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Humans are sensitive to the statistical regularities in action sequences carried out by 30 

others. In the current eye-tracking study, we investigated whether this sensitivity can support 31 
prediction of upcoming actions when observing unfamiliar action sequences. In two between-32 
subjects conditions, we examined whether observers would be more sensitive to statistical 33 
regularities in sequences performed by a human agent vs. self-propelled ‘ghost’ events. 34 

Secondly, we investigated whether regularities are better learned when associated with 35 
contingent effects. Both implicit and explicit measures of learning were compared between 36 
agent and ghost conditions. Implicit learning was measured via predictive eye movements to 37 
upcoming actions or events, and explicit learning was measured via uninstructed reproduction 38 
of action sequences and verbal reports of the regularities. Findings revealed that participants, 39 

regardless of condition, readily learned the regularities and made correct predictive eye 40 
movements to upcoming events during online observation.  However, different patterns in 41 
explicit learning outcomes emerged following observation: participants were most likely to 42 
recreate the sequence regularities and to verbally report them when they observed an actor 43 
create a contingent effect. These results suggest that the shift from implicit predictions to 44 

explicit knowledge of what has been learned is facilitated when observers perceive another 45 
agent’s actions and when these actions cause effects. Findings are discussed with respect to 46 

the potential role of the motor system in modulating how statistical regularities are learned 47 
and used to modify behavior. 48 

 49 
Keywords: action prediction, action sequences, statistical learning, implicit and 50 

explicit learning, eye-tracking  51 
 52 

1.0 Introduction 53 

Predicting the behavior of other people is central to social cognition and interaction. 54 

As we observe others, we automatically predict the unfolding movements and future course 55 

of their actions (Flanagan & Johansson, 2003). In everyday life, many of the actions we 56 

observe are embedded within continuous, temporal sequences. Imagine the act of baking a 57 

cake: this action is comprised of a continuous stream of individual action steps such as 58 

gathering ingredients, measuring them into bowls, mixing things together, pouring batter into 59 

a tin, and so forth. The ability to anticipate the upcoming events in a sequence is an indicator 60 

that the observer possesses some knowledge of the overarching structure of the global action 61 

and the relations between the individual steps. Perceiving the boundaries of the distinct 62 

elements in a sequence and anticipating what follows is crucial for our cognitive system to 63 

perceive the overarching activity as coherent and meaningful (Zacks & Tversky, 2001). In the 64 

current study, we investigated whether statistical regularities in novel, unfamiliar sequences 65 
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support the ability to generate predictions of future events during observation1. Specifically, 66 

we investigated whether observers make anticipatory gaze fixations to upcoming action 67 

events based on their transitional probabilities alone, and whether they recreate learned 68 

regularities in their own action performance following observation.  69 

1.1 Statistical learning in the domain of action 70 

Statistical learning (SL) refers to the ability to detect regularities from structured input 71 

and operates across sensory domains (Conway & Christiansen, 2005; Krogh, Vlach, & 72 

Johnson, 2013). From early in life, humans are sensitive to multiple sources of statistical 73 

information in visual and auditory stimuli (Saffran, Johnson, Aslin, & Newport, 1999). 74 

Converging evidence indicates that SL skills are rapid and automatic, often occurring without 75 

the learner being consciously aware that he or she has learned anything at all (Turk-Browne, 76 

Scholl, Chun, & Johnson, 2008). This has led to the assumption that SL is a domain-general 77 

mechanism, with similar underlying computations and outcomes across sensory modalities. 78 

However, there is also evidence that the outcomes of SL are specific to the modality in which 79 

the stimuli are learned. For instance, one study (Conway & Christiansen, 2006) presented 80 

participants with auditory, tactile, and visual sequences defined by respective artificial 81 

grammars. Findings showed that sensitivity to statistical features was specific to each sensory 82 

modality, suggesting that SL involves “distributed, modality-constrained subsystems” 83 

(Conway & Christiansen, 2006; p.911).  84 

Does sensitivity to statistical regularities extend to the domain of action? If so, does 85 

SL operate in a domain-general manner across all forms of perceptual events, or are there 86 

specialized subsystems that might facilitate SL particularly for observed actions? An initial 87 

study on action sequence processing by Baldwin and colleagues (2008) demonstrated that 88 

                                                           
1 Unlike the cake example above, the sequences used in the current study were abstract in the sense that they did 

not lead to a global action goal. This was to ensure that predictions could only be based on acquiring knowledge 

of the sequence regularities rather than prior knowledge about the overarching event structure. 
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observers can rely on statistical regularities to segment action streams into discrete steps, 89 

even when transitional probabilities are the only information available for identifying action 90 

segments. At a group level, participants’ performance on this action segmentation task was 91 

comparable with performance on similar tasks in the language domain. Developmental 92 

research has demonstrated similar findings with preverbal infants (Roseberry, Richie, Hirsh-93 

Pasek, Golinkoff, & Shipley, 2011; Saylor, Baldwin, Baird, & LaBounty, 2007; Stahl, 94 

Romberg, Roseberry, Golinkoff, & Hirsh-Pasek, 2014), showing that these segmentation 95 

skills emerge early in development. Similarity in performance across studies has led 96 

researchers to speculate that a common “statistical tracking mechanism” (Baldwin, 97 

Andersson, Saffran, & Meyer, 2008, p. 1404) is shared between processing of action and 98 

processing of other forms of perceptual stimuli.  99 

Segmentation reveals whether observers demonstrate sensitivity to the sequence 100 

structure after learning has occurred. Typical paradigms measure segmentation by the ability 101 

to remember the items they had observed during a previous learning phase (e.g., Baldwin et 102 

al., 2008; Saffran et al., 1997). However, current theories of action perception claim that 103 

continual, automatic prediction of upcoming actions is a central feature of action processing 104 

(Kilner, Friston, & Frith, 2007a, 2007b). Importantly, predicting the outcomes of ongoing 105 

actions requires integrating prior knowledge about the most likely outcomes of the action 106 

with incoming perceptual input. Though active motor experiences are one important source 107 

of action knowledge (Calvo-Merino, Grèzes, Glaser, Passingham, & Haggard, 2006; Libertus 108 

& Needham, 2010; Sommerville, Woodward, & Needham, 2005), motor experience alone is 109 

insufficient to explain the full range of infant and adults’ capabilities for learning about 110 

actions (Hunnius & Bekkering, 2014). Statistical learning skills are therefore a candidate 111 

mechanism for how humans learn and generate predictions about upcoming action steps 112 

when observing novel, unfamiliar sequences (Ahlheim, Stadler, & Schubotz, 2014), though 113 
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direct evidence for this does not yet exist. As we discuss below, we hypothesized that 114 

observing human action engages specialized cognitive processes that particularly facilitate 115 

learning of observed action sequences, relative to visual event sequences. 116 

1.2 Outcomes of learning: implicit and explicit measures 117 

The outcomes of SL have long been a topic of debate; in particular, discussions focus 118 

on whether and under what conditions SL results in explicit or implicit learning outcomes 119 

(Perruchet & Pacton, 2006). Typical findings have shown that SL usually occurs 120 

automatically and without conscious intent; people are often unaware of the regularities they 121 

have learned (e.g., Haider et al., 2014; Turk-Browne, Jungé, & Scholl, 2005; Turk-Browne et 122 

al., 2008). Behavioral indicators of implicit learning are typically revealed in faster reaction 123 

times (Fiser & Aslin, 2002) or anticipatory eye movements (Marcus, Karatekin, & 124 

Markiewicz, 2006) and participants are usually unaware of the subtle changes in their own 125 

behavior as a result of learning. On the other hand, SL can also result in explicit knowledge 126 

about what was learned (Bertels, Franco, & Destrebecqz, 2012; Esser & Haider, 2017b). 127 

Explicit learning is typically measured by recognition or recall which requires “conscious, or 128 

deliberate, access to memory for previous experiences” (Gomez, 1997, p. 166). In the current 129 

study, we assessed multiple measures of learning to explore how the learned information is 130 

transferred into behavior. If participants learned the statistical regularities, they could in 131 

principle predict what would occur next and shift their gaze to the next event in the sequence. 132 

If implicit knowledge from observation can be accessed and used to modify behavior, 133 

participants could also reproduce the observed regularities and report knowledge about the 134 

sequence structure.  135 

1.3 The role of the motor system during action observation 136 

Observing actions engages neural networks that differ from those involved in general 137 

visual and attention processes (Adams, Shipp, & Friston, 2013; Ahlheim et al., 2014; 138 
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Schubotz & von Cramon, 2009). For instance, neuroimaging research has revealed the 139 

existence of a network of sensorimotor brain regions, collectively termed ‘action-observation 140 

network’ (AON), which are specifically engaged when observing another person’s actions 141 

(Gallese & Goldman, 1998; Kilner, 2011). Activity in the AON, also sometimes termed 142 

‘motor resonance’ (Rizzolatti & Craighero, 2004) or ‘simulation’ (Blakemore & Decety, 143 

2001), is thought to facilitate prediction of observed actions by simulating how one would 144 

perform the action oneself. Predictive accounts of the motor system propose that we employ 145 

our own motor system using an internal, feed-forward model to predict the behavior of other 146 

people we observe (e.g., Kilner et al., 2007b).  147 

In the context of embodied accounts of action observation, the motor system 148 

facilitates efficient transformation of visual information into action knowledge in the 149 

observer’s motor system. Supporting evidence from a separate line of research on 150 

observational learning shows that observers are consistently better at imitating and learning 151 

novel tool functions when observing a human actor relative to any other form of visual 152 

observation (for a review, see Hopper, 2010). These behavioral studies employed the use of a 153 

so-called ‘ghost display’, a method in which objects appear to move on their own with no 154 

agent intervention. In the current study, we adopted the ghost-display method to test the 155 

hypothesis that the learning advantage when observing another human, relative to a non-156 

agent ghost display, extends to action predictions based on statistical learning.  157 

1.4 The role of effects in continuous action sequences 158 

Goal-directed actions typically result in perceivable effects, such as the sound of a 159 

whistle as it is blown. Through repeated observation, these effects become linked to the 160 

actions that consistently precede them and create ‘bidirectional action-effect associations’ 161 

(Elsner & Hommel, 2001). Prior research suggests that it is the effects of actions themselves 162 

that people anticipate when planning their own movements (Hommel, 1996). In the field of 163 
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implicit learning research, action-effects have been shown to enhance implicit sequence 164 

learning when participants own motor responses result in predictable action-effects (e.g., 165 

Haider, Eberhardt, Esser, & Rose, 2014). Recent work suggests that they may also be 166 

particularly important for transferring learning from implicit into explicit awareness (Esser & 167 

Haider, 2017a, 2017b). These findings demonstrate that action-effect associations likely play 168 

a central role in establishing the contextual knowledge needed for making action predictions. 169 

Though much of this work has investigated action-effects in sequence learning of motor 170 

responses (e.g., using the standard serial reaction time task), there is also evidence to suggest 171 

that action-effects also guide our predictions during observation alone (Paulus, van Dam, 172 

Hunnius, Lindemann, & Bekkering, 2011). 173 

How do sensory effects influence observers’ sensitivity to statistical regularities when 174 

they are embedded within continuous sequences, as is the case during daily real-life 175 

perception? Based on ideomotor theory (James, 1890) and the related action-effect principle 176 

(Hommel, 1996), observers should be better at learning action contingencies when they are 177 

paired with an effect even when they do not produce the effects themselves. A matter that has 178 

not received much attention, however, is the fact that non-action visual events also result in 179 

sensory effects, such as a crashing wave. So far, we have defined effects as action-effects to 180 

be consistent with prior research, but it is possible that sensory effects lead to similar 181 

bidirectional associations in any form of perceptual sequence. In fact, another recent theory 182 

(Schubotz, 2007) suggests that prediction of sensory effects occurs within our sensorimotor 183 

system and can be generalized to any form of perceptual event, whether action or not. On the 184 

other hand, as we described above, evidence for enhanced learning from observing action 185 

suggests action-effects should be perceived and learned qualitatively differently than the 186 

effects of non-action perceptual events. In the current study, we manipulated whether 187 
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statistical regularities were paired with an action-effect to investigate the importance of 188 

observed effects for action predictions.  189 

1.5 The current experiment 190 

The central focus of this study was to investigate whether observers spontaneously 191 

exploit statistical information in continuous action sequences to predict upcoming actions. 192 

Our experiment included two manipulations in order to target two primary components of 193 

action processing: (a) the role of observing an actors versus a ghost display (Agent and Ghost 194 

conditions; between-subjects), and (b) the influence of action effects versus lack of effects 195 

(Effect and No-effect pairs; within-subjects). These were assessed using an anticipatory 196 

fixation eye-tracking paradigm during action observation, which has been established as a 197 

measure of visual predictions (Hunnius & Bekkering, 2010). In addition, we examined the 198 

link between predictive looking during observation and subsequent action production. For 199 

this third aim, post-observation action performance and verbal reports were analyzed as 200 

complementary measures of implicit and explicit learning.  201 

2.0 Method 202 

2.1 Participants 203 

Fifty university students participated in this study (25 in each condition [Agent and 204 

Ghost]; 43 females; M = 20.07 years, range = 18-25 years, SD = 2.29). Participants were 205 

recruited via an online system for students at the university and were awarded course credit 206 

for participation. Seven participants were excluded from analyses for not meeting the 207 

inclusion requirements for total looking time (see Analysis section), resulting in 43 208 

participants in the final sample (23 in the Agent condition and 20 in the Ghost condition).  209 

2.2 Stimuli  210 

Participants’ eye movements were recorded with a Tobii T60 eye-tracker (Tobii, 211 

Stockholm, Sweden) with a 17” monitor. Participants sat approximately 60cm away from the 212 
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screen. Stimuli were presented with Tobii ClearView AVI presentation software and sounds 213 

were played through external speakers.  214 

Participants observed a full-screen (1280x1024 pixels) film of a sequence involving a 215 

multi-object device that afforded six unique manipulations and a central, star-shaped light 216 

(Figure 1). To avoid confusion, we will subsequently refer to the individual object 217 

manipulations in the sequence as ‘events’, as in one condition they were human actions and 218 

in the other they were object movements. The movies were filmed with a Sony HandyCam 219 

video camera and edited using Adobe Premiere Pro Cs5 software. The same device used 220 

during filming was presented to participants before and after the observation phase.  221 

 222 
Figure 1. Overview of the experimental design. 223 
A: Example frames from the video stimuli of the Agent condition. B: Schematic illustrating 224 
the deterministic pairs and transitional probabilities within sequences during the observation 225 
phase. 226 

 227 

2.2.1 Sequence   228 

We constructed four pseudo-randomized sequences, using the program Mix (van 229 

Casteren & Davis, 2006). All sequences contained two deterministic pairs (transitional 230 

probability between events = 1.0), labelled ‘Effect’ and ‘No-effect’ pairs (described in more 231 
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detail in the following paragraph). The second event of each deterministic pair was labelled a 232 

target, as these were the events that became predictable as the sequence unfolded. All other 233 

possible random pairs occurred with equal frequency (transitional probabilities between 234 

events = 0.167; Figure 1B). No event or pair could occur more than three times consecutively. 235 

All pairs and random events occurred 12 times (targets thus occurred 12 times within pairs 236 

and 12 times outside of pairs). In total, participants viewed 24 deterministic pairs (12 Effect 237 

and 12 No-effect pairs) and 48 random unpaired events, for sequences of 96 total actions or 238 

events. Effect and No-effect pairs were composed of two actions that were randomly selected 239 

from the 6 possible actions. Two sets of the four sequences were created: the two actions 240 

comprising the Effect pair in one set became the No-effect pair in the second set, and vice-241 

versa. Thus, there were eight possible sequences within each condition and 16 videos in total; 242 

participants were randomly assigned to view one of these videos.  243 

The ‘Effect pair’ caused a central star to light up, whereas the ‘No-effect pair’ caused 244 

no additional effect. We will subsequently refer to the second events of both pairs as targets, 245 

as these were the events that became predictable as the sequence unfolded. The effect onset 246 

occurred at a natural mid-point of the target event during the Effect pair: for example, during 247 

the target open, the light turned on the moment the yellow door was fully open and turned off 248 

again after it closed (see Figure 1A).  249 

Targets could also occur elsewhere in the sequence outside of the deterministic pair 250 

(see Figure 1B). In these instances, the effect never occurred. This ensured that the second 251 

event did not independently predict the effect, and observers were required to learn the two-252 

step pair structure to accurately predict the effect.  253 

Each video sequence was divided into four blocks, with the viewing angle oriented 254 

from a different side of the box for each block. This was to dissociate the events (and their 255 

corresponding objects) with their spatial location, and thus ensure that the observer could not 256 
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predict the next event based on its location on the screen. Each block lasted approximately 257 

90s and consisted of 24 events. Brief cartoon animations were presented between blocks in 258 

order to reengage the participant’s attention. At the beginning of a block, one 4s still frame of 259 

the stimulus was presented to allow observers to reorient to the new perspective. Movies 260 

were approximately seven minutes long. Engaging, upbeat music was played throughout the 261 

entire demonstration that did not correspond in any way to the unfolding sequence. 262 

2.2.2 Agent condition 263 

In the Agent condition movies, a hand manipulated the stimulus objects in a 264 

continuous sequence. For each action, the hand entered the screen closest to the object on 265 

which it acted. Each action was exactly three seconds in duration with a one-second pause 266 

between actions during which the hand was off-screen and only the stimulus was visible. 267 

2.2.3 Ghost condition 268 

In the Ghost condition, the objects appeared to move on their own with a spotlight 269 

focused on the current event (see Figure 2). The spotlight gradually illuminated each object 270 

just prior to its movement onset and faded again after the object ceased moving. Between 271 

ghost events, there was a 1s pause during which it was ambiguous where the spotlight would 272 

next begin to appear, which matched the period of time the actor’s hand was off-screen in the 273 

Agent condition. Like the actor’s hand, the spotlight cued which object would subsequently 274 

move. The intensity and focus of the spotlight was equal for all objects. The sequence order 275 

and timing of events were otherwise identical to the videos in the Agent condition. 276 
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 277 

Figure 2. Predictive time windows in the Agent and Ghost conditions. 278 

Example frames illustrating the predictive time windows in both conditions. Arrows indicate 279 
the first frame in which the agent’s hand appears (Agent condition) and in which the spotlight 280 

focuses onto the target object (Ghost condition). 281 
 282 

2.3 Procedure  283 

Participants were first seated at a table upon which the stimulus device was placed. 284 

The side facing each participant was counterbalanced. Participants were told they would 285 

watch a video of a person interacting with the device, and were allowed to first familiarize 286 

themselves with the objects before beginning the experiment. The side of the object facing 287 

the participant during the action execution phase was kept the same as during the initial 288 

familiarization. After familiarization, participants moved to a chair positioned in front of the 289 

eye-tracking monitor for the observation phase in which they observed the stimuli videos. 290 

First, the eye-tracker was calibrated using a standard 9-point calibration sequence provided 291 

by Tobii Studio software. Calibration was repeated until valid calibration data was acquired 292 

for at least eight calibration points. Following calibration, participants were shown one of the 293 

eight stimulus sequences. They were told that they would be shown a video but were not 294 

given specific viewing instructions.  295 
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Immediately after the observation phase, participants returned to the table and were 296 

told that they could freely interact with the stimulus for one minute (this duration was based 297 

on pilot testing). Participants were given no instruction, as our aim was to investigate whether 298 

they would spontaneously integrate observed regularities into their own actions in the 299 

absence of any task demand. The experimenter sat opposite the participant and monitored 300 

their behavior, pressing a hidden button that activated the effect (i.e., central star light) 301 

whenever he or she performed the Effect pair. After one minute, the experimenter ended the 302 

action execution phase and then asked each participant the following questions: “Do you 303 

know how to make the light turn on?” and “Did you notice any other pattern in the movies?” 304 

If participants responded “yes” they were then asked to demonstrate the correct sequence on 305 

the device. A camera facing the participant recorded this session and behavior was later 306 

coded offline to assess action performance. Each participant completed one action sequence. 307 

3.0 Data Analysis 308 

3.1 Eye-tracking data  309 

Participants with total fixation time more than one standard deviation below the mean 310 

were excluded due to relative inattention to the movies. These participants yielded gaze data 311 

for less than 25% of the demonstration, which corresponded to only 3 observations of each 312 

pair and was insufficient to assess learning over the course of the experiment. This resulted in 313 

the exclusion of two participants in the Agent condition and five participants in the Ghost 314 

condition (see Participants section above).  315 

Eye movement data was exported from Tobii ClearView analysis software and 316 

separated into discrete fixations using a customized software program with a spatial filter of 317 

30 pixels and a temporal filter of 100ms. Fixation data was imported into Matlab for further 318 

analysis. Regions of interest (ROI) of identical size were defined around each object 319 
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(250x250 square pixels), and a smaller ROI (130x130 square pixels) was defined around the 320 

light (due to its smaller size relative to the objects).  321 

For the Agent condition, fixations were considered predictive if they occurred in the 322 

time window from when the actor’s hand entered the screen to perform the first action of a 323 

pair until the frame before it reappeared for the target action (Figure 2). This corresponds to 324 

the time in which the participant had enough information to predict the next action before its 325 

onset. For the Ghost condition, this time window was defined from the moment the spotlight 326 

highlighted the first object until the frame before the light shifted towards the second object 327 

of a pair. Time windows were identical in length in both conditions. As the main aim of this 328 

study was to examine prediction, only predictive gaze fixations were included in our analyses 329 

(i.e., we did not examine reactive fixations). 330 

To assess predictive gaze during observation, we compared proportions of fixations to 331 

correct vs. incorrect objects (Implicit learning measure I). Implicit learning measure I reflects 332 

the extent to which observers predict the correct location of an upcoming event, relative to 333 

other locations. Second, we analyzed proportions of correct predictive fixations over the 334 

course of the experiment to examine how learning unfolded over time. Third, proportions of 335 

predictive fixations to target objects were compared between deterministic and random 336 

transitions (Implicit learning measure II). Learning measure II reflects the frequency of 337 

predictive looks to the target actions during predictable relative to non-predictable trials. We 338 

describe both measures in more detail below (Figure 3). 339 
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 340 

Figure 3. Overview of the experimental design and dependent variables. 341 

 342 

3.1.1 Implicit learning measure I: Correct vs. incorrect locations 343 

Target regions were defined around the location of the second events of each pair. 344 

Fixations to targets during predictive time windows were counted as Correct and fixations to 345 

the four remaining objects as Incorrect. Objects currently being manipulated (i.e., the first 346 

action of the pair) were excluded from analyses. The first trial of each pair was not analyzed, 347 

because participants were not expected to correctly predict the first observation of a pair. If 348 

participants learned the pair structure, we expected them to make more fixations to the 349 

locations of target objects relative to any other object during predictive time windows. For 350 

both Effect and No-effect pairs, we calculated the proportion of correct and incorrect 351 

fixations out of the total fixations to all objects (Eqs. 1 and 2). Because there were uneven 352 

numbers of correct and incorrect locations, the incorrect proportion was defined as the 353 

average number of fixations to the four remaining objects out of the total number of fixations. 354 

This location measure represents observers’ bias for looking toward the correct target, 355 

relative to other objects, before it was acted upon. For additional analyses in which we 356 

included fixations to the action-effect, see Supplementary Materials.   357 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑡𝑎𝑟𝑔𝑒𝑡 =  
# 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑡𝑎𝑟𝑔𝑒𝑡

𝑡𝑜𝑡𝑎𝑙 # 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 
     ( 1 ) 358 
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𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑡𝑎𝑟𝑔𝑒𝑡 =  
# 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑜𝑡ℎ𝑒𝑟 4 𝑜𝑏𝑗𝑒𝑐𝑡𝑠/4

𝑡𝑜𝑡𝑎𝑙 # 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 
    ( 2 ) 359 

3.1.2 Implicit learning measure II: Deterministic vs. random transitions 360 

Our second learning measure compared fixations to targets during deterministic vs. 361 

random trials (Eqs. 3 and 4). Random trials were defined as transitions between any possible 362 

event and the subsequent occurrence of a target event outside of a deterministic pair. We 363 

discarded all repetition trials (for example, push followed by push) because it was impossible 364 

to determine whether fixations during these trials were predictive or reactive (i.e., simply not 365 

moving the eyes). This analysis thus enabled us to compare fixations to the same location 366 

(target objects) in different statistical contexts. 367 

𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐2 =  
# 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑡𝑎𝑟𝑔𝑒𝑡 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑡𝑟𝑖𝑎𝑙𝑠)

𝑡𝑜𝑡𝑎𝑙 # 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑜𝑏𝑗𝑒𝑐𝑡𝑠
  ( 3 ) 368 

𝑅𝑎𝑛𝑑𝑜𝑚 =  
# 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑡𝑎𝑟𝑔𝑒𝑡 (𝑛𝑜𝑛−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑡𝑟𝑖𝑎𝑙𝑠)

𝑡𝑜𝑡𝑎𝑙 # 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑜𝑏𝑗𝑒𝑐𝑡𝑠
   ( 4 ) 369 

3.2 Behavioral data 370 

3.2.1 Explicit learning measure I: Action performance  371 

Participants’ self-produced action sequences were coded from the videotape 372 

recordings. Each object manipulation was counted as a single action. We calculated the 373 

conditional probability of performing the second action of a pair (B), given performance of 374 

the first action (A), to account for variation in the overall length of participants’ sequences. 375 

Conditional probability was defined as: 376 

𝑃(𝐵|𝐴) =  
𝑃(𝐴,𝐵)

𝑃(𝐴)
     ( 5 ) 377 

3.2.2 Explicit learning measure II: Verbal responses 378 

Responses to the experimenters’ explicit questions—“Do you know how to make the 379 

light turn on?” and “Did you notice any other pattern in the movies?”—were coded as yes or 380 

                                                           
2 Note that this equation is identical to Eq. 1 
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no; if their response was yes, it was further coded as ‘yes’-correct or ‘yes’-incorrect 381 

depending on whether or not they demonstrated the correct sequence on the first attempt. 382 

Proportions of participants who indicated each response type were calculated for each pair, 383 

per condition.  384 

4.0 Results 385 

4.1 Eye movement data 386 

To examine whether the Agent and Ghost displays elicited similar rates of overall 387 

visual attention to the objects of interest, we compared the number of predictive fixations 388 

between the two conditions. There were no differences in the number of anticipatory fixations 389 

made during target trials (Ghost = 41.55, SEM = 4.80; Agent: M = 44.61, SEM = 3.41; p = .60) 390 

or in the total number of fixations made across the entire demonstration (p = .21) suggesting 391 

that differences in the visual stimuli in the Agent and Ghost conditions did not underlie any 392 

potential differences in anticipatory fixations. Analyses of total looking times in seconds are 393 

reported in the Supplementary materials. 394 

4.1.1 Implicit learning measure I: Correct vs. incorrect locations 395 

Our primary learning measures in each condition are presented in Table 1. 396 

Proportions of gaze fixations were analyzed via a repeated-measure ANOVA with Prediction 397 

(Correct vs. Incorrect) and Pair (Effect vs. No-effect) as within-subject factors and Condition 398 

(Agent vs. Ghost) as a between-subjects factor. This analysis revealed a main effect of 399 

Prediction, indicating that participants made a higher proportion of correct relative to 400 

incorrect predictive fixations across pairs (mean difference = .14 [SEM = .04], F(1,40) = 401 

16.27, p < .001, p
2 = .29). There were no other significant main effects or interactions 402 

(ps > .13). The results of additional analyses including the location of the action-effect as a 403 

correct location are available in the Supplemental Information.  404 

 405 



Action Prediction     18 

 

 406 

 407 

 408 

Table 1.  409 

Main implicit and explicit dependent measures, separated by condition.    410 

      Agent (N = 23) Ghost (N = 20) 

Learning 

measure Pair   Mean  SD Mean SD 

I: Correct vs. 

Incorrect 

Effect Correct (Eq. 1) 0.39 0.26 0.34 0.33 

 Incorrect (Eq. 2) 0.09 0.05 0.11 0.07 

No-effect Correct (Eq. 1) 0.26 0.28 0.25 0.22 

  Incorrect (Eq. 2) 0.19 0.07 0.19 0.06 

II: Deterministic 

vs. Random 

Effect Deterministic (Eq. 3) 0.39 0.26 0.34 0.33 

 Random (Eq. 4) 0.25 0.20 0.18 0.16 

No-effect Deterministic (Eq. 3) 0.26 0.28 0.25 0.22 

  Random (Eq. 4) 0.13 0.14 0.14 0.12 

Action 

Performance 

Effect Conditional 

probability (Eq. 5)  

0.54 0.36 0.30 0.30 

No-effect 0.29 0.36 0.09 0.16 

Verbal Response 

(“yes” – correct)  

Effect 
% participants 

68.4% 15.4% 

No-effect 5.9% 7.7% 
Note. For learning measure I, column 3 refers to proportions of correct and incorrect fixations. For learning 411 
measure II, column 3 refers to proportions of correct fixations on deterministic or random trials. 412 
 413 

4.1.2 Learning over trials 414 

To examine changes in predictions across trials, we performed a general estimating 415 

equations (GEE) analysis. GEE analyses are a preferred method for analyzing data with 416 

repeated measures that contain missing points, such as trials in which no anticipatory 417 

fixations were recorded, because they do not apply list-wise exclusion of cases (Zeger, Liang, 418 

& Albert, 1988). Proportions of correct fixations to the targets were entered as the dependent 419 

variable in a linear, model-based GEE with an unstructured Working Correlation Matrix. 420 

Condition (between-subjects), Trial (within-subjects), and Pair (within-subjects) were entered 421 

as predictors in a factorial model. In this analysis, the first trial was included (in contrast to 422 

Learning measures I and II). 423 

The GEE analysis yielded significant main effects of Trial (χ2(11) = 47.19, p < .001) 424 
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and Pair (χ2(2) = 26.89, p < .001) a significant interaction between Condition and Trial 425 

(χ2(11) = 21.52, p = .028) a significant interaction between Condition and Pair (χ2(2) = 8.70, 426 

p = .003) and a three-way Condition by Trial by Pair interaction (χ2(11) = 22.96, p = .02). 427 

The Condition by Pair interaction revealed that proportions of correct fixations were 428 

significantly greater in the Agent relative to the Ghost condition for the Effect pair (mean 429 

difference = .18 [SEM = .05], p < .001) but not for the No-effect pair (mean difference = -.09 430 

[SEM = .06], p = .11)3. As illustrated in Figure 4, the Condition by Trial interaction revealed 431 

that the Agent and Ghost conditions did not differ from one another on the very first (p = .45) 432 

or second trial (p = .15). By the third trial, participants in the Agent condition made more 433 

correct fixations than in the Ghost condition (mean difference = .28 [SEM = .12], p = .015) 434 

and this pattern continued for several trials. The two conditions converged again by the 6th 435 

trial (p = .53) for the remainder of the experiment.  Together, these findings suggest that 436 

participants showed a selective learning benefit for making correct anticipations when 437 

viewing an agent producing action-effects, relative to the other observation contexts. 438 

439 
                                                           
3 Note that the interaction between Condition and Pair was not statistically significant in our first analysis (4.1.1). 

This is likely due to the fact that the first analysis included both correct and incorrect fixations, whereas the 

Learning over Trials analysis examines correct fixations only. 
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Figure 4. Learning over time. 440 

Estimated marginal means of correct predictive fixations across pairs as a function of trial, 441 
(left) collapsed across pairs and (right) separated by Effect and No-effect pairs. Bars 442 
represent standard errors. 443 
 444 

4.1.3 Implicit learning measure II: Deterministic vs. random transitions 445 

The proportion of gaze fixations to target objects (Eqs. 3 and 4) were entered as the 446 

dependent variables into an ANOVA with Transition (Deterministic vs. Random) and Pair 447 

(Effect vs. No-effect) as within-subjects factors and Condition (Agent vs. Ghost) as a 448 

between-subjects factor. This revealed a main effect of Transition, showing that participants 449 

made more target fixations during deterministic than during random transitions across 450 

conditions and pairs, F(1, 42) = 42.9, p < .001, p
2 = .51. There were no other effects or 451 

interactions (ps > .11). 452 

4.2 Explicit measures of learning 453 

4.2.1 Explicit learning measure I: Action performance 454 

Across conditions, participants performed sequences with an average length of 26.22 455 

actions (SD = 7.1), and performed a mean of 2.12 Effect pairs and 0.64 No-effect pairs (see 456 

Table 1 for additional descriptive measures). There were no differences in the total length of 457 

action sequences performed between conditions (p = .19).  458 

Conditional probabilities for performing the target action given the performance of 459 

the first action of the pair were entered in an ANOVA with Pair (Effect vs. No-effect) as a 460 

within-subjects factor and Condition (Agent vs. Ghost) as a between-subjects factor. This 461 

revealed main effects of Condition and Pair: participants in the Agent condition were more 462 

likely to perform an action pair than those in the Ghost condition, F(1, 34) = 11.57, p = .002, 463 

ηp
2 = .25 (see Figure 5a). Across conditions, participants were more likely to perform the 464 

Effect pair than the No-effect pair, F(1, 34) = 8.25, p = .007, ηp
2 = .20. There was no 465 

interaction between Pair and Condition (p = .78).  466 
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To assess whether participants in each group performed more pairs than would be 467 

expected by chance, we conducted a one-sample t-test to compare the mean conditional 468 

probability of performing each pair against a chance level of 0.167 (one out of six possible 469 

actions, given any previous action). This revealed that the participants in the Agent condition 470 

performed Effect pairs significantly more than chance (p < .001), while participants in the 471 

Ghost condition did not (p = .13). In neither condition were the No-effect pairs performed at 472 

an above-chance level (ps > .05). 473 

 474 

Figure 5. Action performance and verbal awareness. 475 
A: The mean probability of performing Effect and No-effect pairs (P(B|A)). Bars represent 476 
standard errors. B: Scatterplot illustrating the relation between predictive fixations (Eq. 1) 477 

and action performance (Eq. 5) for the Effect pair, across conditions. C: Pie graphs showing 478 
the percentage of participants who gave each response type to the experimenter’s question. 479 
For the Effect pair, this was “Do you know how the light turns on?” and for the No-effect 480 

pair this was “Did you see any other pattern in the movies?”  481 
 482 
To investigate whether action execution was related to anticipatory looking behavior, 483 

we correlated the proportion of correct target fixations (Eq. 1) and the conditional probability 484 
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of producing action pairs for each pair type. Across conditions, there was a significant 485 

positive correlation between target fixations during Effect pairs and the conditional 486 

probability of producing Effect pairs, r(35) = .41, p = .02, indicating that participants who 487 

demonstrated higher rates of learning during the observation phase were more likely to 488 

reenact the action-effect during the subsequent behavioral session (Figure 5b). There was no 489 

correlation for the No-effect pair, r(36) = .01, p = .97. These correlation coefficients differed 490 

significantly from one another, Z = 1.75, p = .044. 491 

4.2.2 Explicit learning measure II: Verbal responses 492 

Figure 5c illustrates the distributions of participants per each explicit response type to 493 

the experimenter’s questions following the action execution phase, separated by pair and 494 

condition. The pie charts reflect the following pattern: 94.7% of participants in the Agent 495 

condition reported explicit knowledge of the Effect pair; of these, 72.2% were correct and 496 

27.8% were incorrect. Only 53.8% reported explicit knowledge of the pair in the Ghost 497 

condition; 28.6% of these were correct and 71.4% were incorrect. Further, only 40% reported 498 

knowledge of the No-effect pair across conditions, and those who did were usually incorrect 499 

(93.3% of these 40%).     500 

To compare these proportions of participants (Agent vs. Ghost) to one another, we 501 

calculated the confidence intervals of the difference between them (the difference between 502 

proportions is statistically significant wherever the confidence interval excludes zero; 503 

Newcombe, 1998; Wilson, 1927). Table 2 reports the confidence intervals for the differences 504 

in proportions for each response type. For the Effect pair, the proportion of participants who 505 

responded ‘yes’ and were correct was significantly greater in the Agent than the Ghost 506 

                                                           
4 For thoroughness, we also averaged across pairs and correlated the fixation proportions with conditional 

probability for Agent and Ghost conditions separately. Across pairs, there were no significant correlations for 

either group, ps > .42. These correlation coefficients did not differ significantly from one another (Z = .41, p 

= .34). 
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condition. A higher proportion of participants in the Agent condition reported knowledge of 507 

the Effect pair—and could demonstrate the correct sequence—than in the Ghost condition. 508 

Likewise, significantly more participants in the Ghost condition reported no knowledge of the 509 

Effect pair than in the Agent condition. For the No-effect pair, the pattern of responses was 510 

similar across conditions. Thus, participants observing an actor were more likely to retain 511 

precise knowledge they could verbalize about the pair structure, but only when the actor’s 512 

actions led to a causal effect. Participants observing ghost events were less likely to report 513 

verbal knowledge, and when they did, their representations of the pair structure were more 514 

likely to be inaccurate. 515 

Table 2.  516 

Mean differences (and confidence intervals) between conditions (Agent – Ghost) in the 517 

proportions of participants reporting each response type for Effect and No-effect pairs. 518 

 

Effect Pair No effect Pair 

Response Diff(Pa-Pb) 95% CI Diff(Pa-Pb) 95% CI 

"No" -.41 [.11, .66]* .11 [-.22, .41] 

"Yes"-correct .53 [.18, .73]* -.02 [-.20, .28] 

"Yes"-incorrect -.12 [-.18, .42] -.09 [-.22, .40] 

Note. Diff(Pa-Pb) indicates the difference between the proportions of participants in the Agent and Ghost 519 
conditions. *denotes statistically significant difference between the two sample proportions (p < .05). 520 
 521 
5.0 Discussion 522 

The current study investigated whether observers can learn statistical regularities 523 

during observation of continuous action or event sequences. Specifically, we measured 524 

anticipatory gaze fixations as an implicit measure of whether participants could use statistical 525 

information to predict upcoming actions or events in the sequence. After learning, we 526 

measured spontaneous action performance and verbal reports as explicit measures of whether 527 

observed statistical regularities influence participants’ self-produced actions and knowledge 528 

of the sequence.  529 
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5.1 Implicit learning: Predictive gaze  530 

Across conditions and pairs, participants demonstrated a robust tendency to predict 531 

correct relative to incorrect locations. They also predicted the target more frequently during 532 

deterministic relative to random transitions between events. In other words, they looked to 533 

where a target event was statistically likely to occur next, and they looked to the targets 534 

selectively when they were likely to occur next relative to when they were unlikely to occur 535 

next.  536 

When examining correct predictions over time, an interaction effect between these 537 

two manipulations emerged: participants appeared to learn the regularities best when they 538 

observed an actor produce an action-effect. In addition, different patterns emerged between 539 

the Agent and Ghost conditions for implicit and explicit learning outcomes, as measured by 540 

visual anticipations, action performance, and verbal knowledge of the pair structure. 541 

Specifically, observing actions in the Agent condition did not seem to uniquely benefit 542 

predictive gaze performance relative to observing visual events in the Ghost condition; 543 

however, it did increase reproduction of the action pair and verbal knowledge about the pair 544 

structure. Importantly, these differences were apparent only for the sequence pair which 545 

resulted in an action-effect. One explanation for these patterns is that action-specific 546 

processing in the Agent condition facilitated transfer from implicit (i.e., eye movements) to 547 

explicit (i.e., self-produced actions, verbal awareness) knowledge, as we discuss in the 548 

following sections.  549 

5.2 Actions versus perceptual sequences  550 

Participants demonstrated learning both when observing an actor and ghost events, as 551 

indicated by their correct predictive looks while observing the sequences in both conditions. 552 

This finding suggests that statistical learning operates consistently across the different types 553 

of perceptual events, both action and non-action. Interestingly, learning emerged earlier in the 554 
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Agent condition than in the Ghost condition. Consistent with prior research, this finding 555 

reveals a subtle learning benefit when observing an agent relative to other forms of visual 556 

displays (Hopper, Flynn, Wood, & Whiten, 2010; Hopper, Lambeth, Schapiro, & Whiten, 557 

2015). According to motor-based accounts of action observation, this benefit originates from 558 

internal predictive models based in the motor system (Kilner et al., 2007; Stapel, Hunnius, 559 

Meyer, & Bekkering, 2016). Here we show that observers demonstrate faster learning in the 560 

Agent condition relative to the Event condition. Specifically, participants’ rates of correct 561 

fixations to target actions increased more quickly in the Agent condition, revealing that they 562 

more easily detected the statistical relations between the actions and could modify their 563 

looking behavior accordingly. Interpreted within these motor-based accounts, this may reflect 564 

a more efficient ability to transfer knowledge acquired from visual statistical learning into 565 

action predictions that are generated in the motor system (Kilner, 2009).  566 

As discussed in the introduction, developmental studies have shown that children 567 

learn significantly better from observing an agent performing actions relative to other forms 568 

of observational learning (Hopper, 2010). One recent study, in fact, showed that toddlers 569 

were able to learn action sequences when observing an actor, but not ghost events (Monroy, 570 

Gerson, & Hunnius, 2017). This finding may reflect an interesting developmental shift, in 571 

which actions provide a unique context that helps infants and children use acquired 572 

knowledge from statistical learning to make predictions, above and beyond other stimuli. 573 

Adults, on the other hand, are able to employ their statistical learning abilities across action 574 

and non-actions contexts. Nevertheless, observing actions seems to elicit a learning benefit 575 

that is consistent across development.  576 

Though we made every attempt to match the stimuli in the two conditions for saliency, 577 

there could have still been perceptual differences between the Agent and Ghost conditions 578 

that could alternatively explain our findings. However, perceptual differences cannot solely 579 
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explain the observed results, as we find no differences in overall visual attention or predictive 580 

fixations between conditions during observation. Secondly, both conditions demonstrated 581 

learning during observation, but those in the Agent condition specifically reproduced more 582 

action pairs and acquired more explicit sequence knowledge than participants in the Ghost 583 

condition. This finding suggests that there were qualitative differences in the way the 584 

sequence information was learned in Agent condition that are unlikely to be a result of 585 

perceptual saliency. 586 

5.3 The role of effects 587 

Observing an agent produce causal effects led to higher rates of verbal knowledge and 588 

reproduction of the action pair, relative to observing the ghost events or the pairs with no 589 

effect (both action and ghost). This pattern supports the interpretation that observing actions 590 

primarily influences the way in which learned knowledge is subsequently used to modify 591 

behavior. Even though participants were uninstructed, observing an actor produce an effect in 592 

the world may have automatically induced participants to perceive these events as goal-593 

directed, and to attempt to re-create them in the test setting. An alternative explanation, 594 

suggestive of lower-level accounts, is that the action-effect simply provides additional 595 

information and is therefore easier to learn. The action-effect relation contains more 596 

information (i.e., A predicts both B and C) than the action-only pair (A predicts B). In 597 

addition, the action-effect contingency contains an additional dimension (i.e., actions and 598 

effects versus only actions). According to the model of sequence learning given by Keele and 599 

colleagues (2003), multidimensional learning requires additional attention components that 600 

are not required during unidimensional learning. These attentional requirements enhance 601 

sequence learning by making the learned information accessible to explicit awareness (Keele, 602 

Ivry, Mayr, Hazeltine, & Heuer, 2003).  603 
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When only analyzing correct predictions over time, an interaction effect emerged 604 

which revealed that participants in the Agent condition demonstrated more correct predictive 605 

fixations for the Effect relative to the No-effect pair, whereas this pattern did not hold for the 606 

participants in the Ghost condition. However, this interaction effect did not appear when 607 

comparing fixations to both correct and incorrect locations. One possible explanation for this 608 

inconsistency is that, in the absence of a visual effect, participants were free to engage in 609 

more visual exploratory behaviors to the other objects, resulting in higher proportions of 610 

incorrect fixations for the No-effect pair relative to the Effect pair.  611 

5.4 Action performance and its relation to prediction 612 

Across conditions, participants were more likely to reproduce the pair associated with 613 

an effect than the pair without an effect. In addition, rates of performing the effect pair were 614 

correlated with participants’ predictive looking for this pair. Specifically, the more accurately 615 

observers predicted the Effect pair, the more likely they were to reproduce the effect 616 

following observation. Adults and children easily recreate effects that they see in the world 617 

when explicitly asked to do so; this has been empirically demonstrated in both forced-choice 618 

and free-choice designs for simple action-effect contingencies (Elsner, 2007; Elsner & 619 

Hommel, 2001). Here, our results provide new evidence that observers could recreate action-620 

effects based only on learning transitional probabilities, and they did so in the absence of 621 

instruction or any explicit task. These findings suggest that new action knowledge—acquired 622 

via observational statistical learning—can be accessed and used for action control when the 623 

learned actions are used for produced a desired effect or outcome.  624 

In addition, participants in the Agent condition were more likely to reproduce action 625 

pairs than participants in the Ghost condition. This was not due to a general difference in 626 

activity between the two conditions, as they did not simply perform more actions overall. 627 

Based on the idea that we naturally tend to perceive human behavior as goal-directed, 628 
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observers in the Agent condition may have automatically attributed meaning to the actor’s 629 

actions and were more motivated to imitate what they observed, especially when they 630 

resulted in an effect (Hopper, 2010; Hopper et al., 2014). Alternatively, consistent with the 631 

faster emergence of correct anticipations in the Agent condition, these participants may have 632 

also been better able to retain the new knowledge gained from the observed sequence and 633 

apply it when performing their own action sequences than those in the Ghost condition.  634 

5.5 Relations between predictive gaze, action performance, and verbal knowledge 635 

Whether statistical learning engages implicit or explicit processes—and whether the 636 

resulting knowledge is also implicit or explicit—is an ongoing debate (see Daltrozzo & 637 

Conway, 2014 for a review). In the current study, we measured predictive gaze, action 638 

performance, and verbal responses as reflecting different learning outcomes. These behaviors 639 

may also relate to varying levels of implicit and explicit knowledge of the learned structure. 640 

Studies on SL typically demonstrate that the outcomes of learning, and thus the learning 641 

processes, are manifested in implicit behaviors such as anticipatory gaze, if at all (Fiser & 642 

Aslin, 2001; Perruchet & Pacton, 2006; Turk-Browne et al., 2008). Currently, there is a 643 

divide between those who argue that SL is an implicit mechanism (e.g., Clegg, DiGirolamo, 644 

& Keele, 1998) and those who suggest that the process may be implicit but the knowledge 645 

obtained via SL can become explicit when, for instance, learning reaches a certain threshold 646 

(Cleeremans, 2006). In the former case, it is argued that knowledge can only become explicit 647 

when other cognitive systems come into play. Recent findings have shown that sequence 648 

learning also results in explicit knowledge depending on the ‘task set’; that is, the relation 649 

between the stimulus characteristics and the required response of the learner (Esser & Haider, 650 

2017a, 2017b). 651 
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Consistent with these recent findings, our data suggest that observing action 652 

sequences results in both implicit and explicit learning outcomes5. One possibility, grounded 653 

in predictive accounts of the motor system, is that the knowledge gained via statistical 654 

learning can be accessed by the motor system and used to update internal action models. 655 

These models serve to generate predictions about the most likely upcoming action and to 656 

prepare appropriate motor responses. Our findings differ from prior research in that, in the 657 

current experiment, no response was required from participants during observation. Thus, the 658 

resulting explicit knowledge did not arise from learned stimulus-response associations (as in 659 

Haider et al., 2014). Rather, observation alone was sufficient to elicit both implicit and 660 

explicit knowledge. Further, our findings suggest that observing human actions facilitates 661 

both implicit sequence learning (indicated by faster learning rates in the Agent condition) and 662 

transferring learned knowledge into explicit responses. However, as suggested by Schubotz 663 

(2007), motor-based learning and prediction can still occur for external events (i.e., non-664 

actions). A fascinating question for further research is whether observing action sequences 665 

engages entirely distinct learning processes from other forms of observational learning, or 666 

whether the difference mainly lies in how the knowledge is accessed and used. Another 667 

possibility to be considered is that acting immediately prior to being questioned by the 668 

experimenter may have influenced some participants’ verbal knowledge. That is, action 669 

performance may have helped them to verbalize knowledge that otherwise would have 670 

remained implicit. However, if there was an effect of acting on participants’ explicit 671 

knowledge of the sequence, this should have been consistent across conditions. Instead, the 672 

dramatic group differences in verbal knowledge that we observed suggest that responses were 673 

                                                           
5As we did not directly measure the learning processes, but rather the learning outcomes, we cannot speak to 

whether or not the learning processes themselves were implicit or explicit and focus our discussion on the 

outcomes of learning. 
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primarily influenced by the action observation condition, rather than their own action 674 

production.  675 

5.6 Conclusion 676 

The current study investigated whether SL abilities can support online prediction 677 

during action observation. In particular, we compared observers’ sensitivity to statistical 678 

regularities in action sequences when observing a human actor relative to visual events. Our 679 

main finding revealed that implicit learning occurred in both observation conditions and was 680 

not dependent on action-effects; however, explicit knowledge was only consistently extracted 681 

when observers viewed a human actor perform action sequences with causal effects. These 682 

findings shed light on the potential role of the motor system in enhancing how information 683 

learned solely via observation can be accessed and used to modify behavior. 684 
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