variations have a smaller effect on velocities a t  
depth (Isaak, Cohen & Mehl 1989~). Duffy & Ahrens (1990) 
claim that the absolute magnitude ot temperature 
derivatives of seismic velocities decrease substantially with 
depth, as derived by comparing the difference between 
velocities measured on the Hugoniot and predicted on the 
adiabat. If we assume that the temperature derivatives are 
similar to  the values at atmospheric pressure at upper 
mantle pressures, then, 2 per cent RMS variations of shear 
velocity in the upper mantle suggest temperature variations 
of order 350 K. Using dVp/dT = - 0.5 x 1O--'km s-' K-',  
0.4 per cent variations of compressional velocity suggest 
temperature variations of order 70 K. The discrepancy 
between the two estimates is related to the high 
d In ( Vp)/d  In ( V , )  = 2 ratio discussion above. The explana- 
tion proposed to explain this difference in the upper mantle 
is the presence of melt, which affects shear velocity much 
more than compressional velocity. Notice, that estimates of 
small scale structure (harmonic degree >SO) of 5 per cent 
(assuming scalelengths of 40 km) for P-waves would lead to 
mean temperature variations of order 1000 K. Note that the 
quoted variations are RMS estimates, which are con- 
siderably smaller than peak-to-peak variations. It is clear 
that we need other sources of seismic heterogeneity in 
addition to  temperature in the crust and uppermost mantle. 

Unfortunately, there are no similar estimates of the 
velocity temperature derivatives of perovskite, the primary 
lower mantle mineral (Jeanloz 1989). Assuming that they 
are not much different from magnesiowustite (the other 
significant lower mantle mineral), for which Isaak, 
Anderson & Goto (1989b) found dVp/dT = - 0 . 6 ~  
lo--' km s-' K-' and dV,/dT = - 0.45 x km s-' K-' at 
1800K, we find that the estimated lower mantle 
temperature variations are 14 and 7 0 K  (for P and S 
velocities respectively), again assuming low-pressure 
coefficients can apply at  high pressure. In contrast, assuming 
a decrease in the absolute magnitude of the lower mantle 
temperature derivatives of a factor of 2 8  from the 
low-pressure coefficients, as suggested by the experiments of 
Duffy & Ahrens (1990), would lead to  the temperature 
estimates being a factor of 8 higher, i.e. =130 and 550 K. A 
figure of 15 K is arrived at by Hager & Clayton (1989) from 
compressional body wave tomographic images for the very 
large-scalelength temperature Variations (I 5 3). Since our 
figure is derived for the structure all the way out to 1 = 50, 
their estimate is larger. 

The assumption that all the variations are due to  
temperature is questionable. Tanimoto (1989) has shown 
that continental mantle has seismic velocities different to 
oceanic mantle due t o  compositional differences. Unfortun- 
ately, the surface wave density kernels are small in the deep 
mantle, and hence the method cannot be  extended deeper 
into the mantle. One might argue that shallow hetero- 
geneities have a small scalelength since plate tectonics and 
subduction are their primary source. It is possible that 
compositional effects are sufficient to  affect the correlation 
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of shear and compressional velocities a t  intermediate 
scalelengths. 

6.6 Comparisons to convection models 

What seismic variations might one expect from a convecting 
mantle? Jarvis (1985) and Jarvis & Peltier (1986, 1989) 
considered this for the case of a steady, incompressible, 
constant viscosity, 2-D, unit aspect-ratio convection. They 
found the boundary layers to have red spectra and that the 
spectra became progressively whiter towards the middle of 
cells. Also, the variations had the largest magnitude at the 
boundaries. At high Rayleigh numbers they found that the 
convection becomes more vigorous and the boundary layers 
thinner. Hence, the spectra become whiter, and stronger. 

Towards the top of the mantle we have an increase in 
heterogeneity and a slight decrease in scalelength. The 
increased heterogeneity is expected for boundary layers, but 
we would expect an increase rather than a decrease in 
scalelength. Our inability to discern changes in characteristic 
length scales could be due to  poor spectral resolution, poor 
vertical resolution or that this boundary layer is also a site of 
compositional variations. G D C  present similar evidence for 
the core-mantle boundary. This evidence though, was 
questioned by Gudmundsson (1989), in a synthetic study 
that showed that due to poor coverage a similar feature can 
be reproduced in the inversion if the data are  contaminated 
with realistic noise. 

Glatzmaier (1988) presented one of the more complex 
simulations of mantle convection to  date and evaluated 
spectra of the thermal variations. H e  considered compres- 
sible 3-D convection, with large Rayleigh numbers. He 
found large variations in behaviour as he increased the 
Rayleigh number. At  R a =  lo5 he found a network of 
narrow, cold downwellings and broad regions of upwellings, 
but at Ra = lo7 he found instead hot, thin plumes in a broad 
region of cold downwelling. His model produced maximum 
temperature deviations of about 200K at  the largest 
Rayleigh number. His computations were truncated at 
harmonic degree 65. At Ra = 10' he found that the thermal 
variance decreased by nearly an order of magnitude from its 
peak at degrees 3-10 out to  degree 50. While at Ra = lo7 he 
found that by harmonic degree 50 the thermal variance had 
only decreased by a factor of 2. This is qualitatively similar 
to the results of the much simpler 2-D convection models of 
Jarvis & Peltier (1986). 

The lack of short-scale power in the lower mantle can be 
explained by the convective features being similar or smaller 
than the averaging ray width (100 km), and being 
insufficiently sampled, or that they d o  not exist and only 
large-scale features exist. The first two explanations agree 
with our expectations of very narrow features in a high 
Rayleigh number, convective system with temperature- 
dependent viscosity. The third explanation is the opposite 
and would imply very weak convection, i.e., a low Rayleigh 
number, possibly due to increasing viscosity with depth 
(Sammis et al. 1977) or decreasing coeffcient of expansion 
(Anderson 1987; Chopelas & Boehler 1989) with depth. 

In Fig. 14 we present the logarithm of the spectra versus 
the logarithm of the harmonic degree. These curves are not 
linear and hence do not suggest a power law. If we forced 
the spectra to be fit by a power law with the exponent a 
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Figure 14. Plot of logarithm of normalized model spectra versus 
logarithm of harmonic degree. Dashed line represents negative 
power. The numbers represent the mean radius of each depth bin. 

function of scale, it would become more negative as the 
harmonic degree increased. In contrast, many surface fields 
are well described by power laws, e.g., heat flow varies like 
1-0.6 ( I =  harmonic degree). This is much flatter than 
gravity, which varies like I-'.", or the toroidal or  poloidal 
velocities of the plates, which vary as or  surface 
topography, which varies like I-'.* (Kaula 1980). 

Glatzmaier (1988) found in his simulations that the 
logarithm of the thermal variance out to  degree 50 is 
approximately a linear function of the harmonic degree, 
beyond I = 10. In Fig. 15 we present the logarithm of the 
normalized spectrum versus harmonic degree and find a 
similar linear behaviour. This spectrum has been defined as 
power per harmonic degree as in Glatzmaier (1988) rather 
than the conventional power per order [i.e. power per 
harmonic degree/(21+ l)], and is a depth weighted average 
through the mantle. Two curves are presented, for the 
different damping parameters. The equivalent curves for the 
model resulting from the data with logarithmic intercept 
estimates removed, and the lifted asymptote data values are 
nearly identical to the one with a similar damping 
parameter. The difference between the two curves suggests 
that we cannot rigorously estimate the slope, but both 
though d o  display a nearly linear behaviour between 
harmonic degrees 10 and 50. If the similarity in form is real, 
it can potentially provide a constraint on mantle convection 
and viscosity. A comparison of these curves to  Glatzmaier's 
work would suggest a Rayleigh number of either lo6 or  lo7. 

Comparing the slope of a limited portion of the seismic 
spectra to  the thermal variance of convection calculations is 
an indirect method to estimate the Rayleigh numb- and 
hence, the convective regime of the Earth. It WC,,,J be 
reasonable, provided that the thermal variance of 
convection is a strong function of the Rayleigh number, but 
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Figure 15. Plot of logarithm of depth averaged spectra of slowness 
perturbations through the mantle versus harmonic degree on a 
linear axis. The solid line, (the upper line at low harmonic degree) 
is for the preferred results (Fig. 9), while the dashed line is for the 
alternative damping parameters (see Figs 6 and 10). Notice that the 
spectrum here has been defined as the total power per harmonic 
degree to allow a direct comparison with Glatzmaier (1988) rather 
than the more conventional average power per order per harmonic 
degree. Note that between harmonic degrees 10 and 50 the 
relationship is linear as is observed in the convection simulations of 
Glatzmaier (1988). 

a weak function of other potential complications (depth and 
temperature-dependent viscosity, Glatzmaier’s simulations 
are for constant viscosity, plates, etc.). We would also have 
to assume that the large-scale seismic spectra reflected only 
temperature variations. If the comparison is reasonable and 
correct, then the above values would suggest that convection 
was layered, since a Rayleigh number of order lo9 would be 
suggested by whole mantle convection. 

7 CONCLUSION 

Gudmundsson et al. (1990) developed a method to  image 
the spectrum of the Earth’s heterogeneity as a function of 
depth from traveltime data and applied it to  ISC P-wave 
data. We have applied the same method to  the ISC S-wave 
data. The method yields estimates of incoherent noise in the 
data, which we find to  be about 3 s  for shallow events and 
2 s  for deep events (measured in terms of one standard 
deviation). The spatially coherent signal in the data is of the 
order of 3s. Thus, we estimate a signal-to-noise ratio of 
slightly larger than unity for the teleseismic, ISC, S-wave 
data set. 

We discover that the Earth’s seismic heterogeneity is 
concentrated in the upper 400 km of the mantle. This holds 
for the S-wave results presented in this paper and the 
P-wave results presented by GDC. This could be the result 
of a decrease in the absolute magnitude of the temperature 
derivatives of seismic velocity a t  high pressure or a dramatic 
deviation away from uniform convection, due to  significant 
radial variations in material properties, e.g., viscosity, 
coefficient of thermal expansion or thermal diffusivity. 

The pattern of the depth variation of the strength of 
heterogeneity is similar for shear and compressional (GDC) 

velocities. Assuming that the two velocities are spatially 
correlated, a signal averaged value of d In ( V , ) / d  In (V,) of 
at least 2 is required by the data. Note that these data have 
estimates of noise removed and are from the same period 
range. This value is appreciably larger than that expected 
from low-pressure laboratory measurements (0.8-1.4). It is 
unclear from this study whether this ratio holds for the 
lower mantle as well as the upper mantle. There is no strong 
evidence of periodicity in the traveltime autocovariance. 
Hence, the underlying flow is unlikely t o  be periodic and the 
convection is unlikely to be steady. The short length scale at 
the surface suggests that the upper surface of the Earth is a 
compositional as well as a thermal boundary layer. The 
derived spectra have a similar dependence with harmonic 
degree as the spectra resulting from compressible convection 
in spherical geometry at  Rayleigh numbers of lo6 and 10’ 
(Glatzmaier 1988). As far as the simulation is a reasonable 
model of mantle convection, and the comparison is 
legitimate (i.e. seismic heterogeneity is the result of 
temperature between I = 10 and 50), then this result favours 
layered convection. 
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