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Abstract:

The nonhomogeneous hidden Markov model (NHMM) statistical downscaling model, 38
catchments in southeast Australia and 19 general circulation models (GCMs) were used in this
study to demonstrate statistical downscaling uncertainties caused by equifinality and
transferability. That is to say, there could be multiple sets of predictors that give similar daily
rainfall simulation results for both calibration and validation periods, but project different
amounts (or even directions of change) of rainfall change in the future. Results indicated that
two sets of predictors (Set 1 with predictors of sea level pressure north-south gradient, u-wind
at 700hPa, v-wind at 700hPa, and specific humidity at 700hPa and Set 2 with predictors of sea
level pressure north-south gradient, u-wind at 700hPa, v-wind at 700hPa, and dewpoint
temperature depression at 850hPa) as inputs to the NHMM produced satisfactory results of
seasonal rainfall in comparison with observations. For example, during the model calibration
period, the relative errors across the 38 catchments ranged from 0.48 to 1.76% with a mean
value of 1.09% for the predictor Set 1, and from 0.22 to 2.24% with a mean value of 1.16% for
the predictor Set 2. However, the changes of future rainfall from NHMM projections based on
19 GCMs produced projections with a different sign for these two different sets of predictors:
Set 1 predictors project an increase of future rainfall with magnitudes depending on future time
periods and emission scenarios, but Set 2 predictors project a decline of future rainfall. Such
divergent projections may present a significant challenge for applications of statistical
downscaling as well as climate change impact studies, and could potentially imply caveats in

many existing studies in the literature.
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1. INTRODUCTION

General circulation models (GCMs) are the primary tools used to simulate present climate and
project future climate, and their outputs are useful in understanding future global climatic
changes for a given greenhouse gases emission scenario (IPCC, 2013). However, the present
generation of global climate models are restricted in their usefulness for many sub-grid scale
applications, such as hydrology and water resources, due to their coarse spatial resolution
(Maraun et al., 2010; Zhang et al., 2016). Downscaling techniques have been developed to
resolve the scale discrepancy between GCM climate change scenarios and the resolution
required for climate impact assessments. Two approaches of downscaling are commonly used:
Dynamical downscaling and statistical downscaling (Mehrotra and Shama 2006; Maraun et al.,
2010).

Statistical downscaling is more widely used than the dynamical downscaling for climate
change applications due to its pragmatic advantages (Fu et al., 2012). Compared to dynamical
downscaling, statistical downscaling is simpler, uses minimal computing resources, can
generate multiple stochastic realisations, and once developed can be relatively easily used to
downscale from many GCMs to represent the full range of simulated uncertainty. In contrast,
dynamical downscaling requires long computing run times, and because is not calibrated for
rainfall characteristics it requires bias correction to produce rainfall that adequately matches
observed rainfall characteristics (Corney et al., 2010). Ehret et al. (2012) even argued that bias
correction technique is often used in an invalid way, i.e., it is added to the GCM/RCM model
chain without sufficient proof that the consistency of the latter as well as the generality of its
applicability increases.

The choice of predictor variable(s) is one of the most influential steps in the application and
development of statistical downscaling schemes because this decision largely determines the

characteristics of the downscaled scenario (Wilby et al. 2004). There are many studies in the



literature on the selection of the best predictors. For example, Radanovics et al. (2013)
proposed an extended version of the growing rectangular domain algorithm to provide an
ensemble of near-optimum predictor domains for a statistical downscaling method. Sauter and
Venema (2011) presented an approach for conditional airmass classification based on local
precipitation rate distributions. It seeks, within the target region, three-dimensional
atmospheric predictor domains with high impact on the local-scale phenomena, and concluded
that predictor interactions played an important part in the modeling process and should be taken
into account in the predictor screening. Phatak et al. (2011) described the use of a fast, sparse
variable selection method, known as RaVE, for selecting atmospheric predictors, and
illustrated its use on rainfall occurrence at stations in South Australia. Dayon et al. (2015)
valued different combinations of predictors and found that a good temporal transferability is
obtained only with a specific combination of predictors. Huth (2005) described a search for
suitable predictors and predictands for downscaling of humidity variables. Hroton et al. (2017)
have assessed multiple combinations of global optimization algorithms to select the best
predictors and developed a new algorithms, i.e., the chromosome of adaptive search radius.

Despite the importance of predictor selection and the above-mentioned studies to explore the
best predictors, there have been relatively few studies that specifically investigate the
uncertainty due to choices of different downscaling predictors. For example, statistical
downscaling of extreme precipitation for the Mediterranean region by Hertig et al (2014) found
that “different predictor variables can lead to varying statistical downscaling results”. Lafaysse
et al. (2014) have explored the uncertainties of future hydrometeorological projections and
concluded that predictor selection is one of main uncertainties. Ben Daound et al. (2016) have
reported that the downscaling model can be improved by introducing two additional predictors.
Therefore, the choice of method/criteria often leads to the selection of different predictor

variables. This could potentially result in an equifinality (Beven and Freer, 2001), as well as



transferability problems for future rain projections (Dayon et al., 2015). That is to say, there
are multiple sets of predictor variables and relationships that give similar overall simulation
results when calibrating the statistical downscaling model. However, the different calibration
parameter sets can give different projections of future rainfall due to both parameter
equifinality and the temporal transferability of a statistical downscaling method in a climate
change context. Regarding different spatial domains of predictors, it has been demonstrated by
Radanovics et al. (2014).

Therefore, the objectives of this study are to demonstrate the equifinality and transferability for
statistical downscaling by using the nonhomogeneous hidden Markov model (NHMM)
stochastic daily downscaling model for 38 catchments in southeast Australia with two different
sets of predictors, and to discuss a few guidelines as potential general principles to select more

suitable predictors.
2. METHODS AND DATA
2.1. Equifinality and transferability

Equifinality, which was originally defined by Hans Driesch, a developmental biologist, is the
principle that a given end state in open systems can be reached by many potential means
(Cummings and Worley, 2005). It suggests that similar results can be achieved with different
initial conditions and in many different ways. This term was introduced to hydrology by Beven
(1993) in that an acceptable hydrological model can be achieved in many different ways, i.e.,
different model structure or parameter sets. Here we show that this also applies to statistical
downscaling, i.e., a statistical downscaling model can be calibrated and validated well with

different parameter sets.

This equifinality issue may present a challenge for future climate change projections, i.e., the

temporal transferability of a statistical downscaling method in a climate change context (Dayon



etal., 2015, Chaedon et al., 2014). That is to say, the current predictor-predictand relationship
may not be transferred in future climate change conditions, and accordingly different
calibration parameter sets could give different projections of future rainfall. This is defined as
“Transferability” in this study. The two related issues, i.e., equifinality and transferability, are
investigated in this study as they could be main sources of the uncertainty in statistical

downscaling.
2.2. Study region

The study region comprises 38 catchments of the southern Murray-Darling Basin (MDB) in
south-eastern Australia, i.e., Loddon, Avoca, Campaspe, and Goulburn rivers (Figure 1). This
study region has been selected as: 1) The MDB is Australia’s most important agricultural
region producing 38% of total Australian agricultural commodities, worth approximately $14
billion per year (Cai and Cowan, 2008) , thus future climate impact on the productivity of this
region is of high national interest; 2) The MDB has experienced a decadal-long drought with
unprecedented decline in the streamflow (Potter et al., 2010; Potter and Chiew, 2011), with a
more significant impact of temperature change on streamflow than previously reported (Yu et
al 2011); and 3) the nonhomogeneous hidden Markov model (NHMM) stochastic daily
downscaling model has previously been shown to perform well in the study catchments in
terms of various rainfall statistics (Chiew et al., 2010, Frost et al., 2011, Fu et al., 2013a;b).
Note our study region is a very small part of the MDB, and consequently it is homogeneous in

terms of rainfall processes.
2.3. Statistical Downscaling Model -- NHMM

The NHMM simulates multi-site patterns of daily rainfall occurrence and amounts conditional
on a finite number of ‘hidden’ (i.e. unobserved) weather states (Hughes et al., 1999). The

temporal evolution of these daily states is modelled as a first-order Markov process with state-



to-state transition probabilities conditioned on a small number of synoptic-scale atmospheric
predictors, such as mean sea-level pressure, geopotential heights, and measures of atmospheric
moisture. When previously applied to these catchments, the NHMM showed good skill in
reproducing characteristics of the observed daily rainfall distributions (Fu et al., 2013a). A
detailed description of the current-generation NHMM, including its assumptions, mathematical
parameterizations and estimation algorithms can be found in Hughes et al. (1999) and Kirshner
(2005). Previously, the NHMM has been applied to many regions in the world, including
Australia (Charles et al., 1999, Chiew et al., 2010, Frost et al., 2011, Fu et al., 2013a;b), Brazil
(Robertson et al., 2004), China (Liu et al., 2011, 2013), India (Greene et al., 2011), and USA
(Robertson et al., 2007).

In this study, data (rainfall and predictors) from 1981 to 2000 was used to calibrate the NHMM
and the data from 1961 to 1980 is used to verify the model. Data over the more recent period
(1981-2000) were chosen to calibrate the model because they have relatively higher quality
than earlier periods.

This study focusses only on the April-October season, because it is the main rainfall season in
the study region. Furthermore, rainfall statistical downscaling predictors usually vary from
season to season, so annual rainfall is usually simulated by combining seasonal models.

2.4. General circulation models (GCMs)

The atmospheric predictors from 19 Coupled Model Intercomparison Project Phase 5 (CMIP5)
GCMs (Table 1) were used in this study to drive the NHMM to project future rainfall. The
CMIP5 GCM simulations were forced by plausible scenarios of greenhouse gas emissions and
aerosols throughout the 21% century, referred to as Representative Concentration Pathways
(RCPs) (Van Vuuren et al., 2011). This study used projections for the RCP4.5 scenario, an
intermediate-emissions scenario, and for RCP8.5, a high-emissions scenario. The RCP

numbers refer to the approximate enhanced radiative forcing levels by 2100, i.e. an additional



4.5 W/m? and 8.5 W/m? of radiative forcing at 2100, respectively, corresponding to equivalent
CO2 levels of ~650 ppm and ~1370 ppm by 2100. Detailed information for these models and
RCP emission scenarios can be found at the website of the Program for Climate Model

Diagnosis and Intercomparison (PCMDI) (http://www-pcmdi.lInl.gov/).

The CMIP5 GCM historical runs span 1961 to 2005 (45 years) and future climate projections
2006 to 2100 (95 years). To make an equal time length comparison, three different overlapping
periods of 45 years, i.e., 2006-2050, 2031-2075 and 2056-2100, are used here to compare the
future rainfall change with the historical period. The future projection rainfall is compared with
each GCM’s historical period (1961-2005) downscaled rainfall, not to observed rainfall. That
is to say, the calibrated NHMM is applied to each GCM’s historical and future periods,
respectively. The difference between modelled rainfalls for the different time periods are then
explored.

2.5. Predictor selections

The selections of NHMM predictors involved the following steps:

a) The gridded daily atmospheric variables (potential predictors) were extracted from the
NCEP/NCAR Reanalysis 1 (NNR) (Kalnay et al., 1996) archive for the region shown in
Figure 1. The size of domain is chosen to capture the relevant scale of the atmospheric
predictor variables (10x8 = 80 2.5x2.5 degree longitude-latitude grids). The variables
include mean sea-level pressure (MSLP), and for the 850, 700 and 500 hPa levels:
temperature, specific humidity, U-wind (eastward wind speed component) and V-wind
(northward wind speed component). This step produces 13 variables x 80 grids = 1040
potential predictors. The NCEP-NCAR reanalysis data (Kalnay et al., 1996) were chosen
as it has been widely used in climate community. However, there are other reanalyses
existing, which may perform better at some regional scale. A full comparison of these

reanalysis products is beyond the scope of the current study. However, our recent study (Fu



b)

c)

d)

et al., 2016) shows that NCEP-NCAR and ERA-Interim produce similar results for
potential predictors for the study region.

The dewpoint temperature depressions (DTD) at 850, 700 and 500 hPa levels were
calculated from the temperature and specific humidity variables. This step produces 3
variables x 80 grids = 240 additional potential predictors.

For MSLP, each north-south, east-west, northeast-southwest, and northwest-southeast
difference for adjacent grid-points were also calculated, because sea level pressure
gradients typically have a high correlation with rainfall (Charles et al., 1999; Frost et al.,
2011; Liu et al., 2011; Fu et al., 2013a,b; Liu et al., 2013). This step produced 70 (north-
south) + 72 (east-west) + 2x63 (northeast-southwest and northwest-southeast) = 268
additional potential predictors.

The correlations between daily time-series of each variable (1548) and daily rainfall series
for each catchment were calculated and then averaged over the 38 study catchments. This
identified the sub-region for which each variable had the highest correlation with rainfall
for the study catchment network. The candidate predictors were selected for the sub-regions
of their highest correlation with rainfall. The independence of predictors are also considered
in this step, because if the most highly correlated predictors are correlated, then they may
be adding less information than other predictors with relatively lower correlations. We also
define variable domains by merging several gird cells if they all have a high correlation
with rainfall (Figure 2). This step reduced the potential predictors from 1548 to 14 (Table
2), including sea level pressure, east-west sea level pressure gradient (both predictors 2 and
3 as they are different grids), north-south sea level pressure gradient, u-wind at 700 and
850hPa, v-wind at 700 and 850 hPa, specific humidity at 500, 700 and 850hPa, and dew-
point temperature depression at 500, 700 and 850hPa. Figure 2 shows the sub-regions of

these 14 predictors.



e) The NHMM model was run with all possible four predictor combinations of these 14

f)

candidate predictors. The calibrated NHMMSs were assessed using a few criteria: 1) Bayes
Information Criterion (BIC), as a measure of parameter parsimony, for the calibration
period, and for both the calibration and validation periods; 2) mean bias of simulated
rainfall calculated for each season and catchment and then averaged; 3) interannual
correlation calculated for each catchment and then averaged; 4) a constraint that at least
one of the four is a sea-level pressure predictor (i.e. predictor 1, 2, 3, or 4) and one is a
moisture (humidity or DTD) predictor. This constraint is based on previous experience
identifying the importance of surface circulation and atmospheric moisture for providing
realistic projections (Charles et al., 1999). In addition, the pressure field and humidity
predictors are used for almost all statistical downscaling methods, as well as for prefect
model framework (Dixon et al., 2016).

There were a number of combinations of four predictors capable of reproducing rainfall
characteristics that are close to the observed statistics. In this study, we simply pick two
sets of predictors as a case study with the intention of demonstrating the equifinality issue
and the implication on uncertainties of statistical downscaling influenced by the choice of
predictors. Set 1 with predictors of sea level pressure north-south gradient (4), u-wind at
700hPa (5), v-wind at 700hPa(7), and specific humidity at 700hPa(10) and Set 2 with
predictors of sea level pressure north-south gradient(4), u-wind at 700hPa(5), v-wind at
700hPa(7), and dewpoint temperature depression at 850hPa(14). The only difference is the
inclusion of specific humidity at 700hPa (predictor 10) versus DTD at 850hPa (predictor
14). It needs pointing out that a full investigation of all relatively independent possibilities
would be required to fully explore the relationship between predictor choice and

equifinality/transferability but is out of scope of this current study.
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g) The predicators from GCMs are standardized with each GCM’s own historical period
(1961-2005 in this case) to remove the biases of climatological performance at the present-
day period.

3. RESULTS

3.1. Equifinality from NHMM calibration and validation results

The NHMM model calibration (1981-2000) and validation (1961-1980) results of winter-half

(April-October) rainfall across 38 catchments, with two different predictor sets, are shown in

Figure 3. Overall, NHMM produced pretty good results of seasonal rainfall in comparison with

observations for both predictor sets for calibration period (Figure 3, first row): the relative

errors across the 38 catchments range from 0.48 to 1.76% with a mean value of 1.09% for the

predictor Set 1, and from 0.22 to 2.24% with a mean value of 1.16% for the predictor Set 2.

The correlation coefficients between simulated and observed seasonal rainfall across 38

catchments for both sets of predictor are larger than 0.9999 (Figure 3).

There is slightly less agreement between observed and simulated seasonal rainfall during the

validation period in comparison with calibrated period (Figure 3, second row), but they are still

satisfactory results. For example, the relative errors across the 38 catchments range from -9.5

to 11.0% with a mean value of -1.74% for the predictor Set 1, and from -9.7 to 10.2% with a

mean value of -2.23% for the predictor Set 2. The correlation coefficients between simulated

and observed seasonal rainfall across 38 catchments for both sets of predictor are 0.991 (Figure

3).

In summary, both sets of predictors produced adequate seasonal rainfall, and their differences

are too small to identify a better predictor set, because either can be recognized as the best

depending on which model/criterion were used. It confirms that equifinality is indeed a

challenging issue to statistical downscaling that may produce one of the main uncertainties of

statistical downscaling.
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It needs to point out that mean seasonal rainfall was used in this study to demonstrate the
existence of equifinality and transferability issues because of its importance for climate change
impact studies, as well as its being one of criteria to select the best models (Section 2.5e for
details). In addition, our previous work (e.g., Fu et al., 2013a; b) showed that the best identified
NHMM model usually reproduces a wide range of rainfall statistics, such as monthly
distribution, winter/summer seasonal rainfall, daily maximum rainfall, 99th and 95th
percentiles of daily rainfall, 99th percentiles of 3-day rainfall, numbers of rain days, maximum
consecutive wet/dry days, etc.. Whether the two models are similarly able to simulate other
rainfall statistics does not affect the conclusion that there is an equifinality issue inherent in
statistical downscaling.

3.2. Transferability for future rainfall projections resulting from equifinality of predictors
Changes of future rainfall from the NHMM projections based on 19 GCMs are in different
directions for the two different sets of predictors (Figure 4): one set of predictors projects an
increase of future seasonal rainfall and another set a decline of future seasonal rainfall. It results
from the transferability of calibrated models into a climate change context. The variations of
the boxplot mainly comes from different GCMs, because the 38-catchment-averages of mean
values of 50 NHMM simulations of each GCM was used to minimize the model uncertainty
due to stochastic characteristics of statistical downscaling, and the averaging values across 38
catchment were used to minimize the spatial distribution and some deviations with modelling
errors as shown in Figure 3 validation period.

Both projections seem rational: the magnitudes of rainfall changes become larger with time,
i.e., larger magnitude of changes by the end of 21 century; RCP8.5 emission scenario usually
result in a larger rainfall change than RCP4.5; The differences between RCP4.5 and RCP8.5

are very small for the near future (2006-2050), but significant by the end of 21% century (2056
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2100). This implies that the difference does not come from climate variability, rather it is
coming from the trends of the predictors.

The predictor changes in the future (Figure 5) correspond to the future rainfall changes.
Changes do not seem unreasonable from a physical processes perspective: rainfall generally is
proportional to humidity, because more moisture implies a high probability of rainfall; but
rainfall is inversely proportional to DTD, the difference between the temperature and dew-
point temperature at a certain height in the atmosphere. The larger the DTD value (wider
separation between air temperature and dew-point), the lower the relative humidity, and
accordingly lower probability of rainfall.

It needs point out that it is the changes of 45-year mean of seasonal rainfall, and the interannual
variability is not explored here. In reality, the rainfall variation would be much larger because
climate variability overlaps with climate change signals.

4. DISCUSSION

This study provides evidence for the existence of equifinality and non-transferability issues in
statistical downscaling. These may be one of the main uncertainties in statistical downscaling
and could pose challenges for the validity of statistical downscaling as used in climate change
impact studies. While there is not a simple method and/or criterion to determine which
predictor set will provide reliable rainfall projections for a future climate, a few guidelines, but
are not limited to, are discussed as below:

1) Regional rainfall physical processes should be considered. This is probably the most
important guideline to select predictors, because the causality of the relationship between
rainfall and the predictor variable and whether this relationship is still meaningful in the future
projections are fundamental principles for statistical downscaling. Sometimes the best
predictors identified with statistical criteria are not the best variables to associate with regional

rainfall processes, and not completely adequate for climate change projection applications
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(Wilby et al., 2004). For example, daily rainfall may be determined by geopotential heights in
the extratropical areas, but changes of geopotential heights from GCMs in a warming climate
might contain a non-dynamic signal, which will spuriously affect the estimation of rainfall
changes (Wilby et al., 2004). This non-dynamic component should be corrected, as per
suggestion of Burkhardt (1999), either by subtracting the mean changes of the geopotential
heights in a sufficiently large area, or by using geopotential thickness, instead of geopotential
heights, as predictors.

In our case study, both specific humidity and DTD represent moisture variables, which make
sense as atmospheric moisture is an important factor influencing rainfall processes. However,
DTD seems more suitable than specific humidity in this case, because it is a function of
moisture and air temperature, given global and regional air temperature will increase in the
future climate change scenarios. It is consistent with the conclusions of Timbal et al. (2008a)
that “a relative humidity moisture predictor, rather than specific humidity, was needed for
downscaled projections to be consistent with direct model output projections”. In fact, various
choices of humidity predictors have been used in many studies in the literature to downscale
precipitation, such as relative humidity and total column water (Radanovics et al., 2013,
Chardon et al., 2014, Caillouet et al., 2015), soil moisture flux and specific humidity (Dayon
et al., 2015), and soil moisture flux and relative humidity (Lafaysse et al., 2014).

Generally speaking, variables representing the absolute atmospheric moisture, e.g., specific
humidity and total precipitable water do not account for the whole ‘climate signal’, including
climate changes and variability (Mehrotra and Sharma, 2011). This is because, in a warming
climate, the moisture-holding capacity of the atmosphere increases and as such additional
information about atmospheric temperature is also required to know the amount of atmospheric
moisture that can precipitate (Mehrotra and Sharma, 2011). Thus DTD, computed as a function

of both atmospheric moisture and air temperature, appears to be a better choice.
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2) Comparative studies could also be used to quantify the uncertainties and possible ranges
of climate change projections, and accordingly to seek reliable predictors to make similar
projections of future rainfall. A growing number of studies in the literature have compared
different statistical downscaling methods or compared statistical downscaling with dynamical
downscaling methods. For example, Wilby and Wigley (1997) and Wilby et al. (1998)
compared six statistical downscaling approaches for multiple sites across the USA using
observed and GCM data. Frost et al. (2011) have examined six downscaling methods (one
scaling methods, four statistical downscaling and one dynamical downscaling) to simulate
multi-site daily rainfall for 30 rain gauges in south-eastern Australia. Sunyer et al (2012) have
compared five statistical downscaling methods based on a common change factor methodology
from four different RCMs results, but reported a significant uncertainty in the downscaled
projected changes of the mean, standard deviation, skewness and probability of dry days.

In our case study, the statistical downscaling results of NHMM with predictor Set 2 have a
similar rainfall changing magnitude and direction with empirical scaling, statistical
downscaling modelling (SDM) of Australian Bureau of Meteorology (Timbal et al., 2008b),
and two dynamical downscaling methods (WRF and CCAM) for the June-July-August and
September-October-November seasons (Potter et al., 2018). However, for the March-April-
May season, the future rainfall projections from dynamical downscaling have different
changing magnitudes and directions with statistical downscaling and empirical downscaling
methods (Potter et al., 2018). This difference, not uncommonly reported in the literature, can
drive users to further explore the reason in terms of plausible climate change signal. For
example, Grose et al (2015) attributed the different climate projections for the southern
Australia cool season rainfall from a statistical and dynamical downscaling comparison to a
plausible relationship with topography and regional drivers that are not resolved by coarse

global models.
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However, a critical question for this kind of comparison study is that obtaining the same

future rainfall changing directions does not guarantee it is “correct”.

3) Historical observed rainfall trend in a warming climate might imply the future change
directions. In the last 50-60 years, almost all regions in the world have experienced a climate
warming trend, and the associated rainfall changes in this warming climate in the past could be
used as a reference for future rainfall changes. However, it is still a scientific debate whether
the recent observed trend will necessarily continue into the future, especially for regions where
there is little evidence linking observed rainfall trends to a warming climate.

4) The skill with which a climate variable (predictor) is simulated for the future, as measured
by how consistent its simulations are across a range of GCMs, could also be used as a criteria
to select better predictors for statistical downscaling. For example, Mehrotra and Sharma (2011)
have used a variable convergence score method to evaluate the consistency associated with the
prediction of 25 variables relevant for 19 GCMs. They found that mean sea-level pressure has
the highest skill followed by the air temperature, geopotential heights and equivalent potential
temperature. For the two different variables used in this case study, i.e., predictor 14 (DTD at
850 hPa) and predictor 10 (specific humidity at 700hPa), the former shows a slightly higher
score than latter from the results of Mehrotra and Sharma (2011).

However, humidity variables are generally projected by GCMs to have larger changes in the
future warming world. The future mean values (45 years) of 14 predictors used in this study
across 19 GCMs are shown in Figure 6. Since it has been standardized by its own GCM
historical runs (1961-2005), values of these predictors represent their changes in the future.
The box plot variations come from 19 GCMs. It clearly demonstrates that humidity
variables/predictors have a larger magnitude in the future than non-humidity ones. The
changing magnitudes also vary with emission scenarios as well as time period, which is

consistent with existing conclusions in the literature.
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A critical question is whether we can only use non-humidity predictors because future changes
of them have been observed in the historical periods and they have been simulated consistently
across a range of GCMs, or we should combine both non-humidity and humidity predictors to
have a better fitting model and physical explanation. In this case study, if only predictors 4, 5
and 7 are used, then the model errors are about 16-20% for seasonal rainfall for both calibration
and validation periods, and accordingly project a slight decrease of future rainfall (Figure 7)
— magnitudes being smaller than that with predictors 4, 5, 7 and 14. If we use only sea level
pressure predictors (1, 2, 3 and 4, Table 2), given the surface circulation is probably the most
important single predictor for rainfall physical processes, the model error is about 12—-16% for
seasonal rainfall for both calibration and validation periods (not shown).

5) Ensemble multi-models with different predictor sets can be used to quantify the ranges of
future climate change projections. In most statistical downscaling studies, great efforts have
been carried out in order to select predictors. However, this approach will accept all reasonable
models (with different predictors), then quantify the range of future climate change projections
and investigate how often a specific predictor is selected in the downscaling models in terms
of absolute numbers and in relation to the total number of models (Hertig et al., 2014). Wu et
al (2012) constructed sixty ensemble members for probabilistic estimates, instead of a single
deterministic forecast, to statistically downscale climate forecast system for the Southeastern
Mediterranean.

6) A perfect model framework can be used to isolate the uncertainties associated with the
non-transferability stationarity assumption that are inherent to the future climate projections
via statistical downscaling models (Dixon et al., 2016). Note that the name is not meant to
imply that the model itself is perfectly free of errors. Rather, it is a name given to a model
experiment approach in which model data is used as a substitute of observations or truth (Dixon

et al., 2016). For example, outputs from a RCM is taken as predictands, both in the calibration
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period and the future simulation period (Vrac et al., 2007, Beuchat et al., 2012, Dixon et al.,
2016). Furthermore, using an ensemble of RCMs may help to take account of different RCM

behaviors in regional changes (Dayon et al., 2015).
5. SUMMARY

Statistical downscaling is a useful tool and has been widely used for climate change impact
studies. However, critical challenges and uncertainties remain, and selecting the most suitable
and appropriate predictors is one of them, because it could potentially result in the equifinality
and transferability issues highlighted here, i.e., there could be multiple sets of parameter values
that give similar daily rainfall simulation results for both calibration and validation periods, but
project different future rainfall change amount and directions in the global warming scenarios.
For example, in this case study, two sets of predictors of NHMM model produce a pretty good
of calibration and validation of seasonal rainfall, but project a different sign — one increasing
and one decreasing — of future rainfall. Such divergent projections present a significant
challenge for applications of statistical downscaling and could potentially imply caveats for
many existing studies on climate change impacts studies using statistical downscaling.

There is not a simple method and/or criterion to determine which predictor set will provide a
reliable rainfall projection for a future climate, because the future precipitation is unknown and
we cannot verify or test the downscaled results. A few guidelines are discussed in this study as
general principles, with the most important of them regional rainfall physical processes,
because the causality of the relationship between rainfall and the predictor variable and whether
this is still meaningful in the future projections are keystones of statistical downscaling.

In this case study, predictor set with DTD seems more reasonable than predictors with specific
humidity, but it may still not the best predictor set for regional statistical downscaling as we
simply selected two sets of predictors to demonstrate the equifinality and transferability issues

of statistical downscaling. It needs further investigations, such as accepting all reasonable
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models with different predictors to quantify the range of future climate change projections
(Hertig et al., 2014), or using a prefect model framework to isolate the uncertainties associated
with the transferability stationarity assumption that are inherent to the future climate

projections from statistical downscaling models (Dixon et al., 2016).
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