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Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons
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We experimentally and theoretically demonstrate subwavelength scale localization of spoof surface plasmon
polaritons at a point defect in a two-dimensional groove metal array. An analytical expression for dispersion
relation of spoof surface plasmon polaritons substantiates the existence of a band gap where a defect mode
can be introduced. A waveguide coupling method allows us to excite localized spoof surface plasmon polariton
modes and measure their resonance frequencies. Numerical calculations confirm that localized modes can have a
very small modal volume and a high Q factor both of which are essential in enhancing light-matter interactions.
Interestingly, we find that the localized spoof surface plasmon polariton has a significant toroidal dipole moment,
which is responsible for the high Q factor, as well as an electric quadrupole moment. In addition, the dispersion
properties of spoof surface plasmon polaritons are analyzed using a modal expansion method and numerical
calculations.
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I. INTRODUCTION

Ultrasmall cavities with a high quality factor (Q factor)
are vital elements in modern photonics. They are widely used
not just to miniaturize photonic devices but also to enhance
light-matter interactions such as spontaneous emission [1,2]
and nonlinear optical processes [2–4]. In particular, the ability
of controlling spontaneous emission of emitters is a core
element in the fields of both cavity quantum electrodynamics
(QED) that employs real atoms [4–7] and circuit QED that
involves Josephson junctions (JJs) [8–13]. Accordingly, up to
now, many researchers have suggested various types of cavities
to achieve an ultrasmall modal volume and a high Q factor,
for example, dielectric or plasmonic cavities for single-photon
sources, and microwave stripline cavities for microwave circuit
QED. In the optical region, photonic crystal (PC) cavities [14],
a type of dielectric cavity, have been employed to confine
electromagnetic (EM) waves at a defect site for a band gap
frequency range allowing its modal volume to approach the
theoretical diffraction limit, a cubic half wavelength in the
dielectric medium [15–17]. To realize a cavity with an even
smaller size beyond the diffraction limit, plasmonic cavity sys-
tems have recently been employed. It has been demonstrated
that a plasmonic cavity system, based on surface plasmon
polaritons (SPPs) [18] propagating along a metal-dielectric
interface, can confine EM waves at the deep subwavelength
scale and enhance EM fields using various geometries, such
as particles [19–21], rings [22,23], and holes [24–27]. In plas-
monics, it was suggested that even stopped light lasing could
be realized with a high spontaneous emission factor β [28].
In contrast, in lower frequency regions such as terahertz and
microwave, less attention has been paid to plasmonic cavity
systems due to weak field confinement near a metal-dielectric
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surface. The weak field confinement is because metals behave
like a perfect electric conductor (PEC) in the frequency regions
preventing a tightly bound EM surface mode. Therefore, it is
a challenging task to achieve strong field localization and field
enhancement for realizing an ultrasmall cavity with a high Q
factor in the terahertz and microwave regions.

To overcome the limitation of field confinement in the
lower frequency regions, a concept of “spoof surface plasmon
polaritons,” which can be excited in a periodically structured
PEC surface, has been proposed [29]. The periodically
structured PEC surface behaves effectively like a planar
metal surface at optical frequencies showing tightly bound
EM modes for lower frequencies and, more importantly,
propagation properties of spoof SPPs can be controlled by
engineering the geometric parameters [30–34]. Therefore,
spoof SPPs can be manipulated to imitate the EM behavior
of SPPs such as guiding [34–40], localization [39,41–43], and
focusing [33,37,44,45]. Remarkably, some structured metal
surfaces exhibit a spoof SPP band gap, where no surface
guided modes are allowed. An example of such a structure
is a 2D groove metal array (GMA), i.e., two perpendicular and
overlapping 1D groove metal arrays which can be regarded as
a two-dimensional array of square metal rods on a flat metal
surface. It has been reported that a 2D GMA can support addi-
tional higher order surface bound modes as well as the lowest
spoof SPP modes with numerical [46] and experimental [47]
demonstrations of their propagation properties. Moreover, one
can find out a band gap between the surface bound states in
the 2D GMA [46,47]. It is worth noting that the spoof SPP as
a polariton is a result of strong coupling of EM waves with
geometrically induced EM excitations and a band gap arises in
its dispersion, due to the anticrossing principle. The polaritonic
band gap with geometrically controllable properties could
allow us to localize EM radiations in a small defect site such
as a photonic band gap cavity.

On the other hand, it has been demonstrated that a toroidal
dipole resonance, which has received little attention for many
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years, is an important EM response in certain metamaterials,
called “toroidal metamaterials.” Toroidal metamaterials [48–
54] have been designed to maximize the toroidal dipole
response, which is formed by a poloidal current on a torus
surface and cannot be described in a standard multipole
expansion [55,56] unlike electric multipoles and magnetic
multipoles. Due to the unique features of toroidal dipoles
such as strong EM energy confinement and weak coupling
to free space [57], toroidal metamaterials are expected to have
potential application in enhancing light-matter interactions.
This suggests that a higher Q factor could be achieved if a
toroidal geometry is employed to maximize the toroidal dipole
response in cavity applications.

In this work, we derive the dispersion relation of surface
modes in a 2D GMA and then identify the origin of the spoof
SPP band gap, which differs from that of a PC band gap.
Although the origin of the spoof SPP band gap is different from
that of a PC band gap, we show that localized spoof SPPs can
be created by introducing a point defect mode, which exhibits a
toroidal dipole moment, in a similar manner to 2D PC cavities.
We experimentally verify the existence of the band gap and
the defect modes by measuring the transmission spectrum
and using a waveguide coupling method, respectively. From
numerical calculation results for the resonant modes in the
defect structures, we investigate the mode properties such as
modal volume, Q factor, and toroidal dipole moment.

II. DISPERSION RELATION OF TWO-DIMENSIONAL
GROOVE METAL ARRAY

The 2D GMA investigated in this study is composed of
two overlapping 1D groove metal arrays perpendicular to each
other with lattice constant a, width w, and depth h as shown in
Fig. 1(b). We derive the dispersion relation of TM-polarized
surface modes in the 2D GMA by using a modal expansion
method of EM fields. Due to the square symmetry of our
structure, we can, without loss of generality, consider only
the modes propagating along the x direction (i.e., ky = 0).
For simplicity, we first disregard the time dependence of the
EM fields, exp(−iωt), where ω is the angular frequency of
the modes. First, since the width of grooves is much smaller
than the wavelength, only TEM modes are considered in the
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FIG. 1. (Color online) (a) An illustration of localized spoof SPPs
at a point defect in 2D GMA formed on a metallic surface. (b)
Schematic diagram of the 2D GMA with groove depth h, width
w, and periodicity a. (c) Schematic diagram for deriving dispersion
relations of TM modes.

expansion of EM fields in the grooves (region I):

H I
y = A+ exp(ik0z) + A− exp(−ik0z), (1)

where A+ and A− are the amplitudes of the magnetic fields,
k0(= ω/c) is the wave number in vacuum with c the speed
of light in vacuum, and the + and − signs of the exponents
correspond to +z and −z directions, respectively. Second, the
magnetic field component Hy outside the GMA (region II) can
be expressed as

H II
y =

∞∑
n=−∞

Bn exp[−αnz + ikx,nx], (2)

where Bn’s are constants, kx,n = kx + 2πn/a is the x com-
ponent of the wave vector of the nth diffraction order, and
αn =

√
k2
x,n − k2

0. The other nonzero components of the EM
fields can be determined directly from H II

y . It is worth noting
that kx must be outside the light cone so that the EM fields
are confined at the surface. The dispersion relation of the
surface modes is obtained by applying continuous boundary
conditions on Hy and Ex at the air-groove interface and at the
bottom of the grooves, respectively. By following this step, we
obtain a transcendental equation:

cot(k0h) =
∞∑

n=−∞

k0S
+
n S−

n√
k2
x,n − k2

0

, (3)

where S+
n = √

w/a{sinc(kx,nw/2) + sinc(kx,na/2) − (1 −
w/a)sinc[kx,n(a − w)/2]} and S−

n = √
w/a sinc(kx,nw/2).

In addition to the TM-polarized surface modes, there exist
TE-like hybrid surface modes in our structure. In Appendix A,
we derive dispersion relations for these modes under a perfect
magnetic conducting wall assumption.

Figures 2(a) and 2(b) show the dispersion relations of sur-
face modes propagating along the x direction in the 2D GMA
with h = a and h = 3a obtained by using Eq. (3) and Eq. (A4)
for TM modes and TE-like hybrid modes, respectively. In the
calculation, we include only the first diffraction order in the
summation because sufficient convergence is achieved. For the
case of h = a, we examine the width dependence by increasing
the width from 0.1a to 0.5a and, for the case of h = 3a,
we analyze higher order modes with groove width kept to
be 0.4a. In Figs. 2(a) and 2(b), one can clearly see that the
dispersion relations are strongly affected by groove depth h. To
validate our model, we calculated band structures for unit cell
structures using the finite element method (FEM). In Fig. 2(b),
the guided bands obtained by the numerical calculation for the
cases of h = 3a and w = 0.4a are plotted. One can see a
good agreement between the bands obtained from analytical
dispersion equations and the FEM result.

In the limit of a � λ, we can safely neglect the non-zeroth-
order diffraction terms in Eq. (3):√

k2
x − k2

0

k0
= S+

0 S−
0 tan(k0h). (4)

It is worth noting that, in the long wavelength limit (kxa � 1),
S+

0 S−
0 reduces to S+

0 S−
0 � w/a + (w/a)2. Moreover, for a very

small groove width (w � a), S+
0 S−

0 can be approximated by
w/a, so that the Eq. (4) coincides with Eq. (14) in Ref. [30].
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FIG. 2. (Color online) (a) Dispersion relations (solid lines) of
surface modes propagating along the x direction for the 2D GMA
with h = a calculated for increasing values of gap width w. The
dash-dotted line is the asymptotic frequency, ωs,0. The modes below
ωs,0 are TM-polarized and the modes above ωs,0 are TE-like hybrid
modes. Dashed lines denote radiation modes of TE-like hybrid bands.
(b) Dispersion relations of TM modes (black solid lines) m = 0, 1,
and 2, and TE-like hybrid modes (blue solid lines) m = 1 and 2 for the
structure with h = 3a and w = 0.4a. The open dots denote the bands
from FEM calculations for TM modes (circle) and TE-like hybrid
modes (square). Dash-dotted lines stand for asymptotic frequencies
(red) and cutoff frequencies (green) of TM modes. Dark shaded
regions and lightly shaded regions denote radiation modes and TM
band gaps, respectively. (c), (d) Simulated amplitudes of the electric
field in a unit cell for TM modes (m = 0, 1, 2) and TE-like hybrid
modes (m = 1, 2) at kx = π/a in (b). Black arrows indicate the
propagation direction.

This means that a 2D GMA can be regarded as an effective
medium that supports surface modes known as spoof SPPs. In
addition, as pointed out in Ref. [46], there is a close similarity
in the field distributions and dispersion relations between the
2D GMA and the 1D GMA. In Fig. 2, the dispersion curve
of the fundamental TM mode (m = 0) is very similar to that
of SPPs at a metal-dielectric interface in the visible or near-
infrared frequency region. In both cases, the dispersion curves
exhibit asymptotic behaviors for large wave vectors kx . In the
case of SPPs, ω approaches ωp/

√
2, where ωp is the plasma

frequency of metals, whereas, in this case, Figs. 2(a) and 2(b)
show that ω approaches ωs,0 (= πc/2h). Also, note that the
asymptotic frequency is mainly controlled by the depth of the
grooves, as shown in Fig. 2.

Interestingly, if the groove depth is deep enough (i.e.,
h > a), the dispersion equation [Eq. (3)] of spoof SPP allows
for higher order modes in the subwavelength regime as
shown in Fig. 2(b) (which is a main different feature to
dispersion properties of conventional SPPs). In general, the
frequency of surface modes in a 2D GMA has lower and

upper limits showing a frequency band with a finite bandwidth.
The lower limit is the cutoff value ω = ckx , at which the
surface mode extends to z = ∞. According to the mode
condition [tan(k0h) = 0], cutoff values of ω for TM surface
modes are given as ωc,m = mπh/c, where m is an integer
(m = 0, 1, 2, 3, . . .) which refers to the (m + 1)th band.
And, the upper limit is the asymptotic frequency which is
given as ωs,m = (m + 1/2)πh/c. Thus, the TM surface waves
are allowed to propagate only with the frequency between
the two limits. In addition, for the band in Fig. 2(b), we
calculate the electric field distributions of the three TM modes
(m = 0,1,2) and two TE-like hybrid modes (m = 1,2) at the
X point (kx = π/a) of the first Brillouin zone, as depicted in
Figs. 2(c) and 2(d), respectively. Interestingly, the asymptotic
frequency for the (m + 1)th band is the (m + 1)th resonance
frequency of the individual cavity which can be regarded as
a transmission line cavity [58]. This confirms that the TM
surface modes derive from a coupling between free photons
and resonant modes in the individual transmission line cavity.

III. SPOOF SPP BAND GAP

As shown in Fig. 2(b), band gaps can exist for spoof
SPP modes in a 2D GMA and they have several interesting
characteristics. First of all, the origin of spoof SPP band gaps
is not a Bragg reflection as for the case of PC band gaps, but
is associated with the polaritonic nature of spoof SPPs. As
mentioned previously, the spoof SPPs in a 2D GMA originate
from the coupling between free photons and resonant modes in
the transmission line cavities. The coupling creates the spoof
SPP band gaps between the upper edge of the (m + 1)th TM
mode and the cutoff frequency of the (m + 2)th TM modes
[see the shaded regions in Fig. 2(b)]. This coupling is similar
to the case of ionic crystals where phonon polaritons originate
from the coupling between photons and transverse optical
phonons and exhibit a band gap between the transverse optical
phonon frequency and longitudinal phonon frequency [59].
Second, the spoof SPP band gap is not a complete band gap
because there are still radiation modes at those frequencies
in contrast to band gaps of ionic crystals. It is noteworthy
that the incomplete band gap does not forbid defect modes
at the band gap frequencies and they can still allow defect
modes such as a cavity mode and a waveguide mode as
in the cases of two-dimensional PC slabs [60]. Lastly, the
spoof SPP band gap is only for TM polarization. Therefore,
different polarization modes can be supported at the band gap
frequencies. Figures 2(a) and 2(b) show that the first-order
TE-like hybrid mode (m = 1) partially overlaps with the first
band gap of the TM mode. The cutoff frequency of TE-like
hybrid modes, at which its band intersects the light line, is,
however, higher than the band edge of the fundamental TM
mode (m = 0). As a result, a band gap region can exist not
allowing any guided modes for both polarizations, although
the size of the band gap is smaller. Furthermore, we can notice
that the 2D GMA always has spoof SPP band gaps even for a
very small lattice constant a.

To experimentally demonstrate the presence of the band
gap, we measured transmission spectrum of surface modes for
microwave frequencies. Figure 3(a) shows the sample mea-
surement scheme used to measure the fields of surface modes
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FIG. 3. (Color online) (a) Schematic of experimental setup to
measure fields of propagating modes from the source. (b) Projected
photonic band structure of surface modes along the boundary of the
first irreducible Brillouin zone calculated by FEM for a = 10 mm,
h = 10 mm, and w = 4 mm. Radiation modes (shaded region) above
the light cone were not displayed. (c) Transmission spectrum for
surface modes propagating along the x direction between the two
antennas. Note that since the antennas are inefficient, the absolute
values of intensity are meaningless.

between two monopole antennas. A pair of small monopole
antennas, which are connected to a network analyzer, were
used as a source and a detector to measure the electric fields
of surface modes [38,47]. The two monopole antennas (with
dimensions of 1.6 mm in diameter and 10 mm in length) are
oriented in the direction normal to the surface of the samples.

Our measurements are conducted inside a chamber consisting
of a 20 dB absorber. Using a network analyzer, we measure the
S parameter which is proportional to the transmission between
the two antennas. When we interpret the measured spectrum
from the setup, we compare relative S parameter values since
the absolute values of S parameters are meaningless due to
very large impedance of the antennas.

To obtain transmission spectra for surface modes using the
measurement setup, we fabricate a sample with dimensions of
22 cm × 22 cm by assembling copper blocks with parameters
h = 10 mm, w = 4 mm, and a = 10 mm. The sample structure
has the band diagram depicted in Fig. 3(b), which is obtained
from an FEM simulation. The band diagram exhibits a band
gap between the first TM and TE-like hybrid modes. Here,
we measure the transmission spectrum for the x direction,
which is plotted in Fig. 3(c). In the transmission spectrum,
the intensity is about 40 dB in the TM band and sharply
drops to 90 dB in the band gap region and then gradually
increases in the TE-like hybrid band. One can clearly confirm
the band gap in frequency range from 6.3 GHz to 11 GHz
where the transmitted intensities have lower values from −90
dB to −60 dB with noisy signals. Moreover, the transmitted
intensity in the band gap exhibits an asymmetric shape, which
is evidence of the aforementioned polaritonic band gap.

IV. DEFECT MODE

Our next step is to introduce a defect mode in the 2D GMA
structure. For this purpose, we partially reduce the height of a
rod, keeping the rest of the structure unchanged, as shown in
the inset of Fig. 4(a). The resonance frequency of the defect
mode obtained by FEM simulations increases as the height
of the defect rod decreases as shown in Fig. 4(a). Also, the
electric field distribution of the defect mode obtained by finite-
difference time-domain simulations reveals that a localized
spoof polariton mode can be formed at the surface of the 2D
GMA. Figures 4(b) and 4(c) show that the spatial distributions
of electric and magnetic fields of the defect mode are strongly
confined around the defect rod with the height hd = 0.9a.

FIG. 4. (Color online) (a) The resonance frequency for increasing values of defect height hd with fixed h = a. The inset schematically
shows an example of a defect structure, in which the height of one rod is reduced. hd denotes the height of a defect rod. Simulated electric
field (b), magnetic field (c), and charge density (d) distributions of point defect modes for the defect structure with h = a and hd = 0.9a at
z = 0.95a plane, z = 0.5a plane, and z = 0.5a, respectively, and y = 0 plane. The white arrows denote the directions of the field.
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FIG. 5. (Color online) (a) Transmission spectrum at the distance
t = 2 mm for the defect structure for various defect heights with fixed
a = 10 mm and h = a. The inset shows a schematic diagram of a
waveguide coupling method for excitation of the defect modes. (b)
Resonance frequency vs defect height for coupling distances t = 1,
2, and 3 mm.

From the distribution of the charge density, shown in Fig. 4(d),
we can explain the field distribution of the defect modes.

To verify the localized spoof SPPs in experiment, the
waveguide-cavity coupling method [58] was employed as
shown in the inset of Fig. 5(a). The resonant coupling
of waveguide modes and the defect mode forms a dip at
the defect frequency in a transmission spectrum through a
waveguide above the sample. Figure 5(a) shows the normalized
experimental transmission spectrum through the waveguide
for various point defects for t = 2 mm. Figure 5(b) shows a
good agreement between experimental and numerical results,
except when the distance t between the cavity and waveguide
is too close. Such deviation comes from perturbation by the
waveguide.

To understand the properties of the observed defect modes,
we evaluated their modal volume and Q factors. The modal
volume of the defect mode is calculated with the well-known
formula

Vm =
∫

ε|E|2dV

max(ε|E|2)
, (5)

where ε is the dielectric constant and E is the electric field [61].
Figure 6(a) shows the calculated modal volumes and Q factors
for various defect heights with h = a. The modal volume of the
defect mode increases as the height of the defect rod decreases,
whereas the Q factor decreases as the height of the defect rod
decreases. Furthermore, to determine the dependence of the
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FIG. 6. (Color online) (a) Calculated Q factors and modal vol-
umes of defect modes for increasing values of hd with fixed a and
h = a. (b) Calculated Q factors and modal volumes of the defect
modes for increasing values of groove depths h with fixed hd = 0.9h.
The inset shows the resonance frequency for the structures.

groove depth h on the modal volume and Q factor of defect
modes, we calculated those for the various groove depths
with the defect height kept to be 0.9h, which are plotted in
Fig. 6(b). It would be expected from the dispersion relations
and is verified in Fig. 6(b) that the resonance frequency is
almost inversely proportional to the groove depth. The modal
volume decreases and the Q factor increases as the groove
depth h increases, as depicted in Fig. 6(b). In the case of
modal volume, it is supposed that some numerical error in the
calculation of Eq. (5) is responsible for the unsmooth curve
shape. Assuming that a resonant mode is well confined at a
defect site, we can estimate that the normalized modal volume
is roughly proportional to a2h/λ3

0 ∝ a2/h2 since λ0 ∝ h. Such
dependence on the groove depth h provides a possibility of
localizing EM fields at a small volume of deep subwavelength
scale and further enhancement of the Purcell effect would be
possible by simply increasing groove depth, as well.

To obtain deeper physical insight, we investigated the
multipole response of defect modes. Considering the geometry
of the defect structure, we can expect various multipole
responses such as a toroidal dipole moment and an electric
quadrupole moment as well as an electric dipole moment.
In particular, an induced current distribution, which can be
deduced from the charge distributions [Fig. 4(d)], consists of
four current loops, i.e., magnetic dipoles around the defect
rod reminiscent of a poloidal current in a toroidal coil. Such
a poloidal current induces a magnetic toroidal dipole moment
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FIG. 7. (Color online) Numerically calculated dispersion of ra-
diating powers of various multipole moments induced for the defects
with different defect heights. Dashed vertical lines indicate the
resonance positions for the defects with hd = 0.6a, 0.7a, and 0.8a.
The inset shows an illustration of the generated toroidal dipole
moment in this case. Cyan arrows and a green arrow indicate the
magnetic dipole moment (m) and the toroidal dipole moment (T).

oriented normal to the corrugated surface, whereas its net
magnetic dipole moment is negligible as illustrated in the inset
of Fig. 7. To quantify such multipole responses of the resonant
cavity, we performed a multipole analysis (see Appendix B)
to calculate its induced oscillating toroidal dipole moment,
as well as other electric and magnetic multipole moments.
In the calculations, a point dipole source is located on top
of the defect rod. Figure 7 displays the relative strength and
contribution to the radiation power of each multipole moment.
It clearly shows that the resonance is mainly due to a toroidal
dipole moment and electric quadrupole moment rather than
magnetic dipole and multipole moments.

V. DISCUSSION AND CONCLUSIONS

This work presents an important step in realizing the
localization of photons in metamaterials. In addition, by
analyzing the dispersion relation of the spoof SPPs in a
2D GMA, it is shown that its polaritonic property leads to
a band gap. More importantly, even without any dielectric
material, we achieved a small modal volume with a high Q
factor. This means that strong enhancement of light-matter
interaction is possible using the proposed metamaterial design.
Moreover, we have found that localized spoof SPPs exhibit
a significant strong toroidal dipole moment and electric
quadrupole moment as well as a relatively weak electric dipole
moment and higher multipole moments. This leads to the
observed strong localization and a high Q factor.

Besides, spoof SPPs in this work have analogies to phonon
polaritons in condensed matter physics. Hence, using the
concept of localizing spoof SPPs in a point defect, we could
examine localized polaritons created by impurity in polar
crystals. In fact, the atomic defect induced by localized
polaritons were predicted theoretically long time ago [62–64].
However, they have not been observed in experiments because
it is very difficult to make a single atomic defect in polar
crystals. In contrast, it is easy to make a single meta-atom

defect in a polaritonic metamaterial and excite localized spoof
SPPs to mimic localized phonon polaritons.

The resonant cavity for spoof SPPs could provide a new
architecture in the field of cavity QED or circuit QED
in the microwave frequency region. In addition to those
applications, although the experiments were performed in
microwave region, the almost perfect conductive nature of
conventional metals at THz frequencies would allow us to
predict localization of spoof SPP modes in the THz region.
Despite the challenging future works, such as improving
coupling methods and decreasing metallic losses, we believe
that our results will inspire new ideas for THz device
applications such as resonant cavities, channel drop filters,
and waveguides in on-chip platforms.
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APPENDIX A: DISPERSION RELATIONS FOR TE-LIKE
HYBRID MODES

Here, we derive dispersion equation of TE-like hybrid
modes in a 2D GMA, using a modal expansion method under
a perfect magnetic conducting wall assumption. In realistic
situations, it is challenging to derive the exact dispersion
equations for the TE-like hybrid mode. Therefore, we simplify
this problem. First, considering guided modes propagating
only in the x direction, we assume that electric walls, in
which the parallel components of electric fields are zero, are
placed at y = ±a/2, as illustrated in Fig. 8(a). Second, if
parallel components of magnetic fields are almost zero at upper
boundary and the fields are well confined within the region
of textured region (we neglect fringe effect), the boundary
may be regarded as a magnetic wall, in which there are no
parallel components of magnetic fields. At least, outside the
light cone, this assumption can be justified by analyzing mode
profiles obtained by FEM simulations, shown in Figs. 8(b)
and 8(c). In region I (−d/2 �y � d/2), the absence of Ey

and Ez components leads to the allowable field distributions
which are written as

EI
x = A0 sin(Ky) sin(kc,mz), (A1a)

H I
y = − A0π

iωμ0a
sin(Ky) cos(kc,mz), (A1b)

H I
z = − KA0

iωμ0
cos(Ky) sin(kc,mz), (A1c)

where A0 is a constant, K =
√

k0
2 − kc,m

2, and kc,m = (2m −
1)π/2h with m is a positive integer (1,2,3, . . .). In region II
(d/2 � y � a/2), in the absence of the Ez component, the
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FIG. 8. (Color online) (a) Schematic diagram for deriving the
approximated dispersion equation of the TE-like hybrid modes, which
explains what kinds of boundary conditions can be placed. (b), (c)
Calculated amplitude distributions of electric and magnetic fields for
the 2D GMA with h = a and w = 0.4a. Upper panel shows fields at
z = 0.9a plane, lower left one fields at x = 0, and lower right one
fields at y = 0. The white arrows indicate the direction of fields.

allowed modes are TE-like hybrid:

EII
x =

∞∑
n=−∞

Bn sinh

[
αn

(
y − a

2

)]
exp(ikx,nx) sin(kc,mz),

(A2a)

EII
y =

∞∑
n=−∞

− ikx,nBn

αn

cosh

[
αn

(
y − a

2

)]
exp(ikx,nx)

× sin(kc,mz), (A2b)

where Bn is a constant, kx,n = kx + 2πn/a which is related
with a diffraction effect, αn =

√
k2
x,n − K2. Similarly, in

region III (−a/2 � y � −d/2),

EIII
x =

∞∑
n=−∞

Cn sinh

[
αn

(
y + a

2

)]
exp(ikx,nx)

× sin(kc,mz), (A3a)

EIII
y =

∞∑
n=−∞

− ikx,nCn

αn

cosh

[
αn

(
y + a

2

)]
exp(ikx,nx)

× sin(kc,mz), (A3b)

where Cn is a constant. The dispersion relation of the TE-like
hybrid modes are obtained by applying matching boundary
conditions on tangential components of fields at the two
interfaces (i.e., y = ±d/2). These boundary conditions yield
the dispersion relation

cot

(
K

d

2

)
=

∞∑
n=−∞

wK

aαn

coth

(
αn

w

2

)
sinc2

(
kx,nw

2

)
. (A4)

Comparison of the derived dispersion equation with numerical
results for the region outside the light cone shows a good
agreement, as depicted in Fig. 2, though the dispersion
equation is derived under the assumption that the structure is
closed by the perfect magnetic conductor at the upper boundary
(z = h).

APPENDIX B: POWER RADIATED BY MULTIPOLES

To understand how the multipole moments contribute to
the radiations of the resonant cavity, we calculated the values
of multipoles and their radiation powers using the formulas
derived in Ref. [56]. For a harmonic excitation exp(−iωt), the
following expressions represent Cartesian multipoles:

electric dipole moment:

p = 1

iω

∫
jdV, (B1a)

magnetic dipole moment:

m = 1

2c

∫
(r × j)dV, (B1b)

toroidal dipole moment:

T = 1

10c

∫
[(r · j)r − 2r2j]dV , (B1c)

electric quadrupole moment:

Qαβ = 1

i2ω

∫ [
rαjβ + rβjα − 2

3
δαβ(r·j)

]
dV , (B1d)

magnetic quadrupole moment:

Mαβ = 1

3c

∫
[(r × j)αrβ + (r × j)βrα]dV , (B1e)

where j is the current density, and c is the speed of light.
In these formulas, we have substituted −∇ · j/iω for charge
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density ρ using the continuity equation. The general expression for the total radiation power up to the order in Ref. [56] is given
by

I = 2

3

ω4

c3
|p|2 + 2

3

ω4

c3
|m|2 + 4

3

ω5

c4
|p · T| + 2

3

ω6

c5
|T|2 + 1

5

ω6

c5
QαβQαβ + 1

20

ω6

c5
MαβMαβ, (B2)

where the tensor products follow the Einstein summation convention.
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