
I 
 

 

 

Role of miR-140-3p and 

miR-140-5p in lung 

cancer invasion 

By 

Valentina Flamini 

Cardiff China Medical Research Collaborative 

Cardiff School of Medicine 

September 2017 

 

Thesis submitted to Cardiff University for the 

degree of Doctor of Philosophy 



III 
 

 

 

 

 

 

Dedicated to Adriana, 

Who inspired my life 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IV 
 

 

 

Acknowledgements 

I want to express my gratitude to my supervisors, Professor Wen Jiang and 

Doctor Yuxin Cui, for their support and guidance in these three years. 

A very special thanks to all my previous supervisors, Dr Addolorata Pisconti, Dr 

Armando Magrelli and Dr Marco Salvatore for passing down to me the love for 

the research. Without them, I would not be here today. 

I am also very grateful to all the Cardiff China Medical Research Collaborative 

members for making me feel welcome. In particular, I want to thank Ms. Fiona 

Ruge for her remarkable support in my everyday life as a PhD student. Thanks 

to Dr. Nicola Jordan and Dr. Sioned Owen for their teaching and suggestions. 

A special thanks also to Dr Alwyn Dart for his support and guidance through 

the RNA-sequencing experiments. 

Thanks to Prof. Cheng and her team in for giving me the chance to work in 

Beijing. I really enjoyed the time I spent in China. 

Thanks to all my “travel buddies” Sarah, Emily, Ross, Robyn, Beth, David, 

Jeyna, Bruno, Nelly, Matina and Ben. Thanks for all the suggestions and the time 

we spent together. 

I want to thank my wonderful husband Davide, who encouraged and sustained 

me all the time. My parents have been the pillars of my life and taught me all the 

practical and intellectual skills in life, especially perseverance, sacrifice, and 

courage. I will be grateful to them forever. Last, but not the least, I want to 

thanks my siblings Marco and Eva because they have always believed in me. 

 

 

 

 

 



V 
 

Summary 

 

The precursor of miR-140 is located on chromosome 16q22.1 and produces two 

mature single strands named miR-140-3p and miR-140-5p, which have been 

associated with several cancers including non-small cell lung cancer (NSCLC). I 

aim to investigate the differential expression of these two miR-140 strands in 

NSCLC and their roles in the invasion of lung cancer cells.  My hypothesis is 

that these two miR-140 strands suppress the progression of the NSCLC by 

targeting specific gene transcripts. 

MiR-140-3p and miR-140-5p were downregulated in tissues from NSCLC 

patients and lung cancer cell lines (A549 and SK-MES-1). The sequencing of the 

miR-140 precursor indicated two DNA variants in SK-MES-1 cells but not in 

A549 cells. This might affect the biogenesis of its mature strands because the 

expression levels of both miR-140-3p and miR-140-5p were lower in SK-MES-

1 than in A549 cells.  

Mimics of miR-140-3p and miR-140-5p reduced the invasive properties of A549 

cells and enhanced their adhesion to laminin and collagen, two of the main 

components of the extracellular matrix. In SK-MES-1 cells, both miR-140-3p 

and miR-140-5p mimics reduced invasion but only miR-140-5p decreased the 

migration of the cells. The conditioned media from lung cancer cells treated with 

the miR-140-3p mimics impaired the tubule formation of primary endothelial 

cells, suggesting its role as an angiogenesis inhibitor.  

By using bioinformatic tools, the integrin β 3 (ITGB3) was predicted as a novel 

target of miR-140-3p, which was validated by Dual-Luciferase miRNA Target 

Expression Vectors and western blotting. By combining the global data from 

Kinex™ Antibody Microarray (with 878 antibodies) and RNA-Sequencing, I 

speculate that miR-140-3p inhibits lung cancer invasion and limits the angiogenic 

potential of the endothelial cells through the epidermal growth factor receptor 

(EGFR) signalling pathway. In contrast, miR-130-5p may target cyclin-

dependent kinase 3 (CDK3) and sulfatase 2 (SULF2) in NSCLC. 
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1.1 Main features and hallmarks of cancer 

Cancer is a disease involving dynamic changes in the genome and epigenome 

and, nowadays, it is the first leading cause of death in the world (Ferlay et al., 

2015b). In 2012, there were an estimated 14.1 million new cases of cancer in the 

world: 7.4 million (53%) in males and 6.7 million (47%) in females, giving a 

male:female ratio of 10:9 (Ferlay J, 2013). 

We can define tumourigenesis as a multi-step process which reflects the genetic 

alterations that drive the progressive transformation of normal human cells into 

highly malignant derivatives (Hanahan and Weinberg, 2000). 

The earliest knowledge of what now we identify as “cancer” was identified by 

Egyptians in 1600 BC in the Edwin Smith papyrus, which contains discussion 

of “cancer” cases. However, the origin of the words related to cancer comes 

from the Hippocratic physicians in 400 BC, who used the terms karkinos and 

karkinoma to describe tumours. Karkinos (crab) was referred to any non-healing 

swelling or ulcerous formation, even haemorrhoids and karkinoma was reserved 

for non-healing cancer (Weiss, 2000). Also the term oncos (swelling) is credited 

to ancient Greek medicine. The first scientific basis for cancer by correlating 

clinical outcomes with microscopic findings, was proposed in the 19th century 

that Rudolph Virchow, the father of the modern cellular pathology (Lobo et al., 

2007). Comparing hyperplasia with differentiating cells in developing epithelium 

he theorised that cancer derives from immature cells that grow without any 

control. Since then new observations have served to clarify the origins and 

progression of this complex disease. 
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Table 1.1: Hippocratic terms related to cancer. Modified from (FS, 1986). 

 

 

Despite remaining mostly unclear, the scientific community agrees on the fact 

that cancer includes many heterogeneous diseases and can be considered a 

complex disease, determined by genetic, epigenetic and environmental factors. 

In addition, some infectious agents could play an important role in human 

malignancies, such as hepatitis-C virus in hepatocellular carcinoma and 

papilloma viruses in cervical cancers (Organization, 2014, Walboomers et al., 

1999).  In the malignant transformation, a single cell acquires a sequence of 

characteristics which cause out of control growth and make it able to invade 

other distant tissues through blood circulation or lymph vessels (metastasis). 

Specifically, the abnormal new growth of cells is called “neoplasia”. 

From the clinical point of view, malignant progression of a neoplasm means the 

increasing probability of local spread through a direct invasion of the malignant 

cells of neighbouring tissues, perifocal spread through migration of a single 

malignant cell into the interstitial space, regional spread through metastasis to 

the lymph nodes and distant spread through metastasis into distant sites. 

Malignant progression is also associated with increasing resistance toward 

therapies (Hockel and Vaupel, 2001). 
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From the molecular point of view, normal cells evolve progressively to a 

neoplastic state and acquire a succession of characteristics, which are common 

for all type of cancers. Hanahan and Weinberg defined “hallmarks of cancer” 

the distinctive and complementary capabilities that enable tumour growth and 

metastatic dissemination (Hanahan and Weinberg, 2011) (Figure 1.1). 

 

Figure1.1: Features acquired by cells during tumour onset and progression 

(Hanahan and Weinberg, 2011). 

 

The hallmarks identified by Hanahan and Weinberg allow us to rationalise the 

complexities of the neoplastic disease. They are defined by the authors as 

“distinctive and complementary capabilities that enable tumour growth and 

metastatic dissemination” and include:  
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 Capacity to proliferate without any limits thanks to their ability to sustain 

a proliferative signal; 

 Capacity to evade the growth suppressors in order to promote the 

neoplastic transformation;  

 Activation of invasion and metastasis; 

 Enabling replicative immortality thanks to the acquisition of the ability 

to escape to all mechanisms of controls; 

 Induction of angiogenesis, the development of new vessels for the 

supply of nutrients and oxygen from the blood; 

 Resistance to cell death in particular by avoiding apoptosis, the 

mechanism that causes the death of the abnormal cells without releasing 

harmful substances which can activate an immune response. 

Consequently, the immune response is constitutively active, producing a 

chronic inflammation status;  

 Acquisition of genome mutations that lead the loss of function of genes 

that encode for proteins able to suppress or promote the tumour 

progression, named oncosuppressors and oncogenes, respectively; 

 De-regulation of cellular metabolism in a condition defined “Warburg 

effect” that creates the optimal environment for the survival of the 

cancerous cells promoting glycolysis instead of anaerobic respiration. 

The consequent acid environment promotes angiogenesis and tumour 

spread. 

In addition to aberrations in cancer cells, tumours have one more step of 

complexity: the “microenvironment”, a combination of various stromal cell 

types recruited from the adjacent normal tissues, mainly coming from the bone 
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marrow (Hanahan and Weinberg, 2011). Soluble factors and signalling molecules 

that can promote neoplastic transformation, support tumour growth and 

invasion, protect the tumour from host immunity, therapeutic treatments and 

provide the ideal niches for the development of metastases (Swartz et al., 2012). 

The concept that the microenvironment is a crucial regulator of carcinogenesis 

was hypothesised for the first time in 1889 by the French surgeon Stephen Paget 

in his “seed and soil” theory (Albini and Sporn, 2007) and it was the second 

evidence-based theory on tumours after Virchow in 1858. He observed the 

metastatic preference of cancer cells for specific organs, identifying the cancer 

cells as the “seed” and the specific organ microenvironment as “soil”. Despite 

the metastatic process having been incompletely understood and unknown to 

Paget, his theory has been later confirmed by numerous publications. 

 

1.2 Lung cancer 

1.2.1 General aspects and risk factors 

Lung cancer is the most frequent cause of cancer worldwide, with 46,403 new 

cases (13.0% of the total) diagnosed in the UK in 2014 . The other two most 

common types of cancers in the UK and worldwide are breast cancer and 

colorectal cancer (Ferlay et al., 2015a). Lung cancer is the second most common 

cancer in both men and women. In contrast, prostate and breast cancer are more 

common in males and females, respectively . Patients- deaths from lung cancer 

are the most numerous (1.6 million, 19.4% of the total), followed by people 

affected by liver and stomach cancers, 0.8 million (9.1%) and 0.7 million (8.8%) 

respectively (Ferlay J, 2013). 
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The prognosis of lung cancer is poor, with 5-years survival rates of 

approximately 18.1% in most countries 

(https://seer.cancer.gov/statfacts/html/lungb.html).  

We can consider lung cancer as a disease typical of elderly people. In fact, the 

Surveillance, Epidemiology and End Results (SEER) data from 2004 to 2008 

reported the median age at diagnosis for cancer of the lung and bronchus was 

71 years and no cases were diagnosed in patients younger than 20 years. Lung 

cancer incidence and mortality rates in both sexes are higher in less developed 

countries than in the more developed world (Ferlay et al., 2015a). However, the 

World Health Organization estimates that lung cancer deaths worldwide will 

continue to rise, as a result of an increase in global tobacco use, especially in 

Asia. In general, the incidence and mortality of lung cancer varies mainly 

according to gender and geographical distribution (Figure 1.2). 
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 Figure 1.2. Lung cancer incidence according to gender and geographic areas. 

Estimated numbers (thousands) of cancers incidence and mortality in men (a) and 

women (b) in more (on the left) and less (on the right) developed countries. Modified 

from (Ferlay et al., 2015a). 
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Tobacco smoking is a powerful determinant of risk, so trends in lung cancer 

incidence and mortality reflect population-level changes in smoking behaviour, 

including dose, duration and type of tobacco used. So, it has been estimated that 

over 90% of cases are due to smoking among men and over 80% among women, 

although there is considerable variation by world region. In fact, in men, the 

areas with the highest incidence and mortality are Europe (Eastern Europe in 

particular), North America, Australia/New Zealand, and South America. The 

rates in China, Japan and South-East Asia are moderately high and the lowest 

rates are found in southern Asia (India, Pakistan), and sub- Saharan Africa. In 

women, the geographic pattern mainly reflects the differences in historical 

exposure of tobacco smoking and secondly in nicotine metabolism and 

metabolic activation or detoxification of lung carcinogens. Thus, the highest 

incidence rates in women are observed in North America and North-West 

Europe (U.K., Iceland, Denmark) and moderate incidence rates in Australia, 

New Zealand and China. Moreover, several studies have demonstrated the 

causal association between involuntary tobacco smoking and lung cancer risk in 

non-smokers (Lortet-Tieulent et al., 2014). Lifetime non-smokers are included 

in the category of never smokers, which refers to people who have smoked fewer 

than 100 cigarettes in their lifetime. There are copious differences in terms of 

lung cancer incidence and mortality between smokers, ex-smokers and non-

smokers. The first study on the negative effects of tobacco smoking on longevity 

was published in Science in 1938 by Raymon Pearl. He developed a “life tables” 

for heavy smokers, moderate smokers and non-smokers, using data from 6813 

white men. He concluded that the smoking of tobacco was statistically associated 

with a shorter duration of life. Specifically, after 30 years, life span was reduced 

by about 10 years in heavy smokers compared with non-smokers and nearly 4 
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years in moderate smokers compared to non-smokers (Pearl, 1938). Ex-smokers, 

that is people who quit for more than 15 years, have an 80% to 90% reduction 

of their risk for lung cancer compared with persons who continue to smoke. 

Moreover, stopping smoking before middle age reduces the risk attributable to 

tobacco by more than 90%. 

Cigarette smoke is a complex aerosol composed of gaseous and particulate 

compounds. In particular, smoke consists of two components: the mainstream 

(that is inhaled directly into the lungs) and the side stream (the smoke that is 

emitted from the burning end of a cigarette, cigar or pipe). The primary 

determinant of tobacco addiction is nicotine, and tar is the total particulate 

matter of cigarette smoke after nicotine. Other potential carcinogens are the 

polycyclic aromatic hydrocarbons (PAHs), aromatic amines, N-nitrosamines, 

and other organic and inorganic compounds, such as benzene, vinyl chloride, 

arsenic and chromium.  

Other types of smoking, such as marijuana and cocaine, have been studied but 

a clear association with lung cancer has not yet been established 

(http://www.iarc.fr/). People with chronic obstructive pulmonary disease 

(COPD) are at a high risk to develop lung cancer (Leary, 2012) and even if the 

COPD is a consequence of smoking, it is now considered as a risk factor itself. 

Exposure to asbestos is a critical environmental factor associated with lung 

cancer (Leary, 2012). Asbestos is a natural fibrous rock, used for electrical and 

building insulation and 20-25% of asbestos-exposed workers have been 

estimated to develop lung cancer. 
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Other risk factors associated with lung tumours are diet (for instance, low serum 

concentrations of antioxidants, such as vitamins A, C, and E), infections (risk is 

almost three times higher in people with the Human Immunodeficiency Virus 

HIV or acquired immune deficiency syndrome AIDS), environmental air 

pollution, workplace substances (such as radon, asbestos and silica), previous 

lung diseases (pneumonia, for example) and family history (especially in non-

smokers). 

In addition to the environmental factors, genetic and epigenetic alterations also 

play a crucial role in the development of lung cancer. The most common 

mutated genes are p53, KRAS, Endothelial Growth Factor Receptor (EGFR), 

BRAF, Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit A 

(PIK3CA), Hepatocyte growth factor receptor (MET) and the small Guanosine-

5'-triphosphatase (GTPase) genes RIT1. Mutations in chromatin modifying 

genes SET domain containing 2 (SETD2), Adenine-Thymine-rich (A-T rich) 

interactive domain-containing protein 1A (ARID1A), SMARCA4 and the RNA 

splicing genes RBM10 and U2 Small Nuclear RNA Auxiliary Factor 1 (U2AF1) 

have been also associated with lung cancer. These aberrations affect multiple key 

pathways, such as receptor tyrosine kinase (RTK)/RAS/RAF, 

phosphoinositide-3-kinase (PI3K)- mechanistic target of mammalian target of 

rapamycin (mTOR), p53, alteration of cell cycle regulators , changes in oxidative 

stress pathways and mutation of various chromatin and RNA splicing factors, 

thus leading to the development of the disease (Risch and Plass, 2008, The 

Cancer Genome Atlas Research, 2014). The most common genetic alterations 

in Non-Small Cell Lung Cancer (NSCLC) patients are listed in the table below 
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(https://www.mycancergenome.org/content/disease/lung-cancer/) and will be 

further discussed in Section 1.2.6. 

 

Table 1.2. The most common genetic alterations found in NSCLC patients. 

 

Gene 

 

 

Alterations 

 

Frequency in NSCLC 

 

References 

EGFR Mutation 12-35% (Pao and 

Chmielecki, 

2010, 

Gridelli et 

al., 2015) 

KRAS Mutation 15-25% (Wan et al., 

2004) 

FGFR1 Amplification 20% (Pao and 

Chmielecki, 

2010) 

PTEN Mutation 

 

4-8% (Yuan and 

Cantley, 

2008) 

ALK Rearrangements 3-7% (Meyerson, 

2007) 

DDR2 Mutation 4% (Shtivelman 

et al., 2014) 
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MET Amplification 2-4% (Pao and 

Chmielecki, 

2010) 

HER2 Mutation 2-4% (Gridelli et 

al., 2015) 

BRAF Mutation 1-3% (Wan et al., 

2004) 

PIK3CA Mutation 1-3% (Yuan and 

Cantley, 

2008) 

AKT1 Mutation 1% (Altomare 

and Testa, 

2005) 

NRAS Mutation 1% (Wan et al., 

2004) 

MEK1 Mutation 1% (Wan et al., 

2004) 

RET Rearrangement 1% (Shtivelman 

et al., 2014) 

ROS1 Rearrangement 1% (Shtivelman 

et al., 2014) 
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1.2.2 Symptoms and diagnosis 

Patients with lung cancer have symptoms not easily distinguishable because they 

are common with other diseases. The most common symptoms are (Leary, 2012) 

persistent cough, coughing up blood (haemoptysis), chest pain, persistent 

breathlessness and tracheal obstruction. 

Once one or more of the symptoms above appears, blood and breath tests are 

usually done by the general practitioner and, if the condition needs to be 

explored in more depth, the patient is referred to a specialist for further 

investigation. The diagnosis of lung cancer is obtained through one of the 

following techniques (Leary, 2012): 

 Chest radiography (CXR) is the first test used to diagnose lung cancer. 

However, a definitive diagnosis of lung cancer cannot rely just on CXR 

because it is not able to discriminate lung cancer from other conditions, 

such as non-malignant pulmonary nodules. 

 Computed tomography (CT) scan provides cross-sectional imaging and 

enables images from other parts of the body thanks to the injection of a 

contrast solution. In this way it is possible to check whether a tumour 

invaded other tissues, such lymph nodes, brain, bones, liver and adrenal 

glands (http://about-cancer.cancerresearchuk.org/about-cancer/lung-

cancer/advanced/about). 

 Ultrasonography is used for the analysis of the neck of lung cancer 

patients suspected to have mediastinal metastases.  

 Positron emission tomography (PET) scan is performed after the 

patients are administrated the isotope 18 fluorodeoxyglucose (FDG), a 
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glucose analogue. This allows the detection of malignant cells, as they 

have a higher metabolism than the normal ones, and take up more 

glucose (or its analogue). Although this test is very helpful for the 

diagnosis of lung cancer, false negative results occur, for example 

because of other inflammatory conditions, including infections. PET is 

however recommended in some specific cases, such as detecting 

metastases in the bones. 

Other common investigations used for lung cancer diagnosis include the 

analysis of sputum, bronchoscopy, transthoracic needle aspiration and 

mediastinoscopy. The analysis of sputum is a non-invasive method to detect 

malignant cells, however, a distinction between the different types of lung 

cancer is not always possible and the abnormal cells may come from other 

parts of the aero-digestive tract. Nevertheless, it is suitable for patients who 

do not tolerate bronchoscopy or transthoracic biopsy. Bronchoscopy is a 

standard procedure to detect central lesions, whereas transthoracic needle 

aspiration is for patients with peripheral lung lesions and mediastinoscopy 

may be required for central tumours inaccessible by standard bronchoscopy.  
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1.2.3 Histology, grading and staging 

Historically, lung cancers occurring in the cells of the respiratory epithelium have 

been broadly classified into two types, according to their microscopic 

appearance: small lung cancers (SCLC) and non-small cell lung cancers 

(NSCLC). SCLC comprises about 10-15% of lung cancer and it is the most 

aggressive one. Moreover, it is strongly related to cigarette smoking with only 

1% of these tumours occurring in non-smokers. On the other hand, NSCLC is 

the most common type, accounting about 85-90% of all cases and has a high 

tendency to spread to the lymph nodes and distant sites. In this study, just 

NSCLC will be considered, as it is the most common. Generally, NSCLC is 

further divided into three main subtypes: adenocarcinoma, squamous cell 

carcinoma and large cell carcinoma. Adenocarcinoma is the most common type 

of NSCL in the USA and East Asia and although it is prevalent in smokers, it is 

also seen in non-smokers (especially women) (Stahel, 2007). Most 

adenocarcinomas arise in the peripheral areas of the lungs and these tend to 

spread to the lymph nodes and beyond. Squamous cell carcinomas accounts for 

about 25% of NSCLC cases and arise most frequently in the central chest area 

in the bronchi. This type of lung cancer does not very often spread to lymph 

nodes, but grows quite large, forming a cavity. Finally, large cell carcinomas is 

the less common type of NSCLC and has a high tendency to spread to lymph 

nodes and distant sites (Herbst et al., 2008). 

Once a diagnosis of lung cancer has been made, it is important to define the 

stage of the disease, in order to make the best treatment decision, in terms of 

safety and efficacy. The stage of the disease is defined as “a particular step, phase, 
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or position in a developmental process” (Dictionary.com, 2014) and it is 

important for prognosis and treatment planning. 

The staging for NSCLC is based on the international Tumour Node Metastasis 

(TNM) system which evaluates the overall anatomical spread of cancer by 

considering the tumour size and invasion, extent of lymphatic spread and the 

presence of metastatic disease. “T” indicates a primary tumour, “N” the 

absence/presence of metastasis in lymph nodes and “M” indicates that distant 

metastasis is present (Table 1.3). The surgical resection of a tumour is normally 

performed on patients graded up to N2. Otherwise, patients affected by NSLC 

are treated with chemotherapy, radiotherapy or a combination of these. The 

therapy depends on the stage when the cancer is diagnosed. Patients at the earlier 

stages have a better prognosis with 5-year survival for stage I disease at over 

55%, whereas most of the patients with a metastatic disease at stage IV the 

survival is only 1% (Leary, 2012). 

Table 1.3. Tumour Node Metastasis classification in Non-Small Cell Lung 

Cancer. Modified from (Detterbeck et al., 2009). This classification was used by the 

clinicians whose patients gave samples. 

 

Descriptor 

 

 

Definition 

 

Subgroups 

Primary Tumour (T) 

TX Tumour not assessed - 

T0 No primary tumour - 

Tis Carcinoma in situ - 
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T1 

Tumour<3cm, surrounded by 

lung or visceral pleura, no 

evidence of invasion more 

proximal than the lobar 

bronchus 

 

 

T1a, T1b 

 

 

 

 

T2 

Tumour>3cm but <7cm with 

one of the following: invades 

visceral pleura, involved the 

main bronchus>2cm distal to 

the carina, associated with 

atelectasis/obstructive 

pneumonitis extending to 

hilar region but not involving 

the entire lung 

 

 

 

 

T2a, T2b 

 

 

 

 

T3 

Tumour>7cm with one of the 

following: invasion of chest 

wall, diaphragm, phrenic 

nerve, mediastinal pleura or 

parietal pericardium 

 

 

- 

 

 

 

T4 

Tumour of any size that 

invades any of the following: 

mediastinum, hearth, great 

vessels, trachea, recurrent 

laryngeal nerve, oesophagus, 

vertebral body or carina; or 

separate tumour nodule(s) in a 

different ipsilateral lobe 

 

 

 

- 

Regional Lymph nodes 
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NX Regional lymph nodes not 

assessed 

- 

N0 No regional node metastasis - 

 

 

N1 

Metastasis in ipsilateral 

peribronchial and/or 

ipsilateral hilar lymph nodes 

and intrapulmonary nodes, 

including involvement by 

direct extension 

 

 

- 

 

N2 

Metastasis in the ipsilateral 

mediastinal and/or sub carinal 

lymph node(s) 

 

- 

N3   

Distant metastasis (M) 

MX Metastasis not assessed - 

M0 No distant metastasis - 

 

 

M1a 

Separate tumour nodule(s) in 

a contralateral lobe; tumour 

with pleural nodules or 

malignant pleural (or 

pericardial) effusion 

 

 

- 

M1b Distant metastasis - 
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Table 1.4. NSCLC staging (Detterbeck et al., 2009). 

 

Stage 

 

 

TNM 

0 Carcinoma in situ 

IA T1N0M0 

IIA T2N0M0 

IB T1N1M0 

IIB T2N1M0 

T3N0M0 

IIIA T3N1M0 

T3N1M0 

T2N2M0 

T3N2M0 

IIIB T4N0M0 

T4N1M0 

T4N2M0 

T1N3M0 

T2N3M0 

T3N3M0 

T4N3M0 

IV Any T, any N, M1 
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The TNM classification is not normally used for SCLC, because it is not accurate 

for the evaluation of the survival. Considering this, SCLC is generally classified 

as: 

• Limited disease: restricted to one hemi-thorax with regional lymph node 

metastasis; 

• Extensive disease: spread to distant sites (the equivalent of the M1 stage 

in TNM). 

SCLC can be treated with surgery when there is no sign that cancer has spread 

to the lymph glands in the centre of the chest. However, the malignancy is 

usually spread at the time of diagnosis and chemotherapy remains the main 

treatment. 

This study focuses on NSCLC only. 

1.2.4 NSCLC treatments 

Surgery is the standard treatment for the early stage of lung cancer (stages I and 

II), even if a systemic relapse accounts for more than 70% of all recurrences 

(Reck et al., 2013) and chemotherapy still remains the standard of care in locally 

advanced, unresectable NSCLC or for elderly patients with multiple co-

morbidities (Leary, 2012). The high rate of recurrences reported above may be 

due to the presence of micro metastases at the time of diagnosis and for this 

reason, an additional therapy with adjuvants (in addition to the surgery) or neo-

adjuvants (before the surgery) is highly recommended 

(http://pathways.nice.org.uk/pathways/lung-

cancer#path=view%3A/pathways/lung-cancer/treating-non-small-cell-lung-

cancer.xml&content=view-index, 2017). However, in some cases, such as elderly 
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patients with multiple co-morbidities, chemotherapy is the only possible therapy. 

Chemotherapy significantly improves the survival and quality of life of the 

patients and should be given in combination with a single third-generation drug 

(eg. Gemcitabine) plus a platinum drug, either carboplatin or cisplatin by taking 

into account their toxicity (Leary, 2012).  

Recently, new biological drugs are emerging for the treatment of many diseases, 

including cancer, with the aim to better develop a so-called: “personalised 

medicine”. Personalised medicine is an emerging field that takes into account 

not only the disease itself but also the individual characteristics of each patient. 

In the case of NSCLC, some genetic aspects that drive the malignancy have been 

elucidated and now new biological drugs for the treatment of specific patients 

have been designed. The Epidermal Growth Factor Receptor (EGFR) and 

Anaplastic Lymphoma Receptor Tyrosine Kinase (ALK) are the most common 

mutated genes in NSCLC patients and play a crucial role, with the result of 

constitutive activation of their relative proteins and, therefore the progression 

of the malignancy. The effect of these mutations can be antagonised using 

specific drugs, such as Erlotinib, that inhibits the EGFR tyrosine kinase domain, 

thus switching off the receptor or Crizotinib, that compete within the ATP-

binding pocket of ALK, thus making it inactive. The formation of new blood 

vessels from pre-existing ones is a common feature in all cancers, including lung. 

Considering this, drugs able to inhibit the formation of new vessels have been 

developed, with the aim to deprive the tumour of oxygen and nutrients needed 

for its growth. In NSCLC, the use of Avastin, a Vascular Endothelial Growth 

Factor (VEGF) inhibitor, is widely used in patients. A list of the approved 

biological drugs for the treatment of NSCLC is reported in Table 1.5.  The 
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negative aspect of the use of the biological drugs, as well as the 

chemotherapeutics, is the acquired resistance of the patients after the treatment. 

The resistance may be due to a second mutation in the target gene or the 

activation of other oncogenic pathways (Reck et al., 2013). For this reason, the 

efficacy of a miRNA based treatment is now becoming popular and has been 

further investigated in this study. A single miRNA can target up to 2,000 

transcripts, therefore may potentially act on many oncogenic pathways, rather 

than on only one. Targeting multiple molecules by using a single agent may be a 

good strategy for the cancer treatment. For this reason, in this study, the effects 

of a single miRNA on many aspects of cancer progression have been 

investigated. 

 

Table 1.5. Approved biological drugs for the management of Non-Small Cell 

Lung Cancer. 

 

Target 

 

 

Drugs 

 

Most common side effects 

Epithelial Growth Factor 

Receptor (EGFR) 

Erlotinib 

Gefinitib 

Skin problems, diarrhoea, mouth 

sores, loss of appetite 

Anaplastic Lymphoma 

Receptor Tyrosine 

Kinase (ALK) 

Crizotinib Nausea and vomiting, diarrhoea, 

constipation, fatigue 

Vascular Endothelial 

Growth Factor (VEGF) 

Bevacizumab 

(Avastin) 

High blood pressure, fatigue, 

bleeding, low white blood cell, loss 

of appetite, diarrhoea 
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1.2.5 Molecular and biological features of lung cancer 

The progression of lung cancer involves multiple environmental, genetic and 

epigenetic factors. The genetic alterations include the deletion, amplification, 

point mutation or translocation of specific genes, as listed in Table 1.2. 

Mutations in growth factor receptors lead to their constitutive activation and the 

result is the activation of some downstream pathways involved in the acquisition 

and maintenance of the malignant characteristics, such as an uncontrolled 

proliferation and growth and the suppression of apoptotic signals (Figure 1.3). 

Genetic mutations also occur also in some key molecules involved in these 

pathways, thus making the management of lung cancer more difficult. 
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Figure 1.3.  Main pathways involved in lung cancer progression. The mutated proteins shown in bold are found more often in patients 

affected by lung cancer (Wan et al., 2004, Shtivelman et al., 2014, Yuan and Cantley, 2008). 
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Most of lung cancer patients are diagnosed with mutations in the Epidermal 

Growth Factor Receptor (EGFR) gene, with deletions in 85% of all cases 

(Shtivelman et al., 2014). EGFR is a transmembrane tyrosine kinase receptor, 

activated by the binding of its ligand, the epidermal growth factor (EGF), which 

triggers its homo- or hetero-dimerization. The activated phosphorylated 

receptor recruits other proteins, such as Grb2 and Sos, which activate 

downstream pathways, including PI3K and RAS oncogenes. RAS proteins are 

GTP-binding proteins, usually divided into different families (KRAS, NRAS, 

HRAS), according to the conservation of their sequence. Once activated, RAS 

binds one of the members of the RAF serine/threonine kinase family, thus 

leading to the activation of the mitogen-activated protein kinase kinases 

MEK1/2, MAPK and, finally, the signal-regulated kinase (ERK), that 

translocates into the nucleus and causes the transcription of genes involved in 

the proliferation of cells (Figure 1.3). The same pathway may be triggered by 

other transmembrane tyrosine receptors, such as the hepatocyte growth factor 

receptor c-MET and the Fibroblast Growth Factor Receptor 1 (FGFR1) (Pao 

and Chmielecki, 2010). 

Lung cancer patients are also found with mutations in other genes within the 

pathway triggered by EGFR (Table 1.2, Figure 1.3), such as RAS, RAF and 

MEK1 (Wan et al., 2004, Shtivelman et al., 2014). RAS signalling may also be 

amplified by the mutated form of the Anaplastic lymphoma kinase (ALK) or the 

Rearranged during Transfection (RET) proteins (Shtivelman et al., 2014). 

PI3K/AKT is another important pathway that may be activated constitutively 

by mutations in the genes encoding the two proteins, or by mutated RAS or 

HER2, another receptor of the EGFR family that has no ligands.  PI3K 



27 
 

phosphorylates a protein named Phosphoinositide-dependent kinase-1 (PDK1), 

a serine/threonine kinase which leads to the production of phosphatidylinositol 

3,4,5-trisphosphate (PIP3), a messenger that recruits AKT, thus leading to the 

activation of many downstream signalling pathways, such as protein synthesis 

which is involved in the survival of malignant cells (Figure 1.3). Mutations in the 

Phosphatase and TENsin homolog (PTEN), an upstream effector of AKT1, 

may also trigger the progression of the malignancy (Shtivelman et al., 2014), as 

PTEN acts as a repressor of PIP3 (Figure 1.3). 

Over the past few years, epigenetics has been widely studied and it has been 

discovered that many epigenetic changes may be involved in lung cancer onset 

and progression. These variations are heritable and are reversible. This means 

that the epigenetic changes may be influenced by the environment, such as 

cigarette smoking in lung cancer. DNA methylations, histone modifications and 

microRNA (miRNA) regulations are the main epigenetic factors involved in the 

malignancies related to the lungs. Some epigenetic therapies have been approved 

for the treatment of some tumours, but none of them for lung cancer (Ansari et 

al., 2016). DNA methylation is crucial during embryonic development and cell 

differentiation. This process also plays an important role during post-natal life, 

as it contributes to the repression of gene activity through specific enzymes 

named DNA methyltransferases (DNMTs). DNMTs transfer a methyl group 

from S-adenosyl-L-methionine to the CpG islands 5’-cytosine carbon, thus 

maintaining a gene in a silenced state. In lung cancer, the overexpression of 

DNMTs has been observed (Ansari et al., 2016). In NSCLC, CpG island hyper 

methylation results in silencing of tumour suppressor and DNA repair genes, 

which are involved in the cell cycle and as negative regulators of the epithelial-
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mesenchymal transition (EMT), the process that leads to metastasis (Mehta et 

al., 2015). 

The histone-deacetylases (HDACs) are a class of enzymes that repress 

transcription by removing acetyl groups from the histones, thus allowing the 

histones to condense the DNA. They are divided into four groups (I, II, III, IV), 

according to their homology with yeast. They are involved in many processes in 

the body and in tumours they repress the transcription of proto-oncogenes. In 

lung cancer, many histone aberrations have been observed and it has been 

demonstrated that HDAC inhibitors are able to reduce the progression of lung 

cancer by acting on many steps of the tumour progression, including apoptosis, 

autophagy, cellular necrosis, ROS, cell cycle arrest, angiogenesis and 

inflammation (Ansari et al., 2016).  

The role of microRNAs in lung cancer will be discussed in the further section. 

 

1.3 MicroRNAs 

1.3.1 Non-coding RNAs and their general characteristics 

The non-protein-coding portion of the genome plays an important role during 

development and maintenance of physiological functions. 

Coding DNA represents about just 2% of the genome, whereas the remaining 

part is composed of non-coding regions. Since the sequencing of the human 

genome, it has been clear that higher eukaryotes have increased their complexity 

not increasing the number of genes but through a sophisticated regulation which 

also involves non-coding RNAs (ncRNAs). So, the differences between the 
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organisms reside in the non-coding genome, which was mistakenly labelled as 

“junk DNA” for many years. 

Non-coding RNAs are broadly classified into five categories: small non coding 

RNAs (microRNA), non-coding RNAs from ultra-conserved regions (T-UCRs), 

small nucleolar RNAs (snoRNAs), P-element Induced WImpy testis (PIWI)-

interacting RNAs (piRNAs), large intergenic non-coding RNAs (lincRNAs) and 

the group of long non coding RNAs (lncRNAs) (Esteller, 2011). 

Many types of disorders, such as neurological, cardiovascular, imprinting 

disorders and tumours are correlated with disruptions of non-coding regions. 

MiRNAs are small ncRNAs of 19-22 nucleotide, expressed in metazoan animals 

and plants. Their role is to mediate post-transcriptional gene silencing by 

controlling translation of proteins. The biogenesis and activities of these 

elements will be discussed in the following paragraphs. 

PiRNAs are Dicer-independent ncRNAs of 24-30 nucleotides (nt). They are 

involved mainly in germline activities in association with some proteins of the 

Argonaute family (PIWI) (Thomson and Lin, 2009). PiRNAs are transcribed as 

precursors in the nucleus from the region containing repetitive and transposable 

elements. When exported to the cytoplasm, they are converted to the mature 

form by the slicer action of PIWI proteins. Mature piRNAs are very important 

in epigenetic regulation, suppressing the transposable element expression and 

mobilization and playing a crucial role in DNA methylation and 

heterochromatin-mediated silencing (Watanabe et al., 2011). The overexpression 

or ectopic expression of PIWI genes is correlated with tumours, both in 

Vertebrates and Invertebrates. For instance, in Drosophila melanogaster ectopic 



30 
 

expression of the genes encoding PIWI proteins drives malignant brain tumour 

growth (Janic et al., 2010) and in humans, the same situation is associated with 

several cancer types (Thomson and Lin, 2009). 

SnoRNAs are ncRNAs of 300-600 nt in length. In association with a group of 

ribonucleoproteins called small nucleolar ribonucleoproteins (snoRNPs), they 

regulate the 2'-O-methylation (Kiss-László et al., 1996) and pseudouridylation 

(Ni et al., 1997) of ribosomal RNA (rRNA), facilitating the rRNA folding and 

stability in the nucleolus. SnoRNAs are located in the human genomic locus 

15q11-q13 and play a crucial role in some imprinting disorders, such as Prader-

Willy and Angelman syndromes. In Prader-Willy syndrome the loss of the 

snoRNA HBII-52  produces an alternative splicing which results in a change of 

the sequence of the pre-mRNA that encodes for serotonin receptor HTR2C 

(Kishore and Stamm, 2006). Interestingly, the misregulation of snoRNA 

sequence has been observed also in other diseases, including tumours (Su et al., 

2014, Mannoor et al., 2012). 

LncRNAs are a heterogeneous group of non-coding transcripts more than 200 

nt in length, including RNA transcribed from intergenic regions (lincRNAs) and 

RNAs transcribed from ultra-conserved regions (UCRs). They are involved in 

several epigenetic modifications of DNA, mainly by recruiting chromatin 

remodelling complexes to specific loci. Several ncRNAs are located in human 

homeobox (HOX) loci. One of the best known is HOTAIR (HOX Transcript 

Antisense Intergenic RNA) which is transcribed from the HOX C locus 

(12q.13). HOTAIR is able to silence the domains of chromatin binding 

Polycomb Repressive Complex 2 (PRC2) of Polycomb complex, that is required 

for histone3lysine27 (H3K27) trimethylation and transcriptional silencing of the 
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HOX D locus (Rinn et al., 2007). It has been observed that in epithelial cancer 

cells, high levels of HOTAIR increase the capacity of these cells to metastasize 

(Gupta et al., 2010). LcnRNAs are also important in physiological processes, 

such as X-chromosome inactivation in mammals: the X-Inactivation Specific 

Transcript (XIST) recruits the Polycomb complex to silence the X-chromosome; 

the lncRNA TSIX is transcribed in the opposite direction of XIST and represses 

XIST RNA accumulation acting in cis (Navarro et al., 2006). 

LincRNAs transcribed from intergenic regions are associated with the 

transcription. In particular, they are engaged in several biological activities, such 

as the response to DNA damage mediated by p53 (Huarte et al., 2010). LincRNA 

p-21, located near p21 gene, binds p53 promoter and represses the expression 

of downstream genes in the pathway of p53. 

The last class of lncRNAs is represented by transcripts from ultra-conserved 

regions (UCRs), some of which overlap with encoding exons and do not encode 

any protein (T-URCs) (Calin, 2007). T-URCs are expressed in several tissues and 

although their function is unknown, it seems that some of them are able to bind 

miRNAs. 

1.3.2 General characteristics of miRNAs 

The first studies on small RNAs were carried out by Charlie et al. in 1981 and 

by Ambros and Horvitz in 1984 using the nematode Caenorhabditis elegans as a 

model organism. They focused on lin-14, lin-28 or lin-29 genes, which are 

involved in the first steps of the larval development. Their studies revealed that 

these genes cause heterochronic developmental defects: the timing of specific 

developmental events in several tissues is altered relative to the timing of events 
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in other tissues. These abnormalities are due to a temporal mutation that causes 

a delayed or early development. The transcription of lin-4 starts at the first stage 

(L1) and its expression level remains constant for the following larval stages (L2, 

L3, L4) (Ambros and Horvitz, 1984). A loss-of-function mutation of lin-4 results 

in an aberrant adult phenotype, such as the absence of the adult cuticle and vulva. 

On the other hand, a loss of function mutation in lin-14 produces a precocious 

expression of cell fates that normally occur at later larval stages and a gain-of-

function mutation that results in retarded larval phenotypes (Ambros and 

Horvitz, 1987). 

In 1993, Lee and Ambros used this information to investigate the mechanism 

that regulates the correct development in C. elegans in detail. They first observed 

that at the end of the first larval stage (L1) a decrease in lin14 transcript did not 

correspond to a decrease of LIN4 protein level. Starting from this experimental 

evidence they found that LIN14 expression was negatively regulated by lin4 at a 

post-transcriptional level. The Lin-4 gene, in fact, located within an intronic 

region and does not encode a protein but a small RNA of 22 nucleotides partially 

complementary to the untranslated region at the 3′ end of lin-14 (3’UTR). This 

was the first evidence that the protein translation can be inhibited at a post-

transcriptional level by small RNAs which are called miRNAs (Lee et al., 1993). 

In the same time period it was discovered that in rare cases the post-

transcriptional regulation of some proteins does not involve the 3’UTR  but the 

opposite end, the 5’UTR , as in the case of ferritin biosynthesis (Aziz and Munro, 

1987). 

A few years later, in 1998, Fire and his colleagues described the phenomenon of 

genetic interference using once again C. elegans as an animal model. They were 
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able to disrupt the function of endogenous genes by the injection into gonads 

of RNA that hybridized with the gene considered (Fire et al., 1998). They 

observed that the injection of a single-stranded RNA (ss-RNA) in adult animals 

caused a modest effect on the endogenous messenger RNA transcript. On the 

other hand, the double-stranded RNA (dsRNA) was able to interfere in a very 

potent manner with the expression of the gene, with the same effects of a loss-

of-function mutation. The stable and specific interference has been observed 

not only in the adult animals but also in their progeny when the double-stranded 

fragments were injected into the cavity of the tail or into the head of the animals. 

Contrary to the discovery of Lee and Ambros, Fire and colleagues observed that 

the interfering effect occurs when the region of homology of the double-

stranded RNA is within the target (Fire et al., 1998). There was no interference 

if the region of homology was located in non-coding region, such as 5' or 3' 

UTR. Moreover, the effect of the interference was not the inhibition of the 

translation but the translation of the corresponding endogenous mRNA 

transcript. This mechanism of interference was named “interfering RNA” 

(iRNA). 

Some years later, using Drosophila melanogaster as an animal model, Dicer was 

identified as an important enzyme. Dicer is expressed in embryos and in adult 

animals and plays a key role in a complex called RISC (RNA induced silencing 

complex) (Bernstein et al., 2001). 

Dicer belongs to the members of RNase III, a family of endoribonucleases 

specific for dsRNAs. This family of enzymes is able to cleave dsRNA molecules 

into small fragments about 19-22 in length with 2-nt 3' overhangs and a 5' 
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terminal phosphate group. The characterization of RISC represented a milestone 

in the discovery of biogenesis of small RNAs, including miRNAs. 

After the discovery of the mechanisms responsible for the production of small 

RNAs (which will be discussed in a following paragraph) the definition of 

interference RNA has been revised as follow: iRNA is a post-transcriptional 

gene silencing mechanism which can be triggered by small non-coding RNA 

molecules similar in size and processed by Dicer, such as miRNAs and small 

interfering RNAs (siRNAs). The main difference between miRNAs and siRNAs 

is represented by the binding to the target. In particular, miRNAs inhibit the 

translation of a mRNAs by a non-perfect base pairing to the 3'UTR of the target, 

whereas siRNAs recognize targets by the precise complementarity of sequence 

and mediates the degradation of the target (Ambros et al., 2003, Filipowicz et 

al., 2005).  

Both miRNAs and siRNAs act in the cytoplasm. However siRNAs are also 

involved in another process in the nucleus in association with a complex called 

RITS (RNA-induced Initiation of Transcriptional gene Silencing) and induce the 

epigenetic gene silencing at specific chromosomal loci (Verdel et al., 2004).  

MiRNAs have been found in almost all eukaryotes, including yeast 

(Schizosaccharomyces pombe), plants (Arabidopsis thaliana), nematodes (Caenorhabditis 

elegans), flies (Drosophila melanogaster), mice and human (Ying and Lin, 2005). In 

contrast, natural siRNAs are abundant in plants and in simple animals but are 

very rare in mammals. 
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1.3.3 Regions encoding miRNAs 

In humans, the genes encoding for miRNAs are located in all chromosomes, 

except the Y. Almost 50% of the known miRNAs are found in clusters and are 

transcribed as polycistronic primary transcripts. Probably they derive from 

events of duplication that occur during the evolution. 

The majority of mammalian miRNAs are located in defined transcription units 

(TUs) which are defined as follows: sequences of nucleotides in DNA that code 

for a single RNA molecule, along with the sequences necessary for its 

transcription. They normally contain a promoter, an RNA-coding sequence, and 

a terminator (http://www.nature.com/scitable/definition/transcription-unit-

260). These miRNAs have their own promoters and are classified as “intergenic 

miRNAs”. On the contrary some other miRNAs do not have their own 

promoters but share promoters with their host genes and are classified as 

“intronic miRNAs” For intronic miRNAs, the heterogeneous nuclear RNA 

(hnRNA) of their respective host genes are considered to be their pri-miRNAs 

and the steps of their biogenesis are the same as for intergenic miRNAs. 

However some intronic miRNAs might be transcribed from unique 

transcription units having their own promoters independent of their host genes. 

All these considerations underline the complexity of regulation of miRNA 

biogenesis (Rodriguez et al., 2004, Ramalingam et al., 2014).  
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1.3.4 Biogenesis of miRNAs 

Overview 

In the canonical pathway of miRNA biogenesis, miRNA maturation occurs in 

two main steps according to the compartment in which the precursors are 

processed.  

In the first step, miRNAs are transcribed in the nucleus by RNA polymerase II 

(RNA Pol II) as long primary monocistronic, dicistronic or polycistronic 

miRNA precursor known as primary miRNA transcripts (pri-miRNAs). Pri-

miRNAs fold into hairpins and then are converted into precursor miRNAs (pre-

miRNAs) 70-100 nt in length by the cleavage of RNase III Drosha operating in 

complexes with dsRNA-binding proteins, such as Di George syndrome Critical 

Region 8 (DGCR8). In the non-canonical pathway of miRNA biogenesis, some 

pre-miRNAs are produced from very short introns (mirtrons) as a result of 

splicing and debranching, thereby bypassing the Drosha–DGCR8 step (Krol et 

al., 2010). 

After being exported to the cytoplasm by the karyopherin Exportin-5, pre-

miRNAs are processed into miRNA duplexes 19-22 nucleotides in length by 

Dicer, operating in complex with the dsRNA-binding proteins (dsRBPs). One 

strand of the duplex, representing a mature miRNA, is incorporated into a 

complex called miRISC (miRNA-containing RNA-Induced Silencing Complex). 

This induces the translational repression or the degradation of the mRNA target. 

through the interaction between the seed region (nucleotides 2–8) of the miRNA 

and the 3-UTR of the mRNA target (Krol et al., 2010, Bartel, 2009).  
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Figure 1.4. Canonical miRNA 

biogenesis. Transcription of miRNA 

genes by RNA Pol II results in the 

production of pri-miRNAs which have a 

stem and loop structure. Cleavage of the 

pri-miRNAs by the endoribonuclease III 

enzyme Drosha and its cofactor Di 

George syndrome chromosomal region 8 

(DGCR8) results in the production of 

pre-miRNAs, which are exported into 

the cytoplasm by the Exportin V protein. 

Following their export from the nucleus, 

pre-miRNAs are processed into miRNA 

duplexes by the cytoplasmic ribonuclease 

Dicer. The Trans-Activation Response 

RNA Binding Protein (TRBP), together 

with other factors, allows the loading of 

one of the two miRNA strands into RISC 

complex, thus leading to the translational 

inhibition or degradation of the mRNA 

targets Modified from (Krol et al., 2010).
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Nuclear processing 

Most mammalian miRNAs are within introns of either protein-coding or 

noncoding TUs, whereas ∼10% are encoded by exons of long non-protein-

coding transcripts, also known as mRNA-like noncoding RNAs (mlncRNAs) 

(Rodriguez et al., 2004). Intergenic miRNAs have a dedicated promoter, whereas 

clustered miRNAs share one promoter and are co-regulated as a part of long pri-

miRNAs (Treiber et al., 2012). 

In mammalian cells three major RNA polymerases are involved in the 

transcription of the nuclear genome: Polymerase I (Pol I) that is specific for the 

ribosomal RNA (rRNA), Polymerase II (Pol II) that transcribes the mRNA 

coding genes and Polymerase III (Pol III) that is involved in the transcription of 

non-coding RNA, included tRNAs. 

Although miRNAs belong to ncRNA genes, several pieces of evidence suggest 

that they are transcribed by Pol II, although the possibility that a small number 

of miRNA genes might be transcribed by other RNA polymerases cannot be 

excluded. In particular, it is reasonable to assume that Pol II transcribes the 

miRNAs involved in various regulatory processes and Pol III transcribes the 

miRNAs whose expression is required in all tissues (Wang et al., 2013). Similar 

to other genes transcripted by Pol II, miRNAs have a cap structure and a poly(A) 

tail and their expression profiles indicate that miRNAs are under control during 

development and in various tissues. Moreover,  a mature miRNA can be 

obtained from a plasmid that contains a pri-miRNA under the control of 

heterologous Pol II promoter and miRNA transcription activity that is sensitive 

to the concentration of α-amanitin that inhibits Pol II activity but not the Pol I 

and Pol III (Kim, 2005a). The physical association of Pol II with the promoters 
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of several miRNAs has been demonstrated by immunoprecipitation analysis 

(Kim, 2005b). 

Transcription of miRNA genes by RNA Pol II results in the production of pri-

miRNAs which have a stem and loop structure with both 5' 7-methylguanosine 

(m7) caps and 3' poly(A) tails. Cleavage of the pri-miRNAs by the 

endoribonuclease III enzyme Drosha and its cofactor DGCR8 results in the 

production of pre-miRNAs, which are hairpins of approximately 70-100 nt in 

length and contain a monophosphate at the 5' terminus and a 2-nucleotide 

overhang with a hydroxyl group at the 3' terminus. 

The complex formed by Drosha and DGCR8 is called Microprocessor and it 

has been demonstrated that both of these two factors are necessary for the 

maturation of pre-miRNA.  Specifically, neither recombinant DGCR8 nor 

Drosha alone is able to process pri-miRNA (Yeom et al., 2006).  

Drosha is a conserved protein of 160 kDa and belongs to the RNase III family 

of proteins, which are enzymes responsible for endonucleolytic reactions. In 

miRNA biogenesis two members of this family are involved: Drosha in the 

nucleus and Dicer in the cytoplasm. The difference between them is in the 

substrate specificity and mechanism of action (46): Drosha binds to pri-miRNA 

and introduces  a cut from the terminal loop, whereas Dicer cleaves from the 3' 

terminus (Kim, 2005b). 
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Figure 1.5. Mechanism of action for Drosha (a) and Dicer (b). Modified from 

(Kim, 2005b). a) DGCR8 works as a molecular anchor for Drosha. DGCR8 recognises 

and binds the junction between the stem and the loop of a pri-miRNA. Drosha binds 

DGCR8 and cuts approximately 11 bp away from the junction through its two RNase 

III domains, RIIIDa and RIIIDb. RIIIDa cleaves the 3’ strand, whereas RIIIDb cleaves 

the 5’strand. b) PAZ domain recognizes and binds the 3’ end of the pre-miRNA cleaved 

by DROSHA. Dicer cuts approximately 22 nt from the 3’end through the RIIIDa and 

RIIDb subunits. 

 

Drosha is composed of two RNase III domains (RIIIDs) and a double-stranded 

RNA binding domain (dsRBD), both of them essential for catalysis (Han et al., 

2004). 

DGCR8/PASHA is a 120 kDa protein that contains two dsRBDs and a putative 

domain (WW). The human DGCR8 gene is located on chromosome 22q11 and 

is expressed ubiquitously in both the foetus and adults. Its name is linked to a 

group of diseases, which occur in case of a mutation in this region and that are 

indicated as Di George syndrome. 
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The mechanisms that regulate how the Microprocessor can recognize the target, 

are largely unknown.  However, it is reasonable to assume that the complex is 

able to bind molecules with a stem and loop structure, avoiding the widespread 

similar RNA stem loop-structures that can form across the transcriptome (Han 

et al., 2004, Conrad et al., 2014). 

Basically, the role of DGCR8 is to bind the pri-miRNA and the role of Drosha 

is to cleave it. Notably, Drosha seems not to have any pri-miRNA binding 

activity (Yeom et al., 2006). 

DGCR8 recognizes the target in correspondence of the ssRNA-dsRNA junction 

and interacts with the whole stem region (about 33 bp) and with the loop. A 

small region of DGCR8 (residues 484 through 750) is sufficient to facilitate pre-

miRNA processing in vitro and includes both the dsRBDs and the C-terminal 

Drosha-binding domain; the N-terminal region is not involved in processing but 

it is important for nuclear localization of DGCR8. DGCR8 also stabilize Drosha 

protein. 

Drosha cleavage is shown in Figure 1.5: after DGCR8, the dsRBD of Drosha 

maytransiently interact with the substrate to place the processing centre 

approximately at11 bp from the point in which a double strand is formed. In 

particular, Drosha cleaves at 2 helical turns away from the terminal loop and 1 

helical turn away from the basal segment. Pri-miRNA stem, defined by internal 

and flanking structural elements, guides the binding position of Drosha-

DGCR8, which consequently determines the cleavage site (Burke et al., 2014).  
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The result of processing is a pre-miRNA stem and loop which are hairpins that 

contain a monophosphate at the 5' terminus and a 2-nucleotide overhang with a 

hydroxyl group at the 3' terminus. 

There is a post-transcriptional crossregulation between Drosha and DGCR8. In 

fact, DGCR8 stabilizes Drosha via protein-protein interaction but if the level of 

both Drosha and DGCR8 are high in the cell, Microprocessor would cleave and 

destabilize the DGCR8-mRNA, decreasing the level of the corresponding 

protein. This system has been demonstrated in vitro and in vivo and suggests 

that it could contribute to the control of miRNA biogenesis (Han et al., 2009). 

Nuclear export 

The transport of pre-miRNA from the nucleus to the cytoplasm is mediated by 

the nuclear pore complex (NPC), a proteinaceous channel embedded in the 

nuclear membrane (Nakielny and Dreyfuss, 1999).  

In particular, exportin-5 (Exp5), a Ran-dependent importin-β-related transport 

receptor, mediates nuclear export of pre-miRNA Exp5 and forms a complex 

cooperatively with the substrate (cargo) and the GTP-bound form of Ran 

(RanGTP) Upon export, hydrolysis of GTP to GDP on Ran results in release of 

the cargo from the export complex (Kim, 2004). 

Nuclear transport receptors usually recognize specific sequences on the target 

but in pre-miRNAs no consensus sequence has been found. Probably Exp-5 

recognizes the structural motif common in all pre-miRNAs which contain a 2 

nt-3' overhangs and a loop. 
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Cytoplasmic processing 

Following their export from the nucleus, pre-miRNAs are processed into 19-22 

nucleotide miRNA duplexes by the cytoplasmic ribonuclease Dicer (Figure 1.4). 

Dicer is a highly conserved protein found in almost all eukaryotes. Some 

organisms contain multiple Dicer homologues, such as D. melanogaster, which has 

two isotypes of the enzyme (Dicer-1 and Dicer-2). 

Human Dicer, a protein of 160 kDa, belongs to the RNase III family of enzymes 

showing either an endonucleolytic or a helicase activity. In fact, it first cleaves 

the pre-miRNA and then contributes to the loading of miRNA into RISC. Dicer 

contains the following domains: an N-terminal ATPase/RNA helicase domain, 

a DUF283 domain, a Piwi Argonaut and Zwille (PAZ) domain, two RNase III 

domains (RIIa and RIIb) and a dsRNA binding motif domain (dsRBD). 

Moreover Mg2+ ions are present in each catalytic centre (Filipowicz et al., 2005, 

Zhang et al., 2004).  

The dsRNA binding motif domain binds the pre-miRNA to close the loop. The 

C-terminal RIIb, proximal to the dsRBD, cleaves the 5' strand of the hairpin and 

RIIa cleaves the 3' strand. On the opposite site, at the terminus, PAZ domain 

interacts with the 3' overhang of the substrate. RNase III domains functions as 

a ruler measuring the distance from the 3' end of pre-miRNAs to cleavage site 

to allow the correct production of the mature miRNA duplex (Figure 1.5) 

(Filipowicz et al., 2005, Han et al., 2006, Ando et al., 2011). Notably, it has also 

been demonstrated that Dicer is able to cleave without the 3'overhangs, 

interacting directly with only the 5' strand (Zhang et al., 2002). 
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The products of cleavage by Dicer are 19-22 nucleotide mature miRNA 

duplexes, which are usually approximately 21 nucleotides in length with both 

sets of termini having 5' monophosphates, 3' 2-nucleotide overhangs and 3' 

hydroxyl groups. The miRNA guide strand, the 5' terminus of which is 

energetically less stable, is then selected for incorporation into miRISC (Schwarz 

et al., 2003, Khvorova et al., 2003).  

Mature miRISC is composed of Ago proteins and binds both miRNA and 

mRNA targets. In mammals four different Ago proteins have been discovered 

(Ago1-Ago4), all characterized by the same two domains, PAZ, MID (middle) 

and PIWI. 

PAZ-domain function is to anchor the 3'-end of the miRNA with its 

oligonucleotide/oligosaccharide binding (OB) fold and bind the 3'hydroxilated 

end (Song et al., 2004).  

On the other hand, the MID domain anchors the 5' end of the miRNA, owing 

to its ability to discriminate between the four different bases. In particular it 

preferentially binds the uridine base (Frank et al., 2010).  

The PIWI domain is structurally similar to RNase H, with an endonuclease 

activity which is Mg2+ dependent. Both of them are able to cleave the RNA but 

RNase H recognises the RNA-DNA interaction whereas RISC recognises the 

RNA-RNA interaction (Chendrimada et al., 2005).  

In mammals, all the proteins of the Ago family can mediate both the translation 

repression of mRNA and the mRNA decay in P-bodies, but only Ago2 has an 

endonucleolytic activity. In addition, other factors, such as the Trans-Activation 

Response RNA Binding Protein (TRBP) and Protein kinase RNA activator 
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(PACT) are involved in strand selection and RISC assembly. In particular, the 

TRBP association with Dicer provides a platform for RISC and aids the 

recruitment of Ago2. PACT binds the N-terminal region of Dicer containing the 

helicase motif (Lee et al., 2006, Bartel, 2009). Neither TRBP nor PACT is 

required for the pre-microRNA cleavage, however, their role is crucial for the 

efficiency of miRNA processing. In fact, it has been demonstrated that their 

depletion causes a decrease in the mature miRNA level (Chendrimada et al., 

2005, Lee et al., 2006).  

In the canonical pathway of miRNA biogenesis, the imperfect base-pair between 

a miRNA and the sequence in the 3'UTR of target mRNA has an effect on 

inhibiting protein synthesis by either repressing translation or promoting mRNA 

deadenylation and decay (Krol et al., 2010). Deadenylation is the first step in 

mRNA decay, and is generally followed by removal of the m7G cap (the 

7‑methylguanosine‑triphosphate structure) at the 5′ end of mRNAs, which 

promotes their translation and protects them from degradation and 

exonucleolytic 5′ to 3′ degradation of mRNA. In the deadenylation of mRNA, 

Glycine-Tryptophan Protein of 182 kDa (GW182) and other proteins are 

involved and act in association with RISC. While the amino-terminal part of 

GW182 interacts  with Ago through its GW repeats, the carboxy-terminal part 

interacts with the poly(A) binding protein (PABP) and recruits the deadenylases 

CCR4 and CAF1 proteins (Krol et al., 2010) ( Figure 1.4). 

In addition to this canonical process, another non-canonical miRNA biogenesis 

pathway has been discovered in flies and mammals. This alternative process 

involves a group of miRNAs derived from short hairpin introns (mirtrons) that 

undergo to splicing and directly exert the pre-miRNAs bypassing Drosha 
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cleavage. Following the completion of splicing, the branch point of the lariat-

shaped intron is resolved and the debranched intron forms a hairpin structure 

that resembles premiRNA. Some precursors (mirtrons) contain tails at either the 

5’ or 3’ end, which therefore require exonucleolytic trimming for nuclear export 

(Kim et al., 2009). 

1.4 MiRNAs and human pathologies 

MiRNAs regulate all the biological functions, including cell growth, 

differentiation, proliferation, apoptosis and signal transduction pathways (Giza 

et al., 2014). Their dysregulation may be due to mutations in their encoding genes 

or in the miRNA biogenesis machinery and their levels may change during either 

the pre-natal development or the post-natal life. As epigenetic features, they are 

heritable but may change spontaneously or in response to environmental factors. 

The first evidence of the correlation between miRNAs and human diseases has 

been identified by studying the DGCR8 protein, the RNase III enzyme that, 

together with Drosha, is responsible for the cleavage of the pri-miRNA in the 

nucleus. The DGCR8 gene is located on 22q11.2 chromosome and deletions in 

this gene cause the so-called Di George Syndrome, a rare disease. Children 

affected by the DGCR8 syndrome develop severe learning disabilities, such as 

autism, shows congenital malformations, such as the cleft palate, and have many 

other problems, such as congenital heart diseases and hormone-related 

disorders. Moreover, microdeletions of 22q11.2 are responsible for up to 1–2% 

of schizophrenia cases (Karayiorgou et al., 1995). It has been demonstrated that 

a Dgcr8 haploinsufficiency impairs the miRNA biogenesis and contributes to 

the behavioral and neuronal deficits associated with the disease in vivo (Stark et 

al., 2008).  
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Since then, the regulatory role of miRNAs in both physiological and pathological 

conditions has been widely demonstrated.  

Some miRNAs have also been found in viruses, such as the gamma herpesvirus 

Kaposi’s sarcoma-associated herpesvirus (KSHV) and the simian virus 40 

(SV40) (Gottwein et al., 2006, Sullivan et al., 2005). SV 40 gene encodes for a 

miRNA that downregulates the T-antigens by binding their mRNAs. This 

mechanism does not influence the infection directly but protects the infected 

cells from the effect of the T-cells, thus promoting the survival of the virus in 

the host cells. 

MiRNAs regulate the immune and autoimmune response in many ways. MiR-

21, for example, regulates the T-cell response, the differentiation of dendritic 

cells and the myeloid cell function (Wang et al., 2016b). This is possible through 

the ability of a single miRNA to bind and repress the activity of multiple mRNAs 

at the same time.  

MiRNAs are also involved in the normal development of the cardiovascular 

system, as well as in many pathological conditions of the heart, such as the miR-

208a, that is encoded by the MYH6 gene. MiR-208a has shown to be upregulated 

in hypertrophic mice (van Rooij and Olson, 2012) and an anti-miR-208a leads 

to a reduced fibrosis, hypertrophy and obesity in vivo, thus suggesting a possible 

use of this miRNA as a therapeutics agent. 

MiRNAs are involved in the embryonic development at the gene level and their 

de-regulation may cause important congenital defects during the different stages 

of specific pathways. For example, miR-140, miR-17-92 cluster (miR-17, miR-

18a, miR-19a, miR-20a, miR-19b-1 and miR-92a-1) and miR-200b play an 
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important regulatory role during all the stages of palatogenesis (Schoen et al., 

2017). MiR-140-5p regulates the first step of the process of the craniofacial 

formation, by regulating the migration of the neural crest cells to a more ventral 

position in the embryo, in order to differentiate in multiple tissues, including the 

craniofacial cartilage. The levels of miR-140-5p may be affected by a SNP 

(rs7205289: C>A) located in the precursor, that impairs its maturation (Li et al., 

2010) or by a mutation on one of its targets, the Platelet Derived Growth Factor 

Receptor A (PDGFRA) (Rattanasopha et al., 2012). The palatal growth is the 

second stage of the palatogenesis and is characterized by the proliferation of the 

cells and accumulation of the extracellular components, such as collagen. The 

miR-17-92 cluster sustains the proliferation of the cells by inhibiting many anti-

proliferative molecules. The activation of the cluster in the post-natal life, 

however, may contribute to the proliferation of some tumours (Schoen et al., 

2017). In the final stage of palatogenesis, the epithelium between the two palatal 

shelves is removed in a process named “epithelial-to-mesenchymal transition”. 

In this step, the expression of miR-200 must gradually decrease. MiR-200, which 

targets many factors involved in the Transforming Growth Factor-β (TGF-β) 

pathway, should be active to allow the closure of the palatal shelves. 

 

1.5 MiRNAs and cancer 

MiRNAs in cancer can act either as onco-suppressors (tumour-suppressor miRs) 

or oncogenes (oncomiRs) and may have a direct impact on cancer phenotypes, 

depending on their specific targets and the pathways with which miRNAs 

interact. MiRNAs act as onco-suppressors by targeting oncogenic mRNAs and 

as oncogenes when they repress the translation of mRNAs with tumour 
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suppressor functions. This dual classification is complicated by the fact that 

miRNAs can act as onco-suppressor and oncogenes at the same time and this 

mainly depends on the context in which miRNAs are expressed. The levels of 

specific miRNAs in human tumours are like a signature that reflects and is 

associated with the diagnosis, staging, progression, prognosis and response to 

therapies (Calin and Croce, 2006). 

The first evidence of the involvement of miRNAs in cancer was formulated by 

Croce et al (Calin et al., 2002). They found that two miRNAs, miR-15 and miR-

16, were downregulated in patients affected by B cell chronic lymphocytic 

leukaemia (CLL) and that the two miRNAs were located at chromosome 13q14, 

a region frequently deleted in CLL. The target of the miR-15/16 cluster is the 

B-cell lymphoma 2 (BCL2), an anti-apoptotic protein. The downregulation of 

the two miRNAs contributes to a higher expression of BCL2, thus conferring 

resistance to programmed cell death to the malignant cells. 

Since then, many groups have investigated the role of miRNAs in cancer and 

demonstrated their usefulness either as biomarkers, as they were detected in a 

wide range of biological fluids, or indicators of the tumour subtypes and patient 

response to treatments (Hayes et al., 2014).  

MiRNAs are extremely plastic and their levels may change easily. As all the other 

epigenetic regulators, their levels may vary according to the time and the stage 

of the disease. Considering this, the variation of miRNA levels in cancer may be 

involved in the progression of the disease. This is because MiRNAs themselves 

are under the control of genetic and epigenetic mechanisms that contribute to 

their de-regulation. For example, pre-transcriptional regulators are able to affect 

the biogenesis of miRNAs leading a gain or loss of function of miRNA gene 
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copy number, mutations of the miRNA precursor, histone deacetylation and 

hypermethylation of miRNA promoters (Shi et al., 2008). Some miRNAs are 

clustered in regions of genomic instability or fragile sites and this may contribute 

to their level and function (Calin et al., 2004). MiRNA levels are also regulated 

by other transcription factors associated with RNA Polymerase II and all the 

other nuclear and cytoplasmic enzymes involved in their biogenesis. For 

instance, it has been shown that the deletion of  Drosha, DGCR8 and Dicer1, 

the main components of the miRNA maturation machinery,  enhances the 

tumour development in a K-Ras–induced mouse model of lung cancer (Kumar 

et al., 2007). The level of miRNAs may also be influenced by Single Nucleotide 

Polymorphisms (SNPs) within their own sequence or the sequence of their 

target genes, thus influencing the activity of the cancer cells (Preskill and 

Weidhaas, 2013). This is the case of a SNP in the 3’UTR binding region of let-

7, which halts the binding of the miRNA and this leads to a higher level of  

KRAS levels in NSCLC patients (Preskill and Weidhaas, 2013). 

The dysregulation of miRNAs may contribute to the malignant transformation 

in distant sites by directly modulating enzymes which take part in methylation-

mediated silencing and chromatin remodelling, in a paracrine manner through 

exosomes, microvesicles and protein complexes able to influence the tumour 

microenvironment and by promoting the release of mediators which activate 

pro- or anti-cancer immune activity (Rusek et al.). In the tumour 

microenvironment, miRNAs have been found encapsulated in microvescicles, 

associated with protein complexes and, in some cases, free. They may derive 

from live, necrotic or apoptotic cells and are released into the tumour 

microenvironment, where they may be incorporated into the recipient cells and 
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contribute to the spread of a tumour in a paracrine manner (Turchinovich et al., 

2014). In a multiple myeloma model in vivo, miR-135 is encapsulated and released 

into the extracellular space by the malignant cells of the bone marrow. It then 

penetrates into the endothelial cells and enhances the angiogenesis by targeting 

the inhibitor of the Hypoxia-Inducible Factor (HIF) (Umezu et al., 2014). The 

presence of miRNAs in all biological fluids, including saliva, breast milk and 

blood, has drawn attention on their role as biomarkers, as the dysregulation of 

specific circulating miRNAs can reflect the physiological and pathological status 

of patients (Weber et al., 2010). Finally, the activity of miRNAs in cancer and 

other diseases may be influenced by other RNA molecules named “competing 

endogenous RNAs” (ceRNAs) that compete with the miRNAs as they share the 

miRNA binding site with other RNAs (Wang et al., 2016c). 

 

1.6 Strand selection and miRNA prediction tools 

During miRNA biogenesis, one of the two strands of the double-stranded 

molecule is processed (guide strand or miR) and the other one (passenger strand 

or miR*) is degraded. This process is generally named “strand selection”. The 

guide and passenger strands are frequently named -3p and -5p, according to the 

direction of the mature miRNA strand. Although the two sister strands are 

partially complementary and come from the same precursor, they have different 

targets and are involved in distinct biological pathways or may target the same 

mRNA but in different sites. The miRNA strand selection may vary among 

tissues and between normal and malignant cells. Moreover, mutations in the 

miRNA-precursor, or in proteins involved in miRNA biogenesis, may change 
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the ratio between the sister strands, resulting in a dysregulation of key biological 

pathways (Ha and Kim, 2014b). 

In Mammals, previous models have suggested that the choice of the mature 

miRNA depends on the thermodynamic and structural properties of the 

processed duplex. The more stable strand generally starts with a 5’ Uracil (U) 

base and is rich in purines, whereas the less stable strand starts with a 5’ Cytosine 

(C) base and is rich in pyrimidines (Meijer et al., 2014). According to this theory, 

the less stable fragment is loaded into RISC because the purine residues may 

facilitate the strand loading through sequence-independent interactions. In fact, 

the PAZ domain of Ago2, which participates to the initial steps of DNA 

recognition and binding, contains numerous aromatic residues involved in RNA 

binding, and the interaction between these residues and the purine-rich duplex 

may contribute to strand selection (Meijer et al., 2014). However, data from 

sequencing studies suggest that it is not always the case, as often both of the 

strands are active and the choice of the active strand may vary with time and 

tissues (Okamura et al., 2008). In fact, the predominant form of a miRNA differs 

among tissues, times of development, and between species suggesting the 

existence of other mechanisms for controlling the selection of mature miRNAs, 

such as variations in the proteins that form the RISC complex (Griffiths‐Jones 

et al., 2011, Barbato et al., 2009). The most common modifications of the pre-

miRNA are located at the 3’end, probably because they have a little effect on the 

target selection (Li et al., 2012). MiRNAs recognise the 3’-UTR of their mRNA 

targets and for this reason, presumably, the modifications at the 3’ end may have 

a smaller impact on strand selection than the changes at the 5’ end. However, it 

is not possible to exclude that the modifications at the 3’end of the duplex may 
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have a functional role. The strand selection process may also vary due to 

mismatches in the pre-miRNA sequence (Noland and Doudna, 2013), as these 

variations are recognised by different proteins of the RISC. Finally, Single 

Nucleotide Polymorphisms in the miRNA gene sequence may affect both the 

miRNA processing and the binding with the mRNA targets (Sun et al., 2009).  

To assess the biological role of a miRNA, the potential mRNA targets should 

be identified. As described previously, one single miRNA can target up to 2,000 

transcripts and considering that the miRNA sequence is short and not perfectly 

complementary to the mRNA targets, this research may be difficult.  The most 

common way to make this search easier is to use some bioinformatics tools. The 

main criteria used by these algorithms are the Watson-Crick base paring between 

the nt 2-8 at the 5’ end of the miRNA (seed region) and the 3’UTR of the 

mRNA, the free energy of the binding and the conservation of the miRNA 

binding sites between the species. Some of these tools will be further described 

in Section 2.16. However, not all miRNAs can bind their targets following the 

base pairing, for example in the case of a SNP in the pre-miRNA or for an 

imperfect binding. For this reason, in this study, the classical bioinformatics 

tools have been integrated with an alternative approach with the use of synthetic 

miRNA mimics designed with a biotin stretch at the 3’ end. These mimics can 

be transfected into cells and then purified by using streptavidin beads in to 

obtain just the mRNA bound to the miRNA of interest. The mRNA profile can 

then finally be analysed through sequencing and validated by qPCR. This 

method, as will be discussed later, will allow, ideally, to identify all the targets 

that are not predicted by the bioinformatics algorithms, especially the non-seed 

based interactions. Although it is a good approach to find the direct targets of a 
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specific miRNA, this method also shows some limitations. The main limitation 

is due to inability to detect some transcripts because they might be regulated and 

expressed differently among the cells or because other transcripts compete for 

the miRNA binding (Tan et al., 2014). For these reasons we decided to use an 

integrated approach to better address the biological role of the two forms of 

miR-140 in lung cancer invasion. 

 

1.7 Potential and current applications of miRNAs in human diseases, 

including cancer 

1.7.1 Diagnosis 

Many studies have shown the possible applications of miRNAs as biomarkers, 

as in many cases a miRNA signature has been associated with the progression 

of specific diseases and/or the response to a treatment. According to the World 

Health organisation, a biomarker is “any substance, structure or process that can 

be measured in the body or its products and influence or predict the incidence 

of outcome or disease” 

(http://www.inchem.org/documents/ehc/ehc/ehc222.htm). A good 

biomarker should be easily detectable by using non-invasive methods and should 

reflect the health status of the patient, thus allowing either an early diagnosis or 

prognosis. MiRNAs are ubiquitously expressed in all biological fluids, including 

saliva, urine, breast milk and blood and correlate with many pathological 

conditions (Weber et al., 2010). All these characteristics, together with the 

powerful techniques available that allow detection of small molecules, made 

them particularly attractive as diagnostic and prognostic markers for many 
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diseases, including cancer. MiRNAs are tissue and disease specific and their 

variation may be an indicator of a pathological condition. An early diagnosis, 

together with an accurate classification of the disease, is crucial for an incisive 

decision on the patient treatment. 

MiRNAs have been found useful for the diagnosis of many diseases, such as 

cancer, cardiovascular and metabolic disorders (Di Leva and Croce, 2013, 

Goretti et al., 2014, Wang et al., 2016a). In cancer, miRNAs can discriminate 

between two or more different cell subtypes because they vary according to the 

oncogenic pathway activated and the expression of miRNAs in blood reflects 

their levels in the tumour tissues (Di Leva and Croce, 2013, Salvatore et al., 

2016). The miR-200 family, for example, is upregulated in an advanced state of 

breast cancer and this reflects the stage of the disease, as the members of miR-

200 family target zeb1 and zeb2, two of the transcription factors deeply involved 

in the Epithelial-Mesenchymal Transition (EMT) (Di Leva and Croce, 2013). In 

other cases, miRNAs are predictive of cancer with specific mutations, as in the 

case of melanoma, where the low levels of miR-193a, miR-338 and miR-565 

have been found in patients positive for BRAF mutations (Di Leva and Croce, 

2013). 

MiRNAs regulate many proteins involved in the physiological processes of the 

heart and recently many circulating miRNAs have been used for the stratification 

of myocardial infarction (Goretti et al., 2014). In clinical practice, multiple 

factors such as age, gender, systolic blood pressure and smoking habits, are 

usually evaluated to estimate the cardiovascular risk and it has been 

demonstrated that the cardiovascular risk is associated with the circulating levels 

of miRNAs (Goretti et al., 2014). The utility of miRNAs for the diagnosis of 
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cardiovascular diseases has been further strengthened by the demonstration that 

specific miRNAs are released into the bloodstream after an infarction (Goretti 

et al., 2014). 

A specific miRNA signature has been recently discovered in patients affected by 

the type 2 diabetes mellitus (T2DM) and this may help to monitor the 

progression of this disease. In particular, five miRNAs, miR-661, miR-571, miR-

770, miR-892b and miR-1303, have been found highly expressed in patient 

serum and a higher level has been shown in patients with complications (Wang 

et al., 2016a). These five miRNAs may be useful as predictive biomarkers for 

T2DM-related complications and may be involved in the progression of the 

disease. 

Some research groups argued that many factors make the applications of 

miRNAs in clinical practice quite hard (Tiberio et al., 2015). In fact, the levels of 

miRNAs may vary amongst people because of the diet or pharmacological 

treatments, such as aspirin, that may reduce the plasma levels of miR-126 in 

patients affected by T2DM, thus making this miRNA in the blood not predictive 

of cardiovascular diseases (de Boer et al., 2013). However, the variability is the 

major concern of all the biomarkers currently used in the clinical practice and, 

in the case of the miRNAs, this is not always the case. Some miRNAs, in fact, 

are tightly associated with the genetic features of a disease and their levels are 

weakly influenced by other factors, such as miR-483-5p, that may be used to 

discriminate between the paediatric and adult liver tumours and may not be 

influenced by any treatment (Salvatore et al., 2016). Another issue related to the 

use of miRNA as biomarkers is the normalisation method used in the 

quantification of circulating miRNAs as, to date, a stable housekeeping gene has 
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not been identified. Moreover, it is still hard to establish the range within the 

levels of specific miRNAs may be considered physiologically. Finally, same 

standard operating procedures should be published and followed internationally 

(Goretti et al., 2014). 

All these observations, however, do not weaken the validity of the miRNAs, 

which may be used in concert with other predictive molecules/factors and 

should be taken into account for comorbidities and treatments.  

1.7.2 Treatment 

MiRNAs in tumours can act as onco-suppressors when their expression is lower 

than in normal conditions, or as oncogenes when upregulated. Their low 

molecular weight and small size, together with their ability to target multiple 

molecules without toxicity, provides a new opportunity for cancer treatment 

compared to other methods such as the gene therapy. For instance, miR-181 

regulates T-cell receptor sensitivity by targeting multiple phosphatases, an effect 

that was not observed by silencing a single component of the pathway by siRNA 

(Li et al., 2007). Oncogenic microRNAs can be targeted by repression and 

therefore the inhibition of the interaction between miRNA and mRNA and 

onco-suppressor expression can be restored in cells using molecules that 

“mimic” their activity.  

Oncogenic miRNAs can be inhibited using oligonucleotides complementary to 

the mature miRNA (antagomiRs) (Krutzfeldt et al., 2005, Haftmann et al., 2015). 

AntagomiRs are cholesterol-conjugated single-stranded RNA analogues 

complementary to miRNAs. The chemical modifications at their 3’-end increase 

their stability in vivo and their efficient direct uptake via cell membrane into viable 
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cells. Another anti-miR-based strategy uses a stable transfection with virus-

associated “miRNA sponges”. They are transcripts that express 3’ UTRs 

containing multiple miRNA binding sites from strong promoters, such as U6 or 

cytomegalovirus (Ebert et al., 2007). 

MiRNA replacement therapy aims at the substitution of tumour suppressive 

miRNAs expressed at lower levels by using oligonucleotide mimics containing 

the same sequence as the mature endogenous miRNA. This can be achieved by 

vectors (plasmids or lentiviruses) expressing miRNA precursors or by delivering 

artificial miRNA duplexes (mimics). MiRNA precursors require transcription 

and processing, whereas miRNA mimics are directly incorporated into RISC. 

The challenges for miRNA re-establishment are the same as for miRNA 

suppression: the specificity and efficiency of the delivery. Despite the miRNA 

replacement using virus vectors having produced good results (Kota et al., 2009), 

the application of non-viral vectors, such as nanoparticles, has increased in the 

last few years. The efficiency of transfection in host cells is higher with viral 

vectors compared to non-viral vectors. However, the viral vectors show a high 

immunogenicity and cytotoxicity. The first person who died in a gene-therapy 

clinical trial suffered from a partial deficiency in a liver enzyme, the ornithine 

transcarbamylase (OTC). The patient died in 1999 of multi-organ failure, four 

days after the treatment with an adenovirus vector to deliver the gene for OTC 

to the liver. The autopsy showed that the vector circulated into the bloodstream 

and accumulated in the spleen, lymph nodes and bone marrow, although it had 

been infused directly into the liver through the hepatic artery (Thomas et al., 

2003). One of the phenomena associated with the use of viral vectors is that of 

insertional mutagenesis, the ectopic chromosomal integration of viral DNA that 
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disrupt the expression of a tumour suppressor gene or activates an oncogene 

leading to the malignant transformation of cells. Due to their biosafety, the non-

viral vectors, as the vehicles for gene therapy, have drawn significant attention.  

Two non-viral methods have been developed to protect both miRNA mimics 

and inhibitors from the degradation by RNases in serum or in the endocytic 

compartment of the cell (Rupaimoole and Slack, 2017). Firstly, the miRNA 

mimics chemistry can be modified by methylation of the passenger strand to 

increase the stability and anti-miRNAs can be modified through the addition of 

chemical groups that “lock” the nucleic acid (Lock Nucleic Acid, LNA) 

(Rupaimoole and Slack, 2017).Secondly, vehicles to encapsulate and protect the 

small RNAs can be produced. Indeed the use of lipid-based nanoparticles is 

considered the best method to overcome the physical barriers in vivo, such as 

enzymatic degradation, and to access target cells with high tissue-specificity 

(Chen et al., 2010, Choi et al., 2014). 

 The use of miRNA mimics therapeutics have been successful in both in vitro 

and in vivo models (Chen et al., 2010, Hsu et al., 2013, Esquela-Kerscher et al., 

2008) and recently a pharmaceutical company, MiRNA Therapeutics (Texas), 

has started a multicentre Phase 1 clinical trial of a single miRNA agent in humans 

and they plan to advance into Phase 2 (Rupaimoole and Slack, 2017). More than 

one hundred patents affected by liver cancer will be treated with MRX34, a 

synthetic miRNA mimic of miR-34, which is known to be a tumour suppressor. 

MRX34 is a double-stranded oligonucleotide delivered using a liposome-

formulation called NOV40, which is able to avoid interactions with normal cells 

and achieve maximal accumulation of the mimic into the liver, due to the high 

liposomal accumulation in the liver. Other miRNA therapeutics in clinical trials 
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include the anti-miR-122 for the Hepatitis C, antimiR-103/107 for T2DM, 

antimiR-155 for cutaneous T cell lymphoma, miR-129 mimic for scleroderma 

and miR-16 mimic for NSCLC and miR-16 for malignant pleural mesothelioma 

(Rupaimoole and Slack, 2017, van Zandwijk et al., 2017).  

1.7.3 Prognosis 

The personalised medicine aims to treat patients with a particular condition by 

using specific approaches to better manage their health and address them to the 

best therapy. In the era of molecular medicine, parameters other than the clinical 

and pathologic features are included in the risk stratification of patients, such as 

DNA methylation, gene expression and microRNA expression (Hayes et al., 

2014). The miRNA signature associated with each individual tumour is now 

easily possible through either qRT-PCR or Next Generation Sequencing and the 

data profiles generated are stable within the clinical samples and allow a better 

prognosis (Lu et al., 2005). 

The miRNA molecular profiles correlate with patient survival in many cancers, 

such as lung and breast (Yanaihara et al., 2006, Kurozumi et al., 2017). In breast 

cancer, in particular, there is a specific miRNA signature that allows 

discrimination amongst the subtypes (Kurozumi et al., 2017). Because of the 

significant differences in prognosis and treatment, miRNAs may be particularly 

useful in concert with other molecular markers.  

A miRNA signature helpful for a better diagnosis has been also found in other 

diseases, such as cardiovascular and metabolic disorders (Hoekstra et al., 2010, 

Dangwal et al., 2015). In atherosclerosis, which is the primary cause of 

cardiovascular diseases, the changes in miR-134, miR-198, and miR-370 in the 
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blood of patients may be useful to predict the clinical outcome of the disease 

(Hoekstra et al., 2010). In metabolic disorders, such as type 2 diabetes, circulating 

miRNAs are associated with those patients with impaired wound healing 

(Dangwal et al., 2015). 

 

1.8 MiRNAs in lung cancer 

The first evidence of the involvement of miRNAs in human lung cancer was 

reported by Takamizawa et al. (Takamizawa et al., 2004). In their work, they 

demonstrated that let-7 miRNA was downregulated both in vitro and in vivo and 

correlated with prognosis of lung cancer patients. Later on it has been shown 

that the let-7 reduction lead to an increase of RAS level (Johnson et al., 2005). 

Also a SNP on let-7 has been also shown to be significantly associated with an 

increased risk for NSCLC among moderate smokers by modifying the binding 

to 3' untranslated region of KRAS mRNA (Chin et al., 2008).  

As previously stated, miRNAs can act as oncogenes or oncosuppressors, 

depending on the timing and the levels of expression. This is true for all the 

cancers, including NSCLC. For instance, miR-17–92 cluster, which includes 

miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a-1, is 

overexpressed in lung cancer and enhances the cancer cell growth (Hayashita et 

al., 2005). In contrast, miR-17~92 shows a tumour suppressive role in other 

cancers, such as breast cancer, squamous cell carcinoma of the larynx, 

retinoblastoma, hepatocellular carcinoma and nasopharyngeal carcinoma (Xiang 

and Wu, 2010). This paradox may be due to the ability of a single miRNA to 

target multiple mRNAs involved in distinct pathways.  
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.Modifications in the key enzymes involved in miRNA biogenesis are also found 

to be correlated with the prognosis of lung cancer patients, such as in NSCLC 

patients where a higher Dicer expression leads to a significantly better prognosis 

than low Dicer expression (Lonvik et al., 2014, Diaz-Garcia et al., 2013, Karube 

et al., 2005). Moreover, miRNA-related genetic variants are also associated with 

the clinical outcomes in early-stage NSCLC cancer patients (Pu et al., 2013) thus 

confirming the importance of miRNAs as prognostic markers.  

Emerging evidence suggest the useful role of miRNAs as biomarkers for the 

early diagnosis of lung cancer. In lung cancer tissues, a meta-analysis study 

indicates a specific miRNA signature associated with lung cancer tissues, with 

seven miRNAs up-regulated (miR-21, miR-210, miR-182, miR-31, miR-200b, 

miR-205, and miR-183) and eight down-regulated (miR-126-3p, miR-30a, miR-

30d, miR-486-5p, miR-451a, miR-126-5p, miR-143, and miR-145) (Inamura and 

Ishikawa, 2016). Used as non-invasive biomarkers, miRNAs detection in sputum 

and blood, was found to improve the sensitivity of detection and the diagnosis 

of NSCLC patients. For example, miR-21 has been found upregulated in the 

sputum of patients and low levels of miR-21, miR-126, miR-210, and miR-486-

5p in plasma have been associated with this disease (Inamura and Ishikawa, 

2016). 

Two different research groups have studied the miRNA molecular profile for 

lung cancer diagnosis and prognosis (Yanaihara et al., 2006, Yu et al., 2008) and 

found a five-miRNA signature (let-7a, miR-221, miR-137, miR-372, and miR-

182), that is associated with survival and cancer relapse in NSCLC patients. 

MiRNA-let-7 was downregulated in NSCLC and further studies demonstrated 

its onco-suppressor activity in a xenograft model (Kumar et al., 2008). MiR-221 
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levels were lower in tumour tissues than in controls and showed a tumour-

suppressive activity in lung cancer together with miR-222 (Yamashita et al., 

2015).  The identification of a microRNA signature that can predict survival of 

patients with squamous cell carcinoma or adenocarcinoma is very important 

because it suggests that miRNAs may have an important role to enable better 

understanding of the progression of the disease. Other miRNAs important in 

NSCLC progression have been also discovered in later research, such as the 

miRNA cluster 17-92 mentioned above  (Osada and Takahashi, 2011).  

The current diagnostic methods for the diagnosis of lung cancer, such as the 

analysis of the sputum, the X-rays or CT scanning, are often not able to 

discriminate between SCLC and NSCLC or between adenocarcinoma and cell 

carcinoma (Wang et al., 2009). For this reason, new molecular markers, such as 

miRNAs, may help for the early diagnosis, prognosis and choice for the 

treatment for each individual patient, thus opening the new era of “personalised 

medicine”.  

Several studies have also demonstrated the association between specific 

miRNAs and the most frequent somatic mutations in lung cancer patients 

(Inamura and Ishikawa, 2016). Therapies are available for the treatment of 

people with specific mutations, such as EGFR, but very often the patients 

develop a resistance to the therapy and this is normally due to secondary 

mutations in the same or other genes (Garofalo et al., 2011). In vivo experiments 

have demonstrated that the treatment of the sensitive lung cancer cells with 

EGFR inhibitors leads to the downregulation of miR-30b-30c and miR221-222 

and this causes the increase of apoptosis. However, at the same time, MET 

overexpression upregulates those four miRNAs, thus making the anti-EGFR 
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treatment useless. Researchers have proposed using MET-targeting miRNA 

inhibitors to improve the sensitivity to Gefinitib, an EGFR inhibitor, in a 

xenograft model (Garofalo et al., 2011). 

In 2013, NSCLC patients were enrolled in a clinical trial with MRX34, a miR-34 

mimic developed by Texas and the results of the study will be show near in the 

future (Rupaimoole and Slack, 2017). 

 

1.9 The two forms of miR-140 in lung cancer 

MiR-140-5p was first studied in craniofacial abnormalities and the platelet-

derived growth factor-a (PDFG-A) was identified as direct target (Eberhart et 

al., 2008). The sequence of human pre-miR-140 is predicted based on homology 

to a miRNA from mouse and its expression was later verified in human (Lagos-

Quintana et al., 2002, Landgraf et al., 2007). Pre-miR-140 was found to locate 

on chromosome 16 (16q22.1), in one intron of the WW domain containing E3 

ubiquitin protein ligase 2 (WWP2) gene and was processed to produce two 

mature miRNAs, miR-140-3p and 140-5p, with different seed sequences 

(Rodriguez et al., 2004). As described in figure 1.6, miR-140-5p originates from 

the 5’arm of the hairpin of the precursor, while miR-140-3p from the 3’ arm. 

Both these forms of miR-140 are downregulated in cancer tissues, including 

lung, suggesting their role as onco-suppressors (Zhai et al., 2015, Liu et al., 

2016b, Zhang et al., 2015). 
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Figure 1.6. Pre-miR140 stem and loop structure. This miRNA sequence is predicted 

based on homology to a verified miRNA from mouse and its expression was later 

verified in humans (http://www.mirbase.org). 

Croce et al. demonstrated that most of miRNAs downregulated in cancers are 

located in cancer-associated regions or fragile sites and their lower levels are due 

to deletions in the loci from where they are transcribed (Calin et al., 2004). Both 

of the two forms of miR-140 have been found downregulated in lung cancer 

and, presumably, their downregulation may be due to mutations in 16q22.1 

locus.  

MiR140-3p and 140-5p are downregulated in lung cancer cells and several 

studies showed that these miRNAs not only have a negative role in tumour 

growth and metastasis but also suppress the migration and invasion of NSCLC 

cells by downregulating the expression of key target genes, such as Insulin-Like 

Growth Factor 1 receptor (IGF1R) regulated by miR-140-5p and ATP8A1 

targeted by miR-140-3p (Yuan et al., 2013, Dong et al., 2016). 

These two miRNAs may also influence the expression of other non-coding 

RNAs. MiR-140-5p promotes the expression of the nuclear long non-coding 

RNA Nuclear Enriched Abundant Transcript 1 (NEAT1) that is upregulated in 

different malignancies, including lung cancer (Gernapudi et al., 2016, Pan et al., 

2015). The long non-coding RNA Metastasis Associated Lung Adenocarcinoma 

Transcript 1 (MALAT1), identified for the first time in lung cancer, influences 

miR-140-5p levels in glioma tumours (Ma et al., 2016).  
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Starting from these premises, in this study both of the two forms of miR-140 

were investigated. 

 

1.10 Importance of the study of both the two forms of miR-140 in lung 

cancer 

In the classical model of miRNA biogenesis, the miRNA duplex is produced by 

cutting the hairpin precursor by the endoribonuclease Dicer. Then, through 

some mechanisms that are largely unknown, one of the strands acts as a guide 

for the mature miR-mediated silencing complex (miRISC). This strand selection 

process is finely regulated and may vary among tissues and during development 

and diseases. Recent studies have demonstrated that both the sister strands may 

be accumulated, thus leading to the hypothesis that the strand selection might 

not be tissue-specific (Jazdzewski et al., 2009). Moreover, mutations in the 

precursors may affect the strand selection, especially if they cause a change in 

the seed sequence of the mature strand, because the mutated miRNA may affect 

different mRNAs. In the case of the pre-miR-146a, for example, a SNP leads to 

the maturation of three active strands, two of which generate from the passenger 

strand and contribute to the development of thyroid cancer (Jazdzewski et al., 

2009).  

MiR-140-3p and miR-140-5p were identified in congenital malformations. 

Together with miR-17-92 cluster and miR-200b, they both play an important 

regulatory role during all the stages of palatogenesis and mutations in their 

precursor impairs their regulatory functions, thus leading to some serious 

developmental defects (Schoen et al., 2017).  
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It is known that the dysregulation of some miRNAs contributes significantly to 

the loss of regulation of key pathways involved in cell homeostasis, thus allowing 

the growth of cancer. New studies suggest that a differential strand selection 

may be one of the mechanisms used by many tumours, including hepatocellular 

carcinoma, breast and gastric cancer, to repress the physiological regulation and 

to promote its survival (Tsai et al., 2016). It has been demonstrated in vitro and 

in vivo, that the levels of the mRNA targets may influence the abundance of their 

regulatory miRNAs (Chatterjee et al., 2011, Tsai et al., 2016) and this makes the 

arm expression preference investigation more complicated and confirms that the 

thermodynamic hydrogen bonding theory is not the only mechanism that 

influences miRNA biogenesis.  

In this study, both of the two forms of miR-140 will be investigated to see 

whether there is a preferential strand selection and if this may affect the 

progression of the disease. 
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1.11 Aims and hypothesis 

Hypothesis 

The hypothesis of this study is that the two forms of miR-140 reduce the 

progression of NSCLC by targeting specific mRNAs. 

Aims 

 To verify if miR-140-3p and miR-140-5p are differentially expressed in 

NSCLC and normal lung cells by using tissues from patients and cell 

lines. 

 To investigate if there is any strand selection during the biogenesis of 

miR-140-3p and miR-140-5p and whether this plays any role in the 

progression of NSCLC. 

 To evaluate the effect of both miR-140-3p and miR-140-5p on cancer 

cell behaviour. This includes the study of proliferation, migration, 

invasion, adhesion to the key the extracellular matrix (ECM) proteins, 

cell cycle, apoptosis and metabolism of cancer cells following the 

treatment with specific miRNA mimics. 

 To investigate the effect of the treatment with miR-140-3p and miR-

140-5p mimics on the tubule formation ability of the endothelial cells 

(used as a model for angiogenesis) in vitro. 

 To identify novel targets of miR-140-3p and miR-140-5p that are crucial 

for the changes on cancer cell behaviour following the treatment with 

miR-140-3p and miR-140-5p mimics. 

 To dissect the molecular mechanisms in which the two forms of miR-

140 are involved.  
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2.1 Cell lines 

All the cell lines used for this study were purchased from American Type Culture 

Collection (ATTC, Rockville, Maryland, USA) and maintained at 37°C with 5% 

CO2 (Table 2.1). They included two non-small cell lung cancer cell lines, A459 

ATTC® CCL-185™), SK-MES-1 (ATTC® HTB-58™), the normal virus-

transformed epithelial lung cell line BEAS-2B (ATCC® CRL-9609™) as control 

and the Human Umbilical Vein Endothelial Cells (HUVEC, ATCC® CRL-

1730™). The two cancer cell lines were maintained in Dulbecco’s Modified 

Eagle’s Medium (Sigma-Aldrich, Dorset, UK), supplemented with 10% foetal 

bovine serum (FBS) (Sigma-Aldrich, Poole, Dorset, England, UK) and 1X 

penicillin/streptomycin (penicillin 100U/ml, streptomycin 100µg/ml and 

amphotericin B 0.25µg/ml, Sigma-Aldrich, Poole, Dorset, England, UK). 

BEAS-2B were maintained in BEBM supplemented with additives (BEGM Kit, 

Lonza, Gloucestershire, UK). HUVECs were maintained in EBM-2 containing 

the endothelial cell growth supplements (EGM Kit, Lonza, Gloucestershire, 

UK). 
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Table 2.1. Cell lines used in this study 

 

Cell line 

 

 

Organism 

 

Origin 

 

Cell 

morphology 

 

Tissue type 

 

Growth 

medium 

 

BEAS-

2B 

 

Homo 

sapiens 

Normal 

epithelia virus 

transformed 

 

Epithelial 

 

Lung/bronchus 

 

Complete 

BEBM 

 

A549 

 

Homo 

sapiens 

58 years old 

Caucasian 

male 

 

Epithelial 

 

Lung 

carcinoma 

 

Complete 

DMEM 

 

SK-

MES-1 

 

Homo 

sapiens 

65 years old 

Caucasian 

male 

 

Epithelial 

 

Lung squamous 

cell carcinoma 

 

Complete 

DMEM 

 

 

HUVEC 

 

 

Homo 

sapiens 

 

 

Umbilical/vein 

 

 

Endothelial 

Primary cells 

derived from 

the 

endothelium of 

veins from the 

umbilical cord 

 

 

Complete 

EGM 
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2.2 Human NSCLC tissues 

Fresh lung tissue samples were collected immediately after surgery and stored at 

-80°C until use by Capital Medical University Hospital, Beijing, China (Tables 

2.2 and 2.3). All the patients were informed and participated with a written 

consent. All the specimens were analysed by consultant pathologists. The 

unpaired normal tissues come from non-cancerous patients. 

Table 2.2. Non-Small Cell Lung Cancer cohort characteristics. This table includes 

a total of 19 paired tissues. 

 Characteristic Number Percentage 

 

 

Gender 

 

 

Female 

Male 

 

 

8 

11 

 

42% 

58% 

 

 

 

TNM 

T1N2M0 

T1N2M1 

T2N2M0 

T2N3M0 

T3N0M0 

T3N2M0 

Unknown 

1 

1 

5 

1 

1 

1 

9 

5% 

5% 

27% 

5% 

5% 

5% 

48% 

 

 

Smoking history 

 

Non-smokers 

Smokers 

Unknown 

 

 

2 

13 

4 

 

10% 

69% 

21% 
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Table 2.3. Non-Small Cell Lung Cancer cohort characteristics. This table includes 

a total of 21 normal and 49 NSCLC unpaired tissues. 

 Characteristic Number Percentage 

 

 

Gender 

 

 

Female 

Male 

 

 

20 

29 

 

 

40% 

60% 

 

 

 

TNM 

 

T1N1M0 

T2N0M0 

T2N2M0 

T3N2M0 

T4N0M0 

Unknown 

 

1 

9 

6 

2 

1 

30 

 

2% 

18% 

12% 

4% 

2% 

62% 

 

 

Smoking history 

 

Non-smokers 

Smokers 

Unknown 

 

 

7 

21 

21 

 

14% 

43% 

43% 
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2.3 Primers 

The gene and miRNA primers used in this study were designed using the Primer-

BLAST online tool (https://www.ncbi.nlm.nih.gov/tools/primer-blas) and the 

primers for miRNA target validation were defined using TargetScan Human 7.0 

(http://www.targetscan.org/vert_70/docs/help.html). All the primers were 

synthesised by either Invitrogen (Carlsbad, CA, USA) or Sigma-Aldrich (Poole, 

Dorset, England, UK). Details of the gene and miRNA primers are provided in 

Table 2.4. Details of the primers used for miRNA target validation are reported 

in table 2.5. 

 

http://www.targetscan.org/vert_70/docs/help.html
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Table 2.4. Primers used in this study to quantify miRNA and gene expression. 

Primer Sequence 

miR-specific RT-

primer 

 CAGGTCCAGTTTTTTTTTTTTTTTVN* 

RNU6B Forward GTCGTGAAGCGTTCCA 

Reverse CAGGTCCAGTTTTTTTTTTTTTTTAAA 

RNU48 Forward ACCGCAGCGCTCT 

Reverse TCCAGTTTTTTTTTTTTTTTGGTCA 

miR140-5p Forward CAGCAGTGGTTTTACCCTATG 

Reverse GGTCCAGTTTTTTTTTTTTTTTCTAC 

miR140-3p Forward GTACCACAGGGTAGAACCA 

Reverse GTACCACAGGGTAGAACCA 

SNAIL 

 

Forward CACACTGGCGAGAAGC 

zReverse ACTGAACCTGACCGTACACTTCTTGACATCTGAGTGGG 

 Forward TGGACACACATACAGTGATT 
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SLUG 

 

 

zReverse ACTGAACCTGACCGTACAGATCTCTGGTTGTGGTATGA 

EGFR Forward AGAGTCTCAAAGCCATGTTAT 

zReverse ACTGAACCTGACCGTACACCATCCTAAGCATGACTCC 

ARAF Forward AAGTTCCACCAGCATTGTTC 

zReverse ACTGAACCTGACCGTACAGTAGAACCTTGAGGGCTGTTG 

ITGB3 Forward CAGATTTGCCTTATTGGCAG 

zReverse ACTGAACCTGACCGTACAAAATGTCTACAGCAGTGAGG 

GAPDH Forward AAGGTCATCCATGACAACTT 

zReverse ACTGAACCTGACCGTACAATCGCTCCACCAACTAAGAAC 

* V =  A or G or C, N = A or G or C or T. 
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Table 2.5. Primers used for miRNA target validation. MiRNA target regions complementary to the desired 3’UTR target region. 

TargetScan Human 7.0 (http://www.targetscan.org/vert_70/docs/help.html) was used to design the miRNA target region complementary to the 

desired 3’UTR target region. The overhangs created by oligonucleotide annealing were designed to be complementary to those generated by the 

restriction enzymes PmeI and XbaI. NotI internal site was added for clone digestion.   ___   XbaI sequence    ___   NotI internal site   ___   PmeI 

sequence   

MiR-140-3p target region Sequence 

 
ITGB3-miR-140-3P-F 

 

 
AAACTAGCGGCCGCTGAGCCACTGCCCCCGGCTGTGGTTGT 

 
ITGB3-miR-140-3P-R 

 

 
CTAGACAACCACAGCCGGGGGCAGTGGCTCAGCGGCCGCTAGTTT 

 
ITGB3 mutated-miR-140-3P-F 

 

 
AAACTAGCGGCCGCTGAGCCACTGCCCCCGGCTAAGTTGT 

 
ITGB3 mutated-miR-140-3P-R 

 

 
CTAGACAACTTAGCCGGGGGCAGTGGCTCAGCGGCCGCTAGTTT 
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2.4 Antibodies 

2.4.1 Primary antibodies 

The primary antibodies used for Western Blot and Flow Cytometry are described 

in Table 2.6. All of them were supplied by Santa Cruz Biotechnology (Surrey, 

England, UK), except ITGB3, supplied by Abcam (Cambridge, UK). 

Table 2.6. Primary antibodies used for Western Blotting 

Epitope Molecular weight (kDa) Source Dilution 

GAPDH 37 Mouse 1:1,000 

ITGB3 87 Mouse 1:200 

E-cadherin 80-120 Goat 1:200 

N-cadherin 130 Rabbit 1:200 

Vimentin 57 Mouse 1:200 

EGFR 170 Mouse 1:200 

ERK1 44 Rabbit 1:200 

AKT1 55 Mouse 1:200 

pSRC (Tyr 530) 60 Rabbit 1:200 

PTEN 55 Rabbit 1:200 

Β-catenin 88-94 Rabbit 1,1000 

. 
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2.4.2 Secondary antibodies 

The secondary antibodies used for Western Blot were anti-goat IgG, anti-rabbit 

IgG and anti-mouse IgG supplied by Sigma-Aldrich (Poole, Dorset, England, 

UK). 

Table 2.7. Secondary antibodies used for Western Blotting 

Antibody Dilution 

Anti-mouse IgG 1:1,000 

Anti-goat IgG 1:1,000 

Anti-Rabbit IgG 1:1,000 

.  

2.5 MiRNA mimics 

MiRNA mimics are small, double-stranded RNA molecules that mimic the 

endogenous miRNA molecules in the cells. The miR-140-3p and miR-140-5p 

mimics were supplied by Sigma-Aldrich (Poole, Dorset, England, UK) and used 

at a final concentration of 20µM in each transfection. The biotinylated mimics 

used for the miRNA pulldown were purchased from the same company and 

show the same sequence as the miR-140-3p and miR-140-5p mimics. They have 

been modified by adding a biotinylated chain at the 3’ end to allow the 

attachment to the streptavidin beads for pulling down. As a negative control, 

miR-39-3p from C.elegans, with the same modification at the 3’-end, was used. 

 

 

 



80 
 

2.6 Standard reagents and solutions 

2.6.1 Solutions in cell culture 

0.05M Ethylenediaminetetraacetic acid (EDTA) 

1 g KCl (Fisons Scientific Equipment, Loughborough, UK), 5.72 g Na2HPO4 

(BDH Chemical Ltd., Poole, England, UK), 1g KH2PO4 (BDH Chemical Ltd., 

Poole, England, UK), 40 g NaCl (Sigma-Aldrich Poole, Dorset, England, UK) 

and 1.4 g EDTA (Duchefa Biochemie, Haarlem, Netherlands) were dissolved in 

5 l of distilled water, adjusted to pH of 7.4, autoclaved and stored until further 

use. 

Trypsin (25mg/ml) 

500 mg trypsin was dissolved in 0.05 M EDTA and then filtered through 0.2μm 

Minisart filters (Sartorius, Epsom, UK). This stock solution was aliquoted and 

stored at -20°C until further use.  For the use in cell culture, 250 μl of the stock 

solution was diluted in 10 ml 0.05 M EDTA and used to detach the cells. 

Phosphate buffered saline (PBS) 

PBS tablets were purchased from Sigma Aldrich. One tablet was dissolved in 

200 ml deionised water to make PBS containing 137mM NaCl, 2.7mM KCl in a 

10mM phosphate buffer solution, pH 7.4. It was sterilised by autoclaving. 

Antibiotics 

100x antibiotics were purchased (Sigma-Aldrich) in sterile solution. 10,000 U/ml 

penicillin, 10mg/ml streptomycin, 25 µg/ml amphotericin. 5ml antibiotics were 

added to 500 ml growth medium to give a working concentration of 100 U/ml 

penicillin, 0.1 mg/ml streptomycin and 0.25 µg/ml amphotericin. 



81 
 

2.6.2 Solutions for molecular biology 

Tris-Boric-Acid-EDTA (TBE) 

TBE solution (5x) (1.1 M Tris, 900 mM Borate, 25 mM EDTA, pH 8.3) was 

made by dissolving 540 g Tris-HCl (Melford Laboratories Ltd, Suffolk, UK), 275 

g Boric acid (Melford Laboratories Ltd, Suffolk, UK) and 46.5 g EDTA in 10l 

of distilled water and the pH was adjusted to 8.3. This stock solution was then 

diluted in distilled water to 1x for agarose gels. 

Diethyl Pyroncarbonate (DEPC) water 

500 µl Diethylpyrocarbonate (DEPC, Sigma-Aldrich Poole, Dorset, England, 

UK) was added to 500 ml of distilled water and autoclaved. 

Loading Buffer for DNA electrophoresis 

25 mg bromophenol blue (Sigma-Aldrich Poole, Dorset, England, UK) and 4 g 

sucrose (Fisons Scientific Equipment, Loughborough, UK) were dissolved in 

10ml of distilled water and stored at +4°C. 
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2.6.3 Solutions for gene cloning 

LB Agar 

LB agar was made by dissolving 10 g tryptone (Duchefa Biochemie, Haarlem, 

Netherlands), 5 g yeast extract (Duchefa Biochemie, Haarlem, Netherlands), 15 

g agar and 10 g NaCl in 1l of distilled water, the pH was adjusted to 7.0 and the 

solution was autoclaved. The solution, which was solid at room temperature, 

was melted by heating in a microwave and poured into 90 mm Petri Dishes. 

LB Broth 

10 g tryptone, 10 g NaCl and 5 g yeast extract were dissolved in 1 l of distilled 

water. The pH was adjusted to 7.0 and the solution was autoclaved. After cooling 

down, amphicillin was added. 

2.6.4 Solutions for western blotting 

Lysis Buffer (RIPA Buffer) 

The lysis buffer was made by dissolving 880g of NaCl and 610 mg Tris base in 

7 5ml of distilled water to have a final concentration of 150 mM NaCl and 50 

mM Tris. After adjusting the pH to 7.6, 1 ml of Triton X100, 1ml of 10%SDS, 

200 μl of 500mMEDTA and 5 ml of 10% Na-deoxycholate were added. The 

solution was aliquoted and stored at -20°C until further use. On the same day as 

the assay, a cocktail of protease and phosphatase inhibitors was added into the 

solution above. This cocktail included 2 mM sodium orthovanadate, 1 mM 

phenylmethyl sulphonyl (PMSF), 25 mM sodium fluoride, 10 μg/ml  leupeptin 

and 8 μg/ml aprotinin. The solution was kept on ice. 
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10% Ammonium Persulphate (APS) 

1 g APS was dissolved in 10 ml of distilled water and stored at +4°C until 

required (used within two weeks). 

Tris Buffered Saline (TBS) 

10x TBS (0.5 M Tris, 1.38 M NaCl, pH 7.4) stock solution was made by 

dissolving 606 g of Tris and 765 g of NaCl in 10 l of distilled water. The solution 

was stirred at room temperature and the pH was adjusted to 7.4. 

TBS-Tween 

Polyoxyethylene sorbitan monolaureate (Tween-20) (Sigma-Aldrich Poole, 

Dorset, England, UK) was dispersed in 1x TBS to have a final concentration of 

0.01% (TBS-T). 

10x Running Buffer 

10x Running Buffer (0.25 M Tris, 1.92 M glycine, 1% SDS, pH 8.3) was made 

by dissolving 303 g of Tris, 1.44 kg of glycine and 100 g SDS in 10 L of distilled 

water. Diluted in distilled water ato a final 1x working solution. 

10x Transfer Buffer 

15.5 g Tris (25 mM) and 72g glycine (190 mM) were dissolved in 4 L distilled 

water. 1 L of methanol (Fisher Scientific, Leicestershire, UK) giving a 20% 

concentration of methanol. 
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Ponceau S staining solution 

Ponceau S powder was purchased from Sigma-Aldrich (Poole, Dorset, England, 

UK) and prepared as a re-usable solution of 0.1% Ponceau S in 5% acetic acid. 

Blotto/blocking buffer 

Non-fat dried milk (Marvel) was dissolved in 1x TBS-T to a final concentration 

of 5% used for blocking membranes and for incubating antibodies. 

2.6.5 Solutions for Flow cytometry 

Wash buffer 

The wash buffer contained 2 mM EDTA in PBS. 

FACS Buffer 

FACS buffer contained 5% FBS in wash buffer. 

Blocking Buffer 

Blocking buffer was prepared by adding 1% w/v bovine serum albumin (BSA) 

(Sigma-Aldrich Poole, Dorset, England, UK) to PBS-T (PBS with 0.05% Tween-

20). 
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2.7 Cell culture, maintenance and storage 

2.7.1 Cell maintenance 

All the cell lines were split when confluent and maintained in 25 or 75 cm2 

culture flasks (Grenier Bio-One Ltd, Gloucestershire, UK) with a loosened cap 

and incubated at 37 ˚C, 95% humidification and 5% CO2 and handled in a Class 

II Laminar Flow Cabinet using sterile equipment.  Cell growth medium was 

changed every 2-3 days. Cell cultures were screened every 3 months for 

mycoplasma contamination using the EZ-PCR Mycoplasma Test Kit (Biological 

Industries, Israel).  All cells used in this study were confirmed to be mycoplasma 

free. 

2.7.2 Trypsinisation (detachment) of adherent cells and cell counting 

Following adherent cells reaching a confluency of 80-90%, the medium was 

aspirated and the cells were washed with sterile PBS.  Adherent cells were then 

detached from the flasks or wells using 1-2 ml of Trypsin/EDTA (0.51% trypsin 

and 0.01% EDTA in PBS), then incubated at 37˚C until they rounded and 

detatched from the culture surface. Once detached, 4 ml and 8 ml of DMEM-

containing 10%FBS, was added to each T25 or T75 flask respectively to 

neutralize the trypsin and all the content was transferred into a 30ml universal 

container. The suspension was centrifuged at 1,700 revolutions per minute (rpm) 

for 5 minutes in order to collect the cell pellet.  The supernatant was aspirated 

from the universal container and the pellet resuspended in an appropriate 

volume of serum-free media (if being used for miRNA treatment), or in 

complete culture media to be reseeded into tissue culture flasks. Cells were 

counted using Counter II FL Automated Cell Counter (Thermo Fisher 
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Scientific, Waltham, MA USA) and then seeded at an appropriate concentration 

of cells for experimental needs. Cells were routinely passaged by typically 

splitting the trypsinised cells between 1:5 and 1:10 into new flasks. The cells used 

in this study were used between a window of passage 4 and 20.   

2.7.3 Storing cells  

Cell stocks of low passage number were stored in liquid nitrogen.  To do this, 

cells were trypsinised and cell pellets were rapidly resuspended in cold growth 

medium containing 10% FBS and 10% Dimethyl-sulphoxide (DMSO, Sigma-

Aldrich, Poole, Dorset, UK).  The cell suspension, at a cell density of 106 

cells/ml, was then divided into 1ml aliquots and added to CRYO.S tubes 

(Grenier Bio-One, Germany). The tubes were wrapped in protective tissue 

paper, stored overnight at -80˚C and then transferred to liquid nitrogen tanks 

for long-term storage. 

2.7.4 Resuscitation of cells 

In order to resuscitate cells, they were removed from liquid nitrogen and rapidly 

thawed in warm water, before being transferred under sterile conditions into a 

universal container containing 10 ml of pre-warmed medium and centrifuged at 

1,700 rpm for 5 minutes to remove any excess DMSO.  The supernatant was 

aspirated and the pellet was resuspended in 5 ml of complete growth medium.  

The cell suspension was then transferred into a fresh 25 cm2 culture flask and 

transferred to the incubator. 
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2.8 Purification of total RNA 

“Total RNA” indicates the total amount of RNA in a cell, including mRNAs, 

rRNAs, tRNAs, long and small non coding RNAs. The amount of small RNAs 

and microRNAs rate may vary between 12-75% and their concentration differs 

from one tissue to another. 

In general, the extraction of both DNA and RNA consists of three stages: cell 

lysis combined with the inactivation of cellular nucleases, protein lysis and finally 

precipitation of the nucleic acid. After the cell lysis we obtained a mixture of 

proteins and nucleic acids. To isolate and preserve the integrity of the nucleic 

acids we used phenol, chloroform and ethanol. Phenol and chloroform remove 

proteins and ethanol causes their precipitation. It is possible to increase the 

efficiency of the purification and have a higher concentration of the nucleic acid 

using carriers, such as glycogen. 

Total RNA from cells was isolated using TRIzol® LS Reagent (Invitrogen, 

Carlsbad, CA, USA), a monophasic solution of phenol and guanidine 

isothiocyanate which is able to break the protein-protein interactions and 

mantain the integrity of the nucleic acids.  

Protocol: 

 When the confluence of monolayer cells reached approximately 80-90% 

the medium was removed, replaced with TRIzol® LS Reagent (1ml for 

5-10x105 cells) and everything was scraped into a 1.5 ml Eppendorf tube 

where the contents were pipetted vigorously. 
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 0.1 ml of 1-bromo-3-choloropropane was added. Then the tube was 

shaken vigorously for about 15 seconds and left at room temperature for 

10-15 minutes. 

 The tube was centrifuged at 12,000 xg at 4 °C for 15 minutes. After that 

it was possible to recognise three different phases: a clear upper aqueous 

layer containing RNA, an interface with DNA and a red lower organic 

layer containing proteins.  

 The upper aqueous phase was carefully transferred to a new 1.5 ml tube 

and isopropanol (Sigma-Aldrich, Poole, Dorset, England, UK) was 

added (0.5 ml per ml of TRIzol® LS Reagent). The tube with 

isopropanol was left at room temperature for 5-10 minutes. 

 The tube with RNA and propanol was centrifuged at 12,000 xg at 4 °C 

for 10 minutes, the supernatant was discarded and the pellet at the 

bottom of the tube was washed with 1 ml 75% ethanol in DEPC water. 

 The tube was centrifuged again at 7,500 xg at 4 °C for 5 minutes. 

 After removed the ethanol, the tube was dried by air-drying 5-10 

minutes. 

 The RNA pellet was finally dissolved in 20-50µl of DEPC water to avoid 

the degradation of RNA by RNase enzymes.  

2.8.1 Spectrophotometric quantification of RNA 

The concentration and purity of the RNA were obtained by spectrophometric 

measurement (NanoPhotometer, Implen, Munich, Germany). The instrument is 

able to determine the difference of absorbance between the purified RNA 

(usually 1µl sample) and the DEPC-treated water (blank) in a quartz cuvette. The 
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software calculates a curve and assigns a concentration value in ng/μl to each 

sample. 

The absorbance (A) is expressed as ln(I0) – ln(I1), where I1  is the intensity of 

the radiation (light) transmitted through the material (transmitted radiation)  and  

I0 is the intensity of the radiation before it passes through the material (incident 

radiation). The absorbance measure unit is the wavelength (λ) and some typical 

values are reported below:  

λ = 230 nm: wavelength of absorption of complex carbohydrates and phenols; 

λ = 280 nm: wavelength of absorption of proteins; 

λ = 260 nm: wavelength of absorption of nucleic acids; 

λ = 320 nm:  wavelength of absorption of other contaminants. 

If these values are known, we can estimate the concentration and the purity of 

the RNA. So, for RNA samples the instrument detects the concentration of 

single strand RNA molecules (ssRNA) at a wavelength of 260 nm. The 

concentrations of RNA samples were automatically calculated as follows: (A260-

A320) x fc x fd, where fc is the coefficient of molar extinction which depends 

on the acid nucleic nature (it is 50 ng/μl for ssRNA), fd is the dilution factor, 

A260 is the absorbance at 260 nm and A320 is the absorbance at 320 nm. 

The purity of RNA with respect to contaminants is evaluated by the ratio of the 

readings at 260 nm and 280 nm (A260 / A280) and at 260 nm and 230 nm (A260 

/ A230).     The A260 / A280 ratio provides an estimate of the purity of RNA 

with respect to contamination by protein and its value must be higher than 1.7. 

On the other hand, the A260 / A230 ratio provides an estimate of the purity of 
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RNA with respect to contamination by solvent (phenol, salts) and its value 

should be around 2 or slightly above. Contaminations may decrease the 

efficiency of the following reactions, mainly by inhibition of the enzymes.  

After the purification and quantification, the RNA samples are ready to be used 

immediately or they can be stored at -80 °C for later use. 

 

2.9 Real Time Quantitative Reverse Transcription Polymerase Chain 

Reaction (qRT-PCR) 

Quantitative PCR (qPCR) is a technology used for the amplification of DNA 

sequences through fluorescent reagents of the Polymerase Chain Reaction 

(PCR). Its key feature compared to the standard PCR method is that the 

amplified DNA is detected in “real time”. For gene expression studies or 

detection of RNA viruses, RNA can also be used as a template. In this case the 

RNA needs to be reverse transcribed into complementary DNA (cDNA) and 

the whole process that includes the reverse transcription and qRT-PCR reactions 

is called Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-

PCR). 

 

2.10 Reverse Transcription (RT) 

The reverse transcription is a process that retroviruses commonly use to 

incorporate their genome into the host cells. Specifically, a single-stranded RNA 

is reverse transcribed into cDNA using total cellular RNA or poly(A) RNA, a 

reverse transcriptase enzyme, a primer, triphosphate deoxyribonucleotides 
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(dNTPs) and an RNase inhibitor. Three types of primers can be used for RT 

reaction: oligo(dT) primers, random primers or gene specific primers. In general, 

the use of specific primers reduces background binding, whereas random and 

oligo-dT primers are particularly useful when the start amount of RNA is very 

low because they are able to maximise the number of molecules that can be 

analysed (Bustin, 2000).  

Two different approaches are available to reverse transcribe miRNAs. In the 

first approach, miRNA specific stem-loop reverse transcription primers are 

used. They are designed to have a single-stranded part complementary to the 

3’end of miRNA and a double-stranded part (the stem) and the loop that 

contains the universal-binding sequence, which is used for the amplification. In 

the second approach, the 3’ends of miRNAs are elongated to provide them with 

a tail of oligo (dT) and then universal primers are added. Alternatively, it is 

possible to reverse transcribe miRNAs using multiplexing stem-loop primers. In 

this study oligo (dT) primers were used. Oligo (dT) is a stretch of approximately 

20 thymine residues that anneal to the poly(A) tail of mRNA, thereby preventing 

priming at internal sites in the tail. The enzyme used was the thermostable M-

MuLV (Moloney Murine Leukemia Virus) reverse transcriptase isolated from E. 

coli that lacks 3’→5´ exonuclease activity and has a stretch of thymine residues 

that anneal to the poly(A) tail of mRNA. The reverse transcription for miRNA 

quantification was performed using Reverse Transcription (cDNA Synthesis) 

Products kit (New England BioLabs®, UK). Each reaction was set up in a 200 

µl PCR tube (ABgene, Surrey, UK) and the manufacturer’s protocol was adjusted 

as follows: 
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Table 2.8. Reverse Transcription reagents. 

Component Volume (μl) 

10x Buffer with ATP 

(150µl Buffer+50µl ATP) 

1 

Poly(A) Polymerase 50 U/µl 0.15 

4dNTP mix 1 

RT primers 10µM 1 

M-MLV Reverse Transcriptase 

200 U/µl 

0.4 

RNA (20 ng/µl) 6.45 

Total 10 

 

20 ng of RNA was used, suspended in DEPC H2O to a volume of 6.45µl. 

Conditions for reverse transcription were 42°C for 60 minutes and 95°C for 5 

minutes using Applied Biosystems 2720 Thermal Cycler (Life Technologies, 

Paisley, UK). Following reverse transcription, cDNA was diluted 1:24 using 

DEPC water. 

For gene quantification the GoScript™ Reverse Transcription System 

(Promega, Madison, Wisconsin, USA) was used to convert RNA into first-strand 

cDNA. Each reaction was set up in a 200 µl PCR tube (ABgene, Surrey, UK) 

and the manufacturer’s protocol was adjusted as follows: 
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Table 2.9. Real-Time Quantitative Polymerase Reaction (qRT-PCR) reagents. 

Component Volume (μl) 

GoScript™ 5X Reaction Mix 4.1 

MgCl2 1.2 

PCR Nucleotide Mix 1 

Recombinant RNasin® Ribonuclease 

Inhibitor 

0.5 

GoScript™ Reverse Transcriptase 1 

DEPC H2O 7.2 

RNA+Primer Mix 5 

Total 20 

 

500 ng of RNA was used, along with DEPC H2o to make up the solution to 4 

µl, as well as 1 µl of the Primer Oligo(dT)15. Conditions for reverse transcription 

were 25°C for 5 minutes, 42°C for one hour and 70°C for 15 minutes using 

Applied Biosystems 2720 Thermal Cycler (Life Technologies, Paisley, UK). 

Following reverse transcription, cDNA was diluted 1:8 using DEPC water. 

 

 

 

 

 

 



94 
 

2.11 Real-Time quantitative Polymerase Chain Reaction (qRT-PCR) 

Real-Time qPCR is used to copy (amplify theoretically a million fold after 20 

cycles) and simultaneously quantify specific sequences of a DNA or cDNA 

template, using sequence-specific oligonucleotides, a heat stable DNA 

polymerase and thermal cycling. In the traditional PCR method, the detection of 

the amplified sequence was performed at the end of the reaction, mainly because 

of the properties of the enzymes, which were not stable at high temperature for 

long periods. Moreover, the quantification required a post-PCR product analysis, 

usually by gel electrophoresis. 

Specifically, the Real-Time qPCR detects the products of the reaction from the 

first cycle in which the amplified target becomes detectable (threshold cycle, Ct), 

allowing the results obtained to be much more accurate and reproducible than 

the traditional end-point PCR. The Ct is used to calculate the initial DNA copy 

number, because the Ct value is inversely related to the starting amount of target. 

The qRT-PCR amplifies DNA exponentially, doubling the number of target 

molecules with each amplification cycle. After each cycle, the fluorescent signal 

increases in direct proportion to the number of molecules generated 

(amplicons). 

Every cycle of PCR is composed of three steps: 

1. Denaturation: a high temperature (~95 °C) allows the separation of the 

nucleic acid double chain. 

2. Annealing: the two primers (forward and reverse) bind the 

complementary strand. The temperature used is generally between 50 

and 60 °C, depending on the sequence and length of the primers. Lower 
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temperatures may lead to non-specific annealing of the primers, whereas 

higher temperatures may not enable annealing at all. The GC content of 

the primer should be approximately 50% and a higher level may lead to 

the production of stable imperfect hybrids. 

3. Extension: the DNA polymerase carries on the extension of the primers 

at around 72 °C. 

The choice of a thermostable DNA polymerase is crucial for the efficiency of 

the reaction. One of the most used DNA polymerases is the enzyme from the 

heat -esistant bacterium Thermus aquaticus (Taq polymerase). At the beginning of 

each cycle, during the denaturation phase, the Taq polymerase is partially 

denatured, so the enzyme maintains a high-fidelity DNA synthesis for 25-30 

cycles, afterwards it may synthesize non-specific products. (Eckert and Kunkel, 

1991). 

When plotted on a logarithmic scale, the amplification of the PCR generates a 

curve which shows four different phases: a linear phase represented by a straight 

line parallel to the abscissa axis, a beginning of the exponential phase, the 

exponential phase and a plateau (Figure 2.1). 
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Figure 2.1. Phases of the PCR amplification curve. The PCR amplification curve 

charts the accumulation of fluorescent emission at each reaction cycle. The curve can 

be divided into four different phases: the linear ground, early exponential, log-linear, 

and plateau phases. Data gathered from these phases are important for calculating 

background signal, cycle threshold (Ct), and amplification efficiency. The baseline is 

defined as PCR cycles in which a reporter fluorescent signal is accumulating even if the 

instrument is not able to detect it. Rn is the intensity of fluorescent emission of the 

reporter dye divided by the intensity of fluorescent emission of the passive dye (a 

reference dye incorporated into the PCR master mix to control for differences in master 

mix volume). ΔRn is calculated as the difference in Rn values of a sample and either no 

template control or background, and thus represents the magnitude of the signal 

generated by PCR. The threshold is an arbitrary level of fluorescence chosen on the 

basis of the baseline variability and could be changed by the operator according to the 

experimental conditions. A signal above the threshold is can be used to define the Ct 

for a sample. Ct is defined as the fractional PCR cycle number at which the reporter 

fluorescence is greater than the threshold 

(http://www.ncbi.nlm.nih.gov/genome/probe/doc/TechQPCR.shtml). 
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In the first phase (10-15 cycles) the fluorescence cannot be distinguished from 

the baseline. Then, the fluorescence arrives at the threshold. The cycle at which 

the line takes the form of a curve is the Ct. From this point the exponential 

growth begins. This phase corresponds to the maximum efficiency of the 

amplification, with an exponential increase of the molecules present in the 

sample. Finally, the plateau phase is reached: there is no amplification and no 

increase in fluorescence is observed because the reagents are exhausted. 

At the end of the reaction the number of DNA molecules has not risen exactly 

in an exponentially way. Experimental factors, such as length, secondary 

structures and GC content of the amplicons may influence the efficiency of the 

reaction. To evaluate the efficiency the following formulas are generally used: 

Exponential amplification = 10^(-1/slope) 

Efficiency = (Kim)-1. 

A good reaction should have an efficiency between 90% and 110%, which 

corresponds to a slope of between -3.58 and -3.10 (Wong and Medrano, 2005). 

One of the main issues in this technique depends on its powerful sensitivity: the 

presence of contaminants may affect the success of the analysis because non-

specific amplifications may occur. Contaminants may originate from the 

operator (eg saliva droplets), by the presence of bacteria or by an incorrect 

purification of the template. 
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Figure 2.2. Amplifluor and SYBR green reactions. a) The AmpliFluor assay uses two target-specific DNA primers and one universal DNA 

primer called a UniPrimer. B) SYBR® Green is a DNA-binding dye for real-time PCR, which binds non-specifically to double-stranded DNA. 

Modified from (http://www.bio-rad.com/en-uk/applications-technologies/introduction-pcr-primer-probe-chemistries). 
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2.11.1 Gene quantification using the Amplifluor™ Assay 

In this study, qPCR was performed for gene quantification using the 

Ampifluor™ Uniprimer™ Universal system (Intergen Company®, New York, 

USA). Volumes used in the reaction were shown in Table 2.10.  The amplifluor 

probe consists of a 3’- region specific to the Z-sequence 

(ACTGAACCTGACCGTACA) present on the target-specific primers (this 

sequence is included in the design of the reverse primers  and a 5’ hairpin 

structure labelled with the fluorophore FAM. 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 
 

For the current study each reaction was performed as follows: 

Table 2.10. Amplifluor qPCR reaction reagents. 

Component Master Mix Volume (μl) 

2X IQ Master Mix 5 

F-primer (10 pmol) 0.3 

zR-primer (1 pmol) 0.3 

Uniprobe (10 pmol) 0.3 

Diluted cDNA 4.1 

Total 10 

 

Each sample was analysed in triplicate and the cDNA was first diluted 1:8 in 

nuclease-free water and then loaded individually into each well of a 96 well plate 

(BioRad Laboratories, Hemel Hampsted, UK). The plate was then covered with 

optically clear Microseal® (BioRad Laboratories, California, USA) and placed in 

a  StepOnePlus™ Real-Time PCR System (Thermo Fisher Scientific, Waltham, 

MA USA) at the following conditions: 

Predenaturation for 10 minutes at 95 ˚C 

(70 cycles) 

Denaturation 95 ˚C for 10 seconds 

Annealing 55 ˚C for 30 seconds  

Elongation 72 ˚C for 10 seconds. 
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2.11.2 MiRNA quantification using the SYBR GREEN® Assay  

For the SYBR-based assays, the dye emits fluorescence when it intercalates into 

the double-stranded (ds) DNA PCR product. 

For this study each reaction was performed as follows: 

Table 2.11. SYBR green qPCR reaction reagents. 

Component Master Mix Volume (μl) 

SYBR Green PCR mix 7.5 

Forward Primer 0.75 

Reverse Primer 0.75 

Diluted cDNA 6 

Total 15 

 

Each sample was analysed in triplicate and the cDNA was first diluted 1:24 in 

nuclease-free water and then loaded individually in each well of a 96 well plate 

(Bio Rad Laboratories, Hemel Hampsted, UK). The plate was then covered with 

optically clear Microseal® (Bio Rad Laboratories, California, USA) and placed 

in an iCyclerIQ thermal cycler (Bio Rad Laboratories, Humel, Hamspstead, UK) 

at the following conditions: 

Pre-denaturation for 10 minutes at 94 ˚C 

(40 cycles) 

Denaturation 94 ˚C for 15 seconds 

Annealing/Elongation 58 ˚C for 15 seconds  
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As mentioned above, the specificity of the amplification can be evaluated by 

plotting fluorescence as a function of temperature to generate a melting curve 

of the product. 

One pure amplicon can be distinguished from other artefacts by the melting 

curve profile it produces. A pure product shows a typical single, sharp melting 

peak at the melting temperature (Tm). The artefacts products melt at lower 

temperatures and show broader peaks. 

2.11.3 Normalization 

The comparison of microRNA expression between different samples requires 

standardization and normalization of qPCR analysis to minimise the errors due 

to the variation in the quantity and quality of the starting material. One of the 

most accurate methods is to include in the amplification a gene that serves as an 

internal reference against which other amplicon values can be normalised (Karge 

III et al., 1998). This reference gene is also called an “endogenous control” and 

is crucial for the reliability, reproducibility and interpretation of miRNA 

experiments. An ideal endogenous control generally should have a constant level 

of expression and should be abundant in all tissues. Moreover, it should have 

the same size and it should be purified and amplified under the same conditions 

and with the same technology as the molecules under study (Bustin, 2000) (Chen 

et al., 2011b). Summarizing, the term "endogenous control" refers to a gene with 

a low variance in all the samples and that does not show significant changes as a 

result of modifications of the parameters that we consider.  

Results were analysed using ΔΔCT normalisation to a housekeeping gene. To 

normalize qPCR data for miRNA expression analogous to Glyceraldehyde-3-
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phosphate-dehydrogenase (GAPDH), β-Actin (ACTB) or α-Tubulin (TUBA1) 

are generally used. At present, no endogenous control miRNAs have been 

identified, so the selection of reference genes to normalize miRNA levels is still 

rather empirical and where possible one or two invariant miRNAs can be used 

as control (Benes and Castoldi, 2010). 

The endogenous control for this study was chosen following the procedure 

described by Chen et al. (Chen et al., 2011a). With reference to previous data, 

some molecules were screened using a serial dilution of the prepared samples 

and the ones with the best assay linearity were selected as endogenous controls. 

In the current study the small nucleolar RNAs (snoRNAs) U6 was used as a 

housekeeping gene for miRNA quantification in cell lines, U48 for miRNA 

quantification in human tissues and GAPDH for gene quantification in cell lines. 

2.11.4 Data analysis 

There are two methods of analysing data: absolute quantification and relative 

quantification. 

Absolute quantification determines the input copy number of the transcript of 

interest, usually by relating the PCR signal to a standard curve. Here a dilution 

series of known template concentrations are used to determining the initial 

starting amount of the target template in experimental samples or for assessing 

the reaction efficiency. 

Relative quantification is also most effective when the molecules are subjected 

to identical conditions (purification method, storage, etc.), are physically similar 

(e.g., size) and are detected using a similar method (e.g., qRT-PCR with stem-

loop primers). In this way, the changes in sample gene expression are measured 
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based on a control gene. Numerous mathematical models are available, in this 

study the comparative Ct (ΔΔCt) was used. This method requires the use of 

samples in duplicate or triplicate. In this study, triplicates were used. Finally, the 

data are plotted in a bar graph, in which the lengths of rectangular bars are 

proportional to the expression values. The x-axis shows the specific categories 

being compared, and the y-axis represents discrete expression values.  

 

2.12 Methods for protein detection 

Changes in the expression and/or activation of proteins in cells treated with 

scramble controls (negative mimics) or the two forms of miR-140 mimics were 

assessed using SDS-PAGE, Western Blotting, FACS and Protein Array. 

2.12.1 Protein extraction and preparation of cell lysate for western blotting 

Cells were seeded into T75 flasks and were treated with mimics when the 

confluency was around 80%. After 24 hours the transfection medium (DMEM 

containing 10%FBS) was replaced with normal medium and the cells incubated 

for further 24 hours at 37°C 5% CO2. Following 48 hours of treatment, the cells 

were washed twice with ice-cold PBS and lysed in 300µl RIPA lysis buffer 

containing a cocktail of protease and phosphatase inhibitors.  

The cellular material was collected using a cell scraper, transferred to a 1.5 ml 

tube and rotated on a tube rotating wheel for 30 minutes at +4°C. Cell lysates 

were then centrifuged at 13,000 rpm for 15 minutes at +4 °C and the supernatant 

stored at -20 °C. 
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The concentration of the total soluble proteins was determined using the 

Colourimetric Bio-Rad DC (detergent compatible) Protein Assay Kit (Bio-Rad 

Laboratories Ltd, HERTS, UK). 

A standard curve was made using 50 mg/ml of bovine serum albumin (BSA) 

(Sigma-Aldrich Poole, Dorset, England, UK). BSA was serially diluted 1:2 in 

RIPA buffer and 5 μl of standard and unknown samples were dispensed in 

triplicate on a 96-well plate. The Bio-Rad Solutions include the Reagent A 

(alkaline copper tartrate solution) + Reagent S (surfactant solution) (20 μl of 

Reagent S for each ml of Reagent A) and Reagent B (Folin reagent). 25 μl of 

Reagent A+ Reagent S mix and 200 μl of Reagent B were added to the 5µl of 

sample or standards in each well. After 10 minutes, the plate was read at 630 nm 

using a spectrophotometer (Bio-Tek, Wolf Laboratories, York, UK). The sample 

readings were compared with those of a BSA standard curve to give the 

concentration of proteins in the cell lysates. 

After quantification, an equal volume of 2x SDS Laemmli buffer (Sigma-Aldrich 

Poole, Dorset, England, UK) was added to each tube, the samples were boiled 

at 95 °C for 5 minutes and finally centrifuged at maximum speed for 1 minute 

at room temperature.  

2.12.2 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis 

(SDS-PAGE) 

The Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-

PAGE) was performed using the Bio-Rad Mini-Protean® III apparatus powered 

by a Powerpac Basic™ power pack (both Bio-Rad Laboratories Ltd, HERTS, 

UK) following the manufacturer’s instructions. The system includes a 5% 
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acrylamide/bis acrylamide stacking gel at pH 6.8 and an acrylamide/bis-

acrylamide resolving gel at pH 8.8. The percentage of acrylamide used in the 

resolving gel depends on the size of the proteins being resolved. When SDS is 

added to proteins, they become negatively charged by their attachment to the 

SDS anions and, after denaturation, their migration depends only on their 

molecular weight.  

For each gel 10 ml of stacking gel and 4 ml of resolving gel were made. The 

recipes for the resolving and stacking gels are reported in Table 2.12 and 2.13 

respectively. 

Table 2.12. Resolving gel recipes required for the preparation of 10 ml of 

resolving gel at 8% and 10% (w/v) acrylamide/bis-acrylamide. 

Component 8% Resolving 

Gel 

(protein size > 

100 kDa) 

10% Resolving 

Gel 

(protein size < 

100 kDa) 

Distilled water 4.6 ml 4 ml 

30% acrylamide mix 2.7 ml 3.3 ml 

1.5M Tris (pH 8.8)  2.5 ml 2.5 ml 

10% SDS 0.1 ml 0.1 ml 

10% ammonium persulphate 

(APS)  

0.1 ml 0.1 ml 

Tetramethylethylenediamine 

(TEMED) 

0.006 ml 0.004 ml 
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Table 2.13. Stacking gel recipes required for the preparation of 4 ml of 5% (w/v) 

acrylamide/bis acrylamide stacking gel. 

Component 5% Stacking gel 

Distilled water 2.7 ml 

30% acrylamide mix 0.67 ml 

1.5M Tris (pH 6.8) 0.5 ml 

10% SDS 0.04 ml 

10% ammonium persulphate (APS) 0.04 ml 

Tetramethylethylenediamine (TEMED) 0.004 ml 

 

Before the assay, all the components of the casting apparatus were cleaned with 

distilled water first and then with ethanol. The constituents of the resolving gel 

were mixed. TEMED was added as the last component and the solution was 

mixed very gently to avoid any bubbles. TEMED catalyses the polymerisation 

of the gel, therefore the mixture was immediately poured between the two glass 

plates of the apparatus up to of 1.5 cm below the top edge of the plate. To 

produce a smooth level surface, the gel was overlaid with water and the gel was 

left to polymerise at room temperature 30 minutes. 

When the gel had polymerised, the overlaid water was discarded and the excess 

removed using a piece of filter paper. The stacking solution was poured above 

the resolving gel and a well comb was inserted. The gel was left to polymerise at 

room temperature 30 minutes. 

The gel was placed in the electrophoresis apparatus and covered with cold 1x 

Running Buffer before removing the well comb. Using long gel loading tips, the 
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samples were loaded into each well of the stacking gel and 5 μl of a protein 

molecular weight marker was loaded in 1 well (BLUeye Prestained Protein 

Ladder, 10-250KDa, GeneDireX, Belgium). The gel was run at a constant 

current of 140 V until the protein front (visualised by the bromophenol-blue) 

reached the border between the stacking and resolving gels and the proteins were 

clearly stacked, and then the voltage was turned down to 100V and run until blue 

reached the end. 

 

2.13 Protein expression using Western Blotting 

Transfer procedure 

Once SDS-PAGE was completed, the protein samples were transferred onto a 

nitrocellulose membrane by western blotting using the Bio-Rad Mini-Protean® 

apparatus powered by a Powerpac Basic™ power pack (both Bio-Rad 

Laboratories Ltd, HERTS, UK). 

For each gel 6 pieces of blotting papers of the same size of as the short glass 

plate (7x8 cm approximately) and two sponges were soaked with ice-cold 1x 

Transfer Buffer. Following electrophoresis, the front glass plate was gently 

removed using a scalpel and then the gel was detached and transferred into a 

box containing ice-cold 1x Transfer Buffer. The Western Blot cassette was 

assembled as described in Figure 2.3 forming a sort of “sandwich”. The cassette 

was assembled in a box containing ice-cold 1x Transfer Buffer and all the 

components were kept wet. 
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Figure 2.3. Illustration of western blotting transfer. 

(https://personalwebs.coloradocollege.edu/~dkillian/Home/SDS_PAGE_and_West

ern_Blotting.html). 

 

Before locking, the sandwich was rolled gently several times over the top paper 

to remove any bubbles that might have been introduced between the gel and 

membrane. The cassette was then locked and placed into the transfer apparatus 

with the black side (gel) facing the negative electrode (black) and the red side 

(membrane) facing the positive electrode (red). This ensures that the proteins, 

negatively charged after being mixed with SDS, migrated towards the anode, 

from the gel to the membrane. The transfer apparatus was placed in the cold 

room with an ice block to prevent the overheating of the gel and run at constant 

250 mA for 1.5-2.0 hours. 
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Antibody staining 

To confirm the successful transfer of the proteins from the gel to the membrane, 

the membrane was stained with the Ponceau S solution. for approximately 30 

seconds, followed by de-staining in deionised water.  Ponceau S has no effect on 

the blotted proteins and allows a rapid reversible detection of the bands. 

Following staining, the membrane was inserted into a transparent envelope and 

rapidly scanned using a Chemoilluminator.  

The membrane was then washed 3 times, 10 minutes each with TBS-T (to 

remove all Ponceau S) and then incubated for 1 hour by gently rocking with 

Blotto. 

The primary antibody, specific for the protein of interest, was diluted in Blotto. 

The dilution varies between the antibodies, as indicated in Table 2.6. 

After the blocking, the membrane was incubated with the primary antibody at 

+4°C overnight by gently rocking.  

After the primary antibody incubation, the membrane was washed three times 

using TBS-T. The secondary antibody used depends from the source of the 

primary antibody, eg if a primary antibody was raised in a mouse, an anti-mouse 

secondary antibody is required. The Horseradish Peroxidase (HRP) conjugated 

secondary antibody was diluted in Blotto according to the manufacturer’s 

instructions (Table 2.7). The membrane was incubated with the secondary 

antibody for 1 hour at room temperature by gently rocking.  

After the secondary antibody incubation, the membrane was washed 3 times, 10 

minutes each with TBS-T at room temperature by gently rocking. 
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Chemiluminescence was performed using a luminol/peroxide based enhanced 

chemiluminescence (ECL) reagent (Supersignal™ West Pico, Thermo Fisher 

Scientific, Waltham, MA USA). The ECL reagent was used according to the 

manufacturer’s instructions. 500 µl of ECL reagent was added to each blot and 

left in the dark for 5 minutes. The luminol contained in the ECL reagent works 

as a substrate for the HRP in the presence of peroxide. HRP is excited and then 

emits light when it decays to a lower state of energy. The chemiluminescent 

signal from the HRP-bound antibody was detected using G:Box (Syngene, 

Cambridge, UK), composed of an illuminator and a camera connected to a 

computer. 

The images were captured at different exposure times, depending on the band 

visibility, and then analysed using the G:Box software package (Syngene, 

Cambridge, UK) for band quantification. 

In all the experiments the Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) was used as a control, due to its abundance in all the cells and 

conservation within the eukaryotic cells.  
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2.14 Protein expression using Protein array 

Proteomics is the large-scale study of proteins and aims to understand the 

protein status under certain physiological or pathological conditions. It covers 

the entire content of proteins in cells, including the protein isoforms and 

modifications, the protein-protein interactions and the structural description of 

proteins. Amongst all the possible modifications, reversible phosphorylation and 

de-phosphorylation of proteins catalysed by protein kinases and phosphatases 

respectively, represent the most widespread molecular regulatory mechanism. 

These changes have the ability to regulate multiple processes, such as 

proliferation, differentiation, apoptosis and angiogenesis. Phosphorylation and 

de-phosphorylation at serine, threonine or tyrosine residues may induce 

conformational changes and may affect the activity of a protein, its cellular 

localisation, stability and interactions with other proteins, thus phosphorylation 

play a role in both normal and pathological conditions including cancer. 

Currently, the protein kinases represent attractive targets in the field of drug 

development for cancer treatment (Attoub et al., 2002, Nam et al., 2005, Saito 

et al., 2006). Kinexus Bioinformatic Corporation (http://www.kinexus.ca) 

developed a large-scale antibody microarray, the Kinex™ KAM-880 Antibody 

Microarray that monitors changes in the expression levels and phosphorylation 

states of signalling proteins which includes 518 pan-specific antibodies for 

protein expression and 359 phospho-site specific antibodies for 

phosphorylation. A complete list of the antibodies printed on the KAM-880 chip 

is available on the Kinexus website. 

In this study, the proteins from the cell lysate were detected by using a forward 

phase microarray, in which one protein sample is screened against multiple 

http://www.kinexus.ca/
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reagents. The capture reagent, normally an antibody, is immobilised on the slide 

surface and is used to capture antigens (Figure 2.4).  

 

Figure 2.4. Kinexus experiment principles. Forward microarray principle. 

Antibodies are mobilised on the slide surface. When the sample is added onto the slide 

surface, the antigens are captured by their specific antibody and the interaction detected 

by a labelling signal. 

Our protein samples from the A549 lung cancer cell line were treated with miR-

140-3p and -5p mimics and sent to Kinexus for the forward reverse protein 

array. The major advantage of this technique is that lysate samples from control 

and treated cells are labelled with the same dyes and analysed together on the 

same chip at the same time. The major disadvantage of this technique is the 

number of false positive and/or false negative results due to the non-

denaturating conditions used that allow the formation of protein complexes. 

The amount of protein required for the Kinex™ Antibody Microarray (KABM) 

service is 100 μg per sample at a minimum concentration of 2 mg/ml without 

any SDS-PAGE sample buffer as the proteins are to remain in their native 

structure and non-denatured. Cells from T75 flasks were lysed in an ice-cold lysis 

buffer pH 7.2 as recommended by Kinexus. 
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Kinexus Buffer: 

 20 mM MOPS, pH 7.0; 

 2 mM EGTA (to bind calcium); 

 5 mM EDTA (to bind magnesium and manganese); 

 30 mM sodium fluoride (to inhibit protein-serine phosphatases); 

 60 mM β-glycerophosphate, pH 7.2 (to inhibit protein-serine 

phosphatases); 

 20 mM sodium pyrophosphate (to inhibit protein-serine phosphatases); 

 1 mM sodium orthovanadate (to inhibit protein-tyrosine phosphatases); 

 1 mM phenylmethylsulfonylfluoride (to inhibit proteases); 

 3 mM benzamidine (to inhibit proteases); 

 5 µM pepstatin A (to inhibit proteases); 

 10 µM leupeptin (to inhibit proteases); 

 1% Triton X-100. 

Cells were seeded into T75 flasks and were treated with mimics when the 

confluency was around 80%. After 24 hours the transfection medium was 

replaced with normal medium and the cells incubated for a further 24 hours at 

37°C 5% CO2. After 48 hours of the treatment, the cells were washed twice with 

PBS and the medium replaced with medium containing 2% FBS. Cells were 

incubated for 2 hours at 37°C 5% CO2. The samples were washed again, lysed 

and centrifuged at 2,000rpm for 10 minutes. The supernatant was removed and 

300μl of Kinnexus Buffer was added. The samples were transferred to an 

Eppendorf tube and rotated on a tube rotating wheel for 1 hour at +4°C and 
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then centrifuged at 13,000 rpm for 10 minutes. The soluble part was transferred 

to a new fresh tube and quantified. The pellet was discarded 

The concentration of the total soluble proteins was determined using the 

Fluorescamine protein assay (Thermo Fisher Scientific, Waltham, MA USA).  

A fresh stock of 3 mg/ml Fluorescamine was made in DMSO in an amber tube. 

A standard curve was made using 50 mg/ml of BSA (Sigma-Aldrich Poole, 

Dorset, England, UK) serially diluted 1:5 in PBS. 45 μl of standard or unknown 

samples was plated in triplicate in each well of a 96 well-plate and 15 µl of 

fluorescamine was added. The fluorescence of the protein-dye complex which 

has an emission wavelength of approximately 470 nm was read with a UV 460nm 

emission filter in a Glomax Multi Detection System (Promega Wisconsin USA). 

These readings were compared with those of a BSA standard curve to give the 

concentration of proteins in the cell lysates. 

The samples were then stored at -80°C for less than one month prior to be sent 

to Canada for the protein array analysis. 

Kinexus™ platform recorded the intensities of dye-bound proteins on the 

KAM-880 chip and the software calculated the average intensities recorded for 

each pair of antibody spots to quantify the differences between the control 

(negative mimics treatment) and testing samples (miR-140-3p or miR-140-5p 

mimics treatment). Data were normalised according to the protein 

concentrations and the Z score and percent changes from control (%CFC) were 

calculated. 
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2.15 Cell cycle and apoptosis assays using Flow Cytometry 

Flow cytometry is the measurement of cells in a flow system. The properties 

measured include a particle’s relative size, relative granularity or internal 

complexity, and relative fluorescence intensity. 

A flow cytometer is composed of three main components: 

• A fluidic system that transports the cell suspension to the laser beam. 

• An optical system that includes lasers to illuminate the particles and 

optical filters to direct the signals to specific light detectors. 

• An electronics system that converts the light into electronic signals. 

The value of this technique lies in the ability to measure a large number of single 

cells within a short period of time (ten seconds to minutes). The major 

disadvantage is that it requires a suspension of single cells with minimum clumps 

and debris. However, any suspended particle or cell from 0.2–150 micrometers 

in size is suitable for analysis. 

The cell suspension is injected into a stream created by a surrounding sheath of 

a fluid (sheath fluid) that creates a laminal flow, allowing the cells to pass 

through. If the flow is unperturbed, the sheath fluid does not mix with the 

sample but constrain the cells to move through the centre of the chamber.  Here 

a light beam, which is orthogonal to the flow, illuminates the sample creating an 

effect called light scattering. The fraction of light scattered is collected in the 

same direction as the incident light (0–10° conic angle with respect to the 

incidence point of the laser) is called forward scatter light (FCS) and is directly 

proportional to the cell size. The fraction of light scattered at approximately 90° 
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from the laser beam is called side scatter light (SSC) and is directly proportional 

to cell granularity or internal complexity. Correlated measurements of FSC and 

SSC can allow for differentiation of cell types in a heterogeneous cell population, 

such as blood cells. 

 

Figure 2.5: Scattering system in Flow Cytometry (Díaz et al., 2010).  

Light emitted from fluorescently labelled antibodies can identify a wide array of 

cell surface and cytoplasmic antigens and for this reason the use of 

fluorochromes is very common in flow cytometry analysis. The fluorescence is 

a property that some molecules have to absorb light energy over a range of 

wavelengths that are characteristic for each compound. When a compound 

absorbs light, and hence energy, its electrons raise from a lower into an “excited” 

higher state of energy. Then the electrons release the energy in the form of light 

(luminescence) and return to the lower energy stage. Because the colour of the 

exciting and emitting light are different, they can be separated from each other 

by using optical filters. The range over which a fluorescent compound can be 

excited is termed its absorption spectrum and the range of emitted wavelengths 

for a particular compound is termed its emission spectrum. When a fluorescent 
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dye is conjugated to a monoclonal antibody, it can be used to identify a particular 

cell type. Different fluorochromes allow distinguishing subpopulations in a 

mixed population of cells. In this way the fluorescence combined with FSC and 

SSC data, can be used to identify which cells are present in a sample. Cells can 

be stained either by a direct or indirect method. In the indirect method, the 

antibody is labelled with a fluorochrome and incubated with the cells in a single 

step staining procedure. Then the cells are incubated with the primary antibody, 

washed and incubated again with the secondary antibody carrying the 

fluorochrome. With the direct method, multiple antibodies are added at the same 

step.  

In this study two fluorochromes were used, the fluorescein isothiocyanate 

(FITC) and phycoerythrin (PE). In flow cytometry, more than one fluorochrome 

can be used simultaneously if the peak emission wavelengths are not too close 

to each other.  The peak emission wavelength is 530 nm for FITC and 575 nm 

for PE. These peak emission wavelengths are far enough apart to allow the 

detection of each signal by a separate detector. The amount of fluorescent signal 

detected is proportional to the number of particles in the suspension. In figure 

2.6 the emission spectra of the most common fluorochromes are shown. 
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Figure 2.6. Emission spectra of the four most common fluorochromes used in flow 

cytometry 

(https://www.bdbiosciences.com/documents/BD_FACSVerse_Apoptosis_Detectio

n_AppNote.pdf). 

For the cell cycle analysis, two wells of a 6-well plate were used. Following 48 

hours of transfection with negative, miR-140-3p and miR-140-5p mimics, cells 

were washed twice with PBS, trypsinised, re-suspended in complete medium and 

centrifuged at 1,700 xg for 5 minutes. The pellet was washed in ice-cold PBS and 

then centrifuged again at 1,700 g for 5 minutes. At this stage, the pellet was re-

suspended in 1 ml of ice cold 70% v/v ethanol and left on ice for 2 hours. 

Following this, the cells from each treatment were centrifuged at 1,700 xg for 5 

minutes and then re-suspended in PBS to a concentration of 106 cells in 100 µl. 

Each sample was divided in two, half was not stained the other half was stained 

by incubating with 150 μl of 2 μg/ml propidium iodide (PI; ThermoFisher) for 

15 minutes at room temperature in the dark. Following this, samples were run 

on the BD FACSCanto™ II flow cytometer (BD) at a 575nm wavelength. 
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An apoptosis assay was performed to evaluate whether miR-140-3p and miR-

140-5p were able to induce a programmed cell death of the cancer cells. The 

Annexin V Kit (Santa Cruz Biotechnology) containing fluorescent conjugated 

annexin V (FITC annexin V) and PI solution was used. Cells were washed twice 

with PBS, trypsinised, re-suspended in complete medium and centrifuged at 

1,700 xg for 5 minutes. The pellet was washed in ice-cold PBS, centrifuged again 

at 1,700 xg for 5 minutes and each sample of 5x105 cells was re-suspended in 

200 µl of 1X annexin V binding buffer. Some samples were not stained. The 

remaining samples were stained with 3 μl of FITC annexin V (0.01 μg/ml) and 

3 μl of PI (100 μg/ml) and the cells incubated at room temperature in the dark 

for 30 minutes. Following this, samples were run on the BD FACSCanto™ II 

flow cytometer (BD) using the 488nm wavelength to detect FITC and 575nm 

for PI. 

 

2.16 MiRNA target prediction  

At present, more than 2500 mature miRNAs have been discovered in humans 

(http://www.mirbase.org). 

In the past, when a small RNA was discovered by cDNA cloning, four 

characteristics were required for its classification as miRNA. First of all its 

expression was confirmed by molecular methods, such as Northern Blotting, 

Polymerase Chain Reaction (PCR), primer extension analysis or microarray. 

Then its sequence should be presented in one arm of the hairpin precursor which 

is usually 60-80 nucleotides in length in animals. Moreover, the sequence of the 

mature RNA should be phylogenetically conserved. Finally, the precursor should 
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accumulate when there is a reduction of Dicer activity. However, it is difficult to 

meet all of these criteria for several reasons, such as technical difficulties, or the 

low expression of the candidate miRNA. For this reason, if a small RNA meets 

the first and the second criterion (expression and structure) or the first and the 

third criterion (expression and conservation), it is classified as miRNA. In 

contrast, small RNAs that do not meet these requirements can be classified as 

small interfering RNAs (Kim, 2005a) with three main categories: trans-acting 

RNAs (tasiRNAs), repeat-associated RNAs (rasiRNAs) and small-scan RNAs 

(scnRNAs). TasiRNAs have been found in plants and are encoded in intergenic 

regions. RasiRNAs match repetitive elements in the sense or antisense 

orientation in Schizosaccharomyces pombe and Arabidopsis thaliana, inducing 

the transcriptional gene silencing through methylation. Finally, ScnRNAs have 

been found in Tetrahymena thermophila (Kim and Nam, 2006). 

To overcome the issues reported above, many bioinformatic approaches have 

been developed and are widely used by all scientists. These approaches are 

mainly based on the two crucial criteria of structure and conservation (Kim, 

2005a). 

There are four common features used in prediction tools: seed match, 

conservation, free energy and site accessibility. Seed matches refer to the 

Watson-Crick (WC) match between the seed sequence of a miRNA (the first 2-

8 nucleotides starting at the 5’end and counting towards the 3’end) and its 

mRNA targets. The different algorithms consider the following types of seed 

matches, according to the number of nucleotides which show a WC match with 

the target: 



122 
 

•  6mer: a perfect WC match between the miRNA seed and mRNA for 

six nucleotides. 

• 7mer-m8: a perfect WC match from nucleotides 2-8 of the miRNA seed.  

• 7mer-A1: a perfect WC match from nucleotides 2-7 of the miRNA seed 

in addition to an A across from the miRNA nucleotide 1. 

• 8mer: a perfect WC match from nucleotides 2-8 of the miRNA seed in 

addition to an A across from the miRNA nucleotide 1. 

The sequence alignment of mature miRNAs from different species reveals an 

overall well-conserved consensus with a few variations. Conservation analysis 

may focus on regions in the 3’-UTR, the 5’-UTR on all miRNA sequence or on 

a combination of these three elements. Interestingly, there is a higher 

conservation in the miRNA seed region than in the non-seed region (Peterson 

et al., 2014). As for the genes, the conservation of miRNAs during the evolution 

across the species implies that that miRNA may be involved in crucial biological 

pathways. Free energy refers to the minimum free energy and shows the strength 

of the binding between a miRNA and its targets. The lower the free energy, the 

firmer the binding structure is and the more likely it is indicating the true binding. 
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Table 2.14. Main miRNA predicttion tools. Mammalian/vertebrate (m), fly (f), worm (w).  

Tools Clades Criteria for prediction Website References 

TargetScan m, f, w Stringent seed paring, 

conservation 

http://targetscan.org/ (Peterson et al., 2014, Bartel, 

2009) 

PicTar m, f, w Stringent seed paring, 

conservation 

http://pictar.mdc-berlin.de/ (Bartel, 2009, Krek et al., 

2005) 

MiRanda m, f, w, 

others 

Moderate seed pairing, 

conservation 

http://www.microrna.org 
 

(Peterson et al., 2014, Bartel, 

2009) 

Diana 

microT 

m Stringent seed pairing http://microrna.gr/microT-CDS 
 

(Peterson et al., 2014, Yue et 

al., 2009) 

RNA22 m, f, w Moderate seed pairing http://cbcsrv.watson.ibm.com/rna22.html 
 

(Bartel, 2009) 

PITA m, f, w Moderate seed pairing http://genie.weizmann.ac.il/pubs/mir07/mir07_data.html 
 

(Bartel, 2009, Yue et al., 2009) 

MiRWalk m Stringent seed paring, 

conservation 

http://mirwalk.uni-hd.de/ 
 

(Dweep et al., 2011) 

 

http://targetscan.org/
http://pictar.mdc-berlin.de/
http://www.microrna.org/
http://microrna.gr/microT-CDS
http://cbcsrv.watson.ibm.com/rna22.html
http://genie.weizmann.ac.il/pubs/mir07/mir07_data.html
http://mirwalk.uni-hd.de/
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TargetScan predicts biological targets of miRNAs by searching for the presence 

of 8mer, 7mer, and 6mer sites and free energy. As an option, only conserved 

sites are predicted. 

The input to PicTar is a fixed search set of microRNAs and multiple alignments 

of orthologous nucleotide sequences (3' UTRs). Output are scores that rank 

genes by their likelihood of being a common target of members (subsets) of the 

search set and probabilities for the predicted binding sites in each UTR. After 

checking whether perfect matches are conserved or not, PicTar further checks 

the binding free energy and finally calculates the probability that the probing 

3’UTR is targeted by the set of coexpressed miRNAs (Yue et al., 2009, Krek et 

al., 2005). 

MiRanda uses a three steps analysis. The algorithm aligns miRNA a 3’UTR 

miRNA sequences to check WC matches, calculates the free energy and finally 

the conservation is used as a filter. Unlike most miRNA target predictors, 

miRanda considers matching along the entire miRNA sequence and matches are 

allowed to contain limited G-U wobble pairs and insertions or deletions 

(Peterson et al., 2014, Bartel, 2009, Krek et al., 2005, Yue et al., 2009). 

Diana microT algorithm is based on parameters that are calculated individually 

for each miRNA and for each miRNA recognition elements (MREs), UTR sites 

that have 7-, 8- or 9-nt long consecutive WC base pairing with the miRNA. 

Using as features the MRE binding type and the MRE conservation profile, all 

identified MREs are scored through comparative analysis versus a set of MREs 

identified based on mock miRNA sequences. The overall miTG score is 

calculated as the weighted sum of the scores of all identified MREs on the 3′-

UTR. The algorithm uses up to 27 species to assess the MRE conservation 
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profile taking into account both conserved and nonconserved MREs for the 

estimation of the final miTG score (Maragkakis et al., 2009). 

RNA22 only contains known miRNAs, permits combinations of G:U wobbles 

and bulges in the seed region of a heteroduplex and does not require a target’s 

conservation across genomes. RNA22 has successfully predicted non-canonical 

targets as well as targets beyond the 3′-untranslated region (3′-UTR) (Loher and 

Rigoutsos, 2012). 

PITA uses the target-site accessibility as the main feature for miRNA target 

prediction. Site accessibility is a measure of the ease with which a miRNA can 

locate and hybridize with its mRNA target. This is based on the important 

observation that the preferential and conserved sites of the target are located in 

the more accessible regions of the UTR. PITA first identifies a potential site by 

seed match criteria, and then considers site accessibility (Peterson et al., 2014). 

MiRWalk generates possible miRNA-binding sites by “walking” the genes of 

three genomes (human, mouse, rat). It offers the putative miRNA-binding sites 

within the complete sequence (promoter,coding region, 5’-, -3’-UTR) and 

provides a comparative platform for the possible miRNA-binding sites within 

the 3’UTR mRNA regions which result from the miRWalk algorithm and the 

other eight predictors Diana mT, miRanda, miRDB, RNA hybrid, PICTAR, 

PITA, RNA22 and TargetScan (Dweep et al., 2011). 
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Figure 2.7: Example of miRNA-mRNA interaction. MiRNA position number is 

shown in blue. The nucleotides in miRNA position number 2-8 represent the seed 

region. Flank refers to the mRNA sequence on either side of the region corresponding 

to the miRNA seed sequence. WC matches in the seed sequence are shown in red, and 

an example of G-U wobble in the seed sequence is shown in green (Peterson et al., 

2014). 

 

2.17 Transient transfection using miRNA mimics 

Cells were prepared at a concentration of 106 cells/ml and 100μl, 300μl and 1ml 

were added to the wells of 96, 24 or 6 well plates, respectively. Cells were 

incubated overnight at 37°C and then transfected with miRNA mimics at a 

concentration of 20μM in antibiotic-free medium using 2μl/ml DharmaFECT1 

(Thermo Fisher Scientific, Waltham, MA USA) according to manufacturer’s 

instructions. Cells were used harvested for experiments at different time points 

after transfection. To verify the efficiency of transfections, the transfected cells 

were incubated overnight and miRNA levels were evaluated by qPCR. 
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2.18 PmirGLO Dual-Luciferase miRNA Target Expression Vector 

cloning 

MiRNAs interact with targets in the 3’UTR of transcript and result in either 

mRNA degradation or inhibition of translation. The pmirGLO Dual-Luciferase 

miRNA Target Expression Vector (Promega, Hampshire, UK) allows a 

quantitative evaluation of miRNA activity by inserting 3´ of the firefly luciferase 

gene (luc2) into miRNA target site. These target sites have been introduced by 

cloning the miRNA putative binding sites fused to the end of the luciferase 

reporter gene.  If the sequence is a target of a miRNA, the reporter transcript 

stability will decrease and the luciferase signal will drop. Renilla luciferase (hRluc-

neo) is used as a control for normalisation.  

The pmirGLO Dual-Luciferase miRNA Target Expression Vector contains a 3′ 

UTR cloned downstream of the luc2 firefly luciferase gene under the control of 

the weak human phosphoglycerate kinase (PGK) promoter. PGK is a weak, 

nonviral universal promoter and can be expressed in yeast, rat, mouse and 

human cells. A weak promoter is useful in this assay to better observe subtle 

changes in gene expression. 

This vector contains the following features: 

• Human phosphoglycerate kinase (PGK) promoter. 

• Firefly luciferase reporter gene (luc2). 

• Multiple cloning site (MCS) located at the 3´ end of luc2. 

• Humanized Renilla luciferase-neomycin resistance cassette (hRluc-neo). 

• Ampr gene. 



128 
 

• SV40 late poly(A) signal sequence downstream of luc2. 

• Synthetic poly(A) signal/transcription stop site. 

 

Figure 2.8. pmirGLO Vector pmiRGLO Dual-Luciferase miRNA Target Expression 

Vector (Promega).  

The following workflow explains the procedure followed to verify the targets of 

miRNAs in mammalian cells.  
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2.18.1 Design of the oligonucleotides that contain the desired miRNA 

target region 

TargetScan Human 7.0 (http://www.targetscan.org/vert_70/docs/help.html) 

was used to design the miRNA target region complementary to the desired 3’-

UTR target region. The overhangs created by oligonucleotide annealing were 

designed to be complementary to those generated by the restriction enzymes 

PmeI and XbaI. NotI internal site was added for clone digestion. In Figure 2.9 

all the restriction sites of the pmirGLO vector are shown. 

 

Figure 2.9. pmirGLO Vector restriction sites 

(https://www.addgene.org/vector-database/8236/). 

 

 

 

http://www.targetscan.org/vert_70/docs/help.html
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2.18.2 Transformation of chemically competent E.coli cells 

The following protocol was used to transform E. coli cells with pmirGLO vector: 

 3 μl pmirGLO vector was mixed with 25 μl chemically competent One 

Shot™ TOP10 E.Coli (Invitrogen Inc., Paisley, UK) and incubated in ice 

30 minutes. 

 The cells were heat-shocked at 42°C for 30 seconds in a water bath and 

placed on ice for 2 minutes. 

 250 μl pre-warmed S.O.C. medium (20 g/L Tryptone, 5 g/L Yeast 

Extract, 4.8 g/L MgSO4, 3.603 g/L dextrose, 0.5g/L NaCl, 0.186 g/L 

KCl) was added to the cell suspension and the vials were shaken 

horizontally at 225 rpm on an orbital shaker (Bibby Stuart Scientific, UK) 

at 37 °C for an hour.  

 For pmirGLO amplification, E.coli cell suspension was transferred into 

a T25 flask containing 15ml of pre-warmed LB broth and 100 μg/ml 

ampicillin and incubated at 37 °C overnight. For the transformation of 

E.coli cells with the pmirGLO vector containing the desired miRNA 

target region, an E.coli cell suspension at high and low densities was 

spread onto pre-warmed selective LB-agar plates containing 100 μg/ml 

ampicillin and incubated at 37 °C overnight. 

The pmirGLO vector contains a gene that confers resistance to ampicillin. The 

next day it was possible to perform a positive selection of the transformed cells. 
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2.18.3 Plasmid purification 

The purification of the plasmids was performed using the GenElute Plasmid 

Miniprep Kit (Sigma Aldrich, Dorset, UK), according to the manufacturer’s 

instructions: 

 E.coli transformed cells were centrifuged at 4 °C, 10 minutes, 5000 rpm. 

 The pellet was resuspended in 200 μl of Resuspension solution 

containing RNase A by pipetting. 

 200 μl of Lysis solution was added and the solution was gently mixed by 

inverting 6-8 times and left at room temperature 5 minutes. 

 The solution was then transferred to a 2 ml tube and 350 μl of 

Neutralisation solution were added. The tube was gently inverted 4-6 

times and centrifuged at maximum speed 10 minutes. 

 The columns were prepared by adding 500 μl of Column preparation 

solution and spinning at 12,000 xg 1 minute. The flow-through was 

discarded. 

 The cleared lysate was transferred to a new 2ml tube containing the 

column and centrifuged at 12,000 xg 1 minute. 

 The flow-through was discarded and 750 μl of Wash solution containing 

ethanol was added. The tube with the column was centrifuged at 12,000 

xg 1 minute and the flow-through discarded again. 

 The columns were centrifuged again at 12,000 xg 1 minute to dry. 

 The columns were then transferred to a new 2 ml tube and 40 μl of 

Elution solution were added. The tube was centrifuged at 12,000 xg 1 

minute. The flow through was recovered, transfer into the same column 

and centrifuged again to increase the concentration of the eluate. 
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 The column was discarded and the DNA concentration was quantified 

using a spectrophotometer. 

2.18.4 Vector cloning  

After amplification and purification, pmirGLO vector was digested and then 

the desired miRNA target region was ligated. The following protocol was 

designed, using New England BioLabs website 

(http://nebcloner.neb.com/#!/): 

1. Digestion 

Component 50μl Reaction 

DNA 1 μg 

10x CutSmart Buffer 5 μl (1X) 

PmeI 1 μl (10 units) 

XbaI 1 μl (10 units) 

Nuclease-free water To 50 μl 

 

The assembled reaction was incubated at 37 °C for 10 minutes and 

a 0.8% agarose gel was run to verify if the vector was digested. A 

non-digested vector was used as a control. 

 

 

 

 

 

 

 

http://nebcloner.neb.com/#!/
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In the meantime, the oligonucleotides were diluted in nuclease-free 

water to a final concentration of 1 μg/μl and then annealed using the 

following reagents: 

Component 50μl Reaction 

Oligonucleotide A (1μg/μl) 2 μl 

Oligonucleotide B (1μg/μl) 2 μl 

Oligo Annealing Buffer 46 μl 

  

The reaction was then incubated at 90 °C for 3 minutes and then 

transferred into a water bath at 37 °C for 15 minutes. 

 

2. Ligation 

 

The annealed nucleotides were diluted 1:10 for a final concentration 

of 4ng/μl and the following reaction was assembled: 

Component Negative control (40µl 

Reaction) 

Standard (40µl 

Reaction)  

10x T4 DNA Ligase Buffer 4 µl 4 µl 

Vector (50ng/µl) 2 µl 2 µl 

Annealed oligonucleotides 

(4ng/µl) 

- 2 µl 

Nuclease-free water 32 µl 30 µl 

T4 DNA Ligase (3units/µl) 2 µl 2 µl 
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The reaction was then incubated at 16°C overnight and a 0.8% 

agarose gel was run to verify if the vector was digested. Two controls 

were used: one without oligonucleotides and the second one without 

oligonucleotides and DNA ligase. 

2.18.5 Experimental validation 

All the plasmids were sent to the CBS DNA Sequencing facility (Cardiff 

University) and specific primers (Table 2.5) were used to verify if the inserted 

sequence contained the desired miRNA target sequence. 

2.18.6 Dual-Glo® Luciferase Assay System 

A549 cells were suspended at 104 cells/ml in DMEM and 100 µl added to each 

well in a white 96-well plate.  Six replicates were set up for each condition and 

cells were incubated overnight at 37 °C. The following day, the plasmids, which 

contain the putative miRNA target sites 3’-UTR (or its mutated version) fused 

to the end of the luciferase reporter gene, were diluted to 20 ng/µl and 

transfected into A549 cells using 2 µl/ml  DharmaFECT Duo (Thermo Fisher 

Scientific, Waltham, MA USA) in a total volume of 75 µl. After twenty-four 

hours, the plate was removed from the incubator and equilibrated at room 

temperature and then the following protocol was used, according to the 

manufacturer’s instructions: 

 To each well, a volume of Dual-Glo® Reagent equal to the volume of 

culture medium was added.  
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 The plate was left at room temperature for 20 minutes to allow cell lysis 

to occur and then the firefly luminescence was read using Glomax Multi 

Detection System.  

 To each well a volume of 1:100 diluted Dual-Glo® Stop & Glo® 

Reagent equal to the original culture medium was added. 

 After 10 minutes the renilla luminescence was read using Glomax Multi 

Detection System (Promega, Wisconsin, USA).  

The ratio of firefly/renilla luminescence for each well was calculated and 

normalised to the control vector (pmirGLO Dual-Luciferase miRNA Target 

Expression Vector). 

 

2.19 Biotinylated miRNA mimic pulldown 

The conventional approach to identifying miRNA targets relies on the 

bioinformatics predictions as described above, and the subsequent experimental 

validation. However, these tools generate false-positive and false-negative data 

and sometimes fail to predict some important biological miRNA targets. For 

example, the transcription factor E2F2, which has been demonstrated to be a 

direct target of miR-24, was not predicted by any computational tool because of 

the lack of a seed match in its 3’-UTR (Lal et al., 2009). In fact, miRNAs may 

interact with their targets in some non-canonical ways, thus making their 

identification more difficult (Tan et al., 2014). In this study the bioinformatics 

approach was integrated by a method based on the RNA pulldown with 

biotinylated miRNA mimics. Briefly, the cells were transfected with biotinylated 

mimics and then the complexes formed by the miRNA and the mRNAs were 
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pulled down using streptavidin coated magnetic beads. Afterwards the total 

RNA was extracted and sequenced. 

 

Figure 2.10. MiRNA pulldown procedure. Biotinylated mimics were transfected into 

cells and, following 24 hours, the complexes of miRNA-mRNA pulled down with 

streptavidin-coated magnetic beads. After wash steps, the captured mRNAs were 

purified and further analysed by RNA-sequencing or qPCR. 

 

Cells were transfected in 6-well plates with miRNA mimics biotinylated at a 

concentration of 20 μM and 2 μl/ml DharmaFECT1 (Thermo Fisher Scientific, 
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Waltham, MA USA) in serum-free media. Following 24 hours of treatment, the 

following protocol was used to isolate the RNA bound to the biotinylated 

miRNA mimics: 

 MyOne C1 Dynabeads (Life Technologies, Paisley, UK) were washed 

twice in hypotonic lysis buffer made with 10 mM KCl, 1.5 mM MgCl2, 

10 mM Tris-HCl pH 7.5, 5mM Dithiothreitol (DTT), 0.5% NP40, 60 

U/ml SUPERase In (Thermo Fisher Scientific, Waltham, MA USA) and 

5 µl/ml protease inhibitors. 

 25 µl/sample of MyOne C1 Dynabeads were incubated with 1 µg/µl 

BSA and 1 µg/µl yeast tRNA prepared in hypotonic lysis buffer to block 

non-specific binding sites and then rotated at 4 °C for approximately 3 

hours. 

 Cells were lysed with hypotonic lysis buffer, on a cold room rocker for 

15 minutes and then scraped into pre-cooled tubes. 

 Cells were then vortexed and kept on ice 10 minutes. This was repeated 

twice. 

 Samples were centrifuged at 5,000 xg, 4 °C 5 minutes and the 

supernatant was transferred into a new tube. 

 The beads were then washed twice with 300µl hypotonic solution and 

resuspended to 50 µl per 25µl of the original volume. 

 The beads were divided between an appropriate number of tubes and 

mixed with the cell lysate, with NaCl added at a final concentration of 1 

M. 

 The cell lysate-bead mix was left rotating at 4 °C for 1 hour. 
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 The cell lysate-bead mix was washed four times with 200 µl hypotonic 

buffer and then the RNA was extracted by using Trizol, as described in 

Section 2.8. The samples were all resuspended in 20 µl RNase-free water. 

 

2.20 RNA sequencing (RNA-seq) 

2.20.1 RNA quantification and reverse transcription 

To evaluate the complete removal of 18S and 20S ribosomal RNA, the Bio-

analyser-2100 (Aligent, Santa Clara, USA) was used. Once the quality of mRNA 

was evaluated, the reverse transcription of RNA into cDNA was performed by 

using the Ion AmpliSeq™ Transcriptome Human Gene Expression Kit (Life 

Technologies, Paisley, UK) for each sample as follows: 

Component Volume per reaction  

5x VILO Rt Reaction Mix 1.0 µl 

10X SuperScript III Enzyme Mix 0.5 µl 

DNase-treated total RNA 1 3 .5 µl 

Total 5 µl 

1 We assumed that the amount of the RNA was very low and we used as much 

as RNA as possible 

The conditions for reverse transcription were 42 °C for 30 minutes and 85 °C 

for 5 minutes using Applied Biosystems 2720 Thermal Cycler (Life 

Technologies, Paisley, UK).  
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2.20.2 cDNA amplification 

cDNA amplification was performed by using the Ion AmpliSeq™ 

Transcriptome Human Gene Expression Kit (Life Technologies, Paisley, UK) 

for each sample as follows: 

Component Volume per 

reaction  

5x Ion AmpliSeq HiFi 4 µl 

Ion AmpliSeq Transcriptome Human Gene 

Expression Core Panel 

8 µl 

PCR master mix 15 µl 

Nuclease-free water 3 µl 

Total 30 µl 

 

The conditions for the amplification were: 

 99°C for 2 minutes  

  99°C for 15 seconds, 60°C for 16 minutes (16 cycles)  

2.20.3 Library preparation 

The samples were partially digested by adding 2 µl of FuPa Reagent supplied 

with the Transcriptome Human Gene Expression Kit (Life Technologies, 

Paisley, UK) and digested at the following conditions: 50 °C for 10 minutes, 55 

°C for 10 minutes, 60 °C for 20 minutes. The amplicons are about 200 bp. 

After the digestion, adaptors were assigned to each sample in order to identify 

each individual sample. The bar-code was enumerated and a mix of Adapters 
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and barcodes at a final dilution of 1:4 for each adapter have been used. All the 

reagents come from the Transcriptome Human Gene Expression Kit (Life 

Technologies, Paisley, UK) and were combined as follows: 

Example barcode adapter mix for up to 4 reactions 

Component Volume per reaction  

Ion P1 Adapter 2 µl 

Ion Xpress Barcode X 2 µl 

Nuclease-free water 4 µl 

Total 8 µl 

 

At this stage, 2 µl of the diluted barcodes above were mixed with a Switch 

Solution (Transcriptome Human Gene Expression Kit, Life Technologies, 

Paisley, UK), 22 µl of the digested amplicon and 2 µl of DNA Ligase, giving a 

volume of 30 µl for each sample. 

To purify the library, 45 µl of Agencourt AMPure XP magnetic beads (Beckman 

Coulter, USA) per sample were used. The library mixed to the magnetic beads 

were washed twice with 70% v/v ethanol and then the library quantified by using 

the Bionalyzer. 
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Figure 2.11. Ligation procedure for library preparation before RNA sequencing. 

Through the adaptors, the cDNA is linked to the beads and can be purified. The 

barcodes discriminate between the samples. 16 barcodes are included in the kit, thus 

potentially allowing the process of 16 samples together. 

 

2.20.4 Amplification and quantification of the library using Agilent 

Bioanalyser 

To amplify the purified library, 50 µl of 1xLibrary Amp Mix and 2 µl of 25x 

Library Amp Primers were added. All the reagents are included in the 

Transcriptome Human Gene Expression Kit (Life Technologies, Paisley, UK). 

The solution was left on a magnetic stand to separate the beads from the samples 

and the approximately 50 µl of supernatant was transferred into a clean tube.  

The conditions for the amplification were: 

• 98 °C for 2 minutes  

•  98 °C for 15 seconds, 64°C for 1 minute (5 cycles). 

To purify the amplified library the following protocol was used: 

 Add 25 µl of Agencourt AMPure XP magnetic beads (Beckman Coulter, 

USA) to each sample and mix by pipetting 

 Incubate at room temperature 5 minutes 
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 Place the samples onto a magnetic stand and wait until the solution 

becomes clear 

 Transfer the supernatant into a new tube and add 60 µl of XP magnetic 

beads (Beckman Coulter, USA). Mix by pipetting. 

 Place the samples onto a magnetic stand and wait until the solution 

becomes clear 

 Discard the supernatant and wash 150 µl 70% v/v ethanol. Remove and 

discard the supernatant. 

 Repeat the previous step 

 Remove all the ethanol, then remove the sample from the magnetic 

stand and add 50 µl of low TE (Transcriptome Human Gene Expression 

Kit, Life Technologies, Paisley UK). 

 Place the sample on the magnetic stand again and transfer 45 µl of the 

supernatant to a new tube. 

 Analyse 1 µl of the amplified library on the Agilent Bioanalyser 

 



143 
 

 

Figure 2.12. Library analysis through Bioanalyser for RNA sequencing.  

 

Through the bioanalyser the quality of the library was evaluated. The fragments 

of the library should be around 200 bp, whereas the dimers, not detected by the 

sequencer, are between 100 and 200 bp and indicate the purity of the library. If 

the DNA peak is too low and the dimers too high, the RNA-sequencing could 

be unsuccessful. 

2.20.5 RNA sequencing 

The cDNA library was amplified through an emulsion PCR by using Ion Sphere 

Particles (IPSs). The Ion OneTouch2 system and the PI template OT2 200 kit 

(Life Technologies, Paisley, UK) were used and the Template positive IPS’s were 

recovered. The template positive IPS’s were processed using the Ion Proton 200 

sequencing kit and loaded onto a P1 chip, that was then sequenced on an Ion 

Proton (Life Technologies, Paisley, UK). Samples were aligned to the human 

genome (version Hg19) and normalisation was carried out via the RPKM 
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normalisation method (Mortazavi et al., 2008) along with a 1-way ANOVA test 

for differential gene expression (n=2).  Data were expressed in reads per million 

(RPM) and the differences between the control and testing samples calculated 

as log2 (RPM sample-RPM control) on an Excel spreadsheet. 

 

2.21 In vitro cell functional assays 

2.21.1 Proliferation assay 

Cell proliferation assays monitor actively dividing cells, expressed either as the 

actual number of active cells or the ratio of proliferating to non-proliferating 

cells in culture. In this study cell proliferation in response to treatment with 

miRNA mimics was measured using 0.5% Crystal Violet (Sigma, Aldrich, 

Dorset, UK) which stains nuclei a deep purple colour.  

Cells (5×103cells/well) cells were seeded into 96-well plates in triplicate in 100µl 

growth medium. Three identical plates were set up in total. Before transfection 

(time 0) and following 24 and 48 hours of incubation at 37˚C, the cells were fixed 

by using 100µl formalin for 15 minutes, before being stained with 100 µl 0.5% 

Crystal Violet for further 15 minutes. The dye was then washed off with water 

and the plates left to dry overnight. 200 µl of acetic acid was added into each 

well to solubilise the crystal violet and the absorbance at 540 nm measured using 

a spectrophotometer (BIO-TEK, Elx 800, UK). 
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2.21.2 Transwell migration and invasion assay  

Cell migration and invasion occur in many physiologic processes, such as 

embryonic development and wound healing. However, there are also some 

pathological conditions, like cancer, in which malignant cells are able to 

translocate from their site of origin to different tissues to generate a secondary 

tumour, a process that is normally called “metastasis”. 

 In experimental cell biology the terms “migration” and “invasion” are used to 

indicate different processes. Migration refers to the directed movement of cells 

on a substrate such as basal membranes, ECM fibres or plastic plates. Therefore, 

migration is occurring on 2D surfaces without any obstructive fibre network. 

Invasion is defined as cell movement through a 3D matrix, which is accompanied 

by a restructuring of the 3D environment. To acquire the ability to pass through 

the matrix, a cell must modify its shape and interact with the extracellular matrix, 

which provides the cell attachment substrate and at the same time represents a 

barrier toward the moving cell body. Thus, the term “invasion” describes the 

restructuring or destructive movement of cells through a 3D barrier, whereas 

“3D migration” is used to indicate non-destructive, non-proteolytic movement 

in a 3D tissues or matrix. The ability to migrate is a prerequisite to invade; a cell 

cannot invade without migration but can move without invasion (Kramer et al., 

2013). There are two methods to detect and quantify the migrated cells. The first 

method is used to number directly the cells that have passed through the 

membrane by staining with a cytological dye such as crystal violet. In the second 

method, the migrated cells are stained fluorescently, removed from the 

membrane by dissociation using cell dissociation agents and quantified using a 
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fluorescent reader. In this study, the migrated cells were quantified with the 

second method, using a Calcein AM solution to measure the fluorescence. 

The Transwell Migration Assay was originally introduced by Boyden to analyze 

the chemotactic responses of leukocytes (Boyden, 1962). This system was 

modified and improved and now plastic inserts for multi-well plates are 

commercially available for both the evaluation of the migration and invasion 

properties of many different cell types. A porous membrane chamber is placed 

on a well of the multi-well plates and create a two-chamber system separated by 

the cell-permeable membrane as shown in Figure 2.13.     

 

Figure 2.13. Illustration of the transwell migration assay.  

 

The membranes commercially available have pore diameters between 3 and 12 

µm. and the size of the pores depends on the cells to be analysed. Pore diameter 

must be much smaller than the diameter of cells in order to measure the cell that 

actively “squeeze” through the pores in the membrane, as opposed to just falling 

through the pores. In this study, the bottom membrane of upper chamber was 

an 8µm pore polycarbonate membrane (Costar, Corning, NY, USA). Cells were 
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seeded in medium in the upper chamber and could migrate in vertical direction 

through the pores of the membrane into the lower compartment, which 

contained medium alone or medium containing an attractant.  

The transwell invasion assay is very similar to the transwell migration assay, 

however it requires that cells migrate through an extracellular matrix (ECM) or 

basement membrane extract (BME). In this study, the porous filter was overlaid 

by a thin layer of BME, before seeding the cells into the top chamber as 

illustrated in Figure 2.13. The commercial name of the BME used is Matrigel, a 

reconstituted basement membrane preparation that is extracted from the 

Engelbreth-Holm-Swarm (EHS) mouse sarcoma, a tumour rich in extracellular 

matrix proteins. This material contains approximately 60% laminin, 30% 

collagen IV, and 8% entactin. Entactin is a bridging molecule that interacts with 

laminin and collagen IV, and contributes to the structural organization of these 

extracellular matrix molecules. Matrigel matrix also contains heparan sulphate 

proteoglycan (perlecan), TGF-β, epidermal growth factor, insulin-like growth 

factor, fibroblast growth factor, tissue plasminogen activator, and other growth 

factors which occur naturally in the EHS tumor. There are also residual matrix 

metalloproteinases which occlude the membrane pores, blocking non-invasive 

cells from migrating through. By contrast, invasive cells can degrade the matrix 

and move through the Matrigel layer and adhere to the bottom of the filter 

(https://www.corning.com/media/worldwide/cls/documents/CLS-DL-CC-

026%20DL.pdf). 
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 Protocol: 

 In the invasion assay, Matrigel was thawed overnight on ice in a 2°C to 

6°C refrigerator. 8µm polycarbonate pore size ThinCert™ 24-well plate 

inserts (Grenier, Bio-One GmbH, Austria) were coated with 50µl serum-

free medium containing 10% Matrigel (BD Biosciences, NJ USA) and 

incubated one hour at 37°C. The rest of the invasion assay was 

undertaken in the same way as the migration assay above. 

  Cells were detached using HYQTase Cell Detachment Solution 

(Hyclone, Logan, UT, USA) 24 hours after being transfected with 

miRNA mimics and resuspended in serum-free medium, at a 

concentration of 1x105 cells/ml.   

 650µl of medium containing 10% FBS (chemoattractant) was added to 

receiver wells in triplicate and 650µl of serum-free medium (no 

chemoattractant) to the receiver control transwell. 

 The 8µm inserts were placed in each of the receiver wells and 500µl of 

cell suspension was added to each transwell insert. 

 Following twenty-four hours of incubation, the transwells inserts were 

removed and washed gently with PBS and then incubated for a further 

hour in 350µl Cell Dissociation Solution (CDS; Sigma Aldrich, Dorset, 

UK)/Calcein AM (eBioscience, Hatfield, UK) at a ratio of 1.2µl Calcein 

AM in 1 ml CDS.  This detaches the cells from the lower surface of the 

membrane insert and labels them fluorescently with calcein. 

 The cell suspension was then aliquoted into a black 96-well plate and 

relative fluorescence was measured (excitation 485nm/emission 520nm) 

using the Glomax Multi Detection System. 
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 To analyse the total directed cell movement, the wells containing no 

chemoattractant was subtracted from the test wells. 

 

2.21.3 Tubule formation assay  

The tubule formation is one of the most widely used in vitro assays to study the 

ability of the endothelial cells to form vessels. Endothelial cells are plated with 

the appropriate extracellular matrix support to form capillary-like structures. 

This assay allows the ability of various compounds to promote or inhibit tubule 

formation to be determined.  Despite in vivo assays mimicking better the 

physiological state, the in vitro assays have some advantages compared to their in 

vivo counterpart. In vitro assays allow measurement of the direct effect of a 

compound on endothelial cell function, endothelial cells being the key cell type 

involved in angiogenesis. Whereas in vivo models involve multiple cell types and 

cellular/molecular pathways. Moreover, angiogenesis in vitro is easier to quantify 

than an in vivo model (Goodwin, 2007). Overall the tubule formation assay 

represents the best way so far to understand the specific angiogenic and 

antiangiogenic activities of various compounds.  

One of the most well-established assays to model the formation of three-

dimensional vessels is the tube-formation assay using Matrigel (BD Biosciences, 

NJ USA). Matrigel is effective for the attachment and differentiation of both 

normal and transformed anchorage-dependent epithelioid and other cell types. 

In this study, the ability of HUVECs to form new vessels in response to media 

from cells treated with miRNA mimics was monitored. HUVECs were 

suspended at 1.4x105 cells/ml in EBM-2 complete medium (containing EGM-2 
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growth supplements) and 100 μl of cells were added to each well of a 96-well 

plate coated with 50 µl of 50% Matrigel prepared in serum-free medium. 100μl 

of 60% diluted tumour condition medium from cells treated with miRNA 

mimics (or matching medium only control) was added to each well and the 

tubule formation was monitored for 6 hours at 37 °C, 5% CO2, in time lapse 

using the EVOS FL Auto Imaging System (Thermo Fisher Scientific, Waltham, 

MA USA). To evaluate the ability of HUVECs to form vessels, two parameters 

were evaluated: the tubule length and the total number of closed meshes at 5 

hours after monitoring. The tubule length was quantified in pixels using ImageJ, 

whereas the closed meshes were counted manually 

(http://image.bio.methods.free.fr/ImageJ/?Angiogenesis-Analyzer-for-

ImageJ). 

2.21.4 Adhesion assay 

Cell adhesion refers to the binding of a cell to the extracellular matrix (ECM) to 

other cells, or to surfaces. Cell adhesion is important to evaluate the growth and 

survival of the cells and their communication with other cells. The adhesion 

assay is often used to study the metastatic ability of cancer cells that usually 

enhance their adhesion ability to facilitate their movement. In addition, it can be 

used to investigate the effect of some treatments on cell behaviour. In this study, 

we focused on laminin and collagen IV, two of the main components of the 

ECM. 
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Protocol: 

 Collagen IV or laminin at a concentration of 10 µg/well were added to 

each well of a 96-well plate and incubated at 55 °C for 2-3 hours.  

 The wells were rehydrated using serum-free DMEM and incubated at 

room temperature for 40 minutes. 

 The medium was removed and replaced with 100 μl of miRNA mimic 

transfected cells in 10% FBS DMEM at a concentration of 1x105 

cells/ml. The cells were incubated at 37 °C for 40 minutes. 

 The cells were washed with PBS to remove any non-adherent cells and 

adherent cells were fixed using 200 μl of 4% Formalin in each well and 

incubated at room temperature for 10 minutes. 

 The fixed cells were then stained using 100 μl of 0.5% Crystal Violet in 

each well and incubated again at room temperature for 10 minutes. 

 The cells were washed twice using distilled water and allowed to air dry 

overnight. 

 The absorbance was then measured using the Glomax Multi Detection 

System (Promega, Wisconsin, USA) . 

 

2.22 Seahorse XFe assays 

Cellular metabolism is the process of substrate uptake (oxygen, glucose etc) and 

energy conversion through a series of enzymatically controlled 

oxidation/reduction reactions. These reactions occur through a series of 

intracellular biochemical processes (glycolysis, Kreb Cycle, electron transport 

chain, and oxidative phosphorylation) resulting in the production of ATP, the 
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release of heat, lactate and CO2 into the extracellular microenvironment (Ferrick 

et al., 2008). The Seahorse XFe analyser simultaneously measures the two major 

energy pathway of the cells, mitochondrial respiration and glycolysis. This is 

measured in live cells in real time by using the extracellular flux (XF), which is 

the change in oxygen and proton concentrations in the media surrounding the 

cells. Glycolysis is measured by using the extracellular acidification rate (ECAR) 

and mitochondrial respiration by using the oxygen consumption rate (OCR) of 

cells.  

 

Figure 2.14. Schematic representation of the cellular respiration in animals. 

Glucose is transported into the cells and converted in pyruvate and other intermediates 

through a process named glycolysis. In the presence of oxygen, pyruvate enters into the 

mitochondrion and is converted in ATP, water and carbon dioxide by the citric acid 

cycle (TCA), also called Krebs cycle. In the absence of oxygen, pyruvate is converted 

into lactate and ATP 
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In this study, the Seahorse XFe96 Analyzer (Agilent Technologies, CA, USA) 

and XF96 cell culture microplates (Seahorse Bioscience, CA, USA) were used. 

Cells were seeded into the wells of an XF96 cell culture microplate and a 

bicarbonate-free medium (Seahorse Bioscience, CA, USA), was used during the 

assay. Up to four drugs may be added to the assay calibration cartridge for 

automated injection during the assay. Next, the microplate containing cells was 

inserted into the instrument and data collected in real time. In this study the Cell 

Mito Stress and Glycolysis Stress Test were used to measure the oxygen 

consumption rate (OCR) and extracellular acidification rate (ECAR) 

respectively.  

The Seahorse XF Cell Mito Stress Test measures the key parameters of 

mitochondrial function: basal respiration, ATP production, proton leak, 

maximal respiration and spare respiratory capacity (Figure 2.15) by using 

modulators of respiration that target components of the electron transport chain 

(ETC) (Figure 2.15). Three types of compounds were serially injected into the 

wells of the XF96 cell culture microplate as follows: 

 Oligomycin: It inhibits ATP synthase (complex V) and the decrease in 

OCR following this injection correlates with the mitochondrial 

respiration associated with cellular ATP production (Table 20). Before 

this injection cells have a basal respiration, which is the oxygen 

consumption used to meet cellular ATP demand and resulting from 

mitochondrial proton leak. The proton leak refers to the remaining basal 

respiration not coupled to ATP production. Proton leak may be due to 

mitochondrial damage or can be used as a mechanism to regulate the 

mitochondrial ATP production. 
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 Carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP): An 

uncoupling agent that collapses the proton gradient and disrupts the 

mitochondrial membrane potential. After the injection of FCCP the 

electron flow through the ETC is uninhibited and oxygen is maximally 

used by the complex IV. The OCR measured corresponds to the spare 

respiratory capacity, which is the difference between the maximal and 

basal respiration (Table 20). The spare respiratory capacity measures the 

ability of the cells to respond to increased energy demand. 

 Rotenone and antimycin A mixture: Inhibitors of complex I and 

complex III respectively. These are able to shut down the mitochondrial 

respiration and allow calculation of the non-mitochondrial respiration 

driven by processes outside the mitochondria (Table 2.15). 

 

Figure 2.15. Example of a Seahorse XF Cell Mito Stress profile following the 

injections with oligomycin, FCCP and antimycin A/rotenone. From 

(http://www.agilent.com/en-us/support/cell-analysis-(seahorse)/seahorse-xf-

software) 
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Figure 2.16. Effects of the injections on aerobic respiration. The compounds 

injected in the Cell Mito Stress assay inhibit different components of the electron 

transport chain. Oligomycin and the mix of rotenone/antimycin A decrease the OCR, 

whereas FCCP increases the OCR. From (http://www.agilent.com/en-

us/support/cell-analysis-(seahorse)/seahorse-xf-software) 

The parameter calculations performed in the XF Cell Mito Stress Test are 

described in Table 2.15 (http://www.agilent.com/en-us/support/cell-analysis-

(seahorse)/seahorse-xf-software). 
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Table 2.15. Cell Mito Stress Test parameter equations. 

Parameter value Equation 

Non-mitochondrial 

Respiration 

Minimum rate measurement after 

Rotenone/antimycin A injection 

Basal Respiration (Last rate measurement before first injection)-(Non-

mitochondrial respiration) 

Maximal respiration (Maximum rate measurement after FCCP injection)- 

(Non-mitochondrial respiration) 

H+ Proton Leak (Minimum rate measurement after Oligomycin 

injection)-( Non-mitochondrial respiration) 

ATP Production (Last rate measurement after Oligomycin injection)- 

(Minimum rate measurement after Oligomycin 

injection ) 

Spare Respiratory 

Capacity 

(Maximal Respiration)-(Basal Respiration) 

Spare Respiratory 

Capacity as a % 

(Maximal Respiration)-(Basal Respiration) x 100 

Acute Response (Last rate measurement before Oligomycin 

injection)-(Last rate measurement before acute 

injection ) 

Coupling efficiency (ATP Production Rate)/(Basal Respiration Rate) x 

100 
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The Seahorse XF Cell Glycolysis Stress Test reports three key parameters of 

glycolytic function: glycolysis, glycolytic capacity and glycolytic reserve (Figure 

2.17). Glucose in cells is converted into pyruvate (glycolysis) and then into 

lactate, thus resulting in a net production of protons into the extracellular space. 

The extrusion of protons into the extracellular space results in the acidification 

of the environment. The cells in the XF96 cell culture microplate are first 

incubated in a medium deprived of glucose or pyruvate and ECAR is measured 

after injections with glucose, oligomycin and 2-deoxy-glucose (2-DG) (Figure 

2.17). 

 The first injection is a saturating concentration of glucose that cells 

catabolise through the glycolytic pathway to pyruvate, producing ATP, 

NADH, water and protons. This glucose-induced response is the rate of 

glycolysis under basal conditions (Table 2.16). ECAR prior glucose 

injection is referred to as non-glycolytic acidification caused by processes 

different from glycolysis. 

 The second injection is the oligomycin, which inhibits the mitochondrial 

ATP production and shifts the energy production to glycolysis, revealing 

the cellular maximum glycolytic capacity (Table 2.16), when the 

maximum ECAR rate is reached because of the shutting down of the 

oxidative phosphorylation. 

 The third injection is 2-DG, a glucose analogue, which inhibits glycolysis 

through a competitive binding to glucose hexokinase (Figure 2.17), the 

first enzyme involved in the glycolytic pathway. The difference between 

the Glycolytic capacity and Glycolytic rate is the Glycolytic reserve 

(Table 2.16). 
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Figure 2.17. Seahorse XF Glycolysis Stress profile following the injections with 

glucose, oligomycin and 2-DG. From (http://www.agilent.com/en-us/support/cell-

analysis-(seahorse)/seahorse-xf-software). 

 

 

Figure 2.18.  Glycolysis. The compounds injected in the Glycolysis Stress assay inhibit 

key components of the glycolysis as described above. Glucose and oligomycin increase 

the ECAR, whereas 2-DG inhibits the glycolytic process and, consequently, the 

glycolytic pathway (http://www.agilent.com/en-us/support/cell-analysis-

(seahorse)/seahorse-xf-software). 
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The parameter calculations performed in the XF Glycolysis Stress Test are 

described in Table 2.16 (http://www.agilent.com/en-us/support/cell-analysis-

(seahorse)/seahorse-xf-software). 

Table 2.16.  Glycolysis Stress Test parameter equations. 

Parameter value Equation 

Glycolysis (Maximum rate measurement before Olygomicin 

injection)-( Last rate measurement before Glucose 

injection) 

Glycolytic 

capacity 

(Maximum rate measurement after Olygomicin 

injection)-(Last rate measurement before Glucose 

injection) 

Glycolytic Reserve (Glycolytic capacity)-( Glycolysis) 

Glycolytic Reserve 

as  a % 

(Glycolytic capacity)/( Glycolysis) x100 

Non-glycolytic 

Acidification 

Last rate measurement prior to Glucose injection 

Acute response (Last rate measurement before Glucose injection)-

( Last rate measurement before acute injection) 

 

Each parameter value described in Cell Mito and Glycolysis Stress assays 

represents the average of individual well calculations for each assay group. Error 

bars are calculated based on the individual calculations for each parameter. 

80µl of BEAS-2B, A549 and SK-MES-1 cells were seeded into each well of the 

XF96 cell culture microplates at the following densities: 60,000 cells/wells for 
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BEAS-2B and 25,000 cells/well for A549 and SK-MES-1 and then left overnight 

at 37°C, 5% CO2.  The day after the cells were treated using a negative control, 

miR-140-3p and miR-140-5p mimics as described in Section 2.17. The Cell Mito 

and Glycolysis Stress assays were performed simultaneously on the same 

microplate for all the cell lines after 24 and 48 hours of transfection with mimics.  

Cell Mito Stress assay protocol: 

 Cell Mito Stress medium was made using XF Modified DMEM 

(Seahorse Bioscience, CA, USA). 1 mM Pyruvate (Sigma Aldrich, 

Dorset, UK), 2 mM Glutamine (Sigma Aldrich, Dorset, UK) and 10 mM 

Glucose (Sigma Aldrich, Dorset, UK) were added and pH adjusted to 

7.4 using 0.1 N NaOH. 

 Cells were washed twice with filtered Cell Mito Stress filtered medium 

and 150 µl/well was finally left and then incubated 1 hour at 37°C in a 

CO2 free incubator. 

 Meanwhile, the injections for the calibration plates were prepared as 

follows: oligomycin, FCCP and rotenone/antimycin A were diluted in 

Cell Mito Stress filtered medium at a final concentration of 100 µM, 100 

µM and 50 µM respectively. 25 µl/well was added into the assigned wells 

of the calibration plate. 

 The microplate was placed into the Seahorse XFe96 Analyser. 

Glycolysis Stress assay protocol: 

 Glycolysis Stress medium was made using XF Base Medium 

(Seahorse Bioscience, CA, USA). 1 mM Glutamine (Sigma Aldrich, 

Dorset, UK) were added and pH adjusted to 7.4 using 0.1 N NaOH. 
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 Cells were washed twice with filtered Glycolysis Stress medium. The 

cells were incubated 1 hour at 37°C in a CO2 free incubator with 

150 µl/well glycolysis stress medium. 

 In the meantime, the injections for the calibration plates were 

prepared as follows: glucose, oligomycin and 2-DG were prepared 

in filtered Glycolysis Stress medium at a final concentration of 5 µM. 

25 µl/well was added into the assigned wells of the calibration plate. 

 The microplate was placed into the Seahorse XFe96 Analyser. 

There are four factors which influence the mitochondrial energetic 

measurements: cell number, cell mass, mitochondria mass or number and 

mitochondrial complex activity. In this study, the protein concentration was 

used to normalise XF data. After each assay, the cells were washed, lysed and 

proteins were quantified for normalisation. The Seahorse XF Mito Stress and 

Glycolysis Test Report Generator (http://www.agilent.com/en-

us/support/cell-analysis-(seahorse)/seahorse-xf-software) automatically 

calculates the parameters for each test. Data were then exported to Excel for 

further analysis.  

 

2.23 Enzyme Linked Immunosorbent Assay (ELISA) 

ELISA is widely used in biomedical research for the detection and quantification 

of specific antigens or antibodies in a given sample. This technique uses 

antibodies (the most common ones are horseradish peroxidase-HRP- or alkaline 

phosphatase-AP- conjugated) and an enzyme-mediated colour change to detect 

the presence of either antigens (proteins, peptides, hormones, etc) or antibodies. 
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The antigen in fluid phase is usually immobilized to the surface of 96- or 384-

well plates and the antigen is allowed to bind to a specific antibody, which is 

itself subsequently detected by a secondary, enzyme-coupled antibody. In the 

presence of its antigen, the chromogenic substrate for the enzyme produces a 

visible colour change or fluorescence. The change of colour is normally 

quantified using a colorimetric reading. The choice of substrate depends upon 

the required assay sensitivity and the instrumentation available for signal-

detection (spectrophotometer, fluorometer or luminometer). Having the antigen 

in fluid phase immobilized to the plate surface makes it easy to separate bound 

from non-bound material and this ability to wash away non-specifically bound 

materials makes the ELISA a powerful tool for measuring specific analytes in a 

solution, even if their concentration is very low. The advantage of ELISA 

compared to other techniques, such as immunohistochemistry and Western 

Blot, is the quantitative measure of very low concentrated intracellular and 

extracellular materials. 

ELISA can be performed with different modifications to the basic procedure 

called “indirect ELISA”, “sandwich ELISA” and “competitive ELISA”. 

In the indirect ELISA the protein sample is bound through adsorption, directly 

(and non-specifically) to the well. Then a solution such as bovine serum albumin 

is used to block any areas of the wells not coated with the antigen. The primary 

antibody, specific for the antigen is added first, followed by an enzyme-

conjugated secondary antibody. Finally, a substrate for the enzyme is introduced 

to quantify the primary antibody through a colour change which is directly 

proportional to the concentration of the primary antibody. The major 

disadvantage of indirect ELISA is that the method of antigen immobilization is 
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not specific because when serum is used, all proteins in the sample may adhere 

to the surface of the well. 

 

Figure 2.19. Illustration of the indirect ELISA. From 

(http://www.rajaha.com/elisa-test-what-principle-types/). 

In the sandwich ELISA, a “capture” antibody is bound to the well and when the 

sample is added, only the proteins specifically recognised by the antibody are 

“captured”. After a solution such as BSA is used to block any areas of the wells 

not coated with the antigen, a second “detection” antibody is used to detect the 

protein. Finally, a third enzyme-labelled antibody is added to detect the 

“detection” antibody. Finally, a substrate for the enzyme is introduced to 

quantify the primary antibody through a colour change which is directly 

proportional to the concentration of the primary antibody. One advantage of 

using a purified specific antibody to capture the antigen is that there is no need 

to purify the antigen from a mixture of other antigens. 
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Figure 2.20.  Illustration of the sandwich ELISA. From 

(http://www.rajaha.com/elisa-test-what-principle-types/). 

In the competitive ELISA the primary antibody is incubated with the sample, 

thus forming a complex. The complex is then adsorbed to the wells and then a 

secondary antibody is added. The secondary antibody recognises the primary 

antibody only if it is not bound to the antigen. In this case the secondary 

antibody “competes” with the antigen. Finally, a substrate for the enzyme is 

introduced to quantify the primary antibody through a colour change. The 

absence of colour indicates the presence of the antigen in the sample. The main 

advantage of the competitive ELISA is its high sensitivity to compositional 

differences in complex antigen mixtures, even when the specific detecting 

antibody is present in relatively small amounts. 

In this study, the human vascular endothelial growth factor (VEGF-A) in the 

conditioned medium of cells transfected with negative, miR-140-3p and miR-

140-5p was quantified by using 96-well plates pre-coated with VEGF-A primary 

antibody (i.e. sandwich ELISA). All the reagents and plates were purchased from 

Aviva System Biology, San Diego, USA.  
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Protocol: 

 The medium from cells transfected with negative, miR-140-3p and miR-

140-5p mimics was centrifuged 15 minutes at 1000 xg to remove any cell 

debris and the supernatant was collected. 

 100 µl of the media or serial-diluted standard VEGF curve (1:2 dilution) 

samples were added to each well of the 96 well plate and incubated 90 

minutes at 37 °C. 

  The medium was aspirated and washed 4 times with the Wash Buffer 

provided with the kit. 

 100 µl of Biotin-Conjugate anti-human VEGF antibody solution was 

added into each well and incubated 60 minutes at 37 °C. 

 The solution was aspirated and washed 4 times with the Wash Buffer 

provided with the kit. 

 100 µl of the Streptavidin-HRP solution was added into each well and 

incubated 30 minutes at 37 °C. 

 The solution was aspirated and washed 4 times with the Wash Buffer 

provided with the kit. 

 100 µl of the substrate solution was added into each well and incubated 

10-20 minutes at 37 °C in the dark. 

 100 µl of Stop solution was added into each well and the plate was read 

at 450nm within 30 minutes. 
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2.24 Statistical analysis 

Pearson-D’Agostino test was used to verify if the data were normally distributed. 

For normal distributions, the parametric Student’s t-test was used to compare 

two sets of data. Mann-Whitney for non-matched data and Wilcoxon Signed-

Rank Tests for matched samples were used as non-parametric methods to 

compare two sets of data that do not follow a normal distribution.  When more 

than two sets of data were compared, On-Way Analysis of Variance ANOVA 

was used for normal distributions and Kruskal-Wallis for non-normal 

distributions. Graphs plotting and statistical analysis were performed using 

GraphPad Prism 6.04 software (GraphPad Software, San Diego, CA, USA). 

Statistical significance was indicated with the following nomenclature: *p˂0.05, 

**p˂0.01, ***p˂0.001. 
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3.1 Introduction 

Several studies showed that miR-140-3p and 140-5p are both downregulated in 

different cancer cell lines and tissues compared to their normal counterparts, 

including lung, thus suggesting their role as tumour suppressors (Yuan et al., 

2013, Dong et al., 2016, Li et al., 2014b, Li et al., 2014a). The level of miRNAs 

can be modified in vitro and in vivo by using miRNA mimics or inhibitors. MiRNA 

mimics are synthetic small double-stranded molecules that mimic the 

endogenous miRNA in cells, whereas miRNA inhibitors are double-stranded 

RNA molecules that bind and inhibit their corresponding endogenous miRNA.  

In the classic model of miRNA biogenesis, the duplex of mature miRNAs is 

produced by Dicer processing of the hairpin precursor. Then, a following strand 

selection step determines which mature miRNA acts as a guide for the mature 

miRNA-mediated silencing complex (miRISC). The strand selection process is 

finely regulated and may vary among tissues and between normal and malignant 

cells (Griffiths‐Jones et al., 2011, Ha and Kim, 2014a, Meijer et al., 2014). 

Recent studies have introduced innovative concepts and revealed that both sister 

mature miRNAs may accumulate in some tissues and cell types. In this scenario, 

the strand selection might be tissue-specific but not deterministic, thus a given 

strand could act as a guide strand in a specific cell type and but a passenger in 

another one (Li et al., 2012, Hu et al., 2009). In this respect, different biological 

contexts most likely share complex mechanisms of strand selection regulation, 

leading to either alternative expression of a single mature form or to concurrent 

expression of both mature sister miRNA (Salvatore et al., 2016). 
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Therefore, in this chapter the differential expression of miR-140-3p and 140-5p 

was examined in two NSCLC cell lines, A549 and SK-MES-1, and in the normal 

lung cell line BEAS-2B. A549 cells originate from a localised carcinoma, whereas 

the SK-MES-1 from a lung metastasis. BEAS-2B derives from normal human 

bronchial epithelium transfected with the 12-SV40 adenovirus. The efficiency of 

transfection of miR-140-3p and 140-5p mimics into the cell lines have been 

compared and evaluated. The time course of miR-140-3p and 140-5p mimic 

treatment has also been investigated, considering that it is a transient transfection 

and the life time of miRNA mimics in cells is limited. Finally, the ratio of miR-

140-3p / miR140-5p has been evaluated to check whether one of the forms is 

highly expressed in one, both or neither if the strand selection process is 

different between normal and cancer cells.  
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3.2 Materials and methods 

Cell lines 

BEAS-2B, A549 and SK-MES-1 NSCLC cell lines were cultured as described in 

Section 2.1. 

Collection of human lung tissues 

All the tissues from NSCLC patients were collected immediately after surgery by 

Beijing Friendship Hospital, Capital Medical University, Beijing, China and 

stored at -80°C until use, with approval from the Health Authority local research 

ethics committee. In Beijing, RNA was extracted from a piece of frozen tissue 

using the TRI-reagent protocol as described in Section 2.8. The cohort includes 

19 paired normal and tumour lung tissues together with 49 unpaired normal and 

tumour tissues. All the specimens used in the current study were verified by a 

consultant pathologist. Tissues were divided in to two categories, depending on 

the availability. Paired tissues refer to tissues from the same patients, in which 

the tumour part and the adjacent normal counterpart have been resected 

surgically, whereas the unpaired are tissues from different patients. The patient 

clinic-pathological information is described in Section 2.2. 

Transient miRNA transfections 

For each cell line, cells were seeded at a concentration 1.2 x 106 cells/ml in a 

6’well plate their appropriate media and allowed to adhere overnight at 37 ˚C. 

Cells were then transfected as described in Section 2.17. 
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RNA isolation and RT-PCR 

RNA isolation, DNA isolation and RT-PCR were performed on the cell lines 

using the TRI-reagent protocol as previously described in Sections 2.8.   

DNA sequencing 

Samples were sent to the Central Biotechnology Services (CBS), Heath Park, 

Cardiff University, to be sequenced. The pre-miR-140 genomic sequence of the 

lung cancer cells used in this study was compared to the wild-type sequence on 

chromosome 16q22.1 by using the Basic Local Alignment Search Tool (BLAST, 

National Centre for Biotechnology Information) online. 

Quantitative PCR (qPCR) 

cDNA was produced from RNA in lung cell lines and human tissues using 

reverse transcription as detailed in Section 2.10. qPCR was undertaken with the 

primers for miR-140-3p, miR-140-5p and U6 (listed in Table 2.4). The analysis 

was performed using Ct values obtained from these processes were analysed 

using 2-(ΔΔCT) normalisation to U6 for cell lines and U48 for tissues. Each qPCR 

sample was analysed in triplicate, with the experiment being independently set 

up three times.  

Statistical analysis 

Statistical analysis was performed as described in Section 2.24. 
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3.3 Results 

3.3.1 MiR-140-3p and 140-5p are downregulated in NSCLC tissues and cell 

lines 

The expression of miR-140-3p and 140-5p were assessed in the two NSCLC cell 

lines A549 and SK-MES-1 and in the immortalised normal lung epithelial cell 

line BEAS-2B. Both miR-140-3p and 140-5p have been found to be significantly 

downregulated in cancer cell lines, compared to the normal one (in A549 

p=0.0134 and p=0.0018 for miR-140-3p and 140-5p respectively and in SK-

MES1 p=0.004 and p=0.0016 for miR-140-3p and 140-5p, respectively) (Figure 

3.1a). In Figure 3.1b the expressions of the two forms of miR-140 (-3p and -5p) 

have been compared to try to understand whether one of the strands could be 

preferentially loaded into the RISC complex. To better address this, the ratio 

(miR-140-3p/miR-140-5p) between the two forms of miR-140 has been 

calculated. The comparison between the two forms of miR-140 precursor in 

each cell line (Figure 3.1b) shows that there is no difference in the normal cell 

line BEAS-2B, as the ratio between the relative expression levels of two forms 

(miR-140-3p/miR-140-5p) is 1.47. On the contrary, the amount of the two 

forms differs in cancer cells, with a ratio miR-140-3p/miR-140-5p of 4.2 and 3.2 

in A549 and SK-MES-1, respectively, with the miR-140-3p form being 

significantly higher in both cancer cell lines.
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Figure 3.1 MiR-140-3p and 140-5p expression in lung cell lines. MiR-140-3p and miR-140-5p expression in BEAS-2B, A549 and SK-MES-1 

lung cell lines was evaluated by q RT-PCR. a) Compared to BEAS-2B, both miR-140-3p (left) and miR-140-5p (right) are downregulated. Data 

are presented as mean + SEM, three individual experiments undertaken in triplicate, ANOVA-test has been used to assess significance 

with*p<0.05, **p<0.01 b) The two forms of miR-140 in each cell line show  no strand selection in BEAS-2B (left) and a preferential maturation 

of miR-140-3p in  A549 (middle) and SK-MES-1 (right).  Data are presented as mean + SEM, three individual experiments undertaken in triplicate, 

t-test has been used to assess significance with **p<0.01. 
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The results obtained in the cell lines have also been confirmed in paired human 

lung cancer clinical samples, where a lower expression of both miR-140-3p 

(p=0.026) and 140-5p (p=0.0428) was found  in the cancer cells compared to 

the adjacent normal counterpart tissue (Figure 3.2a).  

In non-paired tissues the expression of miR-140-3p was also significantly 

downregulated in cancer samples, reflecting the result obtained in cell lines and 

paired tissues (p=0.0014) (Figure 3.2b). No significant difference was detected 

in the unpaired samples when miR-140-5p was analysed. 
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Figure 3.2 MiR-140-3p and 140-5p expression in lung tissues. MiR-140-3p and 140-

5p expression in lung tissues was evaluated by miR-specific qRT-PCR. a) In paired 

tissues (n=19), both miR-140-3p (left) and miR-140-5p (right) was significantly 

downregulated in lung cancer tissues compared to their normal adjacent counterpart. 

Data are presented as mean + SEM, three individual experiments undertaken in 

triplicate. Wilcoxon-Rank test has been used to assess significance with *p<0.05. b) In 

non-paired tissues (n=49), miR-140-3p (left) was significantly downregulated in lung 

cancer tissues compared to their normal non-paired counterpart. No significant 

difference was observed in the unpaired group when analysing miR-140-5p. Data are 

presented as mean + SEM, three individual experiments undertaken in triplicate. T-test 

test has been used to assess significance with **p<0.01.  
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3.3.2 The analysis of the pre-miR-140 sequence shows two DNA variants 

in SK-MES-1 cell line 

In this study, both forms of miR-140 precursor have been investigated, as other 

studies showed the importance of the strand selection on cancer progression. I 

found that the sequence of the miR-140 precursor shows variants within both 

the mature 3p and 5p sequences in SK-MES-1 cells. An A converted to a T in 

5p and 2 changes in 3p A to C and A to T. The A to T change from the wild 

type was also found in the BEAS-2B and A549 cells 3p (Figure 3.3). 
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Figure 3.3 Pre-miR- 140 genomic sequencing. The sequences encoding the pre-miR-140 from BEAS-2B, A549 and SK-MES-1 cell lines were 

isolated, sequenced and finally compared with the wild type sequence. The first row of each alignment includes the sequencing data from the cell 

lines, whereas the second one represents the wild type sequence, as indicated on the miRBase website (http://www.mirbase.org/). The red letters 

indicate the regions encoding miR-140-3p and miR-140-5p. The variants are underlined in yellow.
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3.3.3 MiR-140-3p and 140-5p mimics increase the levels of the two 

miRNAs in NSCLC cells 

MiR-140-3p and 140-5p mimics were found to increase the levels of the 

respective miRNAs into NSCLC cell lines A549 and SK-MES-1 (Figures 3.4 and 

3.5).  

Both cell lines were transfected with miR-140-3p and 5p mimics as described in 

section 2.17. MiR-140-3p and 140-5p mRNA levels were measured by qPCR 

and were shown to significantly increase at the two time points considered (24 

and 48 hours) in the mimic treatment cells compared to the negative control. 

However, in both SKMES and A549 cells, MiR-140-3p and 140-5p levels were 

significantly lower after 48h compared to 24h mimic treatment (Figure 3.4). The 

fold change of miR-140-3p levels in A549 cells after 24 and 48 hours is 26,508 

(p<0.0001) and 1737 (p<0.0001), respectively (Figure 3.4). The expression of 

miR-140-3p is significantly different between the two time points considered 

(Figure 3.4, left), with the highest level after 24 hours of transfection. The fold 

change of miR-140-5p levels in A549 cells after 24 and 48 hours is 33,129 

(p<0.0001) and 911 (p<0.0001), respectively (Figure 3.4, right). The expression 

of miR-140-5p is significantly different between the two time points considered 

(Figure 3.4, right), with the highest level after 24 hours of transfection. 

MiR-140-3p and 140-5p levels increase significantly at the two time points 

considered (24 and 48 hours) in the SK-MES-1 cell line, however they both 

decrease with the time (Figure 3.5). 

The fold change of miR-140-3p levels in SK-MES1 cells after 24 and 48 hours 

is 4,084 (p<0.0001) and 2,757 (p<0.0001), respectively (Figure 3.5). The 
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expression of miR-140-3p is significantly different between the two time points 

considered (Figure 3.4, left), with the highest level after 24 hours of transfection. 

The fold change of miR-140-5p levels in SK-MES-1 cells after 24 and 48 hours 

is 5,650 (p<0.0001) and 1,663 (p<0.0001), respectively (Figure 3.5, right). The 

expression of miR-140-5p is significantly different between the two time points 

considered (Figure 3.5, right), with the highest level after 24 hours of 

transfection. 

In general, the transfection efficiency with miR-140-3p and miR-140-5p mimics 

is higher in A549 than in SK-MES-1. 

. 



180 
 

 

Figure 3.4 MiR-140-3p and 140-5p fold-change in expression levels A549 cells after transfection with miR-140-3p and 140-5p mimics. 

MiR-140-3p and 140-5p mRNA fold-change (y-axis) in A549 cells was evaluated 24 and 48 hours (x-axis) after transfection with miRNA mimics 

by using a miR-specific qRT-PCR. Following 24 hours transfection with miRNA mimics, the levels of both miR-140-3p (left) and miR-140-5p 

(right) are significantly higher than in the control. Following further 24 hours, miR-140-3p and miR-140-5p expression start to reduce but it is still 

higher than the control. Data are presented as mean + SEM, three individual experiments undertaken in triplicate, ANOVA test has been used to 

assess significance with ***p<0.001.   
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Figure 3.5 MiR-140-3p and 140-5p fold-change in expression levels in SK-MES1 cells after transfection with miR-140-3p and 140-5p 

mimics. MiR-140-3p and 140-5p fold-change (y-axis) in SK-MES-1 cells was evaluated 24 and 48 hours (x-axis) after transfection with miRNA 

mimics by using a miR-specific qRT-PCR. Following 24 hours transfection with miRNA mimics, the levels of both miR-140-3p (left) and miR-

140-5p (right) are significantly higher than in the control. Following further 24 hours, miR-140-3p and miR-140-5p expression start to reduce but 

it is still higher than the control. Data are presented as mean + SEM, three individual experiments undertaken in triplicate, ANOVA test has been 

used to assess significance with ***p<0.001.  
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The efficiency of transfection has been evaluated at 24 and 48 hours by pPCR 

in both A549 and SK-MES-1 cells and the fold changes of miR-140-3p and miR-

140-5p have been described in Figure 3.6.  

In A549, there is a significant difference in the fold-change between miR-140-

3p and miR-140-5p at 24 (p<0.0001) but not at 48 hour time point (Figure 3.6 

a). At 24hours, miR-140-5p mimics are more efficient than the miR-140-3p 

mimics, whereas at 48 hours the efficiency is higher in the cells treated with miR-

140-3p. As previously acknowledged, the efficiency of transfection decreases 

over time.  

In SK-MES-1, there is a significant difference in the fold-change between miR-

140-3p and miR-140-5p at both 24 (p<0.0001) and 48 hours time points 

(p=0.0034) (Figure 3.6 b. At 24hours, miR-140-5p mimics are more efficient 

than the miR-140-3p mimics, whereas at 48 hours the efficiency is higher in the 

cells treated with miR-140-3p mimics, a similar situation occurs in the A549 cells 

which additionally, as reported above, shows a decrease in the efficiency of 

transfection over time. 
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Figure3.6 Fold change of miR-140-3p and 140-5p following transfections with miRNA mimics in A549 and SK-MES-1 cell lines . MiR-

140-3p and 140-5p fold-change (y-axis) was evaluated following 24 and 48 hours (x-axis) after transfection with miRNA mimics by using a miR-

specific qRT-PCR. a) In A549 cells, following 24 hours transfection, the transfection with miR-140-5p mimics is significantly more efficient than 

the one with miR-140-3p. No differences have been recorded after a further 24 hours. b) In SK-MES-1 cells, following 24 hours transfection, the 

transfection with miR-140-5p mimics is significantly more efficient than the one with miR-140-3p. After a further 24 hours, there is a difference 

between the delivery of the two mimics, with miR-140-3p higher than miR-140-5p. Data are presented as mean + SEM, three individual 

experiments undertaken in triplicate, ANOVA test has been used to assess significance with ***p<0.001.
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3.4 Discussion 

The miR-140 precursor is located on chromosome 16q22.1 and produces two 

different mature forms named miR-140-3p and miR-140-5p that have multiple 

targets and are downregulated in several tumours, including NSCLC (Yuan et 

al., 2013, Dong et al., 2016). Most of miRNAs are downregulated in 

malignancies, and therapies based on miRNA replacement have been successful 

in both in vitro and in vivo models. Nanoparticles have been used in cancer for 

systemic delivery of miRNA and siRNA without toxicity in several tumour types, 

including lung (Kota et al., 2009, Xue et al., 2014). In this study, I assessed the 

effect of the two forms of miR-140 on a NSCLC in vitro model .  

To better address this, I firstly evaluated miR-140-3p and 140-5p expression in 

tissues from NSCLC patients and cell lines. I found that both miRNAs are 

downregulated in lung cancer cell lines, compared to the immortalised non-

cancerous control BEAS-2B. I decided to use BEAS-2B as a control because, 

even though it has been virally transformed, it was the only normal lung epithelial 

cell line available and one of most widely used, according to the literature (Yang 

et al., 2016, Guerriero et al., 2016). To check whether my in vitro model reflected 

the in vivo state of cancer, I investigated the expression of miR-140-3p and 140-

5p in lung cancer tissues and verified that both miRNAs have a lower expression 

in cancer tissues than in non-tumour adjacent sections, significantly so in paired 

samples. 

I also studied whether the strand selection process might differ between normal 

and cancer cells as any modification in the miRNA strand selection process may 

represent one of the mechanisms used by a tumour for its survival and spread. 

The two forms of the same miRNA are associated with different sets of target 
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genes, and a difference in the expression of the two forms may result in a loss 

of regulation in favour of the malignant state, as hypothesised for miR-483 in 

hepatoblastoma and breast cancer (Salvatore et al., 2016, Tsai et al., 2016). 

Moreover, the strand selection of pre-miR-140 has been widely investigated in 

embryonic development, as an alteration of the expression of the two mature 

forms contributes to many congenital malformations (Li et al., 2010, Rakoczy et 

al., 2013). To address that, I sequenced the genomic region of the pre-miR-140 

to assess the presence of Single Nucleotide Polymorphisms or variants within 

the regions encoding the two miR-140 sister strands. SK-MES-1 shows two 

variants in both miR-140-3p and miR-140-5p sister strands. Although this 

change does not affect the strand selection, as miR-140-3p remains the 

predominant form, I speculated that this might affect the biogenesis of both the 

strands because the expression of both miR-140-3p and miR-140-5p is lower in 

SK-MES-1 than in A549 and this may influence the efficiency of the transfection 

of miR-140-3p and miR-140-5p mimics. 

I then evaluated the ratio of the intracellular miR-140-3p and 140-5p and found 

that it was close to 1 for BEAS-2B and higher in A549 and SK-MES-1 lung 

cancer cells. This evidence supports the hypothesis of no strand selection in 

BEAS-2B. On the contrary, a ratio higher than 1 in cancer cells, suggests that 

the predominant form in my NSCLC model is miR-140-3p. This evidence 

supports the hypothesis that the strand selection exists predominantly in lung 

cancer cells instead of normal cells. This implies that miR-140-3p may act as a 

guide strand, while as miR-140-5p is a passenger in the malignant cells. 

Finally, I verified that miRNA mimics can be delivered into lung cells with high 

efficiency up to 48 hours after transfection using a lipid-based technique (e.g. 
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DharmaFECT1 Transfection).  However, the delivery of miR-140-3p and miR-

140-5p mimics differs between the two cell lines. In both the cell lines, following 

24 hours of transfection, miR-140-5p is delivered more efficiently than miR-140-

3p. The overall efficiency of transfection, however, is higher in A549 and this 

may be because of the variants that are present in pre-miR-140 in SK-MES-1 

cells. As I expected, as this was a transient transfection, the levels of the two 

miRNAs decreased with time. Interestingly, miR-140-3p levels decreased more 

slowly than the levels of miR-140-5p, thus suggesting that miR-140-3p is more 

stable. This confirms the hypothesis that a strand selection probably occurs in 

cancer cells and that miR-140-3p is the guide strand.  

At this stage, I decided to restore the levels of miR-140-3p and 140-5p by using 

specific miRNA mimicking wild type in both the lung cancer cell lines and 

evaluate this effect on cancer cell behaviour. The results will be discussed in the 

next chapter. 
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CHAPTER 4 

EFFECT OF MIR-140-3P AND  

MIR-140-5P MIMICS ON LUNG 

CANCER CELL BEHAVIOUR 
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4.1 Introduction 

Malignant cells acquire many of characteristics that enable their growth and 

spread, such as the ability to proliferate indefinitely, to migrate and invade new 

tissues, to modify their own metabolism and the tumour microenvironment 

(Hanahan and Weinberg, 2011). The down-regulation of either miR-140-3p or 

140-5p enhances the invasion properties of cancer cells in many tumours (Zhai 

et al., 2015, Liu et al., 2016b, Dong et al., 2016, Li et al., 2014b) and to better 

evaluate their possible role as therapeutic agents, I investigated the effect of both 

miR-140-3p and 140-5p on different aspects of NSCLC cell behaviour in vitro by 

using both A549 and SK-MES-1 cell lines. Considering that a single miRNA 

targets hundreds of mRNAs, this approach also helped in focusing on the 

multiple pathways that can be influenced by these treatments. 

Although other studies have already suggested the role of miR140-3p and 140-

5p as oncosuppressors in lung cancer (Yuan et al., 2013, Dong et al., 2016), most 

of the researchers focus was on a single step of the malignancy process and 

looked for one or two targets, rather than considering the global effect of the 

treatment on cancer cell behaviour. For this reason, in this study, the two lung 

cancer cell lines A549 and SK-MES-1 were transfected with miR-140-3p and 

140-5p mimics and the effect on several aspects of the cancer cell response to 

the treatment, such as proliferation, apoptosis, cell cycle, migration, invasion and 

adhesion to the components of the extracellular matrix, have been investigated. 

I strongly believe that this approach is extremely important for the development 

of new miRNA therapeutics, specific for the treatment of NSCLC patients. 
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In this chapter, I investigated in vitro the effect of miR-140-3p and miR-140-5p 

replacement treatment on the following aspects of the NSCLC cell behaviour: 

proliferation, apoptosis, cell cycle, migration, invasion and adhesion onto 

collagen and laminin, two of the main components of the Extracellular matrix 

(ECM). 
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4.2 Materials and methods 

Proliferation assay 

A549 and SK-MES-1 (5×103cells/well) cells were seeded onto 96-well plates in 

100µl growth medium. Following 24 and 48 hours of miRNA treatment, the 

cells were fixed and analysed for a proliferation assay as described in section 

2.21.1. 

Transwell migration and invasion assays 

Cells were detached using HYQTase Cell Detachment Solution (Hyclone, 

Logan, UT, USA) 24 hours after being transfected and resuspended in serum-

free medium, at a concentration of 1x105 cells/ml and 650µl of medium 

containing 10% FBS (chemoattractant) was added to receiver wells in triplicate 

and 650µl of serum-free medium (no chemoattractant) to receiver control wells. 

The polycarbonate 8µm pore size ThinCert™ 24-well plate inserts (Grenier, Bio-

One GmbH, Austria) were placed in each of the receiver wells and 500 µl of cell 

suspension added. Invasion assay chambers were coated with 100µl of Matrigel 

(BD Biosciences, NJ, USA) diluted in serum-free media at 500 μg/ml and 

allowed to dehydrate for 2 hours at 55°C. After 2 hours, the cells were seeded as 

described for a migration assay. 

Cell migration and invasion were assessed after 24h as described in section 

2.21.2. 
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Adhesion assay 

A total of 104 transfected cells/well were added into a 96 well plate coated with 

50µg/well of laminin or collagen, two of the three main components of the basal 

membrane. A549 and SK-MES-1 were allowed to attach at 37°C for 40 and 60 

minutes, the attached cells were washed, fixed and analysed as described in 

section 2.21.4 

Apoptosis and cell cycle assay 

Cancer cells were treated with miRNA mimics and then the apoptosis and cell 

cycle assays were carried out after 24 and 48 hours of treatment using the 

Annexin V kit (Santa Cruz Biotechnology, Surrey, UK) as described in Section 

2.15. This kit includes fluorescent conjugated annexin V (FITC annexin V) and 

propidium iodide (PI) solution. For cell cycle assay, cells were harvested, washed 

with PBS, resuspended in 75% v/v ethanol and then 150 μl of 2 μg/ml PI 

(Thermo Fisher Scientific, Waltham, MA USA) was added to each of the 

samples. Flow cytometry analysis was performed for apoptosis and cell cycle 

assays on a FACS Canto II (BD Biosciences, NJ USA) and data analysed using 

FCS Express 4 Flow Research Edition (De Novo Software, California, USA). 

Statistical analysis 

Statistical analysis was performed as described in Section 2.24. 
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4.3 Results 

4.3.1 MiR-1403p and miR-140-5p do not affect the proliferation of 

NSCLC cells 

The ability of cancer cells to proliferate in response to miR-140-3p and miR-

140-5p treatment has been investigated by considering two time points (24 and 

48 hours) after the transfection with the miRNA mimics (Figure 4.1). No 

significant differences were observed in the proliferation of all the cancer cells 

treated with miR-140-3p and miR-140-5p mimics and the cells treated with the 

control at both the time points considered. Although not statistically significant, 

miR-140-3p appears to mildly reduce the number of A549 cells at 24 and 48 

hours (Figure 4.1 a and b), whereas the number of the cells transfected with miR-

140-5p is higher than in the control after 48hours (Figure 4.1b). In the SK-MES-

1 cells, the two miRNA mimics look to slightly increase the proliferation of the 

cancer cells compared to the control at 24 (Figure 4.1c) and 48 hours (Figure 

4.1d) but this data has no any statistical significance. 
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Figure 4.1 Proliferation ability of A549 and SK-MES1   lung cancer cells following 24 and 48 hours of miRNA mimics treatment. The 

ability of A549 and SK-MES-1 to proliferate following the treatment with miR-140-3p and miR-140-5p mimics has been evaluated by staining the 

cells with crystal violet 24 and 48 hours after the transfection with the mimics.  No significant differences have been seen at the two time points 

in both A549 (a and b) and SK-MES-1 (c and d). Data are presented as mean of the optical density at 540nm (OD) +SEM, three individual 

experiments undertaken in six replicates, Kruskal-Wallis -test has been used to assess significance. 
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4.3.2 MiR-1403p and miR-140-5p have a small effect on apoptosis of 

NSCLC cells 

Since miR-140-3p and miR-140-5p have no significant effect on the proliferation 

of A549 and SK-MES-1 cells, I checked whether this might be because the cells 

undergo apoptosis. To address that, I performed an apoptosis analysis on our 

lung cancer cells by studying the cells following 48 hours treatment with mimics. 

I did not show the effect of mimics after 24 hours because there was no 

difference at all between the control and treated cells (data not shown). 

My data show that A549 cells show a small increase in apoptosis following miR-

140-5p mimic treatment for 48 hours (Figure 4.2 a, b), whereas in SK-MES-1, 

both the miR-140-3p and miR-140-5p treatments had a minimal increase in 

apoptosis at the early and late stage (Figure 4.3 a, b).  
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Figure 4.2. Early and late apoptosis of A549 lung cancer cells treated with miR-

140-3p and miR-140-5p mimics. a) Percentage of live (bottom left), early apoptotic 

(bottom right) or late apoptotic (top right) A549 following 48 hours of treatment with 

negative, 140-3p or 140-5p miRNA mimics (representative data). b) Percentage of A549 

cells in each stage (live, early and late apoptosis) at 48 hours of transfection. Graphs 

show % cells + SEM, n=3) 
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Figure 4.3. Early and late apoptosis of SK-MES-1 lung cancer cells treated with 

miR-140-3p and miR-140-5p mimics. a) Percentage of live (bottom left), early 

apoptotic (bottom right) or late apoptotic (top right) SK-MES-1 following 48 hours of 

treatment with negative, 140-3p or 140-5p miRNA mimics (representative data). b) 

Percentage of SK-MES-1 cells in each stage (live, early and late apoptosis) at 48 hours 

of transfection. Graphs show % cells + SEM, n=3).  
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4.3.3 MiR-140-3p and miR-140-5p have no effect on NSCLC cell cycle 

We then hypothesised that the treatment with miR-140-3p and miR-140-5p 

might have some effect on the cell cycle progression, as no significant difference 

in proliferation and apoptosis have been seen. To verify our hypothesis, the 

effect of miRNA mimic treatment in the lung cancer cell lines A549 and SK-

MES-1 has been evaluated through flow cytometry analysis by investigating 

changes in the cell cycle 48 hours after transfections. We did not show the effect 

of mimics after 24 hours treatment because there was no difference at all 

between the control and treated cells (data not shown). 

We found that, following 48 hours of transfection with miR-140-3p and miR-

140-5p mimics, there are no variations in the percentage of cells in G1 S and 

G2-M phase in both A549 and SK-MES-1 cell lines (Figure 4.4, representative). 
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Figure 4.4. The effect of 48hours of miR-140-3p and miR-140-5p treatment on A549 and SK-MES1 cell cycle. Graphs show 

the percentage of cells in each stage of the cell cycle, gap1 (G1), gap2 (G2) and DNA synthesis (S) following 48 hours treatment with 

negative, miR-140-3p and miR-140-5p mimics. Graphs show a representative result of three independent experiments made using 

A549 (a) and SK-MES-1 (b) lung cancer cell lines.
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4.3.4 MiR- 140-5p reduces the migration capability of SK-MES1 and both 

miR-140-3p and 140-5p limit invasion ability of NSCLC cells 

Twenty-four hours after transfection with miRNA mimics, A549 and SK-MES-

1 cells were detached and incubated for a further 24 hours on non-coated inserts 

(8µm pore membrane) in order to mimic the movement of cells towards a 

chemotactic factor, FBS. The aim was to reproduce the in vivo migration of cells 

from the primary tumour site into the bloodstream. MiR-140-5p mimic is able 

to decrease significantly the migration ability of SK-MES-1 after 48 hours of 

transfection (p=0.0285), whereas no significant effect was observed in A549 and 

in SK-MES-1 cells treated with miR-140-3p mimics (Figure 4.5) 

Figure 4.5 Migration ability of A549 and SK-MES1 lung cancer cells following 24 

and 48 hours of miRNA mimics treatment. The migration ability of A549 and SK-

MES-1 cells following the transfection with miR-140-3p and miR-140-5p mimics has 

been evaluated by using non-coated inserts containing the cells with FBS as a 

chemoattractant in the lower chamber. The treatments do not affect the migration 

properties of A549 (on the left), whereas miR-140-5p mimics reduce the migration of 

SK-MES-1 (on the right) significantly. Data are presented as mean of the relative 

fluorescence (RFU) + SEM, three individual experiments were undertaken in triplicate, 

ANOVA-test has been used to assess significance with *p<0.05. 
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The invasive ability of NSCLC cells was reproduced in the same way as the 

migration assay, with the transwell inserts coated with Matrigel, to mimic the 

ECM. A549 invasive capability decreases significantly when the cells are treated 

with miR-140-3p (p<0.001) and 140-5p (p=0.0036) mimics (Figure 4.6). There 

is also a significant difference between the two treatments, as miR-140-3p has a 

greater inhibitory effect than miR-140-5p (p=0.0067). A similar result has been 

observed in SK-MES-1 cells, with a significant reduction of their invasion when 

treated with both the miR-140-3p (p<0.001) and 140-5p mimics (p<0.001) 

(Figure 4.6).  

 

Figure 4.6 Invasive ability of A549 and SK-MES-1 lung cancer cells following 

24 and 48 hours of miRNA mimics treatment. The invasion ability of A549 and 

SK-MES1 cells following the transfection with miR-140-3p and miR-140-5p 

mimics has been evaluated by using Matrigel-coated inserts containing the cells and 

complete medium below. Both miR-140-3p and miR-140-5p treatments reduce the 

invasion of A549 (on the left) and SK-MES-1 (on the right) significantly. MiR-140-

3p, in particular, exerts a higher inhibition than miR-140-5p in both the cell lines. 

Data are presented as mean of the relative fluorescence (RFU) + SEM, three 

individual experiments were undertaken in triplicate, ANOVA-test has been used 

to assess significance with *p<0.05, **p<0.01, ***p<0.001. 
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4.3.5. miR-140-3p and miR-140-5p enhances the adhesion ability of A549 

cells 

The adhesion ability of A549 and SK-MES-1 NSCLC cells was assessed by 

seeding the cells transfected with miRNA mimics into wells coated with laminin 

and collagen IV, two of the three main components of the basal membrane. 

Following 40 and 60 minutes of time for A549 and SK-MES-1 respectively to 

adhere, the number of cancer cells were assessed using a fluorescent plate reader.  

The adherence of A549 to laminin and collagen increases after 24 hours of 

transfection with miR-140-3p and miR-140-5p mimics (Figures 4.7 and 4.8). In 

A549 following 24 hours of transfection, both miR-140-3p (p=0.0006) and 140-

5p (p=0.0137) improve the adhesion properties of the cells on surface coated 

with laminin (Figure 4.7), whereas only miR-140-5p (p=0.0084) has a significant 

effect on the adhesion of cells to collagen IV (Figure 4.7). After transfection for 

48 hours, miR-140-3p starts to have a significant effect on A549 cells seeded 

onto collagen IV (p=0.0006) (Figure 4.8). MiR-140-3p or miR-140-5p treatment 

has no effect on the adherence of SK-MES-1 at the two time points considered 

(Figures 4.9, 4.10). 

 

 



202 
 

 

Figure 4.7 Adhesion ability of A549 cells seeded onto laminin following 24 (left) and 48 hours (right) transfection with miR-140-3p and 

140-5p mimics. 24 hours after transfection, both miR-140-3p and miR-140-5p increase the ability of A549 to adhere to laminin (left), whereas 

no effect has been after cells were transfected for 48 hours (right). . Data are presented as mean of the relative fluorescence (RFU) + SEM, three 

individual experiments were undertaken in triplicate, ANOVA-test has been used to assess significance with *p<0.05,***p<0.001. 
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Figure 4.8 Adhesion ability of A549 cells seeded on collagen IV following 24 (left) and 48 hours (right) transfection with miR-140-3p 

and 140-5p mimics. 24 hours after transfection, miR-140-5p increases ability of A549 to adhere to collagen IV (left),  and miR-140-3p enhances 

the adhesion 48 hours after trasnfection (right).  Data are presented as mean of the relative fluorescence (RFU) + SEM, three individual 

experiments were undertaken in triplicate, ANOVA-test has been used to assess significance with  **p<0.01,***p<0.001 
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Figure 4.9 Adhesion ability of SK-MES-1 cells seeded on laminin following 24 (left) and 48 hours (right) transfection with miR-140-3p 

and 140-5p mimics. The treatment with miR-140-3p and miR-140-5p mimics has no effect on the adhesion properties of the cancer cells.  Data 

are presented as mean of the relative fluorescence (RFU) + SEM, three individual experiments were undertaken in triplicate, ANOVA-test has 

been used to assess significance. 
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Figure 4.10 Adhesion ability of SK-MES-1 cells seeded on collagenIV following 24 (left) and 48 hours (right) transfection with miR-

140-3p and 140-5p mimics. The treatment with miR-140-3p and miR-140-5p mimics has no effect on the adhesion properties of the cancer cells.  

Data are presented as mean of the relative fluorescence (RFU) + SEM, three individual experiments were undertaken in triplicate, ANOVA-test 

has been used to assess significance. 
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4.4 Discussion 

One miRNA can target hundreds of mRNAs and thus may influence many 

aspects of cell behaviour (Bartel, 2009). However, the effect of a miRNA on a 

specific pathway may be abolished by other upstream or downstream effectors 

involved in that molecular network. For this reason, in this study the overall 

physiological effect of the two sister strands of the miR-140 has been evaluated 

in vitro, before searching for the direct and indirect targets of the two miRNAs. 

Many aspects of the cell behaviour have been investigated, such as the ability of 

the NSCLC cells to proliferate indefinitely, evade cell death, migrate and invade 

new tissues. In the next chapters, the capability of the cancer cells to modify 

their own cellular energetics and to influence the tumour microenvironment will 

be also studied. 

The first step in the oncogenesis is the uncontrolled proliferation of the cancer 

cells. This may be controlled by the reduced expression of miR-140 often seen 

in cancer cells compared to “normal” cells. These abnormalities, together with 

the chronic activation of growth factors, make the cells able to potentially 

proliferate forever (Hanahan and Weinberg, 2011). My experiments aimed to 

increased mIR-140 expression in the cancer cells, to mimic the higher expression 

often seen in normal cells. In this study, I did not find any statistically significant 

difference in the proliferation of NSCLC cells treated with miR-140-3p and miR-

140-5p mimics.  

I then investigated whether the apoptosis and cell cycle were affected by the 

increased expression of miR-140-3p and miR-140-5p to better confirm the data 

from the proliferation assay. In fact, the proliferation of cancer cells may result 
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in the treatment having not effect on proliferation because the cells undergo 

apoptosis or because the cell cycle has been stopped. My results also show no 

significant difference either in cell cycle or apoptosis of A549 and SK-MES-1 

cells, thus leading to the conclusion that the growth and proliferation of the 

cancer cell lines were not affected by the treatment with miR-140-3p and miR-

140-5p mimics in vitro.  

Cancer, in general, is a multi-step process and, apart from the ability to 

proliferate indefinitely, malignant cells acquire many other characteristics that 

enable them to survive, migrate and invade new tissues to form colonies at 

distant sites (Hanahan and Weinberg, 2011). To spread to other tissues, the cells 

lose their adhesion to the ECM, change their epithelial morphology and become 

mesenchymal-like cells. This is named epithelial-mesenchymal transition (EMT) 

(Heerboth et al., 2015). Through specific functional assays, I investigated 

whether the re-establishment of the “normal/non-cancerous” miR-140-3p and 

miR-140-5p levels might have any effect on the motility and the invasive 

capability of the NSCLC cells.  

The ECM is formed by proteoglycans (heparin sulphate, ketaran sulphate, 

chondroitin sulphate), collagen, fibronectin and laminin. Both miR-140-3p and 

miR-140-5p increase significantly the adhesion properties of the A549 cells on 

laminin and collagen, two of the main components of the extracellular matrix. 

This effect is stronger following 24 hours of transfection, when the miRNA in 

the cells are at their highest levels, thus suggesting their possible role as 

regulators of the cell adhesion. No significant differences have been recorded in 

the adhesion properties of the SK-MES-1 cells following the treatment with 

miR-140-3p and miR-140-5p mimics. I speculated that this because the SK-
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MES-1 has no WT sequence of the two miRNAs. Another hypothesis could be 

that the adhesion of NSCLC cells is affected when the levels of the two miRNAs 

are above an unspecified threshold, as the efficiency of transfection in A549 is 

higher than in SK-MES-1. 

The motility of NSCLC can be significantly impaired by the miRNA replacement 

treatment. Both miR-140-3p and miR-140-5p mimics reduce significantly the 

invasion property of A549 and SK-MES1 cells. This finding supports that 

previously reported by different groups who have demonstrated the 

involvement of both miRNAs in the lung cancer (Yuan et al., 2013, Dong et al., 

2016). 

All these results taken together suggest that the miR-140-3p and miR-140-5p 

replacement treatment may be of use to reduce the invasion and spread of limit 

the invasion of the NSCLC. 

To better understand which aspect of the cancer cell behaviour is influenced by 

the treatment with miR-140-3p and miR-140-5p mimics, in the following 

chapters I will evaluate their effect on the cancer cell metabolism and their 

interaction with other cells in the environment; specifically, their effect on the 

ability of endothelial cells to form tubules, as occurs in angiogenesis. 
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CHAPTER 5 

EFFECT OF MIR-140-3p AND 

MIR-140-5p ON THE ABILITY OF 

ENDOTHELIAL CELLS TO FORM 
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5.1 Introduction 

In this study, I attempted to evaluate the effect of the miR-140-3p and miR-140-

5p mimics on the tumour microenvironment. During tumour progression there 

is a repurposing of both the cancer cells and the surrounding stromal cells 

(Hanahan and Weinberg, 2011). Stromal cells include fibroblasts, immune- 

system cells and endothelial cells.  For this purpose and considering the intrinsic 

limitations of my in vitro model, I focused just on the ability of the endothelial 

cells, HUVECs, to form new vessels in response to the treatment of the cancer 

cells with miR-140-3p and miR-140-5p mimics 

Primary endothelial cells HUVECs were grown on a layer of Matrigel, a 

compound that mimics the ECM, in growth medium composed of 60% of 

EGM-2 and 40% conditioned medium from A549 and SK-MES-1 cells that had 

been transfected with miR-140-3p and miR-140-5p. Endothelial tubule 

formation was evaluated in Real-Time by using the cell imaging system EVOS. 

This concentration of tumour conditioned media added has been chosen 

because I observed that a higher amount is toxic for HUVEC growth. 

It is known that the Vascular Endothelial Growth Factor-A (VEGF-A), a key 

factor involved in angiogenesis, is one of the direct targets of miR-140-5p, 

(Zhang et al., 2015, Sun et al., 2016), VEGF-A content was quantified by ELISA 

in the conditioned media of A549 and SK-MES-1 cells treated with miR-140-3p 

and miR-140-5p mimics. 
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5.2 Materials and Methods 

Tubule formation assay 

The primary endothelial cells HUVECs were diluted to 1.4x105 cells/ml and the 

assay was performed and data analysed as described in Section 2.21.3. 

ELISA 

Following 24 and 48 hours of negative control, or miR-140-3p and miR-140-5p 

mimic treatment the conditioned medium was removed from the cells and 

centrifuged at 1700 xg for 10 minutes to remove cellular debris. The 5. The 

assays were then carried out as specified in Section 2.23. 

Statistical analysis 

Statistical analysis was performed as described in Section 2.24. 
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5.3 Results 

5.3.1 The conditioned media from lung cancer cells transfected with 

miR-140-3p mimics inhibit the tubule formation in HUVECs 

The effect of miRNA mimics treatment on the ability of the endothelial cells to 

form new vessels has been investigated through a specific technique, named 

“tubule formation assay” (Section 2.21.3) and the growth of the HUVEC cells 

was monitored in real-time by using the EVOS Cell Imaging System over 6 

hours. The medium collected from A549 cells treated with miR-140-3p 

following 24 and 48 hours transfection, significantly reduces the ability of 

HUVECs to form vessels (p<0.0001 and p<0.05 respectively) (Figure 5.1). 

There was also a significant effect on the tubule length of HUVECs grown with 

media from A549 treated with miR-140-5p following 48hours of transfection 

(p<0.05) (Figure 5.2), whereas no effects have been observed with media from 

SK-MES-1 at any of the time points observed (Figures 5.3 and 5.4). Notably, 

although not statistically significant, conditioned medium from SK-MES-1 cells 

transfected for 48 hours with miR-140-3p mimics did reduce the tubule 

formation of HUVECs (Figure 5.3 b). The parameters used to evaluate whether 

the miRNA mimics treatment had any effect on HUVEC behaviour, including 

the tubule length of the nascent vessels and the number of meshes that formed.  
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Figure 5.1 Tubule formation ability of the primary endothelial cells HUVECs cultured in the conditioned media of A549 cells following 

24 hours transfection with miR-140-3p and 140-5p mimics. The primary endothelial cells HUVECs were seeded onto a layer of Matrigel with 

their own normal growth medium plus 40% conditioned medium from A549 following 24 hours transfection with miR-140-3p and miR-140-5p. 

The behaviour of the endothelial cells has been monitored in real-time by using the EVOS Cell Imaging System. Pictures were taken every 30 

minutes for about 6 hours. The figures show representative wells for each treatment group 5 hours after cell seeding. a) HUVECs grown with 

40% conditioned media from cells transfected with negative mimics. b) HUVECs grown with 40% conditioned media from cells transfected with 

miR-140-3p mimics. c) HUVECs grown with 40% conditioned media from cells transfected with miR-140-5p mimics. d) Tubule length of 

HUVECs after 5 hours incubation with the media described in a), b) and c). e) Number of closed meshes of HUVECs after 5 hours incubation 

with the media described in a), b) and c). Data are presented as mean + SEM, two individual experiments were undertaken in triplicate, Kruskal-

Wallis-test was used to assess significance with ***p<0.0001. 
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Figure 5.2 Tubule formation ability of the primary endothelial cells HUVECs cultured in the media of A549 cells following 48 hours 

transfection with miR-140-3p and 140-5p mimics. The primary endothelial cells HUVECs were seeded onto a layer of Matrigel with their own 

normal growth medium plus 40% conditioned medium from A549 following 24 hours transfection with miR-140-3p and miR-140-5p. The 

behaviour of the endothelial cells has been monitored in real-time by using the EVOS Cell Imaging System. Pictures were taken every 30 minutes 

for about 6 hours. The figures show representative wells for each treatment group 5 hours after cell seeding. a) HUVECs grown with 40% 

conditioned media from cells transfected with negative mimics. b) HUVECs grown with 40% conditioned media from cells transfected with miR-

140-3p mimics. c) HUVECs grown with 40% conditioned media from cells transfected with miR-140-5p mimics. d) Tubule length of HUVECs 

after 5 hours incubation with the media described in a), b) and c). e) Number of closed meshes of HUVECs after 5 hours incubation with the 

media described in a), b) and c). Data are presented as mean + SEM, two individual experiments were undertaken in triplicate, Kruskal-Wallis-

test was used to assess significance with *p<0.05. 
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Figure 5.3. Tubule formation ability of the primary endothelial cells HUVECs cultured in the media of SK-MES-1 cells following 24 

hours transfection with miR-140-3p and 140-5p mimics. The primary endothelial cells HUVECs were seeded onto a layer of Matrigel with 

their own normal growth medium plus 40% conditioned medium from SK-MES1 following 24 hours transfection with miR-140-3p and miR-

140-5p. The behaviour of the endothelial cells has been monitored in real-time by using the EVOS Cell Imaging System. Pictures were taken every 

30 minutes for about 6 hours. The figures show representative wells for each treatment group 5 hours after cell seeding. a) HUVECs grown with 

40% conditioned media from cells transfected with negative mimics. b) HUVECs grown with 40% conditioned media from cells transfected with 

miR-140-3p mimics. c) HUVECs grown with 40% conditioned media from cells transfected with miR-140-5p mimics. d) Tubule length of 

HUVECs after 5 hours incubation with the media described in a), b) and c). e) Number of closed meshes of HUVECs after 5 hours incubation 

with the media described in a), b) and c). Data are presented as mean + SEM, two individual experiments were undertaken in triplicate, Kruskal-

Wallis-test was used to assess significance. 
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Figure 5.4 Tubule formation ability of the primary endothelial cells HUVECs cultured in the media of SK-MES-1 cells following 48 

hours transfection with miR-140-3p and 140-5p mimics. The primary endothelial cells HUVECs were seeded onto a layer of Matrigel with 

their own normal growth medium plus 40% conditioned medium from SK-MES1 following 24 hours transfection with miR-140-3p and miR-

140-5p. The behaviour of the endothelial cells has been monitored in real-time by using the EVOS Cell Imaging System. Pictures were taken every 

30 minutes for about 6 hours. The figures show representative wells for each treatment group 5 hours after cell seeding. a) HUVECs grown with 

40% conditioned media from cells transfected with negative mimics. b) HUVECs grown with 40% conditioned media from cells transfected with 

miR-140-3p mimics. c) HUVECs grown with 40% conditioned media from cells transfected with miR-140-5p mimics. d) Tubule length of 

HUVECs after 5 hours incubation with the media described in a), b) and c). e) Number of closed meshes of HUVECs after 5 hours incubation 

with the media described in a), b) and c). Data are presented as mean + SEM, two individual experiments were undertaken in triplicate, Kruskal-

Wallis-test was used to assess significance. 
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5.3.2 The ability of miR-140-3p to inhibit the tubule formation ability of 

endothelial cells is VEGF-A independent 

To assess whether the treatment with miR-140-5p and miR-140 mimics affects 

the release of VEGF-A from the NSCLC cells, conditioned media from cancer 

cells that have been transfected with mimics for 24 and 48 hours mimics 

treatments were analysed by using ELISA. In A549 cells following 24 hours 

treatment, the VEGF-A content in the media of cells transfected with miR-140-

5p was significantly less than in the control (p=0.0154) (Figure 5.5a). On the 

contrary, VEGF-A levels were significantly higher after 48 hours treatment in 

A549 cells treated with miR-140-3p (p=0.0249) (Figure 5.5b). There was no 

statistically significant difference in the release of VEGF-A from SK-MES1- 

cells at the two time points considered, though the data suggests a general 

decrease of the VEGF-A levels in the conditioned medium from A549 cells 

treated with miR-140-3p and miR-140-5p mimics (Figures 5.5c and d). 
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Figure 5.5. Secreted VEGF-A levels from A549 and SK-MES1 NSCLC cell lines, following 24 and 48 hours of transfection with miR-

140-3p and miR-140-5p mimics. a) and b) VEGF-A secreted by A549 cells following 24 and 48 hours transfection with negative, miR-140-3p 

and miR-140-5p mimics. b) and c) VEGF-A secreted by SK-MES-1 cells following 24 and 48 hours transfection with negative, miR-140-3p and 

miR-140-5p mimics. Data are presented as mean + SEM, representative data of two individual experiments undertaken in triplicate, Kruskal-

Wallis-test was used to assess significance.
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5.4 Discussion 

I considered the effect of the miRNA mimics treatment on the tubule formation 

ability of the HUVEC cells in vitro to assess whether miR-140-3p and miR-140-

5p might influence this facet of the tumour microenvironment. The formation 

of new blood vessels is crucial for a tumour because the malignant mass needs 

more and more nutrients and oxygen to sustain its growth (Hanahan and 

Weinberg, 2011). Additionally, cancer cells invade the blood or lymphatic vessels 

(intravasation) and enter the bloodstream, to develop metastases at distant sites 

(extravasation) (Hanahan and Weinberg, 2011). In the previous chapter, I have 

shown that both miR-140-3p and miR-140-5p act as onco-suppressors by 

limiting the migration of the lung cancer cells. 

 In this study, the tumour microenvironment has been partially reproduced by 

using Matrigel, a compound that mimics the ECM and supports the growth of 

the primary endothelial HUVECs. Although the variation amongst the 

experiments is high, I found that the media from A549 cells treated with miR-

140-3p after 24 hours stopped the tubule formation of the endothelial cells 

completely. The same trend was observed using conditioned medium from SK-

MES-1 transfected with miR-140-3p mimics. Following 48 hours of 

transfection, the formation of a vascular network seems to be slightly reduced 

in SK-MES-1 although there is no statistical significance. 

I then evaluated whether the effect I observed was due to a VEGF-A-dependent 

mechanism. To do this, I analysed the VEGF-A content in the media of A549 

and SK-MES-1 cells transfected with the negative, miR-140-3p and miR-140-5p 

mimics. The slight impairment observed by growing the HUVECs with media 

from cancer cells transfected with miR-140-5p may have been VEGF-A 
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dependent, as VEGF-A is one of the targets of miR-140-5p (Sun et al., 2016).  

As expected, the ELISA results show that following 24 hours of treatment with 

miR-140-5p, there is a significant decrease of VEGF-A levels in the media from 

A549 cell. Notably, this happened at the time point in which the efficiency of 

transfection is the highest and in the cells without any variation in pre-miR-140 

sequence. On the contrary, following 48 hours treatment, miR-140-3p 

significantly enhanced the release of VEGF-A in A549 cells. I therefore 

conclude that the inhibition of the tubule formation of the endothelial cells 

following the treatment with miR-140-3p mimics in A549 cells is likely to be 

VEGF-A independent. VEGF-A does not seem to be the key molecule involved 

in the tubule formation ability of the endothelial cells because the decrease of 

VEGF-A in the cancer cells which occurs 24 hours after the treatment with miR-

140-5p, does not correspond to an impairment of the tubule formation. 

However, these data cannot explain the inhibition of the tubule formation in 

A549 cells following 24 hours of treatment with miR-140-3p. Finally, after 

further 24 hours, there is an increase of VEGF-A production but this is not 

followed by an increase of the tubule formation ability of HUVECs, suggesting 

that the dynamics of tubule formation is mediated by multiple factors (Ferrara, 

2010, Butler et al., 2017). 

I speculate that the treatment with the miRNA mimics stimulates the release of 

something different from VEGF-A in the microenvironment and that these 

compounds/molecules inhibit the tubule formation ability of the HUVECs. It 

is known that miRNAs can be released by the cells encapsulated into either 

micro-vesicles or exosomes (Turchinovich et al., 2014, Arroyo et al., 2011), 

which may contribute to many physiological and pathological processes, 
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including angiogenesis (Zhou et al., 2014). The release of other miRNAs or other 

anti-angiogenic substances may explain the inhibition of the tubule formation 

induced by miR-140-3p and this hypothesis is strengthened by the fact that after 

24 hours of the treatment, the concentration of each mimic in the media is quite 

high and it might be incorporated itself into the endothelial cells, thus inhibiting 

some key pathways involved in the formation of the vascular network. 
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EFFECT OF MIR-140-3p AND  
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6.1 Introduction 

An emerging hallmark in cancer progression is the reprogramming of the energy 

metabolism in malignant cells (Hanahan and Weinberg, 2011). Otto Warburg, 

who won the Nobel Prize in Medicine in 1931, first observed that tumour cells 

metabolise glucose differently from the normal cells by a process named 

glycolysis (Warburg, 1956). In fact, the metabolism of normal cells depends on 

the oxygen consumption (aerobic respiration), whereas cancer cells can 

proliferate in the absence of oxygen and produce lactic acid (anaerobic 

respiration or fermentation).  

The involvement of miRNAs in mitochondrial metabolism has been 

demonstrated, as has the downregulation of some miRNAs that contribute to 

the metabolic reprogramming in many diseases, including cancer (Duroux-

Richard et al., 2016, Mazar et al., 2016). The loss of miR-114 in lung cancer, for 

example, contributes to the metabolic changes that lead to the spread of cancer 

(Liu et al., 2016a). This miRNA targets GLUT1, one of the transporters of 

glucose, together with GLUT4, thus leading to an increase in the glucose uptake 

and lactate secretion. 

In this chapter, I studied the effects of miRNA mimics on the metabolism of 

A549 and SK-MES-1 lung cancer cell lines to investigate whether these two 

miRNAs contribute to the metabolic reprogramming of the metabolism of 

cancer cells. If miRNA mimics restore normal aerobic metabolism, this may 

partially explain why the medium from the treated cells impair the tubule 

formation ability of HUVECs, as I described in the previous chapter. 
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The strategy I used enabled us to quantify mitochondrial function in intact cells 

by measuring the Oxygen Consumption Rate (OCR) and, at the same time, the 

Extracellular Acidification Rate (ECAR) in response to specific compounds, as 

described in Section 2.22. 
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6.2 Materials and Methods 

 Seahorse XF Cell Mito Stress Assay 

Seahorse stress assay was performed as described in section 2.22. The cells used 

were BEAS-2B (6×104cells/well), A549 and SK-MES-1 (2.5×104cells/well) 

which were seeded onto XF96 cell culture microplates (Seahorse Bioscience, 

CA, USA) in 80 µl growth medium. Following 24 or 48 hours of miRNA 

treatment, mitochondrial stress was measured in response to oligomycin, FCCP 

and rotenone/antimycin A at a final concentration of 100µM, 100µM and 50µM 

respectively measured over a 2-hours period 

Seahorse XF Glycolysis Stress Assay 

The glycolysis stress assay protocol is described in full in section 2.22. BEAS-2B 

(6×104cells/well), A549 and SK-MES-1 (2.5×104cells/well) cells were seeded 

onto XF96 cell culture microplates (Seahorse Bioscience, CA, USA) in 80 µl 

growth medium. Following 24 and 48 hours of miRNA treatment, glycolysis 

stress was measured in response to glucose, oligomycin and 2-DG at a final 

concentration of 5 µM. 

Statistical analysis 

Statistical analysis was performed as described in Section 2.24. 
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6.3 Results 

6.3.1 MiR-140-3p limits the ATP production in A549 cells 

The effect of 24 and 48 hours miR-140-3p and miR-140-5p mimic transfection 

on the mitochondrial respiration of A549 and SK-MES-1 cells was assessed with 

the Seahorse XF Cell Mito Stress Assay. The Oxygen Consumption Rate (OCR) 

was measured before and after the injections with Oligomycin, Carbonyl 

cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP) and a mix of Rotenone 

and Antimycin A. Oligomycin inhibits the synthesis of the ATP by targeting the 

complex V of the ATP synthase, thus stopping the formation of ATP from 

ADP. FCCP disrupts the ATP synthesis by ruining the mitochondrial membrane 

potential. Finally, rotenone and antimycin-A shut down the mitochondrial 

respiration completely by inhibiting the complex I and III of the electron 

transport chain, respectively. OCR was monitored for each 96 wells of the plate. 

For every cell line at each time point, the bioenergetics trace has been reported 

(Figure 6.1) and the individual parameters indicated in percentage in Figure 6.2. 
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Figure 6.1.  Seahorse Mito stress test profile. NSCLC cell lines were treated with miR-140-3p, miR-140-5p and negative mimics for 24 and 48 

hours. At these two time points the Seahorse Mito Stress Test was performed to assess the metabolic status of the mitochondria by using three 

different compounds: oligomycin, carbonyl cyanide 4-phenylhydrazone (FCCP) and rotenone/antimycin A. a) and b) A549 metabolic profile and 

response to the injections following 24 and 48 hours treatment with miRNA mimics, respectively. c) and d) SK-MES-1 metabolic profile and 

response to the injections following 24 and 48 hours treatment with miRNA mimics, respectively. e) Representative trace of a Mito Stress metabolic 

cell profile (A549 treated with miR-140-3p at 24hours) and parameters used to evaluate the mitochondria respiration (basal respiration, ATP 

production and maximal respiration). Data are presented as mean + SD, three individual experiments undertaken in triplicate
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The Seahorse traces of the A549 and SK-MES-1 NSCLC cell lines following 24 

hours treatment with miRNA mimics show more differences in the OCR 

amongst the groups within the same cell line, compared to the traces at 48 hours. 

In both the cell lines, the OCR consumption decreases with time. For example, 

in the A549 cells treated with miR-140-5p and negative control, the starting OCR 

is about 40 pmole/min and it slows down to 12p mole/min after a further 24 

hours (Figures 6.1a and b). The representative Figure 5.1e illustrates the 

parameters considered to study the mitochondrial features. They have been 

quantified by using the method described in Section 2.22 and the results, in 

percentage, have been reported in Figure 5.2.  

The traces of A549 cells following 24 and 48 hours treatment with the miRNA 

mimics, follow the same trend, with the cells transfected with miR-140-3p 

starting from a lower basal respiration point at the beginning of the assay, 

compared to control and the cells treated with miR-140-5p (Figures 6.1a and b). 

In particular, after 24 hours, the traces of the cells transfected with miR-140-5p 

and the control overlie each other (Figure 6.1a). The basal respiration, ATP 

production and maximal respiration were quantified as a percentage, by taking 

the control as 100%. Although the starting point for each trace is different, there 

is no significant difference between the control and the treated cells, whereas the 

cells treated with miR-140-3p at 24 hours, produce less ATP than the control 

(Figure 6.2 a). The other results are not statistically significant, however, the 

trend of A549 after 24 and 48 hours treatment is the same (Figures 6.2a and b): 

miR-140-3p decrease the basal respiration, ATP production and maximal 

respiration, whereas the miR-140-5p has the opposite effect (Figures 6.2a and 

b). 
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The traces of SK-MES-1 cells following 24 and 48 hours treatment with the 

miRNA mimics does not show any common trend. At the starting point, the 

basal respiration of the cells treated with miR-140-3p and miR-140-5p is higher 

at 24 hours than the control (Figure 6.1c), whereas at 48 hours the basal 

respiration is increased in the cells treated with miR-140-5p and assumes the 

same value in the cells treated with the miR-140-3p and negative control (Figure 

5.1d). Overall, as in the case of the A549, there are greater differences amongst 

the groups following 24 treatments with the miRNA mimics (Figure 5.1a), than 

48 hours (Figure 6.1b). The levels of the basal respiration, ATP production and 

maximal respiration appears higher in the cells treated with miR-140-5p and 

miR-140-3p at both the time points considered (Figures 6.2c and d). These data, 

however, are not statistically significant. 
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Figure 6.2. Seahorse Mito stress test parameter quantitation. The Basal respiration, ATP production and maximal respiration of the cells 

treated with miR-140-3p, miR-140-5p and negative mimics have been quantified and illustrate in percentage as described in the Section 2.22. A549 

metabolic response to the injections following a) 24 and b) 48 hours treatment with miRNA mimics, respectively. SK-MES-1 metabolic response 

to the injections following c) 24 and d) 48 hours treatment with miRNA mimics, respectively. Data are presented as mean + SEM, three individual 

experiments were undertaken in triplicate, ANOVA was used to assess significance with *p<0.05.  The data represents the percentage and the 

statistical analysis was performed by using row data. 
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6.3.2 MiR-140-3p and miR-140-5p do not reduce the glycolysis in NSCLC 

cell lines 

Glycolysis is the first step in cellular respiration. It occurs in the cytoplasm of 

the cells, outside of mitochondria, and produces 2 molecules of ATP per glucose 

and pyruvate. In the presence of oxygen, pyruvate is transported into the 

mitochondria for the aerobic respiration which produces ATP, CO2 and water. 

Without oxygen, glycolysis is followed by a process named fermentation, which 

produces lactate in animals and ethanol in plants. The conversion of glucose to 

lactate, results in the release of protons, which reduces the pH of the extracellular 

environment.  Glycolysis is the preferred energetic process used by cancer cells 

and here we assessed whether the miRNA mimics treatment has any effect on 

the glycolytic function of the NSCLC cells, A549 and SK-MES-1.  

In the first instance, the cells were incubated with a specific media without 

glucose or pyruvate and then three compounds were injected into the cells: 

glucose, oligomycin and 2-deoxy-glucose (2-DG). Glucose initiates the 

respiration in the cells. Oligomycin is an ATP synthase inhibitor and, 

consequently, stops the aerobic respiration, in favour of glycolysis. Finally, the 

glucose-analog, 2-DG, inhibits the glycolysis by binding to glucose hexokinase, 

the first enzyme involved in the glycolytic process. The extracellular acidification 

rate (ECAR), which corresponds to the protons produced by the cells, was 

monitored for each of the 96 wells on the plate. For every cell line at each time 

point, the bioenergetics trace was reported (Figure 6.3) and the individual 

parameters indicated in percentage in Figure 6.4. 
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Figure 6.3.  Seahorse Glycolysis stress test profile. NSCLC cell lines were treated with miR-140-3p, miR-140-5p and negative mimics for 24 

and 48 hours. At these two time points, the Seahorse Glyco Stress Test has been performed to assess the respiration in the cells by using three 

different compounds: glucose, oligomycin and 2-deoxy-glucose. A549 metabolic profile and response to the injections following a) 24 and b) 48 

hours treatment with miRNA mimics, respectively. SK-MES-1 metabolic profile and response to the injections following c) 24 and d) 48 hours 

treatment with miRNA mimics, respectively. e) Representative trace of a Glyco Stress metabolic cell profile (SK-MES-1 treated with miR-140-3p 

at 48hours) and parameters used to evaluate the cellular respiration (Glycolysis and glycolytic capacity). Data are presented as mean + SD, three 

individual experiments undertaken in triplicate 
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The Seahorse traces show that both the A549 and SK-MES-1 cell lines have a 

better response at 24 hours (Figure 6.3a and c) than at 48 (Figure 6.3b and d). A 

representative graph, with a good response to the injections, is displayed in 

Figure 5.3e. The traces also show that the ECAR decreases with time, as the 

OCR does in the Mito Stress assay. For example, in A549 cells treated with miR-

140-3p and negative control, the starting ECAR is about 20 mpH/min and then 

slows down to 4 mpH/min after a further 24 hours (Figures 6.3a and b). 

The traces of A549 cells following 24 and 48 hours treatment with the miRNA 

mimics, follow the same trend, with the cells transfected with miR-140-5p 

starting from a higher ECAR at the beginning of the assay, compared to the 

control and the ones treated with miR-140-3p (Figures 6.3a and b). However, at 

24 hours the graph is not reliable, as the injection of glucose should be the 

saturation point and the ECAR should increase afterwards. The glycolysis and 

glycolytic capacity of the cells have been quantified as percentage, by taking the 

control as 100% (Figure 5.4). At both the time points, both the treatments look 

to increase the glycolysis of the NSCLC cells (Figures 6.4a and c). These data, 

however, are not statistically significant. The data that has a statistical 

significance is the reduction of the glycolytic capacity of the A549 cells following 

24 hours of transfection with the miR-140-5p mimics (Figure 6.4a).  

The traces of SK-MES-1 cells following 24 and 48 hours treatment with miRNA 

mimics, do not follow any common trend, even if the cells at 48 hours (Figure 

6.3d) respond better to the injections than the cells at 24 hours (Figure 6.3c). No 

statistically significant difference has been recorded in the glycolysis and the 

glycolytic capacity of the SK-MES-1 at both the time points (Figure 6.4 a and b, 
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respectively), even if the treatment with the mimics tends to increase the 

anaerobic respiration of the cancer cells. 
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Figure 6.4. Seahorse Glycolysis stress test parameter quantitation. The Basal respiration, ATP production and maximal respiration of the 

cells treated with miR-140-3p, miR-140-5p and negative mimics have been quantified and illustrate in percentage as described in the Section 2.22 

a) and b) A549 respiration response to the injections following 24 and 48 hours treatment with miRNA mimics, respectively. c and d) SK-MES-1 

respiration response to the injections following 24 and 48 hours treatment with miRNA mimics, respectively. Data are presented as percentage 

mean + SEM, three individual experiments were undertaken in triplicate, ANOVA was used to assess significance with **p<0.01. Data represents 

the percentage and the statistical analysis was performed by using row data. 
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6.4 Discussion 

Cancer cells switch from an aerobic to an anaerobic respiration, regardless of the 

presence of oxygen. Many factors may contribute to this change, including 

mutations in key genes and epigenetic modifications that regulate cell 

metabolism. 

In presence of oxygen, the normal cells in our body use glucose to produce 

pyruvate first and then energy, water and carbon oxide in mitochondria. When 

the levels of oxygen are low, the pyruvate does not enter the mitochondrion, but 

is converted into lactate and energy in the cytoplasm through a process named 

glycolysis. This normally happens in the working muscles, where there is a high 

demand for oxygen and thus the levels become lower and lower.  

In this study, the mitochondrial respiration and the glycolytic function of 

NSCLC cells treated with miR-140-3p and miR-140-5p have been investigated 

to see whether the mimics treatment can revert any metabolic changes which 

have occurred in malignant cells. 

The Cell Mito Stress assay allows study of the mitochondrial respiration by using 

compounds that inhibit aerobic respiration. Both A549 and SK-MES-1 cells 

respond well to these injections, as the metabolic traces show that the oligomycin 

and rotenone/antimycin A decrease the OCR by impeding the synthesis of the 

ATP, whereas the FCCP stimulates the oxygen consumption by disrupting the 

electron flow through the Krebs cycle. However, the best response is following 

24 hours mimic transfection in both the cell lines. The OCR decreases with time, 

as the OCR in both the cell lines decreases proportionally to the time of 

transfection. This may be due to the availability of oxygen in each well. The cells 
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may be proliferating and, over time, need more and more oxygen, thus making 

the environment potentially hypoxic.  

In A549 cells, the important statistically significant data obtained through this 

assay is the ATP production. Twenty-four hours following transfection with 

miR-140-3p, A549 cells produced less ATP than the control cells. This suggests 

that miR-140-3p may target some key factors involved in the aerobic respiration. 

Low ATP levels and a high glycolysis are associated with chemoresistance and 

proteasome impairment in cancer (Zhou et al., 2012, Huang et al., 2010) and this 

may confer an advantage to the cancer cells. In contrast, miR-140-5p appears to 

restore the anaerobic respiration and ATP production. These data, however, are 

not significant. As expected, glycolysis in the A549 cells was shown to increase 

following the treatment with miR-140-3p and this strengthens the hypothesis 

that miR-140-3p may enhance the metabolic switch in the cancer cell. It should 

be noted that we cannot rely completely on the study of the glycolytic functions 

of the NSCLC cells treated with the miRNA mimics, because by looking at the 

metabolic trace at 24 hours, I see that the cells did not respond well to the 

injections for the study of glycolysis. The first injection with glucose should 

increase the ECAR of the cells, as the saturating concentration of glucose 

stimulates glycolysis and, consequently, the release of protons in the extracellular 

space. In my experiment, the ECAR decreased after the first injection. The trace 

indicates that the ECAR rises again before the injection with the oligomycin that 

inhibits the synthesis of the ATP. The glucose analogue 2-DG, did reduce the 

ECAR as expected, by limiting the glycolytic process.  

The data obtained on SK-MES-1 cells were very variable and no statistically 

significant differences have been found between the cells treated with the 
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control and the negative mimics, even though the cells responded well to the 

stimuli given by the injections in both the Cell Mito and Glycolysis assays. The 

trend they follow is controversial, as miR-140-3p and miR-140-5p seem to 

increase the basal respiration and ATP production but, at the same time, they 

also increase the glycolysis of cancer cells. 

Taken together, I conclude from these experiments that there is no significant 

evidence that shows that miR-140-3p and miR-140-5p mimics treatments affect 

the metabolism of the NSCLC cells.  

The main limitation of this in vitro study, is the contribution of the 

microenvironment (Anastasiou, 2017). During the progression of the 

malignancy, many cell types are involved, such as immune and endothelial cells 

and we do not know how the NSCLC cells treated with miR-140-3p and miR-

140-5p would respond to the external stimuli. 

In view of the above findings that in A549 and SK-MES-1 cells, miR-140-3p 

and miR-140-5p do not appear to target genes involved in metabolism; in the 

next chapters, I will focus on the investigation of other potential candidate 

targets of both miR-140-3p and miR-140-5p. 
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7.1 Introduction 

In the previous chapters I assessed the impact of the miR-140-3p and miR-140-

5p mimic treatments on NSCLC and endothelial cell behaviour using a variety 

of in vitro functional assays. The results suggest that the treatment with these 

miRNA mimics significantly decreased the invasive properties of malignant 

NSCLC cells and limited the tubule formation ability of endothelial cells in vitro.  

In order to understand the possible mechanisms that are involved in the 

alteration of the malignant properties of lung cancer cells after miRNA 

treatments, in this chapter the EMT markers were assessed for their expression 

in NSCLC cells in response to transfection with miR-140-3p and miR-140-5p 

mimics. This included the epithelial cell marker E-cadherin, the mesenchymal 

marker N-cadherin, the cytoskeletal marker Vimentin and the transcription 

factors Snail and Slug. 

The targets of both miR-140-3p and miR-140-5p were investigated by using two 

different approaches. Apart from the bioinformatic approach with in silico tools, 

I merged the data obtained from the RNA-sequencing technique using 

biotinylated-mimic RNA pulldown with the data from a Kinexus protein array. 

The targets predicted by the bioinformatics tools were validated by western 

blotting. 

By using the bioinformatics approach, I focused on integrin-β3 (ITGB3) as a 

potential target of miR-140-3p. It is known that integrins mediate the migration 

of tumour cells by cooperating with specific growth factor receptors, including 

EGFR (Desgrosellier and Cheresh, 2010). Specifically, ITGB3 has been 

associated with lung cancer progression (Hong et al., 2016) . Their expression, 
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in fact, is not just altered in malignant cells, but also in tumour-associated cells, 

including endothelial cells (Desgrosellier and Cheresh, 2010). Thus, integrins 

may regulate and affect many pathways, especially when considering the vast 

array of stimuli within the tumour microenvironment (Desgrosellier and 

Cheresh, 2010). For example, when ITGB3 is associated with the αV subunit 

(α5β3), they regulate angiogenesis with growth factor specific receptors, such as 

the Fibroblast Growth Factor Receptor (FGFR) (Hood et al., 2003). As my 

results suggest that the effect of miR-140-3p on the formation of new vessels in 

HUVECs appears to be VEGF-A independent, I hypothesise that ITGB3 may 

influence tumour progression in NSCLC by affecting both cancer and 

endothelial cell behaviour. 

Data from RNA-Seq suggests that the cyclin-dependent kinase 3 (CDK3) and 

the sulfatase 2 (SULF2) may be two targets of miR-140-5p. The involvement of 

these molecules in cancer progression has been demonstrated (Xiao et al., 2017, 

Wang et al., 2014, Zhu et al., 2016, Lui et al., 2016, Lemjabbar-Alaoui et al., 2010) 

and to better validate this hypothesis, I studied the effect of miR-140-5p on the 

levels of EGFR and β-catenin, two critical factors involved in the cellular 

transformation mediated by CDK3 and SULF2, respectively. 
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7.2 Materials and methods 

Western blotting 

Following 48 hours of treatment of A549 with negative control or miR-140-3p 

and miR-140-5p mimics, cells were washed with PBS and lysed with RIPA buffer 

with proteinase inhibitors, placed on a rotating wheel for 30 minutes at 4˚C, 

centrifuged at 16,000 xg for 20 minutes then the proteins in the supernatant were 

quantified as described in Section 2.12. Following this, an equal amount of 2 x 

Llaemelli buffer was added and western blotting was performed using 80 ng of 

proteins for each sample and the respective antibodies, as listed in Tables 11-12. 

MiRNA Target Validation by using the Luciferase Assay 

The pmirGLO Dual-Luciferase miRNA Target Expression Vector (Promega, 

Wisconsin, USA) was used to evaluate the miRNA activity by inserting the 

putative miRNA target sites at the 3´ of the firefly luciferase gene (luc2). The 

target sites were cloned into the pmirGLO Vector, propagated in competent E. 

coli cells and purified as indicated in Section 2.18. Plasmids were partially 

sequenced to verify the integrity of the cloned inserts. Cells were transfected 

with plasmids containing the pmirGlo vector and wild-type and mutated target 

sequences of miR-140-3p. After 24 hours cells were analysed for luciferase 

activity. 

MiRNA Target Identification by using mRNA-sequencing (mRNA-Seq) 

Following 24 hours of transfection with negative control, miR-140-3p or miR-

140-5p biotinylated mimics, A549 cells were lysed with a hypotonic buffer and 

the mRNA-miRNA complexes were isolated with magnetic beads, as indicated 

in Section 2.19. The captured mRNAs were amplified and labelled to obtain a 
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library. The RNA was sequenced as described in Section 2.20 and the analysis of 

the RNA-Seq data were performed with Partek Genomics Suite software 

(http://www.partek.com/pgs). The potential targets were expressed in reads per 

million (RPM) and the differences between the control and testing samples 

calculated as log2 (RPM sample-RPM control) on an Excel spreadsheet. 

EMT markers validation qRT-PCR 

QRT-PCR was undertaken using cDNA produced in reverse transcription 

detailed above, using primers for SLUG, SNAIL, ARAF and EGFR (listed in 

Table 2.4), following the procedure outlined in Section 2.11. The analysis was 

performed using Ct values obtained from these processes were analysed using 2-

(ΔΔCT) normalisation to GAPDH. Each qPCR sample was analysed in triplicate, 

with the experiment being independently set up three times. 

Protein microarray (Kinexus) 

Following 48 hours transfection with a negative control or miR-140-3p and miR-

140-5p miRNA mimics, A549 cells were lysed as indicated in Section 2.14 and 

sent to the Kinexus Bioinformatics Corporation (Vancouver, British Columbia, 

Canada) for protein array analysis. Results were sorted in Excel by the lowest % 

CFC (percentage change from control) in response to each miRNA treatment.   

Statistical Analysis 

Statistical analysis was performed as described in Section 2.24. 
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7.3 Results 

7.3.1 Treatment with miR-140-3p and miR-140-5p mimics decreases the 

EMT markers in A549 cells 

Due to the reduced invasive potential of A549 NSCLC cells following miR-140-

3p and miR-140-5p mimic treatments (Chapter 4, Figure 4.6), I assessed whether 

the markers of EMT were affected. We screened the A549 cells for E-cadherin, 

N-cadherin, Vimentin, Snail and Slug following transfection with miR-140-3p 

and miR-140-5p (Figure 7.1). 

In A549 cells, both miR-140-3p and miR-140-5p mimics were shown to increase 

E-cadherin protein levels and decrease N-cadherin (Figure 7.1a). Vimentin, a 

cytoskeletal marker overexpressed in cancer, was downregulated by the 

treatment with both miR-140-3p and miR-140-5p mimics (Figure 7.1a). The 

transcription factors Snail and Slug, usually overexpressed in tumours, were 

downregulated after the transfections with the two forms of miR-140 (Figure 

7.1 b and c). Compared to the negative mimic, miR-140-3p significantly 

decreases the levels of both Snail (p=0.0423) and Slug (p<0.0001). Similarly, 

miR-140-5p reduced the expression of Snail (p=0.0211) and Slug (p<0.0001) in 

the same manner 

 

 



255 
 

 

Figure 7.1. Expression of EMT markers in A549 cells following the treatment with miR-140-3p and miR-140-5p mimics. a) Western 

blotting of the cell surface markers E-cadherin, N-cadherin and the cytoskeletal marker Vimentin after transfection with miRNA mimics for 48 

hours b) qPCR of the transcription factor Snail after transfection with the miRNA mimics for 24 hours. c) qPCR of the transcription factor Slug 

after transfection with the miRNA mimics for 24 hours. Data are presented as change fold of the mean + SEM, three individual experiments were 

undertaken in triplicate, t-test has been used to assess significance with *p<0.005***p<0.001. 



256 
 

7.3.2 Integrin beta-3 (ITGB3) is the direct target of miR-140-3p  

In order to further investigate the phenotypical changes of adhesive, migratory 

and invasive capabilities that were detected following the transfection with miR-

140-3p and miR-140-5p mimics (Chapter 4), I also explored the potential direct 

targets of miR-140-3p and miR-140-5p by using in silico tools. The criteria I have 

used were the following: 

 Conservation of the miRNA sequence among the species 

 Consider the genes involved in invasion and angiogenesis 

By combining the data from the main bioinformatic algorithms, especially 

TargetScan and MiRWalk, I identified ITGB3 as potential direct target, which is 

usually up-regulated in both tumour and tumour-associated endothelial cells. 
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Figure 7.2. Identification of ITGB3 as a direct target of miR-140-3p. a) Predicted 

binding sites of ITGB3 3’-UTR and miR-140-3p from TargetScan (top). The base 

pairing between the ITGB3 3’UTR binding site and the seed region of miR-140-3p is 

underlined. The binding site of miR-140-3p on ITGB3 includes 7 nucleotides (top). The 

binding site of miR-140-3p and the mutated form of ITGB3 3’-UTR includes 3 

nucleotides (bottom). b) Relative luciferase activity levels following 24 hours 

transfection of A549 cells with the Luciferase reporter vector containing the backbone 

vector only, ITGB3 3’-UTR (ITGB3 WT) and the mutated form of the 3’-UTR (ITGB3 

mutated), respectively. Data are presented as fold change of the mean + SEM, three 

individual experiments were undertaken in triplicate, ANOVA-test was used to assess 

significance with *p<0.05. c) ITGB3 protein is downregulated in A549 cells after 48 

hours of transfection with miR-140-3p mimics as shown by western blotting.  

 



258 
 

The presence of the reporter construct containing the binding site of the wild-

type ITGB3 3’-UTR to miR-140-3p in A549 cells led to a significant decrease in 

luciferase activity (p=0.0438) (Figure 7.2b). As a control, in the experiment using 

the mutated ITGB3 3’-UTR which disrupted miRNA-3’UTR binding (Figure 

6.2 a, bottom), the activity of the luciferase in A549 cells was similar to the 

negative control containing the vector only and, as expected, was not repressed 

(Figure 7.2 b).  

We further validated the result obtained from the luciferase assay through 

western blotting. Following 48 hours of transfection with negative and miR-140-

3p mimics, we verified that the levels of ITGB3 were lower in the cells treated 

with miR-140-3p than in the control (Figure 7.2 c). 
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7.3.3 MiR-140-3p suppresses the invasive capability of NSCLC and the 

ability of the endothelial cells to form new vessels by targeting Integrin-

beta3 (ITGB3) 

To confirm the ability of miR-140-3p to decrease the invasive properties of A549 

cells in vitro, I assessed the effect of miR-140-3p mimics treatment on some of 

the molecular pathways linked to ITGB3 activation. I considered data from 

western blotting and the Kinexus protein array following 48 hours transfection 

with negative control or miR-140-3p mimics. 

Data from western blotting showed that p-Src (Y 530) levels do not change 

(Figure 7.3), whereas the oncosuppressor PTEN was slightly up-regulated 

(Figure 7.3). AKT1 and ERK, two of the downstream effectors of EGFR, were 

downregulated (Fgure7.3), as was EGFR itself (Figure 7.4). This suggests that 

miR-140-3p exerts an inhibitory effect on cancer progression, as it may disrupt 

the crosstalk between integrins and EGFR. 

Data from the protein array contradict the western blot results because was 

shown that EGFR is up-regulated following transfection with miR-140-3p. 

Despite this, phosphorylated EGFR proteins at tyrosine 998, 1172, 1069, 869, 

and 1197 were downregulated by miR-140-3p (Table 7.2). Other EGFR 

downstream molecules, such as ARAF, MEK1 and PI3K were also found to be 

lower in cells treated with miR-140-3p than in the cells treated with the negative 

mimics (Table 7.2). The protein array data reported that both the Platelet-derived 

growth factor receptor PDGFR-A and PDGFR-B, involved in angiogenesis, 

were regulated by the treatment with miR-140-3p (Table 7.2). In Figure 7.4, the 

proposed mechanism of action of ITGB3 in lung cancer invasion is shown.  
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Figure 7.3.  Western blotting of key downstream effectors of ITGB3 in A549 cells 

following 48 hours of transfection with negative control or miR-140-3p mimics. 

P-SrcY530 levels are not affected by the treatment, whereas there is an increase of PTEN 

levels and a decrease of AKT1, EGFR and ERK. 
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Table 7.1. Protein expression in A549 cells following a 48 hours transfection with 

a negative control or a miR-140-3p mimic.  

 

Protein name 

 

Phosphorylation site 

(Humans) 

 

 

%CFC 

(140-3p-negative) 

EGFR Pan-specific 11 

EGFR Y998 -2 

EGFR Y1172 -56 

EGFR Y1069 -4 

EGFR Y869 -12 

EGFR Y1197 -52 

ARAF Pan-specific -6 

MEK1 Pan-specific -7 

PDGFRA Pan-specific -11 

PDGFRB Pan-specific -2 
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Figure 7.4. Proposed mechanism of action of miR-140-3p in NSCLC. MiR-140-3p reduces the invasive ability of A549 cells and the ability 

of HUVECs to form vessels by disrupting the interaction between integrins and EGFR and PDGFR respectively. The proteins validated by 

western blotting were indicated with * and the proteins validated by Kinexus protein array with **.
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7.3.4 Global study of the targets of the two forms of miR-140 in A549 cells 

Most of the studies seek to identify new direct targets of miRNAs by using 

bioinformatics algorithms of prediction. However, this approach restricts the 

discovery of new potential targets to a small group of mRNAs because the in 

silico tools investigate new molecules one by one. As described in Section 2.16, 

once a potential target is identified, the validation requires the use of cloning 

techniques and the use of a Luciferase assay and this make the procedure slow. 

Moreover, when a target is found, the last validation step is by western blotting 

which requires optimisation, as other pathways may be involved and may 

compensate for the effect caused by that specific miRNA. Finally, the prediction 

algorithms consider just the canonical binding of the mRNA to the 3’UTR of 

the mRNA target, thus omitting any other interaction that may happen in other 

regions. 

All these issues may be overcome by global approaches that allow the study of 

multiple targets at the same time. In this study, we attempted to identify the 

potential targets of both forms of miR-140 by mRNA-Seq. The results showed 

that on a total of 20,816 genes in the Ampliseq, 5,847 were pulled down in A549 

cells transfected with either miR-140-3p or 140-5p (Figure 7.5). There were 1141 

unique 140-3p enriched genes and 1333 unique miR-140-5p enriched genes 

(Figure 7.5). The top ten enriched genes were selected for each miR-140 strand 

and it was found that the binding between the miRNA and the potential target 

gene was stronger in the samples transfected with miR-140-3p (Tables 7.2 and 

7.3). Also, I found that cysteine rich hydrophobic domain 2 (CHIC2) was one 

of the predicted targets of miR-140-3p and sulfatase 2 (SULF2) was one of the 

predicted targets of miR-140-5p (Tables 7.2 and 7.3). 
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Figure 7.5. Relationship of the gene targets identified by the RNA-sequencing 

data after biotin-miRNA pulldown. The mRNA gene targets enriched by the 

biotinylated miR-140-3p and miR-140-5p are indicated in two different groups and the 

common targets are included in the merged section of the two diagrams. 
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Table 7.2. Top 10 miR-140-3p enriched genes in A549 cells transfected with 

biotinylated miR-140-3p mimics. 

 

Target 

 

Log2 (RPM 140-

3p-RPM 

control) 

 

Role in human 

cancer 

 

Predicted 

SSBP3 1.113 Oncogene 

(Simonik et al., 

2016) 

No 

TEKT4P2 1.105 Unknown No 

DCLRE1A 1.062 Unknown No 

ZXDA 0.963 Unknown No 

CDC25C 0.948 Oncogene (Yin 

et al., 2016, Sur 

and Agrawal, 

2016) 

No 

CD302  0.91 Unknown No 

FBXO46 0.892 Unknown No 

SNX16 0.882 Tumour 

suppressor 

(Zhang et al., 

2013) 

No 

HELQ 0.856 Tumour 

suppressor (Liu 

et al., 2017) 

No 

CHIC2 0.856 Unknown Yes (TargetScan) 
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Table 7.3. Top 10 miR-140-5p enriched genes in A549 cells transfected with 

biotinylated miR-140-5p mimics. 

 

Target 

 

 

Log2 (RPM 140-

5p-RPM control) 

 

Role in human 

cancer 

 

Predicted 

CSRNP2 0.837 Unknown No 

CDK3 0.783 Oncogene (Xiao et 

al., 2017, Wang et 

al., 2014) 

No 

DFFB 0.726 Tumour 

suppressor (Hsieh 

et al., 2003) 

No 

COA6 0.606 Unknown No 

MAGI1 0.606 Tumour 

suppressor (Zhang 

and Wang, 2011) 

No 

SULF2 0.606 Oncogene (Zhu et 

al., 2016, Lui et al., 

2016, Lemjabbar-

Alaoui et al., 2010) 

Yes (TargetScan) 

ZNF101 0.606 Unknown No 

CCDC144B 0.542 Unknown No 

PCOLCE 0.542 Oncogene 

(Anastassiou et al., 

2011) 

No 

SNORA70F 0.542 Unknown No 
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7.3.5 MiR-140-5p may limit NSCLC progression by targeting the cyclin-

dependent kinase 3 (CDK3) and the sulfatase 2 (SULF2) 

Data from RNA-sequencing suggests that CDK3 and SULF2 might be two 

potential targets of miR-140-3p. SULF2 was also predicted by TargetScan. To 

better investigate this finding, I verified the protein levels of two downstream 

molecules influenced by CDK3 and SULF2, which are EGFR and β-catenin, 

respectively. By western blotting, both EGFR and β-catenin were found to be 

downregulated in A549 cells treated with miR-140-5p mimics (Figure 7.6). 

Notably, the levels of β-catenin were not affected by miR-140-3p, thus 

suggesting that the two forms of miR-140 may suppress the invasion properties 

of NSCLC cells by acting on different molecular pathways. 

 

Figure 7.6. Western blotting of β-catenin and EGFR in A549 cells following 48 

hours of transfection with negative, miR-140-3p and miR-140-5p mimics. Β-

catenin levels are lower in cells treated with miR-140-5p mimics. EGFR levels decrease 

in cells treated with miR-140-3p and miR-140-5p. 
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7.4 Discussion 

In this chapter, I investigated the molecular mechanisms involved in the 

inhibition of the invasive properties of NSCLC cells following treatment with 

miR-140-3p and miR-140-5p mimics respectively.  

In EMT, the tumour cells lose their epithelial morphology and characteristics 

and acquire some mesenchymal-like properties that enable them to survive and 

form metastasis in distant sites (Zeisberg and Neilson, 2009). I focused on some 

EMT markers specifically involved in lung cancer progression, such as E-

cadherin, N-cadherin, Snail, Slug and Vimentin (Heerboth et al., 2015). Both 

miR-140-3p and miR-140-5p were found to restore the normal levels of E-

cadherin and reduce N-cadherin, Vimentin, Slug and Snail expression. These 

finding strengthen my previous data from the migration and invasion assays and 

guided my research on the discovery of some novel direct targets of miR-140-

3p and miR-140-5p. 

The challenge in the study of miRNAs is the identification of the directly 

targeted mRNAs. Although most of the miRNA-mRNA interactions occur 

between the seed region of the miRNA and the 3’UTR of the mRNA, more-

non canonical bindings have been discovered (Martin et al., 2014), thus making 

the search for novel targets more complicated. Bioinformatics tools are widely 

used to predict the potential targets of a miRNA. However, the biological 

validation of the predicted molecules often fails. This may be due to the low or 

lack of expression of the miRNA in a specific tissue or in a specific phase of the 

cell cycle. Moreover, as previously stated, the computational methods consider 

only the canonical seed region-3’UTR interactions, thus excluding other types of 

binding, outside the 3’-UTR (Barbato et al., 2009, Hausser and Zavolan, 2014). 
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Finally, different algorithms often produce different results with no overlap at 

all and this may discourage the researcher from undertaking any further 

validation.  

Many techniques have been recently developed to integrate bioinformatics 

techniques as the identification of a single target may not reflect the global 

physiological effect of a specific miRNA. In one of these methods biotinylated 

miRNAs at the 3’UTR are delivered into cells, purified together with bound 

mRNAs through a streptavidin-base technique after which the mRNA profile 

can be identified using microarray or sequencing. The biotinylated mimics are 

incorporated into the miRNA-induced silencing complex (RISC) and bind their 

mRNA targets. This technique leads to the discovery of many bona fide targets at 

the same time, thus allowing a more effective and reliable study of a single 

miRNA and its direct targets (Tan et al., 2014). 

My RNA-Seq data showed that the two forms of miR-140 have different targets. 

MiR-140-5p appears to be able to target more mRNAs than its sister strand but 

miR-140-3p binds its targets more specifically. The main limitation of this 

experiment is the lack of replicate data. For a matter of time, the RNA 

sequencing after biotin-miRNA pulldown was only carried out once. These 

experiments should be repeated two more times at least to make these 

observations more reliable. However, the first result is very encouraging because 

I found two targets already predicted by in silico tools. 

Although both miR-140-3p and miR-140-5p reduced the invasive properties of 

the lung cancer cells by inhibiting the EMT process, I have mainly focused on 

the potential direct targets of miR-140-3p for two main reasons: Firstly, although 

there is no a proper strand selection in normal lung cells, miR-140-3p is the 
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predominant strand in both normal and lung cancer cell lines. Secondly, miR-

140-3p has an inhibitory effect on both cancer invasion and the tubule formation 

ability of the endothelial cells, thus making its role as therapeutic agent more 

attractive. 

Thanks to the “classical” bioinformatics approach, I have discovered that miR-

140-3p targets ITGB3 by binding its 3’UTR. The lower expression of ITGB3 

following the treatment with miR-140-3p mimics may explain the decrease in 

invasion observed in the A549 cells as well as the inhibition of HUVEC tubule 

formation. In fact, it has been demonstrated that epigenetic modifications may 

occur far from the primary tumour and that the stromal cells themselves change 

their epigenome during EMT (Heerboth et al., 2015). There is a crosstalk 

between the stromal and cancer cells in a paracrine manner, as some miRNAs 

released in the tumour microenvironment by the malignant cells can modify the 

cell transcriptome of other cells, including endothelial cells, thus stimulating 

tumour growth, angiogenesis and metastasis. For example, miR-105 from 

metastatic breast cancer cells is packed into exosomes and delivered to the 

endothelial cells, thus facilitating the vascular permeability and the metastatic 

process by targeting the tight junction protein ZO-1 (Zhou et al., 2014).  

It is likely that miR-140-3p limits the invasion of A549 cells by targeting ITGB3 

on A549 and endothelial cells for three main reasons. First of all, ITGB3 has 

been found to be up-regulated in both cancer and endothelial cells (Desgrosellier 

and Cheresh, 2010). Secondly, the media from cells transfected with miR-140-

3p mimics is taken from the cells after 24 hours of treatment at which time point 

there is the highest concentration of the miRNA and thus may be incorporated 

in the endothelial cells. Finally, the inhibition of the HUVEC tubule formation 
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ability by conditioned medium from miR-140-3p transfected NSCLC cells is 

VEGF-A independent (Chapter 5) and other studies have shown the 

involvement of ITGB3 in angiogenesis (Hood et al., 2003). It is known that 

integrins partially activate the EGFR signalling pathway (Bill et al., 2004). My 

data demonstrated that miR-140-3p can disrupt EGFR regulation by targeting 

ITGB3 in a Src-independent manner. Src has two phosphorylation sites 

important for its activation, Tyr530 and Tyr419. In this study the carboxy-

terminal Tyr530 has been considered, as it is the crucial site for Src activation 

(Bjorge et al., 2000). Dephosphorylation of Tyr530 opens up the molecule to an 

active state. Although the Kinexus data showed a decrease in p-SrcTyr530, the 

western blotting seemed to show that this p-SrcTyr530 protein is not significantly 

affected by the treatment with miR-140-3p. 

Integrins also interact with other growth factor receptors involved in 

angiogenesis, including PDGFR-A and PDGFR-B (Bill et al., 2004, Somanath 

et al., 2009). My data shows that the inhibition of the tubule formation ability of 

HUVECs may be due to the lack of activation of PDGF receptors by ITGB3. 

I investigated the RNA-Seq data to identify any potential targets of miR-140-5p. 

I focused on CDK3 and SULF2 because their role as oncogenes has been 

previously demonstrated (Xiao et al., 2017, Wang et al., 2014, Zhu et al., 2016, 

Lui et al., 2016, Lemjabbar-Alaoui et al., 2010). I performed a preliminary 

validation by western blotting and considered EGFR and β-catenin, as their 

expression is influenced by CDK3 and SULF2, respectively (Xiao et al., 2017, 

Lemjabbar-Alaoui et al., 2010). I found that the treatment with miR-140-5p 

mimics reduced the protein levels of both of these molecules. This finding 

reinforced the RNA-Seq data and may confirm the repressive activity of miR-
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140-5p on the invasion properties of NSCLC cells that I demonstrated through 

specific functional assays.  
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Lung cancer is the most frequently diagnosed cancer worldwide, in both men 

and women, with 46,403 new cases diagnosed in the UK in 2014 . Historically, 

lung cancers from the cells of the respiratory epithelium have been broadly 

classified into two types based on the microscopic appearance of the tumour, 

NSCLC and SCLC. In this study, I focused on NSCLC, as it is the most common 

type accounting for about 85-90% of all cases . 

The diagnosis based on the histological characteristics is not the only feature that 

should be considered for the treatment of NSCLC patients, therefore a 

histological and molecular diagnostic is desirable (Reck et al., 2013). For many 

years, the standard chemotherapeutics for NSCLC were based exclusively on the 

use of cytotoxic compounds. However, by using drugs able to target specific 

molecular pathways, such as the EGFR inhibitors, as a second or third line 

therapy in eligible patients, it is now possible to improve the overall survival of 

the patients and shows additional clinical benefits, such as a lower cytotoxicity. 

However, not all patients affected by NSCLC show the same genetic mutations. 

(Reck et al., 2013). In addition, although these oncogene-specific treatments 

have some beneficial effects, some patients acquire resistance after the treatment 

which may be due to two main mechanisms (Reck et al., 2013): the target gene 

may undergo to a second mutation, thus making the binding between the 

inhibitor and the target less efficient, or there could be some downstream signals 

that bypass the inhibitory effect of a particular drug (Reck et al., 2013). 

Moreover, it has been demonstrated that the tumour microenvironment plays a 

crucial role in tumour development and may influence the efficacy of the anti-

cancer treatments (Hanahan and Weinberg, 2011, Swartz et al., 2012). In this 

context, some anti-cancer treatments specific for the stromal cells have been 
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developed. Avastin, for example, is an anti-angiogenic drug, used as a second-

line therapy for many cancers, including NSCLC (Reck et al., 2013). Although 

the use of Avastin improved the overall survival of some eligible patients, its 

high toxicity together with a limited efficacy restricts its administration to a small 

cohort of patients (Reck et al., 2013, Swartz et al., 2012). This is because cancer 

is a multi-step process, involves many molecules (Hanahan and Weinberg, 2011) 

and for this reason targeting just one aspect may not be enough to halt the spread 

of the malignancy.  

In the last few years, specific epigenetic signatures, such as histone 

modifications, DNA methylation and miRNA regulation, have been associated 

with many tumours, including NSCLC (Ansari et al., 2016). Some drugs that act 

on the epigenome of NSCLC patients have been tested but failed at the clinical 

trial stages (Ansari et al., 2016, Mehta et al., 2015).  

In the current study, a miRNA based approach for the treatment of NSCLC has 

been investigated in vitro. I propose that miRNAs represent a new opportunity 

for cancer treatment because of their intrinsic characteristics, such as their low 

molecular weight and small size, together with their ability to target multiple 

molecules with lower toxicity. So far, some miRNA mimics and inhibitors have 

been tested and included in clinical trials (Rupaimoole and Slack, 2017). MRX34, 

for example, is a compound that mimics miR-34a and has just completed a phase 

1 clinical trial in humans for the treatment of multiple solid tumours 

(Rupaimoole and Slack, 2017). MiR-34a is normally lost in cancer and this leads 

to the activation of some oncogenic pathways, because miR-34a usually targets 

key mRNAs involved in tumour progression, such as MET, MEK1, MYC, 
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PDGFR-A, Cyclin-dependent kinases 4/6 (CDK4/6), BCL2, WNT 1/3, 

Notch1, CD44 and the Programmed death-ligand 1 (PD-L1) (Beg et al., 2017).  

I focused on both of the mature strands of miR-140, named miR-140-3p and 

miR-140-5p respectively. In the classic model of miRNA biogenesis, the duplex 

of mature miRNAs is produced by Dicer processing of the hairpin precursor. 

Then, a following strand selection step determines which mature miRNA acts as 

a guide for the mature miRISC. The strand selection process is tightly regulated 

and may vary among tissues and between normal and malignant cells (Tsai et al., 

2016).  

Recent studies introduced innovative concepts and unravelled that both sister 

mature miRNAs may be accumulated in some tissues and cell types. In this 

scenario, the strand selection might be tissue-specific but not deterministic, and 

a given strand could act as a guide strand in a specific cell type and a passenger 

in another one (Li et al., 2012, Hu et al., 2009). 

In this respect, different biological contexts most likely share complex 

mechanisms of strand selection regulation, leading either to the alternative 

expression of a single mature form or to the concurrent expression of both 

mature sister miRNAs (Salvatore et al., 2016). 

It has previously been demonstrated that both miR-140-3p and miR-140-5p are 

downregulated in NSCLC and this is associated with the progression of the 

malignancy (Yuan et al., 2013, Dong et al., 2016, Li and He, 2014). Also, a 

different maturation of the sister strands due to a SNP (rs7205289: C>A) on 

pre-miR-140 sequence, leads to an increase of miR-140-3p and a decrease of 

miR-140-5p levels and this contributes to the cleft palate syndrome, as the 
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regulation of PDGFR-A by miR-140-5p is lost (Li et al., 2010). Considering this, 

I decided to investigate the role of both of the forms of miR-140 in NSCLC and 

see whether a different strand selection plays a role in the progression of the 

disease. Moreover, I attempted to identify novel targets of the two forms of miR-

140 not only by considering the potential targets one by one but also by using a 

global approach that combined the analysis of the transcriptome and the 

proteome of cancer cells treated with either miR-140-3p or miR-140-5p. 

In the current study I have confirmed that both miR-140-3p and miR-140-5p 

are downregulated in A549 and SK-MES-1 lung cancer cell lines compared to a 

“normal” lung cell BEAS-2B. Most importantly these results were also 

confirmed in the clinical context, as samples from human lung cancer tumours 

expressed significantly less miR-140-3p and miR-140-5p than specimens taken 

from a non-cancerous lung region. 

In A549 and SK-MES-1 lung cancer cells miR-140-3p is the predominant and 

the most stable strand compared to miR-140-5p. After transfection with miRNA 

mimics, the levels of miR-140-3p remain much higher over time than miR-140-

5p in both A549 and SK-MES-1 cells. Also, in SK-MES-1 cells, the levels of 

both miR-140-3p and miR-140-5p are lower than in A549.  In contrast, there is 

no strand selection in the normal control cell line, BEAS-2B, suggesting the miR-

140-3p strand may have a more important role to play in cancer cells. 

By sequencing, I found that the pre-miR-140 of SK-MES-1 has two DNA 

variants, one in the regions encoding for miR-140-3p and another one in the 

region encoding for miR-140-5p. I then speculated that these may affect the 

miRNA biogenesis process and the progression of the malignancy, as in the case 
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of the congenital malformations (Li et al., 2010). However, these results would 

benefit from further validation. 

Increasing the expression level of either miR-140-3p or miR-140-5p was found 

to reduce the ability of the A549 NSCLC cells to invade and increased their 

ability to adhere. Increasing the level of miR-140-3p in these cells also inhibited 

the tubule formation ability of endothelial cells. Although this was only an in vitro 

study; in a broader context it is suggesting that treatments aimed to increase miR-

140-3p expression could potentially be considered to play a role in preventing 

primary tumours from dissociating, metastasising and stimulating angiogenesis. 

I have attempted to identify whether the inhibitory effect on the tubule 

formation ability of the endothelial cells was due to factors released by the 

miRNA-transfected cancer cells themselves or by the miR-140-3p itself. It has 

previously been demonstrated that miRNAs in the tumour microenvironment 

can be internalised into the endothelial cells and halt angiogenesis (Zhou et al., 

2014) and reports show that VEGF-A and PDGFR-A are deeply involved in 

tumour angiogenesis and are targeted by miR-140-5p (Zhang et al., 2015, 

Eberhart et al., 2008). In contrast to these previous studies, I found that medium 

from NSCLC cells transfected with miR-140-5p had no significant effect on 

HUVEC tubule formation.  It is probable that many of the previous findings are 

cell-type specific, because, although I found that the factors produced by A549 

cells treated with miR-140-3p did impair tubule forming ability of HUVECs; my 

studies have also shown that this occurred in a VEGF-A independent manner. 

The important “angiogenesis” inhibitory factor used here remains unknown, but 

my studies have identified a list of possible mechanisms. 
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First I did consider whether changes in the metabolism of the cancer cells might 

have any effect on the endothelial cells in the tumour microenvironment. It is 

known that cancer cells undergo to a “metabolic switch” and use the glycolysis 

instead of the aerobic respiration to produce energy, with the release of lactic 

acid in the extracellular space (Liberti and Locasale, 2016, Cairns et al., 2011). 

This process is regulated by miRNAs in many tumours, including lung (Liu et 

al., 2016a). However, my data demonstrated that the metabolism of the cancer 

cells does not appear to be significantly affected by the treatment with miR-140-

3p and miR-140-5p mimics. Therefore, I conclude that the inhibitory effect of 

miR-140-3p on endothelial cells may be due to the miR-140-3p itself, that may 

be included in the receiver cells and inhibits the formation of the tubules. 

Incidentally, the metabolic “switch” to glycolysis is actually something that is 

quite difficult to investigate in vitro where cancer cells are grown as monolayers 

where gaseous exchange easily occurs. In vivo the cells at the centre of a tumour 

mass are more likely to be starved of oxygen and hence may switch to glycolysis. 

In the future, the miRNA effect on cancer metabolism may be more easily 

studied in vitro using 3D models. 

When considering potential targets of miR-140-3p, that might reduce both the 

invasion properties of the NSCLC cells and the tubule formation ability of the 

endothelial cells, a number of signalling molecules were investigated. 

Firstly, I found that some key molecules involved in the EMT were 

downregulated following the transfection of NSCLC with miR-140-3p. Using 

bioinformatics tools, I demonstrated that ITGB3 is one of the direct targets of 

miR-130-3p. ITGB3 together with its partner, integrin-α5, forms a complex 

named αvβ3. This complex binds component of the ECM and interacts with 
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growth factors, such as EGFR and VEGFR2, to promote the invasion of cancer 

cells and tumour-associated angiogenesis (Desgrosellier and Cheresh, 2010). 

ITGB3 normally has low expression levels in normal epithelial cells but its levels 

increase in many tumours, including lung, and targeting integrins as a strategy to 

reduce the cancer progression has been successful in both in vitro and in vivo 

models (Desgrosellier and Cheresh, 2010, Weis and Cheresh, 2011). It has also  

been suggested by a previous study that integrins sometimes promote the 

metastasis formation through the Src family kinase signalling (Desgrosellier and 

Cheresh, 2010). In other cases, Src is not required, such as in the VEGF-A 

independent angiogenesis (Hood et al., 2003). Using a bioinformatics approach, 

I have identified that A549 cells express ITGB3 and by western blotting have 

shown that this protein is downregulated in cells transfected with miR-140-3p. 

Western blotting has shown that EGFR and Akt signalling proteins are also 

down regulated by miR-140-3p, but p-src levels are unchanged. This has led to 

the proposal that miR-140-3p may inhibit the invasive properties of the tumour 

cells by targeting ITGB3 with a Src-independent mechanism. 

I have also demonstrated that the downregulation of ITGB3 leads to a decrease 

of EGFR signalling pathway, thus confirming the link between miR-140-3p and 

this key growth factor receptor in lung cancer (Desgrosellier and Cheresh, 2010). 

I have hypothesised that miR-140-3p potentially inhibits the lung cancer 

progression by disrupting the tyrosine kinase activity of EGFR and inhibits the 

tubule formation of HUVECs by blocking the cascade of the Platelet-Derived 

Growth Factor Receptors, PDGFR-A and PDGFR-B. According to my data, 

miR-140-3p induced inhibition of tubule formation by the endothelial cells 

appears to be independent of VEGF-A. This conforms to previous findings, in 
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which it has been demonstrated that integrin antagonists may not require Src in 

the VEGF-A independent angiogenesis (Hood et al., 2003). 

The mRNA sequencing study demonstrated that the two forms of miR-140 have 

different targets, some of them predicted by the bioinformatics tools. Although 

this experiment needs to be repeated to integrate and overcome all the limits of 

the investigation made using mathematical algorithms, I verified that CDK3 and 

SULF2 may be two targets of miR-140-5p. In addition to its role in the cell cycle 

regulation, CDK3 indirectly enhances the EGFR-dependent transformation, as 

previously demonstrated (Xiao et al., 2017). On the other hand, a reduction of 

SULF2 levels, may reduce Wnt signalling pathway (Lemjabbar-Alaoui et al., 

2010), thus leasing to a reduction of the invasive properties of  lung cancer cells. 

The main limitation of this study is the lack of investigation into the contribution 

of the microenvironment to the molecular pathways involved in ITGB3 

downregulation by miR-140-3p. ITGB3 expression is frequently induced by the 

Transforming growth factor beta (TGFβ) secreted by the stromal cells. It acts as 

an inducer of the EMT (Hong et al., 2016) and is deeply involved in the 

regulation of both NSCLC and miR-140-5p (Ischenko et al., 2014, Tardif et al., 

2013). This extracellular signalling may explain why I did not see any significant 

changes in some key cancer aspects, such as proliferation and apoptosis, 

following the treatment with miR-140-3p and miR-140-5p mimics in A549 and 

SK-MES-1 cells. 

Integrin antagonists, such as the anti-αvβ3, Cilengitide, have shown positive 

results in Phase II clinical trials in prostate and lung cancer  (Desgrosellier and 

Cheresh, 2010). The prolonged use of integrin antagonists, however, stimulated 

angiogenesis in mice (Desgrosellier and Cheresh, 2010). In this scenario, the use 
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of miRNA mimics, which have the ability to target multiple pathways 

simultaneously, may be a better strategy to prevent the tumour growth. 
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Future work 

This work demonstrates the potential impact of the two forms of miR-140 on 

the invasive properties of NSCLC. However, there are some limitations that 

need to be solved before I translate this study to an in vivo model. It is essential 

to understand whether miR-140-3p and miR-140-5p are still able to reduce the 

progression of the malignancy in the presence of some external stimuli from the 

tumour microenvironment. For instance, the exposure of lung cancer cells to 

TGF-β may be useful to address this aspect. I also speculate that miR-140-3p is 

encapsulated in the endothelial cells and may inhibit the tubule formation ability 

of the endothelial cells by targeting ITGB3. This finding may require an 

extensive validation on endothelial cells and in the presence of other tumour-

associated cells (eg stromal and fibroblast cells etc). A repetition of the RNA-

Sequencing not only in lung cancer cell lines but also in NSCLC primary cells 

treated with biotinylated miR-140-3p and miR-140-5p mimics, would be 

valuable to evaluate the reproducibility and clinical impact of my work. The 

delivery of both the strands of the miR-140 mimics into an appropriate in vivo 

model using a clinical-feasible strategy would be desirable for translational 

research. 
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