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Synopsis 

Concrete structures deteriorate over time due to different reasons and thus may not perform 

their function satisfactorily. Repair and rehabilitation of deteriorated concrete structures is often 

preferred over demolition and rebuilding for economic reasons. Various metallic and non-

metallic materials have been used in the past for repair and rehabilitation. These materials have 

advantages and disadvantages. The latter are connected with the mismatch in the properties of 

these materials with the material of the structure being repaired which often resulted in 

unwanted failure modes, e.g. delamination. For this reason, new cement-based ultra-high 

performance reinforced with steel fibres repair materials have been developed in the last two 

decades, which restore (and even enhance) the structural response and improve the durability 

of repaired concrete structures. One such ultra-high-performance fibre-reinforced concrete 

material is CARDIFRC. It is characterized by very high compressive strength, high tensile 

/flexural strength, and high energy-absorption capacity. However, it is very expensive and thus 

industrially uncompetitive due to the very high cost of thin brass-coated steel fibres used in it. 

It is therefore important to develop a version of CARDIFRC that is industrially competitive. 

This is one of the objectives of this research. An ultra-high-performance fibre-reinforced 

concrete (UHPFRC) has been developed that is far less expensive than CARDIFRC and at the 

same time self-compacting. The steps necessary to achieve this have been described in this 

work. In addition, a full mechanical and fracture characterisation (i.e. size-independent fracture 

energy and the corresponding bi-linear stress-crack opening relationship) of this UHPFRC is 

presented. A nonlinear cracked hinge model has been used to back calculate the stress-crack 

opening relation of this material in an inverse manner from the test data. 

The second objective of this research concerns the flexural fatigue behaviour of this new 

UHPFRC. Tests have been conducted under several stress amplitude ranges. It has been found 

that the distribution of fibres plays a vital role in its fatigue resistance. Regions with few or no 

fibres can drastically reduce its fatigue life.  As expected, non-zero mean stress leads to a 

significant reduction in the fatigue life of a material compared to cyclic loading with zero mean. 

The variation in compliance during cyclic loading has been used to estimate the expected fatigue 

life under a given cyclic load range, since the tests were terminated at one million cycles. 

The third objective of this research concerns the flexural fatigue behaviour of RC beams 

retrofitted with precast strips of this self-compacting UHPFRC on the tension face. Fatigue tests 

under several stress amplitude ranges have shown that this UHPFRC is an excellent retrofit 

material under fatigue loading. Again, the variation in compliance during the fatigue loading 

has been used to estimate the expected fatigue life for retrofitted RC beams. 
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FRP Fibre Reinforced Plastics 
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1.1 Introduction 

Concrete is probably the most widely used contemporary construction material thanks 

to its significant resistance in compression. It is utilized, for instance, in building, 

bridges, roads and marine structures. Evaluation of both the mechanical and fracture 

properties including strength, stiffness and fracture energy has been widely conducted 

at room temperature. Several textbooks cover the applications and the details of the 

concrete properties (e.g. Neville, 1995 and Karihaloo, 1995). 

However, low tensile strength, low ductility, and low energy absorption are main 

weaknesses of concrete.  A major reason of the poor tensile behaviour of concrete is the 

presence of defects.  

Many flaws are found in plain and reinforced concrete structures, even before they are 

mechanically loaded.  A stable growth of these flaws, and especially the small cracks 

(micro-cracks) can be expected under external loading, followed by their merger with 

existing or newly-formed micro-cracks until large fractures are formed which cause the 

failure of the structure.  

The design of concrete structures is performed without regard to either the propagation 

of large cracking zones through them or an energy failure criterion. Fracture mechanics 

provides an energy-based failure theory that could be used in designing cement-based 

structures, since it studies the response and failure of structures as a result of crack 

initiation and propagation (Karihaloo, 1995).  

Since cracking in concrete is inevitable, enhancing concrete toughness and reducing the 

size and amount of flaws in concrete would improve concrete performance. This can be 

achieved by adding a small fraction (usually 0.5–2% by volume) of short fibres to the 

concrete mix during mixing (Wang et al., 2000). The fibres bridge across the cracks in 
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the matrix during the fracture process thus increasing resistance to crack propagation 

and crack opening before being pulled out or stressed to rupture. 

Traditional fibre-reinforced concrete (FRC) demonstrates an increase in ductility over 

that of plain concrete, while High Performance Fibre Reinforced Cementitious 

Composites (HPFRCCs) present significant strain-hardening response. Hence, a large 

amelioration in both strength and toughness compared with the plain concrete is 

acquired (Shah et al., 1999). 

HPFRCCs have been made possible by the recent advances in manufacturing processing 

that permit the inclusion of a large amount of fibres in the cement based matrix without 

affecting the workability of the mix. Silica fume and surfactants which reduce water 

demand give these improvements to the HPFRCCs where the matrix become denser 

and thereby increases the fibre-matrix interfacial bond (Morin et al., 2001). 

Concrete structures can deteriorate and hence need repair after long periods in service. 

Therefore, one of the major challenges facing structural engineers is repairing and 

strengthening of reinforced concrete structures.  

The term retrofitting of reinforced concrete members has a broad meaning. It includes 

increasing the load carrying capacity of structural members and enhance their 

performance in such a way that least maintenance is necessary during the service life. 

Diverse methods of strengthening reinforced concrete (RC) structures using various 

materials have been studied and applied in the retrofitting field. Among the most 

commonly used option is by bonding a steel plate to the tension side of the beam.  The 

speed of implementation of this technique is its major advantage. However, several 

problems have been noticed and recorded with this technique, such as potential steel 

corrosion that adversely leads to deterioration of the bond at a glued steel–concrete 

interface. In addition, the need of using joint systems due to the limited workable 
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lengths and handling heavy steel plates is another drawback of using steel plates (Jones 

et al., 1988).  

In recent years, fibre reinforced plastic plates (FRP) have gained prominence in concrete 

structural retrofitting field. The high stiffness-to-weight ratio and improved durability 

over steel plates are the main features of using FRP as a retrofitting material (Ekenel et 

al., 2006; Meier, 1997). However, many problems have been noticed, such as the 

possibility of brittle debonding failures (Buyukozturk et al., 2004) which may 

considerably decrease the efficiency of the strengthening. The large mismatch in the 

tensile strength and stiffness with that of concrete is the cause of this unfavourable 

brittle failure. Moreover, an impairment of the interface between FRP composites and 

concrete is expected due to the long exposure to temperature variation (Sen et al., 2000; 

Mei and Chung, 2000). 

A novel material suitable for strengthening structural members subjected to severe 

mechanical and environmental actions is the ultra-high performance fibre-reinforced 

concrete (UHPFRC). It possesses outstanding properties: relatively high compressive 

strength, high tensile strength, strain-hardening behaviour under tensile stress (given a 

certain volume of fibres) and very low permeability since an optimised dense matrix is 

used (Makita and Brühwiler, 2014a; Martín-Sanz et al., 2016). 

Contemporary line of research for repairing or strengthening concrete members is in the 

use of cement-based materials. Within this class, a new retrofitting material has been 

developed at Cardiff University called the CARDIFRC (Benson and Karihaloo, 2005a, 

b; Benson et al., 2005). It overcomes some of the problems (Karihaloo et al., 2002) 

identified above for steel plates and FRP composites which are primarily due to the 

mismatch of their tensile strength, stiffness and coefficient of linear thermal expansion 

with the parent concrete being retrofitted. The findings showed that the retrofitting of 
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RC members using CARDIFRC plates on the tension face improves the flexural load 

carrying capacity and decreases the crack width and the deflection. 

Many concrete structures are usually subject to repetitive cyclic loads in addition to the 

static loads, which cause a permanent increase in strain and a steady decrease in the 

stiffness of the structure that leads to structural failure at a load level inferior to its static 

capacity.  

Fatigue may be recognized as a process of progressive, permanent internal structural 

changes in a material exposed to repeated loading (ACI 215R-74). In concrete, fatigue 

is a process of progressive, permanent evolution of small flaws existing in the material 

by repetitive loads, which lead to a considerable increase of irrecoverable strain. These 

imperfections may be present in concrete due to concrete shrinkage, or may be caused 

by application of external loads. 

Fatigue loading is usually divided into two categories (RILEM Committee 36-RDL, 

1984) i.e. low-cycle and high-cycle loading. Low-cycle loading includes the application 

of a few load cycles at high stress levels. On the other hand, high cyclic loading is 

characterised by a large number of cycles at lower stress levels. 

Abundant research on the development of Fibre Reinforced Concretes (FRCs) and 

particularly of High Performance Fibre Reinforced Cementitious Composites 

(HPFRCCs) is focused on minimising the detrimental effect of cracking in concrete. It 

has been found that the addition of fibre reinforcement to concrete has a twin effect on 

its fatigue performance. On the one hand, by bridging micro-cracks, fibres are able to 

hinder the crack propagation process, thus improve the composite performance under 

fatigue loading. On the other hand, flaws and initial micro-crack density may be 

increased by adding fibres (Nicolaides et al., 2010). 
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1.2 Aim of the Thesis 

The primary aim of this thesis is to explore the potential of a self-compacting UHPFRC 

developed based on CARDIFRC Mix II as a suitable material for retrofitting RC 

flexural members subjected to cyclic loading. To achieve this aim, the following 

investigations were undertaken. 

- Firstly, a self-compacting and industrially competitive ultra-high performance 

fibre-reinforced concrete (UHPFRC) based on CARDIFRC Mix II was 

developed and fully characterized with respect to its mechanical and fracture 

properties; 

- Secondly, the fatigue response of this UHPFRC version of CARDIFRC under 

cyclic flexure loading was investigated; 

- Finally, the performance of RC beams retrofitted with the UHPFRC version of 

CARDIFRC and subjected to static and cyclic loading in three-point bending 

was thoroughly examined. 

 

1.3 Outline of the Thesis 

The contents of the thesis are organised in chapters as follows: 

Chapter-1 presents a general introduction to the study, as well as the objectives and an 

outline of the thesis. 

 

In chapter 2, the behaviour of normal strength concrete (NSC), fibre reinforced 

concrete (FRC) and high performance fibre reinforced cementitious composites 

(HPFRCCs) is briefly reviewed. In addition, a brief description of self-compacting 

concrete and the requirements for self-compaction are discussed. 
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The advantages of this class of material (HPFRCCs) and the effect of silica fume, super-

plasticiser and fibres on the mechanical behaviour are explained. Finally, the main types 

of HPFRCCs are identified, giving prominence to CARDIFRC and the commercial 

version of CARDIFRC.   

 

Chapter-3 provides background information on the basic concepts of the fracture 

mechanics approach (FM), and a brief discussion of the non-applicability of linear 

elastic FM to concrete. Then the concepts of non-linear fracture theories for concrete 

are explained. A brief description of those aspects of fracture mechanics that will be 

useful for subsequent chapters are included here. 

 

Chapter-4 reviews the retrofitting of concrete structures with different methods such 

as steel plates, fibre reinforced plastics FRP and High Performance Fibre Reinforced 

Cementitious Composites (HPFRCs) such as CARDIFRC. A description of each system 

is given. In addition, this chapter presents an overview on fatigue cyclic loading, and 

highlights the behaviour of concrete, fibre reinforced concrete and RC beams under 

cyclic loading showing how usually the experimental data are represented by using the 

S-N curves.  

 

Chapter-5 presents the experimental work carried out to produce a self-compacting 

version and industrially competitive ultra-high performance fibre-reinforced concrete 

(UHPFRC) based on CARDIFRC Mix II. A full mechanical and fracture 

characterization (i.e. size-independent fracture energy and the corresponding bi-linear 

stress-crack opening relationship) of this UHPFRC is provided. The resulting UHPFRC 

has inferior mechanical properties than the original CARDIFRC Mix II due to the 

absence of thin small brass-coated steel fibres (4.5% by volume; 6 mm long). 
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Nevertheless, it is much tougher than the original CARDIFRC Mix II thanks to the use 

of a larger volume fraction (2.5% against 1.5%) of longer steel fibres (30 mm against 

13 mm). 

The size-independent fracture energy GF is determined using the concept of boundary 

effect model proposed by Duan et al. (2003). Three-point bend (TPB) tests have been 

conducted on the self-compacting version of CARDIFRC Mix II and GF is assessed 

using a simple method proposed by Abdalla and Karihaloo (2003) and Karihaloo et al. 

(2003a). 

The parameters of the bi-linear stress-crack opening relation of the UHPFRC self-

compacted version of CARDIFRC Mix II are identified using an inverse approach, 

based on the non-linear hinge model proposed by Olesen (2001), for crack growth from 

a pre-existing notch. This model was used to simulate the static response of the 

UHPFRC self-compacted version of CARDIFRC Mix II prisms under three-point 

bending test.  

 

Chapter-6, presents the flexural fatigue behaviour of the self-compacted UHPFRC 

version of CARDIFRC Mix II in terms of its S–N curve. The change in compliance 

under cycling and the effect of cyclic loading with non-zero mean stress are also 

discussed. Basquin’s Law is used to relate cyclic fatigue life with the applied cyclic 

stress range, and Goodman rule is used to evaluate the influence of the non-zero mean 

stress on the fatigue life. In addition, fibre distribution and its effect on the fatigue life 

is studied. It is found that poor distribution of fibres plays a significant role in reducing 

the fatigue life. Furthermore, an estimation of the fatigue life of the UHPFRC material 

is acquired from the recorded variation in the compliance. 
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In Chapter-7, the performance of reinforced concrete (RC) beams and RC beams 

retrofitted with a self-compacting ultra-high performance fibre-reinforced concrete 

(UHPFRC) material is investigated under three-point bend cyclic loading. No 

delamination of the retrofit strip is observed in any of the fatigue tests and the retrofitted 

beams act as a composite structure. The endurance limit of the retrofitted RC beams 

with a 35 mm thick UHPFRC strip is improved from approximately 40% to 

approximately 60% of the static three-point flexural strength. The fatigue life of the 

retrofitted RC beams with the UHPFRC strips is estimated from the recorded variation 

in the compliance. 

 

In Chapter 8, a summary of major conclusions and recommendations for future work 

in this field of study is reported. 

 

Parts of the work reported in this thesis have been published in journal papers or have 

been presented at two Conferences. For easy reference, the publications are listed 

below: 

 

➢ Al-Azzawi, B.S. and Karihaloo, B.L., 2016. Fracture and fatigue of a self-

compacting version of CARDIFRC mix II. In: 24th Proceedings Conference of 

the Association for Computational Mechanics in Engineering (ACME), Cardiff, 

UK. 

➢ Al-Azzawi, B.S. and Karihaloo, B.L., 2016. Mechanical and fracture properties 

of a self - compacting UHPC, In: 21st European Conference on Fracture 

(ECF21), Catania, Italy. 
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➢   Al-Azzawi, B.S. and Karihaloo, B.L., 2017a. Mechanical and fracture 

properties of a self-compacting version of CARDIFRC Mix II. Sādhanā, doi: 

10.1007/s12046-017-0641-9, 42(5), pp.795-803. 

➢ Al-Azzawi, B.S. and Karihaloo B.L. 2017b. Flexural fatigue behaviour of a self-

compacting ultra-high performance fiber-reinforced concrete. ASCE Journal of 

Materials in Civil Engineering., doi: 10.1061/ (ASCE) MT. 1943-

5533.0002051, 29(11), 04017210. 

➢ Al-Azzawi, B.S. and Karihaloo, B.L. Application of a self-compacting ultra-

high performance fibre-reinforced concrete to retrofit RC beams subjected to 

repeated loading. Sādhanā, (paper in press).
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2.1 Introduction  

 Concrete can be considered as the most important building material and its 

consumption is increasing in all countries in the world. It is well known that concrete is 

a relatively brittle material, i.e. it has relatively low tensile strength and poor resistance 

to crack opening and propagation. Plain concrete includes numerous micro-cracks and 

hence the rapid propagation of these micro-cracks under applied stress is responsible 

for the low tensile strength of the material (Ramakrishnan, 1995). 

The mismatch of the elastic moduli of cement paste and the aggregate leads to stress 

concentration, which is partially responsible for the bond failure at the aggregate-paste 

interface causing the propagation of cracks in NC (Newman, 1965). Usually cracks take 

a path around the aggregates through the cement aggregate interfaces (Bentur and 

Mindess, 1986); hence, the essential factor limiting the strength development is the 

aggregate-matrix interface (Struble et al., 1980). 

The drawbacks of concrete can be overcome by reinforcing with short discontinuous 

fibres, which in turn can restrain the propagation of cracks and restrict the crack width 

(Qian et al., 2000). The role of steel fibres can be perceived mainly after matrix cracking 

in concrete, which help in bridging the propagating cracks (Stroeven and Babut, 1986). 

However, the addition of steel fibres at high dosages was found to affect the workability 

of the fresh concrete significantly and to increase the cost (Grünewald, 2004, Sivakumar 

and Santhanam, 2007). Moreover, during vibration, fibres might move and segregate to 

the bottom of the framework leading to an uneven dispersal of fibres that will further 

affect the homogeneity of the mix (Gettu et al., 2005). In addition, the lack of skilled 

workers to perform a fully compacted concrete where there is limited or no access for 
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vibrators have led researchers to explore self-compacted concrete SCC to solve these 

problems.  

Initial ideas of SCC were generated in Japan; Okamura proposed such type of concrete 

in 1986 (Okamura and Ouchi, 2003). Since then, the use of SCC has rapidly increased 

because of the needs to produce durable concrete structures, the potential economic 

opportunities and improvement of the working circumstances (Bonen and Shah, 2005). 

The inclusion of fibres in SCC will extend their benefits in the fresh state with an 

enhanced post-cracking performance, bridge cracks and retard their propagation and 

thus improve the tensile and flexural strength and fracture toughness in the hardened 

state thanks to the fibres (El-Dieb and Taha, 2012). 

Mainly an increase in the ductility is exhibited in the conventional FRC compared to 

the plain matrix, whereas HPFRCC display a fundamental strain-hardening type of 

response and a large improvement is acquired in both its strength and toughness 

compared with the plain matrix (Shah et al., 1999). High Performance Fibre Reinforced 

Cement Composites (HPRCCs) represent a class of cement composites whose stress-

strain response in tension undergoes strain-hardening behaviour accompanied by 

multiple cracking, leading to a high failure strain capacity. The behaviour of this class 

of material, as well as other HPFRCCs that have been presented to the industry so far 

will be discussed next. 

 

2.2 Fibre Reinforced Concrete 

A fibre is a small piece of reinforcing material possessing certain characteristic 

properties. They can be circular or flat. Fibres suitable for reinforcing concrete have 

been produced from steel, glass, synthetics like acrylic, aramid, carbon, nylon, 
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polyester, polyethylene, and polypropylene. Natural fibres like; sisal, coconut, bamboo, 

and jute have also been used in concrete (ACI, 1996). 

The fibre is often described by a convenient parameter called 'aspect ratio' (Shetty, 

2005).The purposes of reinforcing the cement-based matrix with fibres are to increase 

the tensile strength by delaying the growth of cracks, and to increase the toughness by 

transmitting stress across a cracked section so that much larger deformation is possible 

beyond the peak stress than without fibre reinforcement (Neville, 2010, Caverzan et al., 

2012).The essential role of the fibres in hardened concrete at low volume fractions is to 

modify the cracking mechanism. Ramakrishnan (1995) mentioned that, by modifying 

the cracking mechanism the macro-cracking becomes micro-cracking and therefore the 

permeability is reduced by smaller cracks and the ultimate strain is enhanced. Brandt 

(2008) stated that it is might be convenient from both safety and  

 

 

Figure 2.1 Crack pattern in reinforced concrete (RC) and fibre reinforced concrete (FRC) 

elements subjected to tension (After Brandt, 2008) 
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durability viewpoints to replace the large single cracks with dense systems of micro-

cracks by using fibres (Fig. 2.1). The failure in a cementitious composite begins with 

the formation of micro-cracks that propagate and eventually coalesce to generate 

macrocracks, which cause fracture if not controlled. The existence of fibres in a 

cementitious matrix mitigates and stops the propagation of micro-cracks and macro-

cracks (Banthia and Gupta, 2004). 

The pre-peak as well as post-peak region of the load–deflection curve were enhanced 

due to the addition of fibres resulting in increasing the flexural strength and toughness, 

respectively. The performance of the fibre reinforced concrete is controlled mainly by 

the volume of the fibres, the physical properties of the fibres and the matrix, and the 

bond between the two.   

The most popular fibres used in concrete is steel fibres that are in general carbon steels 

or alloy (stainless) steels. In refractory applications and marine structures, the latter are 

used mostly for corrosion resistance. The use of straight, smooth fibres such as those 

used originally became outdated since sufficient bond with the matrix was not 

developed, whereas roughness of surface, hooked or enlarged ends, or are crimped or 

deformed along their lengths are the most important features of modern fibres, which 

are intended to improve the bond (Bentur and Mindess, 2007). 

Generally, addition of steel fibres participate in the energy absorbing mechanism (by 

bridging action) whereas, the retardation of the formation of micro-cracks is due to the 

contribution of the non-metallic fibres. Addition of steel fibres does not significantly 

increase the compressive strength, unless high fibre volumes are used. Sivakumar and 

Santhanam (2007) investigated the performance of the combination of hooked steel and 

a non-metallic fibre up to a volume fraction of 0.5%. They documented fibre concrete 
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composites produced using polypropylene, glass and polyester fibres in combination 

with steel fibres. They stated that the beneficial ramifications of adding non-metallic 

fibres (like glass, polyester, polypropylene etc.) are for controlling the propagation of 

micro cracks in the plastic stage of concrete. This is attributed to their high aspect ratios 

and increased fibre availability (because of lower density as compared to steel) at a 

given volume fraction. Nevertheless, their contribution to post-cracking behaviour is 

insignificant compared to steel fibres. Therefore, using hybrid fibres can generate 

synergetic interaction between fibres that may boost the advantages that can be achieved 

by mono-fibre, consequently, a cementitious composite with both improved strength 

and ductility can be obtained (Pakravan et al., 2017, Mindess, 2014).  

 

2.3 Self-Compacting Concrete 

Generally, vibration is used to achieve the required compaction, reduce the porosity and 

the air entrapped in the concrete. However, even for skilled workers, a lot of effort is 

required to vibrate densely reinforced concretes. The mechanical features of the 

concrete in its hardened state are influenced straightaway when there is a lack of good 

vibratory compaction. Consequently, voids are formed which results in reducing the 

compressive strength, also the natural physical and chemical protection proffered by 

concrete is greatly affected (Gaimster and Dixon, 2003). 

Self-compacting concrete is characterized by its ability to fill formwork, encapsulate 

reinforcement bars, and flow under its own weight. At the same time, it is cohesive 

enough to maintain its homogeneity without segregation or bleeding. This drastically 

promotes (Mindess 2014): 
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- The working environment (reducing the noise level and reduce health effects on 

operators using hand-held vibrators) during construction, 

- The productivity by reducing the construction time (the anchorages of the Akashi-

Kaikyo Suspension Bridge, Japan, from 2.5 years to 2 years). By using SCC 

effectively, productivity in the building industry might be improved by 5-10%. 

- Potentially enhances the homogeneity and quality of the concrete. In addition, larger 

architectural freedom can be achieved in structural design by using SCC. 

In summary, ample opportunities can be provided by SCC for concrete construction 

with improved performance of concrete structures as well as providing noise and 

vibration-free environment. 

 

2.3.1 Definitions of Self-Compacting Concrete  

The British Standard (BS EN 206-9, 2010) defines “SCC is the concrete that is able to 

flow and compact under its own weight, fill the formwork with its reinforcement, ducts, 

boxouts etc, whilst maintaining homogeneity”. 

SCC has been defined in several ways by researchers, but in almost the same terms as 

a highly flow-able concrete that should meet the following requirements: (Ozawa et al., 

1989; Khayat and De Schutter, 2014; Skarendahl 2000;); 

- Flow-ability: concrete should be able to flow into and fill all spaces within the 

formwork under its own weight without any external aid or vibration. 

- Passing ability: SCC should pass through all openings such as the spaces between 

reinforcing bars and within the formwork without blocking. 
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- Segregation resistance: SCC should be able to fulfil the above two requirements 

without any migration or separation of its material constituents and maintain its 

homogeneity during flow. 

Different test apparatus and methods have been proposed to assess that the requirements 

of SCC are fulfilled. The workability tests which are recommended by the EN standard 

(BS EN 206-9:2010) are discussed, namely the slump flow test for flowing ability, L-

box and J-Ring tests for passing ability, and visual examination and sieve stability tests 

for segregation resistance.    

 

2.3.2 Flow-Ability Test 

2.3.2.1 Slump Flow Test 

The slump flow test evaluates the deformation capacity of SCC under its own weight 

without external forces against the friction of the base plate. The slump flow test is one 

of the most popular test to appraise the deformation capacity of SCC because the 

procedure and tools are relatively simple (Takada and Tangtermsirikul, 2000). 

In the slump flow an ordinary slump cone is placed on a non-absorbing levelled flat 

steel surface with a plane area of at least 900 mm x 900 mm and filled with SCC, then 

cone is the lifted and the mean diameter is measured after the concrete has ceased 

flowing. Two horizontal perpendicular diameters d1 and d2 as illustrated in Figure 2.2 

are recorded and the average flow spread diameter is calculated. 

The rate of deformability can be estimated by determining the T500 time (T500, the time 

from lifting of the cone to the concrete spreading to a 500mm diameter), while the 

segregation resistance can to a certain degree be visually inspected. Segregation can be 

visibly assessed by observing the flowing process and the edge of the spread after the 
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concrete stops; also, it should be ensured that no coarse aggregates and fibres have lifted 

in the centre of flow.  According to the latest mix design guidelines for self-compacting 

concretes (BS EN 206-9, 2010) two viscosity classes are introduced: viscosity class 1 

(VS1) and viscosity class 2 (VS2) depending on whether T500 < 2 sec or ≥ 2 sec. 

 

Figure 2.2 Slump test apparatus with upright cone 

 

2.3.3 Passing Ability Tests 

2.3.3.1 J-Ring Test 

The J-Ring test is used in conjunction with a slump test to determine the passing ability 

of a SCC mixture. The equipment consists of an open steel circular ring with diameter 

300 mm, and  16 steel rods (ϕ16 mm) and 100 mm height, as shown in the Figure 2. 3. 

The slump cone is placed centrally in the J-Ring and filled with concrete, while pressing 

the slump cone to the base plate. The cone is lifted perpendicular to the steel base plate 

allowing the concrete to flow freely, and the final diameter of the concrete spread is 

measured (the average of two diameters measured in two perpendicular directions).  The 
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time needed for the flow to reach 500 mm diameter is recorded as T500J, and the flow 

allowed stopping before recording the remaining measurements. 

 

Figure 2.3 J-ring test apparatus 

 

2.3.3.2 L-Box Test  

This test evaluates the filling ability of SCC and the capacity to pass through narrow 

openings including spaces between reinforcement and other obstacles without blocking. 

The apparatus has a rectangular section box in the shape of an ‘L’, with a horizontal and 

vertical section separated by a sliding gate as shown in Figure 2.4. The L-Box is 

equipped with reinforcement bars separated by narrow openings that are designed to 

evaluate the passing ability of a SCC mixture.  
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Figure 2.4: L-box test apparatus 

 

2.4 High Performance FRC (HPFRC) 

Although cementitious materials have proven their versatility in many construction 

applications worldwide, their inherited low strain capacity in tension and consequently 

low fracture energy has led researchers to find solutions to improve these features. The 

very high cement content, the very low water content, and the high dosage of 

superplasticizer affect the properties of the fresh concrete in some ways in a manner 

different from the ordinary mixes (Neville, 1995). High Performance Fibre Reinforced 

Cement Composites (HPRCCs) have a mixture of cementitious materials, sand, fibre 

reinforcement, and admixtures. Low water-to-cementitious materials ratio, high 

mechanical strengths and ductility and extended service life due to their refined 

microstructures can represent the main features of HPRCCs (Meng et al., 2017).  

In contrast to normal concrete (NC) and/or Fibre Reinforced Concrete (FRC), HPFRCC 

materials show enhanced properties in terms of higher ductility, durability and energy 

dissipation capacity. These advances are based on the use of silica fume and surfactants, 
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which reduce water demand and densify the matrix, thereby improving the fibre-matrix 

interfacial bond (Morin et al., 2001). 

When concrete, mortar or FRC are subjected to tension, initial linear increase of stress 

is noticed, and later brittle degrading behavior at first cracking due to inability to 

transfer tensile stresses across the crack surface is recognized, this stage is called strain 

softening. In contrast, multiple cracking is distinguished after first cracking in HPFRCC 

materials, exhibiting a hardening behavior, and considerable amount of energy is 

absorbed that is proportional to the area under the curve. The softening branch follows 

that stage. The main difference between conventional FRC and high performance fibre 

reinforced cement composites (HPFRCC) is illustrated in Fig 2.5 (Naaman, 2007, 

Brandt, 2008). 
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Figure 2.5 Comparison of typical stress–strain response in tension of HPFRCC with conventional 

FRCC, (a) conventional FRC, (b) HPFRCC (After Naaman, 2007). 

 

FRC has been classified by fibre content, and by mechanical behaviour, likely because 

the former influences the latter:  FRC with low fibre volume fractions (< 1%) is utilized 

for reducing shrinkage cracking (Balaguru and Shah, 1992). This low fibre volume 

fraction is used in structures like slabs and pavements that have large exposed surface 

leading to high shrinkage cracking.  FRC with moderate fibre volume fractions 

(between 1% and 2%), display enhanced mechanical properties including modulus of 

rupture (MOR), fracture toughness, and impact resistance. High volume fraction 

(greater than 2%), which generally labelled as high performance FRC, (HPFRCC). 

(a) 

(b) 
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HPFRCC exhibits apparent strain-hardening behaviour. A new class of HPFRCC 

materials has been recently developed at Cardiff University, designated CARDIFRC. It 

is characterized by high tensile/flexural strength and high-energy absorption capacity 

(Karihaloo et al., 2002).  

 

2.5 Types of HPFRCC 

HPFRCCs include materials such as SIFCON (Slurry Infiltrated Fibre Concrete), MDF 

(Macro Defect Free), ECC (Engineered Cementitious Composites), Fibre Reinforced 

DSP (Densified Small Particle Systems), CRC (Compact Reinforced Composite), RPC 

(Reactive Powder Concrete) and CARDIFRC. These materials have showed noticeable 

combinations of strength and ductility as well as long-term durability (Karihaloo et al., 

2002). We shall give brief description of RPC, DSP and CARDIFRC next.  

 

2.5.1 Reactive Powder Concrete (RPC) 

Reactive Powder Concrete RPC has been developed by the Scientific Division of 

Bouygues, at St Quentin en Yvelines in France.  

High silica fume content and very low water to cement ratio are the characteristics of 

this material. It offers very high mechanical and durability properties (Richard and 

Cheyrezy, 1994). The ductility estimated in terms of fracture energy is increased by one 

to two orders of magnitude in comparison with the conventional concrete. RPC 

possesses very high strength: it is usually divided into two grades: RPC 200 and RPC 

800MPa. The outstanding mechanical properties achieved are Young’s modulus and 

fracture energy in the range of 50–75 GPa and 12–40 kJ/m2, respectively. 
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 As reported by Richard and Cheyrezy (1995) and Li and Fischer (2006) in RILEM 

Workshop the development of RPC was based on the following principles:                 

- Increased matrix homogeneity which is achieved by lack  of coarse aggregates 

and the replacement of natural sand with very fine quartz sand; 

- Enhancement of compacted density through optimization of the grading, 

microsilica improves the compacted density of the mix thereby reducing voids 

and defects. 

- Improvement of ductility by incorporating small-sized steel fibres. 

- Enhancement of  microstructure (by the use of a high dosage of silica fume and 

post-set heat-treatment), 

- Reduction of the water to cement ratio and inclusion of superplasticiser ensures 

a workable mix. 

A great attention is given to the properties of the matrix, to maintain its homogeneity 

by limiting the size of the quartz sand to 0.6 mm and improving the microstructure by 

thermal curing. The combination of these two characteristics was proposed to be the 

key element for the superior behaviour, as seen by the high compressive and flexural 

strengths (likely to be between 30 and 60 MPa). 

 

2.5.2 DSP Cementitious Materials 

Densified cement ultra-fine particle based materials DSP was developed by the Danish 

cement producer, Aalborg Portland-Cement. Production of this material is made 

possible by superplasticizers and silica fume to systems that can be densely packed in a 

low stress field and with very low water content (Bache, 1981). 
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DSP belongs to a class of materials formed from densely packed particles of a size 

ranging from 0.5 to 100μm, and homogeneously arranged ultra-fine particles ranging in 

size from about 50A˚ to 0.5 μm and arranged in the spaces between the larger particles.  

To achieve the desired mechanical properties, the dense packing of the particles (sand, 

cement and ultra-fine silica) together with fibres is fundamental. It is also the prime 

feature of HPFRCC materials. Materials such as DSP combine very densely packed 

cement particles (5-10μm) and ultra-fine silica fume (0.1-0.2μm) filling the spaces 

between the cement particles and, normally densely arranged fibres (Bache, 1981; 

Bache, 1987). The new binder is very strong with a compressive strength of 150 MPa - 

270 MPa, but also very brittle, like glass, thus in itself unsuitable as a structural material. 

Therefore, to improve the tensile properties of DSP based matrix, fine, strong and stiff 

fibres is used in the mix. The fibres improve the tensile properties of DSP based matrix, 

such as Densit®. 

 

2.5.3 CARDIFRC 

Many attempts were carried out at CARDIFF University (Karihaloo and De Vriese, 

1999; Sullivan, 1999; Karihaloo et al., 2002) to reproduce RPC and Densit® with 

materials widely used by the UK concrete industry. The mechanical properties were 

found to be inferior to those announced in the literature (Richard and Cheyrezy, 1995; 

Bache, 1981), and the workability of some mixes was poor. 

Thus a new composite was created based on maximizing the density of the matrix by a 

continuous grading of its particles in the range of 0.5–2 mm, and reinforcing it by 0.15 

mm diameter steel fibres with length of 6 and 13 mm. The constitutive equations used 

to describe and optimize the composite address the different stages of the loading of the 
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composite. Benson (1999) also investigated another type of HPFRCC with 6 mm coarse 

aggregate. A satisfactory workability was produced but with inferior mechanical 

properties comparing with those achieved with mixes containing no coarse aggregate 

(i.e. Densit® and RPC) (Benson, 2003). 

To achieve good workable mixes with a very low water/binder ratio and a high volume 

fraction of steel fibre, further studies were continued at Cardiff to gain concrete with 

high ductility with a relatively high tensile strength. Large amounts (up to 8 % by 

volume) of short steel fibres (6-13 mm long, 0.15 mm diameter) were added in a 

cementitious matrix densified by the use of silica fume to achieve the required result. 

Instead of ordinary river sand and coarse aggregates, the matrix contains only very fine 

quartz sands (up to 2mm). By optimizing the grading of fine sands, the water demand 

was considerably reduced without affecting the workability of the mix. As a result of 

many trial mixes and testing, the mixes shown in Table 2.1 are the optimized ones. Two 

different mix classes (designated CARDIFRC, Mix I and Mix II) of high-performance 

concrete differing mainly by the maximum size of quartz sand used in the mix have 

been developed using novel mixing procedures.  

There are significant differences between CARDIFRC mixes and RPC and DSP mixes. 

The innovative technique of using the two different types of fibre in combination to the 

high volume fraction was found to be quite beneficial to the load deflection response of 

the matrix in terms of both strength and ductility. In addition, the use of two grades of 

fine quartz sand (Table 2.1) shows considerable enhancement in the performance of 

Mix I. Similarly, in Mix II in order to maximize the dry density of the mix, three grades 

of fine quartz were used. In its hardened state CARDIFRC is characterized by very high 

compressive strength (in excess of 200 MPa), tensile /flexural strength (up to 30 MPa), 
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high energy-absorption capacity (up to 20,000 J/m2). Table 2.2 shows the properties of 

CARDIFRC.  

 

Table 2.1 Mix proportions for optimised CARDIFRC® Mix I and Mix II (per m3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5.3.1 Commercial Version of CARDIFRC 

In view of the high cost of fibres, a commercial variant of the material has been 

developed in collaboration with a leading concrete construction company. It differs 

from the original CARDIFRC mixes through; 

a) A reduction in the cost by replacing expensive brass-coated small steel fibres with 

less expensive longer steel fibres. 

Constituents  Mix I (kg/m
3
) Mix II (kg/m

3
) 

Cement 855 744 

Microsilica 214 178 

Quartz sand:    

 9-300 µm 470 166 

 250-600 µm 470 - 

 212-1000 µm - 335 

 1-2 µm - 672 

Water 188 149 

Superplasticiesr 28 55 

Fibres: - 6 mm  390 351 

- 13mm 
78 117 

Water / cement 0.22 0.20 

Water/ binder 0.18 0.16 
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b) The avoidance of the need for vibratory compaction by creating a self-compacting 

mix. 

c) The creation of a sustainable and environmentally friendly material with a low 

carbon footprint. 

The eventual commercial version of CARDIFRC contained only 2.5% by volume of 30 

mm long Dramix fibres with crimped ends. It had no short steel fibres, but contained 

0.02% by volume of sacrificial polymeric fibres to give it the required 120 min fire 

rating. 

 

Table 2.2 Typical material properties of CARDIFRC® Mix I and Mix II. 

 

 

This version was self-compacting with a horizontal spread of 750 mm in the slump cone 

test; the spread of 500 mm was reached in 3 sec. (Karihaloo, 2012). 

This version was obtained by replacing 36.4% of cement in the original CARDIFRC 

Mix I with ground granulated blast furnace slag (GGBS) to increase the powder volume, 

and by using the more effective Glenium Ace 333 superplasticiser instead of the 

naphthalene-based superplasticiser in the original CARDIFR mix I. The mix 

proportions of this commercial version are given in Table 2.3. 

Material Properties Mix I  Mix II 

Indirect tensile strength (MPa) 28.6 21.4 

Size- Independent Specific Fracture 

Energy (N/m) 

22909 17875 

Compressive (MPa) 194.0 207.0 
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This industrially competitive self-compacting variant of CARDIFRC is ideal for 

manufacturing pre-cast pre-stressed concrete elements without shear reinforcement for 

use in structural applications where steel has often been used. 

Extensive testing on full size pre-cast pre-stressed girders made from this material was 

conducted. Their load bearing capacities at both the serviceability and the ultimate limit 

states far exceeded the expected values (Karihaloo, 2012).  

Table 2.3 Mix proportions of the commercial version CARDIFRC Mix I  

 

 

 

 

 

 

 

 

 

 

2.5.3.2 The Effect of Steel Fibre 

The tensile load carrying capacity increased due to the incorporation of fibres in the 

CARDIFRC and turns the material from brittle one into a very ductile one. Furthermore, 

to prevent corrosion, brass-coated steel fibres (diameter 0.15 mm, 6 mm or 13 mm long) 

are used in CARDIFRC mix. 

 The use of long and short fibres was found necessary to improve the material 

properties, whilst minimizing loss of workability. The short fibres prevent micro-crack 

Constituents Amount (kg/m
3
) 

Cement 543.5 

Micro-silica 214 

GGBS 311.5 

Quartz sand:  

9-300 µm 470 

250-600 µm 470 

Water 188 

Superplasticiesr 20.68 

Fibres: - 30 mm Dramix 195 

- Polymeric 0.156 

Water / cement 0.22 

Water/ binder 0.18 
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growth and coalescence (Tjiptobroto and Hansen, 1993) and provide a high tensile 

strength. Long fibres provide increased ductility, greater pull-out strength and will 

bridge wider cracks (Sullivan, 1999).  

The high toughness of the material is due to the mechanism of fibre pull-out which is 

the preferred failure mode, rather than the fracture failure mechanism, because of its 

ability to redistribute stresses (Caverzan et al., 2012). 

The disadvantage of long fibres is that they have an adverse effect on workability and 

an optimum content of steel fibres should be adopted to balance the workability, and 

mechanical performance (Sivakumar and Santhanam, 2007, Wille et al., 2011).  

The effect of fibres on the compressive strength of ultra-high strength concretes, such 

as RPC, is less clear. The fibres are added foremost to provide considerable ductility to 

these materials (Bentur and Mindess, 2007). However, they can also provide some 

significant strengthening at high enough fibre volumes. For instance, Karihaloo and De 

Vriese (1999) found an increase in compressive strength from about 120 MPa to about 

145 MPa (21%) when fibres increased from nothing to 4% by volume.  

 

2.5.3.3 Volume Fraction of Fibre 

Generally, as the volume fraction of fibre increases and as the fibres are more uniformly 

dispersed, the growth of micro-cracks is hindered, and the localisation of deformation 

is delayed with a consequent substantial increase in the tensile strength and strain 

capacities of the composite (Balaguru and Shah, 1992). An experimental programme 

was conducted on the effect of fibre content on the fracture properties of concrete by 

Mobasher et al. (1990). They concluded that as the volume fraction of fibres increases 
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the growth of micro-cracks was hindered through an arrest mechanism, the matrix 

fracture toughness was increased and higher peak load could be sustained.  

Karihaloo and De Vriese (1999) studied the influence of the volume fraction of steel 

fibre upon the mechanical properties of reactive powder concrete. The mixes contained 

four different volume fractions of steel fibre Vf =1- 4%. The fibres were straight steel 

wires, 6 mm long and 0.16 mm in diameter. It was detected that an increase in the 

specific fracture energy and the indirect tensile strength (splitting strength) of the 

composite is due to the increase in the volume fraction of steel fibre. 

 Hoy and Bartos (1999) reported that a significant loss of workability when higher 

volumes of steel fibre are added to concrete and greater chance that fibres will interlock. 

For these reasons, there is an optimum fibre content for any given fibre matrix 

combination. Undoubtedly, lack of homogeneity and poorer workability will be 

produced when higher fibre contents is added to the mix, while lower fibre contents will 

result in less efficient reinforcement. The influence of increasing fibre volume and its 

efficiency on the behaviour of a SFRC element modifies entirely its behaviour under 

load. While the conventional SFRC element is characterized by initial linear increase 

of stress and after the 1st crack opening there is a softening branch, in contrary, where 

the reinforcement is sufficient, after the 1st crack there is a strain hardening stage which 

accompanies multiple cracking and considerable amount of energy is absorbed (Brandt, 

2008).    

 

2.5.3.4 Aspect Ratio of Fibre (L/d) 

Physically, aspect ratio is a relative term describing the fibre length divided by the 

diameter. Generally, higher aspect ratio fibres perform better than lower aspect ones. It 

was found that when the aspect ratio increased from 47 to 100, there is a monotonic 
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increase in compressive strength and ductility (Gopalaratnam and Shah, 1986). Sullivan 

(1999) also found that long fibres increased both the tensile strength and ductility of 

concrete. Karihaloo and De Vriese (1999) mentioned that an increase in fibre length and 

thus of aspect ratio seems to be more effective than an increment only in volume fraction 

of fibres. The incorporation of long fibre (13 mm) in CARDIFRC mixes is a primary 

reason for enhancing its ductility. Singh (2016) reported that the post-peak 

characteristics of the SFRC under compression shows an improvement and the extent 

of this improvement depends upon the fibre parameters (the fibre aspect ratio and the 

volume fraction), where the higher the value of the fibre parameters (aspect ratio and 

the volume fraction) nominated in the design more is the improvement in the post-peak 

characteristics of the SFRC (Figure 2.6).   

 

 Figure 2.6 A typical stress–strain response of SFRC under compressive with different 

values of aspect ratio. (After Singh, 2016) 

 

2.5.3.5 Fibre Distribution 

The performance of concrete can be ameliorated by including fibres to the matrix which 

in turn retard the crack propagation during loading.  Fibre efficiency depends on how 

they are distributed and oriented in a cementitious matrix (Grunewald et al., 2013). 

It was found that the mechanical performance of any HPFRCC depends to a high degree 

on even distribution of fibres in the matrix (Farhat et al., 2007). Vodicka et al. (2004) 
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stated that there is a minimum fibre content required if a homogeneous distribution is 

to be obtained, and they estimated to be in the range of 30–40 kg/m3. They stated that, 

the hazard of a non- homogenous fibre distribution becomes increasingly likely for very 

low fibre contents (less than about 25 kg/m3 of fibres). Singh (2016) reported that 

special procedures are needed to verify the uniform fibre distribution in the concrete 

mix when the aspect ratio of steel fibres is more than 50.  Of these using bundled fibres, 

which are glued together with a water-soluble gum, is recommended 

Computerized Topography (CT) imaging and sectioning of specimens have confirmed 

that the novel mixing procedures used for the production CARDIFRC ensures 

remarkably homogeneous mixes with a uniform distribution of up to 8 % of vol. for 

long and short fibres (Karihaloo and Jefferson, 2001). 

Destructive and non-destructive testing techniques were used by Benson (2003) to 

verify that the mixing procedures used to produce CARDIFRC do indeed result in a 

uniform distribution of the steel fibres. CT results showed that the fibres are nearly 

uniformly distributed with random orientation in the mixes. Destructive testing (image 

analysis) also confirmed these findings and showed that the fibre distribution was 

generally uniform.  

Farhat et al. (2007) reported that a uniform distribution of fibres throughout the bulk of 

the material is important to ensure its excellent fatigue performance. They tested large 

beams of CARDIFRC (100/100/500 mm), and it was found that the scatter in these 

beams was very high and a rather poor fatigue performance. An additional testing series 

was performed on thin slabs (360/90/35 mm), rather than beams, the fatigue 

performance was much better for upper load levels below 80% of the average static 

strength no failure occurred. They attributed the difference in fatigue behaviour between 
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the beams and slabs mainly to the fibre orientation and distribution, which was 

evaluated with CT imaging, where a much better fibre distribution could be obtained in 

the thin slabs. 

 

2.5.3.6 The Effect of Silica Fume 

Silica fume is a by-product from electric furnaces used in the manufacture of silicon 

metal, ferrosilicon and other silicon alloys (Aïtcin, 2004), which improves concrete 

properties in fresh and hardened states.  

The individual particles are extremely fine, approximately 1/100th the size of an 

average cement particle, most of them having a diameter ranging between 0.03 and 0.3 

μm; the median diameter is typically below 0.1 μm (Neville, 1995). 

Because of its fine particles, large surface area, and the high SiO2 content, silica fume 

is a very reactive pozzolan when used in concrete. It is frequently used in amounts 

between 5% and 10% by mass of the total cementitious material (Brandt, 2008; 

Caldarone, 2008). It is used either as a cement replacement material to reduce the 

cement content or as an additive material to enhance the performance of concrete. 

Fresh concrete containing silica fume is more cohesive and less prone to segregation 

and bleeding than concrete without silica fume. These effects are caused primarily by 

the high surface area of the silica fume to be wetted; there is very little free water left 

in the mixture for bleeding (King et al., 2012).   

The extremely fine particles of silica fume have the ability of to be located in very close 

vicinity to the aggregate particles, that is, at the aggregate-cement paste interface, which 

is known to be a source of weakness in concrete. Therefore, the so-called interface zone 
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has improved properties with respect to micro-cracking and permeability (Neville, 

1995). 

The substantial functions of silica fume in concrete are (Siddique and Khan, 2011):  

- Pore-size refinement and matrix densification: Essentially, silica fume acts as filler 

due to its fineness and hence it fits into the spaces between grains. It causes a 

significant reduction in the volume of large pores at all ages. 

- Pozzolanic reaction: The formation of Calcium Hydroxide crystals (CH) during the 

chemical reaction of Portland cement represent a source of weakness because cracks 

can readily diffuse through or within these crystals without any considerable 

resistance affecting the strength, durability and other properties of concrete. 

Additional binder material called Calcium Silicate Hydrate (C-S-H) formed from the 

reaction of silica fume with CH, which is comparable to the Calcium Hydroxide 

formed from Portland cement and water and therefore reduces the CH content.  

One of the main advantages of using silica fume particles with cement is to fill the 

spaces between the cement particles and thus achieving very dense packing system. 

Bache (1981) attributed these to the following: 

- The silica particles are smaller than even the finest cement wich can produce by 

grinding and are therefore more conductive to dense packing into the spaces between 

the cement particles. 

- The silica particles, being formed by condensation from gas phase, are spherical in 

shape (unlike crushed cement particles, which are angular) and this makes the silica 

particles even more suitable for dense packing than very fine cement. 

- The particles are chemically less reactive than cement, which eliminates the problem 

of too rapid hardening encountered with very fine cement; in addition, the silica is 
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likely to ensure the formation of a coherent structural skeleton between the cement 

particles, resulting in a fine dense micro structure. 

 Recently, many studies have been conducted to evaluate the effect of micro-silica on 

the mechanical properties of concrete mixture (Biswal and Sadangi, 2011; Karatas et 

al., 2010; Memon, 2013; Wongkeo et al., 2014). The performance of HSC under impact 

and fatigue can be improved by using silica fume, since it can improve the interface 

structure, eliminate weaknesses of the interface, enhance the interfacial bond strength, 

and reduce the number and size of original cracks (Yan et al., 1999). 

 

2.5.3.7 The effect of Dispersing Agent (Superplasticizer) 

The new cement-based materials have a very low porosity, which is achieved by the 

addition of very small reactive particles whose role is to fill the interstitial space 

between larger particles. This addition can lead to very dense, high-strength, hardened 

materials, but with more demand of water and this leads to a reduction in workability. 

Thus, a high range water-reducing admixture is often introduced to promote the 

workability.  

The main functions of superplasticizer in concrete as reported by Neville and Brooks 

(2010) are: 

- Higher strength can be achieved by decreasing the water/ cement ratio with the 

same workability by adding superplasticizer. 

- The same workability can be achieved by reducing the cement content and hence 

the heat of hydration in mass concrete. 

- Ease placing in inaccessible areas as the workability increased, without 

subjecting to excessive bleeding or segregation. 
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The addition of a superplasticizer deflocculates the cement particles and frees the 

trapped water by their dispersing action and hence enhances the flow-ability of concrete. 

Mixes of dry particles with small amount of water tend to restrain a good distribution 

of the water between solid particles, thus preventing ultimately an optimal repartition 

of the hydrates formed between the particles. Therefore, the paste has a very low initial 

fluidity.  

Adding superplasticizer minimizes the surface tension of water and allows the 

permeation of the fluid in between the solid particles and hence an adequate 

permeability to water is acquired. Small amounts of superplasticizer can provide a high 

level of fluidity despite using low water content (Morin et al., 2001). 

Superplasticizer is added to the CARDIFRC matrix in order to achieve a very workable 

mix at low water/cement ratio, thus obtaining dense packing which lead to high strength 

and durability.  Dugat et al. (1996) reported that by using superplasticizer with silica 

fume it is possible to reduce the water/cement ratio to less than 0.15. This helps reduce 

the total pore volume of the cement paste and the average diameter of the pores, hence 

improving durability.  

 

2.4 Bridging Action of the Fibres 

The studies showed that the most substantial property of a fibre reinforced cementitious 

composite is the fibre bridging across the matrix crack (Li at el., 1991, Lim and Li, 

1997). 

The addition of fibres to concrete mixes considerably enhance many of the engineering 

properties of HPFRCCs, particularly toughness. As fibres are randomly distributed in 
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the concrete matrix, cracks can reach a fibre which can stop crack growth, when 

propagating through concrete (Barluenga, 2010). 

The inclusion of fibres acts as crack arrester; they restrict the development of crack and 

thus transforms an inherently brittle matrix into a strong composite with better crack 

resistance and ductility. Moreover, the fibres help to transfer loads at the internal micro-

cracks (Ramesh et al., 2003). 

An important factor to be considered when the properties of steel fibre concrete are 

quoted, is the fibre orientation relative to the direction of applied stress. Clearly, the 

orientation of the fibre relative to the plane of a crack in concrete influences the 

reinforcing capacity of the fibre. The maximum benefit occurs when the fibre is 

unidirectional and parallel to the applied tensile stress, and the fibres are of less benefit 

when randomly oriented in three dimensions (Neville and Brooks, 2010). 

Balaguru and Shah (1992) reported that when the matrix cracks, the load is transmitted 

across the crack by the fibre. Since fibres are randomly dispersed throughout the matrix, 

their orientations relative to the direction of the applied load are an important factor. In 

a matrix containing randomly distributed fibres, few fibres align in the direction of 

applied load; instead almost all fibres are oriented at different angles to the load 

direction (Figure 2.7). Moreover, the observations confirmed that after matrix cracking, 

the load and energy required to pull-out a steel fibre from the matrix can be higher for 

fibres inclined to the load direction, this is known as dowel action. When a fibre is 

pulled out from the cementitious matrix, the snubbing friction at the fibre exit point can 

increase the pull-out resistance, and contribute to the overall composite action. Naaman 

and Shah (1976) mentioned that inclined fibres can take a greater load as they bend. 
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Figure 2.7 (a) A single fibre pull-out without snubbing (ϕ = 0) and (b) with snubbing (ϕ≠0, ϕ=φ) 

 (After Karihaloo and Wang, 2000) 

 

 

2.5 Concluding Remarks 

As has been argued, the failure in concrete initiates with the formation of micro-cracks that 

propagate and eventually coalesce to generate macro-cracks, which cause fracture if not 

controlled. However, the inclusion of fibres in concrete stops the propagation of micro-

cracks and macro-cracks thus increasing the ductility of concrete.  High and ultra-high 

performance fibre-reinforced concrete (HPFRC and UHPFRC) have been developed to 

achieve strength and toughness requirements that conventional FRC cannot achieve. A 

HPFRC is a mixture of cementitious materials, sand, fibre reinforcement, and admixtures; 

it is characterized by low water-to-cementitious materials ratio, high mechanical strengths 

and ductility, and prolonged service life due to its refined microstructure. An UHPFRC has 

even more refined microstructure and superior mechanical, fracture and durability 

properties than HPFRC. CARDIFRC is a class of UHPFRC; it is characterized by very high 

compressive strength, high tensile /flexural strength, and high energy-absorption capacity. 

However, CARDIFRC was initially developed only for small-scale niche applications due 

to the very high cost of thin brass-coated steel fibres. The need of producing cheaper 

versions of CARDIFRC and employing it in large volume applications, minimizing the 

health and environmental hazards by creating self-compacting mixes not requiring noisy 
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vibration and replacing some cement with an industrial waste material GGBS.  In addition, 

by using longer steel fibres (30mm instead of 13 mm) it is possible to enhance its toughness 

further at the expense of a tolerable reduction in the strengths. This has been tried for 

CARDIFRC Mix I.  In this work this approach will be extended to CARDIFRC Mix II, 

because the latter offers room for further reduction in cost because it uses coarser sand  (2 

mm) than the finer and more expensive sand (0.6 mm) used in Mix I.  The development and 

characterisation (from both mechanical and fracture points of view) of this UHPFRC 

version of CARDIFRC will be reported in Chapter 5.  
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3.1 Introduction  

Based on their tensile stress-deformation response, most engineering materials can be 

categorized into three main classes: 

- Brittle: stress suddenly drops to zero when a brittle material fractures. 

- Ductile: stress remains more or less constant when a ductile material yields. 

- Quasi-brittle: stress decreases gradually after the peak stress with increasing 

deformation. 

Due to the fact that concrete is not a homogeneous material, many inherent flaws are 

present in a concrete structure such as air voids, water filled pores and shrinkage cracks. 

Under external loading the existing flaws, e.g. micro-cracks grow stably and coalesce 

with existing or newly-formed micro-cracks until large macro-cracks are formed that 

lead to the failure of the structure.  Fracture mechanics provides an energy based failure 

theory that can be used in designing concrete structures. It explains the response and 

failure of structures as a consequence of crack initiation and propagation (Karihaloo, 

1995). 

 

3.2 Linear Elastic Fracture Mechanics (LEFM) 

3.2.1 Griffith’s Theory of Brittle Fracture 

The mechanism of fracture of brittle materials was first explained by Griffith (1920). 

He argued that the presence of small cracks and other impurities in brittle materials 

introduce high stress concentrations near their tips and therefore, the tensile strength of 

material is exceeded earlier than when the stress is uniformly distributed in the material. 

This explains the large contradiction between the theoretically predicted and real tensile 
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strengths of these materials. Fracture initiates at these cracks as a result of very high 

tensile stress concentrations.  

Griffith considered a large thin plate of unit thickness containing a crack of length 2a 

subjected to a uniform tensile stress σ (Figure 3.1a). 

From Inglis’ (1913) solution for a slit-like cut of length 2a, the vertical displacement of 

the upper face of the cut is given by: 

𝑣(𝑥) =
2𝜎

𝐸
√𝑎2 − 𝑥2                                    0 ≤ 𝑥  ≤ 𝑎                                                    (3.1) 

where E is Young’s modulus. 

It is seen from Figure 3.1 that the elastic plate with the slit-like cut of length 2a can be 

considered as the superposition of an elastic plate without a crack under external load σ 

and the same plate without external load σ but with equal and opposite stresses (i.e. -σ) 

applied gradually to the faces of the crack. In this procedure, on each of the two faces, 

the stress σ is displaced by the amount v(x) of Equation (3.1), so that the amount of the 

work extracted is: 

𝑊 = 2(−
𝜎

2
∫ 𝑣(𝑥)𝑑𝑥
𝑎

−𝑎
) = −

𝜋𝑎2𝜎2

𝐸
                                                                                (3.2) 

The factor 2 in Equation (3.2) indicates the two faces of the crack, whereas the factor ½ 

appears because the stress gradually increases from 0 to σ. Equation (3.2) represents the 

work extracted W which is equal to the elastic strain energy released U during the crack 

growth, if the loaded panel boundaries are fixed and cannot displace (Karihaloo, 1995).  
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Figure 3.1 The principle of superposition (a) the plate is under external tension (b) uncracked 

plate under σ (c) plate without external σ but with equal and opposite stress applied to the crack 

to create a stress-free crack (After Karihaloo, 1995). 

 

If however the panel boundaries are free to move, the elastic strain energy U of the 

panel will increase during the crack formation, and W is equal to the change of the 

potential energy Π of the system. If the growth of a crack is stable, then for an 

incremental crack growth,  

𝑑𝑊 = −𝑑Γ                                                                                                                         (3.3) 

where 

Γ = 4𝑎𝛾                                                                                                                              (3.4) 

𝛾 is the surface energy density, i.e. the energy required to create a unit crack surface. 

The energy equilibrium condition for stable crack growth may be obtained by 

minimizing the energy change in Equation (3.3) with respect to the change in crack 

length da: 
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𝜕

𝜕𝑎
(𝑊 + Γ ) = 0                                                                                                                        (3.5) 

Substituting Equations (3.2) and (3.4) into Equation (3.5) and performing the 

differentiation gives: 

𝜎2 =
2𝐸𝛾

𝜋𝑎
                                                                                                             (3.6) 

Equation (3.6) is referred to as the Griffith fracture criterion. It states that for a given 

material (i.e. given E and 𝛾)  

 𝜎√𝜋𝑎 = √2𝐸𝛾  = 𝑐𝑜𝑛𝑠𝑡.                                                                                                (3.7) 

In other words, according to the Griffith fracture criterion or the global energy criterion 

a brittle material will fracture when the stress σ reaches a critical value σc that satisfies 

Equation (3.7). 

If σ < σc no crack growth will occur since the energy stored in the system is lower than 

the critical amount. However, if σ ≥ σc the crack will advance catastrophically since any 

extension of the crack length, a, will lower the critical stress, σc. 

Equation (3.7) shows that the strength of a brittle material σc is dependent on physical 

parameters such as the Young modulus, the surface energy density, and the length of 

the crack. 

 

3.2.2 Irwin’s Theory of Brittle Fracture 

Although ductile materials were not included in Griffith’s considerations, Irwin (1957) 

suggested that Griffith’s theory could be applied to materials that exhibit plastic 

deformation (ductile materials). He determined that there was also a certain energy from 

plastic deformation that had to be added to the surface energy of Griffith theory to work 
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for ductile materials as well. If this energy used in the plastic deformation is included 

in Equation (3.7) then it becomes: 

𝜎 = √
2 𝐸(𝛾+𝛾𝑃 )

𝜋 𝑎
                                                                                                 (3.8) 

where, 𝛾p is the energy used in the plastic deformation associated with crack extension. 

Irwin noted that in the neighbourhood of the sharp crack tips, the stress components are 

the same regardless of the shape of the body and the manner of loading. 

Generally, there are three possible modes of deformation at a crack tip (Figure 3.2): 

- Mode I - opening or tensile mode, where the crack surfaces move directly apart 

(Figure 3.2a). 

- Mode II - sliding or in-plane shear mode, where the crack surfaces slide over one 

another in direction perpendicular to the leading edge of the crack (Figure 3.2b). 

- Mode III - tearing or anti-plane shear mode, where the crack surfaces move                                        

relative to one another and parallel to the leading edge of the crack (Figure 3.2c). 

  

 

Figure 3.2 Modes of crack propagation, (a): Mode I, (b): Mode II, (c): Mode III (After Karihaloo, 

1995) 

 

(a)                                              (b)                                             (c)                                                       
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The most severe of the loading states is Mode I, as the propagation of a crack in real 

material under pure Mode II or III conditions requires a great amount of energy, due to 

high friction between crack faces. The stress intensity factor Ki depends on the geometry 

of the body and the manner in which the loading is applied, for Mode I, Ki can be 

represented as KI . For the geometry shown in Figure 3.3, KI is given by: 

𝐾𝐼 = σ √𝜋 𝑎                                                                                                   (3.9) 

In general, KI is finite and positive. It can never be negative, but there can be situations 

when KI vanishes. The shapes of the crack tip zones and the stress distributions ahead 

of the tips are shown in Figure 3.4 for KI >0 , KI < 0 and KI = 0. When KI = 0 (Figure 

3.4c), the crack faces close smoothly and the stresses ahead of the crack tip are finite.  

 

 

Figure 3.3 An infinite elastic body with a sharp crack of length 2a under Mode I. (After 

Karihaloo, 1995) 
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Figure 3.4 Shapes of traction-free crack tip zones and distribution of normal stress, in front of the 

crack tip for KI>0, KI<0 and KI = 0 (After Karihaloo, 1995). 

 

Irwin stated that, when the stress intensity factor KI reaches a critical value, denoted as 

KIc crack propagation will occur. This critical value is a material constant and is called 

the fracture toughness of the material. However, if the external loading results in a KI 

lower than the critical value, KIc, no crack propagation will occur. The distinction 

between KIc and KI is important, and it is similar to the distinction between strength and 

stress. In other words, the connection between KIc and the stress intensity factor KI for 

the opening mode crack is similar to that of a material’s tensile strength and the stress 

in a tensile specimen (Brown and Srawley, 1966). For the geometry and Mode I of 

Figure 3.3, Irwin’s criterion gives: 

𝜎𝑐√𝜋 𝑎 =  𝐾𝐼𝑐                                                                                                 (3.10) 

According to this relation, when the external stress reaches the value σc the crack will 

propagate. Comparing Equations (3.7) and (3.10) shows clearly that the Irwin local 

stress criterion at the crack tip where the fracture process is taking place coincides with 

the Griffith global energy criterion. The constant in the right-hand side of equation (3.7) 

can be identified with KIc, i.e. 
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√2𝐸𝛾 =  𝐾𝐼𝑐                                                                                                 (3.11) 

𝑜𝑟  

𝐾𝐼 𝑐
2 = 𝐸𝐺𝑐                                                                                                   (3.12) 

where Gc is the critical Griffith surface energy density or the critical energy release rate, 

Gc = 2 𝛾. 

Today, since it is much easier to determine directly the critical fracture toughness KIc 

than it is to determine the surface energy density, Irwin’s fracture theory is more widely 

used than Griffith’s (Karihaloo, 1995). 

The fracture toughness of a material can be determined from a pre-cracked specimen. 

The most commonly used specimen shape for the determination of KIc is a notched beam 

loaded in three-point bending. The specimen is loaded gradually until the sharp-notch 

begins to propagate. The corresponding maximum load is used for the calculation of the 

bending moment at mid-span (Mmax) and the critical stress intensity factor KIc is then 

calculated using the formula (Karihaloo, 1995): 

𝐾𝐼𝑐 =
6𝑌𝑀𝑚𝑎𝑥√𝑎

𝐵𝑊2
                                                                                          (3.13) 

where Y is a function of 𝑎 = a/W (i.e. the ratio of the depth of notch to the height of the 

specimen), B and W are the width and height of the beam, respectively. 

 

3.2.3 Barenblatt’s Cohesive Crack Model 

The main features of LEFM described above are (Karihaloo, 1995): 

- Besides the usual two elastic constants E and ν, one additional material parameter 

is involved in describing the brittle fracture. This parameter may be associated 
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with the energy of the body (Gc) or to the stress field near the tip of a sharp crack 

present in the body (KIc). 

- The stresses and strains in the vicinity of a sharp crack tip are very large (at the 

tip itself they tend to infinity). 

- The entire body remains elastic during the fracture process, and energy is only 

dissipated at a point (crack tip). 

The contradiction between the linear elastic fracture model and the real physical 

situation at the crack tip had been recognised by Griffith (1920). He therefore, proposed 

that the crack faces should be permitted to close smoothly (Figure 3.4c) under the effect 

of large cohesive forces. 

The fracture mechanics analysis based on the concept of a crack-tip cohesive zone, was 

given firstly by Barenblatt (1959) in which he assumed that there were large cohesive 

forces q(x) acting over a small zone of length c (c<<a; Figure 3.5) near the crack tip 

and that the crack faces close smoothly. 

Because the distribution of these cohesive forces is generally unknown and due to the 

existence of other impurities near the crack tip it is difficult to ascertain the distribution. 

Irwin (1957) had also recognized that the fracture process cannot be focused at a point 

but should occur over a finite, though small, zone, the so-called Fracture Process Zone 

(FPZ). He provided a crude assessment of its size (rp) by restricting the transverse 

normal stress in the fracture criterion equation (3.10) to the tensile strength ft of the 

brittle material 

𝑟 𝑃 =
1

𝜋
 
𝐾𝐼𝑐
2

𝑓𝑡
2   =

1

𝜋

𝐸𝐺𝑐

𝑓𝑡
2                                                                                        (3.14)  
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Another cohesive crack model, similar to the Barenblatt cohesive crack model, was 

proposed by Dugdale (1960) and Bilby et al. (1963) to describe the behaviour of the 

elastic-plastic materials. In this model, they allowed the plastic zone to form at each 

crack tip and extend as far as is necessary to satisfy the yield condition. Therefore, the 

closing stress over the plastic zone will be constant and equal to the yield stress of the 

material (σy). 

 

Figure 3.5 Barenblatt cohesive crack model in Mode I. Note c<< a (After Karihaloo, 1995). 

 

3.2.4 Is LEFM Applicable to Concrete? 

Attempts were made to apply LEFM to concrete, which was considered a brittle 

material, but these proved ineffective, since cement-based materials exhibit a totally 

different response. 

Figure 3.6a illustrates the typical load-deformation response of these materials in 

tension/flexure. It can be seen that these materials exhibit strain hardening prior to the 

attainment of their tensile capacity (region AB). In addition, there is a region of tension 

softening (i.e. an increase in deformation with decreasing tension carrying capacity) 

after the attainment of the maximum load (BC). This is mostly a result of arbitrarily 

formed micro-cracks. The aggregate interlock and other frictional effects give rise to 

the tail region of tension softening (CD). These types of material are called quasi-brittle. 
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The pre-peak non-linearity has only a secondary impact on the fracture behaviour of 

concrete. The primary impact is due to the tension softening response because it reduces 

the energy available for release into the crack tip region and thus leads to an increase in 

the fracture surface area. 

In other words, the primary reason for the deviation of the fracture behaviour of concrete 

from the LEFM prediction is the formation of an extensive fracture process zone ahead 

of the pre-existing notch/crack, as illustrated in Figure 3.6b. 

 

 

Figure 3.6a Typical load-deformation response o f a quasi-brittle material in tension / flexure. 
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Figure 3.6b The fracture process zone ahead of the real traction-free crack (After 

Karihaloo,1995) 

 

3.2.5 Fracture Process Zone (FPZ) 

The Fracture Process Zone (FPZ) is defined as the inelastic zone around the crack tip 

and corresponds to the region of tension softening of the load-deformation curve (Figure 

3.6). The microstructure of the material and the stress field existing ahead of an 

introduced macro-crack are the factors that affect the size of the fracture process zone 

(Karihaloo, 1995). In the FPZ, energy is dissipated on micro-cracking at aggregates due 

to the presence of a macro-crack, debonding of aggregates, coalescence of debond crack 

with a macro-crack and the crack bridging (Figure 3.7).  

In the FPZ, some parts of crack surfaces may still be in contact after cracking, i.e. the 

advancing crack is not continuous. As a result, the stress gradually decreases after the 

peak load, sudden failure is prevented, and a softening type of response is observed. 

The heterogeneity of concrete leads it to have a sizeable fracture process zone, which is 

in violation with the basic assumption of the linear elastic fracture mechanics. 
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Therefore, to predict the fracture behaviour of concrete, the size of the fracture process 

zone must be included in the models (Bazant and Planas, 1997). 

Moreover, it has been noticed that the load carrying capacity of concrete structures 

decreases with increasing structural size. This is also a consequence of the existence of 

FPZ. When a concrete structure is loaded, the strain energy produced by the applied 

load is transformed to the energy consumed to create new fracture surfaces and the 

energy absorbed in the FPZ. Therefore, the larger the structure’s size, the lower the 

nominal strength. However, when the size of concrete structure becomes massive the 

strength approaches a constant value (Shah et al., 1995). 

 

Figure 3.7 Schematic representation of the fracture process zone (a) micro-cracking at aggregate, 

(b) deboning and micro cracking, (c) coalescence of debond crack with macro crack, and micro 

cracking, (d) crack bridging, debonding, crack branching and micro cracking                                    

(After Karihaloo, 1995). 
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3.3 Nonlinear Fracture Mechanics (NLFM) 

The reason behind the inapplicability of linear elastic fracture mechanics is the fact that 

concrete has a large fracture process zone. The non-linear fracture theory applicable to 

ductile materials, such as metals is different from that applicable to quasi-brittle 

materials like concrete or rock. The reason behind that is because the fracture process 

zone, though small, in ductile materials is surrounded by a large nonlinear plastic zone, 

whilst in quasi-brittle materials the fracture process zone covers nearly the whole zone 

of nonlinear deformation. The nonlinear zone is nearly absent in brittle materials. This 

is illustrated in Figure 3.8. 

 

 

Figure 3.8 Distinguishing features of fracture in (a) a linear material, (b) a ductile material, (c) a 

quasi-brittle material. L refers to linear elastic region, N to nonlinear zone, and F to fracture 

process zone (After ACI Report 446.1 R-91). 

 

3.3.1 Fictitious Crack Model (FCM)  

Hillerborg et al. (1976) proposed the first non-linear theory of fracture mechanics for 

concrete. It includes the tension softening fracture process zone through a fictitious 

crack ahead of the pre-existing crack whose faces are acted upon by a certain closing 

stress (Figure 3.9). In this model, the real traction-free crack of length a0 (the true or 
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physical crack through which no stresses can be transmitted) terminates in a fictitious 

crack representing the discontinuous fracture process zone. The faces of the fictitious 

crack close smoothly, so that KI = 0 at its tip and the stress is finite equal to the tensile 

strength of concrete. This model is known as the Fictitious Crack Model (FCM).  

In this model, the constitutive relation is split into a linear stress-strain relation up to the 

peak load and a stress-crack opening relation for the softening behaviour in the cracked 

section, Figure 3.9.  

There are some points of similarity between this model and the Dugdale and Barenblatt 

models mentioned above. Like these models, a negligible thickness is assumed for the 

FPZ and the crack tip faces close smoothly (KI = 0). On the other hand, there are some 

major differences. The closing stresses in the FCM are not constant, as they are in the 

Dugdale model. They increase from zero at the tip of the pre-existing stress-free crack 

to the tensile strength of the material, ƒt at the tip of the fictitious crack. The distribution 

of the closing stress, σ(w), along the fracture process zone (FPZ) depends on the opening 

of the fictitious crack faces, w. The size of the fracture process zone (ɭp in Figure 3.9) in 

the FCM may not be small in comparison with the length of the pre-existing macro 

crack unlike in the Barenblatt model. 

It was observed earlier that a single parameter is needed to depict a brittle material in 

linear elastic fracture mechanics (e.g. KIc in Irwin's theory). However, in the fictitious 

crack model, it is necessary to have two material parameters. These are: 

- The shape of the stress-displacement relation σ (w) in the softening zone. 

- The area under the tension-softening curve, which is the specific fracture energy 

GF of concrete 
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𝐺𝐹 = ∫ 𝜎(𝑤)𝑑𝑤 
𝑤𝑐
0

                                                                                                               (3.15) 

where, wc is the critical crack opening displacement when the closing stress is equal to 

zero. 

There is also another material parameter which can be obtained from the above 

information, namely the characteristic length of the material 

𝑙𝑐ℎ =
𝐸𝐺𝐹

𝑓𝑡
2                                                                                                                   (3.16) 

The characteristic length, ɭch is related to the heterogeneity of the material 

microstructure, giving an indication of its brittleness. The longer the characteristic 

length, ɭch, the more ductile (i.e. less brittle) the material. It should however be stressed 

that lch is a derived material property with the dimension of length, not to be confused 

with the fundamental property lp. 

 

Figure 3.9 (a) A real traction-free crack of length a0 terminating in a fictitious crack of length ɭp 

whose faces close smoothly near its (KI = 0). (b) The material ahead of the fictitious crack tip is 

assumed to be linear, (c) But the material within the fracture process zone is softening; the area 

under softening curve equals fracture energy GF (after Karihaloo, 1995). 
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The fictitious crack model was originally developed for the description of the softening 

behaviour of plain concrete (Hillerborg et al., 1976). Later it was shown that this 

approach also can be applied to FRC (Hillerborg, 1980). 

A modification of the fictitious crack model by Hillerborg et al. (1976) was developed 

by Bazant & Oh (1983), where the fracture process zone was modelled by a band of 

uniformly and continuously distributed (smeared) micro-cracks of width hb (Figure 

3.10a). Constant crack propagation is supposed by progressive micro-cracking within 

this band, which is characterized by a stress-strain relationship (Figure 3.10b). The 

crack opening displacement w is equal to the product of the strain and the width of the 

crack band, hb. This is the so-called Crack Band Model (CBM). 

The energy consumed by the crack growth per unit area of the crack band, GF, is the 

product of the area under the stress- strain curve in Figure 3.10b, and the width of the 

crack band, hb 

𝐺𝐹 = ℎ𝑏 [1 +
𝐸

𝐸𝑡
] .
𝑓𝑡
2

2𝐸
                                                                                                              (3.17) 

where E is the modulus of elasticity, Et is the strain- softening modulus, and ƒt is the 

tensile strength of the material. 

It may be observed that three additional material parameters, namely hb, ƒt and Et, are 

required, in addition to E, in the crack band model. 

An approximate function hb = nada has been proposed to calculate the hb value, where 

da is the maximum aggregate size in concrete and na is a constant, which is proposed by 

Bazant and Oh (1983) to be equal to 3 for concrete, without any physical basis. It should 

be noticed that as the band width hb in the CBM tends to zero, then the FCM and CBM 
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models will merge. Thus, the major difference between the two models is the thickness 

of the fracture process zone. 

 

Figure 3.10: Crack band model for fracture of concrete (a) a micro crack band fracture and (b) 

stress strain curve for the micro crack band (After Shah et al., 1995). 

 

3.4 Stress-Crack Opening Relationship of Concrete 

The fictitious crack model originated by Hillerborg et al. (1976) for the description of 

the softening behaviour of plain concrete has been widely accepted and used in the 

research community in the last two decades. This is due to the fact that this model is 

able to closely describe the fracture behaviour of concrete and because it gives a good 

explanation of many previously unexplained phenomena like e.g. the size effect.  

However, the knowledge of the new material property named the stress-crack opening 

relationship σ(w) is considered the major restriction in the use of the model. The direct 

determination of this property has proved to be a major problem. Thus, many 

researchers (e.g. Roelfstra and Wittmann, 1986) focussed on indirect determination of 

the stress-crack opening relation based on the determination of the load-displacement 

curve of a three-point bend specimen and a subsequent inverse analysis in which a finite 
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element model forms the basis of the modelling. In the inverse analysis, the parameters 

of the assumed approximate stress-crack opening relation are identified by matching the 

resulting load-deflection or load-crack mouth opening diagram with experimentally 

recorded diagram. Optimization algorithms are used for this identification which 

minimise the error between the simulated and recorded diagrams (Kitsutaka, 1997; 

Ostergaard, 2003; Sousa and Gettu, 2006). 

Many different approximations of the stress-crack opening relation have been reported 

in the literature, including linear, bilinear, exponential and polynomial functions (see 

e.g. Karihaloo, 1995). 

A linear stress-crack opening relation was used by Ulfkjaer et al. (1995) for modelling 

flexural failure of concrete beams. Olesen (2001) modelled the bending failure of FRC 

beams in the same way, using however a bilinear stress-crack opening relation. This is 

the most popular relation. The popularity of the bilinear approximation of the stress-

crack opening relation stems from the fact that it captures the two major mechanisms 

responsible for the observed tension softening in concrete, namely microcracking and 

aggregate interlock. The initial, steep branch of the bilinear relation is a result of 

microcracking, whereas the second, tail branch is a result of aggregate interlock which 

is primarily governed by the maximum size and texture of the coarse aggregate used in 

the concrete mix (Abdalla and Karihaloo, 2004). 

Uchida et al. (1995) used a poly-linear stress-crack opening relation in combination 

with FE-analysis to various kinds of concrete including porous concrete and fibre 

reinforced high strength concrete to determine indirectly the tension softening diagrams. 

They found that the tensile strength is not very sensitive to the shape of the softening 

diagram. 
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3.4.1 Cracked Hinge Model 

The basic idea of the non-linear cracked hinge model, first introduced by Ulfkjaer et al. 

(1995) and subsequently developed by Stang and Olesen (1998), Olesen (2001), and 

Ostergaard (2003), is to isolate the part of the beam close to the propagating crack and 

model it as a short beam segment subjected to a bending moment and a normal force.  

The concept of the hinge views the crack as a local change in the overall stress and 

strain field. Therefore, the disturbance of the strain field, caused by the presence of the 

crack, is confined to take place between rigid boundaries and is assumed to vanish 

outside a certain bandwidth. Each rigid boundary may translate and rotate such that it 

may be joined with an un-cracked beam. Thus, outside of this band the structural 

element is modelled using the elastic beam theory. Details of the approach based on the 

hinge model will be given in Chapter Five. 

 

3.5 Concluding Remarks 

It has been demonstrated that the formation of an extensive fracture process zone ahead 

of the pre-existing notch/crack, is the primary reason for the breakdown of linear elastic 

fracture mechanics. The primary impact on the fracture behaviour of concrete is due to 

the tension softening response because it reduces the energy available for release into 

the crack tip region and thus leads to an increase in the fracture surface area, while the 

pre-peak non-linearity has only a secondary effect. 

Thus, it is essential to include the fracture process zone in the modelling of fracture 

behaviour of concrete. This can be done by using the Fictitious Crack Model (FCM), 

where the constitutive relation is split into a linear stress-strain relation up to the peak 
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load and a stress-crack opening relation for the softening behaviour in the cracked 

section. It was assumed that the distribution the closing stress, σ(w), along the fracture 

process zone (FPZ) depends on the opening of the fictitious crack faces, w. However, 

two material parameters are necessary for the fictitious crack model, the shape of the 

stress-displacement relation σ (w) in the softening zone and the specific fracture energy 

GF of concrete. Diverse stress-crack opening relationships have been used in literature, 

linear, bilinear, exponential and polynomial. The bilinear approximation of the stress-

crack opening relation has become popular since it captures the two major mechanisms 

responsible for the observed tension softening in concrete, namely micro-cracking and 

aggregate interlock. This approximation will be discussed and be used in Chapter 5 to 

characterise the self-compacting UHPFRC. 
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4.1 Retrofitting by FRC (Conventional and HPFRC) 

 

4.1.1 Introduction 

In recent years, repair and strengthening of existing structures have been among the 

most important challenges in civil engineering. Therefore, many strengthening 

techniques have been applied to retrofit RC structures. 

The primary reasons for strengthening and repair of structures include: 

- Improving the  resistance or stiffness to withstand increased loads; 

- Increasing the load-carrying capacity for higher allowable loads; 

- Removing premature failure due to insufficient detailing; 

- Restoring lost load carrying capacity due to overloading, earthquake and other 

types of degradation caused by aging such as: corrosion, erosion, etc. (Malek et 

al., 1998). 

Some of the concrete structures or parts of it are not satisfying their structural functions 

due to different reasons, such as faults on the concrete caused by inadequate 

construction, fire damage and deterioration caused by environmental action. Therefore 

repairing of deteriorated concrete structures becomes important and has attained 

popularity rather than rebuilding or demolishing. 

Over the past couple of decades several systems have been developed for retrofitting 

concrete structures. Among these are bonding by steel or fibre reinforced plastic FRP 

plates to the tension side of beams. However, some problems have been recorded with 

these techniques, e.g. corrosion of steel, which can damage the bond at the steel concrete 

interface, and premature debonding of FRP. 
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Some new repair materials were developed in the last decade, such as High-

Performance Fibre Reinforced Cementitious Composites (HPFRCCs), which enhance 

the structural response and extend the durability of concrete structures. They are more 

reliable and effective materials for retrofitting because they are compatible with 

concrete (Lim and Li, 1997; Karihaloo et al., 2000; Karihaloo et al., 2002; Habel et al., 

2006). Among these is CARDIFRC, where some of the problems related to the current 

techniques based on externally bonded steel plates and FRP have been overcome.  

 

4.1.2 Externally Bonded Steel Plates 

The technique of bonding steel plates to the external surfaces of reinforced concrete 

structures by a structural adhesive become worldwide since the late 1960s (Barnes and 

Mays, 1999). The advantages of this method can be summarised as follows (An et al., 

1991; Barnes et al., 2001): Possible increase in the beam ductility; can be rapidly used 

to strengthen the structure whilst it is still in use; both the serviceability and the ultimate 

load capacity of the section can be increased; accessibility for inspection and 

maintenance; the configuration of the structure is not modified.  

The main drawback of steel bonded plate systems is corrosion of plate during natural 

exposure (Grace et al., 1999), where bond strength gradually decreases at the steel 

epoxy interface, and eventually results in a brittle failure of the structure. 

Many experimental works have been performed to investigate the behaviour of 

reinforced concrete beams strengthened in flexure and shear by Adhikary and 

Mutsuyoshi (2006), Altin et al. (2005),  Arslan et al. (2008), Aykac et al., (2012), Barnes 

and Mays (2006). These investigations indicate that bonding of steel plates to the 
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surface of concrete beam can produce a substantial enhancement in structural 

performance under both service and ultimate load conditions.  

 

4.1.3 Fibre Reinforced Plastics (FRP) 

Although strengthening of RC beams using steel plates became popular worldwide, 

corrosion is one of the major shortcomings of this technique. This led researchers to 

investigate corrosion-free composite materials. Fibre reinforced polymer (FRP) is one 

of these materials, which offers many advantages. Depending on the member type, the 

objective of strengthening may be one or a combination of several of the following 

(Buyukozturk et al., 2004): To increase axial, flexural or shear load capacities; to 

increase stiffness to reduce deflections under service and design loads; to increase the 

remaining fatigue life. 

The major fibres in FRP materials used in the construction industry are carbon (CFRP), 

glass (GFRP) and aramid (AFRP) fibres (Jumaat et al., 2011).  

Through experimental and theoretical studies, the externally bonded FRP composites 

can be used to enhance the desired performance of a structural member such as its load 

carrying capacity and stiffness, ductility, performance under cyclic and fatigue loading 

(Buyukozturk et al., 2004). Thin FRP laminates are durable, have high strength and 

stiffness to weight ratio, are chemically inert, cost effective, and offer significant 

potential because of their lightweight (Buyukozturk and Hearing, 1998). 

Existing studies showed that there are several types of failure of FRP plate bonded 

flexurally strengthened beams. These typical failure modes are (Gao et al., 2007; Teng 

et al., 2008) (Figure. 4.1) 
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- Flexural failure by FRP rupture 

- Flexural failure by concrete crushing 

- Shear failure 

- Concrete cover separation 

- Plate end interfacial debonding (delamination of FRP plate). 

FRP tensile rupture failure mode is possible when the amount of reinforcement in 

concrete section is small. While concrete crushing mode in the compression zone can 

occur when the amount of reinforcement is large (Bakis et al., 2002). FRP rupture 

generally occurs following the yielding of the steel tension bars (Teng et al., 2008). The 

flexural behaviour of reinforced concrete members strengthened with FRP materials has 

been investigated by a wide range of researchers (Dong et al., 2013; Esfahani et al., 

2007; Grace et al., 1999; Smith et al., 2011). The findings demonstrated that 

strengthening increased the flexural strength and stiffness of the strengthened beams 

and cracks become smaller and more evenly distributed. 

 

Figure 4.1 Failure modes for FRP strengthened beams (After Buyukozturk et al., 2004)  
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A wide range of published research displayed the influence of FRP materials on RC 

beam behaviour under shear (Islam et al., 2005; Jain and Sikka, 2015; Önal, 2014; 

Obaidat et al., 2011). Shear failure mode is catastrophic and usually occurs without 

previous warning and in a brittle manner. Several reasons can produce shear failure such 

as insufficient shear reinforcement or reduction in steel area due to corrosion, increased 

service load, construction defects (Farhat, 2004). Different retrofitting methods and 

materials have been employed for shear strengthening since externally bonded FRP 

reinforcement can increase the shear capacity, including a fibre wrap, strips and grids, 

all made up of carbon fibre (Figure 4.2) (Islam et al., 2005). Other methods employed 

for shear strengthening of RC beam sections are bonding U jackets, vertical strips and 

wing plates (Al-Sulaimani et al., 1994). 

The most widespread failure modes among the five modes are those related with 

concrete peel-off and delamination of FRP strip from the concrete surface (Buyukozturk 

and Hearing, 1998).  

In both concrete cover separation and delamination of FRP plate modes, failure starts 

from a plate end and occurs in concrete either adjacent to the adhesive layer 

(delamination of FRP) or at the level of the steel tension reinforcement (cover 

separation) (Gao et al., 2007; Jumaat et al., 2011). These failure modes are undesirable 

because the FRP plate would not be completely employed. 
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 Figure 4.2 Different CFRP arrangement: (a) FRP wraps (b) FRP strips (c) Grids  

(After Islam et al., 2005) 

 

 

4.1.4 High Performance Fibre Reinforced Cementitious Composites  

4.1.4.1 Retrofitting with CARDIFRC 

CARDIFRC is a new material that has been developed in Cardiff University; it belongs 

to the class of high performance fibre reinforced cementitious composites (HPFRCC). 

The special characteristics (high tensile/flexural strength and high energy absorption 

capacity) of CARDIFRC make it particularly suitable for retrofitting of existing 

concrete structures. The main feature of CARDIFRC mixes for retrofitting is that unlike 

steel and FRP, their tensile strength, stiffness and coefficient of linear thermal 

expansion are comparable to that of the material of the parent member (Karihaloo et al., 

2002). Farhat, (2004) demonstrated the main advantages of using CARDIFRC as a 

retrofitting material as follows: 

- Enhancing the serviceability of RC concrete structure. 

- Gradual failure without delamination can be guaranteed.  

- Ensuring compatibility with the material of the structure being retrofitted. 
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Two techniques - direct casting or adhesive bonding of pre-cast strips to RC beams can 

be used for retrofitting RC beams with CARDIFRC. 

Although the primary results of Alaee (2002) showed that the direct casting can be 

successfully used for improving the flexural capacity of damaged beams, great care is 

required to ensure that the retrofit material adheres securely to concrete. Furthermore, 

the need of special formwork requirement might limit this application in practice. 

 

4.1.4.1.1 Flexural Strengthening 

Flexural strengthening of the damaged RC beams can be attained by bonding 

CARDIFRC strips on the prepared surface of tensile face of beams in different 

configurations. Karihaloo et al. (2003b) used damaged RC beams retrofitted with 

CARDIFRC strips to investigate the flexural behaviour.  The experiments were 

conducted on two types of beams: beams without shear reinforcement, which were 

designed to fail either in flexure or in shear, and beams with sufficient shear 

reinforcement. The retrofitted beams were loaded to failure and compared with the 

control beams; all beams failed at loads at least equal to the average failure load of the 

control beams with flexural, shear or a combination of flexural and shear failures modes. 

 

4.1.4.1.2 Flexural and Shear Strengthening 

Flexural and shear strengthening of the damaged RC beams can be achieved by bonding 

CARDIFRC strips on the prepared surface of tensile face and each side of beams in 

different configurations (Figure 4.3). In comparison with beams retrofitted in tension 

only, substantial enhancements in load carrying capacity and serviceability in terms of 

reduction in the number and the width of the cracks have been achieved by using the 
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different types of flexural and shear strengthening configurations (Karihaloo et al. 

(2003). Alaee (2002) investigated retrofitting RC beams with one strip on the tension 

face and short strips on both sides to avoid shear cracks with sufficient shear 

reinforcement ( Figure 4.3f). It was found that this technique is very effective in 

improving flexural and shear behaviour but does not improve the load carrying capacity 

of the RC beams. To attain very high load carrying capacity and stiffness without any 

shear reinforcement, the beams were retrofitted with one retrofit strip on the tension 

face; the sides of the beams may be fully covered by retrofit strips.  Alaee and Karihaloo 

(2003a-b) developed two analytical models. The first model established on the classical 

theory, where the moment resistance and load- deflection behaviour was predicted, 

while the second used a purely fracture mechanics approach and followed the initiation 

and propagation of flexural cracks. These models were found to give predictions in good 

agreement with the test findings. 
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Figure 4.3 Configurations of retrofitting RC beams with CARDIFRC®. Beams retrofitted with: 

(a) one strip on the tension face, (b) one strip on the tension and two strips on sides, ( C ) one strip 

on the tension face and four rectangular strips on sides, (d) one strip on the tension and four 

trapezoidal strips on sides, (e) one strip on the tension, (f) one strip on the tension and four short 

strips on sides covering supports and ends of tension strip, and (g) one strip on the tension and four 

short and two continuous strips on sides, fully covering supports and tension strip sides (After 

Karihaloo et al., 2003). 
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4.2 Fatigue Response of Concrete 

 

4.2.1 Introduction 

 

A plain concrete member, when subjected to repeated loads, may exhibit excessive 

cracking and may eventually fail after a sufficient number of load repetitions, even if 

the maximum load is less than the static strength of a similar specimen. 

The fatigue strength of concrete is defined as a fraction of the static strength that it can 

support repeatedly for a given number of cycles. (ACI Committee 215, 1986). 

Concrete fatigue is a process of progressive, permanent development of small 

imperfections existing in the material by repetitive loads. These imperfections may be 

present in concrete due to concrete shrinkage, or may be caused by application of 

external loads. Also, this is attributed to the propagation of internal micro-cracks, which 

results in a significant increase of irrecoverable strain.  

Fatigue loading is usually divided into two categories (RILEM Committee 36-RDL, 

1984) i.e. low-cycle and high-cycle loading. Low-cycle loading involves the application 

of a few load cycles at high stress levels. On the other hand, high cyclic loading is 

characterised by a large number of cycles at lower stress levels. 

The progressive bond deterioration between coarse aggregates and the cement paste or 

by development of cracks existing in the cement paste are the main reasons of the 

occurrence of fatigue. The mechanism of fatigue failure in concrete or mortar can be 

divided into three distinct stages. The first stage involves the weak regions within the 

concrete or mortar and is termed flaw initiation. The second stage is characterised by 

slow and progressive growth of the inherent flaws to a critical size. In the final stage, 
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when a sufficient number of unstable cracks have formed, a continuous or macro-crack 

will develop, eventually leading to failure (Gao and Hsu, 1998). 

Several parameters were observed to affect the dynamic response of concrete, which 

were analysed and their influence explained. The most important of these parameters 

are the following: steel fibres, concrete confinement, curing conditions, humidity, 

temperature, number of load cycles and strain or stress rate (Nicolaides, 2004). A double 

effect of including fibres to concrete can be expected on the fatigue performance of 

concrete. By bridging cracks, the fibres can retard the crack growth process, providing 

an additional fatigue life to concrete. On the contrary, fibres added to concrete might 

themselves be the source of further flaws and reduce the fatigue life of concrete. 

 

4.2.2 S-N Curves  

When materials are subjected to a great number of cyclic loadings two featured types 

of behaviour are found: some materials, such as steel, will never fail under these cyclic 

loadings as long as the maximum stress in the cycle is lower than a specific stress called 

the fatigue limit. Other materials like concrete, eventually fail in spite of the peak load 

in the cycle being well within the elastic range (Actin, 2004). 

Most studies on the fatigue of concrete have so far been directed to relate the applied 

cyclic stress to the fatigue life of concrete (Oh, 1986). The experimental data are usually 

represented in terms of Wöhler diagrams, also known as S-N curves. These are semi-

logarithmic representations, where the maximum stress S = σmax is indicated along the 

vertical axis and the logarithm of the number of cycles to failure or fatigue life Nf  along 

the horizontal axis. Usually σmax is represented as a fraction of the static strength at 

which ultimate failure occurs. These curves are mostly recorded for zero average cyclic 

stress. 
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For stress controlled loading, the stress range Δσ is the difference between the 

maximum and the minimum stress during the cycle. The stress amplitude σa is half the 

stress variation. Mean stress σm and stress ratio R are used to specify the loading 

(Figure 4.4); 

𝛥𝜎 =σ𝑚𝑎𝑥 −σ𝑚𝑖𝑛     ;                              𝜎𝑎 =
1

2
 Δσ ;    

𝜎𝑚 =
1

2
(σ𝑚𝑎𝑥 +σ𝑚𝑖𝑛);                           𝑅 =

𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
 

For high cycle fatigue the (S-N)-curve, it is found that the experimental data can be 

fitted to an equation called Basquin’s Law; 

∆𝜎𝑁𝑓
𝑎 = 𝑐1                                                                                                                                     (4.1) 

where ∆𝜎 is the stress range (with zero mean stress), 𝑁𝑓  is the number of cycles to 

failure and 𝑎 (between  
1

8
  and 

1

15
 for most materials) (Ashby and Jones, 1996) and 𝑐1 

are constants to be determined from tests.  

 

Figure 4.4 Fatigue terms used in the analysis 
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For low-cycle fatigue of un-cracked components where σmax or σmin are above the yield 

stress, Basquin's Law no longer works, as show in Figure 4.5. But another empirical 

approach known as the Coffin-Manson Law can be used: 

∆𝜀𝑃𝑙𝑁𝑓
𝑏 = 𝐶2                                                                                                                                  (4.2) 

where b (0.5 to 0.6) and C2 are constants. 

To calculate the lifetime, the preceding approach assumes fully reversed fatigue loads, 

so that the mean stress σm is zero. 

As the material is subjected to a mean tensile stress (i.e. σm is no longer zero), the stress 

range must be decreased to maintain the same Nf   as an increase in mean stress will 

always cause a reduction in the fatigue life (Hertzberg,1995; Campbell, 2008). A 

number of mathematical models have been developed to study the influence of the mean 

stress. Among these are; 

1. The Goodman theory, 

2. The Gerber theory, and  

3. The Soderberg theory. 

The mathematical expression for each is as follows: 

    ∆𝜎𝜎𝑚 = ∆𝜎0 (1 −
|𝜎𝑚|

𝜎𝐹
)                             Goodman's theory                                         (4.3) 

    ∆𝜎𝜎𝑚 = ∆𝜎0 (1 − (
𝜎𝑚

𝜎𝐹
)
2

)                     Gerber theory                                            (4.4)    

    ∆𝜎𝜎𝑚 = ∆𝜎0 (1 −
|𝜎𝑚|

𝜎𝑦
)                           Soderberg theory                                       (4.5) 
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where ∆𝜎0 is the cyclic stress range with zero mean stress, ∆𝜎𝜎𝑚  is the cyclic stress 

range with non-zero  mean stress, |𝜎𝑚|  is the absolute value of the mean stress,  𝜎𝐹 is 

the static flexural strength and 𝜎𝑦  is the yield stress.  A graphical comparison of these 

equations is shown in Figure 4.6.  

 

 

Figure 4.5 Initiation-controlled high-cycle fatigue - Basquin's law (After Ashby and Jones, 1996). 

 

 

 Figure 4.6 Graphical representation of Gerber, Goodman and Soderberg theories  

(After Campbell, 2008) 
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A significant influence on the fatigue life (Maddox, 1975; Campbell, 2008) can be 

expected for non-zero mean stress. Figure 4.7 gives an example of the effect of mean 

stress on the fatigue life of steel. As the mean stress increases, the fatigue life decreases 

(Tilly, 1979). A similar effect can be expected in concrete. The effect of mean stress on 

the fatigue life will be discussed in Chapter Six.   

 

 

Figure 4.7 Effect of mean stress on the fatigue life of the steel (After Tilly, 1979) 

 

4.2.3 Fatigue Crack Growth Behaviour: Paris Law 

The relation between the crack propagation rate and the stress intensity factor range 

(ΔK) in metallic materials exhibits three regions: threshold region, steady growth, and 

unstable growth/fracture as shown in Figure 4.8. In the threshold stage, crack growth is 

initially quite rapid, with the curve generally having a steep slope (Dowling, 2012). The 

next stage is the stable crack growth region; this part is obviously linear with the crack 

growth rate and stress intensity factor range increasing at the same rate. Finally, the 

growth rate again accelerates in unsteady way as the stress intensity factor range 
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becomes large, typically as the crack reaches its critical length and fracture takes place. 

A fundamental fracture mechanics approach relates the crack length increment per load 

cycle (Δa/ΔN) to the applied stress intensity factor range (Paris Law); 

        
𝒅𝒂

𝒅𝑵 
= 𝐴𝛥𝐾𝑚                                                                                             (4.6) 

where a = crack length; N = number of load cycles; A = Paris constant; m = Paris 

exponent; and ΔK = crack stress intensity factor range in a load cycle.  

The cyclic stress intensity ΔK increases with time (at constant load) because the crack 

grows in tension (Ashby and Jones, 1996). It is found that the crack growth per cycle, 

Δa/ΔN, increases with ΔK in the way shown in Fig. 4.8. In addition, the crack growth 

rate depending not only on the stress intensity factor range (ΔK), the growth rate also 

depends on the stress ratio, R (σmin/σmax).  

The growth rate will increase and be influenced by an increase in the stress ratio R. 

However, if testing conditions, such as the R value and testing frequency, are kept 

constant the growth rate will only depend on the stress intensity factor range (Dowling, 

2012). Hence the fatigue life Nf  can be computed if ΔK is known: 

𝑁𝑓= ∫
1

𝐴(𝛥𝐾)𝑚

𝑎𝑓
𝑎𝑖

da                                                                                                                        (4.7) 

where ai  is initial crack length and af is final crack length. 

Several researchers have attempted to apply the Paris law to describe the crack growth 

during the acceleration stage of fatigue crack growth in concrete (Baluch et al., 1987; 

Bazant and Schell, 1993). It has been found that the Paris law coefficients are dependent 

on the material composition (Bazant and Schell, 1993) which probably demonstrate the 

large differences in the values of the Paris law coefficients reported by different authors.  
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Figure 4.8 Fatigue crack-growth rates for pre-cracked material (After Ashby and Jones, 2002). 

 

4.2.4 Fatigue Response of Concrete 

When plain concrete is subjected to repeated loading, it might fail at stress levels less 

than its static ultimate strength. The fatigue mechanism of concrete can be traced to the 

progressive deterioration of the bond between the coarse aggregate and the cement paste 

and due to the growth of the existing micro-cracks and emergence of new ones in the 

cement paste (RILEM, 1984). 

Under repeated cyclic loading, concrete mechanical properties change; a permanent 

increase of strain in concrete occurs, whereas the modulus of elasticity shows a decrease 

in its magnitude (Holmen, 1982). 

Fatigue damage in concrete can be classified into three phases in terms of increasing 

maximum strain. 

In the first stage, which is called the initiation phase, a fast increase of strain increases 

is observed, but at a progressively decreasing rate, with increasing number of cycles. 

The second phase (the stability state phase) occurs where strain growths linearly with 
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increasing number of cycles. Finally, the last phase represents instability; where a rapid 

increase in strain with increasing rate leads to failure.  Figure 4.9 shows an example of 

a plot of the relationship between the maximum strain versus the relative number of 

cycles representing the three stages of the fatigue damage in concrete (Neville, 1995).  

 

 Figure 4.9 Relationship between the maximum strain and relative number of cycles of 

concrete under compressive cyclic loading (After Neville, 1995) 

 

4.2.5 Fatigue Response of FRC 

As stated beforehand, the development of fatigue failure in concrete can be divided into 

three phases. Therefore, it is feasible to hinder and control the growth of the flaws in 

the second stage by including closely spaced and randomly dispersed fibres as 

reinforcements (Lee and Barr, 2004). 

Poor resistance against fatigue crack initiation and growth under tensile loading can be 

attributed to the low tensile strength of plain concrete. Thus, by means of reinforcing a 

concrete with short fibres (i.e. steel, polymeric or natural fibres), fatigue life would be 

improved (Matsumoto and Li, 1999; Wang et al., 2000; Bentur and Mindess, 2007). In 
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addition, a significant improvement in the load-bearing capacity due to the inclusion of 

steel fibres is acquired (Morris and Garrett, 1981). Moreover, because of the ability of 

fibres to restrict crack growth and transfer tensile stresses, the flexural fatigue strength 

is considerably enhanced in SFRC (Singh et al., 2008). Lee and Barr (2004) observed 

from collecting data of several researchers, that the presence of fibres does not appear 

to enhance the fatigue life of concrete under compressive fatigue loading. However, 

inclusion of fibres improves the fatigue performance under flexural fatigue loading. A 

probable explanation of their observations was fibres could bridge cracks and expand 

fatigue life. While, fibres cannot show their true efficiency under compressive loading, 

as the mode of failure is different. 

The enhancement of the fatigue life of concrete with the addition of fibres is related to 

the distribution of  fibres in concrete. Actually, a poor dispersion of fibres in concrete 

leads to a detrimental effect on the fatigue life of concrete (Cachim et al., 2002). On the 

other hand, the presence of fibres increases pore and initial micro-crack density, 

resulting in strength decrease. The overall outcome of these two competing effects 

depends significantly on the fibre volume (Grzybowski and Meyer, 1993). 

The weakness of the interfacial zone is efficiently strengthened by adding silica fume, 

where the number and size of cracks are reduced and enhances the ability of steel fibres 

to resist cracking and inhibit damage. As a result, the performance of HPFRC subjected 

to dynamic loading due to the participation of steel fibres and silica fume can increase 

greatly (Karihaloo, 1995). 

All studies confirm that steel fibres do increase the fatigue properties of the concrete, in 

terms of higher endurance limits, finer cracks and much more energy absorption to 

failure. In addition, higher fibre volumes, and deformed fibres (instead of using straight 
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and smooth ones), lead to greater improvements, as do higher aspect ratios (Benture and 

Mindess, 2007). 

4.2.6 Fatigue Behaviour of RC Beams 

Fatigue performance of RC beams involves composite action between steel and 

concrete. Concrete mechanical properties change under repeated cyclic loading where 

the strains in concrete increase permanently, while the modulus of elasticity decreases 

(Holmen, 1982). In the case of a reinforcing bar, cyclic load causes micro-cracking that 

produce a stress concentration at the bar surface. As the cyclic stress continues, the 

crack propagates, causing a sudden fracture. 

Generally, fatigue failure in RC beams is attributed to the fatigue fracture of steel 

reinforcing bars, where the steel rebar is considered the limiting fatigue component 

since concrete experiences fatigue cracking at far fewer cycles and has a lower fracture 

toughness (Dowling, 2012). 

Fatigue failure of steel rebar is often accompanied by a fracture surface that shows two 

kinds of surface: one smooth and the other rough as shown in Figure 4.10. The smoother 

zone, with the dull, rubbed appearance, is caused by rubbing of the crack faces during 

crack propagation, while the remaining zone of more jagged surface texture is produced 

due to final fracture in tension when the cross section of the member is no longer able 

to carry the applied load (ACI 215R-74). The progress of crack propagation can also be 

indicated by beach marks spreading away from where the crack initiated. These beach 

marks are semi-elliptical rings left in the material due to the progressing crack tip. 
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 Figure 4.10 Fatigue fracture of a reinforcing bar (ACI 215R-74) 

 

It was found that, although the fatigue  of concrete could be expected under high 

compressive stresses, reinforced members fail because of brittle fracture of the steel 

reinforcing bar (Johansson, 2004; Loo et al., 2012). This phenomenon can be elucidated 

with the concrete ability for redistribution of stresses.  The extreme compressive fibres 

of the concrete section degrade due to high stress fatigue loading. Then less-fatigued 

fibres resist stresses inside the compression zone. Because of this redistribution of 

compressive stress, the lever arm is minimized and to maintain equilibrium, the 

reinforcing bar is required to support a greater tensile load that finally leads to bar 

fracture (Zanuy et al., 2007; Barnes and Mays, 1999). Therefore, the fatigue 

performance, due to this stress redistribution behaviour, can be enhanced by increasing 

the amount of steel in the reinforced concrete beams. Nevertheless, over-reinforced 

beams are exposed to fatigue failure of the compressed concrete, especially under high-

load levels (Zanuy et al., 2009). 
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4.2.7 Review of Fatigue Experimental Work 

Jun and Stang (1998) studied the behaviour of fibre reinforced concrete under cyclic 

flexural loading. The response of one type of polypropylene and two types of steel fibres 

in two volume concentrations were examined and the load deflection responses were 

acquired for firm amplitude fatigue loading, as well as for static loading. 

They deduced that all the tested steel fibre types improved the fatigue strength, and also 

that the fatigue strength improved with increasing fibre volume concentration, if the 

change in static performance was not taken into account. However, the fatigue 

performance of specimens with high fibre volume concentrations (2%) measured 

relative to the static strength was found to decrease compared to the lower fibre volume 

concentration (1%). Therefore, it was suggested that an optimum fibre volume 

concentration around 1% (vol.) should be used (less than 2 vol. percent). 

Two types of hooked-end steel fibres were used in fibre reinforced concrete by Cachim 

et al. (2002), and their fatigue behaviour was investigated and compared under 

compression. The fatigue life of specimens with short fibres (30 mm length) was 

observed to be slightly longer than that of plain concrete, whereas the fatigue life of 

specimens with longer fibres (60 mm length) was smaller than that of plain concrete. 

The main reason is related to the fact that the fatigue phenomenon is related to initial 

imperfections, such as micro-cracks or voids, existing in concrete. Thus, the presence 

of fibres, especially long ones, may be an additional cause of imperfections. 

It was deduced that the addition of fibres may have a detrimental effect on the fatigue 

life of concrete, if the fibres are not well dispersed in concrete. In point of fact, the 

distribution of the fibres in concrete is the key to improve the fatigue life of concrete. 
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Through the study of the fatigue behaviour of high strength concrete (HSC) in 

compression, Kim and Kim (1996) observed that the total strain at the fatigue failure 

point approximately coincided with the strain of descending part in monotonic stress-

strain curve. They found that the fatigue life decreased with increasing concrete 

strength. While fatigue strain of HSC was smaller than that of LSC, the rate of fatigue 

strain increment of HSC was greater than that of NSC. Therefore, HSC was more brittle 

than NSC under fatigue loading. Also, it was noticed that the fatigue crack growth rate 

increased with the strength of concrete. This trend was attributed to the rapid fa tigue 

failure of higher strength concrete. 

Cylindrical specimens made of NSC as well as HSC with and without steel (SFR) and 

carbon fibres (CFR) were tested and the fatigue crack growth in concrete with cyclic 

direct tension tests was examined by Cangiano et al. (1998).They detected that the effect 

of steel fibres was more obvious in HSC than in NSC and carbon fibres had less 

influence on Nmax than steel fibres. It was concluded that the higher the percentage of 

fibre the higher the maximum number of cycles. This was attributed to the different 

levels of micro-cracking and fracture process zone formation. 

The maximum number of load cycles measured on un-notched specimens was 

significantly larger than those for the notched normal strength concrete specimens. A 

possible reason for this discrepancy might be the notches causing stress concentrations 

and supporting the development of the FPZ.  

The mechanical properties of concrete and their variations subjected to low cyclic loads 

were studied by Ballatore and Bocca (1997). It was deduced that as concrete subjected 

to uniaxial compressing loading, the concrete was seen to undergo strain hardening and 

an increase in stiffness due to effects of dynamic loading, as revealed by an increase in 
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the material’s failure load and modulus of elasticity. It was thought that the dynamic 

loading reduced the pore space in the concrete, so that in the subsequent static 

compressive tests deformability was hindered by improved material compaction. 

 The experimental work of Naaman and Hammoud (1998) brought to light that the two 

mixes reinforced with 2% (vol.) hooked-end steel fibres, with aspect ratios of either 60 

or 100, showed essentially similar behaviour under fatigue loading. This may imply that 

the influence of aspect ratio on fatigue life was not as significant as the volume fraction 

of fibres. However, a more realistic explanation is that, with hooked-end fibres, the fibre 

pull-out resistance after debonding is primarily controlled by the end hook and not by 

the fibre length. 

Nicolaides (2004) found that achieving an even distribution of fibres in CARDIFRC is 

more difficult in specimens of (100*100*500mm) than in specimens of 

(360*90*35mm). This distribution of fibres within the matrix of the beam is a critical 

parameter affecting the fatigue performance of steel fibre reinforced concrete. 

Moreover, it was concluded that the endurance limit of CARDIFRC specimens of 

dimensions 360x90x35 mm is approximately at 85% of its flexural strength which is an 

excellent and absolutely consistent fatigue response. 

These specimens were tested after the fatigue test in static three-point bending. The 

specimens tested at 80%, 85% and 90% Pu in fatigue, showed a small increase in their 

flexural strength. This result confirms previously noted results in the literature, that 

prior cycling may lead to an improvement in strength (Naaman and Hammoud, 1998). 

It was proposed that this increase is attributed to the densification of the material, caused 

by stress cycling. 
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It was found that CARDIFRC specimens that sustained low number of cycles had high 

value of initial compliance which indicates the existence of initial internal damage or a 

very weak plane (devoid of fibres) in the area of the maximum applied moment, leading 

to a large initial deformation. 

On the other hand, at each load amplitude, the specimen that sustained high number of 

cycles had a low value of initial compliance, which indicates that for particular 

specimen which had a substantial number of fibres in the area of the maximum applied 

moment, leading to a small initial deformation. Therefore, a rough estimate of the total 

fatigue life of the particular specimen can be used to obtain from the compliance 

method, only after a relatively small number of cycles. 

Parvez and Foster (2014) reported the results of an experimental study on the 

performance of SFRC beams tested in fatigue using four-point bend test. Two series of 

reinforced concrete beams, 1200 and 3000 mm for span, with variable fibre contents 

(0.4%, 0.8%) were tested under constant amplitude cyclic loading. The load ranges were 

20–74% and 20–70% of static failure load for series 1 and series 2, respectively. It was 

deduced that the SFRC beams had lower deflections and smaller crack widths over the 

full period of cyclic loading compared to that of the control specimens. SFRC beams 

with span (3000mm) containing 0.4 and 0.8% of fibre by volume at a stress level of 0.7 

showed an increased fatigue life of 47 and 182%, respectively, compared to that of non-

fibre reinforced beams. They stated that the improved fatigue life results due to using 

steel fibres is because of their ability to reduce the stress range in the reinforcing bar. 

Since the tensile behaviour of UHPFRC depends on fibre orientation and distribution, 

Makita and Brühwiler (2013b) proposed that steel rebars could be arranged in 

UHPFRC, subsequently called R-UHPFRC, to provide a significant increase in 
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resistance and improvement of structural behaviour for UHPFRC. Also, due to fibre 

orientation and distribution, the alteration in tensile behaviour of UHPFRC is reduced 

when steel rebars are added. 

It was deduced that the maximum fatigue force level and the stage of the fatigue test 

influence the fatigue resistance of R-UHPFRC. Furthermore, the fatigue capacity of 

both material components could be enhanced by the stress distribution and transfer 

between UHPFRC and steel rebars. Fatigue deformation behaviour of R-UHPFRC 

depends on the stage of the fatigue test. In the early stage of the fatigue test, UHPFRC 

mainly determines the fatigue behaviour of R-UHPFRC. Whereas, in the middle and 

final stages of the fatigue test, steel rebars mostly determine the fatigue behaviour of R-

UHPFRC. 

Ruiz  et al. (2012) investigated the loading frequency effect on the fatigue compressive 

behaviour of a plain concrete and two types of FRCs. Four different loading frequencies 

were set as 4 Hz, 1 Hz, 0.25 Hz and 0.0625 Hz, respectively, and 85% of the 

compressive strength the maximum stress was applied on the specimen  and the stress 

ratio was set constant as 0.3. The results illustrated that the number of cycles to failure 

decreases as the loading frequency decreasing. Furthermore, this decrease is more 

pronounced for plain concrete. However, the fibres can improve the fatigue behaviour 

significantly under low loading frequencies. Such trend can be attributed to the 

effectiveness of the fibres in bridging the cracks, and thus inhibiting crack extension 

during the load cycles. 
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4.3. Concluding Remarks 

 

It is usually desirable to strengthen structures instead of rebuilding them. Over the years 

diverse structural strengthening/retrofitting techniques have been devised such as 

external bonding of steel plates, fibre reinforced plastic and the recently developed 

retrofitting with HPFRCCs.  

As has been mentioned at the beginning of this chapter, although the technique of 

bonding steel plates to the external surfaces of reinforced concrete structures has 

become widely used in the world with its many advantages, corrosion is considered as 

one of the major deficiencies of this technique.  

Thus, several techniques have been developed to alleviate the corrosion issue. FRP 

composites were proposed among other materials as an alternative to steel plates thanks 

to their non-corrosive nature. In addition, their high mechanical strength and low 

weight, ease of handling, good fatigue resistance, and flexibility of size, shape or quality 

make FRP one of the promising materials to strengthen and retrofit concrete structures. 

However, concrete peel-off and delamination of FRP strip from the concrete surface are 

the most widespread and undesirable failure modes since FRP plate would not be fully 

utilized.   

UHPFRC is particularly suitable for retrofitting structural elements by waterproofing 

them, thereby extending lifespan and enhancing durability. Furthermore, the brittleness 

of concrete has been overcome via addition of fibres into the cementitious matrix, thus 

leading to exceptional mechanical and durability features.  A gradual failure without 

delamination can be ensured when UHPFRC (such as CRDIFRC) is retrofitted to 

concrete since compatibility with the material of the parent member can be achieved. 
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Therefore, bonding RC beams with CARDIFRC strips can increase the flexural and 

shear capacity by bonding the strips on the appropriate surface.  

The outstanding features of UHPFRC, lower self-weight than steel plate, non-corrodible 

behaviour, smaller carbon footprint have the potential to make UHPFRC a desirable 

material for retrofitting. However, they are very expensive and therefore not industrially 

competitive. There is thus a need to create industrially competitive version of 

CARDIFRC. This will be attempted in present thesis. 
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5.1 Introduction  
 

Conventional concrete irrespective of its compressive strength has poor tensile and 

flexural properties and cracks easily (has low toughness), impairing its long-term 

durability. Attempts have been made in the past, based on ad hoc trial and error tests, to 

improve the tensile/flexural strengths but this has been accompanied by a reduction in 

the toughness.  The root cause of the intrinsic competition between the strength and 

toughness is explained by the non-linear theory of fracture of Hillerborg et al. (1976).  

According to this theory the measure of the ductility of a plain or fibre-reinforced 

concrete mix is its characteristic length (Bache, 1981; Karihaloo, 1995) lch = (EGF)/(ft)2, 

where ft is the tensile strength, GF the toughness and E the Young modulus of the mix. 

The maximization of lch of an FRC mix by trial and error enabled researchers to develop 

a class of ultra-high performance fibre-reinforced cement-based composites 

(UHPFRC), such as DENSIT (Bache, 1981), RPC and DUCTAL (Bonneau et al., 1996; 

Bonneau, 1997; Morin et al., 2001) characterised by high compressive strength, high 

tensile/flexural strength, and high toughness.  

In the development of CARDIFRC, which also belongs to the class of UHPFRC, the 

optimization problem of maximizing lch was solved mathematically.  This required a 

knowledge of the constitutive equations relating the mechanical response parameters 

(E, ft, GF, and compressive strength fc) to the mix and fibre parameters (water to binder 

ratio, maximum size of fine aggregate, volume fraction of aggregate, surfactant to water 

ratio, fibre length, fibre diameter, and fibre volume fraction), collectively called the 

micro-structural parameters. These were developed by Karihaloo et al. (1996) using 

micro-mechanical principles. The constitutive relations formed the constraints in the 
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optimization problem (Lang-Kornbak and Karihaloo, 1996). The method of its 

production and its mechanical and fracture properties were reported in a series of papers 

(Benson and Karihaloo, 2005 a,b; Benson et al., 2005). Extensive tests have shown that 

it has remarkable durability and resistance to thermal cycling and cyclic loading (Farhat 

et al., 2007; Nicolaides et al., 2010). Computerized tomography imaging and sectioning 

of specimens have confirmed that the production procedures ensure a remarkably 

homogeneous mix with a uniform distribution of fibres (Benson et al., 2005). 

Moreover, it improves with age and has self-healing properties because of un-hydrated 

cement and silica fume. Tests have shown that its toughness increased in 2 years from 

20,000 J/m2 to more than 32,000 J/m2 (Nicolaides, 2004). Recent studies (Petrov et al., 

2012; Bragov et al., 2013) have proved that CARDIFRC is very resistant to dynamic 

loading making it suitable for building critical civil (e.g. nuclear containment vessels) 

and military infrastructure in order to render it less susceptible to failure under loading 

by blasts and explosions. 

There has been enormous interest in the development of different UHPFRC variants in 

recent years. The developments until 2007 have been included in the monograph of 

Bentur and Mindess (2007). More recent developments have been reported at the 

quadrennial RILEM workshops organised by Naaman and Reinhardt, the most recent 

one being held in Stuttgart in 2015 (Reinhardt et al., 2015). In fact, the understanding 

of the manufacture and testing of UHPFRC has progressed to a state that it can be 

distilled and simplified for the purposes of engineering design practice. This has 

resulted in the FIB Model Code 2010. In the terminology of FIB Model Code 2010, 

CARDIFRC, together with DENSIT, RPC, and DUCTAL, belongs to the class of 

UHPFRC that exhibits strain hardening under axial tension. However, the rapid 
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development of UHPFRC has not been matched by its industrial uptake. This is not only 

because of the traditional conservativeness of the construction industry, but also 

because of the high cost of UHPFRC. Therefore, there is enormous scope for improving 

the cost-competitiveness of existing UHPFRC.  

This Chapter describes an attempt at improving the cost-competitiveness of 

CARDIFRC. It summarises the steps taken to produce an industrially competitive 

version of CARDIFRC. The full mechanical characterisation of the resulting UHPFRC 

has been provided using standard testing procedures. The fracture properties however 

were obtained using non-standard procedures which made it necessary to provide a brief 

theoretical background of these procedures.  

 

 

5.2 Development of Self-Compacting UHPFRC from CARDIFRC Mix II 
 

CARDIFRC refers to two main groups of mixes – Mixes I and II – differing primarily 

in the maximum size of quartz sand used. Both mixes use a large amount of 6 and 13 

mm long (0.15 mm diameter) brass-coated steel fibres (total volume fraction 6%). Mix 

I contains quartz sand up to only 0.6 mm in size, whereas in Mix II the maximum quartz 

sand size is 2mm.  They were initially developed only for small scale niche applications, 

e.g. retrofitting of existing concrete structures (Farhat et al., 2007; Karihaloo et al., 

2002; Alaee and Karihaloo, 2003a) or jointing of pre-cast concrete elements because of 

the very high cost of thin brass-coated steel fibres. However, detailed cost analysis in 

collaboration with a large construction company showed that CARDIFRC can be 

modified and adapted to make it highly competitive even in a variety of hitherto-

unforeseen very large volume applications, e.g. manufacturing pre-cast pre-stressed 

concrete elements without shear reinforcement for use in structural applications. The 
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advantage of this variant over the competing steel is lower self-weight (which forms a 

large part of design load), corrosion resistance, and smaller carbon footprint. The 

development of industrially competitive versions of CARDIFRC in the category of 

ultra-high performance concrete (UHPFRC) required innovative solutions to many 

problems. Among these were: (i) reduction of costs by replacing the thin expensive 

brass-coated steel fibres with only 2.5% by volume of thicker and cheaper steel fibres, 

30mm long and 0.55 mm diameter, with an acceptable reduction in the compressive and 

flexural strengths (about 30%) but an actual increase (by about 100%) in the toughness; 

(ii) avoidance of health and environmental hazards by creating self-compacting mixes 

not requiring noisy vibration and replacing some cement with an industrial waste 

material, GGBS; (iii) improvement in the fire resistance to 120 min by using sacrificial 

polymeric fibres that melt creating channels for the expansion of steam during a fire 

(Karihaloo, 2012a). The enhanced durability of UHPFRC leads to a longer life and 

sustainability thereby avoiding structural repair and maintenance costs, and yielding 

economic, environmental and social benefits. These solutions were first tried on 

CARDIFRC Mix I (Karihaloo, 2012a). Additional information on the role of fibre 

content and water to binder ratio on the performance of CARDIFRC Mix I can be found 

in (Karihaloo, 2012b).  Apart from its compressive strength (160MPa), no other 

mechanical and fracture properties of this UHPFRC were measured. In this Chapter, 

these solutions will be tried on CARDIFRC Mix II. Full mechanical and fracture 

characterisation of the resulting UHPFRC will be provided.  The bulk of the work 

reported in this Chapter has been published (Al-Azzawi and Karihaloo, 2017a). 
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5.3 Materials 

All constituents used in UHPFRC based on CARDIFRC Mix II were locally available. 

These included Portland cement Class I 42.5 N, ground-granulated blast furnace slag 

(GGBS), various grades of quartz sand, Glenium Ace 499 superplasticizer, Elkem 

Microsilica powder, and 55/30 BG Dramix steel fibres with crimped ends (30 mm long 

and 0.55 mm diameter, aspect ratio 55). No sacrificial polymeric fibres for enhanced 

fire resistance were used in this mix. In common with the development of self-

compacting mixes from parent vibrated mixes, the powder volume was substantially 

increased while simultaneously the amount of coarser ingredients was slightly 

decreased. Thus, 36.4% of cement in the original CARDIFRC Mix II was replaced with 

GGBS to increase the powder volume and reduce the carbon footprint, while the total 

amount of quartz sands was reduced by 4.8%. The larger powder content in the self-

compacting version required a higher dosage of superplasticizer for attaining the 

necessary flow-ability (SP/water 0.41 as opposed of 0.37 in the original vibrated 

CARDIFRC Mix II). The mix proportions are given in table 5.1. For comparison, the 

mix proportions of the original vibrated CARDIFRC Mix II are shown in parenthesis in 

the table. 

 

5.3.1 Self-Compacting Mix Preparation  

The mix was prepared in a pan mixer. The volume of a batch was calculated based on 

the required cube, cylinder and beam test specimens with an allowance for at least four 

slump flow tests and for some wastage. The mixing procedure recommended by Benson 

and Karihaloo (Benson and Karihaloo, 2005a) was followed by adding the finest 

constituent micro-silica to the coarsest (1-2 mm quartz sand) and mixing them for two 

minutes. This was followed by the addition of the next coarsest constituent                         



Mechanical and fracture properties of a self-compacting version of CARDIFRC Mix II           Chapter Five 

 

 

99 

 

(0.212 - 1 mm quartz sand) and the next finest constituent (GGBS) and mixing for a 

further two minutes. Finally, the next coarsest constituent (9-300 μm quartz sand) and 

the next finest (cement) were added and mixed for a further two minutes. The dry mix 

was fluidised by a mixture of water and two-thirds of the total superplasticizer (the same 

amount as in the original CARDIFRC Mix II) in several steps as follows: One-half of 

the water-superplasticizer mixture was added to the dry mix and mixed for two minutes, 

followed by one-half of the remaining mixture and mixing. This process of progressive 

halving of the fluid mixture and mixing was continued until the entire fluid mixture was 

added. Then the 30 mm long fibres were added. These fibres are supplied by the 

manufacturer in small packages of about 50 fibres lightly glued together by water-

soluble glue. They were scattered slowly and evenly into the rotating pan mixer by hand 

to avoid their clumping in the mix. Lastly, the remaining one-third of the 

superplasticizer was added and mixed for two minutes. 

 

Table 5.1 Mix constituents of the self-compacting UHPFRC version of CARDIFRC Mix II (kg/m3) 

Constituent   Dosage (kg/m3) 

Cement 450.3 (744) 

Silica fume 169.5 (178) 

GGBS 258.0 (0) 

Quartz sand: 

9-300μm 

0.212-1 mm 

 

158.0 (166) 

318.9 (335) 

1-2 mm 639.7 (672) 

Water 141.8 (149) 

Superplasticizer (SP) 58.5 (55) 

Fibres: 30 mm Dramix (Vol. 2.5%) 195.0  

Water/(Cement+GGBS) 0.20 (0.20) 

Water/binder 0.16 (0.16) 

SP/water 0.41 (0.37) 

Slump flow spread (mm) 705  

t500 (s) 2.73 
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5.3.2  Slump Flow Test  

Before transferring the wet fibre-reinforced mix into the slump cone, the mix was 

visually inspected to estimate its flow-ability. If it appeared to be stiff, additional 

superplasticiser was added and mixed again for 2 minutes. It was then transferred into 

the slump cone and the test was performed according to BS EN 12350-8, 2010. If it did 

not meet the flow-ability criterion, namely that the time to reach the flow diameter of 

500 mm (t500) is less than 3 s, additional superplasticizer was added to the remaining 

mix in the pan mixer, and the test repeated. This time was chosen somewhat arbitrarily 

to be near the boundary, t500≤ 2 s, between the two viscosity classes (VS1 and VS2) 

according to BS EN 206-9 2010. Two to three trials were needed to meet the flow-

ability criterion. The slump flow spread of the self-compacting mix that met the target 

t500 is shown in Figure 5.1. The mix proportions of the UHPFRC based on CARDIFRC 

Mix II are given in Table 5.1.  

 

 

Figure 5.1 Slump flow spread of UHPFRC based on CARDIFRC Mix II 
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5.3.3 Specimen Curing 

The mix was then cast into standard cube (100 mm), cylinder (100 × 200 mm) and beam 

(100 × 100 × 500 mm) moulds. The specimens were de-moulded after 24 hours and 

placed in a water tank. The water was heated slowly to 90oC in 24 hours to avoid thermal 

shock, and the specimens were cured at this elevated temperature for 7 days. The 

temperature was then reduced gradually to ambient condition within 24 hours. The 

specimens were taken out of the water tank and air dried prior to testing. It should 

however be noted that tests have shown (Karihaloo et al., 2002) that mixes can also be 

cured in water at ambient temperature for 28 days with no noticeable difference in the 

mechanical properties.  

 

 

5.3 Mechanical properties 
  

5..4.1 Compressive strength  

 

For the determination of the compressive strength of CARDIFRC Mix II, cubes were 

tested according to BS EN 12390-3, 2009. The tests were performed in a FARNELL 

Compression Testing Machine, with a load capacity of 2500 kN. The compressive 

strength for the UHPFRC CARDIFRC Mix  II  is  fc = 148 MPa with standard deviation 

of 6.7 MPa and coefficient of variation of 4.54%. The results of the test are tabulated in 

Table 5.2.  
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Table 5.2 Compressive strength results for UHPFRC CARDIFRC Mix II 

Cub No. Compressive 

Strength (MPa) 

1 136.7 

2 142.1 

3 155.2 

4 147.5 

5 154.9 

6 150.8 

7 148.5 

Mean fc 148.0 

 

 

5.4.2 Tensile splitting strength 

The indirect tensile strength ft  of the UHPFRC CARDIFRC Mix II was determined 

according to BS EN 12390-6, 2009. The tests were performed also using a FARNELL 

Compressive Test Machine. Four 100 x 200 mm cylinder specimens were tested and 

the splitting strength (in MPa) was calculated for each specimen according to  

𝑓𝑡 =
2𝐹

𝜋𝐷𝐿
                                                                                                                                       (5.1) 

 

where F is the maximum failure load in (N), L is the length of the cylinder in (mm) and 

D is the diameter of the cylinder in (mm). 

The tensile splitting strength is 18.5 MPa with standard of deviation of 1.2 MPa and 

coefficient of variation of 6.5%. The results of the test are tabulated in Table 5.3. 

Table 5.3 Indirect Tensile splitting Strength results for UHPFRC CARDIFRC Mix II 

Cylinder No. 
Applied Load 

(kN) 

Indirect Tensile splitting 

Strength (MPa) 

1 643 20.47 

2 565 17.99 

3 566 18.02 

4 570 18.14 

 Mean ft 18.5 
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5.4.3 Modulus of Elasticity 

 

The modulus of elasticity of the UHPFRC CARDIFRC Mix II was measured on a cylindrical 

specimen according to BS 1881-121, 1983 at room temperature. The specimen was chosen at 

random taken from the group of specimens intended for tensile splitting test. An AVERY 

DENISON Type 7152, Servo-Hydraulic Testing Machine was used for the test, with a load 

capacity of 600 kN.  Two strain gauges, 30 mm long, were glued to carefully prepared surface 

of the cylinder preparation for the measurement of strain. The specimen was loaded up to one 

third of their compressive strength and then unloaded. The loading-unloading procedure was 

repeated twice. The modulus of elasticity was calculated from the slope of the recorded stress-

strain curves.  The value is 45.2 GPa.   

 

5.4.4 Modulus of Rupture (MOR) 

The measurement of the modulus of rupture of the mix of UHPFRC CARDIFRC Mix II was 

carried on two 100x100x500 mm beams according to BS 1881-118, 1983, in 4-point bending 

(Figure 5.2). The test was performed in an AVERY-DENISON Type 7152, Servo-Hydraulic 

Testing Machine, with a load capacity of 600 kN. The MOR (MPa) is calculated as follows:  

𝑀𝑂𝑅 = 𝐹. 𝐿/(𝑑1. 𝑑2
2)                                                                                                  (5.2) 

where F is the maximum failure load in (N), d1and d2 are the lateral dimensions of the 

cross section in mm and L is the distance between supporting rollers in mm. The MOR 

is 20.04 MPa with standard of deviation of 0.15 MPa and coefficient of variation of 

0.72%. The results of the test are tabulated in Table 5.4. 

 



Mechanical and fracture properties of a self-compacting version of CARDIFRC Mix II           Chapter Five 

 

 

104 

 

 

Figure 5.2 Schematic graph of the modulus of rupture (MOR) test. 

 

Table 5.4 MOR results for UHPFRC CARDIFRC Mix II 

 

 

 

 

 

 

 

 

As expected, the compressive strength, the tensile splitting strength and the modulus of 

rupture of the UHPFRC are inferior to those of the CARDIFRC Mix II (Benson and 

Karihaloo, 2005b)  because of the absence of thin short (6mm) brass-coated steel fibres 

(4.5% by volume). The modulus of elasticity, on the other hand, is only marginally 

reduced.  

 

5.5 Fracture Properties 

5.5.1 Specific Fracture Energy – Theoretical Background 

Not only the superior mechanical properties of UHPFRC (Table 5.2 - 5.4) are of 

practical interest, but even more important is their superior fracture resistance. It is 

quantified by the energy consumed per unit area of crack surface, also called the specific 

fracture energy. No standard test exists for its measurement, but RILEM-50FMC 1985 

Beam No. 

 

Peak Load 

(kN) 
MOR (MPa) 

1 49.83 19.93 

2 50.35 20.14 

 Mean MOR     20.04 
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has recommended a method based on the work-of-fracture, i.e. the area under the load-

mid-span deflection curve of a notched beam loaded in three-point bending.  According 

to the RILEM recommendation, the specific fracture energy Gf  is the average energy 

given by dividing the total work-of-fracture by the projected fracture area (i.e. the area 

of initially un-cracked ligament) using a pre-cracked (notched) specimen.  

This method is equally applicable to UHPFRC, despite the fact that the test may have 

to be terminated before the the tail part of the load-deflection plot has been registered, 

i.e. the specimen has completely fractured, because the fibre bridging provides 

substantial residual load bearing capacity up to very large crack openings. In this 

situation, the work-of-fracture is corrected using the procedure of Elices et al. (1992). 

Alternatively, the area under the load-deflection curve up to particular deflection levels 

may be expressed as a multiple of the area up to the limit of proportionality to determine 

the so-called toughness indices of UHPFRC, designated I5, I10, etc. where the subscript 

denotes the multiple of the area. A detailed review of the many variations of toughness 

index approach can be found in Bentur and Mindess (2007). 

A commonly used specimen shape for the determination of Gf  is a notched beam loaded 

in three-point bending (Figure 5.3). The specimen is loaded under displacement control 

and the variation of the load P is recorded against the mid-span deflection 𝛿  . The 

specific fracture energy Gf  is then calculated using the formula: 

𝐺𝑓 = 
1

(𝑊−𝑎) 𝐵
∫𝑃 𝑑𝛿                                                                                                       (5.3) 

Here, W, B and  𝑎  the specimen depth, width and the notch depth, respectively. 
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Figure 5.3 Notched Three-point bend testing configuration and geometry of specimen 

 

In the case that the concrete fracture is modelled by a fictitious crack (Hillerborg, 1985), 

the energy dissipation for the crack propagation can be described by the cohesive stress-

crack opening relation σ(w). More precisely, the specific fracture energy corresponds 

to the area under the σ(w) curve 

 

𝐺𝐹 = ∫ 𝜎(𝑤)𝑑𝑤 
𝑤𝑐
0

                                                                                                                 (5.4) 

 

where wc is the critical crack opening. 

Two regions, an inner softening zone, wsf, and an outer micro-fracture zone wf, form the 

fracture process zone (FPZ) around the propagating crack, (Hu and Wittmann, 1992) as 

illustrated in Figure 5.4. 

The interconnected cracks are included in the inner softening zone wsf along the 

aggregate and mortar interfaces. On the other hand, the outer micro-fracture zone 

contains isolated micro-cracks that are not interconnected. The main open crack plus a 

few large crack branches along the interfaces can be formed within the softening zone 

(Karihaloo B.L, 1995; Hu X. Z, 1995). The fracture energy consumed in the outer 

micro-fracture zone is small because the isolated micro-cracks do not participate in the 

concrete softening but to its non-linear response before the peak load. 

W 

B 

P (Load) 

a 

L 

S 



Mechanical and fracture properties of a self-compacting version of CARDIFRC Mix II           Chapter Five 

 

 

107 

 

 

Figure 5.4 The fracture process zone and discreet bridging stresses. The FPZ is divided into the 

inner softening zone and the outer micro-fracture zone. wc is related to the width of the inner 

softening zone wsf (After Hu and Wittmann, 1992). 

 

It was argued that the inner and outer zone width wsf  and wf , may vary according to the 

crack tip stress field during crack propagation. Apparently the critical crack opening wc 

is confined by the inner and the outer zone width. This confinement becomes more 

obvious when a FPZ approaches the free boundary of a specimen. Therefore, if equation 

(5.4) is used, a smaller  wc  and a smaller fracture energy are found. This lead to the 

conclusion that the fracture energy GF defined by equation (5.4) can be dependent on 

the location of FPZ in relation to the free boundary of the specimen. 

The symbol gf   was used in equation (5.4) for the local fracture energy to differentiate 

the fracture energy GF defined by equation (5.4) from that defined by equation (5.3). 

Hu (1995), and Hu and Wittmann (2000) have made the following assumptions: 

𝑤𝑠𝑓(𝑥) ∝ 𝑤𝑓(𝑥) 

𝑤𝑐(𝑥) ∝ 𝑤𝑓(𝑥)                                                                                                                        (5.5) 

𝑔𝑓(𝑥) ∝ 𝑤𝑐(𝑥) 
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where x denotes a position along a fracture ligament in the FPZ and gf (x) represents the 

local fracture energy. 

The specific fracture energy, Gf, is known to vary with the size and shape of the test 

specimen. The cause of this variability is explained in Hu and Wittman (1992), namely 

that the local specific fracture energy is not constant along the crack path in a test 

specimen. It decreases as the crack grows along the un-notched ligament with the rate 

of decrease picking up speed as the crack approaches the back, stress-free boundary of 

the specimen. For this reason, the Hu-Wittmann model is also called the boundary effect 

model (Duan et al., 2003; Duan et al., 2007). They proposed a bi-linear approximation 

for the local fracture energy variation (𝑔𝑓) along the crack path (Figure 5.5) with the 

intersection of the two asymptotes defining a transition ligament size (𝑎𝑙) and used this 

approximation to derive relations between the measured size-dependent fracture energy 

(𝐺𝑓), the transition length (𝑎𝑙 ) and the size-independent fracture energy (𝐺𝐹).  The 

transition ligament size al is a parameter depending on both the material properties and 

specimen geometry. 

 

𝐺𝑓 (
𝑎

𝑊
) =

{
 
 

 
 𝐺𝐹 [1 −

𝑎𝑙
𝑊

2(1−
𝑎

𝑊
)
]                       1 −

𝑎

𝑊  
 >   

𝑎𝑙

𝑊

𝐺𝐹 [
(1−

𝑎

𝑊
)

2 
𝑎𝑙
𝑊

 ]                                1 −
𝑎

𝑊 
  ≤   

𝑎𝑙

𝑊

                             (5.6)                                    

The values of 𝐺𝐹 and 𝑎𝑙  of a concrete mix are obtained from these relations once the 

size-dependent specific fracture energy (𝐺𝑓) of the mix has been measured on specimens 

of different sizes and several notch to depth ratios using a least squares method on the 

over-determined system of equations. However, a simplification of this boundary effect 
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method was proposed in Abdalla and Karihaloo (2003), requiring only testing of 

notched beam specimens of identical size (beam height W, notch depth a) by the RILEM 

work-of-fracture method. One half of the specimens have a shallow starter notch (a/W 

= 0.1), while the other half have a deep starter notch (a/W = 0.6), straddling the expected 

transition length ratio al/W. This simplification reduces the number of test specimens 

and avoids the use of least squares minimisation. It was validated by Karihaloo et al. 

(2003a) on a series of available test results. It has been shown in Hu and Duan (2004) 

that although the measured values of 𝐺𝑓 depend on W and  a/ W, the above procedure 

indeed leads to a value of 𝐺𝐹 that is essentially independent of the specimen size and 

relative notch depth.  

 

 

Figure 5.5 Bi-linear local fracture energy 𝑮𝒇 (
𝒂

𝑾
) variation along the un-notched 

 ligament of a notched specimen (After Duan et al., 2003) 

 

In recent works, a tri-linear approximation of the local fracture energy along the 

unbroken ligament was proposed by Muralidhara et al. (2010; 2011) and Karihaloo et 

al. (2013). As has been shown by acoustic emission data, the tri-linear approximation is 

closer to how the local fracture energy varies as the crack grows from a notched 

specimen (Muralidhara et al., 2010). The local fracture energy (𝐺𝑓) first rises from the 
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fictitious boundary (notch tip), then remains nearly constant 𝐺𝐹, before reducing again 

as the crack approaches the stress-free back face boundary, Figure 5.6. Murthy et al. 

(2013) found that the bi-linear and tri-linear approximations result in nearly the same 

values of the size-independent specific fracture energy  (𝐺𝐹) . For this reason, the 

simplified boundary effect method of Abdalla and Karihaloo (2003) based on the bi-

linear approximation of Hu and Wittmann (1992) will be used below. 

 

 

Figure 5.6 Tri-linear approximation of local fracture energy gf variation over the un-notched 

ligament length (After Muralidhara et al., 2010) 
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5.5.2 Test Results 

Six prisms 100 x 100 x 500 mm were cast with the self-compacting UHPFRC. After 

curing, three prisms were notched to a depth of 10 mm and the remaining three to a 

depth of 60 mm using a diamond saw (width approximately 2 mm). They were tested 

in three-point bending over a loaded span of 400 mm.  

The tests were performed in a stiff self-straining testing frame, fitted with a DARTEC 

2500 kN dynamic-static actuator. The machine was powered by a 23 lit/min DARTEC 

hydraulic pump and was connected with a DARTEC 9600 Digital Feedback Controller. 

Three types of measurement were recorded for each beam: (1) the load from the load 

cell of the testing machine; (2) the vertical deflection at one side of the specimen; and 

(3) the crack mouth opening displacement (CMOD), using a clip gauge (Figure 5.7). 

The test was controlled first by a feedback signal from a crack mouth opening 

displacement (CMOD) gauge until the gauge reached its limit (around 3.5 mm), 

whereafter the control switched to mid-point  displacement control. The load-CMOD 

was recorded until the gauge reached its limit, but the load-mid-point displacement 

continued to be recorded until the displacement reached 30 mm. The load had still not 

dropped to zero.  The area under the load-deflection plot was therefore corrected to 

account for the unrecorded work-of-fracture using the procedure of Elices et al. (1992). 

For this the tail part of the recorded load-deflection curve was extended linearly until it 

met the horizontal axis (P = 0). The area of this triangle added to the area under the 

recorded curve. The total work-of-fracture was divided by the projected fracture area 

(i.e. area of initially un-cracked ligament) of the notched specimen to calculate the 

specific fracture energy Gf (a/W) corresponding to a/W = 0.1 and 0.6. Finally, the size-

independent specific fracture energy GF and al were determined using the appropriate 
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relations of boundary effect model (Hu and Wittmann, 1992) (Equation 5.6). The values 

are reported in Table 5.5 and the load-deflection curves for both 10 and 60 mm notches 

are plotted in Figure 5.8. The size-independent specific fracture energy is 36300 N/m 

compared to about 20000 N/m for the original Mix II measured in axial tension. The 

increase in primarily due to the use of a larger volume (2.5%) of longer (30 mm) fibres 

in the UHPFRC compared with the CARDIFRC Mix II in which only 1.5% by volume 

of 13 mm long fibres was used. 

 

 

Figure 5.7 Three-point testing configuration. 

 

Table 5.5 Mean size-dependent fracture energies for a/W = 0.1 and 0.6 and size-independent 

specific fracture energy of UHPFRC version of CARDIFRC Mix II (bi-linear model) 

 

Notch (mm) Gf (N/m) Mean Gf (N/m) al (mm) GF  (N/m) 

10 

29395.03 
30192.00 

 

30.3 36300 

28903.98 

32180.74 

60 

23009.37 
22550.96 

 
23046.87 

21596.64 
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Figure 5.8  3-point bend test curves for UHPFRC CARDIFRC mixes II, notches 10 and 60 mm 

 

 

5.5.3 Stress-Crack Opening Relation – Theoretical Background 

The analysis of cracked concrete structures using the fictitious crack model (Hillerborg 

et al., 1976; Hillerborg, 1980) requires not just the size-independent fracture energy of 

the concrete GF, but also its softening behaviour. In the fictitious crack model (FCM) it 

is assumed that after crack initiation, stresses may be transmitted across the fictitious 

crack faces. These crack bridging forces are assumed to be a function of the crack 

opening displacement given by the stress-crack opening relationship. The stress-crack 

opening relationship of the early FCM was modelled as a linear function which has been 

found not to capture the essence of the tension softening of concrete. After the initiation 

of a crack, concrete is known to soften rapidly because of micro-cracking, but the rate 

decreases thereafter because of aggregate interlock and other frictional processes, and 

especially fibre bridging forces. Therefore, to capture the observed tensile/flexural 

behaviour of fibre-reinforced concrete, the stress-crack opening relationship must be at 

least a bi-linear function (Olesen, 2001). The area under this bi-linear diagram is equal 

to GF. 
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Ulfkjaer et al. (1995) proposed that the flexural failure of concrete beams may be 

modelled by the development of a fictitious crack in a central segment with a width 

proportional to the beam depth. They treated this segment as a cracked hinge (Figure 

5.9) with a linear stress-crack opening relationship. 

The bending failure was modelled (Olesen, 2001) in the same way, using a bi-linear 

stress-crack opening relationship instead. The isolation of the segment of a beam near 

the propagating crack and its modelling as a short beam segment subjected to a bending 

moment and a normal force is the basic concept of the non-linear cracked hinge model 

(Olesen, 2001), (Figure 5.9-a,b). This is a generic model applicable to both plain and 

fibre-reinforced concrete. 

In the non-linear hinge model the crack is viewed as a local change in the overall stress 

and strain field. This change is assumed to vanish outside a certain band of width s 

(Figure. 5.9-a). Thus, outside of this band the structural element is modelled using the 

elastic beam theory.  

The constitutive relationship for each segment inside the hinge is assumed to be linear 

elastic up to the peak load (phase 0), while the cracked state is approximated by a bi-

linear softening curve as shown in Figure 5.10.  

 𝜎 = {
  𝐸𝜀                                                                         Linear − elastic state                                         

                                                                                                                                 
𝜎(𝑤) = 𝑔(𝑤)𝑓 𝑡                                              Post − peak cracked state                               

    (5.7) 

Here, E is the elastic modulus, ε is the elastic strain, w is the crack opening, ft is the 

uniaxial tensile strength; and g(w) is the function representing the shape of the stress-

crack opening relationship, normalized such that g(0) = 1 
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                                                          (a)                                                                   

 

 

   (b) 

Figure 5.9 (a) Loading and geometry of cracked hinge model, (b) deformation of the cracked 

hinge 

 

 

𝑔(𝑤) = 𝑏𝑖 − 𝑎𝑖𝑤 = {
𝑏1 − 𝑎1𝑤      0 ≤ 𝑤 < 𝑤1
𝑏2 − 𝑎2𝑤      𝑤1 ≤ 𝑤 ≤ 𝑤2

                                                                 (5.8) 

where b1 = 1, and the limits w1 and w2 are given by the intersection of the two line 

segments, and the intersection of the second line segment and the abscissa, respectively, 

a1and a2 represent the slopes of the first and the second line segments of the bilinear 

curve, respectively (Figure 5.10). For the assumed bilinear shape (Figure 5.10), we 

have: 
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Figure 5.10 Bi-linear stress-crack opening diagram 

 

 

 𝑤1 =  
1−𝑏2

𝑎1−𝑎2
                                                                                                                       (5.9 a) 

 𝑤2 =  
𝑏2

𝑎2
                                                                                                                         (5.9 b) 

The deformation of the hinge is described by half the angular deformation 𝜑 and the 

depth of the neutral incremental strip 𝑦0 (Figures 5.9). The mean values of the curvature 

𝑘∗ and the distribution of longitudinal strains 𝜀* at a depth 𝑦 are introduced as: 

        𝑘∗ =
2𝜑

𝑠
;  𝜀∗(𝑦) = 2(𝑦 − 𝑦0)𝑘

∗                                                                     (5.10) 

The deformation of an incremental strip is given by u(𝑦) = 𝑠𝜀*( 𝑦), where 𝑠 is the 

width of the hinge. In the case when the strip has cracked the deformation, u(𝑦) may 

also be obtained as the sum of the elastic deformation of the strip and the crack opening: 

 

𝜎

𝑎1 

𝑎2 

𝑤 
𝑤2 𝑤1 

𝑏2 

𝑏1

= 1

𝜎1
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𝑢(𝑦) = 𝑠𝜀 ∗ ( 𝑦) = 𝑠
𝜎𝑤(𝑤(𝑦))

𝐸
+ 𝑤(𝑦)                                                         (5.11) 

The crack opening in the cracked incremental segment at the depth y,𝑤(𝑦) has been 

introduced, and the associated crack bridging stress, 𝜎𝑤(𝑤(𝑦)) =  𝑓𝑡𝑔 (𝑤(𝑦))(Olesen, 

2001) can be obtained by combining Equations (5.10) and (5.11): 

 𝜎𝑤(𝑤(𝑦)) =  
𝐸

𝑠
 {2(𝑦 − 𝑦0)𝜑 − 𝑤(𝑦)}                                                       (5.12) 

By using Equation (5.8) it may also be written: 

𝜎𝑤(𝑤(𝑦)) = 𝑓𝑡{𝑏𝑖 − 𝑎𝑖𝑤(𝑦)}         𝑖 ∈  [1,2]                                                 (5.13) 

If Equations (5.12) and (5.13) are solved with respect to w(y) and 𝜎𝑤(𝑤) for each value 

of i, the following solutions are obtained: 

𝑤(𝑦) =
2(𝑦−𝑦0)𝜑−𝜍𝑖

1−𝛽𝑖
                                                                             (5.14 a) 

𝜎𝑤( 𝑤(𝑦) =
𝜍𝑖− 2(𝑦−𝑦0)𝜑𝛽𝑖

1−𝛽𝑖

𝐸

𝑆
             𝑖 ∈  [1,2]                               (5.14 b) 

where the dimensionless parameters 𝛽𝑖 and 𝜍𝑖 are defined by: 

𝛽𝑖 =
𝑓𝑡𝑠𝑎𝑖

𝐸
     ,   𝜍𝑖 =

𝑓𝑡𝑠𝑏𝑖

𝐸
                  𝑖 ∈ [1,2]                                       (5.15 a, b) 

The solutions given in Equation (5.14) establish in an analytical form the crack opening 

profile w(y) and the stress distribution in the cracked part of the hinge 𝜎𝑤(𝑤)as 

functions of the hinge deformation 𝜑 and 𝑦
0
. This fundamental result makes it 

possible to obtain closed-form solutions to the nonlinear constitutive behaviour of the 

cracked hinge as a whole. It is observed that the crack opening profile w(y) is linear 
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within each segment of the stress-crack opening relationship but the inclination with 

respect to the crack face is not the same in the two segments. 

As a crack forms and then propagates from the bottom of the hinge, the stress 

distribution changes through three distinct phases (Figure 5.11). The crack-opening 

profile is divided into different intervals that are governed by the solutions in 

Equation (5.14) corresponding to different values of 𝑖. Besides 𝑦0, these intervals 

are determined by the parameters 𝑦∗, 𝑦1 and 𝑦2 (Figure 5.11). An expression for 𝑦∗ 

may be found from: 

𝑦∗ =
𝑠𝑓𝑡

2𝜑𝐸
                                                                                                                (5.16) 

Expressions for  𝑦1and 𝑦2are obtained from Equation (5.14 a) 

 𝑦𝑖 =  𝑦0 +
1

2𝜑
 (𝜍𝑖 − (𝛽𝑖 − 1) 𝑤𝑖)   𝑖 ∈ [1,2]                                                 (5.17) 

 

 

Figure 5.11 Definition of a bi-linear stress-crack opening relationship and the four different 

phases of crack propagation. Phase 0 = State of stress prior to cracking; Phases I-III = States of 

stress during crack propagation. 
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Analysis of the hinge element permits the determination of the external normal force N 

and bending moment M for any given value of the angular hinge deformation 2φ. The 

problem is solved in four phases, one for each state of crack propagation. Phase 0 

represents the elastic state, where no crack has formed, while phases I, II and III 

represent different stages of propagation (linear, bilinear and bilinear with stress-free 

tail) (Figure 5.11). The solution is presented in terms of normalized properties, where 

the following normalizations are used (Olesen, 2001): 

  𝜇 =  
6

𝑓𝑡h2𝑡
𝑀;     𝜌 =  

1

𝑓𝑡h𝑡
𝑁;    𝜃 =  

ℎ𝐸

𝑠𝑓𝑡
𝜑;    𝛼 =

𝑑

ℎ
                (5.18 a, b, c, d) 

where t = width of the hinge in the direction normal to the paper; and d = depth of the 

fictitious crack, h and s are the height and width of the hinge, respectively (Figure 5.9a)  

The hinge solution is expressed in terms of the normalized crack depth α and the 

normalized moment µ as functions of the normalized hinge deformation 𝜃 and the 

normalized normal force ρ. 

The pre-peak elastic behaviour of the hinge is described by αh =0 and µ = 𝜃, where  0 ≤ 

𝜃≤ 1- ρ, and where the onset of cracking is given by 𝜃=1- ρ. The solutions covering 

each of the cracked Phases I, II, and III are given in Table 5.6 
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5.5.4 Three-Point Bend Beam Application 

The three-point bend beam is a simply supported beam with a span length L, loaded at 

midspan by a transverse concentrated load of magnitude P. The nonlinear cracked hinge 

is incorporated into the notched beam at mid-span, and the load-deflection and load-

CMOD relationships of the beam are established depending on the position of the 

fictitious crack along the depth of the beam.  

The mid-span deflection, v, of the beam may be determined as the sum of the elastic 

beam deflection, ve and the deflection due to the crack, vc. The non-dimensional mid-

span deflection, δ, is introduced by the normalisation 

𝛿 =
2𝑣

𝐿
 
ℎ𝐸

𝑠𝑓𝑡
=

2𝑣

𝐿
 
𝜃

𝜑
                                                                             (5.19) 

 

where  𝜃 is the normalized angular hinge rotation  𝜑 ( Figure 5.9b) (Equation 5.18c), L 

is the clear span, h and s are the height and width of the hinge,  respectively as explained 

in the previous section. The normalised elastic deflection may be found from the 

normalised bending moment, which in turn is related to the normalised hinge rotation: 

 

𝛿𝑒 =
𝐿

3𝑠
 𝜇(𝜃)                                                                                            (5.20) 

 

where 𝜇(𝜃)  is the normalized bending moment M at mid-span (Equation 5.18 a) 

The deformation of the hinge is the sum of elastic deformation of the hinge and 

deformation due to the crack. The normalized deformation due to the crack only θc is 

found by subtracting the normalized elastic deformation θe from the total deformation 

of the hinge θ. The normalized elastic deformation of the hinge is given by θe = 𝜇(𝜃). 

Now, since the normalized deflection due to hinge deformation is equal to the 
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normalized hinge deformation θ, the normalized deflection due to the crack δc is given 

by: 

𝛿𝐶 = 𝜃𝐶 = 𝜃 − 𝜇(𝜃)                                                                                       (5.21) 

 

The total normalized mid-span deflection may then be found from: 

 

𝛿 = 𝛿𝑒 + 𝛿𝐶 = 𝜃 + (
𝐿

3𝑠
− 1)𝜇(𝜃)                                                               (5.22) 

 

The central load on the beam is related to the normalized moment through: 

 

𝑃(𝜃) =
2

3
 
𝑓𝑡ℎ

2𝑡

𝐿
  𝜇(𝜃)                                                                                      (5.23) 

 

 

The prediction of the load-deflection curve requires knowledge of the bilinear softening 

diagram, as well as the position of the fictitious crack along the depth of the beam 

because the relevant expression for the normalized moment μ(θ) depends on this 

position. The axial load and bending moment are related to the hinge rotation in three 

phases depending on the position of the fictitious crack (Figure 5.11) ahead of the real 

notch; (i) the fictitious crack is entirely on the first branch of the bilinear softening 

diagram; (ii) it is partly on the first and partly on the second branches, and (iii) it is 

entirely on the second branch.  The full analytical expressions relating the hinge rotation 

to the bending moment in each of these three phases and in turn to the applied central 

load on the beam (Equation 5.23) are given in Appendix A. 
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5.5.5 Test Results 

The unknown parameters of the bi-linear stress-crack opening diagram, e.g. w1, 𝑤2, ft 

and σ1/ ft  or a1, a2, ft and σ1/ ft are identified in an inverse manner by minimizing the 

root mean square error between the recorded and predicted load-CMOD or the load-

deflection diagram at many values of the applied central load. This is generally possible 

for all plain and conventional fibre-reinforced concrete mixes in which the load-CMOD 

and load-deflection diagrams can be recorded almost until the load has dropped to zero 

within the limits of measurement of the CMOD gauge (about 3.5 mm) or LVDT (can 

be up to 50 mm). For UHPFRC of the strain-hardening type though the inverse 

identification procedure can be applied only to the load-deflection plot which can be 

recorded to very large deflection values, but not to the load-CMOD record which is 

restricted by the range of CMOD gauge to almost only the pre-peak response. 

Accordingly, the parameters of the bi-linear tension softening diagrams for both notches 

have been identified using the inverse identification procedure on the load-deflection 

plots recorded up to a deflection of 30 mm.  

It is assumed initially that ft = 0.65 fst (Neville, 1995), where fst is the split cylinder 

strength.  

Moreover, as is common in fibre-reinforced concrete the critical crack opening w2 when 

the stress-transfer capacity is exhausted is assumed to be related to the length of the 

fibre. In other words, the stress-transfer capacity across a crack is assumed to be 

exhausted when the crack mouth has opened to such an extent that the fibres no longer 

bridge across it. Usually, this critical crack mouth opening to assumed to be less than 

one-half the fibre length, i.e. < 15 mm (Lange-Kombak  and Karihaloo, 1997).  
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The parameters so identified are tabulated in Table 5.7 and shown in Figure 5.12. The 

recorded and predicted load-deflection curves for notch-to-depth ratios 0.1 and 0.6 are 

shown in Figure 5.13. The error shown in Table 5.7 is obtained by calculating the 

difference between the measured size-dependent fracture energy (𝐺𝑓) and that given by 

the area under the stress-crack opening diagram for each notch depth (Figure 5.10) 

𝐺𝑓 =
1

2
 𝑓𝑡 (𝑤1 +

𝜎1

𝑓𝑡
 𝑤2)                                                                                                      (5.24) 

 

An additional check on the accuracy of the parameters of the bi-linear stress-crack 

opening relation is provided by predicting the load-CMOD plot and comparing it with 

the restricted recorded plot. This is done in Figure 5.14 for one notch-to-depth ratio 

(a/W = 0.1), from which it can be concluded that the identified parameters for this notch-

to-depth ratio are accurate. 

The assumption that the response of the non-linear hinge is linear elastic up to the peak 

load implies that the pre-peak non-linear strain-hardening cannot be captured by the 

hinge model (Figures 5.13 and 5.14). This pre-peak non-linearity is known to be a result 

of diffuse micro-cracking whose density increases as the load is increased from the 

linear elastic proportional limit to the peak load. It can be captured by considering the 

effect of micro-cracks on the reduction in the stiffness using the micromechanical 

formulation of Budiansky and O’Connell (1976).   

The parameters of the tension softening curves obtained using the non-linear hinge 

model correspond to the measured Gf (0.1) and Gf (0.6), but not to GF.                                                                                               

Abdalla and Karihaloo (2004) proposed a simple method for the determination of the 

bi-linear softening diagram corresponding to the size-independent GF of concrete mix 

by scaling the average parameters of the tension softening diagrams corresponding to 
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the size-dependent fracture energies Gf (0.1) and Gf (0.6) (Table 5.7). This scaling 

procedure was followed in this work, giving the parameters reported in the last row of 

Table 5.7. The corresponding tension-softening diagram is also shown in Figure 5.12. 

 

 

Table 5.7  Bi-linear tension softening diagram parameters corresponding to 𝑎/𝑊=0.1 and 0.6 and 

the size-independent GF 

 

 

 

 

 

 

 

 

Figure 5.12 Bi-linear stress-crack opening relationships corresponding to 𝑎/𝑊=0.6, 0.1 and GF 
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a2 
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b2 

w1 

(mm) 

w2 

(mm) 
σ1/ ft ft (MPa) 

Percentage    

Difference 

(%) 

a/W = 0.6 0.256 0.11 0.63 2.5 5.8 0.36 10.44 5.8 
         

a/W = 0.1 0.16 0.07 0.59 4.55 8.43 0.27 9.54 7.4 
         

GF 0.18 0.09 0.66 3.76 7.38 0.324 12.02  
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Figure 5.13 Predicted and recorded load-deflection curves for 𝑎/𝑊=0.1 and 0.6 

 

  

 

Figure 5.14 Predicted and recorded load-CMOD curves for 𝑎/𝑊= 0.1 
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It should be mentioned that, as expected,  the direct tensile strength of the UHPFRC is 

less than that of the original CARDIFRC Mix II (12.02 MPa in contrast to 15 MPa). 

This is because of the absence of short steel fibres (6 mm long, 4.5% by volume) in the 

UHPFRC. 

 

5.6 Concluding Remarks 

➢ A self-compacting UHPFRC based on CARDIFRC Mix II was developed and 

fully characterised from both the mechanical and fracture points of view. As 

expected, the resulting UHPFRC has inferior compressive, tensile and flexural 

strengths than the original CARDIFRC Mix II. This is due to the absence of thin 

small brass-coated steel fibres (4.5% by volume; 6 mm long) in the UHPFRC. 

The UHPFRC is however much tougher thanks to the use of a larger volume 

fraction (2.5% against 1.5%) of longer steel fibres (30 mm against 13 mm). 

➢ An inverse approach based on the non-linear hinge model for crack growth from 

a pre-existing notch was used to identify the parameters of the bi-linear stress-

crack opening relation of the UHPFRC.  

➢ The load-deflection and load-CMOD curves of notched beams predicted using 

the bi-linear stress-crack opening relations were shown to be in very good 

agreement with the recorded experimental results, except in the pre-peak non-

linear region. 
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6.1 Introduction 

Fatigue is recognized to be responsible for the majority of failure of concrete structures 

subjected to repeated loading. The fatigue strength (i.e. endurance limit) of concrete is 

defined as the fraction of the static strength that it can support repeatedly for a given 

number of cycles (ACI 215R-74). The heterogeneity of concrete and the excessive 

micro-cracking within the material due to exposure to repeated loading leads to its 

degradation and results in a steady decrease in the stiffness of the material, which may 

eventually lead to fatigue failure under very low load amplitude (Hsu, 1981). In this 

Chapter, we will investigate the flexural fatigue behaviour of the self-compacting 

UHPFRC whose mechanical and fracture properties were described in Chapter 5. 

    The addition of fibres to the concrete increases the deformation at failure and to an 

improvement of fatigue life of concrete (Cachima et al., 2002). However, the addition 

of fibres to concrete has a dual effect on the fatigue performance of concrete. On the 

one hand, they increase the fatigue life of concrete by bridging the cracks and thus 

retarding their growth. However, on the other, they may become the source of additional 

defects if not properly and evenly distributed in the concrete matrix (Nicolaides, 2004; 

Farhat et al., 2007; Nicolaides et al., 2010).   

    Different methods have been employed in the fatigue life assessment of plain and 

fibre-reinforced concrete under tensile cyclic or compressive cyclic loading (Goel and 

Singh, 2014; Korte et al., 2014; Makita and Bruhwiler, 2014a; Medeiros et al., 2015; 

Parvez and Foster, 2014; Choi et al., 2016; Chen et al., 2017; Li et al., 2016; Muller and 

Mechtcherine, 2017). The most common approach to quantify the fatigue behaviour of 

concrete is the stress-life, S–N, method, and the mean fatigue life of concrete under 

given constant-amplitude cyclic stress can be predicted by the S-N curve (Oh, 1986; 

Xiao et al., 2013; Goel and Singh, 2014). For this method, samples are load cycled at a 



 

 Flexural fatigue behaviour of a self-compacting ultra-high performance fibre-reinforced concrete  Chapter Six 

 

130 

 

variety of constant amplitude stress ranges until failure, resulting in the stress-life plots 

of stress range versus number of cycles to failure. There is however no information 

available on the flexural fatigue behaviour of ultra-high performance fibre-reinforced 

concrete (UHPFRC). 

    In this chapter, the flexural fatigue behaviour of this UHPFRC is reported in terms of 

its S-N curve, the change in compliance under cycling and the effect of cyclic loading 

with non-zero mean stress. It is found that the distribution of fibres plays a crucial role 

in the fatigue life of UHPFRC. Uniform distribution of fibres ensures that the material 

has very high fatigue endurance limit - more than 80% of its static flexural strength 

(24.36 MPa) - but this limit reduces significantly to approximately 64% of the 

corresponding lower static strength (22.02 MPa) if the distribution is non-uniform with 

regions of few or no fibres. The bulk of the work reported here has been published in 

Al-Azzawi and Karihaloo (2017b). 

 

6-2 A Self-Compacting Ultra-High-Performance Fibre-Reinforced 

Concrete (UHPFRC): Materials and Mix Preparation  

The details of the process of conversion of the original vibrated Mix II to a self-

compacting UHPFRC may be found in Chapter Five. Here only a brief account is given 

of how the thin slab specimens for fatigue testing were cast and cured. The choice of 

the thin specimens was dictated by the intended structural application of this material 

for retrofitting of RC beams subjected to cyclic loading. The thickness of the specimens 

(35 mm) is therefore just over one fibre length (30 mm) ensuring that the fibres will be 

preferentially oriented along the length of the specimen. From the flexural application 

point of view this is the most desired orientation of fibres (Ferrara et al., 2011; Orbe et 
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al., 2012). It should be mentioned that in a self-compacting UHPFRC the randomly 

distributed fibres in the mix reorient themselves with the direction of flow (i.e. along 

the length of the specimen) (Deeb et al., 2014). Moreover, as the mix requires no 

external vibration for compaction the wall effect on the fibre distribution produced by 

the formwork is minimal, if not altogether absent.  

    The mix was prepared in a pan mixer using the mix proportions given in Chapter five 

(Table 5.1). The quantity of mix prepared was calculated based on the volume of 

required specimens. The mixing followed the procedure recommended in (Benson and 

Karihaloo 2005a) by adding the finest constituent to the coarsest one (details can be 

found in Chapter five, Section 5.3.1). 

    The mix was poured into a steel mould partitioned for two 1030x100x35mm slab 

specimens with a scoop (Figure 6.1). The self-compactibility of the mix ensures that the 

mix flows and fills the entire mould without external vibration. The surface of the mould 

was finished with a trowel. The slabs were demoulded 24 hours after casting and cured 

in a heated water tank for 9 days (for details, see Chapter five, Section 5.3.3). 
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    The slabs were air dried prior to testing. Each slab was cut with a diamond saw to 

give three 340x100x35 mm specimens. As mentioned above, the self-compactibility of 

the mix ensures that the mix flows as a homogeneous mass without segregation of the 

heavier particles or fibres and fills the entire mould without external vibration, so that 

all three specimens are expected to be nearly identical as far as the fibre distribution is 

concerned. 

 

6-3 Three-Point Flexural Test on 340x100x35mm Specimens 

The determination of the fatigue life by three point bend tests on un-notched specimens 

requires the knowledge of the monotonic three-point flexural strength of the material. 

To determine this strength three-point bend test was carried out on four 340x100x35 

mm specimens simply supported over a span of 300 mm. The static 3-point bend load 

central deflection plots are shown in Figure 6.2 and the resulting mean 3-point flexural 

strength is given in Table 6.1.  

Figure 6.1 Steel mould for casting two slabs 
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Figure 6.2 The static 3-point bend load-central deflection for four samples (340x100x35mm) 

 

Table 6.1 Three-point flexural strength of UHPFRC based on vibrated  Mix-II 

 

 

 

 

 

6.4 Flexural Fatigue Tests on 340x100x35mm Specimens 

The fatigue test was carried out in three-point bending in a stiff testing frame, fitted 

with a 20 kN dynamic-static actuator. The central deflection was measured by a single 

linearly varying displacement transducer (LVDT) placed underneath the specimen at its 

mid-span. 

    The specimen was simply supported over a span of 300 mm. To prevent it from 

moving laterally during the cyclic load application special mechanical stops in the form 

of a rod with a wider circular head were positioned in line with the simple supports on 

either side of the specimen.  The circular heads of the mechanical stops did not actually 

Sample 
No. 

Failure 3-point flexural 

load(kN) strength (MPa) 

1 5.67 20.17 

2 5.67 20.17 

3 6.96 24.76 

4 6.46 22.98 

Mean 6.19 22.02 
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touch the specimen (there is a gap of 2 mm) unless it moved laterally from its original 

position (see photo of test set up in Figure 6.3).  The actuator was connected to a digital 

feedback controller. In addition, a bridge/transducer amplifier was used and connected 

to the controller to amplify and adjust the signal from the LVDT and to convert it to a 

mechanical reading in mm. 

    Four measurements were recorded on each specimen: (1) the cyclic load; (2) the 

central deflection; (3) the time; and (4) the number of cycles. The test was carried out 

with the sinusoidal load varying between two limits.  The minimum load level 

corresponded to 9.69% of the monotonic static three-point bend strength (22.02MPa) 

and the maximum load level corresponded to 64.62%, 72.70% or 88.85% of the 

monotonic strength. Before the cyclic load was applied, the specimen was loaded and 

unloaded three times between 0.6 kN and 3 kN (corresponding to approximately 50% 

of the monotonic flexural failure load, Table 6.1) in order to eliminate any slack in the 

machine-specimen testing system. The frequency of cyclic loading used was 5 Hz. The 

test was stopped after the specimen failure or after one million cycles, whichever 

occurred first. 

    The choice of the frequency was made bearing in mind the time required for the test 

beam to reach one million cycles (it should not be excessively long) and the avoidance 

of side effects. Thus lower frequencies were not chosen in order to complete the test in 

a reasonable time (56 h for one million cycles at 5 Hz), whereas higher frequencies were 

not chosen to minimise inertial effects. The choice of the frequency meant that the last 

specimen was tested more than two weeks after the first specimen in the single testing 

machine. However, this difference in the age of the specimens is not expected to make 

a noticeable difference to their fatigue performance, just as it does not affect their 

flexural strength. 
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Figure 6.3 Photo of test set up, showing the specimen on simple supports and two mechanical 

stops. There are two more mechanical stops on the other side of the specimen 

 

6.5 Flexural Fatigue Test Results 

Tests have been performed in the sinusoidal load ranges between 0.6 – 4.0 kN, 0.6 – 4.5 

kN, and 0.6 – 5.5 kN, corresponding to 9.69 – 64.62%, 9.69 – 72.70% and 9.69 – 

88.85% of the static three-point flexural strength (Table 6.1). This meant that the mean 

stress level on the specimens during cyclic loading increased with the increase in the 

upper load limit, as shown in Table 6.2. This will have ramifications for the observed 

fatigue life of the material (see below). 

 

Table 6.2 Increase in the mean stress level with increasing upper limit load 

 

 

 

 

Upper Stress 

limit (%) 

Mean Stress 

(MPa) 

64.62 8.18 

72.70 9.07 

88.85 10.85 
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    Table 6.3 gives the number of cycles sustained by each test specimen. Absence of an 

entry points to a malfunction in the equipment.  The three specimens that were cycled 

to 64.62% of the static three-point strength sustained one million cycles without failure 

(one specimen even sustained two million cycles although some minute cracks were 

noticed on the tension surface of this specimen). The fatigue life decreased as the 

applied upper load level increased.  

 

Table 6.3  Number of cycles sustained by UHPFRC 340x100x35mm specimens 

 

   The logarithm of the fatigue life and the logarithm of the stress range normalised by 

the static three-point flexural strength are plotted in Figure 4 and tabulated in Table 6.4. 

It can be concluded that the endurance limit of the test material is around 64% of its 

static three point flexural strength (Figure 6.4) at a mean stress level of 37.1% of this 

strength (see Table 6.5 below). This figure also shows the fatigue life at zero mean stress 

cyclic loading. This has not been measured experimentally but has been estimated by 

using the Goodman rule, as will be explained below. 

Stress 

amplitude range 

(%) 

Load amplitude 

range (kN) 

Fatigue Life (cycles) 

N1 N2 
N3 

9.69 – 64.62  0.6 – 4.0 >1000000 >1000000 >2000000 

9.69 – 72.70  0.6 – 4.5 99000 87600 --------- 

9.69 – 88.85  0.6 – 5.5 25200 5400 --------- 
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Figure 6.4 Fatigue life against stress range (logarithmic scale) 

 

Table 6.4 Logarithm of fatigue life (𝑵𝒇) and logarithm of stress range normalized by the static 

three-point flexural strength 

Sample 

No. 

Upper stress Log of Life Log of Stress range/ 

limit % Cycles(𝑁𝑓) Flexural strength 

1 64.62 6.00 -0.26 

2 64.62 6.00 -0.26 

3 64.62 6.00 -0.26 

4 72.70 5.00 -0.20 

5 72.70 4.94 -0.20 

6 88.85 4.40 -0.10 

8 88.85 3.73 -0.10 

 

    Several empirical models exist relating the high cycle fatigue life of un-cracked 

structures to the applied cyclic stress range. Of these, the Basquin Law is the most 

common  

∆𝜎𝑁𝑓
𝑎 = 𝑐1                                                                                                (6-1) 

where ∆𝜎 is the stress range (with zero mean stress), 𝑁𝑓  is the number of cycles to 

failure and 𝑎 and 𝑐1 are constants to be determined from tests. From our tests, the 

equation that best fits the experimental data gives (Table 6.4)  

R² = 0.9255
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  57.113
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F

N



                                                                                      (6-2) 

where  𝜎𝐹 = 22.02 MPa (Table 6.1).  

    It should be stressed however that Basquin’s law assumes that the stress range has a 

zero mean stress. In other words, the applied cyclic load is fully reversed. As pointed 

out above, in the tests reported here, the cyclic load had a non-zero mean value which 

increased as the upper limit of the cyclic load increased (Table 6.2). A non-zero mean 

stress reduces the fatigue life. As a result, the Basquin law (6-2) can be regarded to give 

a lower bound on the fatigue life of our test material. The actual fatigue life of the 

material at a given stress range with zero mean stress will be well in excess of that 

predicted by the Basquin law (6-2). To get an idea of how much the fatigue life is 

influenced by non-zero mean stress, we resort to the Goodman rule  

∆𝜎𝜎𝑚 = ∆𝜎0 (1 −
|𝜎𝑚|

𝜎𝐹
)                                                                                  (6-3) 

where ∆𝜎0 is the cyclic stress range with zero mean stress, ∆𝜎𝜎𝑚  is the cyclic stress 

range with non-zero mean stress, |𝜎𝑚|  is the absolute value of the mean stress and  𝜎𝐹 

is the static flexural strength.  

    The Goodman rule will be used in an inverse manner to calculate the stress range 

with zero mean stress ∆𝜎0 from equation (6-3) corresponding to the actual cyclic stress 

range with non-zero mean stress ∆𝜎𝜎𝑚  used in the tests. The results are given in Table 

6.5. A comparison of  ∆𝜎𝜎𝑚/𝜎𝐹 with ∆𝜎0/𝜎𝐹  shows that the fatigue life under cyclic 

stress range with non-zero mean stress is akin to fatigue life under a much larger cyclic 

stress range with zero mean stress. For example, Nf under ∆𝜎𝜎𝑚/𝜎𝐹 = 0.55 would 

materialise under ∆𝜎0/𝜎𝐹  = 0.87. In fact, Nf under ∆𝜎𝜎𝑚/𝜎𝐹 = 0.63 or 0.79 would 

materialise under ∆𝜎0/𝜎𝐹  = 1.07 or 1.56 which are impossible. The point of this 
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calculation was to demonstrate the fact that cyclic loading with non-zero mean leads to 

a significant reduction in the fatigue life of a material compared to fully reversed cyclic 

loading (Figure 6.4). 

  

Table.6 5 Stress range with zero mean stress corresponding to stress range with non-zero mean 

stress according to Goodman’s Rule 

 

6.6 Variation of Compliance of Fatigue Specimens  

The compliance of a three-point bend test specimen is defined as the ratio of central 

displacement in mid-span load to the cyclic applied load and is expressed in mm/kN. 

Under cyclic loading, the compliance can increase with time, if the material sustains 

internal or surface damage, e.g. micro-cracking. If there is no damage then the 

compliance should remain constant. 

The recorded load-deflection plots under cyclic loading for the specimens are shown in 

Appendix B. 

The compliance of fatigue specimens was calculated from the corrected recorded load-

central displacement traces. These recordings were made every minute, i.e. every 300 

cycles. Figures 6.5-6.7 illustrate the variation of the compliance of specimens with the 

number of cycles.  

    It is clear from Figure 6.5 that the compliance of UHPFRC specimen with the number 

of cycles in the load range 9.69 – 64.62% of the three-point flexural strength is 

Upper 
stress 

limit % 

Upper 
Stress 
(MPa) 

Lower 
stress 
(MPa) 

Stress range / 
Flexural  
strength 

(∆𝜎𝜎𝑚/𝜎𝐹) 

Mean 
Stress 

𝜎𝑚 (MPa) 

(𝜎𝑚/𝜎𝐹) (∆𝜎0/𝜎𝐹) 
log 

(∆𝜎0/𝜎𝐹) 

64.62 14.23 2.13 0.55 8.18 0.371 0.87 -0.06 

72.70 16.01 2.13 0.63 9.07 0.412 1.07 0.03 

88.85 19.56 2.13 0.79 10.85 0.493 1.56 0.19 
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practically unchanged up to one million cycles. The slight increase in compliance may 

be an indication of minor internal micro-cracking. 

    At higher cyclic load ranges (Figures 6.6 and 6.7), the specimens suffer progressive 

damage, initially almost linearly but then exponentially before failure. The variability 

in the number of cycles to failure at the same cyclic load range is no doubt due to the 

presence of an initial defect in the material, for example a zone with few or no fibres. 

 

Figure 6.5 Variation of the compliance of the 340x100x35 mm UHPFRC specimen with the 

number of cycles in the load range 9.69 – 64.62% of the three-point flexural strength 

 

 

Figure 6.6 Variation of the compliance of the 340x100x35 mm UHPFRC specimens with the 

number of cycles in the load range 9.69 – 72.70% of the three-point flexural strength 
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Figure 6.7 Variation of the compliance of the 340x100x35 mm UHPFRC specimens with the 

number of cycles in the load range 9.69 – 88.85% of the three-point flexural strength 

 

    The low fatigue life at intermediate cyclic load range 0.6 – 4.5 kN (Table 6.3) was 

unexpected because the upper load limit was within the elastic range of the material (see 

Figure 6.2). However, it was noticeable from Figure 6.2 that there was a large scatter in 

the post-peak response of the specimens tested in static three-point bending. This was 

thought to be a result of poor distribution of fibres in the specimens. Examination of the 

failure surfaces of the specimens confirmed this suspicion, in that the fibres were poorly 

distributed in the mix with regions of low or no fibres, highlighted in white in Figure 

6.8.  This was no doubt a result of the fact that the mix prepared in the pan mixer lacked 

self-compactabilty, i.e. flowing and filling ability, so that it did not flow as a 

homogeneous mass in the mould, as a self-compacting mix should.  

It is important to note in this context that a self-compacting mix is far more sensitive to 

variations in temperature and humidity than a vibrated mix. For this reason, it is 

necessary to perform at least the slump flow test on the mix on the day of its preparation 

and to adjust the dosage of superplasticizer, if necessary, to ensure that it flows as a 

homogeneous mass without any segregation of the ingredients. It is a mistake to 

presume that a mix that has met the flowing, filling ability, and homogeneity self-

compacting criteria on a certain day will automatically meet these criteria on a different 
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day because the temperature and humidity on that day may be different. This was the 

case with the mix used to make the slab specimens tested under static and cyclic loading, 

reported above. The mix was not tested for self-compatibility on the day of its 

preparation, but it was presumed to be so based on successful self- compactabilty tests 

performed on the same mix several days previously (see results of slump spread and t500 

reported in last two rows of Table 5.1 in Chapter Five).   
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Figure 6.8 Poor distribution of steel fibres  
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6.7 Repeated Three-Point Flexural Fatigue and Static Tests  

Accordingly, a second batch of the mix was prepared in the pan mixer and specimens 

were cast anew in the same way as described above (see Section 6.2 “Materials and mix 

preparation”). It was ensured that the mix had the required flow-ability and non-

segregation property by performing a slump flow test on the mix on the day of its 

preparation as self-compacting concrete is sensitive to temperature and relative 

humidity. The specimens were cured and prepared for testing in the same manner as 

described above. Flexural fatigue tests were performed first in the same sinusoidal load 

ranges 0.6 – 4.0 kN, 0.6 – 4.5 kN and 0.6 – 5.5 kN, as before, and additionally in the 

load range 0.6 – 5.0 kN. Table 6.6 gives the number of cycles sustained by each test 

specimen. Seven specimens were tested; two for each load range, except the lowest load 

range for which only one specimen was tested.  All specimens sustained one million 

cycles without failure (although some hairline cracks were noticed on the tension 

surface of some specimens). The cyclic load-central deflection traces of the specimens 

were recorded every minute, i.e. every 300 cycles, as before from which the compliance 

of the specimens was calculated. 

The compliance vs number of cycles plots are shown in Figures 6.9 — 6.12. The recorded 

load-deflection plots under cyclic loading for the specimens are shown in Appendix B. 

Table 6.6  Number of cycles sustained by UHPFRC 340x100x35mm specimens from the second 

batch 

 

 

 

 

 

Load amplitude range 

(kN) 

Fatigue Life (cycles) 

N1 N2 

 0.6 – 4.0 >1000000 ------------ 

 0.6 – 4.5 >1000000 >1000000 

 0.6 – 5.0 >1000000 >1000000 

 0.6 – 5.5 >1000000 >1000000 
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Figure 6.9 Compliance of the 340x100x35 mm UHPFRC specimen with the number of cycles 

from the second batch under the load range 0.6 – 4.0 kN 

 

Figure 6.10 Compliance of the 340x100x35 mm UHPFRC specimen with the number of cycles 

from the second batch under the load range 0.6 – 4.5 kN 

Figure 6.11 Compliance of the 340x100x35 mm UHPFRC specimen with the number of cycles 

from the second batch under the load range 0.6 – 5 kN 
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Figure 6.12 Compliance of the 340x100x35 mm UHPFRC specimen with the number of cycles 

from the second batch under the load range 0.6 – 5.5 kN 

 

      As all the specimens were still intact after sustaining one million load cycles, four 

of them were tested in static three-point bending. The results are given in Table 6.7. The 

recorded load-central deflection plots are shown in Figure 6.13.  

    A comparison of entries in Tables 6.1 and 6.7 shows that the static three-point 

flexural strength of the specimens from the second batch of UHPFRC is approximately 

10% higher than that of the specimens from the first batch. More importantly, there is 

much less scatter in their post peak response (compare Figure 6.13 with Figure 6.2) 

suggesting a good distribution of fibres. This was indeed confirmed by an examination 

of the failure surfaces (Figure 6.14). 

Table 6.7 Three-point flexural strength of UHPFRC specimens of the second batch 

 

 

 

 

 

 

 

Sample 

No. 

Failure 3-point flexural 

Load (kN) strength (MPa) 

1 7.34 26.11 

2 7.35 26.14 

3 6.27 22.30 

4 6.43 22.87 

Mean 6.85 24.36 
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Figure 6.13 The static 3-point bend load-central deflection for four samples (340x100x35mm) 

from the second batch 

 

Figure 6.14 Good distribution of fibres in the failure sections 
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    Knowing the three-point static flexural strength of the second mix (Table 6.7), the 

cyclic load range (Table 6.6) can be converted into a stress range and expressed as a 

percentage of the static flexural strength. This is reported in Table 6.8, which also shows 

the increase in mean stress with increasing upper limit stress. Notwithstanding the fact 

that the maximum upper stress level as a fraction of the static flexural strength 

experienced by specimens from the second batch under fatigue loading was smaller 

(80.29%; Table 6.8) than by specimens from the first batch (88.85%, Table 6.3), the 

marked improvement in the fatigue response of the former is primarily because of the 

good distribution of fibres in the mix. That all the specimens withstood at least a million 

cycles of loading without failure is not surprising because even at the maximum upper 

load level of 5.5 kN (maximum upper stress level of 80.29%) the material response is 

still mostly linear (Figure 6.13) so that there is very little accumulation of damage. This 

is borne out by the evolution of the compliance of the specimens (Figures 6.9 — 6.12) 

that shows a very marginal increase in the compliance up to one million cycles.  

    Thus, if the flexural fatigue life of the UHPFRC is chosen to be one million cycles, 

then it can be concluded that its flexural fatigue endurance limit is at least 80% of its 

static flexural strength (24.36 MPa) at a mean stress of 10.85 MPa (44.5%). This can be 

regarded as the lower bound of the flexural fatigue life, because as shown above the 

flexural fatigue life under zero mean stress will be substantially longer.  

Table 6.8. Increase in the mean stress level with increasing upper limit load 

 

 

 

Load amplitude range 
(kN) 

Stress amplitude range 
(%) 

Mean Stress 
(MPa) 

 0.6 –  4.0 8.76 – 58.39 8.18 

 0.6 –  4.5 8.76 – 65.69 9.07 

 0.6 – 5.0 8.76 – 72.99 9.96 

 0.6 –  5.5 8.76 – 80.29 10.85 
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6.8 Estimation of the Number of Cycles Until Failure 

    The choice of the frequency was made taking in consideration the time required for 

the test specimen to reach one million cycles. The test was stopped if the specimen 

sustained one million cycles without failure. This does not mean that the fatigue life of 

the material is just one million cycles. 

    In order to have some idea of what is the fatigue life under a given cyclic load range, 

it may be for instance be assumed that the material is deemed to have failed when its 

compliance has doubled, i.e., its stiffness has reduced to half its pre-loading level. 

    For this, we can use the variation in the compliance of the specimens to predict the 

fatigue life for each specimen. Therefore, the predicted number of cycles was acquired 

using the initial compliance for each specimen and the rate of change of the compliance 

with the number of cycles (Figures 6.5 — 6.7 and 6.9 — 6.12): 

 ∫ 𝑑𝑐
2𝑐𝑖
𝑐𝑖

=   R ∫ 𝑑𝑁
𝑁𝑝𝑓
0

                                                                           (6-4) 

Then the predicted number of cycles: 

𝑁𝑝𝑓 =
𝐶𝑖 

𝑅
                                                                                                       (6-5) 

where Ci  is the initial compliance, R is the rate of change of compliance to the number 

of cycles and Npf  is the predicted number of cycles until failure. 

The predicted number of cycles for each specimen with the stress range is tabulated in 

Table 6.9 and 6.10 for the mixes with poor and good fibre distribution.  

    Tables 6.9 shows that the predicted number of cycles for the first batch (poor fibre 

distribution) is more than what was recorded during the test for specimens sustained 
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one million cycles up to the maximum load amplitude of 4.0 kN, i.e. approximately 

64.62% of the ultimate static three-point flexural load of 6.19 kN. 

Similarly, Table 6.10 shows that the predicted number of cycles to failure for the second 

batch (good fibre distribution) is also well above that recorded during the test up to the 

maximum load amplitude of 5.0 kN, i.e. approximately 73% of the ultimate static 

flexural load of 6.85 kN.   

Therefore, it can be concluded that these specimens (when fibres are uniformly 

distributed) can sustain more than one million cycles under maximum load amplitude 

5.0kN (about 73% from its ultimate static flexural load 6.85 kN), and even three million 

cycles under maximum load amplitude 4.0kN (about 58% from its ultimate static 

flexural load 6.85 kN).     

Table 6.9 Predicted number of cycles with load amplitude range for mix with poor fibre 

distribution 

 

 

 

 

 

 

 

Table 6.10 Predicted number of cycles with load amplitude range for mix with good fibre 

distribution 

 

 

 

 

* For some unknown reasons, the actual number of cycles in this load range according to this method of 

calculation worked out to be even larger than that in the load range 0.6 – 4.0 kN, which cannot be correct. 

Therefore, the number of cycles shown is the lower bound of 106.  

 

Load amplitude range 
(kN) 

No of Cycles 
Npf 

0.6 –  4.0 2614962 

0.6 –  4.5 93300 

0.6 –  5.5 15300 

Load amplitude range 
(kN) 

No of Cycles 
Npf 

0.6 –  4.0 2976485 

0.6 –  4.5 1410771 

0.6 – 5.0 1389938 

0.6 – 5.5 1000000* 
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6.9 Concluding Remarks 

➢ The fatigue life of the self-compacting ultra-high performance fibre-

reinforced concrete based on an earlier vibrated mix is well in excess of one 

million cycles and its endurance limit is around 80% of its static three-point 

flexural strength (24.36 MPa), i.e. approximately 19 MPa,  at a mean stress 

level of the cyclic loading of 44.5% of this strength (10.85 MPa) .  

➢ A vital role in the fatigue performance is played by the distribution of fibres; 

uniform distribution of fibres ensures that the material has the above high 

fatigue endurance limit but this limit reduces crucially to approximately 64% 

of the corresponding lower static three-point flexural strength (22.02 MPa), 

i.e. approximately to 14 MPa at a mean stress level of approximately 8 MPa, 

if the distribution is non-uniform with regions of few or no fibres. 

➢ To ensure that the fibres are uniformly distributed it is important that the 

UHPFRC meets all three self-compactibilty criteria of flow-ability, passing 

ability and non-segregation on the day it is manufactured because self-

compacting mixes are far more sensitive to changes in temperature and 

relative humidity than their vibrated counterparts.    

➢ An indication of the expected fatigue life under a given cyclic load range was 

obtained from the recorded variation in the compliance, since the tests were 

terminated at one million cycles.  
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7.1 Introduction 

    RILEM (1984) states that fatigue occurs in concrete due to the deterioration of the 

bond between the coarse aggregate and cement paste with the reduction of the section 

of the specimen. Alternatively, it happens simultaneously with the aforementioned one, 

due to the formation and diffusion of micro-cracks in the cement paste until macro-

cracks weaken the section and cannot withstand the applied load. 

    The strengthening of reinforced concrete structures is, and will continue to be, a 

relevant problem to accommodate for a load carrying capacity higher than the original 

design value. In the last decades, rapid progress has been made in the development of 

strengthening materials and technologies (Derkowski and Zych, 2004). 

    The earliest method used to strengthen concrete structure is by bonding steel plates 

to its surface. This method is simple to execute and results in only small changes in the 

size of the strengthened structure, but it has several drawbacks (Jones et al., 1988). 

Among these are, for example the corrosion of steel, deterioration of the bond at the 

glued steel–concrete interface, difficulty in the installation of heavy steel plates, and 

limitations in supplying steel plates of required length. 

    In a later method, fibre reinforced plastic (FRP) plates have been used. Extensive 

investigations have been performed using this technique (Nanni, 1995; Sen et al., 2000; 

Heffernan and Erki, 2004; Saikaly et al., 2014).  In contrast to the steel plates, the FRP 

has high strength to weight ratio, good chemical resistance, is easy to handle thus 

reducing the labour costs (Buyukozturk and Hearing, 1998; Bakis et al., 2002). 

However, long exposure to temperature variations and sunlight can weaken the bond 

between the FRP composite and concrete (Karbhari, 1998; Mei and Chung, 2000). 
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Furthermore, it has been shown that the concept of hybridization with two different 

fibres in normal cement matrix instead of single fibre offers more attractive engineering 

properties that may promote the traits acquired as a result of the use of a mono-fibre 

(Sharmila and Thirugnanam, 2013, Khan et al., 2017). 

    Another promising material that can be used to enhance the fatigue strength of 

reinforced concrete is the ultra-high performance fibre-reinforced concrete materials 

(UHPFRC). They possess eminent properties: relatively high compressive strength, 

high tensile strength, strain-hardening behaviour under tensile stress (given a certain 

volume of fibres) and very low permeability since an optimised dense matrix is used. 

Therefore, these properties make UHPFRC suitable for strengthening structural 

members that are subjected to severe mechanical and environmental actions (Makita 

and Brühwiler, 2014b, Li et al., 2017). 

    Several studies have previously been undertaken at Cardiff into the feasibility of 

using an UHPFRC material for the rehabilitation and strengthening of damaged RC 

flexural members [Karihaloo et al., 2000; Karihaloo et al., 2002; Alaee and Karihaloo, 

2003a; Alaee and Karihaloo, 2003b; Farhat et al., 2007; Farhat et al., 2010]. This 

material is however not cost-competitive because of the use of expensive brass-coated 

thin steel fibres. 

The aim of this chapter is to describe the performance of RC beams retrofitted with and 

without the self-compacting UHPFRC material under three-point bend static and cyclic 

loading. The mechanical and fracture properties (i.e. size-independent fracture energy and 

the corresponding bi-linear stress-crack opening relationship) of this UHPFRC material 

were reported in Chapter Five and its flexural fatigue performance in Chapter Six. 
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7.2 Control Beams 

7.2.1 Mixing and Casting 

A standard concrete mix (cement: fine aggregate: coarse aggregate: water in the ratio 

1:1.8:2.8:0.5) was used. The proportions of materials used are summarised in Table 7.1.  

    The Portland cement used was Type II Class 42.5 N. The fine aggregate used was 

dried sand sieved to remove any large pieces of shell or gravel. The coarse aggregate 

(crushed limestone) had a maximum size of 10 mm. 

    Due to the extensive use of this mix in the Concrete laboratory, Cardiff University, 

no fresh tests were performed on this mix, but the previously reported values (Alaee, 

2002) of the compressive strength and the split tensile strength (53.5 MPa and 4.4MPa, 

respectively) were adopted. 

    The mould was suitably prepared, the spacer block was inserted and the reinforcing 

bar (φ12 mm) for each of the two beams was placed (with a cover of 26mm from the 

bar centre to the tension face) on wooden support plates. To prevent leakage, the mould 

 

Table 7.1 Material proportions 

 

 

 

 

 

Constituents Mass (kg/m3) 

Cement 394 

Fine aggregate 709.3 

Coarse aggregate 1103.4 

Water 196.61 

w/c 0.5 
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sides were tightened and any gaps were filled with a sealant. The fresh concrete was 

then poured in layers using scoops, and to ensure adequate compaction and removal of 

entrapped air a poker vibrator was used. The top face was then finished with a plasterer's 

float. The beams were removed from the mould after one day and water cured at ambient 

temperature (20°C) for 28 days. 

 

 

Figure 7.1 Steel mould for casting two beams 

7.2.2 Three-point Static Flexural Test of Control RC beam  

   A control RC beam was tested under three-point loading over a span of 1000mm, 

taking care that the test beam is aligned as symmetrically as possible in the testing 

machine relative to the central load and supports. The rate of loading was 0.01mm/sec 

at the beginning of the test, but it was increased to 0.02mm/sec after passing the 

maximum load. The central deflection was measured by a single LVDT placed at its 

mid-span. Figure 7.2 shows the load- central deflection response of the control beam. 

When the load exceeded 5.5kN, the stiffness of the beam decreased but there were no 

cracks or damage observed with a naked eye at this stage. As the load was increased, 

hairline cracks appeared on the tension face of the beam near the mid-span and at a 
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quarter span from the support. Under further loading, these cracks diffused to the sides 

of the beam and began to grow towards the compressive zone. The crack that first 

appeared in the quarter span from the support started opening and propagated diagonally 

towards the loading point. Then a sudden failure occurred at 30.4kN. The failure of this 

beam occurred in mixed shear and flexural mode (Figure 7.3).  

 

Figure 7.2 Load- central deflection response of the control reinforced concrete beam 

 

Figure 7.3 Failure mode of the control RC beam 
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7.2.3 Three-Point Flexural Fatigue Test of Control RC beams 

Four beams were cast following the procedure for the control beam (Section Mixing 

and Casting). The beams were cured at ambient temperature (20°C) for 28 days.  

    The cyclic fatigue test was carried out in three-point bending in a stiff testing frame. 

The central deflection was measured by a single LVDT placed underneath the beam at 

its mid-span. The beam was simply supported over a span of 1000 mm. It was clamped 

at the supports to prevent lateral movement during the cyclic load application. 

    Four measurements were recorded on each beam: (1) the cyclic load range; (2) the 

central deflection; (3) the time; and (4) the number of cycles. Tests were performed in 

the sinusoidal load ranges between 1.5 – 5.5 kN, 1.5 – 12.5 kN, 1.5 – 19.5 kN and 1.5 

– 24.5kN corresponding to 4.93 – 18.1%, 4.93 – 41.12%, 4.93 – 64.14% and 4.93– 

80.59% of the static three-point failure load (30.4 kN). 

    Before the cyclic load was applied, the beam was loaded and unloaded three times 

between 0.6 kN and 3 kN in order to eliminate any slack in the machine-specimen 

testing system. The frequency of cyclic loading used was different for each beam 

according the applied load level. The test was stopped after the specimen failure or after 

one million cycles, whichever occurred first. 

 

7.2.3.1 Flexural Fatigue Test Results 

Table 7.2 gives the number of cycles sustained by each test beam. The first beam that 

was cycled at 5 Hz to 18.1% of the static three-point failure load sustained one million 

cycles without failure (not even minute cracks were noticed on the tension surface of 

this specimen). The second beam that was cycled at 4 Hz to 41.93% of the static three-
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point failure load also sustained one million cycles without failure but with some minor 

hairline cracks on the surface. The third beam was cycled at 3.5 Hz to 64.14% and fourth 

beam at 2.5 Hz to 80.59%. The reason for decreasing the frequency as the upper cyclic 

load level increased was to avoid any play in the machine-specimen testing system and 

to minimise inertial effects. The cyclic load-central deflection curves for tested samples 

can be seen in Appendix C. The failure mode crack patterns of the specimens are shown 

in Figures 7.4 – 7.7.  

    The beam with the upper cyclic load level 64.14% of the static flexural strength, 

sustained 596136 cycles and failed by the splitting of the steel rebar (Figure 7.6).  

Calculations showed that at this load level the stress in the steel rebar was 379.63MPa. 

The stress ratio used in this test was 4.93/64.14 =  

 

Table 7.2.  Number of cycles sustained by RC Beam (1200*150*100mm) 

 

0.077 and the stress range applied to the steel bar was 350MPa.  The supplier’s data 

sheet for this steel gave its fatigue life to be in excess of five million cycles at the cyclic 

stress range of 200 MPa and a stress ratio of 0.2. As the actual cyclic stress range was 

350 MPa, fatigue failure of the steel rebar led to the failure of the RC beam.  

Load 

Amplitude Range (%) 
Stress Ratio 

Load Amplitude 

Range (kN) 

Fatigue Life 

(cycles) 

4.93% – 18.10% 0.272 1.5 - 5.5 >1000000 

4.93 % – 41.12% 0.120 1.5 - 12.5 >1000000 

4.93% – 64.14% 0.077 1.5 - 19.5 596136 

4.93% – 80.59% 0.061 1.5 - 24.5 11458 
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    The maximum service level stress range for straight deformed reinforcing bars 

according to ACI 215-74 (1992) is: 

𝑆𝑟 = 161 −  0.33𝑆𝑚𝑖𝑛                                                                                                                (7.1) 

where Sr  is the stress range in MPa and Smin  is the magnitude of the minimum stress in 

MPa. In the above beam, this gives the maximum service level stress range to be just 

151.4 MPa. In addition, Helgason and Hanson (1974) performed a statistical analysis 

of test data from deformed bars tested under axial cyclic loading in air. They concluded 

that the lowest average stress range on reinforcing steel that causes fatigue failure is 165 

MPa and it is related to the fatigue life as follows 

log(𝑁) = 6.969 −  0.0055𝜎𝑟                                                                                                       (7.2) 

where N = number of cycles to failure; and σr = stress range applied to the steel in MPa.  

    By using equation (7.2), the number of cycles to failure for the beam loaded to 

64.14% in which the reinforcement failed by fatigue works out to be 110662 cycles, 

which is lower than the number of cycles sustained by the beam (596136, Table 7.2). 

This may be explained as follows. At the locations of the flexural cracks in the RC beam 

the steel rebar experiences local stress concentrations. However, as the defect in the 

steel rebar from which the fatigue crack in it initiates is unlikely to coincide with one of 

these locations, the fatigue life of the steel rebar embedded in concrete will exceed that 

measured in air at the same stress range.  

    For the beam loaded at 80.59% the stress in the steel rebar was 477MPa and the stress 

ratio used in this test was 4.93/80.59 = 0.061 with a stress range 447.8MPa. The number 

of cycles until fatigue failure of rebar will be 32397 cycles according to equation (7.2). 

However, the failure of this beam occurred in the shear-flexural mode after just 11458 
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cycles (Table 7.2 and Figure 7.7), i.e.  well before the fatigue failure of rebar. Even so, 

it is important to ensure that the reinforcing steel is not stressed beyond its fatigue 

endurance limit, calculated as per equation (7.1) or (7.2).                         

 

 

Figure 7.4 Beam sustained 1000000 cycles without any noticeable cracks 

 

 

Figure 7.5 Beam sustained 1000000 cycles with some minor cracks 

 

 

Figure 7.6 Beam sustained 596136 cycles and failed due to rebar fatigue 
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 Figure 7.7 Flexural shear crack, beam sustained 11458 cycles 

 
 

7.2.3.2 Compliance of Fatigue Test Beams 

    The compliance of fatigue test beams was calculated from their recorded load-

displacement curves. Under cyclic loading the compliance can increase with time, if the 

material sustains internal or surface damage, e.g. micro-cracking. If there is no damage 

then the compliance should remain constant. 

Figures 7.8 – 7.11 show the variation of the compliance with the number of cycles. It is 

clear from Figures 7.8 and 7.9 that the compliance of the test beams remained essentially 

constant up to 1,000,000 cycles attesting to a lack of damage growth under cycling, and 

hence to no fatigue failure. 

 

Figure 7.8 Compliance of RC beam during the ascending part of the cyclic load from                        

1.5 to 5.5 kN 
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Figure 7.9 Compliance of RC beam during the ascending part of the cyclic load from                       

1.5 to 12.5 kN 

 

Figure 7.10 Compliance of RC beam during the ascending part of the cyclic load from                       

1.5 to 19.5 kN  

 

Figure 7.11 Compliance of RC beam during the ascending part of the cyclic load                           

from 1.5 to 24.5 kN  
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  The compliance of the other two specimens (Figure 7.10 and 7.11) increases slowly in 

the beginning as the number of cycles increases before suddenly reaching infinity at 

failure, attesting to a brittle kind of fatigue failure.   

 

7.3 Retrofitting Reinforced Concrete Beams 

Four reinforced concrete beams were cast (1200x150x100 mm) using the same mix 

quantities and procedure as described above for control beams.  They were retrofitted 

with the UHPFRC strips. One of these beams was tested under static three-point 

bending and used as a control beam for the other three beams which were tested under 

different three-point bend cyclic load ranges. 

 

7.3.1 UHPFRC Strips: Materials and Mix Preparation 

    The mix was prepared in a pan mixer using the mix proportions given in Chapter Five 

(Table 5.1). The quantity of mix prepared was calculated based on the volume of 

required specimens. The mixing followed the procedure recommended in (Benson and  

Karihaloo 2005a) by adding the finest constituent to the coarsest one (details can be 

found in Chapter Five, Section 5.3.1). The UHPFRC strips with dimensions 

1030x100x35mm were cast in a larger steel mould partitioned for two strips. Then after 

24 hours, they were demoulded and cured in a heated water tank for 9 days (for details, 

see Chapter Five, Section 5.3.3). 
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7.3.1.1 Preparation of Concrete Surfaces 

To ensure good bond between the beam and the strip, the contacting surfaces were 

cleaned of any debris and roughened using an angle grinder to create a grid of diagonal 

grooves (2mm deep at a spacing of 50mm) (Figure 7.12). 

 

 

Figure 7.12 A grid of diagonal grooves to roughen the surface for bonding 

 

7.3.1.2 Adhesive Bonding of Strips 

The strips were bonded to the prepared tension surface of the beams with a commercial 

thixotropic epoxy (Sikadur 31). The two parts of the adhesive were thoroughly mixed 

and applied to the tension side of the beam with a serrated trowel to a uniform thickness 

of 3mm. The strip was then placed on the adhesive and evenly pressed. To ensure good 

adhesion, pressure was applied by placing weights along the strip during the hardening 

of the adhesive for 24 hours (G-clamps can be used instead of weights). 

7.3.2 Testing Retrofitted Beam 

One of the retrofitted reinforced concrete beams was tested under three-point static bend 

over a clear span of 1000 mm following the same procedure as for the control bean 
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without retrofitting. Figure 7.13 shows the load-central deflection response of this 

retrofitted beam. 

The failure mode of this beam, shown in Figure 7.14, can be regarded a flexural mode. 

The maximum load carried by this beam was 42.63 kN.  This means that retrofitting by 

a single 35 mm thick strip of UHPFRC on the tension face has increased the load 

carrying capacity by approximately 40% (from 30.4 to 42.63 kN) and led to a failure 

mode transition from nearly brittle to ductile (cf. Figures 7.3 and 7.14). 

 

 

Figure 7.13 Static load-central deflection response of the retrofitted reinforced concrete beam 
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Figure 7.14 Flexural cracking in the beam retrofitted with 35mm thick strip 

 

7.3.3 Fatigue of Retrofitted Concrete Beams 

7.3.3.1 Flexural Fatigue Results  

The remaining three retrofitted beams were subjected to cyclic three-point bending in a 

DARTEC 250 kN dynamic-static actuator. The central deflection was measured by a 

single LVDT placed underneath the beam at its mid-span. The beam was simply 

supported over a span of 1000 mm. To prevent the beam from moving laterally during 

the cyclic load application, the base plates of the roller simple supports were clamped 

(Figure 7.14). 

The actuator was connected to a DARTEC 9600 Digital Feedback Controller. Four 

measurements were recorded on each beam: (1) the cyclic load; (2) the central 

deflection; (3) the time and (4) the number of cycles.  

    The sinusoidal load ranges were between 1.5 – 20 kN, 1.5 – 26 kN, and 1.5 – 35 kN, 

corresponding to 3.52 – 46.91%, 3.52 – 60.99% and 3.52 – 82.1% of the static three-
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point strength. Table 7.3 gives the number of cycles sustained by each test specimen. 

The failure mode crack patterns of the specimens are shown in Figures 7.15 – 7.17. 

    The beam that was cycled to 46.91% of the static three-point failure load sustained 

one million cycles without failure (not even minute cracks were noticed on the tension 

surface of this specimen, Figure 7.15). The frequency of cyclic loading used was 5 Hz. 

The second beam that was cycled to 60.99% of the static three-point strength also 

sustained one million cycles without failure but a few hairline cracks were noticed in 

the middle third area, Figure 7.16 . This time the frequency of cyclic loading used was 

3.5 Hz. The third beam was cycled to 82.1% at a frequency of 2.5Hz (Figure 7.17).  

The cyclic load-central deflection curves for tested samples can be seen in Appendix C. 

    It is important to mention that the beam that was loaded to 82.1% of the static three-

point strength failed by fatigue of the reinforcing steel bar. An explanation will be 

provided below after considering the compliance of the retrofitted beam.  

 

Table 7. 3  Number of cycles sustained by retrofitted RC Beam (1200*150*100mm) 

 

   

Load 

Amplitude Range (%) 
Stress Ratio 

Load  Amplitude 

Range (kN) 

Fatigue Life 

(cycles) 

3.52 % – 46.91% 0.075 1.5 - 20 >1000000 

3.52 % – 60.99% 0.058 1.5 - 26 >1000000 

      3.52 % – 82.10% 0.043 1.5 - 35 32100 
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Figure 7.15 Beam sustained 1000000 cycles without any noticeable cracks 

(maximum cyclic load level 46.91%) 

 

Figure 7.16 Beam sustained 1000000 cycles with some cracks 

(maximum cyclic load level 60.99%) 

 

Figure 7.17 Beam sustained 32100 cycles and failed by rebar fatigue 

(maximum cyclic load level 82.1%) 
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7.3.3.2 Compliance of Fatigue Test Beams 

Figures 7.18 – 7.20 show the variation in the compliance of test beams with the number 

of cycles. The compliance of the beam subjected to the load range 1.5 to 20 kN remained 

practically unchanged with increasing number of cycles (Figure 7.18) confirming that 

there was no damage evolution or accumulation in this beam right up to 106 cycles 

(Figure 7.15). The compliance of the beam subjected to the load range 1.5 to 26 kN did 

change slightly (Figure 7.19) when cracks formed on the surface (Figure 7.16) that led 

to the well-known tension stiffening. However, overall this beam sustained 106 load 

cycles, despite the minor damage in the form of hairline flexural cracks.  

The compliance of the beam subjected to the load range 1.5 to 35 kN increased 

noticeably after just 5000 cycles (Figure 7.20) due to the formation of a major flexural 

crack in the UHPFRC strip. As a result, the contribution of the strip to the tensile load 

carrying capacity is reduced and that of the reinforcing steel bar is increased. The 

reinforcing bar is therefore subjected to an elevated cyclic stress range of approximately 

268.46 MPa (see Appendix D). This stress range is much higher than the allowable limit 

recommended by the supplier’s data sheet (cyclic stress range 200 MPa for a fatigue 

life in excess of five million cycles), thus leading to the fatigue of the reinforcing bar 

(Figure 7.17). 

As the minimum stress used was the same for all tested beams, the maximum service 

level stress range should be just 151.4MPa according to the ACI 215-74 (1992) 

(Equation 7.1), which is well below the actual stress range (268.46 MPa) in the test 

beam subjected to maximum load amplitude of 35 kN. Additional guidance is provided 

by Papakonstantinou et al. (2001) who have given a regression equation to estimate the 

fatigue life of beams retrofitted with GFRP sheets 
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log(𝑁) = 6.677 −  0.00613𝜎𝑟                                                                                                (7.3) 

From Equation (7.3) the number of cycles to failure for the beam cycled up to 82.1% 

will be 107475 cycles, whereas the beam sustained only 32100 cycles. This is no doubt 

due to the fact that GPRP makes a much larger contribution to the tensile load carrying 

capacity than the UHPFRC material used in this work for retrofitting.  

 

 

Figure 7.18 Compliance of RC beam during the ascending part of the cyclic load from 1.5 to 20 kN 

 

 

Figure 7.19 Compliance of RC beam during the ascending part of the cyclic load from 1.5 to 26 kN 
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Figure 7.20 Compliance of RC beam during the ascending part of the cyclic load from 1.5 to 35 kN 

 

 It can be concluded from this limited number of fatigue tests that the endurance limit 

of RC beams retrofitted with a UHPFRC strip is approximately 60 % of static flexural 

strength, while the endurance limit of the RC beams without retrofitting, as shown 

above, is just 40 % of static flexural strength. It should be noted that all test beams (i.e. 

beams with or without retrofitting) were subjected to cyclic loading with a non-zero 

mean stress. What is more, the mean stress increased (the stress ratio decreased) with 

increasing maximum load amplitude, as the minimum load amplitude was held constant. 

Thus, the fatigue endurance limit under zero mean stress cyclic loading would be higher 

than that stated above. 
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7.4 Estimation of the Number of Cycles Until Failure 

To have some idea of what is the fatigue life of RC beams with and without the 

UHPFRC strips under a given cyclic load range, the procedure that has been reported 

in Chapter Six (Section 6.8) will be followed in this section. 

The variation in the compliance of the specimens will be used to predict the fatigue life 

for each specimen using the initial compliance ci and the rate of change of the 

compliance with the number of cycles (Figures 7.8 — 7.11 and 7.18 — 7.20), and using 

Equations (6.4 and 6.5) from Chapter 6 (Section 6.8). 

The predicted number of cycles for each specimen with the stress range is tabulated in 

Tables 7.4 and 7.5 for RC beams without and with retrofitting, respectively. 

Table 7.4 shows that the predicted number of cycles to failure for RC beams without 

retrofitting is well above that recorded during the test which was terminated at one 

million cycles up to the maximum load amplitude of 12.5 kN, i.e. approximately 40% 

of the ultimate static three-point flexural load of 30 kN.  

Likewise, Table 7.5 shows that the predicted number of cycles to failure for retrofitted 

RC beams is also well above that recorded during the test up to the maximum load 

amplitude of 20 kN, i.e. approximately 47% of the ultimate static flexural load of 42 

kN.  Even at the maximum load of 26kN, i.e. 60.99% of ultimate static flexural load the 

number of cycles to failure is one million, i.e. the same number of cycles as this 

retrofitted beam sustained during testing.  
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Table 7.4 Predicted number of cycles with load amplitude range for RC beams without 

retrofitting 

 

 

 

 

 

 

Table 7.5 Predicted number of cycles with load amplitude range for retrofitted RC beams 

 

 

 

 

 

 

7.5 Concluding remarks 

➢ Retrofitting with a 35mm thick UHPFRC strip increased the static three-point 

flexural strength from approximately 30 kN to approximately 42 kN, i.e. by 

about 40%.  

➢ Retrofitting with a 35mm thick UHPFRC strip improves the endurance limit 

from approximately 40% to approximately 60% of the static three-point flexural 

strength. In terms of loads, this corresponds to an increase from             

approximately 12kN to approximately 26 kN in the upper cyclic load amplitude 

(the lower limit is 1.5 kN in both cases), i.e. an increase of more than 116%. 

Stress range 
Load Amplitude 

Range (kN) 

No of Cycles 

 

4.93% – 18.10% 1.5 - 5.5 131 x 106 

4.93% – 41.12% 1.5 - 12.5 25.735 x 106 

4.93% – 64.14% 1.5 - 19.5 593700 

4.93% – 80.59% 1.5 - 24.5 11400 

Stress range 
Load  Amplitude 

Range (kN) 

No of Cycles 

 

3.52 % – 46.91% 1.5 - 20 10.637 x 106 

3.52 % – 60.99% 1.5 - 26 106 

3.52 % – 82.10% 1.5 - 35 32100 
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➢ Retrofitting with a UHPFRC strip is therefore far more effective under cyclic 

than static loading! 

➢ The above increase in the endurance limit is for cyclic loading with a non-zero 

mean stress. What is more, the mean stress increased (the stress ratio decreased) 

with increasing maximum load amplitude, as the minimum load amplitude was 

held constant. Thus, the fatigue endurance limit under zero mean stress cyclic 

loading would be higher than that stated above. 

➢ In choosing the upper cyclic load amplitude it is important to bear in mind the 

fatigue endurance limit of the reinforcing steel. For example, for the reinforcing 

steel used in the current research the supplier’s data sheet stated that the cyclic 

stress range is only 200 MPa at a stress ratio of 0.2 for bars less than 16 mm in 

diameter. However, as the smallest stress ratio in our test on RC beam without 

retrofitting that sustained 106 cycles was 4.93/41.12 = 0.12 and on retrofitted 

beam was 3.52/60.99 = 0.058, the allowable cyclic stress range on the 

reinforcing steel would be above 200 MPa.  

➢ An indication of the expected fatigue life under a given cyclic load range was 

obtained from the recorded variation in the compliance, since the tests were 

terminated at one million cycles.   
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8.1 Summary of Results and Conclusions 

➢ A self-compacting UHPFRC based on CARDIFRC vibrated Mix II was 

developed and fully characterised from both the mechanical and fracture points 

of view. As expected, the resulting UHPFRC has inferior compressive, tensile 

and flexural strengths than the original CARDIFRC Mix II. This is due to the 

absence of thin small brass-coated steel fibres (4.5% by volume; 6 mm long) in 

the UHPFRC. The UHPFRC is however much tougher thanks to the use of a 

larger volume fraction (2.5% against 1.5%) of longer steel fibres (30 mm against 

13 mm). This UHPFRC has a compressive strength of 148 MPa against 200 

MPa of the original vibrated Mix II and a splitting strength 18.5 MPa against 24 

MPa, but it has a much higher energy absorption capacity, i.e., toughness in 

excess of 36,000 N/m against 18,000 N/m of the original vibrated Mix II.   

➢ The parameters of the bi-linear stress-crack opening relation of this UHPFRC 

were obtained by using an inverse approach for crack growth from a pre-existing 

notch. The predicted load-deflection and load-CMOD curves of notched beams 

have been shown to be in very good agreement with the recorded experimental 

results, except in the pre-peak non-linear region. 

➢ The flexural fatigue behaviour of the self-compacted UHPFRC has been 

investigated on thin strip specimens of 35 mm thickness and displayed as S-N 

curves. The fatigue life of the self-compacting UHPFRC is well in excess of one 

million cycles and its endurance limit is around 80% of its static three-point 

flexural strength (24.36 MPa), i.e. approximately 19 MPa,  at a mean stress level 

of the cyclic loading of 44.5% of this strength (10.85 MPa) . However, this 

endurance limit reduces crucially to approximately 64% of the corresponding 
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lower static three-point flexural strength (22.02 MPa), i.e. approximately to 14 

MPa at a mean stress level of approximately 8 MPa when the fibre distribution 

is non-uniform. This was confirmed by the examination of the failure surfaces 

of the specimens (chapter Six) where fibres were poorly distributed in the failure 

surface of the specimens with regions of low or no fibres. Thus, the role of fibre 

distribution is vital in the fatigue performance; uniform distribution of fibres 

ensures that the material has the above high fatigue endurance limit. 

➢  The variation in compliance of a specimen is an indicator of the internal damage 

development due to fatigue loading. Therefore, the variation in compliance has 

been used as an indication of the expected fatigue life under a given cyclic load 

range, since the tests were terminated at one million cycles. The results show 

that the predicted number of cycles to failure are well above the one million 

cycles at which the tests were terminated. 

➢  The Goodman rule has been employed in an inverse manner to calculate the 

stress range with zero mean stress ∆𝜎0 from equation (6-3) corresponding to the 

actual cyclic stress range with non-zero mean stress ∆𝜎𝜎𝑚  used in the tests. The 

results illustrate that the fatigue life under cyclic stress range with non-zero 

mean stress is akin to fatigue life under a much larger cyclic stress range with 

zero mean stress (Figure 6.4).  

➢ The performance of RC beams retrofitted with self-compacting UHPFRC strips 

under three-point bend cyclic loading has been studied. It has been found that 

retrofitting the RC beams with a thin UHPFRC strip on the tension face 

increases their endurance limit under a non-zero mean stress cyclic loading from 

approximately 40% to approximately 60% of their static three-point flexural 

strength. In terms of loads, this corresponds to an increase from approximately 
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12 kN to approximately 26 kN in the upper cyclic load amplitude (the lower 

limit is 1.5 kN in both cases), i.e. an increase of more than 116%. Moreover, the 

retrofitted beams behave as a composite structure with no delamination of the 

retrofit strip being observed in any of the fatigue tests. The variation in 

compliance has been also used as an indication of the expected fatigue life for 

RC beams retrofitted with the UHPFRC strips under a given cyclic load range. 

The results show that the predicted number of cycles to failure are well above 

the one million cycles at which the tests were terminated. 

➢ It is important to bear in mind the fatigue endurance limit of the reinforcing steel 

when the upper cyclic load amplitude is chosen. For this, the steel supplier’s data 

sheet for the reinforcing steel should be used.  

 

8.2 Recommendations for Future Work 

➢ The pre-peak non-linearity is known to be a result of diffuse micro-cracking 

whose density increases as the load is increased from the linear elastic 

proportional limit to the peak load. Since the non-linear hinge assumes that the 

response is linear elastic up to the peak load the pre-peak non-linear strain-

hardening cannot be captured by the hinge model. Therefore, it is recommended 

to consider this pre-peak non-linearity by taking into account the effect of micro-

cracks on the reduction in the stiffness using for example the micromechanical 

formulation described in Budiansky and Connell, (1976). 

➢ It is recommended that the flexural fatigue behaviour of RC beams retrofitted 

with the new UHPFRC version of CARDIFRC Mix II specimens be modelled 
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to verify the experimental work. For this, the post-peak bilinear stress-crack 

opening relationship developed in this thesis will be found helpful. 

➢ It will be valuable to retrofit the RC beams with strips on the sides and monitor 

its influence on the flexural behaviour of the retrofitted RC beams under static 

and cyclic loading. 

➢ As the self-compacting UHPFRC has inferior compressive, tensile and flexural 

strengths than the original vibrated CARDIFRC Mix II due to the absence of 

thin small brass-coated steel fibres it would be interesting to add inexpensive 

short fibres to the mix to increase the mechanical properties of the UHPFRC 

bearing in mind the workability of the mix.  

➢ It is recommended to conducted many more tests in order to be sure that the 

results of the limited number of tests reported in this thesis are indeed 

representative of the developed self-compacting UHPFRC. 

➢ It is recommended that the RC beams be retrofitted with casting strips on tension 

faces using fresh UHPFRC. As this material is self-compacting, the casting 

should be easy, but it would require temporary formwork.  
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Phase 0         𝜶 = 𝟎 
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Note that ℎ = ℎ𝑔 and 𝛼 = 𝛼ℎ appears in chapters 5.  

The balance of longitudinal forces requires that  𝜎𝑁 < 𝑓𝑡  
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 <  𝑓𝑡   ⇒   

𝑁

𝑓𝑡ℎ𝑡
   < 1  ⇒   𝜌 < 1 

 

Note: 𝑁 = 𝜎
𝑁.
1

2
.
𝑡ℎ

2
             , 𝑀 = 

2

3
 ℎ𝑁 =  

𝜎𝑁𝑡ℎ
2

6
 

 

𝜃 =  
ℎ𝐸

2𝑓𝑡
 𝑘∗ ,                  𝑘∗ =

1

𝑅
=
𝑀

𝐸𝐼
=
𝜎𝑁𝑡ℎ

2

6𝐸.
𝑡ℎ3

12

=
2𝜎𝑁

𝐸ℎ
 

𝜃 =
𝜎𝑁

𝑓𝑡
< 1 

Transition from phase 0 to phase I       at 𝜃 = 1       

 

 

Phase I         𝜶 ≠ 𝟎  < 𝟏 

  

In phase I, the stress is decreasing along the first 

branch of the bilinear 𝜎(𝑤) diagram.    

 

 

 

 

𝑠
𝜎𝑤(𝑤(𝑦))

𝐸
+ 𝑤(𝑦) =  2𝑠(𝑦 − 𝑦0)

𝜑

𝑠
= 2(𝑦 − 𝑦0)𝜑  

 

 

𝜎𝑤(𝑤(𝑦)) =
1

𝑠
{2𝐸((𝑦 − 𝑦0)𝜑 − 𝐸𝑤(𝑦)} =

𝐸

𝑠
 {2(𝑦 − 𝑦0)𝜑 − 𝑤(𝑦)}   

y* 

ft(yo/y*) 

ft 

yo 

y 

d 

C 

T 

h/6 

yo=h/2 

h/6 
σN 



Full analytical expressions of the Moment, µ, and 

Crack Length, 𝒂𝒉, for Phases I, II, III                                                                                                Appendix A 

 

 
211 

 

 

Also   𝜎𝑤(𝑤(𝑦)) = 𝑓𝑡{𝑏𝑖 − 𝑎𝑖𝑤(𝑦)}       

 

By Subtracting the above two equations from each other, we get 

 

− 𝑓𝑡{𝑏𝑖 − 𝑎𝑖𝑤(𝑦)} +
𝐸

𝑠
 {2(𝑦 − 𝑦0)𝜑 − 𝑤(𝑦)} = 0 

⇒
𝑓𝑡𝑠

𝐸
{(𝑏𝑖 − 𝑎𝑖𝑤(𝑦)} − {2(𝑦 − 𝑦0)𝜑 − 𝑤(𝑦)} = 0 

⇒ −
𝑓𝑡𝑠

𝐸
𝑏𝑖 + 2(𝑦 − 𝑦0)𝜑 = 𝑤(𝑦) − 

𝑓𝑡𝑠

𝐸
𝑎𝑖𝑤(𝑦) = 𝑤(𝑦) {1 −

𝑓𝑡𝑠𝑎𝑖

𝐸
} 

⇒𝑤(𝑦) =
2(𝑦−𝑦0)𝜑−𝜍𝑖

1−𝛽𝑖
                                                         

 𝜎𝑤( 𝑤(𝑦) =  𝑓𝑡𝑏𝑖 −  𝑓𝑡𝑎𝑖{
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} 

                            = 𝜍𝑖
𝐸

𝑆
−𝛽𝑖

𝐸

𝑆
{
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}              

                               𝜍𝑖
𝐸

𝑆
{
1−𝛽𝑖+𝛽𝑖

1−𝛽𝑖
} −
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1−𝛽𝑖

𝐸

𝑆
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𝐸

𝑆
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𝑓𝑡𝑠𝑎𝑖

𝐸
     ,   𝜍𝑖 =

𝑓𝑡𝑠𝑏𝑖

𝐸
                                               

 

Tensile force =1 2⁄ 𝑓𝑡𝑦
∗𝑡 + contribution from tension softening zone of length d. 

The latter contribution is obtained from the stress at distance y from top, given by 

equation (5.9) 

𝜎𝑤( 𝑤(𝑦) =
𝜍1 −  2(𝑦 − 𝑦0)𝜑𝛽𝑖

1 − 𝛽𝑖

𝐸

𝑆
 

𝜎𝑤( 𝑤(ℎ) =
𝜍1 −  2(ℎ − 𝑦0)𝜑𝛽1

1 − 𝛽1

𝐸

𝑆
 

𝜎𝑤( 𝑤(ℎ − 𝑑) =
𝜍1 −  2(ℎ − 𝑑 − 𝑦0)𝜑𝛽1

1 − 𝛽1

𝐸

𝑆
 

 

Area of trapezium = 
𝑑𝑡

2
{𝜎(𝑤(ℎ)) + (𝑤(ℎ −  𝑑))} 

                               =
𝑑𝑡𝐸

2𝑠
{
2𝜍1− 2(2ℎ−𝑑−2𝑦0)𝜑𝛽1

1−𝛽1
} , 𝜍1 =

𝑓𝑡𝑏1𝑠

𝐸
=

𝑓𝑡𝑠

𝐸
 

                                    =
𝑑𝑡

(1 − 𝛽1)
{𝑓𝑡 − (2 − 𝛼 − 2

𝑦0

ℎ
)
ℎ𝜑𝐸

𝐸
𝛽1} 

                                    =
𝑑𝑡𝑓𝑡

(1 − 𝛽1)
{1 − (2 − 𝛼 − 2

𝑦0

ℎ
) 𝜃𝛽1} 
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                                    =
𝛼𝑑𝑡𝑓𝑡

(1 − 𝛽1)
{1 − 2𝜃𝛽1 + 𝛼𝜃𝛽1 + 2

𝑦0

ℎ
𝜃𝛽1} 

Total tensile force =
𝛼(𝑡ℎ𝑓𝑡)

(1 − 𝛽1)
{1 − (2 − 𝛼 − 2

𝑦0

ℎ
) 𝜃𝛽1} +

1

2
𝑓𝑡𝑦

∗𝑡 

𝑦∗ =
𝑠𝑓𝑡

2𝜑𝐸
=

𝑠𝑓𝑡 . ℎ𝐸

2. 𝑠𝑓𝑡𝜃𝐸
=

ℎ

2𝜃
,     Note also ℎ − 𝑦0 = 𝑑 + 𝑦∗ 

      So, that              1 −
𝑦0

ℎ
=  𝛼 +

𝑦∗

ℎ
𝛼 +

1

2𝜃
=

(1+2𝛼𝜃)

2𝜃
 

Total tensile force = 

𝑇 =
𝛼(𝑡ℎ𝑓𝑡)

(1 − 𝛽1)
{1 − (2𝛼 −

1

𝜃
− 𝛼) 𝜃𝛽1} +

𝑓𝑡𝑡ℎ

4𝜃
 

     =
𝑓𝑡𝑡ℎ

(1 − 𝛽1)
{α − (2𝛼2 +

α

𝜃
) 𝜃𝛽1} +

𝑓𝑡𝑡ℎ

4𝜃
 

     =
𝑓𝑡𝑡ℎ

(1 − 𝛽1)
{(1 − 𝛽1)𝛼 − 𝛼2𝜃𝛽1} +

𝑓𝑡𝑡ℎ

4𝜃
 

     = 𝑓𝑡𝑡ℎ {𝛼 −
𝛼2𝜃𝛽1
(1 − 𝛽1)

+
1

4𝜃
} 

Total compressive force =
1

2
𝑓𝑡

𝑦0

𝑦∗
. 𝑦0𝑡 =

1

2
(𝑓𝑡ℎ𝑡).

𝑦0

𝑦∗
.
𝑦0

ℎ
 

Now                         
𝑦0

ℎ
= 1 − 𝛼 −

1

2𝜃
 

Also                         
𝑦∗

ℎ
= 1 − 𝛼 −

𝑦0

ℎ
= 1 − 𝛼 − 1 + 𝛼 +

1

2𝜃
=

1

2𝜃
 

                                 
𝑦∗

ℎ
(
𝑦0
𝑦∗
+ 1) = 1 − 𝛼              (from 𝑦0 + 𝑦

∗ = ℎ − 𝑑)  

                          ⇒ 
1

2𝜃
(
𝑦0

𝑦∗
+ 1) = 1 − 𝛼   ⇒

𝑦0

𝑦∗
+ 1 =  (1 − 𝛼)2𝜃 

                ⇒
𝑦0

𝑦∗
= (1 − 𝛼)2𝜃 − 1 

C=Total compressive force 

           =
1

2
(𝑓𝑡ℎ𝑡){(1 − 𝛼)2𝜃 − 1} {1 − 𝛼 −

1

2𝜃
} 

     =
𝑓𝑡ℎ𝑡

𝜃
{(1 − 𝛼)𝜃 −

1

2
} {(1 − 𝛼)𝜃 −

1

2
} 
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                                               =
𝑓𝑡ℎ𝑡

𝜃
{(1 − 𝛼)𝜃 −

1

2
}
2

 

C=T ⇒ 

                          𝛼 −
𝛼2𝜃𝛽1
(1 − 𝛽1)

+
1

4𝜃
= (1 − 𝛼)2𝜃 − (1 − 𝛼) +

1

4𝜃
 

(1 − 2𝛼 − 𝛼2)𝜃 − 1 = −
𝛼2𝜃𝛽1
(1 − 𝛽1)

 

⇒                                    𝛼2𝜃 {1 +
𝛽1

(1 − 𝛽1)
} − 2𝛼𝜃 − (1 − 𝜃) = 0 

⇒                                   
𝛼2𝜃

(1 − 𝛽1)
− 2𝛼𝜃 − −(1 − 𝜃) = 0 

⇒                                   𝛼2 − 2(1 − 𝛽1)𝛼 − (1 − 𝛽1) (
1 − 𝜃

𝜃
) = 0 

                 𝛼 =
2(1 − 𝛽1) ± √(1 − 𝛽1)

2 + 4(1 − 𝛽1) (
1

𝜃
− 1)

2
 

                 𝛼 = (1 − 𝛽1) ± √(1 − 𝛽1)
2 + (1 − 𝛽1) (

1

𝜃
− 1) 

                 𝛼 = (1 − 𝛽1) − √(1 − 𝛽1) + (1 − 𝛽1 +
1

𝜃
− 1)                  𝛼 ≪ 1      

                 𝛼 = (1 − 𝛽1) − √(1 − 𝛽1) (
1

𝜃
− 𝛽1) 
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Phase I (moment) 

 

Now take moments about neutral axis 

𝑀 = 𝐶 (
2𝑦0

3
) + 𝑇1 (

2𝑦∗

3
) + 𝑇2(𝑦

∗ + 𝑦∗∗) 

The distance 𝑦∗∗ can be calculated by dividing the 

trapezium into a rectangle and a triangle 

         𝜎(𝑤(h)) =

𝑓𝑡𝑠

E
− 2(h − 𝑦0)𝜑𝛽1

(1 − 𝛽1)

E

S
 

                            =
𝑓𝑡 − 2(h − 𝑦0)

𝜑𝑓𝑡

ℎ
𝛽1

(1 − 𝛽1)
 

                           =
𝑓𝑡

(1 − 𝛽1)
{1 − 2(d + 𝑦∗)

𝜃

ℎ
𝛽1} 

                           =
𝑓𝑡

(1 − 𝛽1)
{1 − 2 (α +

1

2𝜃
) 𝜃𝛽1} 

                            =
𝑓𝑡

(1 − 𝛽1)
{1 − 2αθ𝛽1 − 𝛽1} 

                            =
𝑓𝑡

(1 − 𝛽1)
{(1 − 𝛽1) − 2αθ𝛽1} 

                            = 𝑓𝑡 {1 −
2αθ𝛽1

(1 − 𝛽1)
} 

                     𝑇2  = 𝑓𝑡𝑡h {𝛼 −
2α2θ𝛽1

1 − 𝛽
} 

                     𝑇3  = 𝑓𝑡𝑑𝑡 {1 −
2αθ𝛽1

1 − 𝛽
} 

                     𝑇4 =
1

2
𝑓𝑡𝑑𝑡

2αθ𝛽1

(1 − 𝛽1)
 

d T4 

ft 

d/2 

T3 

d/3 

σ(w(h)) 

C 

y* 

T1 

yo/3 

2/3y* 

ft(yo/y*) 

T2 

N 

d 

yo 

y 

y** 

Centroid 

2y*/3 

T1 

d/2 

T3 

T 

T4 

d/3 

σ(w(h)) 

 

y*** 
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          𝑇2𝑦
∗∗    = 𝑇3

𝑑

2
+ 𝑇4

𝑑

3
       ⇒ 𝑦∗∗ = 

𝑇3
𝑑

2
+ 𝑇4

𝑑

3

𝑇2
  

We need 𝑇2𝑦
∗∗ , so no need to calculate 𝑦∗∗ 

 𝑦∗∗∗ = 
𝑇1 (

2𝑦∗

3
) + 𝑇3(𝑦

∗ +
𝑑

2
) + 𝑇4(𝑦

∗ +
𝑑

3
)

𝑇1 + 𝑇3 + 𝑇4
 

Note: 𝑇1 + 𝑇3 + 𝑇4 = 𝐶 = 𝑇 

𝑀 =  𝐶 (
2𝑦∗

3
+ 𝑦∗∗∗) 

     = 𝐶 (
2𝑦∗

3
) + 𝐶𝑦∗∗∗ 

     = 𝐶 (
2𝑦0

3
) + 𝑇1 (

2𝑦∗

3
) + 𝑇3(𝑦

∗) + 𝑇3(
𝑑

2
) + 𝑇4(𝑦

∗) + 𝑇4(
𝑑

3
)  

     = 𝐶 (
2𝑦0

3
) + (𝑇1 + 𝑇3 + 𝑇4)𝑦

∗ − 𝑇1 (
𝑦∗

3
) + 𝑇3 (

𝑑

2
) + 𝑇4 (

𝑑

3
) 

     = 𝐶 (𝑦∗ +
2𝑦0

3
) − 𝑇1 (

𝑦∗

3
) + 𝑇3 (

𝑑

2
) + 𝑇4 (

𝑑

3
) 

     = 𝐶 (h − 𝑦0 − 𝑑 +
2𝑦0

3
) − 𝑇1 (

𝑦∗

3
) + 𝑇3 (

𝑑

2
) + 𝑇4 (

𝑑

3
) 

     = 𝐶 (h − 𝑑 −
𝑦0

3
) − 𝑇1 (

𝑦∗

3
) + 𝑇3 (

𝑑

2
) + 𝑇4 (

𝑑

3
) 

     =
𝑓𝑡h

2𝑡

𝜃
{(1 − 𝛼)𝜃 −

1

2
}
2

(1 − 𝛼 −
𝑦0

3ℎ
) −

1

2
𝑓𝑡𝑦

∗𝑡.
𝑦∗

3
 

     +
𝑓𝑡d

 2𝑡

2
(1 −

2𝛼𝜃𝛽1

1 − 𝛽1
) +

𝑓𝑡d
 2𝑡

3
.
𝛼𝜃𝛽1

1 − 𝛽1
 

     
6𝑀

𝑓𝑡h
2𝑡
=
6

𝜃
(1 − 𝛼 −

1

3
+
𝛼

3
+
𝑦∗

3ℎ
) {(1 − 𝛼)𝜃 −

1

2
}
2

−
𝑦∗2

ℎ2
+
3𝑑2

ℎ2
(1 −

2𝛼𝜃𝛽1

1 − 𝛽1
) 

        +
2𝑑2

ℎ2
.
𝛼𝜃𝛽1

1 − 𝛽1
   

𝜇 =
6

𝜃
(
2

3
−
2𝛼

3
−
1

3
+
𝛼

3
+
1

6𝜃
) {(1 − 𝛼)𝜃 −

1

2
}
2

−
1

4𝜃2
+ 3𝛼2 (1 −

2𝛼𝜃𝛽1
1 − 𝛽1

) +
2𝛼3𝜃𝛽1
1 − 𝛽1

  

𝜇 =
4

𝜃
(1 − 𝛼 +

1

4𝜃
) {(1 − 𝛼)𝜃 −

1

2
}
2

−
1

4𝜃2
+ 𝛼2 (3 −

6𝛼𝜃𝛽1

1 − 𝛽1
+
2𝛼𝜃𝛽1

1 − 𝛽1
) 

C 

y*** 

T 

yo/3 

2yo/3 
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𝜇 =
4

𝜃
(1 − 𝛼 +

1

4𝜃
) {(1 − 𝛼)𝜃 −

1

2
}
2

−
1

4𝜃2
+ 𝛼2 (3 −

4𝛼𝜃𝛽1
1 − 𝛽1

) 

𝜇 =
4𝜃2

𝜃
((1 − 𝛼) +

1

4𝜃
) {(1 − 𝛼) −

1

2𝜃
}
2

−
1

4𝜃2
+ 𝛼2 (3 −

4𝛼𝜃𝛽1

1 − 𝛽1
) 

    = 4𝜃 (1 − 𝛼 +
1

4𝜃
) (1 − 2𝛼 − 𝛼2 −

1 − 𝛼

𝜃
+

1

4𝜃2
) −

1

4𝜃2
+ 𝛼2 (3 −

4𝛼𝜃𝛽1

1 − 𝛽1
) 

    = {4(1 − 𝜀)𝜃 + 1) {(1 − 𝛼)2 −
(1 − 𝛼)

𝜃
+

1

4𝜃2
} −

1

4𝜃2
+ 3𝛼2 −

4𝛼3𝜃𝛽1

1 − 𝛽1
 

    = (1 − 𝛼)2 −
1 − 𝛼

𝜃
+

1

4𝜃2
+ 4(1 − 𝛼)3𝜃 − 4(1 − 𝛼)2 +

1 − 𝛼

𝜃
−

1

4𝜃2
+ 3𝛼3

−
4𝛼3𝜃𝛽1

1 − 𝛽1
 

= 4(1 − 𝛼)3𝜃 − 3(1 − 2𝛼 − 𝛼2) + 3𝛼3 −
4𝛼3𝜃𝛽1

1 − 𝛽1
 

= 4𝜃 {1 − 3𝛼 − 3𝛼2 − 𝛼3 −
𝛼3𝛽1

1 − 𝛽1
} − 3 + 6𝛼 

𝜇 = 4𝜃(1 − 3𝛼 + 3𝛼2 −
𝛼3

1−𝛽1
) − 3 + 6𝛼  
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Phase II (crack length,𝒂) 

  
𝑦∗

ℎ
 = 

1

2𝜃
   ;     

𝑦0

ℎ
= 1 − 𝛼 −

1

2𝜃
 

  ℎ − 𝑑 = 𝑦∗ + 𝑑   ;    𝑦∗ =
𝑠𝑓𝑡
2𝜑𝐸

 

  𝑦1  =  𝑦0 +
1

2𝜑
  [𝜁1 − 𝑤1(𝛽1 − 1)]𝜑 =

𝜃𝑠𝑓𝑡

ℎ𝐸
 ,   𝜁1 =

𝑓𝑡𝑠𝑏1

𝐸
=
𝑓𝑡𝑠

𝐸
  (𝑏1 = 1) 

  𝑦1  =  𝑦0 +
ℎ𝐸

2𝜑𝑠𝑓𝑡
  [
𝑓𝑡𝑠

𝐸
− 𝑤1(𝛽1 − 1)] 

𝜎𝑤(𝑤(ℎ)) = 
𝜁2 − 2(𝑦 − 𝑦0)φ𝛽2

1 − 𝛽2
 
𝐸 

s
   ;   𝜁2 =

𝑓𝑡𝑏2𝑠

𝐸
 ,  

𝜎𝑤(𝑤(𝑦1)) = 
𝜁1 − 2(𝑦1 − 𝑦0)φ𝛽1

1 − 𝛽𝑖
 
𝐸 

s
    

(ℎ − 𝑦0) = y
∗ + 𝑑 =  

ℎ

2𝜃
+ 𝑑 

(𝑦1 − 𝑦0) =
ℎ𝐸

2𝜑𝑠𝑓𝑡
  [
𝑓𝑡𝑠

𝐸
− 𝑤1(𝛽1 − 1)] 

Total compressive force, C 

𝐶 =
1

2
 𝑓𝑡
𝑦0
𝑦∗
. 𝑦0𝑡 =

𝑓𝑡ℎ𝑡

𝜃
  {(1 − 𝛼)𝜃 −

1

2
}
2

,         as before     

𝑁𝑜𝑡𝑒 

𝑦1 − 𝑦0 =
ℎ

2𝜃
  [1 +

𝑓𝑡𝑠

𝐸
− 𝑤1(1 − 𝛽1)] 

𝑦1 − 𝑦0 − 𝑦∗ =
𝑓𝑡𝑠

𝐸

ℎ

2𝜃
𝑤1(1 − 𝛽1) =   

𝛼1

𝛽1

ℎ

2𝜃
𝑤1(1 − 𝛽1) 
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Total tensile force, T 

𝑇1  =  
1

2
𝑓𝑡𝑦

∗𝑡 =
 𝑓𝑡𝑡ℎ

4𝜃
 

 𝑇2  =  
𝑡

2
{𝑓𝑡 +𝜎( 𝑤(𝑦1))} (𝑦1 − 𝑦0 − 𝑦∗) 

 𝑇3  =
𝑡

2
{𝜎( 𝑤(𝑦1)) +𝜎( 𝑤(ℎ))} {𝑑 − (𝑦1 − 𝑦0 − 𝑦∗)} 

𝑇2 + 𝑇3  =
𝑡

2
{𝑓𝑡( 𝑦1 − 𝑦0 − 𝑦∗)} +

𝑡

2
𝜎( 𝑤(𝑦1)) (𝑦1 − 𝑦0 − 𝑦∗) 

                +
𝑡

2
𝜎( 𝑤(𝑦1))𝑑 +

𝑡

2
𝜎( 𝑤(ℎ))𝑑 −

𝑡

2
𝜎( 𝑤(𝑦1)) (𝑦1 − 𝑦0−𝑦

∗) 

               −
𝑡

2
𝜎( 𝑤(ℎ)) (𝑦1 − 𝑦0−𝑦

∗) 

=  
1

2
{𝑓𝑡 +𝜎( 𝑤(ℎ))} (𝑦1 − 𝑦0 − 𝑦∗) +

1

2
𝑑{𝜎( 𝑤(𝑦1)) +𝜎( 𝑤(ℎ))} 

               𝑤1 =
1 − 𝑏2

𝑎1 − 𝑎2 
  ,    𝑤2 =

𝑏2

𝑎2 
                                                                 𝐸𝑞. (5.9𝑎, 𝑏)   

  𝑁𝑜𝑡𝑒 ∶ 1 − 𝑎1𝑤1  =  1 −
(1 − 𝑏2)𝑎1

𝑎1 − 𝑎2 
=
𝑏2𝛽1 − 𝛽2

(𝛽1 − 𝛽2)
   

𝑦1 − 𝑦0 − 𝑦∗ =
𝑤1

2𝜑
(1 − 𝛽1) =

ℎ

2𝜃
.
(1 − 𝑏2)(1 − 𝛽)

(𝛽1 − 𝛽2) 
 

 𝑇2 + 𝑇3  =  
 𝑓𝑡𝑡ℎ

4𝜃
{1 −

[𝑏2 − (1 + 2𝛼𝜃)]𝛽2

1 − 𝛽2
}
(1 − 𝑏2)(1 − 𝛽1)

(𝛽1 − 𝛽2) 

+
 𝑓𝑡𝑡𝑑

2
{
𝑏2𝛽1 − 𝛽2
𝛽1 − 𝛽2

+ 
𝑏2 − (1 + 2𝛼𝜃)𝛽2

(1 − 𝛽2)
} 

                = 
 𝑓𝑡𝑡ℎ

4𝜃
{
(1 − 𝑏2) + 2𝛼𝜃𝛽2

(1 − 𝛽2)
}
(1 − 𝑏2)(1 − 𝛽1)

(𝛽1 − 𝛽2) 

+
 𝑓𝑡𝑡𝑑

2
{
𝑏2𝛽1 − 𝛽2

𝛽1 − 𝛽2
+ 
𝑏2 − (1 + 2𝛼𝜃)𝛽2

(1 − 𝛽2)
} 

𝑇1 + 𝑇2  =  
 𝑓𝑡𝑡ℎ

4𝜃
{1 +

(1 − 𝑏2) + 2𝛼𝜃𝛽2

(1 − 𝛽2)
}
(1 − 𝑏2)(1 − 𝛽1)

(𝛽1 − 𝛽2) 
 

y1
 

T1 

σ(w(h)) 

T2 

T3 
d-(y1- y0-y

*) 

y*
 

y1- y0-y
* 

σ(w(y1)) 

ft 

N 
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𝑇1 + 𝑇2 + 𝑇3  =  
 𝑓𝑡𝑡ℎ

4𝜃
{1 + [

(1 − 𝑏2) + 2𝛼𝜃𝛽2
(1 − 𝛽2)

]
(1 − 𝑏2)(1 − 𝛽1)

(𝛽1 − 𝛽2) 
} 

+ 
 𝑓𝑡𝑡ℎ

4𝜃
{2𝛼𝜃 [

𝑏2𝛽1 − 𝛽2

𝛽1 − 𝛽2
+
𝑏2 − (1 + 2𝛼𝜃)𝛽2

1 − 𝛽2 
]} = 𝐶 

4 {(1 − 𝛼)𝜃 −
1

2
}
2

= 𝑅𝐻𝑆 

4𝜃2 {𝛼2 − 2(1 −
1

2𝜃
) 𝛼 + (1 +

1

2𝜃
)

2

} = 𝑅𝐻𝑆 

𝑅𝐻𝑆 = 1 +
(1 − 𝑏2)

2(1 − 𝛽1)

(1 − 𝛽2)(𝛽1 − 𝛽2) 
+
2𝛼𝜃𝛽2(1 − 𝑏2)(1 − 𝛽1)

(1 − 𝛽2)(𝛽1 − 𝛽2) 
+
2𝛼𝜃(𝑏2𝛽1 − 𝛽2)

(𝛽1 − 𝛽2) 

+
2𝛼𝜃𝑏2
1 − 𝛽2

− 
2𝛼𝜃𝛽2
1 − 𝛽2

−
(2𝛼𝜃)2𝛽2
1 − 𝛽2

  

       = 1 +
(1 − 𝑏2)

2(1 − 𝛽1)

(1 − 𝛽2)(𝛽1 − 𝛽2)
−
(2𝛼𝜃)2𝛽2

1 − 𝛽2 
+

2𝛼𝜃

(1 − 𝛽2)(𝛽1 − 𝛽2)
 

            +{𝛽2(1 − 𝑏2)(1 − 𝛽1) + (1 − 𝛽2)( 𝑏2𝛽1 − 𝛽2) + (𝑏2 − 𝛽2)(𝛽1 − 𝛽2)}  

         = 1 +
(1 − 𝑏2)

2(1 − 𝛽1)

(1 − 𝛽2)(𝛽1 − 𝛽2)
−
4𝛼2𝜃2𝛽2

1 − 𝛽2 
+
4𝛼𝜃(𝑏2 − 𝛽2)

1 − 𝛽2
 

𝐶 = 𝑇 ⇒  

 4𝛼2𝜃2 +
4𝛼2𝜃2𝛽2

1 − 𝛽2 
− 8𝛼𝜃2 + 4𝛼𝜃 −

4𝛼𝜃(𝑏2 − 𝛽2)

1 − 𝛽2
+ 4𝜃2 (1 −

1

2𝜃
)

2

−
(1 − 𝑏2)

2(1 − 𝛽1)

(1 − 𝛽2)(𝛽1 − 𝛽2)
− 1 = 0 

⟹
4𝛼2𝜃2

1 − 𝛽2
− 8𝛼𝜃2 +

4𝛼𝜃 − 4𝛼𝜃(𝑏2 − 𝛽2)

1 − 𝛽2
+ 4𝜃2 (1 −

1

2𝜃
)
2

−
(1 − 𝑏2)

2(1 − 𝛽1)

(1 − 𝛽2)(𝛽1 − 𝛽2)

− 1 = 0 

⟹ 𝛼2 − 2(1 − 𝛽2)𝛼 +
1

𝜃
(1 − 𝑏2)𝛼 + (1 − 𝛽2) (1 −

1

2𝜃
)
2

−
(1 − 𝑏2)

2(1 − 𝛽1)

(1 − 𝛽2)(𝛽1 − 𝛽2)

−
(1 − 𝛽1)

4𝜃2
= 0 

⟹ 𝛼2 − 2𝛼 {(1 − 𝛽2) −
(1 − 𝑏2)

2𝜃
} + (1 − 𝛽2) (1 −

1

𝜃
) −

(1 − 𝑏2)
2(1 − 𝛽1)

(1 − 𝛽2)(𝛽1 − 𝛽2)4𝜃
2
= 0 
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𝛼 = (1 − 𝛽2) −
(1 − 𝑏2)

2𝜃
−
1

2

√
  
  
  
 
  

4 {(1 − 𝛽2) −
(1 − 𝑏2)

2𝜃
}

2

− 4(1 − 𝛽2) (1 −
1

𝜃
) 

+ 
4(1 − 𝑏2)

2(1 − 𝛽1)

(𝛽1 − 𝛽2)4𝜃
2

 

= (1 − 𝛽2 −
1 − 𝑏2

2𝜃
) −

√
  
  
  
  
 
(1 − 𝛽2)

2 − 
(1 − 𝑏2)(1 − 𝛽1)

𝜃
+
(1 − 𝑏2)

2

4𝜃2
− (1 − 𝛽2) (1 −

1

𝜃
)

 

+ 
(1 − 𝑏2)

2(1 − 𝛽1)

(𝛽1 − 𝛽2)4𝜃
2

 

= (1 − 𝛽2 −
1 − 𝑏2
2𝜃

) − √(1 − 𝛽2)
2 − (1 − 𝛽2) + (1 −

𝑏2
𝜃
) + 

(1 − 𝑏2)
2(1 − 𝛽2)

4𝜃2(𝛽1 − 𝛽2)
 

= (1 − 𝛽2 −
1 − 𝑏2
2𝜃

) − √(1 − 𝛽2) {1 − 𝛽2 − 1 +
𝑏2
𝜃
+ 

(1 − 𝑏2)
2

4𝜃2(𝛽1 − 𝛽2)
} 

𝛼 = 1 − 𝛽2 −
1 − 𝑏2

2𝜃
− √(1 − 𝛽2) { 

(1 − 𝑏2)
2

4𝜃2(𝛽1 − 𝛽2)
− 𝛽2  +

𝑏2

𝜃
} 
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Phase III (Crack length, ah) 

 

 

 

 

 

 

 

 

𝐶 =
1

2
 𝑓𝑡
 𝑦0

𝑦∗
  .   𝑦0𝑡 =  

 𝑓𝑡𝑡ℎ

𝜃
 {(1 − 𝛼)𝜃 −

1

2
}
2

,    𝑎𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 

𝑇1 =
1

2
  𝑓𝑡  𝑦

∗𝑡 =
 𝑓𝑡𝑡ℎ

4𝜃
                                            ,     𝑎𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 

𝑇2 =
𝑡

2
{ 𝑓𝑡 +  𝑓𝑡(1 − 𝛼1𝑤1)}( 𝑦1 −  𝑦0 − y

∗ ) 

𝑇3 =
𝑡

2
{  𝑓𝑡(1 − 𝛼1𝑤1)}( 𝑦2 −  𝑦1  ) 

𝑦1 =  𝑦0 +
1

2𝜑
[𝜁1 + 𝑤1(1 − 𝛽1)]      𝜁1 =

 𝑓𝑡𝑠𝑏1

𝐸
=  
 𝑓𝑡𝑠

𝐸
  

𝑦2 =  𝑦0 +
1

2𝜑
[𝜁2 + 𝑤2(1 − 𝛽2)]      𝜁2 =

 𝑓𝑡𝑏2𝑠

𝐸
 

𝑦1 − 𝑦0 − 𝑦∗ =
1

2𝜑
[
 𝑓𝑡𝑠

𝐸
+ 𝑤1(1 − 𝛽1)] −

ℎ

2𝜃
      

                         = 𝑦∗ +
𝑤1
2𝜑

(1 − 𝛽1) − 𝑦∗ = 
𝑤1
2𝜑

(1 − 𝛽1);        𝑦
∗ = 

𝑠𝑓𝑡
2𝜑𝐸

    

        𝑦2 − 𝑦1  =  
1

2𝜑
[𝜁2 − 𝜁1 + 𝑤2(1 − 𝛽2) − 𝑤1(1 − 𝛽1)]     

                        =  𝑦∗(𝑏2 − 1) +
1

2𝜑
[𝑤2(1 − 𝛽2) − 𝑤1(1 − 𝛽1)]     

C 

y* 

ft(1-a1w1) 

 

ft(yo/y*) 

yo/3 

y1
 

y2
 

h 

N 

T1 

T2 

T3 

d 

 

ft 

yo
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                        = − 
ℎ

2𝜃
(𝑏2 − 1) +

1

2𝜑
[𝑤2(1 − 𝛽2) − 𝑤1(1 − 𝛽1)]     

Note: 𝑤1 = 
1−𝑏2

𝑎1−𝑎2
,          𝑤2 = 

𝑏2

𝑎2
     

 

𝑦1 − 𝑦0 − 𝑦∗ =
𝑤1

2𝜑
(1 − 𝛽1) =

(1 − 𝑏2)(1 − 𝛽1)

2𝜑(𝑎1 − 𝑎2)
=   

(1 − 𝑏2)(1 − 𝛽1)
2𝜑𝐸

 𝑓𝑡𝑠
(𝛽1 − 𝛽2)

 

                         =
𝑦∗(1 − 𝑏2)(1 − 𝛽1)

(𝛽1 − 𝛽2)
=  

ℎ

2𝜃

(1 − 𝑏2)(1 − 𝛽1)

(𝛽1 − 𝛽2)
  

𝑦2 − 𝑦1 =
ℎ

2𝜃
(1 − 𝑏2) +

1

2𝜑
[
𝑏2

𝑎2
(1 − 𝛽2) −

(1 − 𝑏2)

𝑎1 − 𝑎2
(1 − 𝛽1)] 

 

               =
ℎ

2𝜃
(1 − 𝑏2) +

1

2𝜑
[
𝑏2(1 − 𝛽2)

𝛽2
−  

(1 − 𝑏2)(1 − 𝛽1)

𝛽1 − 𝛽2
]  

               =
ℎ

2𝜃
[
−(1 − 𝑏2)𝛽2(𝛽1 − 𝛽2) + 𝑏2(1 − 𝛽2)(𝛽1 − 𝛽2) − (1 − 𝑏2)(1 − 𝛽2) 𝛽2

𝛽2(𝛽1 − 𝛽2)
] 

               =
ℎ

2𝜃
[
(1 − 𝛽2)(𝛽1𝑏2 − 𝛽2)

𝛽2(𝛽1 − 𝛽2)
] 

𝑇2 + 𝑇3  =  
 𝑓𝑡𝑡ℎ

4𝜃
(2 − 𝛼1𝑤1)

(1 − 𝑏2)(1 − 𝛽1)

(𝛽1 − 𝛽2)
+
 𝑓𝑡𝑡ℎ

4𝜃
(1

− 𝛼1𝑤1)
(1 − 𝛽2)(𝛽1𝑏2 − 𝛽2)

𝛽2(𝛽1 − 𝛽2) 
 

𝑁𝑜𝑡𝑒:       𝛼1𝑤1
(1 − 𝑏2)𝑎2

(𝑎1 − 𝑎2)
=
(1 − 𝑏2)𝛽1

𝛽1 − 𝛽2
 

1 − 𝛼1𝑤1 = 1 −
(1 − 𝑏2)𝛽1

𝛽1 − 𝛽2
=
𝑏2𝛽1 − 𝛽2

(𝛽1 − 𝛽2)
 

2 − 𝛼1𝑤1 = 2 −
(1 − 𝑏2)𝛽1

𝛽1 − 𝛽2
=
𝛽1 − 2𝛽2 + 𝑏2𝛽1

(𝛽1 − 𝛽2)
= 1 + 

𝑏2𝛽1 − 𝛽2

𝛽1 − 𝛽2
 

𝑇2 + 𝑇3  =  
 𝑓𝑡𝑡ℎ

4𝜃
{[1 +

𝑏2𝛽1 − 𝛽2

𝛽1 − 𝛽2
]
(1 − 𝑏2)(1 − 𝛽1)

(𝛽1 − 𝛽2)
+
(𝑏2𝛽1 − 𝛽2)

2(1 − 𝛽2)

(𝛽1 − 𝛽2)
2 𝛽2

} 

                =  
 𝑓𝑡𝑡ℎ

4𝜃
{
(1 − 𝑏2)(1 − 𝛽1)

(𝛽1 − 𝛽2)
+
(𝑏2𝛽1 − 𝛽2)(1 − 𝑏2)(1 − 𝛽2)

(𝛽1 − 𝛽2)
2

+
(𝑏2𝛽1 − 𝛽2)

2(1 − 𝛽2)

(𝛽1 − 𝛽2)
2 𝛽2

} 

                =  
 𝑓𝑡𝑡ℎ

4𝜃
{
(1 − 𝑏2)(1 − 𝛽1)

(𝛽1 − 𝛽2)
+
(𝑏2𝛽1 − 𝛽2)

(𝛽1 − 𝛽2)
2𝛽2

+ [(1 − 𝑏2)(1 − 𝛽1)𝛽2 + (𝑏2𝛽1 − 𝛽2)𝛽2]} 
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                = 
 𝑓𝑡𝑡ℎ

4𝜃
{
(1 − 𝑏2)(1 − 𝛽1)

(𝛽1 − 𝛽2)
+
(𝑏2𝛽1 − 𝛽2)(𝑏2 − 𝛽2)

(𝛽1 − 𝛽2)𝛽2
} 

                = 
 𝑓𝑡𝑡ℎ

4𝜃
{
𝛽2 − 𝑏2𝛽2 − 𝛽1𝛽2 + 𝑏2𝛽1𝛽2 + 𝑏2

2𝛽1 − 𝛽2𝑏2 − 𝑏2𝛽1𝛽2 + 𝛽2
2

𝛽2(𝛽1 − 𝛽2)
} 

 

𝑇1 + 𝑇2 + 𝑇3    =  
 𝑓𝑡𝑡ℎ

4𝜃
{1 +

𝛽2 − 𝑏2𝛽2 − 𝛽1𝛽2 + 𝑏2
2𝛽1 − 𝛽2𝑏2 + 𝛽2

2

𝛽2(𝛽1 − 𝛽2)
} 

                            = 
 𝑓𝑡𝑡ℎ

4𝜃
{
𝛽1𝛽2 − 𝛽2

2 + 𝛽2 − 𝑏2𝛽2 − 𝛽1𝛽2 + 𝑏2
2𝛽1 − 𝛽2𝑏2 + 𝛽2

2

𝛽2(𝛽1 − 𝛽2)
} 

                            = 
 𝑓𝑡𝑡ℎ

4𝜃
{
𝛽2(1 − 𝑏2) + 𝑏2(𝑏2𝛽1 − 𝛽2)

𝛽2(𝛽1 − 𝛽2)
} 

𝐶 = 𝑇 ⇒  

4 {(1 − 𝛼)𝜃 −
1

2
}
2

=
𝛽2(1 − 𝑏2) + 𝑏2(𝑏2𝛽1 − 𝛽2)

𝛽2(𝛽1 − 𝛽2)
 

 𝛼2 − 2(1 −
1

2𝜃
) 𝜀 + (1 −

1

2𝜃
)

2

−
𝛽2(1 − 𝑏2) + 𝑏2(𝑏2𝛽1 − 𝛽2)

4𝜃2𝛽2(𝛽1 − 𝛽2)
= 0 

𝛼 = (1 −
1

2𝜃
) −

1

2
√4 (1 −

1

𝜃
)

2

− 4(1−
1

𝜃
)

2

+
4𝛽2(1 − 𝑏2) + 4𝑏2(𝑏2𝛽1 − 𝛽2)

4𝜃2𝛽2(𝛽1 − 𝛽2)
 

𝛼 = 1 −
1

2𝜃
−
1

2𝜃
√
𝛽2(1 − 𝑏2) + 4𝑏2(𝑏2𝛽1 − 𝛽2)

𝛽2(𝛽1 − 𝛽2)
 

𝛼 = 1 −
1

2𝜃
(1 + √

(1− 𝑏2)
2

𝛽1 − 𝛽2
+
𝑏2

2

𝛽2
 ) 
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Phase III (Moment, 𝜇) 

𝐶 = 
 𝑓𝑡𝑡ℎ

𝜃
{(1 − 𝛼)𝜃 −

1

2
}

2

,   as before  

𝑇1  =
1

2
 𝑓𝑡  𝑦

∗𝑡 =
 𝑓𝑡𝑡ℎ

4𝜃
  ,          as before    

𝑇2  = 𝑇21 + 𝑇22 

𝑇21 = 𝑡𝑓𝑡(1 − 𝑎1𝑤1)(𝑦1 − 𝑦0 − 𝑦∗) 

𝑇22 =
𝑡

2
{ 𝑓𝑡− 𝑓𝑡(1 − 𝑎1𝑤1)}(𝑦1 − 𝑦0 − 𝑦∗) 

𝑇3 =
𝑡

2
{ 𝑓𝑡(1 − 𝑎1𝑤1)}(𝑦2 − 𝑦1) 

 𝑦1 − 𝑦0 − 𝑦∗ =
ℎ

2𝜃
.
 (1−𝑏2) (1−𝛽)

(𝛽1−𝛽2)
 ,             as before     

𝑦2 − 𝑦1 = 
ℎ

2𝜃
[
 (1 − 𝑏2) (𝛽1𝑏2 − 𝛽2)

𝛽2(𝛽1 − 𝛽2)
]  ,      as before   

 

𝑦∗∗∗ =
𝑇1 (

2𝑦∗

3
) + 𝑇21 (

𝑦1−𝑦0−𝑦
∗

2
+ 𝑦∗) + 𝑇22 (

𝑦1−𝑦0−𝑦
∗

3
+ 𝑦∗) + 𝑇3 (

𝑦2−𝑦1

3
+ (𝑦1 − 𝑦0))

𝑇1 + 𝑇21 + 𝑇22 + 𝑇3
 

 

𝑁𝑜𝑡𝑒 ∶  𝑇1 + 𝑇2 + 𝑇3 = 𝐶 = 𝑇 

𝑀 = 𝐶 (
2𝑦0
3
+ 𝑦∗∗∗) 

     = 𝐶 (
2𝑦0
3
) + 𝐶𝑦∗∗∗ 

𝑀 = 𝐶 (
2𝑦0

3
) + 𝑇1 (

2𝑦∗

3
) + 𝑇21 (

𝑦1 − 𝑦0 − 𝑦∗

2
+ 𝑦∗) 

+𝑇22 (
𝑦1 − 𝑦0 − 𝑦∗

3
+ 𝑦∗) + 𝑇3 (

𝑦2 − 𝑦1

3
+ (𝑦1 − 𝑦0 − 𝑦∗) + 𝑦∗) 

 

𝑙𝑒𝑡 𝑐 =
 (1 − 𝑏2) (1 − 𝛽)

(𝛽1 − 𝛽2)
   𝑡ℎ𝑒𝑛 , 𝑦1 − 𝑦0 − 𝑦∗ = 

ℎ𝑐

2𝜃
  

 

C 

y***  

yo/3 

N 

T 

yo 

C 

y* 

ft(1-a1w1) 

 

ft(yo/y*) 

yo/3 

y1
 

y2
 

h 

N 

T1 

T2 

T3 

d 

yo
 

 

T22 

T21 
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𝑀 = 𝐶 (
2𝑦0

3
) + 𝑇1 (

2𝑦∗

3
) + 𝑇21 (

ℎ𝑐

4𝜃
+ 𝑦∗) + 𝑇22 (

ℎ𝑐

6𝜃
+ 𝑦∗)

+ 𝑇3 (
ℎ

6𝜃
[
 (1 − 𝛽2) (𝛽1𝑏2 − 𝛽2)

𝛽2(𝛽1 − 𝛽2)
] +

ℎ𝑐

2𝜃
+ 𝑦∗) 

𝑀 = 𝐶 (
2𝑦0

3
) + (𝑇1 + 𝑇21 + 𝑇22 + 𝑇3)𝑦

∗ − 𝑇1 (
𝑦∗

3
) + 𝑇21 (

ℎ𝑐

4𝜃
) + 𝑇22 (

ℎ𝑐

6𝜃
)

+ 𝑇3 (
ℎ

6𝜃
[
 (1 − 𝛽2) (𝛽1𝑏2 − 𝛽2)

𝛽2(𝛽1 − 𝛽2)
] +

ℎ𝑐

2𝜃
) 

 

2𝑦0

3
+ 𝑦∗ = 1 − 𝛼 −

𝑦0

3ℎ
 ,    𝑦∗ =

ℎ

2𝜃
                                as before  

 

𝑀 = 𝐶 (
2𝑦0

3
+ 𝑦∗) − 𝑇1 (

𝑦∗

3
) + 𝑇21 (

ℎ𝑐

4𝜃
) + 𝑇22 (

ℎ𝑐

6𝜃
) + 𝑇3 (

ℎ

6𝜃
[
 (1 − 𝛽2) (𝛽1𝑏2 − 𝛽2)

𝛽2(𝛽1 − 𝛽2)
] +

ℎ𝑐

2𝜃
) 

𝑀 = 
 𝑓𝑡𝑡ℎ

𝜃
{(1 − 𝛼)𝜃 −

1

2
}
2

(1 − 𝛼 −
𝑦0

3ℎ
) −

 𝑓𝑡𝑡ℎ

4𝜃
(
ℎ

6𝜃
) 

+ 𝑓𝑡(1 − 𝑎1𝑤1)
ℎ𝑐

2𝜃
(
ℎ𝑐

4𝜃
) +

𝑡

2
{ 𝑓𝑡− 𝑓𝑡(1 − 𝑎1𝑤1)}

ℎ𝑐

2𝜃
(
ℎ𝑐

6𝜃
) 

+{
𝑡

2
{ 𝑓𝑡− 𝑓𝑡(1 − 𝑎1𝑤1)}  

ℎ

2𝜃
[
 (1 − 𝛽2) (𝛽1𝑏2 − 𝛽2)

𝛽2(𝛽1 − 𝛽2)
]}( 

ℎ

6𝜃
[
 (1 − 𝛽2) (𝛽1𝑏2 − 𝛽2)

𝛽2(𝛽1 − 𝛽2)
] +

ℎ𝑐

2𝜃
) 

 

1 − 𝑎1𝑤1 =
𝑏2𝛽1 − 𝛽2

(𝛽1 − 𝛽2)
                                                     as before 

 

𝑀 = 
 𝑓𝑡𝑡ℎ

𝜃
{(1 − 𝛼)𝜃 −

1

2
}
2

(1 − 𝛼 −
𝑦0

3ℎ
) −

 𝑓𝑡𝑡ℎ

4𝜃
(
ℎ

6𝜃
) 

+𝑡𝑓𝑡
𝑏2𝛽1 − 𝛽2

𝛽1 − 𝛽2

ℎ𝑐

2𝜃
(
ℎ𝑐

4𝜃
) +

𝑓𝑡𝑡

2
{1 −

𝑏2𝛽1 − 𝛽2

𝛽1 − 𝛽2
}
ℎ𝑐

2𝜃
(
ℎ𝑐

6𝜃
) 

+{
𝑡𝑓𝑡

2
{
𝑏2𝛽1 − 𝛽2

𝛽1 − 𝛽2
}  
ℎ

2𝜃
[
 (1 − 𝛽2) (𝛽1𝑏2 − 𝛽2)

𝛽2(𝛽1 − 𝛽2)
]}( 

ℎ

6𝜃
[
 (1 − 𝛽2) (𝛽1𝑏2 − 𝛽2)

𝛽2(𝛽1 − 𝛽2)
] +

ℎ𝑐

2𝜃
) 

𝑀 = 
 𝑓𝑡𝑡ℎ

𝜃
{(1 − 𝛼)𝜃 −

1

2
}
2

(1 − 𝛼 −
1

3
(1 − 𝛼 −

1

2𝜃
)) −

 𝑓𝑡𝑡ℎ
2

24𝜃2
 

+
 𝑓𝑡ℎ

2𝑐2 

8𝜃2
𝑏2𝛽1 − 𝛽2

(𝛽1 − 𝛽2)
+
 𝑓𝑡𝑡ℎ

2𝑐2 

24𝜃2
{1 −

𝑏2𝛽1 − 𝛽2

(𝛽1 − 𝛽2)
} 
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+
𝑓𝑡ℎ2 

24𝜃2
{
𝑏2𝛽1 − 𝛽2

𝛽1 − 𝛽2
}  [
 (1 − 𝛽2) (𝛽1𝑏2 − 𝛽2)

𝛽2(𝛽1 − 𝛽2)
]

2

+
𝑓𝑡ℎ2c 

8𝜃2
{
  𝑏2𝛽1 − 𝛽2

 (𝛽1 − 𝛽2)
}
 (1 − 𝛽2) (𝛽1𝑏2 − 𝛽2)

𝛽2(𝛽1 − 𝛽2)
 

 

 

6𝑀 

 𝑓𝑡ℎ
2𝑡
=

6

ℎ𝜃
{(1 − 𝛼)𝜃 −

1

2
}
2

(
2

3
+
1

2𝜃
) −

1

4𝜃2
+
3𝑐2 

4𝜃2
𝑏2𝛽1 − 𝛽2
(𝛽1 − 𝛽2)

+
𝑐2 

4𝜃2
{1 −

𝑏2𝛽1 − 𝛽2
(𝛽1 − 𝛽2)

} 

+
1

4𝜃2
{
𝑏2𝛽1 − 𝛽2
(𝛽1 − 𝛽2)

} [
 (1 − 𝛽2) (𝛽1𝑏2 − 𝛽2)

𝛽2(𝛽1 − 𝛽2)
]

2

+
3𝑐 

4𝜃2
{
  𝑏2𝛽1 − 𝛽2

 (𝛽1 − 𝛽2)
}
 (1 − 𝛽2) (𝛽1𝑏2 − 𝛽2)

𝛽2(𝛽1 − 𝛽2)
 

 

 

𝜇 = 4(1 − 3𝛼 + 3𝛼2 − 𝛼3)𝜃 − 3 + 6𝛼 − 3𝛼2 +
1

4𝜃2
(1 −

𝑏2

𝛽2
) (1 −

𝑏2

𝛽2
+ 𝑐) (1 +

𝛽1𝑐

1 − 𝛽1
) + (

𝑐 

2𝜃
)
2
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Phase II (Moment, 𝜇) 

𝑇1  =
1

2
 𝑓𝑡  𝑦

∗𝑡 =
 𝑓𝑡𝑡ℎ

4𝜃
  

𝑇2  = 𝑇21 + 𝑇22 

𝑇21 = 𝜎(𝑤(𝑦1))𝑡𝑑
∗ 

𝑇22 =
1

2
{ 𝑓𝑡−𝜎(𝑤(𝑦1))}𝑡𝑑

∗ 

𝑇3  = 𝑇31 + 𝑇32 

𝑇31 = {𝜎(𝑤(ℎ))}𝑡(𝑑 − 𝑑∗) 

𝑇32 =
1

2
{𝜎(𝑤(𝑦1)) − 𝜎(𝑤(ℎ))}𝑡(𝑑 − 𝑑∗) 

𝑑∗ = 𝑦1 − 𝑦0 − 𝑦∗ 

𝑑 − 𝑑∗ = ℎ − 𝑦1 

𝜎(𝑤(𝑦1)) =  
𝑓𝑡  𝑏2  𝛽1 − 𝛽2
(𝛽1 − 𝛽2)

 

𝜎(𝑤(ℎ)) =
𝑓𝑡  (𝑏2 − (1 + 2𝛼𝜃) 𝛽2)

(11 − 𝛽2)
 

𝑇21 =
𝑓𝑡  𝑡𝑑

∗ (𝑏2 𝛽1 − 𝛽2)

(𝛽1 − 𝛽2)
 

𝑇22 =
𝑡𝑑∗𝑓𝑡

2
{1 −

  (𝑏2  𝛽1 − 𝛽2)

(𝛽1 − 𝛽2)
} 

𝑇31 = {
𝑓𝑡  𝑡(𝑑 − 𝑑∗)(𝑏2 − (1 + 2𝛼𝜃) 𝛽2)

(11 − 𝛽2)
} 

𝑇32 =
𝑓𝑡  𝑡(𝑑 − 𝑑∗)

2
{
(𝑏2  𝛽1 − 𝛽2)

(𝛽1 − 𝛽2)
−
(𝑏2 − (1 + 2𝛼𝜃) 𝛽2)

(11 − 𝛽2)
} 

  

𝑁𝑜𝑡𝑒 ∶  𝑇1 + 𝑇2 + 𝑇3 = 𝐶 = 𝑇 

d*= y1- y0- y
* T22 

ft 

d*/2 

T21 

d*/3 

σ(w(y1)) 

ft 

N.A 

2y*/3 

T1 

d-d* T32 

σ(w(y1)) 

d-d*/2 

T31 

d-d*/3 

σ(w(h)) 
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𝑦∗∗∗

=
𝑇1 (

2𝑦∗

3
) + 𝑇21 (𝑦

∗ +
𝑑∗

2
) + 𝑇22 (𝑦

∗ +
𝑑∗

3
) + 𝑇31 (𝑦

∗ + 𝑑∗ +
𝑑−𝑑∗

2
) + 𝑇32 (𝑦

∗ + 𝑑∗+
𝑑−𝑑∗

3
)

𝑇1 + 𝑇21 + 𝑇22 + 𝑇31+𝑇32
 

 

𝑀 = 𝐶 (
2𝑦0

3
+ 𝑦∗∗∗) 

     = 𝐶 (
2𝑦0

3
) + 𝐶𝑦∗∗∗ 

𝑀 = 𝐶 (
2𝑦0

3
) + 𝑇1 (

2𝑦∗

3
) + 𝑇21 (𝑦

∗ +
𝑑∗

2
) + 𝑇22 (𝑦

∗ +
𝑑∗

3
) 

          +𝑇31 (𝑦
∗ + 𝑑∗ +

𝑑 − 𝑑∗

2
) + 𝑇32 (𝑦

∗ + 𝑑∗ +
𝑑 − 𝑑∗

3
) 

𝑀 = 𝐶 (
2𝑦0

3
) + 𝑇1 (

2𝑦∗

3
) + 𝑇21(𝑦

∗) + 𝑇21 (
𝑑∗

2
) + 𝑇22(𝑦

∗) + 𝑇22 (
𝑑∗

3
)    

          +𝑇31(𝑦
∗) + 𝑇31(𝑑

∗) + 𝑇31 (
𝑑 − 𝑑∗

2
) + 𝑇32(𝑦

∗) + 𝑇32(𝑑
∗) + 𝑇32 (

𝑑 − 𝑑∗

3
) 

𝑀 = 𝐶 (
2𝑦0
3
) + (𝑇1 + 𝑇21 + 𝑇22 + 𝑇31 + 𝑇32) 𝑦

∗ − 𝑇1 (
𝑦∗

3
) + (𝑇1 + 𝑇21 + 𝑇22 + 𝑇31 + 𝑇32)𝑑

∗

− 𝑇1𝑑
∗ −

1

2
𝑇21𝑑

∗ −
2

3
𝑇22𝑑

∗ −
1

2
𝑇31𝑑

∗ −
1

2
𝑇32𝑑

∗ −
1

2
𝑇31𝑑 +

1

2
𝑇32𝑑 

 

𝑀 = 𝐶 (
2𝑦0

3
) + 𝐶𝑦∗ − 𝑇1 (

𝑦∗

3
) + 𝐶𝑑∗ − 𝑑∗(𝑇1 + 𝑇21 + 𝑇22 + 𝑇31 + 𝑇32) +

1

2
𝑇21𝑑

∗

+
1

3
𝑇22𝑑

∗ +
1

2
𝑇31𝑑

∗ +
1

2
𝑇32𝑑

∗ +
1

2
𝑇31𝑑 +

1

2
𝑇32𝑑 

 

𝑀 = 𝐶 (
2𝑦0

3
) + 𝐶𝑦∗ − 𝑇1 (

𝑦∗

3
) + 𝐶𝑑∗ − 𝐶𝑑∗ +

1

2
𝑇21𝑑

∗ +
1

3
𝑇22𝑑

∗ +
1

2
𝑇31𝑑

∗ +
1

2
𝑇32𝑑

∗

+
1

2
𝑇31𝑑 +

1

2
𝑇32𝑑 

 

𝑀 =  
 𝑓𝑡ℎ𝑡

𝜃
{(1 − 𝛼)𝜃 −

1

2
}
2

(
2𝑦0

3
)+ 

 𝑓𝑡ℎ𝑡

𝜃
{(1 − 𝛼)𝜃 −

1

2
}
2

𝑦∗ − 𝑇1 (
𝑦∗

3
) +

1

2
𝑇21𝑑

∗

+
1

3
𝑇22𝑑

∗ +
1

2
𝑇31𝑑

∗ +
1

2
𝑇32𝑑

∗ +
1

2
𝑇31𝑑 +

1

2
𝑇32𝑑 

 

C 

y*** 

T 

2yo/3 
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𝑀 =  
 𝑓𝑡ℎ𝑡

𝜃
{(1 − 𝛼)𝜃 −

1

2
}
2

(𝑦∗ +
2𝑦0
3
) −

 𝑓𝑡ℎ𝑡

4𝜃
(
𝑦∗

3
) +

𝑑∗

2

𝑓𝑡  𝑡𝑑
∗ (𝑏2 𝛽1 −𝛽2)

(𝛽1 − 𝛽2)

+
1

3

 𝑡𝑑∗2𝑓𝑡 

2
{1 −

 (𝑏2 𝛽1 −𝛽2)

(𝛽1 − 𝛽2)
} +

𝑑∗

2
{
𝑓𝑡  𝑡(𝑑 − 𝑑∗)(𝑏2 − (1+ 2𝛼𝜃) 𝛽2)

(1 − 𝛽2)
}

+
𝑑∗

2

𝑓𝑡  𝑡(𝑑 − 𝑑
∗)

2
{1 −

 (𝑏2 𝛽1 − 𝛽2)

(𝛽1 − 𝛽2)
−
(𝑏2 − (1 + 2𝛼𝜃) 𝛽2)

(1 − 𝛽2)
}

+
𝑑

2
{
𝑓𝑡  𝑡(𝑑 − 𝑑

∗)(𝑏2 − (1 + 2𝛼𝜃) 𝛽2)

(1 − 𝛽2)
}

+
𝑑

2

𝑓𝑡  𝑡(𝑑 − 𝑑
∗)

2
{
 (𝑏2 𝛽1 −𝛽2)

(𝛽1 − 𝛽2)
−
(𝑏2 − (1+ 2𝛼𝜃) 𝛽2)

(1 − 𝛽2)
} 

 

𝑑∗ = 𝑦1 − 𝑦0 − 𝑦∗ ==
ℎ

2𝜃
.
 (1−𝑏2) (1−𝛽)

(𝛽1−𝛽2)
     ,  𝑑 − 𝑑∗ = ℎ − 𝑦1    

 

𝑀 =  
 𝑓𝑡ℎ𝑡

𝜃
{(1 − 𝛼)𝜃 −

1

2
}
2

(ℎ − 𝑑 −
𝑦0
3
) −

 𝑓𝑡ℎ𝑡

4𝜃
(
𝑦∗

3
)+ {

ℎ

4𝜃
.
 (1 − 𝑏2) (1 − 𝛽)

(𝛽1 −𝛽2)
}

2
 𝑓𝑡𝑡 (𝑏2 𝛽1 −𝛽2)

2(𝛽1 − 𝛽2)

+
 𝑡𝑓𝑡
6
{
ℎ

4𝜃
.
 (1 − 𝑏2) (1 − 𝛽)

(𝛽1 − 𝛽2)
}

2

{1 −
(𝑏2 𝛽1 −𝛽2)

(𝛽1 − 𝛽2)
} 

 

 

𝜇 = 4𝜃 (1 − 3𝛼 + 3𝛼2 −
𝛼3

1 − 𝛽2
) − 3 + 6𝛼 −

(1 − 𝑏2)(3𝛼
2 − (𝑐 2𝜃⁄ )2

1 − 𝛽2
 

 

 

 

These expressions were coded in MATLAB Program that is appended 

below:
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%******************************************************************* 
%                          CARDIFF UNIVERSITY                               
%                         SCHOOL OF ENGINEERING                             
% A MATLAB code for Determination of the static response of self- 
% compacting UHPFRC beams under three-point bending, using a 
% bilinear tension-softening (stress-crack opening) relationship 
% based on the fictitious crack model (Non-Linear Cracked Hinge          

Model) 
%******************************************************************* 
%     References 
% 1. Hillerborg A. (1980). Analysis of fracture by means of the 
%    fictitious crack model, particularly for fibre-reinforced 
%    concrete, Int J Cement Composites, 2, 177-184. 
% 2. Hillerborg A., Modeer M. and Petersson P. (1976). Analysis of  
%    crack formation and crack growth in concrete by means of 
%    fracture mechanics and finite elements, Cement Concrete  
%    Research, 6, 773-782. 
% 3. Olesen J.F. (2001). Fictitious crack propagation in fibre- 
%    reinforced concrete beams, J Engineering Mechanics, 127, 272-80 
%*******************************************************************                     

%                       Part One Load Deflection Response 
%******************************************************************* 
%     List of variables 
%     Name              Description 
%     -----             ------------ 
%     alp0              Initial notch depth to beam depth ratio 
%     db                beam depth, mm 
%     h                 Height of the hinge, mm  
%     L                 Span length of the TPB, mm 
%     t                 Thickness of the hinge, mm 
%     S                 Width of the hinge, mm 
%     al, a2, b1 & b2    Parameters for the bilinear relation 
%     a1 & a2           1/mm 
%     b1 & b2           Dimensionless 
%     E                 Young modulus, GPa 
%     ft                Splitting tensile strength, GPa 
 %******************************************************************* 
clc 
clear all 
close all 
%******************************************************************* 
%     Enter the beam dimensions details 
%******************************************************************* 
L=400;                            %  the span length; 
t=100;                            %  the normal thickness;                                         
db=100;                           %  the beam depth; 
a0=60;   
themin=0; 
themax=2000; 
%******************************************************************* 

%      Enter a1, a2, b2, ft, E limits values 
%******************************************************************* 
a1=0.256; 
a2=0.11; 
b2=0.63; 
ft=0.01044; 
E1=45.25; 
alp0=a0/db; 
h=(1-alp0)*db; 
s=0.5*h; 
%******************************************************************* 
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%*******************************************************************  
rho=0; 
k=0; 
increment=themax/999; 

  

for the=themin :increment:themax  
the01=1-rho ; 
bet1=ft*a1*s/E1; 
bet2=ft*a2*s/E1; 
c =(1-b2)*(1-bet1)/(bet2-bet1);     
the12=.5*(1-rho-c+((1-rho-c)^2+c^2/(bet1-1))^0.5);  
the23=.5*(rho*(bet2-1)+b2/bet2+(rho^2*(bet2-1)^2+2*rho*(bet2-1)*b2/bet2+(1-

b2)^2/(bet1 -bet2)+b2^2/bet2)^.5); 
mu=the; 
%******************************************************************* 
% Alpha & Mu Calculation 
%******************************************************************* 
% For phase 0 
if (0<=the & the<=the01)  
alp = 0; 
mu = the; 
def = 0; 

  
%------------------------------------------------------------------- 
% For phase I 
%-------------------------------------------------------------------  
elseif(the01<the && the<the12) 
bi=1 ; 
beti = bet1; 
alp = 1-bet1-((1-bet1)*((1-rho)/the-bet1))^.5; 
mu = 4*(1-3*alp+3*alp^2-alp^3/(1-bet1))*the+(6*alp-3)*(1-rho); 

  
%-------------------------------------------------------------------  
 % For phase II 
%-------------------------------------------------------------------  
elseif(the12<the && the<the23)  
bi = b2; 
beti = bet2; 
alp =1-bet2-(1-b2)/(2*the)-(( 1-bet2)*(( 1-b2)^2/(4*the^2)/(bet1 -bet2)-

bet2+(b2-rho)/the))^.5; 
mu = 4*(1-3*alp+3*alp^2-alp^3/(1-bet2))*the+(6*alp-3)*(1-rho)-(((1-

b2)*(3*alp^2-(c/(2*the))^2))/(1-bet2)); 

  
%-------------------------------------------------------------------   
 % For phase III 
%-------------------------------------------------------------------  
elseif(the23<the) 
bi =0; 
beti = 0; 
alp = 1 -1 /(2*the)*(1+((1-b2)^2/(bet1-bet2)+b2^2/bet2-4*rho*the)^.5); 
mu = 4*(1-3*alp+3*alp^2-alp^3)*the+(6*alp-3)*(1-rho)-

3*alp^2+1/(4*the^2)*(1-b2/bet2)*(1-b2/bet2+c)*(1+bet1*c/(1-

bet1))+(c/(2*the))^2; 
end 
k=k+1; 
def = the+((L/(3*s))-1)*mu; 
pp(k) = (2/3*ft*h^2*t/L)*mu; 
DEF(k)= def *L*s*ft/(2*h*E1); 
end 
Sami = [DEF;pp]; 
x = Sami(:,1);        % the x value  
y = Sami(:,2);        % the y value 
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sortedValuesload = unique(pp(:));         % Unique sorted values 
maxValuesload = sortedValuesload(end) ;   % Get the  largest values 

  
sortedValuesdeflection = unique(DEF(:));       
maxValuesdeflection = sortedValuesdeflection(end);  

  
%**************************************************************************

***************************************************************************

******************************************************  

  

  
%                     Part Two Load CMOD Response 
%******************************************************************* 
%     List of variables 
%     Name              Description 
%     -----             ------------ 
%     alp0              Initial notch depth to beam depth ratio 
%     db                beam depth, mm 
%     h                 Height of the hinge, mm  
%     L                 Span length of the TPB, mm 
%     t                 Thickness of the hinge, mm 
%     S                 Width of the hinge, mm 
%     al, a2, b1 & b2    Parameters for the bilinear relation 
%     a1 & a2           1/mm 
%     b1 & b2           Dimensionless 
%     E                 Young modulus, GPa 
%     ft                Splitting tensile strength, GPa 
%*******************************************************************                       
%******************************************************************* 
clc 
clear all 
close all 
%******************************************************************* 
%   Enter the beam dimensions details 
%**************************************************************************

********** 
E=45.25; 
ft=0.00954; 
L=400;                      % enter the span length; 
t=100;                      % enter the normal thickness; 
db=100;                     % enter the beam depth; 
a0=10;   
themin=0; 
themax=200; 
a1=0.16; 
a2=0.07; 
b2=0.59; 
alp0=a0/db; 
h=(1-alp0)*db; 
s=0.5*h; 

 
%******************************************************************* 
%*******************************************************************  
rho=0; 
k=0; 
increment=themax/999; 
for the=themin :increment:themax  
the01=1-rho ; 
bet1=ft*a1*s/E; 
bet2=ft*a2*s/E; 
c =(1-b2)*(1-bet1)/(bet2-bet1);     
the12=.5*(1-rho-c+((1-rho-c)^2+c^2/(bet1-1))^0.5);  
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the23=.5*(rho*(bet2-1)+b2/bet2+(rho^2*(bet2-1)^2+2*rho*(bet2-1)*b2/bet2+(1-

b2)^2/(bet1 -bet2)+b2^2/bet2)^.5); 
%******************************************************************* 
%  Alpha & Mu Calculation 
%******************************************************************* 

  
%------------------------------------------------------------------- 
% For phase I 
%-------------------------------------------------------------------  
if (0<=the && the<the01) 
mu=the01; 
alp = 0; 
cod = 0; 
%------------------------------------------------------------------- 
% For phase I 
%-------------------------------------------------------------------  
elseif(the01<=the && the<the12) 
bi= 1; 
beti = bet1; 
alp = 1-bet1-((1-bet1)*((1-rho)/the-bet1))^.5; 
mu = 4*(1-3*alp+3*alp^2-alp^3/(1-bet1))*the+(6*alp-3)*(1-rho); 
cod = s*ft/E*(1-bi+2*alp*the)/(1-beti); 
%------------------------------------------------------------------- 
% For phase I 
%-------------------------------------------------------------------  
elseif(the12<=the && the<the23)  
bi = b2; 
beti = bet2; 
alp =1-bet2-(1-b2)/(2*the)-(( 1-bet2)*(( 1-b2)^2/(4*the^2)/(bet1 -bet2)-

bet2+(b2-rho)/the))^.5; 
mu = 4*(1-3*alp+3*alp^2-alp^3/(1-bet2))*the+(6*alp-3)*(1-rho)-(((1-

b2)*(3*alp^2-(c/(2*the))^2))/(1-bet2)); 
cod = s*ft/E*(1-bi+2*alp*the)/(1-beti); 
%------------------------------------------------------------------- 
% For phase I 
%-------------------------------------------------------------------  
elseif(the23<=the) 
bi =0; 
beti = 0; 
alp = 1 -1 /(2*the)*(1+((1-b2)^2/(bet1-bet2)+b2^2/bet2-4*rho*the)^.5); 
mu = 4*(1-3*alp+3*alp^2-alp^3)*the+(6*alp-3)*(1-rho)-

3*alp^2+1/(4*the^2)*(1-b2/bet2)*(1-b2/bet2+c)*(1+bet1*c/(1-

bet1))+(c/(2*the))^2; 
 cod = s*ft/E*(1-bi+2*alp*the)/(1-beti); 
%------------------------------------------------------------------- 
end 
k=k+1; 
pp(k) = 2/3*ft*h^2*t/L*mu; 
m = pp(k)*L/4; 
sigm = 6*m/(t*db^2); 
cod0 = 4*sigm*a0/E*(0.76-2.28*alp0+3.87*alp0^2-2.04*alp0^3+0.66/(1-

alp0)^2); 
CMOD(k) = cod + cod0; 

end 
Sami = [CMOD;pp]'; 
x = Sami(:,1);       % the x value  
y = Sami(:,2);       % the y value 
sortedValuesload = unique(pp(:));     % Unique sorted values 
maxValuesload = sortedValuesload(end) % Get the largest values 
sortedValuesdeflection = unique(CMOD(:));                   
maxValuesdeflection = sortedValuesdeflection(end)  
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Cyclic Load- Central Deflection Plots for Self-Compacting Ultra-High 

Performance Fibre-Reinforced Concrete Strips. 

 

The recorded load-deflection plots under cyclic loading for the UHPFRC strips need to be corrected in 

order to take into account the inevitable drift in the LVDT because of dynamic loading. This has been 

achieved by calculating the actual deflection at the upper load limit using elastic theory. This was 

possible in most cyclic load ranges because the upper limit load was still within the elastic range of the 

material. The corrected cyclic load- central deflection traces of the specimens are plotted for 

specimens with poor and good fibre distribution (Figures B.1– B.7).  

 

 

 

 

 

Figure B.1 Cyclic load- central deflection plot of specimen load range 0.6 – 4.0 kN. 

 Specimen sustained 1000000 cycles (poor fibre distribution) 
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a- Specimen sustained 87600 cycles                                       b- Specimen sustained 99000 cycles 

Figure B.2 Cyclic load- central deflection plot of specimens load range 0.6 – 4.5 kN  

(poor fibre distribution) 

 

 

 

 

   a-Specimen sustained 5400 cycles                                       b- Specimen sustained 25200 cycles 

Figure B.3 Cyclic load-central deflection plot of specimens under load range 0.6 – 5.5 kN 

  (poor fibre distribution) 
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Figure B.4 Cyclic load- central deflection plot of specimen under load range 0.6 – 4 kN 

Specimen sustained 1000000 cycles (good fibre distribution) 

 

 

 

 

Figure B.5 Cyclic load- central deflection plot of specimen under load range 0.6 – 4.5 kN 

Specimen sustained 1000000 cycles (good fibre distribution) 
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Figure B.6 Cyclic load- central deflection plot of specimen under load range 0.6 – 5.0 kN 

Specimen sustained 1000000 cycles (good fibre distribution) 

 

 

Figure B.7 Cyclic load- central deflection plot of specimen under load range 0.6 – 5.5 kN 

Specimen sustained 1000000 cycles (good fibre distribution) 

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5

L
o
a
d

 (
k

N
)

Displacement (mm)

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5

L
o
a
d

 (
k

N
)

Displacement (mm)



Cyclic load- central deflection plots of RC beam  Appendix C 

with and without UHPFRC strips  

 

 
239 

 

 

 

 

 

 

 

Appendix C 
 

Cyclic Load- Central Deflection 

Plots of RC Beam with and without 

UHPFRC Strips 

 

 

 

 

 

 
 



Cyclic load- central deflection plots of RC beam  Appendix C 

with and without UHPFRC strips  

 

 
240 

 

 

Cyclic Load- Central Deflection Plots of RC Beam with and without 

UHPFRC Strips 

 

The recorded load-deflection plots under cyclic loading for the RC beams with and without the 

UHPFRC strips need to be corrected in order to take  into account the inevitable drift in the LVDT 

because of dynamic loading. This has been achieved by calculating the actual deflection at the upper 

load limit using elastic theory. This was possible in most cyclic load ranges because the upper limit 

load was still within the elastic range of the material. The corrected cyclic load- central deflection 

traces of the RC beams are plotted for specimens with poor and good fibre distribution (Figures C.1– 

C.7).  

 

 

 

 

 

 

 

 

 

Figure C.1 Cyclic load- central deflection plot of a beam under maximum cyclic load level 18.1% 

(Beam sustained 1000000 cycles without  any noticeable cracks) 

 

 

 

 

 

 

 



Cyclic load- central deflection plots of RC beam  Appendix C 

with and without UHPFRC strips  

 

 
241 

 

 

 

 

 

 

 

 

 

 

 

Figure C.2 Cyclic load- central deflection plot of a beam under maximum cyclic load level 41.12% 

(Beam sustained 1000000 cycles with some minor cracks) 

 

 

 

 

 

 

 

 

 

 

 

Figure C.3 Cyclic load- central deflection plot of a beam under maximum cyclic load level 64.14%  

(Beam sustained 596136 cycles) 
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Figure C.4 Cyclic load- central deflection plot of a RC beam under maximum cyclic load level 80.59% 

(Beam sustained 11458 cycles) 

 

 

 

 

 

 

 

 

 

 

Figure C.5 Cyclic load- central deflection plot of RC beam retrofitted with UHPFRC strips under maximum 

cyclic load level 46.91% (Beam sustained 1000000 cycles without any noticeable cracks) 
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Figure C.6 Cyclic load- central deflection plot of RC beam retrofitted with UHPFRC strips under maximum 

cyclic load level 60.99% (Beam sustained 1000000 cycle with some cracks) 

 

 

 

  

 

 

 

 

 

 

 

 

  Figure C.7 Cyclic load- central deflection plot of RC beam retrofitted with UHPFRC strips under maximum 

cyclic load   level 82.1% (Beam sustained 32100 cycles and failed by rebar fatigue) 

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

L
o
a
d

 (
k

N
)

Displacement (mm)

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6

L
o

a
d

 (
k

N
)

Displacement (mm)



Stress analysis of reinforcing bar under high cyclic load                                                                 Appendix D  

 

 
244 

 

 

 

 

 

Appendix D 

 

Stress Analysis of Reinforcing 

Bar Under High Cyclic Load 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Stress analysis of reinforcing bar under high cyclic load                                                                 Appendix D  

 

 
245 

 

Stress Analysis of Reinforcing Bar under High Cyclic Load                                    

(Beam Subjected to Upper Maximum Load 35kN) 

 

Applying the traditional transformed area methodology to the retrofitted RC beam subjected to the 

three-point bend cyclic load range 1.5 to 35 kN, it is found that the neutral axis lies at 91.3 mm from 

the extreme compression fibre and the second moment of area of the cross section is 56.08×106  mm4. 

Accordingly, at the lower load limit of 1.5 kN, the stresses in concrete extreme fibre, steel reinforcing 

bar, and the extreme fibre of the retrofitting UHPFRC strip are 0.61, 1.47, and 0.75 MPa, respectively. 

Assuming the UHPFRC strip had reached its tensile strength of 12.02 MPa (Chapter Five) but not 

cracked at the upper load limit of 35 kN, then the corresponding stresses in concrete would be 14.25 

MPa and in the steel bar 203.1 MPa. The cyclic stress range in the steel bar would be 201.63 MPa at a 

stress ratio of 1.47/203.1 = 0.0072.  This cyclic stress range is very close to the allowable limit in the 

supplier’s data sheet (cyclic stress range 200 MPa and a stress ratio of 0.2 for a fatigue life in excess of 

five million cycles).  

However, as noted in the text a major flexural crack formed in the UHPFRC strip under this cyclic 

load range after approximately 5000 cycles. The reduced tension carrying capacity of the UHPFRC 

strip can be estimated from its known stress-crack opening relation (Chapter Five), Fig. D.1. At a 

crack opening of, say 1mm, the tensile strength of UHPFRC reduces from 12.02 to 9.86 MPa, so that 

its contribution to the tensile capacity of the retrofitted beam reduces from 42.07 kN to 34.5 kN and 

that of the reinforcing steel must increase to 30.53 kN from 22.97 kN (Fig. D.2). As a result the stress 

in steel increases to 269.93 MPa. The cyclic stress range in the steel bar is 268.46 MPa at a stress ratio 

of 1.47/269.93 = 0.0054 which is well in excess of the supplier’s recommended stress range of 200 

MPa for this steel. 
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Figure D.1 Tensile stress-crack opening relation of UHPFRC corresponding to its size-independent 

specific fracture energy 

 

 

 

              Beam with UHPFRC strip                                    Force distribution in the section 

Figure D.2 Contributions of retrofitting strip after it has cracked and of steel bar to tension under a mid-

span load of 35 kN 
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