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Abstract 

In this study we used age at onset of Alzheimer’s disease (AD), cerebrospinal fluid (CSF) 

biomarkers, and cis-eQTL datasets to fine map AD-associated GWAS loci and investigate the 

underlying mechanisms. In a genome-wide survival analysis of 40,255 samples, eight of the 

previously reported AD risk loci are significantly (p < 5x10-8) or suggestively (p < 1x10-5) 

associated with age at onset-defined survival and a further fourteen novel loci reached suggestive 

significance. One third (8/22) of these SNPs are cis-eQTLs in monocytes and/or macrophages, 

including rs7930318 associated with expression of MS4A4A and MS4A6A. The minor allele of 

rs1057233 (G), within the previously reported CELF1 AD risk locus, shows association with 

higher age at onset of AD (p=8.40x10-6), higher CSF levels of Aβ42 (p=1.2x10-4), and lower 

expression of SPI1 in monocytes (p = 1.50x10-105) and macrophages (p = 6.41x10-87). SPI1 

encodes PU.1, a transcription factor critical for myeloid cell development and function. AD 

heritability is enriched within the SPI1 cistromes of monocytes and macrophages, implicating a 

myeloid SPI1 target gene network in the etiology of AD. Finally, experimentally altered PU.1 

levels are correlated with phagocytic activity of mouse BV2 microglial cells and specific 

changes in the expression of multiple myeloid-expressed genes, including the mouse orthologs of 

MS4A4A and MS4A6A. Our results collectively suggest that lower SPI1 expression reduces AD 

risk by modulating myeloid cell gene expression and function. 
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Introduction  

Alzheimer’s disease (AD) is the most prevalent form of dementia. While genome-wide 

associations studies (GWAS) have identified more than twenty AD risk loci1–5, most of the 

associated disease genes and mechanisms remain unclear. To better understand these genetic 

associations, additional phenotypes and endophenotypes beyond disease status can be leveraged. 

For example, few studies6,7 have investigated the genetic basis of age-at-onset (AAO) of AD. To 

date, APOE remains the only locus repeatedly shown to associate with AAO8–11. PICALM and 

BIN1 – two other AD-risk loci – have also been shown to affect AAO using a candidate-gene 

approach6,12,13. A large-scale genome-wide study, including both AD cases and elderly non-

demented controls with age information may reveal additional loci associated with AD. Further, 

cerebrospinal fluid (CSF) biomarkers, including Aβ42 and tau, are tightly linked to the molecular 

etiology and/or pathology of the disease. Combining such information may help validate and 

elucidate the AD genetic association landscape. We have previously used this approach to 

demonstrate that APOE genotype is strongly associated with both CSF Aß42 and total tau levels 

and to identify novel loci associated with these disease-relevant quantitative traits14,15. 

Identifying the underlying disease genes and mechanisms requires integrative analyses of 

expression and epigenetic datasets in disease-relevant cell types16. In particular, recent genetic 

and molecular evidence has highlighted the role of myeloid cells of the innate immune system in 

AD. At the genetic level, GWAS and sequencing studies have found associations between AD 

and multiple genes expressed in myeloid cells, including TREM2, ABCA7, and CD331,2,5,17–19. At 

the epigenetic level, genes expressed in myeloid cells display abnormal patterns of gene 

expression and chromatin modification in AD mouse models and human samples20–22. In 

addition, we have previously shown that AD-risk alleles are polarized for cis-expression 

quantitative trait locus (cis-eQTL) effects in monocytes23. Based on these observations, we 

hypothesized that integrative analyses of AD GWAS datasets with myeloid gene expression and 

epigenetic signatures may uncover novel AD genes and mechanisms related to the function of 

myeloid cells (such as monocytes and macrophages, including microglia).  

In this study, we conducted a genome-wide survival analysis and subsequent CSF biomarker 

association analysis to uncover loci associated with AAO-defined survival (AAOS) in AD cases 

and non-demented elderly controls. We discovered an AAOS- and CSF Aβ42-associated SNP, 

rs1057233, in the previously reported CELF1 locus. Cis-eQTL analyses revealed a highly 

significant association of the protective rs1057233G allele with reduced SPI1 expression in 

monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell 

development and function, that binds to cis-regulatory elements associated with several AD-

associated genes in monocytes and macrophages. Moreover, we show that AD heritability is 

enriched within the SPI1 cistromes in these cells, implicating a myeloid SPI1 target gene 

network in the etiology of AD. Together, these results indicate that genetically altered PU.1 

levels may modulate AD susceptibility by affecting the expression of at least some of its target 

genes in myeloid cells. To validate these bioinformatic analyses, we show experimentally that 

altered PU.1 levels are correlated with phagocytic activity of mouse BV2 microglial cells and 

specific changes in the expression of multiple genes involved in a diverse array of biological 

processes in myeloid cells. This evidence collectively shows that lower SPI1 expression may 

reduce AD risk by modulating myeloid gene expression and cell function.  
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Results  

Genome-wide survival analysis 

We analyzed data from the IGAP consortium for the genome-wide survival analysis. Samples 

from ADGC, CHARGE, EADI, and GERAD were included for a total of 14,406 AD cases and 

25,849 controls (Table 1a). 8,253,925 SNPs passed all quality control criteria and were included 

for the final meta-analysis across all cohorts (Supplementary Table 1), which showed little 

evidence of genomic inflation (λ = 1.026). Four loci showed genome-wide significant 

associations (P < 5x10-8) with AAOS: BIN1 (p=7.6x10-13), MS4A (p=5.1x10-11), PICALM 

(p=4.3x10-14), and APOE (p=1.2x10-67) (Supplementary Fig. 1). While SNPs within BIN16, 

PICALM6,12, and APOE6,12,24–27 loci have previously been shown or suggested to be associated 

with AAO, this is the first time that the MS4A locus is reported to be associated with an AAO-

related phenotype. The minor allele of rs7930318 near MS4A4A is associated with a later AAO. 

Four other AD risk loci previously reported in the IGAP GWAS1 showed associations that 

reached suggestive significance (p < 1.0x10-5): CR1 (p=1.2x10-6), SPI1/CELF1 (p=5.4x10-6), 

SORL1 (p=1.8x10-7), and FERMT2 (p=1.0x10-5). The directionalities of the effects were 

concordant with the IGAP GWAS in all suggestive loci: previously reported AD risk-increasing 

alleles were all associated with a hazard ratio above 1 and earlier AAO, whereas AD risk-

decreasing alleles were all associated with a hazard ratio below 1 and later AAO (Table 1b). We 

also identified 14 novel loci that reached suggestive significance in the survival analysis, 3 of 

which (rs116341973, rs1625716, and rs11074412) were nominally associated with AD risk 

(Bonferroni multiple testing threshold: 0.05/22 = 2.27x10-3) in the IGAP GWAS (Table 1b, 

Supplementary Fig. 2).  

Cerebrospinal fluid biomarkers associations 

To further validate the 22 loci with at least suggestive associations to AAOS, we examined their 

associations with established CSF biomarkers, including total tau, phosphorylated tau181, and 

Aβ42 in a dataset of 3,646 Caucasians extended from our previous report14 (Table 2). Two SNPs 

showed associations that reached the Bonferroni multiple-testing threshold (P < 2.27x10-3). 

Rs4803758 near APOE showed the most significant associations with levels of CSF 

phosphorylated tau181 (p= 5.81x10-4) and CSF Aβ42 (p=6.75x10-5), whereas rs1057233 in the 

SPI1/CELF1 locus was significantly associated with CSF Aβ42 (p=4.11x10-4). Of note, a SNP 

adjacent to VLDLR, rs7867518, showed the most significant association with CSF total tau 

(p=3.02x10-3), but failed to pass the Bonferroni multiple-testing threshold. The protective and 

deleterious effects in the survival analysis of these three SNPs were concordant with 

directionalities of their CSF biomarkers associations; for example, the protective rs1057233G 

allele was associated with higher CSF Aβ42 levels and the risk rs1057233A allele was associated 

with lower CSF Aβ42 levels.  

cis-eQTL associations and colocalization analysis 

Multiple disease-associated GWAS SNPs have also been identified as cis-eQTLs of disease 

genes and integration of these datasets obtained from disease-relevant tissues/cell types may 

uncover novel genes associated with disease28. First we investigated cis-eQTL effects of the 22 

AD survival-associated SNPs and their tagging SNPs (R2 ≥ 0.8, listed in Supplementary Table 

2) in the BRAINEAC dataset encompassing ten different brain regions. We identified 4 

significant associations (Bonferroni correction threshold: 0.05/292,000 probes = 1.7x10-7): 

rs1057233 was associated with MTCH2 expression in the cerebellum (P = 1.20x10-9); rs7445192 

was associated with averaged SRA1 expression across brain regions (P = 7.0x10-9, 1.6x10-7 for 

two probes respectively), and rs2093761 was associated with CR1/CR1L expression in the white 



 6 

matter (P = 1.30 x10-7, Supplementary Table 3). Further analysis using the GTEx dataset29 also 

showed potential eQTL association of rs1057233 with C1QTNF4 across 18 tissues and MTCH2 

in the brain cortex and nucleus accumbens/basal ganglia (Supplementary Table 4).  

We have previously reported that monocyte cis-eQTLs are enriched among AD GWAS SNPs23. 

Further, AD is associated with genetic variation in multiple myeloid-expressed genes, including 

TREM2, ABCA7, and CD331,2,5,17–19. We hypothesized the cis-eQTL effects of some AD-

associated alleles may be specific to myeloid cells and thus not easily detectable in cis-eQTL 

datasets obtained from brain homogenates where microglial cells constitute only a minor fraction 

of the tissue. Therefore, we analyzed cis-eQTL effects of the AD survival-associated SNPs and 

their tagging SNPs in human cis-eQTL datasets composed of 738 monocyte and 593 macrophage 

samples from the Cardiogenics consortium30. We identified 14 genes with cis-eQTLs 

significantly associated with these SNPs (Table 3). Notably, the protective rs1057233G allele, 

located within the 3’ UTR of SPI1, was strongly associated with lower expression of SPI1 in 

both monocytes (p = 1.50x10-105) and macrophages (p = 6.41x10-87) with similar dosage-

dependent effects (Fig. 1a, 1c). This allele was also associated with lower expression of 

MYBPC3 (monocytes: p = 5.58x10-23; macrophages: p = 4.99x10-51), higher expression of 

CELF1 in monocytes (p = 3.95x10-8) and lower NUP160 expression in macrophages (p = 

5.35x10-22). Each of these genes lies within the SPI1/CELF1 locus, suggesting complex 

regulation of gene expression in this chromosomal region. The minor allele (C) of rs7930318 

was consistently associated with lower expression of MS4A4A in monocytes (p = 8.20x10-28) and 

MS4A6A in monocytes and macrophages (Fig. 1b, monocytes: p = 4.90x10-23; macrophages: p = 

1.25x10-9). Among the novel AD survival-associated loci, rs5750677 was significantly 

associated with lower expression of SUN2 in both monocytes (p = 3.66x10-58) and macrophages 

(p = 3.15x10-36), rs10919252 was associated with lower expression of SELL in monocytes (p = 

7.33x10-35), and rs1625716 was associated with lower expression of CISD1 in macrophages (p = 

5.98x10-23, Table 3). 

We then sought evidence of replication in an independent dataset of primary CD14+ human 

monocytes from 432 individuals of European ancestry31. We replicated cis-eQTL associations 

with expression of SPI1, MYBPC3, MS4A4A, MS4A6A, and SELL (Bonferroni correction 

threshold: 0.05/15421 probes = 3.24x10-6). We found strong evidence of the association between 

rs1057233 and SPI1 expression (p=6.39x10-102) as well as MYBPC3 expression (p=5.95x10-33, 

Supplementary Table 5). Rs1530914 and rs7929589, both in high LD with rs7930318 (R2 = 

0.99 and 0.87, respectively), were associated with expression of MS4A4A and MS4A6A 

(p=3.60x10-8, 6.37x10-15), respectively. Finally, rs2272918, tagging rs10919252, was 

significantly associated with expression of SELL (p=8.43x10-16). Interestingly, the minor allele 

of all of these SNPs with replicated cis-eQTL associations showed protective effects in both AD 

risk and survival analyses, and are each correlated with lower expression of their associated 

gene. Further, SPI1, MS4A4A, MS4A6A, and SELL are all specifically expressed in microglia 

based on RNA-Seq data32–34 from human and mouse acutely-isolated brain cell types (Fig. 1c, 

Supplementary Fig. 3). However, MYBPC3/Mybpc3 (a myosin binding protein expressed at 

high levels in cardiac muscle cells) is either not expressed or expressed at low levels in human 

and mouse microglia, respectively. MYBPC3 (ILMN_1781184) gene expression is most highly 

and significantly correlated with SPI1 (ILMN_1696463) expression in both Cardiogenics 

datasets (Spearman’s rho = 0.54, qval = 0.00 in monocytes and Spearman’s rho = 0.42, qval = 

0.00 in macrophages) suggesting that low levels of expression in human myeloid cells are 
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possibly due to leaky transcription driven by the adjacent highly expressed SPI1 gene35 

(Supplementary Fig. 5). 

We then performed the coloc statistical test36 to further validate the colocalization of AD 

survival-associated SNPs with myeloid cis-eQTLs at the SPI1/CELF1, MS4A and SELL loci. The 

results of these analyses (Supplementary Table 6) highlighted SPI1 at the CELF1 locus as the 

strongest and most consistent colocalization target, and the only gene where the AD survival and 

gene expression association signals are likely (posterior probability ≥ 0.8) driven by the same 

causal genetic variant, in both monocytes and macrophages (PP.H4.abf of 0.85 and 0.83, 

respectively). MYBPC3 in the CELF1 locus and MS4A6A in the MS4A locus also showed 

evidence of colocalization in both myeloid cell types, but they did not survive posterior 

probability cutoff in one of the cell types. MS4A4A and MS4A6E in the MS4A locus showed 

evidence of co-localization only in monocytes, while SELL did not show evidence of co-

localization in either cell type. Similar results were obtained when using AD-associated SNPs 

from the IGAP GWAS to support SPI1 at the CELF1 locus as a candidate causal gene for AD in 

myeloid cells. 

To prioritize putative functional variants underlying the colocalization of AD survival-associated 

SNPs and myeloid cis-eQTLs, we applied HaploReg37 to annotate the top survival SNP in the 

SPI1/CELF1 locus (rs1057233) and its tagging SNPs (R2 >= 0.8, Supplementary Table 2). 

Interestingly, four SNPs in tight LD with rs1057233 changed the predicted DNA binding motif 

of PU.1. For example, rs7928163 (R2 with rs1057233=0.94) changed the known1 motif and 

rs10838699 (R2 with rs1057233=0.96) changed the known2 motif (Supplementary Table 2), 

raising the possibility of altered self-regulation and potentially decreased PU.1 binding in the 

presence of the minor allele. Alternatively, rs1057233 was previously shown to change the target 

sequence and binding of miR-569 and its transcriptional repression on SPI138. Based on these 

results, one or more of these SNPs, which are all in very high LD, could explain the observed 

associations with SPI1 expression and AD-related phenotypes. Overall, rs1057233 and tagging 

SNPs are associated with AD risk and survival, and CSF Aβ42. The strong cis-eQTL effects and 

colocalization results point to SPI1 as the most likely candidate gene underlying the disease 

association at this locus. 

Fine-mapping of the SPI1/CELF1 locus 

The AD survival-association landscape shows that highly associated SNPs at the SPI1/CELF1 

locus span a region across multiple genes (Fig. 1a). In the previous IGAP GWAS logistic 

regression analysis for AD risk1, rs10838725 showed the strongest association at this locus 

(rs10838725: p = 1.1x10-8 vs. rs1057233: p = 5.9x10-7 in stage I and II combined). Rs10838725 

is located in the intron of the CELF1 gene, which was assigned as the putative causal gene at this 

locus1 based on proximity to the index SNP, a criterion that has often proven to be erroneous16.  

In our genome-wide survival analysis, however, rs10838725 showed weak association (p=0.12, 

HR=1.02, 95% CI=0.99-1.05) whereas rs1057233, located in the 3’UTR of a neighboring gene, 

SPI1, showed the most significant association (p=5.4x10-6). The two SNPs exhibit moderate 

linkage disequilibrium in the ADGC subset of the IGAP GWAS dataset (R2=0.21, D’=0.96). 

Applying AD risk analysis in the ADGC dataset, conditional analysis revealed that rs1057233 

remained significantly associated with AD after controlling for rs10838725 (P=3.2x10-4), 

whereas rs10838725 showed no evidence of association after adjusting for rs1057233 (p=0.66). 

The association landscape in the AD survival analysis highly resembles that of SPI1 cis-eQTL 

analysis in myeloid cells (Fig. 1a). To investigate the SPI1 cis-eQTL associations across 

ethnicities, we used the NCBI eQTL browser to visualize these associations in different HapMap 
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lymphoblastoid cell lines (Supplementary Fig. 4). While the tagging SNP of rs1057233, 

rs10838698 (R2 = 0.96), was strongly associated with SPI1 expression in Caucasians and Asians 

(p = 3.21x10-9, 1.03x10-17 respectively), it was not associated with SPI1 expression in Africans 

(p = 0.22). Interestingly, rs1057233 also showed no evidence of association with AD risk in 

African Americans (p = 0.71)39, consistent with the hypothesis that this SPI1 eQTL may explain 

the disease association at this locus.  

We reasoned that the associations of rs1057233 with AD-related phenotypes may be explained 

by the regulation of SPI1 expression in myeloid cells, and that fine-mapping the cis-eQTL signal 

could help us pinpoint the functional variant. Therefore, we conducted conditional analyses 

based on six SNPs of interest in this locus using both Cardiogenics datasets: rs1057233 (the top 

survival SNP), rs10838698 (the directly genotyped SNP in high LD with rs1057233), 

rs10838699 (a SNP that modifies a PU.1 binding motif), rs7928163 (a SNP that modifies a PU.1 

binding motif), rs1377416 (a putative enhancer SNP of SPI121), and rs10838725 (the top SNP for 

AD risk in the previous IGAP GWAS1). Rs1057233, rs10838698, rs10838699, and rs7928163 all 

remained significantly associated with SPI1 expression when adjusting for the other two SNPs in 

both monocytes and macrophages (P < 8.33x10-3). On the other hand, conditioning for any of 

these four SNPs abolished the associations of rs1377416 and rs10838725 to SPI1 expression 

(Supplementary Table 7). Thus, the functional variants mediating the effect on SPI1 expression 

likely reside in the LD block that includes rs1057233, rs10838698, rs10838699 and rs7928163.  

As a complement to the colocalization and conditional analyses described above, we conducted 

Summary-data-based Mendelian Randomization (SMR) and Heterogeneity In Dependent 

Instruments (HEIDI) tests28 to prioritize likely causal genes and variants by integrating summary 

statistics from our AAOS GWAS and the Cardiogenics study (Supplementary Table 7). 

SMR/HEIDI analysis was performed for the SPI1/CELF1 locus using rs1057233, rs10838698, 

rs10838699, rs7928163, rs1377416, rs10838725 as candidate causal variants. In both monocytes 

and macrophages, SPI1 was consistently identified as the most likely gene whose expression 

levels are associated with AD survival because of causality/pleiotropy at the same underlying 

causal variant (rs1057233 or rs10838698, rs10838699, rs7928163 in the same LD block) (SMR 

P < 4.90E-04, the multiple testing threshold for 6 SNPs tested against 17 probes and HEIDI P ≥ 

0.05). Similar results were obtained using IGAP GWAS summary statistics (Supplementary 

Table 7). Neither conditional analysis nor this SMR/HEIDI analysis could definitively identify a 

single functional variant in this locus among the set of 4 SNPs in high LD. Functional analyses 

will be necessary to determine which of these SNPs directly affects SPI1 expression. 

SPI1/PU.1 cistrome and functional analysis in myeloid cells 

To further evaluate SPI1 as a candidate causal gene for AD, we investigated the functional 

impact of variation in SPI1 expression. SPI1 encodes PU.1, a transcription factor essential for the 

development and function of myeloid cells. We hypothesized that it may modulate AD risk by 

regulating the transcription of AD-associated genes that are expressed in microglia and/or other 

myeloid cell types. First, we tested AD-associated genes for evidence of expression in human 

microglia/brain myeloid cells32 as well as presence of PU.1 binding peaks in cis-regulatory 

elements associated with these genes using ChIP-Seq datasets obtained from human monocytes 

and macrophages40. We specifically investigated 112 AD-associated genes, including the 104 

genes located within the IGAP GWAS loci as defined by Steinberg et al.41 and additionally 

APOE, APP42, TREM2 and TREML243, TYROBP20, TRIP444, CD332,5, and PLD345. Among the 

112 AD-associated genes, 75 had evidence of gene expression in human microglia/brain myeloid 

cells, 60 of which had also evidence of association with one or more nearby PU.1 binding sites in 
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human blood myeloid cells (monocytes or macrophages)40 (Supplementary Table 9). Further 

examination of PU.1 binding peaks and chromatin marks/states in human monocytes and 

macrophages confirmed that PU.1 is likely bound to cis-regulatory elements in the proximity of 

several AD-associated genes, including ABCA7, CD33, MS4A4A, MS4A6A, PILRA, PILRB, 

TREM2, TREML2, and TYROBP (as well as SPI1 itself, but notably not APOE) in cells of the 

myeloid lineage (Supplementary Fig. 5). Together, these results suggest that PU.1 may regulate 

the expression of multiple AD-associated genes in disease-relevant cell types23. 

To further support the hypothesis that a network of PU.1 target genes expressed in myeloid cells 

such as microglia may be associated with AD risk, we used stratified LD score regression46 to 

estimate enrichment of AD heritability (as measured by GWAS summary statistics from the 

IGAP consortium1) partitioned across the whole PU.1 cistrome, as profiled by ChIP-Seq in 

human monocytes and macrophages40. Indeed, we found a significant enrichment of AD 

heritability in both monocytes (56 fold enrichment, P = 0.003) and macrophages (60 fold 

enrichment, P = 0.001), but this was not the case for schizophrenia (SCZ) heritability [as 

measured by GWAS summary statistics from the Psychiatric Genomics Consortium (PGC)47] 

(Supplementary Table 10), suggesting that the contribution of the myeloid PU.1 target gene 

network to disease susceptibility is likely specific to AD. 

PU.1 target genes are implicated in various biological processes within myeloid cells that may 

modulate AD risk. For example, a microglial gene network for pathogen phagocytosis has been 

previously implicated in the etiology of AD48 and we developed a cell-based assay to investigate 

the role of PU.1 in this process. We modulated levels of PU.1 by cDNA overexpression or 

shRNA knock-down of Spi1 in mouse BV2 microglial cells, and used zymosan bioparticles 

labeled with pHrodo (a pH-sensitive dye that emits an intense fluorescent signal when 

internalized in acidic vesicles during phagocytosis) to measure pathogen engulfment. Analysis of 

zymosan uptake by flow cytometry revealed that phagocytic activity is augmented in BV2 cells 

overexpressing PU.1 (Fig. 2a), while knock-down of PU.1 resulted in a significant decrease in 

phagocytic activity (Fig. 2a). We confirmed overexpression and knock-down of PU.1 expression 

levels by western blotting and qPCR (Fig. 2b, 2c, 2d, 3a). Phagocytic activity was not changed 

in the population of cells with unperturbed PU.1 expression levels when analyzed by flow 

cytometry (Supplementary Fig. 6d, 6e, 6f, 6g). Taken together, these data suggest that 

modulation of PU.1 expression levels results in significant changes in microglial phagocytic 

function in response to fungal targets (mimicked by zymosan). 

To further explore the functional impact of variation in SPI1 expression in myeloid phagocytes, 

we performed qPCR analysis to test whether differential Spi1 expression modulates levels of 

myeloid genes that are thought to play important roles in AD pathogenesis and/or microglial cell 

function (Supplementary Table 11). We found that levels of some of these genes were affected 

in opposing directions by over-expression and knock-down of Spi1 (Fig. 3b), while that of other 

genes was affected only by over-expression (Fig. 3c) or knock-down (Fig. 3d) or not affected at 

all (Supplementary Fig. 7). In particular, over-expression of Spi1 led to up-regulation of 

Ms4a4a, Ms4a6d (mouse ortholog of human MS4A4A, MS4A6A), Ccl2, Cxcl2, Aif1, Cd64, Pilrb, 

Cd36 and down-regulation of Il34, Apoe, Clu/ApoJ. On the other hand, knock-down of Spi1 led 

to up-regulation of Il34, Apoe, Clu/ApoJ, Csf1, Cx3cr1, Axl, Serpinb1 and down-regulation of 

Ms4a4a, Ms4a6d, Cd33, Tyrobp, Ccl2, Cxcl2, Aif1, Cd64, Pilrb, Il1b, Csf1r, P2ry12, Pilra, 

Itgam, Nos2, Cox2, Arg1, Ctsb, Nlrp3. These data demonstrate that multiple microglial genes 

(many of which have already been implicated in the etiology of AD) are selectively perturbed by 
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altered expression of Spi1, suggesting a collective and coordinated effect on several microglial 

cell functions (phagocytosis, inflammatory response, migration/chemotaxis, 

proliferation/survival, lipid/cholesterol metabolism, etc.) that are thought to play a role in AD 

pathogenesis. 

Discussion 

In this study, we discovered multiple loci associated with AAO of AD in a genome-wide survival 

analysis (Table 1). The four genome-wide significantly associated loci, BIN1 (p=7.6x10-13), 

MS4A (p=5.1x10-11), PICALM (p=4.3x10-14), and APOE (p=1.2x10-67), have all been previously 

reported to be associated with AD risk1. Notably, this is the first study showing that the MS4A 

locus is associated with AAO of AD. The most significantly associated SNP in the MS4A gene 

cluster, rs7930318, shows a protective effect (HR = 0.93, 95% CI = 0.90-.95) in the survival 

analysis, consistent with the result from the previous IGAP GWAS logistic regression analysis 

for AD risk (OR = 0.90, 95% CI = 0.87-.93).  

By combining association results of AAO and CSF biomarkers, we provide evidence of AD 

association at additional loci (Table 2). In particular, rs7867518 at the VLDLR locus shows 

suggestive associations with both AD survival (p = 9.1x10-6) and CSF tau (p = 3.03x10-3). An 

adjacent SNP rs2034764 in the neighboring gene, KCNV2, has been previously reported to show 

suggestive association with AAO26. VLDLR, or the very-low-density-lipoprotein receptor, binds 

to APOE-containing lipoproteins in the brain49 and physically interacts with CLU, another AD 

risk gene50. Additionally, the VLDLR-5-repeat allele was found to be associated with dementia49. 

Collectively, this evidence suggests that genetic variation in VLDLR may be linked to APOE and 

AD, although further replication and investigation are required.  

Cis-eQTL analyses of AD survival-associated SNPs revealed limited associations when using 

brain tissue homogenate data, yet identified multiple candidate genes when using data obtained 

from cells of the myeloid lineage. This result calls attention to careful selection of relevant cell 

types in eQTL studies of disease association. In particular, by conducting cis-eQTL analyses 

using monocyte and macrophage datasets, we discovered associations of AD survival-associated 

SNPs with the expression of SELL, SPI1, MYBPC3, NUP160, MS4A4A, MS4A6A and SUN2 

(Table 3). Furthermore, we replicated the cis-eQTL associations of rs1057233 with SPI1, 

MYBPC3, rs7930318 with MS4A4A, MS4A6A and rs2272918 with SELL in an independent 

monocyte dataset. We further showed that the SPI1 myeloid cis-eQTLs and AD survival-

associated SNPs are not likely to be colocalized by chance and thus may be in the causal 

pathway to AD (Fig. 1), providing additional support for the hypothesis that modulation of SPI1 

expression likely contributes to the disease association at the CELF1 locus. 

Notably, the minor allele of rs1057233 (G) at the previously reported SPI1/CELF1 locus is 

suggestively associated with lower AD risk (p=5.4x10-6, 5.9x10-7 in IGAP stage I, stage I and II 

combined, respectively)1, higher age-at-onset defined survival (p = 8.4x10-6) and significantly 

associated with higher CSF Aβ42 (p = 4.11x10-4), which likely reflects decreased Aβ aggregation 

and ß-amyloid deposition in the brain. Furthermore, it is strongly associated with lower SPI1 

expression in human monocytes (p = 1.50x10-105) and macrophages (p = 6.41x10-87, Table 3). Its 

tagging SNP was also associated with SPI1 expression in lymphoblastoid cells in Caucasians and 

Asians. Interestingly the eQTL association was not identified in Africans, and rs1057233 is not 

associated with AD risk in African Americans (P=0.71)39, suggesting that this cis-eQTL is likely 

responsible for the disease association at this locus and its effect may be ethnicity-specific. 
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Colocalization analyses using coloc and SMR/HEIDI support the hypothesis that the same causal 

SNP(s) influence SPI1 expression and AD risk. However, neither conditional nor SMR/HEIDI 

analyses were able to pin-point an individual SNP, but rather both approaches identified multiple 

SNPs within a single LD bin, tagged by rs1057233, which may (individually or in combination) 

influence both SPI1 expression and AD risk. rs1057233 directly changes the target sequence and 

binding of miR-569 and its transcriptional repression on SPI138, and its tagged SNPs alter 

binding motifs of transcription factors including PU.1 itself (Supplementary Table 1 and Fig. 

XXX). Another SNP, rs1377416, is located in a predicted enhancer in the vicinity of SPI1 and 

exhibited enhancer activity when assayed in vitro using an episomal luciferase reporter construct 

transfected in BV2 mouse microglia cells21. However, rs1057233 remained significantly 

associated with AD after conditioning for either rs1377416 (p = 1.2x10-3) or the previously 

reported IGAP GWAS SNP rs10838725 (p = 3.2x10-4) in the ADGC dataset. Further, the cis-

eQTL association between rs1057233 and SPI1 expression remained significant after 

conditioning for both of these SNPs, whereas conditioning for rs1057233 abolished their cis-

eQTL associations with SPI1 (Supplementary Table 4). Thus, rs1057233 and its tagging SNPs 

likely represent the underlying disease locus and may modulate AD risk through variation in 

SPI1 expression. Interestingly, rs1057233 was previously found to be associated with systemic 

lupus erythematosus38, body mass index51 and proinsulin levels52 and may potentially contribute 

to the connection between AD, immune cell dysfunction, obesity and diabetes. 

PU.1 binds to cis-regulatory elements of several AD genes expressed in myeloid cells, including 

ABCA7, CD33, MS4A4A, MS4A6A, TREM2, and TYROBP (Supplementary Fig. 5). This finding 

is further supported by PU.1 binding to active enhancers of Trem2 and Tyrobp in ChIP-Seq 

experiments using the BV2 mouse microglial cell line53 or bone marrow-derived mouse 

macrophages54. PU.1 is required in mouse for the development and function of myeloid and B-

lymphoid cells55,56. Given its selective expression in microglia in the brain (Fig. 1c), PU.1 may 

modify microglial cell function through transcriptional regulation of target genes that act as 

downstream modulators of AD susceptibility, as evidenced by the significant enrichment of AD 

heritability partitioned by PU.1 ChIP-Seq binding sites in human myeloid cells across the whole 

genome (Supplementary Table 10).  

In support of this hypothesis, we also demonstrate that changes in PU.1 expression levels result 

in the alteration of phagocytic activity in the BV2 mouse microglial cell line (Fig. 2, 

Supplementary Fig. 6). Knock-down of PU.1 expression reduced engulfment of zymosan, 

whereas overexpression of PU.1 increased engulfment of zymosan, a Toll-like receptor 2 (TLR2) 

agonist that mimics fungal pathogens. This is in line with previous data showing decreased 

uptake of A42 (also a TLR2 agonist) in primary microglial cells isolated from adult human brain 

tissue and transfected with siRNA targeting SPI157. Interestingly, several AD-associated genes  

(e.g., CD3319,58, TYROBP, TREM259,60, TREML2, CR1, ABCA761, APOE60, CLU/APOJ60) have 

been shown to be involved in phagocytosis of pathogens or host-derived cellular material (e.g.,  

amyloid, apoptotic cells, myelin debris, lipoproteins, etc.), suggesting a strong link between 

perturbation of microglial phagocytosis and AD pathogenesis.  

We show that in BV2 microglial cells expression of Cd33 and Tyrobp are decreased and 

expression of Apoe and Clu/ApoJ are increased after knock-down of Spi1 (Fig. 3a, 3b). Indeed, 

several other genes are dysregulated after altering Spi1 expression, i.e. Cd36, Cd64, Pilra, Pilrb, 

Ms4a4a, Ms4a6d, P2ry12, Itgam, Cx3cr1, Axl, Ctsb (Fig. 3b, 3c, 3d), suggesting a collective and 

coordinated effect of Spi1 on the phagocytic activity of BV2 microglial cells. Furthermore, 

expression of Il1b, Nos2, Cox2, Arg1, and Nlrp3 are decreased after knock-down of Spi1 (Fig. 
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3d), consistent with blunting of the inflammatory response that is often up-regulated in AD 

brains and regarded as neurotoxic. Furthermore our genetic analyses show that the protective 

alleles within the MS4A locus is associated with lower expression of MS4A4A and MS4A6A in 

human monocytes or macrophages, while the BV2 experiment demonstrated that lower 

expression of Spi1 (which is protective in humans) led to lower expression of ms4a4a and 

ms4a6d (the mouse ortholog of MS4A6A), which are also associated with reduced AD risk in 

humans. Several large-scale transcriptomic and proteomic analyses of acutely-isolated microglial 

cells in animal models of aging or neurological disorders have suggested the existence of a 

homeostatic signature that is perturbed during aging and under pathological conditions62–64. It 

will be valuable to analyze whole-transcriptome changes in microglial cells with differential 

SPI1 expression in comparison with existing datasets to test whether changes in SPI1 levels 

prime microglia to exacerbate or alleviate transcriptional changes that occur during aging or 

disease development. Together with genetic variation in microglial specific genes associated 

with AD as an amplifier, SPI1 may be a master regulator capable of distorting the cellular 

balance that either helps microglia to cope with and protect from the pathogenic assault or 

commits microglia to a neurotoxic phenotype. 

PU.1 expression levels regulate several other myeloid/microglial cell functions57,65, including 

proliferation, survival and differentiation, that could also modulate AD risk. Indeed, expression 

of Il34 and Csf1, soluble factors that bind to Csf1r and promote differentiation of monocytes to 

microglia-like cells in vitro and are required for microglial development and maintenance in 

vivo66,67, were elevated after knock-down of Spi1, while expression of Csf1r was reduced (Fig. 

3b, 3d). Interestingly, inhibition of Csf1r in a 3xTg-AD mouse model led to a reduction in the 

number of microglia associated with ß-amyloid plaques and improved cognition68. These 

findings suggest that it will be important to analyze cell proliferation, survival, differentiation, 

and migration phenotypes in microglia with differential Spi1 expression, and in infiltrating 

monocytes and macrophages, as Ccl2 and Cxcl2 (MCP1 and MIP2 proteins) expression was 

directly dependent on Spi1 levels (Fig.3b). Both molecules participate in recruitment of 

circulating monocytes and neutrophils to the brain69,70, which can promote neuroinflammation 

and are detrimental in an AD mouse model71,72. In addition, expression of a microgliosis marker 

Aif1 (IBA1 protein) was dependent on Spi1 (Fig. 3b), which in conjunction with changes in Il1b, 

Nos2, Cox2, Arg1 and Nlrp3 suggests that decreased Spi1 expression may moderate the 

inflammatory response of microglial cells to improve disease outcomes. Interestingly, expression 

of Cx3cr1 and Axl was markedly elevated upon knock-down of Spi1 (Fig. 3b), raising the 

possibility that beneficial effects of changes in Spi1 expression are exerted through modulation 

of synaptic or neuronal clearance73,74. Further experimental investigation of the proposed 

phenotypes will shed more light on the mechanisms of SPI1 contribution to AD risk. Of note, 

overexpression and knock-down of Spi1 in BV2 microglial cells produce different and often 

opposite changes in expression of the genes profiled here, possibly driving different phenotypes 

that may underlie detrimental and protective functions of PU.1 in AD. Thus, exploration of PU.1 

association with AD risk presents an intriguing opportunity for the discovery of novel disease 

mechanisms and therapeutic interventions. 

In summary, by combining AD survival, CSF biomarker and myeloid cis-eQTL analyses, we 

replicated and discovered multiple genetic loci associated with AD. Specifically, we nominate 

SPI1 as the candidate gene responsible for the association at the previously reported CELF1 

locus. SPI1 encodes PU.1, a transcription factor expressed in microglia and other myeloid cells 

that directly regulates the transcription of other AD-associated genes expressed in these cell 
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types. Our data suggest that lower SPI1 mRNA reduces risk for AD, suggesting a novel 

therapeutic approach to the treatment of AD. Furthermore, we demonstrate that AD survival-

associated SNPs within the MS4A gene cluster are also associated with eQTLs in myeloid cells 

for both MS4A4A and MS4A6A. Specifically, the allele associated with reduced AD risk is 

associated with lower MS4A4A and MS4A6A expression. This result is consistent with the 

observation that lowering SPI1 expression, which is protective for AD risk, also lowers MS4A4A 

and MS4A6A expression and reduces phagocytic activity in BV2 microglial cells. These results 

reinforce the emerging genetic and epigenetic association between AD and a network of 

microglial expressed genes2,5,19,48,21–23, highlighting the need to dissect their functional 

mechanisms.  

Methods 

Genome-wide survival association study datasets 

The final meta-analysis dataset consists of samples from the Alzheimer’s Disease Genetics 

Consortium (ADGC), Genetic and Environmental Risk in Alzheimer's Disease (GERAD), 

European Alzheimer's Disease Initiative (EADI), and Cohorts for Heart and Aging Research in 

Genomic Epidemiology (CHARGE). The study cohorts consist of case-control and longitudinal 

cohorts. The study protocols for all cohorts were reviewed and approved by the appropriate 

institutional review boards. Details of ascertainment and diagnostic procedures for each data set 

are as previously described1–5 and included in the Supplementary Information.  

CSF biomarker datasets  

CSF samples were obtained from the Knight-ADRC (N=805), ADNI-1 (N=390), ADNI-2 

(N=397), the Biomarkers for Older Controls at Risk for Dementia (BIOCARD) (N=184), Mayo 

Clinic (N=433), Lund University (Swedish) (N=293), University of Pennsylvania (Penn) 

(N=164), University of Washington (N=375), The Parkinson's Progression Markers Initiative 

(500) and Saarland University (German) (N=105). Details of ascertainment and diagnostic 

procedures for the data set are included in the Supplementary Information.  

Quality Control  

For survival analysis, we excluded cases with AAO below 60 and cases with prevalent stroke. 

For CSF analysis, individuals under age 45 years were removed because prior studies have 

demonstrated that the relationship between CSF Aβ42 levels and age appears to differ in 

individuals below 45 years vs. those above 45 years75. Of the remaining individuals in both 

analyses, we excluded individuals who had > 5% missing genotype rates, who showed a 

discrepancy between reported sex and sex estimated on the basis of genetic data, or who showed 

evidence of non-European ancestry based on principal component analysis using PLINK1.976. 

We identified unanticipated duplicates and cryptic relatedness using pair-wise genome-wide 

estimates of proportion identity by descent (IBD) using PLINK. When duplicate samples or a 

pair of samples with cryptic relatedness was identified, the sample with the lower genotyping 

call rate was removed. We excluded potentially related individuals so that all remaining 

individuals have kinship coefficient below 0.05. Finally, we excluded individuals with missing 

disease status, age or gender information. 

To control for genotype quality, we excluded SNPs with missing genotypes in > 5% of 

individuals in each dataset for survival analysis, and > 2% for CSF association analysis. For the 

EADI cohort, variants with minor allele frequency < 1%, Hardy-Weinberg P value < 1 x 10-6 and 

missingness > 2% were removed prior to imputation. Genome-wide genotype imputation was 

performed using IMPUTE277 with 1000 Genomes reference haplotypes. We excluded imputed 

SNPs with an IMPUTE2 quality score < 0.5 for survival analysis. For CSF association, we 
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excluded SNPs with an IMPUTE2 quality score of < 0.3 since the dataset was only used for 

follow-up. In the ADGC, GERAD, CHARGE, and CSF datasets, we then removed SNPs that 

failed the Hardy-Weinberg equilibrium in controls calculated based on the imputed best-guess 

genotypes using a P value threshold of 1 x 10-6. We excluded SNPs with minor allele frequency 

≤ 0.02. Finally, we excluded SNPs with available statistics in only one consortium dataset in the 

meta-analysis.  

Genome-wide survival association study  

We conducted a genome-wide Cox proportional hazards regression78 assuming an additive effect 

from SNP dosage. The Cox proportional hazard regression was implemented in the R survival 

analysis package. We incorporated sex, site and the first three principal components from 

EIGENSTRAT30 in all our regression models to control for their effects. For EADI, sex and four 

principle components were included in the model. For the Cox model, the time scale is defined 

as age in years, where age is age at onset for cases and age at last assessment for controls. The 

formula applied is as followed:  

ℎ(𝑡|𝑋) = ℎ0(𝑡)exp(∑ 𝛽𝑖

𝑝

𝑖=1

𝑋𝑖) 

where X = (X1, X2, …, Xp) are the observed values of covariates for subject i. The Cox model 

has previously been shown to be applicable to case-control datasets without an elevated type 1 

error rate nor overestimation in effect sizes79,80. After the analysis of each dataset, we carried out 

an inverse-variance meta-analysis on the results using METAL26, applying a genomic control to 

adjust for inflation in each dataset. Of the 751 suggestive SNPs (P < 1*10-5), we found these 

SNPs to show lower standard errors and confidence intervals with the increasing number of 

cohorts showing consistent directionalities of effect. Particularly, the average standard error for 

SNPs showing 1 to 7 consistent directionalities ranges from 0.171, 0.109, 0.0744, 0.0346, 

0.0234, 0.0173 to 0.01795 (Supplementary Fig. 1b). Thus, we limited our final analysis to 

SNPs that showed consistent directionalities of effect in at least 6 out of the 7 datasets included 

in the meta-analysis. The association graphs of results from loci of interest were plotted using 

LocusZoom81.  

CSF biomarker association analysis  

For the CSF datasets, we performed multivariate linear regression for CSF Aβ42 and tau, and 

ptau181 association adjusting for age, gender, site, and the first three principal components using 

PLINK.  

eQTL analysis  

We examined the effect of top survival and CSF SNPs on gene expression using published 

databases. For general brain expression eQTL analysis, we queried the BRAINEAC eQTL data 

provided by the UK human Brain Expression Consortium (see URLs).  

We conducted leukocyte-specific analysis using the Cardiogenics dataset30 composed of 738 

monocytes and 593 macrophages samples. For each probeset – imputed SNP pair, a simple linear 

regression was used to analyze the data separately for monocytes and macrophages:  

𝑦𝑖 =  𝛼 +  𝛽𝑥𝑖 +  𝜀𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 𝜀𝑖 ~𝑁(0,σ2) 
where i is the subject index, x is the effective allele copy number, and yi  is the covariates-

adjusted, inverse-normal transformed gene expression. Significance of cis (SNP within ±1Mb of 

the closest transcript end) eQTL effects were quantified with a Wald test on the ordinary Least 

Squares (OLS) estimator of the coefficient β, obtained with R. The distribution of the Wald test P 

values under the null hypothesis of no correlation between genotype and gene expression was 
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estimated by rerunning the same analysis on a null dataset obtained by permuting the expression 

samples identifiers. For additional monocyte eQTL analysis, we queried statistics from Fairfax et 

al.31 to validate findings in the Cardiogenics dataset.  

For conditional analysis, we performed analysis for SPI1 (probe: ILMN_1696463) against all 

SNPs within ±2Mb from the closest transcript end, by including the following SNPs effective 

allele copy numbers as covariates in the linear regression model, one at a time: rs1057233, 

rs10838698, rs7928163, rs10838699, rs10838725, rs1377416. Significance was again assessed 

with a two-sided Wald test on the OLS estimator of the coefficient β. 

Gene expression analysis in human and mouse brain cell types  

Cell-type specific gene expression in the human and mouse brain was queried from brain RNA-

Seq databases described in Zhang et al.32,33 and Bennett et al.34 and plotted using custom R 

scripts (see URLs). The mouse astrocytes-FACS and astrocytes-immunopanned in mouse were 

collapsed into a single astrocyte cell type.    

Epigenetic analysis in human myeloid cell types  

We utilized HaploReg37 to annotate the regulatory element of the significantly associated SNPs 

and their tagging SNPs. The myeloid chromatin marks/states and PU.1 ChIP-Seq data at genetic 

loci were further examined through the Washington University Epigenome browser82 using 

public Roadmap Epigenomics Consortium as well as custom tracks hubs for human monocytes 

and macrophages (hg19) (see URLs).  

Colocalization (coloc and SMR/HEIDI) analyses 

Colocalization analysis of genetic variants associated with AD and myeloid gene expression was 

performed using AD survival-associated (or IGAP GWAS) SNP and myeloid (monocyte and 

macrophage) eQTL datasets from Cardiogenics as inputs. Overlapping SNPs were retained 

within the hg19 region chr11:47100000-48100000 for the CELF1 locus, chr11:59500000-

60500000 for the MS4A locus, and chr1:169300000-170300000 for the SELL locus. 

Colocalization analysis of AD- and gene expression-associated SNPs was performed using the 

'coloc.abf' function in the 'coloc' R package (v2.3-1). Default settings were used as prior 

probability of association: 1E-4 for trait 1 (gene expression), 1E-4 for trait 2 (AD) and 1E-5 for 

both traits. SMR/HEIDI (v0.65) analysis was performed as described in Zhu et al.28 and the 

companion website http://cnsgenomics.com/software/smr. The ADGC subset of the IGAP 

GWAS dataset was used to perform the LD calculations. 

Partitioned heritability analysis using LD score regression  

We used LDSC (LD SCore, v1.0.0)46 to estimate heritability of AD and schizophrenia from 

GWAS summary statistics (excluding the APOE and MHC regions) partitioned by PU.1 ChIP-

Seq binding sites in myeloid cells, as described in https://github.com/bulik/ldsc/wiki/Partitioned-

Heritability and controlling for the 53 functional annotation categories of the full baseline model. 

GWAS summary statistics for AD and schizophrenia (SCZ) were downloaded from the IGAP 

consortium1 (phase1 dataset) and the Psychiatric Genomics Consortium (PGC)47 (pgc.cross.scz 

dataset), respectively. PU.1 bindings sites were downloaded as filtered ChIP-Seq peaks in BED 

format from ReMap83 (GSE31621, SPI1, blood monocyte and macrophage datasets40) (see 

URLs). 

Phagocytosis assay 

BV2 mouse microglial cell line was kindly provided by Marc Diamond (UT Southwestern 

Medical Center). BV2 cells were cultured in DMEM (Gibco 11965) supplemented with 5% FBS 

(Sigma F4135) and 100 U/ml penicillin-streptomycin (Gibco 15140). Routine testing of cell lines 

using MycoAlert PLUS mycoplasma detection kit (Lonza) showed that BV2 cells were negative 

http://cnsgenomics.com/software/smr
https://github.com/bulik/ldsc/wiki/Partitioned-Heritability
https://github.com/bulik/ldsc/wiki/Partitioned-Heritability
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for mycoplasma contamination. pcDNA3-FLAG-PU.1 was a gift from Christopher Vakoc 

(Addgene plasmid 66974). pGFP-V-RS with either non-targeting shRNA or PU.1-targeting 

shRNAs was purchased from OriGene Technologies (TG502008). The pHrodo red zymosan 

conjugate bioparticles from Thermo Fisher (P35364) were used to assess phagocytic activity. For 

transient transfections, 200,000 cells were seeded in a 24-well plate. On the next day, cells were 

washed with PBS (Gibco 14190) and medium was changed to 400 l DMEM supplemented with 

2% FBS without antibiotic. Transfection mixes of 0.5 g pcDNA3 or 0.5 g pcDNA3-FLAG-

PU.1 with 0.5 g pCMV-GFP for overexpression of mouse PU.1 and 1g pGFP-V-RS-shSCR, -

shA, -shB and -shD for knock-down of mouse PU.1 were prepared with 2 l of Lipofectamine 

2000, incubated for 20 min at room temperature and added to each well. After 8 hours of 

incubation 1 ml of growth medium was added to each well and plates were incubated for 2 days. 

Then the medium was replaced with 500 l of fresh medium, and 25 g of bioparticles were 

added to cells for 3 hour incubation. Bioparticles uptake was verified with a fluorescent 

microscope; then the cells were collected with trypsin (Gibco #25200), washed with PBS once 

and re-suspended in 500 l PBS with 1% BSA. Cells were kept on ice and phagocytic activity 

was analyzed on an LSR II flow cytometer (BD Biosciences). At least 30,000 events were 

collected in each experiment, gated on FSC-A/SSC-A and further on FSC-A/FSC-W dot plot to 

analyze populations of viable single cells. Data were quantified using FCS Express 5 (De Novo 

Software) and GraphPad Prism 6 (GraphPad Software). Cells pretreated with 2 M Cytochalasin 

D for 30 minutes before and during the uptake of bioparticles were used as a negative control. 

The population of GFP+/pHrodo+ cells in each condition was used to quantify the phagocytic 

index: percentage of pHrodo+ cells in GFP+ gated population x geometric mean pHrodo intensity 

/ 106; and represented as phagocytic activity. Three independent experiments were performed 

with two technical replicates without randomization of sample processing, n = 3. Researcher was 

not blinded to the samples identification. Differences between the means of preselected groups 

were analyzed with repeated measures one-way ANOVA and Sidak’s post hoc multiple 

comparisons test, with a single pooled variance. Values of Cytochalasin D-treated cells were 

excluded from the statistical analysis. Adjusted P values for each comparison are reported, non-

significant differences are not labeled. 

Western blotting 

BV2 cells transiently transfected as described for the phagocytosis assay were collected with 

trypsin after 48 hour incubation, washed with PBS and re-suspended in PBS with 1% BSA. Cells 

from the same treatment were pooled and sorted on FACSARIA III (BD Biosciences) into GFP+ 

and GFP- populations, pelleted at 2,000 rpm and lysed in RIPA buffer (50 mM Tris-HCl pH 7.4, 

150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS and Complete protease 

inhibitor tablets (Roche)) with one freeze-thaw cycle and 1 hour incubation on ice. Protein 

concentration was quantified using the BCA kit (Thermo Fisher #23225). Equal amounts of 

protein were separated by electrophoresis in Bolt 4 – 12% Bis-Tris Plus gels with MOPS SDS 

running buffer and transferred using the iBlot 2 nitrocellulose transfer stack. Membranes were 

blocked and probed with antibodies against PU.1 (Cell Signaling #2266) and -Actin (Sigma 

#A5441) in 3% non-fat dry milk in TBS / 0.1% Tween-20 buffer. Secondary antibody staining 

was visualized using WesternBright ECL HRP Substrate Kit (Advansta K-12045) and 

ChemiDoc XRS+ (BioRad). Images were quantified using ImageJ (NIH) and GraphPad Prism 7 

(GraphPad Software). Two independent experiments were performed without randomization of 

sample processing, n = 2. Researcher was not blinded to the samples identification. Differences 

between every group mean were analyzed with repeated measures one-way ANOVA and Sidak’s 
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post hoc multiple variance test, with a single pooled variance. Adjusted P values for each 

comparison are reported. 

Quantitative PCR 

Sorted GFP+ BV2 cells after overexpression or knock-down of PU.1 were collected as described 

for western blotting. Cell pellets were lysed in QIAzol reagent and RNA was isolated with 

RNAeasy Mini kit according to the manufacturer’s instructions (Qiagen) including the Dnase 

treatment step with RNase-free DNase set (Qiagen). Quantities of RNA were measured using 

Nanodrop 8000 (Thermo Scientific) and reverse transcription was performed with 1-2 g of total 

RNA using High-Capacity RNA-to-cDNA kit (Thermo Fisher Scientific). qPCR was performed 

on QuantStudio 7 Flex Real-Time PCR System (Thermo Fisher Scientific) using Power SYBR 

Green Master Mix (Applied Biosystems) with one-step PCR protocol. 3 ng of cDNA was used 

for all genes except Ms4a4a when 24 ng of cDNA was used in a 10 l reaction volume. Primers 

were from PrimerBank84 or designed using Primer-BLAST program (NCBI) and are listed in 

Supplementary Table 12. Ct values were averaged from two technical replicates for each gene. 

Geometric mean of average Ct for the housekeeping genes GAPDH, B2M and ACTB was used as 

a reference that was subtracted from the average Ct for a gene of interest (dCt). Gene expression 

levels were log transformed (2-dCt) and related to the mean values of pcDNA3 and pGFP-V-RS-

shSCR control samples in each sort giving a fold change of relative expression for each gene of 

interest. Data were visualized in GraphPad Prism 7 (GraphPad Software). Four independent 

experiments were performed without randomization of sample processing, n = 4. Researcher was 

not blinded to the sample identity. Differences between means were analyzed using one-way 

ANOVA and Dunnett’s post hoc multiple comparisons test. Adjusted P values for each 

comparison are reported in the figure legends. 

Data availability 

Summary statistics for the genome-wide survival analyses are posted on the NIA Genetics of 

Alzheimer's Disease Data Storage (NIAGADS, see URLs).  

Code availability 

Codes for analyses are available upon request. 

URLs 

BRAINEAC, http://caprica.genetics.kcl.ac.uk/BRAINEAC; Brain RNA-Seq, 

http://web.stanford.edu/group/barres_lab/brainseq2/brainseq2.html; WashU EpiGenome 

Browser, http://epigenomegateway.wustl.edu/browser; H3K4me1, H3K27ac and PU.1 ChIP-Seq 

track hub for human monocytes and macrophages, http://www.ag-

rehli.de/TrackHubs/hub_MOMAC.txt; International Genomics of Alzheimer's Project (IGAP) 

http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php; Psychiatric Genomics 

Consortium (PGC) https://www.med.unc.edu/pgc/results-and-downloads; ReMap 

http://tagc.univ-mrs.fr/remap; NIAGADS, https://www.niagads.org. 
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Tables 

Table 1. Genome-wide survival analysis of Alzheimer’s Disease. (a) Description of Consortia 

samples with available phenotype and genotype data included in the genome-wide survival 

analysis. AAO: age at onset. AAE: age at last examination. (b) Summary of loci with significant 

(p < 5x10-8) or suggestive (p < 1x10-5) associations from the genome-wide survival analysis. 

a 

    Cases       Controls   

Dataset N Percent 

women 

Mean AAO yrs 

(s.d.) 

 
N Percent 

women 

Mean AAE yrs 

(s.d.) 

ADGC 8617 58.9 74.2 (8.1) 
 

9765 60.1 77.1 (8.4) 

GERAD 2615 63.4 73.0 (8.5) 
 

1148 62.1 76.5 (7.0) 

EADI case-control study 1420 67.2 72.1 (7.1)  878 61 72.2 (7.8) 

EADI longitudinal study 387 61.8 81.3 (5.6)  5416 61.1 79.3 (5.3) 

CHARGE FHS 229 65.5 85.7 (6.3) 
 

1979 54.1 80.7 (7.5) 

CHARGE CHS 374 69.2 82.2 (5.0) 
 

1675 60.6 81.1 (5.2) 

CHARGE Rotterdam 764 73.2 83.1 (6.6) 
 

4988 57.8 81.4 (6.9) 

Total 14406 61.7 74.8 
 

25849 59.6 79.0 

b 

SNP 

Major/

minor 

Alleles 

MAF CHRa BP Closest Gene Logistic ORb 

Logistic Survival HR Survival 

Hetero

-

geneity 

P value (95% CI)c P value P value 

Previously reported associated loci 

rs2093761 G/A 0.2019 1 207786542 CR1 1.16 (1.12-1.20) 2.60x10-14 1.07 (1.04-1.10) 1.20x10-6 0.25 

rs6431219 C/T 0.4163 2 127862133 BIN1 1.12 (1.09-1.15) 7.60x10-13 1.08 (1.06-1.10) 
3.90x10-

10 
0.16 

rs1057233 A/G 0.3194 11 47376448 SPI1/CELF1d 0.93 (0.89-0.96) 5.40x10-6 0.94 (0.91-.97) 8.40x10-6 0.86 

rs7930318 T/C 0.4004 11 60033371 MS4A 0.90 (0.87-0.93) 5.10x10-11 0.93 (0.90-.95) 2.30x10-9 0.6 

rs567075 C/T 0.3097 11 85830157 PICALM 0.88 (0.85-0.91) 4.30x10-14 0.91 (0.89-.94) 
9.10x10-

12 
0.74 

rs9665907 G/A 0.1133 11 121435470 SORL1 0.88 (0.83-0.93) 1.80x10-7 0.92 (0.88-.95) 5.50x10-6 0.96 

rs17125944 T/C 0.0924 14 53400629 FERMT2 1.13 (1.08-1.18) 1.00x10-5 1.10 (1.06-1.14) 2.30x10-6 0.31 

rs4803758 G/T 0.3551 19 45327423 APOEe 1.33 (1.30-1.37) 1.20x10-67 1.21 (1.18-1.23) 
7.80x10-

52 
0.32 

Novel loci reaching suggestive significance 

rs10919252 C/G 0.3275 1 169802956 C1orf112 1.04 (1.01-1.08) 
1.10x10-

2 
1.10 (1.06-1.14) 8.20x10-7 0.92 

rs1532244 A/G 0.0925 3 28057905 CMC1 0.95 (0.90-1.01) 
6.90x10-

2 
0.86 (0.80-.93) 9.70x10-6 0.99 

rs116341973 A/G 0.0227 3 63462893 SYNPR 1.20 (1.09-1.30) 
5.40x10-

4 
1.23 (1.15-1.31) 2.50x10-7 0.62 

rs71602496 A/G 0.1453 4 661002 PDE6B 1.02 (0.98-1.06) 
3.60x10-

1 
1.08 (1.05-1.11) 5.00x10-6 0.11 

rs1689013 T/C 0.2493 4 181048651 LINC00290 1.02 (0.98-1.06) 
2.70x10-

1 
1.07 (1.04-1.09) 4.70x10-6 0.31 

rs7445192 A/G 0.461 5 140138701 PCDHA1 NA NA 1.06 (1.03-1.08) 7.90x10-6 0.77 

rs12207208 T/C 0.1034 6 40301379 LINC00951 1.07 (1.02-1.20) 
1.20x10-

2 
1.09 (1.05-1.13) 6.80x10-6 0.78 

rs17170228 G/A 0.0623 7 33076314 NT5C3A 1.07 (1.01-1.14) 
2.50x10-

2 
1.13 (1.08-1.18) 1.00x10-6 0.94 

rs2725066 A/T 0.4872 8 4438058 CSMD1 1.03 (1.00-1.06) 
7.30x10-

2 
1.10 (1.06-1.14) 1.00x10-6 0.6 

rs7867518 T/C 0.476 9 2527525 VLDLR 0.97 (0.94-1.00) 
6.80x10-

2 
0.95 (0.92-.97) 9.10x10-6 0.79 
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rs1625716 T/G 0.0643 10 59960083 IPMK 0.87 (0.80-0.94) 
1.00x10-

4 
0.88 (0.82-.94) 7.70x10-6 0.95 

rs1118069 T/A 0.2805 12 84739181 SLC6A15 0.98 (0.94-1.01) 
2.00x10-

1 
0.90 (0.86-.95) 2.70x10-6 0.8 

rs11074412 A/G 0.2087 16 19833001 IQCK 0.94 (0.90-0.98) 
1.90x10-

3 
0.93 (0.90-.96) 7.00x10-6 0.48 

rs5750677 C/T 0.2885 22 39147715 SUN2 0.97 (0.93-1.00) 
5.10x10-

2 
0.94 (0.91-.97) 5.20x10-6 0.51 

aBuild 37, assembly hg19. bSummary statistics of the logistic regression result was obtained from stage 1 of the 2013 IGAP landmark GWAS 

paper1. cCalculated with respect to the minor allele. dSPI1 is the nearest gene to rs1057233. The same locus is previously assigned as CELF1 in 

the 2013 IGAP GWAS. eThe nearest gene to rs4803758 is APOE.  
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Table 2. Summary of CSF biomarker-associations of suggestive and significant AD 

survival-associated SNPs. Associations exceeding the multiple hypothesis-testing threshold (P 

< 2.27x10-3) are bolded. 

SNP CHR Closest gene Betatau Ptau Betaptau Pptau Betaab42 Pab42 

Previously reported associated loci 

rs2093761 1 CR1 - >0.05 1.51x10-2 
1.63x10-

2 
- >0.05 

rs6431219 2 BIN1 - >0.05 - >0.05 - >0.05 

rs1057233 11 CELF1 -1.26x10-2 
3.85x10-

2 

-1.26x10-

2 

2.62x10-

2 
1.53x10-2 

4.11x10-

4    

rs7930318 11 MS4A -1.25x10-2 
3.33x10-

2 
- >0.05 - >0.05 

rs567075 11 PICALM -1.43x10-2 
2.13x10-

2 
- >0.05 - >0.05 

rs9665907 11 SORL1 -1.70x10-2 
3.78x10-

2 

-1.87x10-

2 

1.50x10-

2 
- >0.05 

rs17125944 14 FERMT2 2.15x10-2 
2.61x10-

2 
- >0.05 

-1.55x10-

2 
2.38x10-2 

rs4803758 19 APOE 1.58x10-2 
9.43x10-

3 
1.96x10-2 

5.81x10-

4 

-1.71x10-

2 
6.75x10-5 

Novel candidate loci 

rs10919252 1 C1orf112 - >0.05 - >0.05 - >0.05 

rs1532244 3 CMC1 - >0.05 2.23x10-2 
1.17x10-

2 
- >0.05 

rs116341973 3 SYNPR - >0.05 - >0.05 - >0.05 

rs71602496 4 PDE6B - >0.05 - >0.05 - >0.05 

rs1689013 4 LINC00290 - >0.05 - >0.05 - >0.05 

rs7445192 5 PCDHA1 - >0.05 1.35x10-2 
1.22x10-

2 
- >0.05 

rs12207208 6 LINC00951 - >0.05 - >0.05 - >0.05 

rs17170228 7 NT5C3A - >0.05 - >0.05 - >0.05 

rs2725066 8 CSMD1 1.45x10-2 
1.70x10-

2 
- >0.05 - >0.05 

rs7867518 9 VLDLR -1.72x10-2 
3.03x10-

3 
- >0.05 - >0.05 

rs1625716 10 IPMK - >0.05 - >0.05 - >0.05 

rs1118069 12 SLC6A15 - >0.05 - >0.05 
-9.96x10-

3 
2.50x10-2 

rs11074412 16 IQCK - >0.05 - >0.05 - >0.05 

rs5750677 22 SUN2 - >0.05 - >0.05 - >0.05 
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Table 3. Significant cis-eQTL associations of the 22 suggestive and significant AD survival-

associated SNPs. Significance threshold is determined to be 2.52x10-6 based on Bonferroni 

correction. The minor alleles are considered as the effective allele.  

SNPID CHR Probe_Id Gene 

Monocyte Macrophage 

P value Beta P value Beta 

rs10919252 1 ILMN_1724422 SELL 7.33x10-35 -0.65 - - 

rs71602496 4 ILMN_1769751 PIGG 5.19x10-10 -0.46 9.11x10-13 -0.58 

rs1625716 10 ILMN_2122953 CISD1 5.98x10-23 -1.09 7.82x10-8 -0.67 

rs1057233 11 ILMN_1696463 SPI1 1.50x10-105 -1.11 6.41x10-87 -1.11 

rs1057233 11 ILMN_1781184 MYBPC3 4.99x10-51 -0.83 5.58x10-23 -0.62 

rs1057233 11 ILMN_1686516 CELF1 3.95x10-8 0.32 - - 

rs1057233 11 ILMN_2382083 CELF1 1.13x10-7 0.31 1.31x10-4 0.25 

rs1057233 11 ILMN_1652989 NUP160 1.42x10-5 -0.26 5.35x10-22 -0.62 

rs7930318 11 ILMN_2370336 MS4A4A 8.20x10-28 -0.56 - - 

rs7930318 11 ILMN_1721035 MS4A6A 4.90x10-23 -0.52 1.25x10-9 -0.35 

rs7930318 11 ILMN_1741712 MS4A4A 1.48x10-11 -0.36 1.54x10-4 -0.22 

rs7930318 11 ILMN_2359800 MS4A6A 1.94x10-10 -0.34 3.77x10-9 -0.34 

rs11074412 16 ILMN_1783712 LOC400506 6.49x10-17 0.54 - - 

rs11074412 16 ILMN_2081883 IQCK - - 1.22x10-12 -0.52 

rs4803758 19 ILMN_2337336 PVRL2 1.52x10-8 0.30 - - 

rs5750677 22 ILMN_2099301 SUN2 3.66x10-58 -0.90 3.15x10-36 -0.80 

rs5750677 22 ILMN_1730879 CBY1 1.80x10-9 -0.37 - - 
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Figure Legends 

 

Figure 1. Genetic and eQTL fine-mapping of AD associations and SPI1 expression and 

ChIP-Seq analysis. (a) The AD-survival association landscape at the CELF1/SPI1 locus 

resembles that of SPI1 eQTL association in monocytes and macrophages. (b) The AD-survival 

association landscape resembles that of MS4A4A/MS4A6A eQTL association in monocytes and 

macrophages. (c) Rs1057233 is associated with reduced SPI1 expression in a dosage-dependent 

manner. (d) The mouse homolog of SPI1, Spi1, is selectively expressed in microglia and 

macrophages in mouse brains based on the brain RNA-Seq database32–34. OPCs contain 5% 

microglial contamination. (e) SPI1 (PU.1) binds to the promoter regions of PICALM and CD33 

in cells of the B-lymphoid or myeloid lineage based on ENCODE ChIP-Seq data85. 

 

Figure 2. PU.1 is involved in the phagocytic activity of BV2 microglial cells. (a) Phagocytosis 

of zymosan labeled with red pHrodo fluorescent dye in BV2 cells with transient overexpression 

and knock-down of PU.1 was measured by flow cytometry. Cytochalasin D treatment was used 

as a negative control. Mean phagocytic index ± SD is shown: pcDNA 0.7373 ± 0.1772, FLAG-

PU.1 1.263 ± 0.2503, shSCR 1.014 ± 0.3656, shA 0.4854 ± 0.1209, shB 0.2579 ± 0.06967, shD 

0.2002 ± 0.05168. F(5,10) = 25.85, pcDNA vs FLAG-PU.1 P = 0.0049, shSCR vs shA P = 

0.0120, shSCR vs shB P = 0.0003, shSCR vs shD P = 0.0002, n = 3. (b) BV2 cells were 

transiently transfected with pcDNA3 (pcDNA) or pcDNA3-FLAG-PU.1 (FLAG-PU.1) and 

pCMV-GFP as described for phagocytosis assay. Note a shift in mobility of the band for 

exogenous FLAG-PU.1 in overexpression condition compared to endogenous PU.1 in control. 

(c) BV2 cells were transiently transfected with shRNA targeting PU.1 (shA, shB and shD) or 

non-targeting control (shSCR) in pGFP-V-RS vector. GFP+ cells were sorted with flow 

cytometer and analyzed for levels of PU.1 in western blotting in two independent experiments 

(b, c). (d) Quantification of PU.1 levels in c normalized to -Actin as a loading control. Values 

are presented as mean ± SD: shSCR 100 ± 0, shA 50.34 ± 9.515, shB 16.03 ± 14.72, shD 12.13 ± 

10.03. F(3,3) = 87, shSCR vs shA P = 0.0120, shSCR vs shB P = 0.0026, shSCR vs shD P = 

0.0023, n = 2. * P < 0.05, ** P < 0.01, *** P < 0.001, repeated measures one-way ANOVA with 

Sidak’s post hoc multiple comparisons test. 

 

Figure 3. Genes regulated in BV2 microglial cells with differential expression of Spi1. (a) 

qPCR analysis in transiently transfected and sorted GFP+ BV2 cells with overexpression (FLAG-

PU.1) and knock-down (shB) of Spi1. Changes in expression levels are grouped for Spi1 and its 

targets and other selected genes in (a), genes with altered levels after overexpression and knock-

down of Spi1 in (b) and genes with variable expression in BV2 cells either with overexpression 

(c) or knock-down (d) of Spi1. (a) Spi1 F(2,20)=500.1: FLAG-PU.1, shB P=0.0001. Cd33 

F(2,15)=37.3: shB P=0.0001. Ms4a4a F(2,13)=16.41: FLAG-PU.1 P=0.0145, shB P=0.0077. 

Ms4a6d F(2,11)=73.69: FLAG-PU.1 P=0.0067, shB P=0.0001. Tyrobp F(2,15)=22.83: shB 

P=0.0001. (b) CCL2 F(2,11)=92.5: FLAG-PU.1 P=0.0002, shB P=0.0001. Cxcl2 F(2,11)=27.73: 

FLAG-PU.1 P=0.0088, shB P=0.0014. Il34 F(2,11)=29.52: FLAG-PU.1 P=0.04, shB P=0.0003. 

Aif1 F(2,11)=34.54, FLAG-PU.1 P=0.0051, shB P=0.0006. Cd64 F(2,11)=95.58: FLAG-PU.1 

P=0.0043, shB P=0.0001. Pilrb F(2,11)=80.18: FLAG-PU.1 P=0.0018, shB P=0.0001. Apoe 

F(2,11)=30.62: FLAG-PU.1 P=0.0284, shB P=0.0004. Clu F(2,13)=21.26: FLAG-PU.1 

P=0.0039, shB P=0.0051. (c) FLAG-PU.1 vs control. Cd36 F(2,11)=13.81: P=0.0009. (d) shB vs 

control. Il1b F(2,13)=12.18: P=0.0025. Csf1 F(2,11)=52.19: P=0.0001. Csf1r F(2,11)=9.188: 
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P=0.0025. Cx3cr1 F(2,11)=11.91: P=0.0028. P2ry12 F(2,13)=21.98: P=0.0001. Pilra 

F(2,11)=76.89: P=0.0001. Itgam F(2,13)=39.83: P=0.0001. Axl F(2,13)=13.49: P=0.0008. Nos2 

F(2,11)=15.54: P=0.0019. Cox2 F(2,11)=6.717: P=0.0224. Arg1 F(2,13)=10.31: P=0.0015. Ctsb 

F(2,13)=25.6: P=0.0001. Nlrp3 F(2,11)=4.503: P=0.0478. Serpinb1 F(2,11)=35.86: P=0.0001. 

Values are presented as mean ± SD, n = 4 samples collected independently. * P < 0.05, ** P < 

0.01, *** P < 0.001, one-way ANOVA with Dunnett’s post hoc multiple comparisons test. 
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