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Abstract:  

The nonhomogeneous hidden Markov model (NHMM) statistical downscaling model, 38 

catchments in southeast Australia and 19 general circulation models (GCMs) were used in this 

study to demonstrate statistical downscaling uncertainties caused by equifinality and 

transferability. That is to say, there could be multiple sets of predictors that give similar daily 

rainfall simulation results for both calibration and validation periods, but project different 

amounts (or even directions of change) of rainfall change in the future. Results indicated that 

two sets of predictors (Set 1 with predictors of sea level pressure north-south gradient, u-wind 

at 700hPa, v-wind at 700hPa, and specific humidity at 700hPa and Set 2 with predictors of sea 

level pressure north-south gradient, u-wind at 700hPa, v-wind at 700hPa, and dewpoint 

temperature depression at 850hPa) as inputs to the NHMM produced satisfactory results of 

seasonal rainfall in comparison with observations. For example, during the model calibration 

period, the relative errors across the 38 catchments ranged from 0.48 to 1.76% with a mean 

value of 1.09% for the predictor Set 1, and from 0.22 to 2.24% with a mean value of 1.16% for 

the predictor Set 2.  However, the changes of future rainfall from NHMM projections based on 

19 GCMs produced projections with a different sign for these two different sets of predictors: 

Set 1 predictors project an increase of future rainfall with magnitudes depending on future time 

periods and emission scenarios, but Set 2 predictors project a decline of future rainfall. Such 

divergent projections may present a significant challenge for applications of statistical 

downscaling as well as climate change impact studies, and could potentially imply caveats in 

many existing studies in the literature.     

 

Key words: Statistical downscaling, Uncertainties, Equifinality, Transferability, Predictor 

selections, NHMM, GCMs 
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1. INTRODUCTION 

General circulation models (GCMs) are the primary tools used to simulate present climate and 

project future climate, and their outputs are useful in understanding future global climatic 

changes for a given greenhouse gases emission scenario (IPCC, 2013). However, the present 

generation of global climate models are restricted in their usefulness for many sub-grid scale 

applications, such as hydrology and water resources, due to their coarse spatial resolution 

(Maraun et al., 2010; Zhang et al., 2016). Downscaling techniques have been developed to 

resolve the scale discrepancy between GCM climate change scenarios and the resolution 

required for climate impact assessments. Two approaches of downscaling are commonly used: 

Dynamical downscaling and statistical downscaling (Mehrotra and Shama 2006; Maraun et al., 

2010). 

Statistical downscaling is more widely used than the dynamical downscaling for climate 

change applications due to its pragmatic advantages (Fu et al., 2012). Compared to dynamical 

downscaling, statistical downscaling is simpler, uses minimal computing resources, can 

generate multiple stochastic realisations, and once developed can be relatively easily used to 

downscale from many GCMs to represent the full range of simulated uncertainty. In contrast, 

dynamical downscaling requires long computing run times, and because is not calibrated for 

rainfall characteristics it requires bias correction to produce rainfall that adequately matches 

observed rainfall characteristics (Corney et al., 2010).  Ehret et al. (2012) even argued that bias 

correction technique is often used in an invalid way, i.e., it is added to the GCM/RCM model 

chain without sufficient proof that the consistency of the latter as well as the generality of its 

applicability increases. 

The choice of predictor variable(s) is one of the most influential steps in the application and 

development of statistical downscaling schemes because this decision largely determines the 

characteristics of the downscaled scenario (Wilby et al. 2004). There are many studies in the 
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literature on the selection of the best predictors. For example, Radanovics et al. (2013) 

proposed an extended version of the growing rectangular domain algorithm to provide an 

ensemble of near-optimum predictor domains for a statistical downscaling method. Sauter and 

Venema (2011) presented an approach for conditional airmass classification based on local 

precipitation rate distributions. It seeks, within the target region, three-dimensional 

atmospheric predictor domains with high impact on the local-scale phenomena, and concluded 

that predictor interactions played an important part in the modeling process and should be taken 

into account in the predictor screening. Phatak et al. (2011) described the use of a fast, sparse 

variable selection method, known as RaVE, for selecting atmospheric predictors, and 

illustrated its use on rainfall occurrence at stations in South Australia. Dayon et al. (2015) 

valued different combinations of predictors and found that a good temporal transferability is 

obtained only with a specific combination of predictors. Huth (2005) described a search for 

suitable predictors and predictands for downscaling of humidity variables. Hroton et al. (2017) 

have assessed multiple combinations of global optimization algorithms to select the best 

predictors and developed a new algorithms, i.e., the chromosome of adaptive search radius.  

Despite the importance of predictor selection and the above-mentioned studies to explore the 

best predictors, there have been relatively few studies that specifically investigate the 

uncertainty due to choices of different downscaling predictors. For example, statistical 

downscaling of extreme precipitation for the Mediterranean region by Hertig et al (2014) found 

that “different predictor variables can lead to varying statistical downscaling results”. Lafaysse 

et al. (2014) have explored the uncertainties of future hydrometeorological projections and 

concluded that predictor selection is one of main uncertainties. Ben Daound et al. (2016) have 

reported that the downscaling model can be improved by introducing two additional predictors. 

Therefore, the choice of method/criteria often leads to the selection of different predictor 

variables. This could potentially result in an equifinality (Beven and Freer, 2001), as well as 
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transferability problems for future rain projections (Dayon et al., 2015). That is to say, there 

are multiple sets of predictor variables and relationships that give similar overall simulation 

results when calibrating the statistical downscaling model. However, the different calibration 

parameter sets can give different projections of future rainfall due to both parameter 

equifinality and the temporal transferability of a statistical downscaling method in a climate 

change context. Regarding different spatial domains of predictors, it has been demonstrated by 

Radanovics et al. (2014). 

Therefore, the objectives of this study are to demonstrate the equifinality and transferability for 

statistical downscaling by using the nonhomogeneous hidden Markov model (NHMM) 

stochastic daily downscaling model for 38 catchments in southeast Australia with two different 

sets of predictors, and to discuss a few guidelines as potential general principles to select more 

suitable predictors. 

2. METHODS AND DATA 

2.1. Equifinality and transferability 

Equifinality, which was originally defined by Hans Driesch, a developmental biologist, is the 

principle that a given end state in open systems can be reached by many potential means 

(Cummings and Worley, 2005). It suggests that similar results can be achieved with different 

initial conditions and in many different ways. This term was introduced to hydrology by Beven 

(1993) in that an acceptable hydrological model can be achieved in many different ways, i.e., 

different model structure or parameter sets. Here we show that this also applies to statistical 

downscaling, i.e., a statistical downscaling model can be calibrated and validated well with 

different parameter sets. 

This equifinality issue may present a challenge for future climate change projections, i.e., the 

temporal transferability of a statistical downscaling method in a climate change context (Dayon 
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et al., 2015, Chaedon et al., 2014).  That is to say, the current predictor-predictand relationship 

may not be transferred in future climate change conditions, and accordingly different 

calibration parameter sets could give different projections of future rainfall. This is defined as 

“Transferability” in this study. The two related issues, i.e., equifinality and transferability, are 

investigated in this study as they could be main sources of the uncertainty in statistical 

downscaling.  

2.2. Study region 

The study region comprises 38 catchments of the southern Murray-Darling Basin (MDB) in 

south-eastern Australia, i.e., Loddon, Avoca, Campaspe, and Goulburn rivers (Figure 1). This 

study region has been selected as: 1) The MDB is Australia’s most important agricultural 

region producing 38% of total Australian agricultural commodities, worth approximately $14 

billion per year (Cai and Cowan, 2008) , thus future climate impact on the productivity of this 

region is of high national interest; 2) The MDB  has experienced a decadal-long drought with 

unprecedented decline in the streamflow (Potter et al., 2010; Potter and Chiew, 2011), with a 

more significant impact of temperature change on streamflow than previously reported (Yu et 

al 2011); and 3) the nonhomogeneous hidden Markov model (NHMM) stochastic daily 

downscaling model has previously been shown to perform well in the study catchments in 

terms of various rainfall statistics (Chiew et al., 2010, Frost et al., 2011, Fu et al., 2013a;b). 

Note our study region is a very small part of the MDB, and consequently it is homogeneous in 

terms of rainfall processes. 

2.3. Statistical Downscaling Model -- NHMM  

The NHMM simulates multi-site patterns of daily rainfall occurrence and amounts conditional 

on a finite number of ‘hidden’ (i.e. unobserved) weather states (Hughes et al., 1999). The 

temporal evolution of these daily states is modelled as a first-order Markov process with state-
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to-state transition probabilities conditioned on a small number of synoptic-scale atmospheric 

predictors, such as mean sea-level pressure, geopotential heights, and measures of atmospheric 

moisture. When previously applied to these catchments, the NHMM showed good skill in 

reproducing characteristics of the observed daily rainfall distributions (Fu et al., 2013a). A 

detailed description of the current-generation NHMM, including its assumptions, mathematical 

parameterizations and estimation algorithms can be found in Hughes et al. (1999) and Kirshner 

(2005). Previously, the NHMM has been applied to many regions in the world, including 

Australia (Charles et al., 1999, Chiew et al., 2010, Frost et al., 2011, Fu et al., 2013a;b), Brazil 

(Robertson et al., 2004), China (Liu et al., 2011, 2013), India (Greene et al., 2011), and USA 

(Robertson et al., 2007). 

In this study, data (rainfall and predictors) from 1981 to 2000 was used to calibrate the NHMM 

and the data from 1961 to 1980 is used to verify the model. Data over the more recent period 

(1981–2000) were chosen to calibrate the model because they have relatively higher quality 

than earlier periods.  

This study focusses only on the April-October season, because it is the main rainfall season in 

the study region. Furthermore, rainfall statistical downscaling predictors usually vary from 

season to season, so annual rainfall is usually simulated by combining seasonal models. 

2.4. General circulation models (GCMs) 

The atmospheric predictors from 19 Coupled Model Intercomparison Project Phase 5 (CMIP5) 

GCMs (Table 1) were used in this study to drive the NHMM to project future rainfall.  The 

CMIP5 GCM simulations were forced by plausible scenarios of greenhouse gas emissions and 

aerosols throughout the 21st century, referred to as Representative Concentration Pathways 

(RCPs) (Van Vuuren et al., 2011).  This study used projections for the RCP4.5 scenario, an 

intermediate-emissions scenario, and for RCP8.5, a high-emissions scenario. The RCP 

numbers refer to the approximate enhanced radiative forcing levels by 2100, i.e. an additional 
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4.5 W/m2 and 8.5 W/m2 of radiative forcing at 2100, respectively, corresponding to equivalent 

CO2 levels of ~650 ppm and ~1370 ppm by 2100.  Detailed information for these models and 

RCP emission scenarios can be found at the website of the Program for Climate Model 

Diagnosis and Intercomparison (PCMDI) (http://www-pcmdi.llnl.gov/).   

The CMIP5 GCM historical runs span 1961 to 2005 (45 years) and future climate projections 

2006 to 2100 (95 years). To make an equal time length comparison, three different overlapping 

periods of 45 years, i.e., 2006–2050, 2031–2075 and 2056–2100, are used here to compare the 

future rainfall change with the historical period. The future projection rainfall is compared with 

each GCM’s historical period (1961–2005) downscaled rainfall, not to observed rainfall. That 

is to say, the calibrated NHMM is applied to each GCM’s historical and future periods, 

respectively. The difference between modelled rainfalls for the different time periods are then 

explored.  

2.5. Predictor selections 

The selections of NHMM predictors involved the following steps: 

a) The gridded daily atmospheric variables (potential predictors) were extracted from the 

NCEP/NCAR Reanalysis 1 (NNR) (Kalnay et al., 1996) archive for the region shown in 

Figure 1. The size of domain is chosen to capture the relevant scale of the atmospheric 

predictor variables (10×8 = 80 2.5×2.5 degree longitude-latitude grids). The variables 

include mean sea-level pressure (MSLP), and for the 850, 700 and 500 hPa levels: 

temperature, specific humidity, U-wind (eastward wind speed component) and V-wind 

(northward wind speed component).  This step produces 13 variables × 80 grids = 1040 

potential predictors. The NCEP-NCAR reanalysis data (Kalnay et al., 1996) were chosen 

as it has been widely used in climate community. However, there are other reanalyses 

existing, which may perform better at some regional scale. A full comparison of these 

reanalysis products is beyond the scope of the current study. However, our recent study (Fu 
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et al., 2016) shows that NCEP-NCAR and ERA-Interim produce similar results for 

potential predictors for the study region. 

b) The dewpoint temperature depressions (DTD) at 850, 700 and 500 hPa levels were 

calculated from the temperature and specific humidity variables. This step produces 3 

variables × 80 grids = 240 additional potential predictors. 

c) For MSLP, each north-south, east-west, northeast-southwest, and northwest-southeast 

difference for adjacent grid-points were also calculated, because sea level pressure 

gradients typically have a high correlation with rainfall (Charles et al., 1999; Frost et al., 

2011; Liu et al., 2011; Fu et al., 2013a,b; Liu et al., 2013). This step produced 70 (north-

south) + 72 (east-west) + 2×63 (northeast-southwest and northwest-southeast) = 268 

additional potential predictors. 

d) The correlations between daily time-series of each variable (1548) and daily rainfall series 

for each catchment were calculated and then averaged over the 38 study catchments. This 

identified the sub-region for which each variable had the highest correlation with rainfall 

for the study catchment network. The candidate predictors were selected for the sub-regions 

of their highest correlation with rainfall. The independence of predictors are also considered 

in this step, because if the most highly correlated predictors are correlated, then they may 

be adding less information than other predictors with relatively lower correlations. We also 

define variable domains by merging several gird cells if they all have a high correlation 

with rainfall (Figure 2). This step reduced the potential predictors from 1548 to 14 (Table 

2), including sea level pressure, east-west sea level pressure gradient (both predictors 2 and 

3 as they are different grids), north-south sea level pressure gradient, u-wind at 700 and 

850hPa, v-wind at 700 and 850 hPa, specific humidity at 500, 700 and 850hPa, and dew-

point temperature depression at 500, 700 and 850hPa. Figure 2 shows the sub-regions of 

these 14 predictors. 
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e) The NHMM model was run with all possible four predictor combinations of these 14 

candidate predictors. The calibrated NHMMs were assessed using a few criteria: 1) Bayes 

Information Criterion (BIC), as a measure of parameter parsimony, for the calibration 

period, and for both the calibration and validation periods; 2) mean bias of simulated 

rainfall calculated for each season and catchment and then averaged; 3) interannual 

correlation calculated for each catchment and then averaged; 4)  a constraint that at least 

one of the four is a sea-level pressure predictor (i.e. predictor 1, 2, 3, or 4) and one is a 

moisture (humidity or DTD) predictor. This constraint is based on previous experience 

identifying the importance of surface circulation and atmospheric moisture for providing 

realistic projections (Charles et al., 1999). In addition, the pressure field and humidity 

predictors are used for almost all statistical downscaling methods, as well as for prefect 

model framework (Dixon et al., 2016).  

f) There were a number of combinations of four predictors capable of reproducing rainfall 

characteristics that are close to the observed statistics. In this study, we simply pick two 

sets of predictors as a case study with the intention of demonstrating the equifinality issue 

and the implication on uncertainties of statistical downscaling influenced by the choice of 

predictors. Set 1 with predictors of sea level pressure north-south gradient (4), u-wind at 

700hPa (5), v-wind at 700hPa(7), and specific humidity at 700hPa(10) and Set 2 with 

predictors of sea level pressure north-south gradient(4), u-wind at 700hPa(5), v-wind at 

700hPa(7), and dewpoint temperature depression at 850hPa(14). The only difference is the 

inclusion of specific humidity at 700hPa (predictor 10) versus DTD at 850hPa (predictor 

14). It needs pointing out that a full investigation of all relatively independent possibilities 

would be required to fully explore the relationship between predictor choice and 

equifinality/transferability but is out of scope of this current study. 
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g) The predicators from GCMs are standardized with each GCM’s own historical period 

(1961–2005 in this case) to remove the biases of climatological performance at the present-

day period. 

3. RESULTS  

3.1.  Equifinality from NHMM calibration and validation results  

The NHMM model calibration (1981–2000) and validation (1961–1980) results of winter-half 

(April-October) rainfall across 38 catchments, with two different predictor sets, are shown in 

Figure 3. Overall, NHMM produced pretty good results of seasonal rainfall in comparison with 

observations for both predictor sets for calibration period (Figure 3, first row): the relative 

errors across the 38 catchments range from 0.48 to 1.76% with a mean value of 1.09% for the 

predictor Set 1, and from 0.22 to 2.24% with a mean value of 1.16% for the predictor Set 2. 

The correlation coefficients between simulated and observed seasonal rainfall across 38 

catchments for both sets of predictor are larger than 0.9999 (Figure 3). 

There is slightly less agreement between observed and simulated seasonal rainfall during the 

validation period in comparison with calibrated period (Figure 3, second row), but they are still 

satisfactory results. For example, the relative errors across the 38 catchments range from -9.5 

to 11.0% with a mean value of -1.74% for the predictor Set 1, and from -9.7 to 10.2% with a 

mean value of -2.23% for the predictor Set 2. The correlation coefficients between simulated 

and observed seasonal rainfall across 38 catchments for both sets of predictor are 0.991 (Figure 

3).  

In summary, both sets of predictors produced adequate seasonal rainfall, and their differences 

are too small to identify a better predictor set, because either can be recognized as the best 

depending on which model/criterion were used. It confirms that equifinality is indeed a 

challenging issue to statistical downscaling that may produce one of the main uncertainties of 

statistical downscaling. 
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It needs to point out that mean seasonal rainfall was used in this study to demonstrate the 

existence of equifinality and transferability issues because of its importance for climate change 

impact studies, as well as its being one of criteria to select the best models (Section 2.5e for 

details). In addition, our previous work (e.g., Fu et al., 2013a; b) showed that the best identified 

NHMM model usually reproduces a wide range of rainfall statistics, such as monthly 

distribution, winter/summer seasonal rainfall, daily maximum rainfall, 99th and 95th 

percentiles of daily rainfall, 99th percentiles of 3-day rainfall, numbers of rain days, maximum 

consecutive wet/dry days, etc.. Whether the two models are similarly able to simulate other 

rainfall statistics does not affect the conclusion that there is an equifinality issue inherent in 

statistical downscaling. 

3.2. Transferability for future rainfall projections resulting from equifinality of predictors 

Changes of future rainfall from the NHMM projections based on 19 GCMs are in different 

directions for the two different sets of predictors (Figure 4):  one set of predictors projects an 

increase of future seasonal rainfall and another set a decline of future seasonal rainfall. It results 

from the transferability of calibrated models into a climate change context. The variations of 

the boxplot mainly comes from different GCMs, because the 38-catchment-averages of mean 

values of 50 NHMM simulations of each GCM was used to minimize the model uncertainty 

due to stochastic characteristics of statistical downscaling, and the averaging values across 38 

catchment were used to minimize the spatial distribution and some deviations with modelling 

errors as shown in Figure 3 validation period.  

Both projections seem rational: the magnitudes of rainfall changes become larger with time, 

i.e., larger magnitude of changes by the end of 21st century; RCP8.5 emission scenario usually 

result in a larger rainfall change than RCP4.5; The differences between RCP4.5 and RCP8.5 

are very small for the near future (2006–2050), but significant by the end of 21st century (2056–
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2100). This implies that the difference does not come from climate variability, rather it is 

coming from the trends of the predictors.  

The predictor changes in the future (Figure 5) correspond to the future rainfall changes. 

Changes do not seem unreasonable from a physical processes perspective: rainfall generally is 

proportional to humidity, because more moisture implies a high probability of rainfall; but 

rainfall is inversely proportional to DTD, the difference between the temperature and dew-

point temperature at a certain height in the atmosphere. The larger the DTD value (wider 

separation between air temperature and dew-point), the lower the relative humidity, and 

accordingly lower probability of rainfall.  

It needs point out that it is the changes of 45-year mean of seasonal rainfall, and the interannual 

variability is not explored here. In reality, the rainfall variation would be much larger because 

climate variability overlaps with climate change signals.    

4. DISCUSSION 

This study provides evidence for the existence of equifinality and non-transferability issues in 

statistical downscaling. These may be one of the main uncertainties in statistical downscaling 

and could pose challenges for the validity of statistical downscaling as used in climate change 

impact studies. While there is not a simple method and/or criterion to determine which 

predictor set will provide reliable rainfall projections for a future climate, a few guidelines, but 

are not limited to, are discussed as below: 

1) Regional rainfall physical processes should be considered. This is probably the most 

important guideline to select predictors, because the causality of the relationship between 

rainfall and the predictor variable and whether this relationship is still meaningful in the future 

projections are fundamental principles for statistical downscaling. Sometimes the best 

predictors identified with statistical criteria are not the best variables to associate with regional 

rainfall processes, and not completely adequate for climate change projection applications 
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(Wilby et al., 2004). For example, daily rainfall may be determined by geopotential heights in 

the extratropical areas, but changes of geopotential heights from GCMs in a warming climate 

might contain a non-dynamic signal, which will spuriously affect the estimation of rainfall 

changes (Wilby et al., 2004). This non-dynamic component should be corrected, as per 

suggestion of Burkhardt (1999), either by subtracting the mean changes of the geopotential 

heights in a sufficiently large area, or by using geopotential thickness, instead of geopotential 

heights, as predictors.  

In our case study, both specific humidity and DTD represent moisture variables, which make 

sense as atmospheric moisture is an important factor influencing rainfall processes. However, 

DTD seems more suitable than specific humidity in this case, because it is a function of 

moisture and air temperature, given global and regional air temperature will increase in the 

future climate change scenarios. It is consistent with the conclusions of Timbal et al. (2008a) 

that “a relative humidity moisture predictor, rather than specific humidity, was needed for 

downscaled projections to be consistent with direct model output projections”. In fact, various 

choices of humidity predictors have been used in many studies in the literature to downscale 

precipitation, such as relative humidity and total column water (Radanovics et al., 2013, 

Chardon et al., 2014, Caillouet et al., 2015), soil moisture flux and specific humidity (Dayon 

et al., 2015), and soil moisture flux and relative humidity (Lafaysse et al., 2014). 

Generally speaking, variables representing the absolute atmospheric moisture, e.g., specific 

humidity and total precipitable water do not account for the whole ‘climate signal’, including 

climate changes and variability (Mehrotra and Sharma, 2011). This is because, in a warming 

climate, the moisture-holding capacity of the atmosphere increases and as such additional 

information about atmospheric temperature is also required to know the amount of atmospheric 

moisture that can precipitate (Mehrotra and Sharma, 2011). Thus DTD, computed as a function 

of both atmospheric moisture and air temperature, appears to be a better choice.  
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2) Comparative studies could also be used to quantify the uncertainties and possible ranges 

of climate change projections, and accordingly to seek reliable predictors to make similar 

projections of future rainfall. A growing number of studies in the literature have compared 

different statistical downscaling methods or compared statistical downscaling with dynamical 

downscaling methods. For example, Wilby and Wigley (1997) and Wilby et al. (1998) 

compared six statistical downscaling approaches for multiple sites across the USA using 

observed and GCM data. Frost et al. (2011) have examined six downscaling methods (one 

scaling methods, four statistical downscaling and one dynamical downscaling) to simulate 

multi-site daily rainfall for 30 rain gauges in south-eastern Australia. Sunyer et al (2012) have 

compared five statistical downscaling methods based on a common change factor methodology 

from four different RCMs results, but reported a significant uncertainty in the downscaled 

projected changes of the mean, standard deviation, skewness and probability of dry days. 

In our case study, the statistical downscaling results of NHMM with predictor Set 2 have a 

similar rainfall changing magnitude and direction with empirical scaling, statistical 

downscaling modelling (SDM) of Australian Bureau of Meteorology (Timbal et al., 2008b), 

and two dynamical downscaling methods (WRF and CCAM) for the June-July-August and 

September-October-November seasons (Potter et al., 2018). However, for the March-April-

May season, the future rainfall projections from dynamical downscaling have different 

changing magnitudes and directions with statistical downscaling and empirical downscaling 

methods (Potter et al., 2018). This difference, not uncommonly reported in the literature, can 

drive users to further explore the reason in terms of plausible climate change signal. For 

example, Grose et al (2015) attributed the different climate projections for the southern 

Australia cool season rainfall from a statistical and dynamical downscaling comparison to a 

plausible relationship with topography and regional drivers that are not resolved by coarse 

global models.  
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However, a critical question for this kind of comparison study is that obtaining the same 

future rainfall changing directions does not guarantee it is “correct”. 

3) Historical observed rainfall trend in a warming climate might imply the future change 

directions. In the last 50–60 years, almost all regions in the world have experienced a climate 

warming trend, and the associated rainfall changes in this warming climate in the past could be 

used as a reference for future rainfall changes.  However, it is still a scientific debate whether 

the recent observed trend will necessarily continue into the future, especially for regions where 

there is little evidence linking observed rainfall trends to a warming climate. 

4) The skill with which a climate variable (predictor) is simulated for the future, as measured 

by how consistent its simulations are across a range of GCMs, could also be used as a criteria 

to select better predictors for statistical downscaling. For example, Mehrotra and Sharma (2011) 

have used a variable convergence score method to evaluate the consistency associated with the 

prediction of 25 variables relevant for 19 GCMs. They found that mean sea-level pressure has 

the highest skill followed by the air temperature, geopotential heights and equivalent potential 

temperature. For the two different variables used in this case study, i.e., predictor 14 (DTD at 

850 hPa) and predictor 10 (specific humidity at 700hPa), the former shows a slightly higher 

score than latter from the results of Mehrotra and Sharma (2011).  

However, humidity variables are generally projected by GCMs to have larger changes in the 

future warming world.  The future mean values (45 years) of 14 predictors used in this study 

across 19 GCMs are shown in Figure 6. Since it has been standardized by its own GCM 

historical runs (1961–2005), values of these predictors represent their changes in the future. 

The box plot variations come from 19 GCMs. It clearly demonstrates that humidity 

variables/predictors have a larger magnitude in the future than non-humidity ones. The 

changing magnitudes also vary with emission scenarios as well as time period, which is 

consistent with existing conclusions in the literature. 
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A critical question is whether we can only use non-humidity predictors because future changes 

of them have been observed in the historical periods and they have been simulated consistently 

across a range of GCMs, or we should combine both non-humidity and humidity predictors to 

have a better fitting model and physical explanation. In this case study, if only predictors 4, 5 

and 7 are used, then the model errors are about 16–20% for seasonal rainfall for both calibration 

and validation periods, and accordingly project a slight decrease of future rainfall (Figure 7) 

— magnitudes being smaller than that with predictors 4, 5, 7 and 14.  If we use only sea level 

pressure predictors (1, 2, 3 and 4, Table 2), given the surface circulation is probably the most 

important single predictor for rainfall physical processes, the model error is about 12–16% for 

seasonal rainfall for both calibration and validation periods (not shown). 

5) Ensemble multi-models with different predictor sets can be used to quantify the ranges of 

future climate change projections. In most statistical downscaling studies, great efforts have 

been carried out in order to select predictors. However, this approach will accept all reasonable 

models (with different predictors), then quantify the range of future climate change projections 

and investigate how often  a specific predictor is selected in the downscaling models in terms 

of absolute numbers and in relation to the total number of models (Hertig et al., 2014).  Wu et 

al (2012) constructed sixty ensemble members for probabilistic estimates, instead of a single 

deterministic forecast, to statistically downscale climate forecast system for the Southeastern 

Mediterranean.  

6) A perfect model framework can be used to isolate the uncertainties associated with the 

non-transferability stationarity assumption that are inherent to the future climate projections 

via statistical downscaling models (Dixon et al., 2016). Note that the name is not meant to 

imply that the model itself is perfectly free of errors. Rather, it is a name given to a model 

experiment approach in which model data is used as a substitute of observations or truth (Dixon 

et al., 2016). For example, outputs from a RCM is taken as predictands, both in the calibration 
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period and the future simulation period (Vrac et al., 2007, Beuchat et al., 2012, Dixon et al., 

2016). Furthermore, using an ensemble of RCMs may help to take account of different RCM 

behaviors in regional changes (Dayon et al., 2015).    

5. SUMMARY 

Statistical downscaling is a useful tool and has been widely used for climate change impact 

studies. However, critical challenges and uncertainties remain, and selecting the most suitable 

and appropriate predictors is one of them, because it could potentially result in the equifinality 

and transferability issues highlighted here, i.e., there could be multiple sets of parameter values 

that give similar daily rainfall simulation results for both calibration and validation periods, but 

project different future rainfall change amount and directions in the global warming scenarios. 

For example, in this case study, two sets of predictors of NHMM model produce a pretty good 

of calibration and validation of seasonal rainfall, but project a different sign – one increasing 

and one decreasing – of future rainfall.  Such divergent projections present a significant 

challenge for applications of statistical downscaling and could potentially imply caveats for 

many existing studies on climate change impacts studies using statistical downscaling.  

There is not a simple method and/or criterion to determine which predictor set will provide a 

reliable rainfall projection for a future climate, because the future precipitation is unknown and 

we cannot verify or test the downscaled results. A few guidelines are discussed in this study as 

general principles, with the most important of them regional rainfall physical processes, 

because the causality of the relationship between rainfall and the predictor variable and whether 

this is still meaningful in the future projections are keystones of statistical downscaling. 

In this case study, predictor set with DTD seems more reasonable than predictors with specific 

humidity, but it may still not the best predictor set for regional statistical downscaling as we 

simply selected two sets of predictors to demonstrate the equifinality and transferability issues 

of statistical downscaling.  It needs further investigations, such as accepting all reasonable 
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models with different predictors to quantify the range of future climate change projections 

(Hertig et al., 2014), or using a prefect model framework to isolate the uncertainties associated 

with the transferability stationarity assumption that are inherent to the future climate 

projections from statistical downscaling models (Dixon et al., 2016). 
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